Sample records for modeling sorption processes

  1. Model coupling intraparticle diffusion/sorption, nonlinear sorption, and biodegradation processes

    USGS Publications Warehouse

    Karapanagioti, Hrissi K.; Gossard, Chris M.; Strevett, Keith A.; Kolar, Randall L.; Sabatini, David A.

    2001-01-01

    Diffusion, sorption and biodegradation are key processes impacting the efficiency of natural attenuation. While each process has been studied individually, limited information exists on the kinetic coupling of these processes. In this paper, a model is presented that couples nonlinear and nonequilibrium sorption (intraparticle diffusion) with biodegradation kinetics. Initially, these processes are studied independently (i.e., intraparticle diffusion, nonlinear sorption and biodegradation), with appropriate parameters determined from these independent studies. Then, the coupled processes are studied, with an initial data set used to determine biodegradation constants that were subsequently used to successfully predict the behavior of a second data set. The validated model is then used to conduct a sensitivity analysis, which reveals conditions where biodegradation becomes desorption rate-limited. If the chemical is not pre-equilibrated with the soil prior to the onset of biodegradation, then fast sorption will reduce aqueous concentrations and thus biodegradation rates. Another sensitivity analysis demonstrates the importance of including nonlinear sorption in a coupled diffusion/sorption and biodegradation model. While predictions based on linear sorption isotherms agree well with solution concentrations, for the conditions evaluated this approach overestimates the percentage of contaminant biodegraded by as much as 50%. This research demonstrates that nonlinear sorption should be coupled with diffusion/sorption and biodegradation models in order to accurately predict bioremediation and natural attenuation processes. To our knowledge this study is unique in studying nonlinear sorption coupled with intraparticle diffusion and biodegradation kinetics with natural media.

  2. Isotherm, kinetic, and thermodynamic study of ciprofloxacin sorption on sediments.

    PubMed

    Mutavdžić Pavlović, Dragana; Ćurković, Lidija; Grčić, Ivana; Šimić, Iva; Župan, Josip

    2017-04-01

    In this study, equilibrium isotherms, kinetics and thermodynamics of ciprofloxacin on seven sediments in a batch sorption process were examined. The effects of contact time, initial ciprofloxacin concentration, temperature and ionic strength on the sorption process were studied. The K d parameter from linear sorption model was determined by linear regression analysis, while the Freundlich and Dubinin-Radushkevich (D-R) sorption models were applied to describe the equilibrium isotherms by linear and nonlinear methods. The estimated K d values varied from 171 to 37,347 mL/g. The obtained values of E (free energy estimated from D-R isotherm model) were between 3.51 and 8.64 kJ/mol, which indicated a physical nature of ciprofloxacin sorption on studied sediments. According to obtained n values as measure of intensity of sorption estimate from Freundlich isotherm model (from 0.69 to 1.442), ciprofloxacin sorption on sediments can be categorized from poor to moderately difficult sorption characteristics. Kinetics data were best fitted by the pseudo-second-order model (R 2  > 0.999). Thermodynamic parameters including the Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were calculated to estimate the nature of ciprofloxacin sorption. Results suggested that sorption on sediments was a spontaneous exothermic process.

  3. Kinetic sorption of contaminants of emerging concern by a palygorskite-montmorillonite filter medium.

    PubMed

    Berhane, Tedros M; Levy, Jonathan; Krekeler, Mark P S; Danielson, Neil D

    2017-06-01

    Kinetic sorption of bisphenol A (BPA), carbamazepine (CMZ) and ciprofloxacin (CIP) by three palygorskite-montmorillonite (Pal-Mt) granule sizes was studied. For BPA, CMZ and CIP, apparent sorption equilibrium was reached within about 3, 5 and 16 h, respectively. The highest and the lowest sorption capacities were by the small and the large granule sizes, respectively. Experimental results were compared to various sorption kinetics models to gain insights regarding the sorption processes and achieve a predictive capacity. The pseudo-second order (PSO) and the Elovich models performed the best while the pseudo-first order (PFO) model was only adequate for CMZ. The intraparticle-diffusion (IPD) model showed a two-step linear plot of BPA, CMZ and CIP sorption versus square root of time that was indicative of surface-sorption followed by IPD as a rate-limiting process before equilibrium was reached. Using the pseudo-first order (PFO) and the pseudo-second order (PSO) rate constants combined with previously-established Langmuir equilibrium sorption models, the kinetic sorption (k a ) and desorption (k d ) Langmuir kinetic rate constants were theoretically calculated for BPA and CIP. Kinetic sorption was then simulated using these theoretically calculated k a and k d values, and the simulations were compared to the observed behavior. The simulations fit the observed sorbed concentrations better during the early part of the experiments; the observed sorption during later times occurred more slowly than expected, supporting the hypothesis that IPD becomes a rate-limiting process during the course of the experiment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Numerical modeling of sorption kinetics of organic compounds to soil and sediment particles

    NASA Astrophysics Data System (ADS)

    Wu, Shian-chee; Gschwend, Phillip M.

    1988-08-01

    A numerical model is developed to simulate hydrophobic organic compound sorption kinetics, based on a retarded intraaggregate diffusion conceptualization of this solid-water exchange process. This model was used to ascertain the sensitivity of the sorption process for various sorbates to nonsteady solution concentrations and to polydisperse soil or sediment aggregate particle size distributions. Common approaches to modeling sorption kinetics amount to simplifications of our model and appear justified only when (1) the concentration fluctuations occur on a time scale which matches the sorption timescale of interest and (2) the particle size distribution is relatively narrow. Finally, a means is provided to estimate the extent of approach of a sorbing system to equilibrium as a function of aggregate size, chemical diffusivity and hydrophobicity, and system solids concentration.

  5. SORPTION OF TOXIC ORGANIC COMPOUNDS ON WATERWATER SOLIDS: MECHANISMS AND MODELING

    EPA Science Inventory

    It is proposed that sorption is a combination of two fundamentally different processes: adsorption and partitioning. A sorption model was developed for both single-component and multicomponent systems. The model was tested using single-component experimental isotherm data of eig...

  6. [Sorption mechanism of ofloxacin by carbon nanotubes].

    PubMed

    Zhao, Xing-Xing; Yu, Shui-Li; Wang, Zhe

    2014-02-01

    Sorption of ofloxacin (OFL) by carbon nanotubes is an effective method to control its fate in aquatic environment. The sorption process of OFL by mixed acid-treated and non-treated multi-walled carbon nanotubes was discussed. Sorption kinetics, sorption isotherm, desorption, sorption thermodynamics and effect of pH were investigated. The results indicated that the sorption kinetics followed the pseudo-second order kinetics model. The equilibrium sorption capacity of OFL on MWCNTs-O was higher. The sorption isotherm could be fitted by both the Langmuir and Freundlich models. The equilibrium sorption capacity dropped when the pH of aqueous solution was in the range of 6.0 to 10.0. Obvious desorption hysteresis was observed during the desorption experiments, especially on MWCNTs-O. Sorption thermodynamics analysis showed that the interactions between the OFL and sorbents were mainly between molecules. More oxygen-containing functional groups introduced on MWCNTs provided OFL molecules with more sorptive sites, which facilitated the generation of hydrogen bonds, a relatively strong interaction. The hydrogen bonds dominated the sorption process of OFL by MWCNTs/MWCNTs-O, explaining the experimental phenomena.

  7. Application of green seaweed biomass for MoVI sorption from contaminated waters. Kinetic, thermodynamic and continuous sorption studies.

    PubMed

    Bertoni, Fernando A; Medeot, Anabela C; González, Juan C; Sala, Luis F; Bellú, Sebastián E

    2015-05-15

    Spongomorpha pacifica biomass was evaluated as a new sorbent for Mo(VI) removal from aqueous solution. The maximum sorption capacity was found to be 1.28×10(6)±1×10(4) mg kg(-1) at 20°C and pH 2.0. Sorption kinetics and equilibrium studies followed pseudo-first order and Langmuir adsorption isotherm models, respectively. FTIR analysis revealed that carboxyl and hydroxyl groups were mainly responsible for the sorption of Mo(VI). SEM images show that morphological changes occur at the biomass surface after Mo(VI) sorption. Activation parameters and mean free energies obtained with Dubinin-Radushkevich isotherm model demonstrate that the mechanism of sorption process was chemical sorption. Thermodynamic parameters demonstrate that the sorption process was spontaneous, endothermic and the driven force was entropic. The isosteric heat of sorption decreases with surface loading, indicating that S. pacifica has an energetically non-homogeneous surface. Experimental breakthrough curves were simulated by Thomas and modified dose-response models. The bed depth service time (BDST) model was employed to scale-up the continuous sorption experiments. The critical bed depth, Z0 was determined to be 1.7 cm. S.pacifica biomass showed to be a good sorbent for Mo(VI) and it can be used in continuous treatment of effluent polluted with molybdate ions. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Comparative evaluation of sorption kinetics and isotherms of pyrene onto microplastics.

    PubMed

    Wang, Wenfeng; Wang, Jun

    2018-02-01

    Concerns regarding microplastics pollution and their potential to concentrate and transport organic contaminants in aquatic environments are growing in recent years. Sorption of organic chemicals by microplastics may affect the distribution and bioavailability of the chemicals. Here sorption process of pyrene (Pyr), a frequently encountered polycyclic aromatic hydrocarbon in aquatic environments, on three types of mass-produced plastic particles (high-density polyethylene (PE), polystyrene (PS) and polyvinylchloride (PVC)), was investigated by comparative analysis of different sorption kinetic and isotherm models. Optimum kinetic and isotherm models were predicted by the linear least-squares regression method. The pseudo-second-order kinetic model was more appropriate in describing the entire sorption process (R 2  > 0.99). Sorption rates of Pyr onto microplastics were mainly controlled by intraparticle diffusion. PE exhibited the highest affinity for Pyr, followed by PS and PVC. The sorption equilibrium data were best fitted to the Langmuir isotherm (R 2  > 0.99), indicating monolayer coverage of Pyr onto the microplastics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Sorption testing and generalized composite surface complexation models for determining uranium sorption parameters at a proposed in-situ recovery site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Raymond H.; Truax, Ryan A.; Lankford, David A.

    Solid-phase iron concentrations and generalized composite surface complexation models were used to evaluate procedures in determining uranium sorption on oxidized aquifer material at a proposed U in situ recovery (ISR) site. At the proposed Dewey Burdock ISR site in South Dakota, USA, oxidized aquifer material occurs downgradient of the U ore zones. Solid-phase Fe concentrations did not explain our batch sorption test results,though total extracted Fe appeared to be positively correlated with overall measured U sorption. Batch sorption test results were used to develop generalized composite surface complexation models that incorporated the full genericsorption potential of each sample, without detailedmore » mineralogiccharacterization. The resultant models provide U sorption parameters (site densities and equilibrium constants) for reactive transport modeling. The generalized composite surface complexation sorption models were calibrated to batch sorption data from three oxidized core samples using inverse modeling, and gave larger sorption parameters than just U sorption on the measured solidphase Fe. These larger sorption parameters can significantly influence reactive transport modeling, potentially increasing U attenuation. Because of the limited number of calibration points, inverse modeling required the reduction of estimated parameters by fixing two parameters. The best-fit models used fixed values for equilibrium constants, with the sorption site densities being estimated by the inversion process. While these inverse routines did provide best-fit sorption parameters, local minima and correlated parameters might require further evaluation. Despite our limited number of proxy samples, the procedures presented provide a valuable methodology to consider for sites where metal sorption parameters are required. Furthermore, these sorption parameters can be used in reactive transport modeling to assess downgradient metal attenuation, especially when no other calibration data are available, such as at proposed U ISR sites.« less

  10. Sorption testing and generalized composite surface complexation models for determining uranium sorption parameters at a proposed in-situ recovery site

    DOE PAGES

    Johnson, Raymond H.; Truax, Ryan A.; Lankford, David A.; ...

    2016-02-03

    Solid-phase iron concentrations and generalized composite surface complexation models were used to evaluate procedures in determining uranium sorption on oxidized aquifer material at a proposed U in situ recovery (ISR) site. At the proposed Dewey Burdock ISR site in South Dakota, USA, oxidized aquifer material occurs downgradient of the U ore zones. Solid-phase Fe concentrations did not explain our batch sorption test results,though total extracted Fe appeared to be positively correlated with overall measured U sorption. Batch sorption test results were used to develop generalized composite surface complexation models that incorporated the full genericsorption potential of each sample, without detailedmore » mineralogiccharacterization. The resultant models provide U sorption parameters (site densities and equilibrium constants) for reactive transport modeling. The generalized composite surface complexation sorption models were calibrated to batch sorption data from three oxidized core samples using inverse modeling, and gave larger sorption parameters than just U sorption on the measured solidphase Fe. These larger sorption parameters can significantly influence reactive transport modeling, potentially increasing U attenuation. Because of the limited number of calibration points, inverse modeling required the reduction of estimated parameters by fixing two parameters. The best-fit models used fixed values for equilibrium constants, with the sorption site densities being estimated by the inversion process. While these inverse routines did provide best-fit sorption parameters, local minima and correlated parameters might require further evaluation. Despite our limited number of proxy samples, the procedures presented provide a valuable methodology to consider for sites where metal sorption parameters are required. Furthermore, these sorption parameters can be used in reactive transport modeling to assess downgradient metal attenuation, especially when no other calibration data are available, such as at proposed U ISR sites.« less

  11. Measuring and modeling surface sorption dynamics of organophosphate flame retardants on impervious surfaces.

    PubMed

    Liang, Y; Liu, X; Allen, M R

    2018-02-01

    Understanding the sorption mechanisms for organophosphate flame retardants (OPFRs) on impervious surfaces is important to improve our knowledge of the fate and transport of OPFRs in indoor environments. The sorption processes of semivolatile organic compounds (SVOCs) on indoor surfaces are heterogeneous (multilayer sorption) or homogeneous (monolayer sorption). In this study, we adopted simplified Langmuir isotherm and Freundlich isotherm in a dynamic sink model to characterize the sorption dynamics of OPFRs on impervious surfaces such as stainless steel and made comparisons between the two models through a series of empty chamber studies. The tests involve two types of stainless steel chambers (53-L small chambers and 44-mL micro chambers) using tris(2-chloroethyl)phosphate (TCEP) and tris(1-chloro-2-propyl)phosphate (TCPP) as target compounds. Our test results show that the dynamic sink model using Freundlich isotherm can better represent the sorption process in the empty small chamber. Micro chamber test results from this study show that the sink model using both simplified Langmuir isotherm and Freundlich isotherm can well fit the measured gas-phase concentrations of OPFRs. We further applied both models and the parameters obtained to predict the gas phase concentrations of OPFRs in a small chamber with an emission source. Comparisons between model predictions and measurements demonstrate the reliability and applicability of the sorption parameters. Published by Elsevier Ltd.

  12. Removal of copper by oxygenated pyrolytic tire char: kinetics and mechanistic insights.

    PubMed

    Quek, Augustine; Balasubramanian, Rajashekhar

    2011-04-01

    The kinetics of copper ion (Cu(II)) removal from aqueous solution by pyrolytic tire char was modeled using five different conventional models. A modification to these models was also developed through a modified equation that accounts for precipitation. Conventional first- and second-order reaction models did not fit the copper sorption kinetics well, indicating a lack of simple rate-order dependency on solute concentration. Instead, a reversible first-order rate reaction showed the best fit to the data, indicating a dependence on surface functional groups. Due to the varying solution pH during the sorption process, modified external and internal mass transfer models were employed. Results showed that the sorption of copper onto oxygenated chars was limited by external mass transfer and internal resistance with and without the modification. However, the modification of the sorption process produced very different results for unoxygenated chars, which showed neither internal nor external limitation to sorption. Instead, its slow sorption rate indicates a lack of surface functional groups. The sorption of Cu(II) by oxygenated and unoxygenated chars was also found to occur via three and two distinct stages, respectively. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. A Mathematical Model for Simulating Remediation of Groundwater Contaminated by Heavy Metals using Bio-Carriers with Dead Baccilus sp. B1 and Polysulfone

    NASA Astrophysics Data System (ADS)

    Seo, H.; Wang, S.; Lee, M.

    2010-12-01

    The remediation of groundwater contaminated by heavy metals, organic contaminants, etc. using various types of bio-carriers has been widely studied as a novel technology in the literature. In this study, a series of batch experiments were conducted to investigated the fundamental characteristics in the removal process using bio-carriers (beads) with dead Bacillus sp. B1 and polysulfone. Through equilibrium and kinetic sorption experiments, sorption efficiencies for lead and copper under various conditions such as pH, temperature, contaminant concentration, etc. were examined and sorption parameters including maximum sorption capacities were obtained for model applications. Experimental data showed that equilibrium sorption patterns for Pb2+and Cu2+on bio-carrier beads follows Langmuir sorption isotherm and that the sorption dynamics can be described with a pseudo-second-order kinetics. One dimensional advective-dispersive-reactive transport model was also developed for simulating and analyzing the remediation processes. The HSDM (homogeneous surface diffusion model) were incorporated in the model to take into account the mass transfer and sorption mechanisms around/inside the bio-carrier beads. Applying the proposed model, numerical column experiments were carried out and the simulation results reasonably described temporal and spatial distribution of Pb2+and Cu2+in a fixed-bed flow-through sorption column. Experimental and numerical results showed that the main mechanism of the bio-carrier to remove heavy metals is the sorption on/inside of the bio-carriers and the bio-carriers can function as excellent biosorbents for the removal of heavy metal ions from groundwater.

  14. Enhancement of soil retention for phenanthrene in binary cationic gemini and nonionic surfactant mixtures: characterizing two-step adsorption and partition processes through experimental and modeling approaches.

    PubMed

    Zhao, Shan; Huang, Gordon; An, Chunjiang; Wei, Jia; Yao, Yao

    2015-04-09

    The enhancement of soil retention for phenanthrene (PHE) through the addition of a binary mixture of cationic gemini (12-2-12) and nonionic surfactants (C12E10) was investigated. The maximum apparent sorption coefficient Kd(*) reached 4247.8 mL/g through the addition of mixed 12-2-12 gemini and C12E10 surfactants, which was markedly higher than the summed individual results in the presence of individual 12-2-12 gemini (1148.6 mL/g) or C12E10 (210.0 mL/g) surfactant. However, the sorption of 12-2-12 gemini was inhibited by the increasing C12E10 dose; and a higher initial 12-2-12 gemini dose showed a higher "desorption" rate. The present study also addressed the sorption behavior of the single 12-2-12 gemini surfactant at the soil/aqueous interface. The sorption isotherm was divided into two steps to elucidate the sorption process; and the sorption schematics were proposed to elaborate the growth of surfactant aggregates corresponding to the various steps of the sorption isotherm. Finally, a two-step adsorption and partition model (TAPM) was developed to simulate the sorption process. Analysis of the equilibrium data indicated that the sorption isotherms of 12-2-12 gemini fitted the TAPM model better. Thermodynamic calculations confirmed that the 12-2-12 gemini sorption at the soil/aqueous interface was spontaneous and exothermic from 288 to 308K. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Sorption reaction mechanism of some hazardous radionuclides from mixed waste by impregnated crown ether onto polymeric resin.

    PubMed

    Shehata, F A; Attallah, M F; Borai, E H; Hilal, M A; Abo-Aly, M M

    2010-02-01

    A novel impregnated polymeric resin was practically tested as adsorbent material for removal of some hazardous radionuclides from radioactive liquid waste. The applicability for the treatment of low-level liquid radioactive waste was investigated. The material was prepared by loading 4,4'(5')di-t-butylbenzo 18 crown 6 (DtBB18C6) onto poly(acrylamide-acrylic acid-acrylonitril)-N, N'-methylenediacrylamide (P(AM-AA-AN)-DAM). The removal of (134)Cs, (60)Co, (65)Zn , and ((152+154))Eu onto P(AM-AA-AN)-DAM/DtBB18C6 was investigated using a batch equilibrium technique with respect to the pH, contact time, and temperature. Kinetic models are used to determine the rate of sorption and to investigate the mechanism of sorption process. Five kinetics models, pseudo-first-order, pseudo-second-order, intra-particle diffusion, homogeneous particle diffusion (HPDM), and Elovich models, were used to investigate the sorption process. The obtained results of kinetic models predicted that, pseudo-second-order is applicable; the sorption is controlled by particle diffusion mechanism and the process is chemisorption. The obtained values of thermodynamics parameters, DeltaH degrees , DeltaS degrees , and DeltaG degrees indicated that the endothermic nature, increased randomness at the solid/solution interface and the spontaneous nature of the sorption processes. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  16. Assessment of the banana pseudostem as a low-cost biosorbent for the removal of reactive blue 5G dye.

    PubMed

    Módenes, Aparecido N; Espinoza-Quiñones, Fernando R; Geraldi, Claudinéia A Q; Manenti, Diego R; Trigueros, Daniela E G; Oliveira, Ana Paula de; Borba, Carlos E; Kroumov, Alexander D

    2015-01-01

    In this work, the removal of reactive blue 5G (RB5G) dye using the drying biomass of banana pseudostem (BPS) was investigated. The characterization of BPS particles was performed. Improvement in the RB5G dye removal performance at the following sorption conditions was evidenced: pH 1, 30°C sorption temperature and 40 rpm shaking, regardless of the particle size range. Kinetic RB5G dye sorption data obtained at better conditions fit well in an Elovich model. A combined Langmuir-BET isotherm model provides a good representation of the RB5G dye equilibrium sorption data, which shows the evidence of a physical sorption process on the BPS surface. Based on the results, the removal of RB5G dye molecules by BPS is based on a physical sorption process.

  17. Sorptive removal of nickel onto weathered basaltic andesite products: kinetics and isotherms.

    PubMed

    Shah, Bhavna A; Shah, Ajay V; Singh, Rajesh R; Patel, Nayan B

    2009-07-15

    The suitability of weathered basaltic andesite products (WBAP) as a potential sorbent was assessed for the removal of Ni (II) from electroplating industrial wastewater. A model study based on the batch mode of operation was carried out for Ni (II) removal from aqueous solution. The effect of various parameters such as hydronium ion concentration, shaking time, sorbent dose, initial Ni (II) concentration, and temperature on the sorption process was studied. At optimised conditions of the various parameters, the industrial wastewater loaded with Ni (II) was sorbed onto WBAP. Thermodynamic parameters for the sorption process were evaluated. Freundlich, Langmuir, Temkin, and Dubinin-Kaganer-Radushkevich isotherms were applied to the sorption pattern on the WBAP. The sorption dynamics of the process was evaluated by applying Lagergren, Bangham, and Weber & Morris equations. The sorption process follows Pseudo-second-order rate of surface diffusion which is identified as the predominating mechanism. The sorption process was found to be reversible by the recovery of sorbed Ni (II) upon extraction with 0.5 MHNO3. The sorbent before and after sorption, was characterized by Fourier transform infrared (FTIR), Powder X-Ray diffraction PXRD), and Thermogravimetric analysis (TGA) methods. The change in surface morphology and crystallanity of the mineral after sorption was analyzed by Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). Based on the previous model study, an electroplating industrial effluent was successfully treated with WBAP to minimize the pollution load caused by Ni (II).

  18. Combining experimental techniques with non-linear numerical models to assess the sorption of pesticides on soils

    NASA Astrophysics Data System (ADS)

    Magga, Zoi; Tzovolou, Dimitra N.; Theodoropoulou, Maria A.; Tsakiroglou, Christos D.

    2012-03-01

    The risk assessment of groundwater pollution by pesticides may be based on pesticide sorption and biodegradation kinetic parameters estimated with inverse modeling of datasets from either batch or continuous flow soil column experiments. In the present work, a chemical non-equilibrium and non-linear 2-site sorption model is incorporated into solute transport models to invert the datasets of batch and soil column experiments, and estimate the kinetic sorption parameters for two pesticides: N-phosphonomethyl glycine (glyphosate) and 2,4-dichlorophenoxy-acetic acid (2,4-D). When coupling the 2-site sorption model with the 2-region transport model, except of the kinetic sorption parameters, the soil column datasets enable us to estimate the mass-transfer coefficients associated with solute diffusion between mobile and immobile regions. In order to improve the reliability of models and kinetic parameter values, a stepwise strategy that combines batch and continuous flow tests with adequate true-to-the mechanism analytical of numerical models, and decouples the kinetics of purely reactive steps of sorption from physical mass-transfer processes is required.

  19. Sorption and Release of Organics by Primary, Anaerobic, and Aerobic Activated Sludge Mixed with Raw Municipal Wastewater

    PubMed Central

    Modin, Oskar; Saheb Alam, Soroush; Persson, Frank; Wilén, Britt-Marie

    2015-01-01

    New activated sludge processes that utilize sorption as a major mechanism for organics removal are being developed to maximize energy recovery from wastewater organics, or as enhanced primary treatment technologies. To model and optimize sorption-based activated sludge processes, further knowledge about sorption of organics onto sludge is needed. This study compared primary-, anaerobic-, and aerobic activated sludge as sorbents, determined sorption capacity and kinetics, and investigated some characteristics of the organics being sorbed. Batch sorption assays were carried out without aeration at a mixing velocity of 200 rpm. Only aerobic activated sludge showed net sorption of organics. Sorption of dissolved organics occurred by a near-instantaneous sorption event followed by a slower process that obeyed 1st order kinetics. Sorption of particulates also followed 1st order kinetics but there was no instantaneous sorption event; instead there was a release of particles upon mixing. The 5-min sorption capacity of activated sludge was 6.5±10.8 mg total organic carbon (TOC) per g volatile suspend solids (VSS) for particulate organics and 5.0±4.7 mgTOC/gVSS for dissolved organics. The observed instantaneous sorption appeared to be mainly due to organics larger than 20 kDa in size being sorbed, although molecules with a size of about 200 Da with strong UV absorbance at 215–230 nm were also rapidly removed. PMID:25768429

  20. Kinetics of sorption of polyaromatic hydrocarbons onto granular activated carbon and Macronet hyper-cross-linked polymers (MN200).

    PubMed

    Valderrama, C; Cortina, J L; Farran, A; Gamisans, X; Lao, C

    2007-06-01

    Polymeric supports are presented as an alternative to granular activated carbon (GAC) for organic contaminant removal from groundwater using permeable reactive barriers (PRB). The search for suitable polymeric sorbents for hydrocarbon extraction from aqueous streams has prompted the synthesis of new resins incorporating new functionalities or modifying the polymer network properties that solve many of the existing problems. Between them, the new type of polymeric sorbents Macronet Hypersol containing a styrene-divinylbenzene macroporous hyperreticulated network has been evaluated. Because of their potential sorptive properties, tests were conducted to determine the feasibility of using them as a low-cost reactive material for groundwater applications. The present work describes the sorption of six polycyclic hydrocarbons (PAHs) from aqueous solution onto both Macronet polymeric sorbent MN200 and granular activated carbon. Batch experiments were performed to determine loading rates of a family of PAHs (naphthalene, fluorene, anthracene, acenaphthene, pyrene, and fluoranthene), from a simple two-rings PAH (naphthalene) up to a four-ring PAH (pyrene). The behavior of a non-functionalized Macronet support (MN200) was compared with the behavior of a recognized material, granular activated carbon (GAC). Analyses of the respective rate data with three theoretical models (pseudo-first- and pseudo-second-order reaction models and the Elovich model) were used to describe the PAH sorption kinetics. Sorption rate constants were determined by graphical analysis of the proposed models. The study showed that sorption systems followed a pseudo-first-order reaction model, although the pseudo-second-order reaction model provides an acceptable description of the sorption process. Graphical analysis showed that the sorption process with activated carbon is a more complex process than the one observed for hyper-cross-linked polymers (MN200). A simulation of the barrier thickness needed to treat a PAH-polluted plume showed that 0.1-1 m of sorption media is enough even for high water fluxes such as 0.1-2 m(3)/m(2)/day for both sorbents.

  1. The modeling of reactive solute transport with sorption to mobile and immobile sorbents 1. Experimental evidence and model development

    NASA Astrophysics Data System (ADS)

    Knabner, P.; Totsche, K. U.; Kögel-Knabner, I.

    Modeling carrier-influenced transport needs to take into account the reactivity of the carrier itself. This paper presents a mathematical model of reactive solute transport with sorption to mobile and immobile sorbents. The mobile sorbent is also considered to be reactive. To justify the assumptions and generality of our modeling approach, experimental findings are reviewed and analyzed. A transformation of the model in terms of total concentrations of solute and mobile sorbents is presented which simplifies the mathematical formulations. Breakthrough data on dissolved organic carbon are presented to exemplify the need to take into account the reactivity of the mobile sorbent. Data on hexachlorobiphenyl and cadmium are presented to demonstrate carrier-introduced increased mobility, whereas data on anthracene and pyrene are presented to demonstrate carrier-introduced reduced mobility. The experimental conditions leading to the different findings are pointed out. The sorption processes considered in the model are both equilibrium and nonequilibrium processes, allowing for different sorption sites and nonlinear isotherms and rate functions. Effective isotherms, which describe the sorption to the immobile sorbent in the presence of a mobile sorbent and rate functions, are introduced and their properties are discussed.

  2. As(III) and As(V) sorption on iron-modified non-pyrolyzed and pyrolyzed biomass from Petroselinum crispum (parsley).

    PubMed

    Jiménez-Cedillo, M J; Olguín, M T; Fall, C; Colin-Cruz, A

    2013-03-15

    The sorption of As(III) and As(V) from aqueous solutions onto iron-modified Petroselinum crispum (PCFe) and iron-modified carbonaceous material from the pyrolysis of P. crispum (PCTTFe) was investigated. The modified sorbents were characterized with scanning electron microscopy. The sorbent elemental composition was determined with energy-dispersive X-ray spectroscopy (EDS). The principal functional groups from the sorbents were determined with FT-IR. The specific surfaces and points of zero charge (pzc) of the materials were also determined. As(III) and As(V) sorption onto the modified sorbents were performed in a batch system. After the sorption process, the As content in the liquid and solid phases was determined with atomic absorption and neutron activation analyses, respectively. After the arsenic sorption processes, the desorption of Fe from PCFe and PCTTFe was verified with atomic absorption spectrometry. The morphology of PC changed after iron modification. The specific area and pzc differed significantly between the iron-modified non-pyrolyzed and pyrolyzed P. crispum. The kinetics of the arsenite and arsenate sorption processes were described with a pseudo-second-order model. The Langmuir-Freundlich model provided the isotherms with the best fit. Less than 0.02% of the Fe was desorbed from the PCFe and PCTTFe after the As(III) and As(V) sorption processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Impacts of compound properties and sediment characteristics on the sorption behaviour of pharmaceuticals in aquatic systems.

    PubMed

    Al-Khazrajy, Omar S A; Boxall, Alistair B A

    2016-11-05

    Sorption is a key factor in determining the persistence, attenuation and bioavailability of sediment-associated contaminants. However, our understanding of the sorption behaviour of pharmaceuticals in sediments is poor. In this study, we investigated the sorption behaviour of a diverse set of pharmaceuticals in a range sediment types. Sorption affinity of pharmaceuticals for all sediments was found to increase in the order mefenamic acid

  4. Investigation of metal ions sorption of brown peat moss powder

    NASA Astrophysics Data System (ADS)

    Kelus, Nadezhda; Blokhina, Elena; Novikov, Dmitry; Novikova, Yaroslavna; Chuchalin, Vladimir

    2017-11-01

    For regularities research of sorptive extraction of heavy metal ions by cellulose and its derivates from aquatic solution of electrolytes it is necessary to find possible mechanism of sorption process and to choice a model describing this process. The present article investigates the regularities of aliovalent metals sorption on brown peat moss powder. The results show that sorption isotherm of Al3+ ions is described by Freundlich isotherm and sorption isotherms of Na+ i Ni2+ are described by Langmuir isotherm. To identify the mechanisms of brown peat moss powder sorption the IR-spectra of the initial brown peat moss powder samples and brown peat moss powder samples after Ni (II) sorption were studied. Metal ion binding mechanisms by brown peat moss powder points to ion exchange, physical adsorption, and complex formation with hydroxyl and carboxyl groups.

  5. Effects of sorption kinetics on the fate and transport of pharmaceuticals in estuaries.

    PubMed

    Liu, Dong; Lung, Wu-Seng; Colosi, Lisa M

    2013-08-01

    Many current fate and transport models based on the assumption of instantaneous sorption equilibrium of contaminants in the water column may not be valid for certain pharmaceuticals with long times to reach sorption equilibrium. In this study, a sorption kinetics model was developed and incorporated into a water quality model for the Patuxent River Estuary to evaluate the effect of sorption kinetics. Model results indicate that the assumption of instantaneous sorption equilibrium results in significant under-prediction of water column concentrations for some pharmaceuticals. The relative difference between predicted concentrations for the instantaneous versus kinetic approach is as large as 150% at upstream locations in the Patuxent Estuary. At downstream locations, where sorption processes have had sufficient time to reach equilibrium, the relative difference decreases to roughly 25%. This indicates that sorption kinetics affect a model's ability to capture accumulation of pharmaceuticals into riverbeds and the transport of pharmaceuticals in estuaries. These results offer strong evidence that chemicals are not removed from the water column as rapidly as has been assumed on the basis of equilibrium-based analyses. The findings are applicable not only for pharmaceutical compounds, but also for diverse contaminants that reach sorption equilibrium slowly. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Equilibrium, kinetic and thermodynamic studies of uranium biosorption by calcium alginate beads.

    PubMed

    Bai, Jing; Fan, Fangli; Wu, Xiaolei; Tian, Wei; Zhao, Liang; Yin, Xiaojie; Fan, Fuyou; Li, Zhan; Tian, Longlong; Wang, Yang; Qin, Zhi; Guo, Junsheng

    2013-12-01

    Calcium alginate beads are potential biosorbent for radionuclides removal as they contain carboxyl groups. However, until now limited information is available concerning the uptake behavior of uranium by this polymer gel, especially when sorption equilibrium, kinetics and thermodynamics are concerned. In present work, batch experiments were carried out to study the equilibrium, kinetics and thermodynamics of uranium sorption by calcium alginate beads. The effects of initial solution pH, sorbent amount, initial uranium concentration and temperature on uranium sorption were also investigated. The determined optimal conditions were: initial solution pH of 3.0, added sorbent amount of 40 mg, and uranium sorption capacity increased with increasing initial uranium concentration and temperature. Equilibrium data obtained under different temperatures were fitted better with Langmuir model than Freundlich model, uranium sorption was dominated by a monolayer way. The kinetic data can be well depicted by the pseudo-second-order kinetic model. The activation energy derived from Arrhenius equation was 30.0 kJ/mol and the sorption process had a chemical nature. Thermodynamic constants such as ΔH(0), ΔS(0) and ΔG(0) were also evaluated, results of thermodynamic study showed that the sorption process was endothermic and spontaneous. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Improving models for describing phosphorus cycling in agricultural soils

    USDA-ARS?s Scientific Manuscript database

    The mobility of phosphorus in the environment is controlled to a large extent by its sorption to soil. Therefore, an important component of all P loss models is how the model describes the biogeochemical processes governing P sorption and desorption to soils. The most common approach to modeling P c...

  8. Sorption-desorption of antimony species onto calcined hydrotalcite: Surface structure and control of competitive anions.

    PubMed

    Constantino, Leonel Vinicius; Quirino, Juliana Nunes; Abrão, Taufik; Parreira, Paulo Sérgio; Urbano, Alexandre; Santos, Maria Josefa

    2018-02-15

    Calcined hydrotalcite can be applied to remove anionic contaminants from aqueous systems such as antimony species due to its great anion exchange capacity and high surface area. Hence, this study evaluated antimonite and antimonate sorption-desorption processes onto calcined hydrotalcite in the presence of nitrate, sulfate and phosphate. Sorption and desorption experiments of antimonite and antimonate were carried out in batch equilibrium and the post-sorption solids were analyzed by X-ray fluorescence (EDXRF). Sorption data were better fitted by dual-mode Langmuir-Freundlich model (R 2 >0.99) and desorption data by Langmuir model. High maximum sorption capacities were found for the calcined hydrotalcite, ranging from 617 to 790meqkg -1 . The competing anions strongly affected the antimony sorption. EDXRF analysis and mathematical modelling showed that sulfate and phosphate presented higher effect on antimonite and antimonate sorption, respectively. High values for sorption efficiency (SE=99%) and sorption capacity were attributed to the sorbent small particles and the large surface area. Positive hysteresis indexes and low mobilization factors (MF>3%) suggest very low desorption capacity to antimony species from LDH. These calcined hydrotalcite characteristics are desirable for sorption of antimony species from aqueous solutions. Copyright © 2017. Published by Elsevier B.V.

  9. Kinetic characteristic of phenanthrene sorption in aged soil amended with biochar

    NASA Astrophysics Data System (ADS)

    Kim, Chanyang; Kim, Yong-Seong; Hyun, Seunghun

    2015-04-01

    Biochar has been recently highlighted as an amendment that affects yield of the crops by increasing pH, cation exchange capacity and water retention, and reduces the lability of contaminants by increasing sorption capacity in the soil system. Biochar's physico-chemical properties, high CEC, surfaces containing abundant micropores and macropores, and various types of functional groups, play important roles in enhancing sorption capacity of contaminants. Aging through a natural weathering process might change physico-chemical properties of biochar amended in soils, which can affect the sorption behavior of contaminants. Thus, in this study, the sorption characteristics of phenanthrene (PHE) on biochar-amended soils were studied with various types of chars depending on aging time. To do this, 1) soil was amended with sludge waste char (SWC), wood char (WC), and municipal waste char (MWC) during 0, 6, and 12 month. Chars were applied to soil at 1% and 2.5% (w/w) ratio. 2) Several batch kinetic and equilibrium studies were conducted. One-compartment first order and two-compartment first order model apportioning the fraction of fast and slow sorbing were selected for kinetic models. Where, qt is PHE concentration in biochar-amended soils at each time t, qeis PHE concentration in biochar-amended soils at equilibrium. ff is fastly sorbing fraction and (1-ff) is slowly sorbing fraction. k is sorption rate constant from one-compartment first order model, k1 and k2 are sorption rate constant from two-compartment first order model, t is time (hr). The equilibrium sorption data were fitted with Fruendlich and Langmuir equation. 3) Change in physico-chemical properties of biochar-amended soils was investigated with aging time. Batch equilibrium sorption results suggested that sorbed amount of PHE on WC was greater than SWC and MWC. The more char contents added to soil, the greater sorption capacity of PHE. Sorption equilibrium was reached after 4 hours and equilibrium pH ranged from 6.5 to 8.0. Sorption capacity was reduced with aging time. From kinetic results, two-compartment first order model was more suitable than one-compartment first order model. Fast sorption site of biochar-amended soils dominated total sorption process (i.e., Fraction of fast sorption site ranged from 0.55 to 0.96). Reduced sorption capacity with aging time could be attributed to changes in physico-chemical properties of biochar-amended soils (e.g., reduced pores and increased hydrophilic carboxyl and carbonyl functional groups). Verification is FI-IR and SSA. It is assumed that biochar is a suitable material for PHE contaminated soil in order to reduce the lability of PHE. However, aging effects would lessen biochar benefit for reducing the sorption capacity of PHE by forming hydrophilic functional group and reducing pores.

  10. Moisture Sorption-desorption Characteristics and the Corresponding Thermodynamic Properties of Carvedilol Phosphate.

    PubMed

    Allada, Ravikiran; Maruthapillai, Arthanareeswari; Palanisamy, Kamaraj; Chappa, Praveen

    2017-01-01

    Carvedilol phosphate (CDP) is a nonselective beta-blocker used for the treatment of heart failures and hypertension. In this work, moisture sorption-desorption characteristics and thermodynamic properties of CDP have been investigated. The isotherms were determined using dynamic vapor sorption analyzer at different humidity conditions (0%-90% relative humidity) and three pharmaceutically relevant temperatures (20°C, 30°C, and 40°C). The experimental sorption data determined were fitted to various models, namely, Brunauer-Emmett-Teller; Guggenheim-Anderson-De Boer (GAB); Peleg; and modified GAB. Isosteric heats of sorption were evaluated through the direct use of sorption isotherms by means of the Clausius-Clapeyron equation. The sorption model parameters were determined from the experimental sorption data using nonlinear regression analysis, and mean relative percentage deviation (P), correlation (Correl), root mean square error, and model efficiency were considered as the criteria to select the best fit model. The sorption-desorption isotherms have sigmoidal shape - confirming to Type II isotherms. Based on the statistical data analysis, modified GAB model was found to be more adequate to explain sorption characteristics of CDP. It is noted that the rate of adsorption and desorption is specific to the temperature at which it was being studied. It is observed that isosteric heat of sorption decreased with increasing equilibrium moisture content. The calculation of the thermodynamic properties was further used to draw an understanding of the properties of water and energy requirements associated with the sorption behavior. The sorption-desorption data and the set of equations are useful in the simulation of processing, handling, and storage of CDP and further behavior during manufacture and storage of CDP formulations.

  11. Equilibrium and kinetic modelling of chromium(III) sorption by animal bones.

    PubMed

    Chojnacka, Katarzyna

    2005-04-01

    The paper discusses sorption of Cr(III) ions from aqueous solutions by animal bones. Animal bones were found to be an efficient sorbent with the maximum experimentally determined sorption capacity in the range 29-194 mg g(-1) that depended on pH and temperature. The maximum experimentally determined sorption capacity was obtained at 50 degrees C, pH 5. Batch kinetics and equilibrium experiments were performed in order to investigate the influence of contact time, initial concentration of sorbate and sorbent, temperature and pH. It was found that sorption capacity increased with increase of Cr(III) concentration, temperature and initial pH of metal solution. Mathematical models describing kinetics and statics of sorption were proposed. It was found that process kinetics followed the pseudo-second-order pattern. The influence of sorbent concentration was described with Langmuir-type equation and the influence of sorbate concentration was described with empirical dependence. The models were positively verified.

  12. Copper (II) adsorption by the extracellular polymeric substance extracted from waste activated sludge after short-time aerobic digestion.

    PubMed

    Zhang, Zhiqiang; Zhou, Yun; Zhang, Jiao; Xia, Siqing

    2014-02-01

    The extracellular polymeric substance (EPS) extracted from waste activated sludge (WAS) after short-time aerobic digestion was investigated to be used as a novel biosorbent for Cu(2+) removal from water. The EPS consisted of protein (52.6 %, w/w), polysaccharide (30.7 %, w/w), and nucleic acid (16.7 %, w/w). Short-time aerobic digestion process of WAS for about 4 h promoted the productivity growth of the EPS for about 10 %. With a molecular weight of about 1.9 × 10(6) Da, the EPS showed a linear structure with long chains, and contained carboxyl, hydroxyl, and amino groups. The sorption kinetics was well fit for the pseudo-second-order model, and the maximum sorption capacity of the EPS (700.3 mg Cu(2+)/g EPS) was markedly greater than those of the reported biosorbents. Both Langmuir model and Freundlich model commendably described the sorption isotherm. The Gibbs free energy analysis of the adsorption showed that the sorption process was feasible and spontaneous. According to the complex results of multiple analytical techniques, including scanning electron microscopy, Fourier transform infrared spectroscopy, atomic force microscopy, etc., the adsorption process took place via both physical and chemical sorption, but the electrostatic interaction between sorption sites with the functional groups and Cu(2+) is the major mechanism.

  13. Quantification of Cation Sorption to Engineered Barrier Materials Under Extreme Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Brian; Schlautman, Mark; Rao, Linfeng

    The objective of this research is to examine mechanisms and thermodynamics of actinide sorption to engineered barrier materials (iron (oxyhydr)oxides and bentonite clay) for nuclear waste repositories under high temperature and high ionic strength conditions using a suite of macroscopic and microscopic techniques which will be coupled with interfacial reaction models. Gaining a mechanistic understanding of interfacial processes governing the sorption/sequestration of actinides at mineral-water interfaces is fundamental for the accurate prediction of actinide behavior in waste repositories. Although macroscale sorption data and various spectroscopic techniques have provided valuable information regarding speciation of actinides at solid-water interfaces, significant knowledge gapsmore » still exist with respect to sorption mechanisms and the ability to quantify sorption, particularly at high temperatures and ionic strengths. This objective is addressed through three major tasks: (1) influence of oxidation state on actinide sorption to iron oxides and clay minerals at elevated temperatures and ionic strengths; (2) calorimetric titrations of actinide-mineral suspensions; (3) evaluation of bentonite performance under repository conditions. The results of the work will include a qualitative conceptual model and a quantitative thermodynamic speciation model describing actinide partitioning to minerals and sediments, which is based upon a mechanistic understanding of specific sorption processes as determined from both micro-scale and macroscale experimental techniques. The speciation model will be a thermodynamic aqueous and surface complexation model of actinide interactions with mineral surfaces that is self-consistent with macroscopic batch sorption data, calorimetric and potentiometric titrations, X-ray absorption Spectroscopy (XAS, mainly Extended X-ray Absorption Fine Structure (EXAFS)), and electron microscopy analyses. The novelty of the proposed work lies largely in the unique system conditions which will be examined (i.e. elevated temperature and ionic strength) and the manner in which the surface complexation model will be developed in terms of specific surface species identified using XAS. These experiments will thus provide a fundamental understanding of the chemical and physical processes occurring at the solid-solution interface under expected repository conditions. Additionally, the focus on thermodynamic treatment of actinide ion interactions with minerals as proposed will provide information on the driving forces involved and contribute to the overall understanding of the high affinity many actinide ions have for oxide surfaces. The utility of this model will be demonstrated in this work through a series of advective and diffusive flow experiments.« less

  14. Dependence of pesticide degradation on sorption: nonequilibrium model and application to soil reactors

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Jury, William A.; Wagenet, Robert J.; Flury, Markus

    2000-04-01

    The effect of sorption on degradation of the pesticide 2,4-dichlorophenoxyacetic acid (2,4-D) was studied in a soil amended with various amounts of activated carbon (AC). The relationship between sorption and decay of 2,4-D was analyzed using analytical solutions for equilibrium sorption and to a two-site nonequilibrium adsorption model coupled with two first-order degradation terms for the dissolved and sorbed pesticide, respectively. The sorption parameters in the latter model were determined based on data obtained from batch sorption experiments, while those for degradation were obtained from incubation experiments. The adsorption coefficients, ranging from 0.811 to >315 ml g -1, increased at higher AC, and were negatively related to degradation as measured by the first-order rate constant, implying that degradation is faster from the liquid phase than from the sorbed phase. A nonlinear fit of the decay curves to the nonequilibrium model revealed that degradation rate constants were 0.157 and 0.00243 day -1 for the liquid and sorbed phases, respectively, differing by a factor of 65. Similar results were also obtained using the equilibrium model. A parameter sensitivity analysis of the nonequilibrium model indicates that nonequilibrium sorption will initially favor degradation; however, over the long term, will decrease degradation when desorption kinetics becomes the limiting factor in the degradation process. In the presence of a lag phase that allows appreciable amounts of chemical to diffuse into kinetic sorption sites, nonequilibrium sorption will only impede degradation.

  15. Scaling Effects of Cr(VI) Reduction Kinetics. The Role of Geochemical Heterogeneity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Li; Li, Li

    2015-10-22

    The natural subsurface is highly heterogeneous with minerals distributed in different spatial patterns. Fundamental understanding of how mineral spatial distribution patterns regulate sorption process is important for predicting the transport and fate of chemicals. Existing studies about the sorption was carried out in well-mixed batch reactors or uniformly packed columns, with few data available on the effects of spatial heterogeneities. As a result, there is a lack of data and understanding on how spatial heterogeneities control sorption processes. In this project, we aim to understand and develop modeling capabilities to predict the sorption of Cr(VI), an omnipresent contaminant in naturalmore » systems due to its natural occurrence and industrial utilization. We systematically examine the role of spatial patterns of illite, a common clay, in determining the extent of transport limitation and scaling effects associated with Cr(VI) sorption capacity and kinetics using column experiments and reactive transport modeling. Our results showed that the sorbed mass and rates can differ by an order of magnitude due to of the illite spatial heterogeneities and transport limitation. With constraints from data, we also developed the capabilities of modeling Cr(VI) in heterogeneous media. The developed model is then utilized to understand the general principles that govern the relationship between sorption and connectivity, a key measure of the spatial pattern characteristics. This correlation can be used to estimate Cr(VI) sorption characteristics in heterogeneous porous media. Insights gained here bridge gaps between laboratory and field application in hydrogeology and geochemical field, and advance predictive understanding of reactive transport processes in the natural heterogeneous subsurface. We believe that these findings will be of interest to a large number of environmental geochemists and engineers, hydrogeologists, and those interested in contaminant fate and transport, water quality and water composition, and natural attenuation processes in natural systems.« less

  16. Sensitivity of Deep Soil Organic Carbon Age to Sorption, Transport and Microbial Interactions - Insights from a Calibrated Process Model

    NASA Astrophysics Data System (ADS)

    Ahrens, B.; Schrumpf, M.; Reichstein, M.

    2013-12-01

    Subsoil soil organic carbon (SOC) is characterized by conventional radiocarbon ages on the order of centuries to millennia. Most vertically explicit SOC turnover models represent this persistence of deep SOC by one pool that has millennial turnover times. This approach lumps different stabilizing mechanisms such as chemical recalcitrance, sorptive stabilization and energy limitation into a single rate constant. As an alternative, we present a continuous, vertically explicit SOC decomposition model that allows for stabilization via sorption and microbial interactions (COMISSION model). We compare the COMISSION model with the SOC profile of a Haplic Podzol under a Norway spruce forest. In the COMISSION model two pools receive aboveground litter input and vertically distributed root litter input. The readily leachable and soluble fraction of litter input enters a dissolved organic carbon pool (DOC), while the rest enters the residue pool which represents polymeric, non-soluble SOC. The residue pool is depolymerized with extracellular enzymes produced by a microbial pool to enter the DOC pool which represents SOC potentially available for assimilation by microbes. The adsorption/desorption of DOC from/to mineral surfaces controls the availability of carbon in the DOC pool for assimilatory uptake by microbes. The sorption of DOC is modeled with dynamic Langmuir equations. The desorbed part of the DOC pool not only constitutes the substrate for the microbial pool, but is also transported via advection. Interactions of microbes with the residue and DOC pool are modeled with Michaelis-Menten kinetics - this not only allows representing ';priming', but also the retardation of decomposition via energy limitation in the deep soil where substrate is scarce. Further, soil organic matter is recycled within the soil profile through microbial processing - dead microbes either enter the DOC or the residue pool, and thereby also contribute to longer residence times with soil depth. First results of a calibration against SOC, SO14C, MOC and MO14C profiles (mineral associated organic carbon, density fraction >1.6 g cm-3) of a Haplic Podzol of the Waldstein site (Germany) show that we can use the maximum sorption capacity (qmax) estimated from batch sorption experiments to parameterize the dynamic Langmuir sorption equation. qmax could potentially be extrapolated to other soil profiles based on relations to iron and aluminum oxide contents. Although we are able to capture the secondary maximum of SOC contents in the Bh horizon with qmax from batch sorption experiments, our results indicate that the adsorption and desorption rates retrieved from batch sorption experiments are too fast to explain the low Δ14C values of the MOC. This could point to other processes apart from DOC sorption that trigger stabilization by organo-mineral associations with a stronger apparent irreversibility (e.g. inclusion in small pores). Alternatively, the conditions of batch sorption experiments (constant shaking in centrifuge tubes) might not be representative for in situ sorption conditions. Overall, we show how effective decomposition rates and 14C ages readily emerge from a combination of known stabilizing and destabilizing mechanisms and we discuss how to identify these processes with a model-data fusion framework.

  17. Comparison of two methods for calculating the P sorption capacity parameter in soils

    USDA-ARS?s Scientific Manuscript database

    Phosphorus (P) cycling in soils is an important process affecting P movement through the landscape. The P cycling routines in many computer models are based on the relationships developed for the EPIC model. An important parameter required for this model is the P sorption capacity parameter (PSP). I...

  18. Upgrade to Ion Exchange Modeling for Removal of Technetium from Hanford Waste Using SuperLig® 639 Resin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamm, L.; Smith, F.; Aleman, S.

    2013-05-16

    This report documents the development and application of computer models to describe the sorption of pertechnetate [TcO₄⁻], and its surrogate perrhenate [ReO₄⁻], on SuperLig® 639 resin. Two models have been developed: 1) A thermodynamic isotherm model, based on experimental data, that predicts [TcO₄⁻] and [ReO₄⁻] sorption as a function of solution composition and temperature and 2) A column model that uses the isotherm calculated by the first model to simulate the performance of a full-scale sorption process. The isotherm model provides a synthesis of experimental data collected from many different sources to give a best estimate prediction of the behaviormore » of the pertechnetate-SuperLig® 639 system and an estimate of the uncertainty in this prediction. The column model provides a prediction of the expected performance of the plant process by determining the volume of waste solution that can be processed based on process design parameters such as column size, flow rate and resin physical properties.« less

  19. Use of thermodynamic sorption models to derive radionuclide Kd values for performance assessment: Selected results and recommendations of the NEA sorption project

    USGS Publications Warehouse

    Ochs, M.; Davis, J.A.; Olin, M.; Payne, T.E.; Tweed, C.J.; Askarieh, M.M.; Altmann, S.

    2006-01-01

    For the safe final disposal and/or long-term storage of radioactive wastes, deep or near-surface underground repositories are being considered world-wide. A central safety feature is the prevention, or sufficient retardation, of radionuclide (RN) migration to the biosphere. To this end, radionuclide sorption is one of the most important processes. Decreasing the uncertainty in radionuclide sorption may contribute significantly to reducing the overall uncertainty of a performance assessment (PA). For PA, sorption is typically characterised by distribution coefficients (Kd values). The conditional nature of Kd requires different estimates of this parameter for each set of geochemical conditions of potential relevance in a RN's migration pathway. As it is not feasible to measure sorption for every set of conditions, the derivation of Kd for PA must rely on data derived from representative model systems. As a result, uncertainty in Kd is largely caused by the need to derive values for conditions not explicitly addressed in experiments. The recently concluded NEA Sorption Project [1] showed that thermodynamic sorption models (TSMs) are uniquely suited to derive K d as a function of conditions, because they allow a direct coupling of sorption with variable solution chemistry and mineralogy in a thermodynamic framework. The results of the project enable assessment of the suitability of various TSM approaches for PA-relevant applications as well as of the potential and limitations of TSMs to model RN sorption in complex systems. ?? by Oldenbourg Wissenschaftsverlag.

  20. Sorption of albendazole in sediments and soils: Isotherms and kinetics.

    PubMed

    Mutavdžić Pavlović, Dragana; Glavač, Antonija; Gluhak, Mihaela; Runje, Mislav

    2018-02-01

    Albendazole is a broad-spectrum anthelmintic drug effective against gastrointestinal parasites in humans and animals. Despite the fact that it has been detected in environment (water, sediment and soil), there is no information on its fate in the environment. So, in order to understand the sorption process of albendazole in environment, the sorption mechanism and kinetic properties were investigated through sorption equilibrium and sorption rate experiments. For that purpose, batch sorption of albendazole on five sediment samples and five soil samples from Croatia's region with different physico-chemical properties was investigated. Except physico-chemical properties of used environmental solid samples, the effects of various parameters such as contact time, initial concentration, ionic strength and pH on the albendazole sorption were studied. The K d parameter from linear sorption model was determined by linear regression analysis, while the Freundlich and Langmuir sorption models were applied to describe the equilibrium isotherms. The estimated K d values varied from 29.438 to 104.43 mLg -1 at 0.01 M CaCl 2 and for natural pH value of albendazole solution (pH 6.6). Experimental data showed that the best agreement was obtained with the linear model (R 2  > 0.99), while the rate of albendazole sorption is the best described with the kinetic model of pseudo-second-order. Obtained results point to a medium or even strong sorption of albendazole for soil or sediment particles, which is particularly dependent on the proportion of organic matter, pH, copper and zinc in them. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Assessment of suitability of some chosen functions for describing of sorption isotherms in building materials

    NASA Astrophysics Data System (ADS)

    Stolarska, Agata; Garbalińska, Halina

    2017-05-01

    This paper presents results of tests and studies conducted on six common building materials, used for constructing and finishing of external walls. These included: ceramic brick, silicate brick, autoclaved aerated concrete, cement mortar, cement-lime mortar and cement mortar modified with polypropylene fibers. Each of these materials is distinguished by the other structure of porousness, affecting both the course of sorption processes and the isotherms obtained. At first, measurements of moisture sorption kinetics at temperatures of 5, 20 and 35 °C were performed, each time at six levels of relative humidity. Then, when the sorption processes expired, equilibrium moisture sorption values were determined for the materials in 18 individual temperature and humidity conditions. The experimental data were used to determine the sorption isotherm courses for each material at the three temperatures. Then, theoretical analysis was performed in order to determine, which of the models available in the literature described the sorption isotherms of the concerned building materials the best. For each material and each of the three temperature values, twenty-four equations were tested. In each case, those of them were identified which ensured the best matching between the theoretical courses and the experimental data. The obtained results indicate that the Chen's model proved to be the most versatile. It ensured a detailed description of the sorption isotherms for each material and temperature tested.

  2. Computer model of one-dimensional equilibrium controlled sorption processes

    USGS Publications Warehouse

    Grove, D.B.; Stollenwerk, K.G.

    1984-01-01

    A numerical solution to the one-dimensional solute-transport equation with equilibrium-controlled sorption and a first-order irreversible-rate reaction is presented. The computer code is written in FORTRAN language, with a variety of options for input and output for user ease. Sorption reactions include Langmuir, Freundlich, and ion-exchange, with or without equal valance. General equations describing transport and reaction processes are solved by finite-difference methods, with nonlinearities accounted for by iteration. Complete documentation of the code, with examples, is included. (USGS)

  3. Desorption isotherms and isosteric heat of desorption of previously frozen raw pork meat.

    PubMed

    Clemente, G; Bon, J; Benedito, J; Mulet, A

    2009-08-01

    Some meat products involve drying previously frozen pork meat, which makes the knowledge of sorption characteristics very important for the design and management of meat dehydration processes. The sorption isotherms of raw pork meat from the Biceps femoris and Semimembranosus muscles were determined at four temperatures: 25, 30, 35 and 40°C. The experimental results were modelled using the GAB (Guggenheim, Anderson and De Boer) model. The effect of temperature was also taken into account to model the experimental sorption isotherms using four models (GAB, Oswin, Halsey and Henderson). The best results were provided by the GAB model. From the experimental sorption isotherms the isosteric heats of sorption were determined. For a moisture content higher than 0.15kgwater/kgdm, the isosteric heat of meat was similar to the latent heat of vaporization for pure water. For a lower moisture content, an increase in the isosteric heat was observed when the moisture content decreased.

  4. Evaluation of Sorption Mechanism of Pb (II) and Ni (II) onto Pea (Pisum sativum) Peels.

    PubMed

    Haq, Atta Ul; Saeed, Muhammad; Anjum, Salma; Bokhari, Tanveer Hussain; Usman, Muhammad; Tubbsum, Saiqa

    2017-07-01

    The present study was carried out to know the sorption mechanism of Pb (II) and Ni (II) in aqueous solution using pea peels under the influence of sorbent dose, pH, temperature, initial metal ion concentration and contact time. SEM and FTIR were used for characterization of pea peels. The study showed that solution pH affects sorption process and the optimum pH for Pb (II) was 6.0 while for that of Ni (II) was 7.0. Pseudo-second order kinetic model was found to be the most suitable one to explain the kinetic data not only due to high value of R 2 (>0.99) but also due to the closeness of the experimental sorption capacity values to that of calculated sorption capacity values of pseudo second order kinetic model. It can be seen from the results that Freundlich isotherm explains well the equilibrium data (R 2 >0.99). Sorption capacity of pea peels was 140.84 and 32.36 for Pb (II) and Ni (II) mg g -1 respectively. The positive value of ΔH° and negative values of ΔG° suggest that sorption of Pb (II) and Ni (II) onto pea peels is an endothermic and spontaneous process respectively.

  5. Interaction of dissolution, sorption and biodegradation on transport of BTEX in a saturated groundwater system: Numerical modeling and spatial moment analysis

    NASA Astrophysics Data System (ADS)

    Valsala, Renu; Govindarajan, Suresh Kumar

    2018-06-01

    Interaction of various physical, chemical and biological transport processes plays an important role in deciding the fate and migration of contaminants in groundwater systems. In this study, a numerical investigation on the interaction of various transport processes of BTEX in a saturated groundwater system is carried out. In addition, the multi-component dissolution from a residual BTEX source under unsteady flow conditions is incorporated in the modeling framework. The model considers Benzene, Toluene, Ethyl Benzene and Xylene dissolving from the residual BTEX source zone to undergo sorption and aerobic biodegradation within the groundwater aquifer. Spatial concentration profiles of dissolved BTEX components under the interaction of various sorption and biodegradation conditions have been studied. Subsequently, a spatial moment analysis is carried out to analyze the effect of interaction of various transport processes on the total dissolved mass and the mobility of dissolved BTEX components. Results from the present numerical study suggest that the interaction of dissolution, sorption and biodegradation significantly influence the spatial distribution of dissolved BTEX components within the saturated groundwater system. Mobility of dissolved BTEX components is also found to be affected by the interaction of these transport processes.

  6. Sorption of carbamazepine from water by magnetic molecularly imprinted polymers based on chitosan-Fe₃O₄.

    PubMed

    Zhang, Ya-Lei; Zhang, Juan; Dai, Chao-Meng; Zhou, Xue-Fei; Liu, Shu-Guang

    2013-09-12

    A novel magnetic-molecularly imprinted polymer (MMIP) based on chitosan-Fe₃O₄ has been synthesized for fast separation of carbamazepine (CBZ) from water. During polymerization, the modified chitosan-Fe₃O₄ was used not only as supporter but also as functional monomer. The properties of obtained MMIP were characterized by scanning electron and transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectra, thermo-gravimetric analysis and so on. The sorption equilibrium data was well described by Freundlich isotherm model and the increase in the temperature generated an increase in the sorption amount, indicating endothermic nature of adsorption process. Sorption kinetics followed the pseudo-second-order model. The feasibility of selective sorption of CBZ from real water by the MMIP was analyzed by using spiked real water samples. The result showed that the sorption capacity of MMIP has no obvious decrease in different water samples whereas there was obvious decline in the sorption amount of the MNIP. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. A sorption model for alkalis in cement-based materials - Correlations with solubility and electrokinetic properties

    NASA Astrophysics Data System (ADS)

    Henocq, Pierre

    2017-06-01

    In cement-based materials, radionuclide uptake is mainly controlled by calcium silicate hydrates (C-S-H). This work presents an approach for defining a unique set of parameters of a surface complexation model describing the sorption behavior of alkali ions on the C-S-H surface. Alkali sorption processes are modeled using the CD-MUSIC function integrated in the Phreeqc V.3.0.6 geochemical code. Parameterization of the model was performed based on (1) retention, (2) zeta potential, and (3) solubility experimental data from the literature. This paper shows an application of this model to sodium ions. It was shown that retention, i.e. surface interactions, and solubility are closely related, and a consistent sorption model for radionuclides in cement-based materials requires a coupled surface interaction/chemical equilibrium model. In case of C-S-H with low calcium-to-silicon ratios, sorption of sodium ions on the C-S-H surface strongly influences the chemical equilibrium of the C-S-H + NaCl system by significantly increasing the aqueous calcium concentration. The close relationship between sorption and chemical equilibrium was successfully illustrated by modeling the effect of the solid-to-liquid ratio on the calcium content in solution in the case of C-S-H + NaCl systems.

  8. Water vapor sorption properties of cellulose nanocrystals and nanofibers using dynamic vapor sorption apparatus.

    PubMed

    Guo, Xin; Wu, Yiqiang; Xie, Xinfeng

    2017-10-27

    Hygroscopic behavior is an inherent characteristic of nanocellulose which strongly affects its applications. In this study, the water vapor sorption behavior of four nanocellulose samples, such as cellulose nanocrystals and nanofibers with cellulose I and II structures (cellulose nanocrystals (CNC) I, CNC II, cellulose nanofibers (CNF) I, and CNF II) were studied by dynamic vapor sorption. The highly reproducible data including the running time, real-time sample mass, target relative humidity (RH), actual RH, and isotherm temperature were recorded during the sorption process. In analyzing these data, significant differences in the total running time, equilibrium moisture content, sorption hysteresis and sorption kinetics between these four nanocellulose samples were confirmed. It was important to note that CNC I, CNC II, CNF I, and CNF II had equilibrium moisture contents of 21.4, 28.6, 33.2, and 38.9%, respectively, at a RH of 95%. Then, the sorption kinetics behavior was accurately described by using the parallel exponential kinetics (PEK) model. Furthermore, the Kelvin-Voigt model was introduced to interpret the PEK behavior and calculate the modulus of these four nanocellulose samples.

  9. Sorption behavior of nano-TiO2 for the removal of selenium ions from aqueous solution.

    PubMed

    Zhang, Lei; Liu, Na; Yang, Lijun; Lin, Qing

    2009-10-30

    Titanium dioxide nanoparticles were employed for the sorption of selenium ions from aqueous solution. The process was studied in detail by varying the sorption time, pH, and temperature. The sorption was found to be fast, and to reach equilibrium basically within 5.0 min. The sorption has been optimized with respect to the pH, maximum sorption has been achieved from solution of pH 2-6. Sorbed Se(IV) and Se(VI) were desorbed with 2.0 mL 0.1 mol L(-1) NaOH. The kinetics and thermodynamics of the sorption of Se(IV) onto nano-TiO2 have been studied. The kinetic experimental data properly correlate with the second-order kinetic model (k(2)=0.69 g mg(-1) min(-1), 293 K). The overall rate process appears to be influenced by both boundary layer diffusion and intraparticle diffusion. The sorption data could be well interpreted by the Langmuir sorption isotherm. The mean energy of adsorption (14.46 kJ mol(-1)) was calculated from the Dubinin-Radushkevich (D-R) adsorption isotherm at room temperature. The thermodynamic parameters for the sorption were also determined, and the DeltaH(0) and DeltaG(0) values indicate exothermic behavior.

  10. Identifiability of sorption parameters in stirred flow-through reactor experiments and their identification with a Bayesian approach.

    PubMed

    Nicoulaud-Gouin, V; Garcia-Sanchez, L; Giacalone, M; Attard, J C; Martin-Garin, A; Bois, F Y

    2016-10-01

    This paper addresses the methodological conditions -particularly experimental design and statistical inference- ensuring the identifiability of sorption parameters from breakthrough curves measured during stirred flow-through reactor experiments also known as continuous flow stirred-tank reactor (CSTR) experiments. The equilibrium-kinetic (EK) sorption model was selected as nonequilibrium parameterization embedding the K d approach. Parameter identifiability was studied formally on the equations governing outlet concentrations. It was also studied numerically on 6 simulated CSTR experiments on a soil with known equilibrium-kinetic sorption parameters. EK sorption parameters can not be identified from a single breakthrough curve of a CSTR experiment, because K d,1 and k - were diagnosed collinear. For pairs of CSTR experiments, Bayesian inference allowed to select the correct models of sorption and error among sorption alternatives. Bayesian inference was conducted with SAMCAT software (Sensitivity Analysis and Markov Chain simulations Applied to Transfer models) which launched the simulations through the embedded simulation engine GNU-MCSim, and automated their configuration and post-processing. Experimental designs consisting in varying flow rates between experiments reaching equilibrium at contamination stage were found optimal, because they simultaneously gave accurate sorption parameters and predictions. Bayesian results were comparable to maximum likehood method but they avoided convergence problems, the marginal likelihood allowed to compare all models, and credible interval gave directly the uncertainty of sorption parameters θ. Although these findings are limited to the specific conditions studied here, in particular the considered sorption model, the chosen parameter values and error structure, they help in the conception and analysis of future CSTR experiments with radionuclides whose kinetic behaviour is suspected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Biosorption of lead, cadmium, and zinc by Citrobacter strain MCM B-181: Characterization studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puranik, P.R.; Paknikar, K.M.

    1999-03-01

    The biosorption process for removal of lead, cadmium, and zinc by Citrobacter strain MCM B-181, a laboratory isolate, was characterized. Effects of environmental factors and growth conditions on metal uptake capacity were studied. Pretreatment of biomass with chemical agents increased cadmium sorption efficiency; however, there was no significant enhancement in lead and zinc sorption capacity. Metal sorption by Citrobacter strain MCM B-181 was found to be influenced by the pH of the solution, initial metal concentration, biomass concentration, and type of growth medium. The metal sorption process was not affected by the age of the culture or change in temperature.more » Equilibrium metal sorption was found to fit the Langmuir adsorption model. Kinetic studies showed that metal uptake by Citrobacter strain MCm B-181 was a fast process, requiring < 20 min to achieve > 90% adsorption efficiency. The presence of cations reduced lead, zinc, and cadmium sorption to the extent of 11.8%, 84.3%, and 33.4%, respectively. When biomass was exposed to multimetal solutions, metals were adsorbed in the order Co{sup 2+} < Ni{sup 2+} < Cd{sup 2+} < Cu{sup 2+}, Zn{sup 2+} < Pb{sup 2+}. A new mathematical model used for batch kinetic studies was found to be highly useful in prediction of experimentally obtained metal concentration profiles as a function of time.« less

  12. Cadmium removal in a biosorption column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volesky, B.; Prasetyo, I.

    New biosorbent material derived from a ubiquitous brown marine alga Ascophyllum nodosum has been examined in packed-bed flow-through sorption columns. It effectively removed 10 mg/L of cadmium down to 1.5 ppb levels in the effluent, representing 99.985% removal. The experimental methodology used was based on the early Bohart and Adams sorption model, resulting in quantitative determination of the characteristic process parameters which can be used for performance comparison and process design. An average metal loading of the biosorbent (N[sub 0]) determined was 30 mg Cd/g, corresponding closely to that observed for the batch equilibrium metal concentration of 10 mg Cd/L.more » The critical bed depth (D[sub min]) for the potable water effluent quality standard varied with the column feed flow rate from 20 to 50 cm. The sorption column mass transfer and dispersion coefficients were determined, which are also required for solving the sorption model equations.« less

  13. Heavy metals binding properties of esterified lemon.

    PubMed

    Arslanoglu, Hasan; Altundogan, Hamdi Soner; Tumen, Fikret

    2009-05-30

    Sorption of Cd(2+), Cr(3+), Cu(2+), Ni(2+), Pb(2+) and Zn(2+) onto a carboxyl groups-rich material prepared from lemon was investigated in batch systems. The results revealed that the sorption is highly pH dependent. Sorption kinetic data indicated that the equilibrium was achieved in the range of 30-240 min for different metal ions and sorption kinetics followed the pseudo-second-order model for all metals studied. Relative sorption rate of various metal cations was found to be in the general order of Ni(2+)>Cd(2+)>Cu(2+)>Pb(2+)>Zn(2+)>Cr(3+). The binding characteristics of the sorbent for heavy metal ions were analyzed under various conditions and isotherm data was accurately fitted to the Langmuir equation. The metal binding capacity order calculated from Langmuir isotherm was Pb(2+)>Cu(2+)>Ni(2+)>Cd(2+)>Zn(2+)>Cr(3+). The mean free energy of metal sorption process calculated from Dubinin-Radushkevich parameter and the Polanyi potential was found to be in the range of 8-11 kJ mol(-1) for the metals studied showing that the main mechanism governing the sorption process seems to be ion exchange. The basic thermodynamic parameters of metals ion sorption process were calculated by using the Langmuir constants obtained from equilibration study. The DeltaG degrees and DeltaH degrees values for metals ion sorption on the lemon sorbent showed the process to be spontaneous and exothermic in nature. Relatively low DeltaH degrees values revealed that physical adsorption significantly contributed to the mechanism.

  14. Sorption characteristics and separation of tellurium ions from aqueous solutions using nano-TiO2.

    PubMed

    Zhang, Lei; Zhang, Min; Guo, Xingjia; Liu, Xueyan; Kang, Pingli; Chen, Xia

    2010-12-15

    Titanium dioxide nanoparticles (nano-TiO(2)) were employed for the sorption of Te(IV) ions from aqueous solution. A detailed study of the process was performed by varying the sorption time, pH, and temperature. The sorption was found to be fast, equilibrium was reached within 8 min. When the concentration of Te(IV) was below 40 mg L(-1), at least 97% of tellurium was adsorbed by nano-TiO(2) in the pH range of 1-2 and 8-9. The sorbed Te(IV) ions were desorbed with 2.0 mL of 0.5 mol L(-1) NaOH. The sorption data could be well interpreted by the Langmuir model with the maximum adsorption capacity of 32.75 mg g(-1) (20 ± 0.1 °C) of Te(IV) on nano-TiO(2). The kinetics and thermodynamics of the sorption of Te(IV) onto nano-TiO(2) were also studied. The kinetic experimental data properly correlated with the second-order kinetic model (k(2)=0.0368 g mg(-1)min(-1), 293 K). The overall rate process appeared to be influenced by both boundary layer diffusion and intra-particle diffusion. The mean energy of adsorption was calculated to be 17.41 kJ mol(-1) from the Dubinin-Radushkevich (D-R) adsorption isotherm at room temperature. Moreover, the thermodynamic parameters for the sorption were estimated, and the ΔH(0) and ΔG(0) values indicated the exothermic and spontaneous nature of the sorption process, respectively. Finally, Nano-TiO(2) as sorbent was successfully applied to the separation of Te(IV) from the environmental samples with satisfactory results (recoveries >95%, relative standard deviations was 2.0%). Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Phenanthrene sorption with heterogeneous organic matter in a landfill aquifer material

    USGS Publications Warehouse

    Karapanagioti, H.K.; Sabatini, D.A.; Kleineidam, S.; Grathwohl, P.; Ligouis, B.

    1999-01-01

    Phenanthrene was used as a model chemical to study the sorption properties of Canadian River Alluvium aquifer material. Both equilibrium and kinetic sorption processes were evaluated through batch studies. The bulk sample was divided into subsamples with varying properties such as particle size, organic content, equilibration time, etc. in order to determine the effect of these properties on resulting sorption parameters. The data have been interpreted and the effect of experimental variables was quantified using the Freundlich isotherm model and a numerical solution of Fick's 2nd law in porous media. Microscopic organic matter characterization proved to be a valuable tool for explaining the results. Different organic matter properties and sorption mechanisms were observed for each soil subsample. Samples containing coal particles presented high Koc values. Samples with organic matter dominated by organic coatings on quartz grains presented low Koc values and contained a high percentage of fast sorption sites. The numerical solution of Fick's 2ndlaw requires the addition of two terms (fast and slow) in order to fit the kinetics of these heterogeneous samples properly. These results thus demonstrate the need for soil organic matter characterization in order to predict and explain the sorption properties of a soil sample containing heterogeneous organic matter and also the difficulty and complexity of modeling sorption in such samples.

  16. Dynamic Triple-Mode Sorption and Outgassing in Materials.

    PubMed

    Sharma, Hom N; Harley, Stephen J; Sun, Yunwei; Glascoe, Elizabeth A

    2017-06-07

    Moisture uptake and outgassing can be detrimental to a system by altering the chemical and mechanical properties of materials within the system over time. In this work, we conducted isotherm experiments to investigate dynamic moisture sorption and desorption in markedly different materials, i.e., a polymeric material, Sylgard-184 and a ceramic aluminosilicate material, Zircar RS-1200, at different temperatures (30 °C-70 °C) by varying the water activity (0.0-0.90). Sylgard-184 showed a linear sorption and outgassing behavior with no-hysteresis over the entire temperature and water activity range considered here. Whereas, the sorption and outgassing of Zircar RS-1200 was highly non-linear with significant hysteresis, especially at higher water activities, at all temperatures considered here. The type of hysteresis suggested the presence of mesopores in Zircar RS-1200, whereas the lack of hysteresis in Sylgard-184 indicates that it has a nonporous structure. A diffusion model coupled with a dynamic, triple-mode sorption (Langmuir, Henry, and pooling modes) model employed in this study matched our experimental data very well and provides mechanistic insight into the processes. Our triple-mode sorption model was adaptive enough to (1) model these distinctly different materials and (2) predict sorption and outgassing under conditions that are distinctly different from the parameterization experiments.

  17. Dynamic Triple-Mode Sorption and Outgassing in Materials

    DOE PAGES

    Sharma, Hom N.; Harley, Stephen J.; Sun, Yunwei; ...

    2017-06-07

    Moisture uptake and outgassing can be detrimental to a system by altering the chemical and mechanical properties of materials within the system over time. In this work, we conducted isotherm experiments to investigate dynamic moisture sorption and desorption in markedly different materials, i.e., a polymeric material, Sylgard-184 and a ceramic aluminosilicate material, Zircar RS-1200, at different temperatures (30 °C–70 °C) by varying the water activity (0.0–0.90). Sylgard-184 showed a linear sorption and outgassing behavior with no-hysteresis over the entire temperature and water activity range considered here. Whereas, the sorption and outgassing of Zircar RS-1200 was highly non-linear with significant hysteresis,more » especially at higher water activities, at all temperatures considered here. The type of hysteresis suggested the presence of mesopores in Zircar RS-1200, whereas the lack of hysteresis in Sylgard-184 indicates that it has a nonporous structure. A diffusion model coupled with a dynamic, triple-mode sorption (Langmuir, Henry, and pooling modes) model employed in this study matched our experimental data very well and provides mechanistic insight into the processes. Our triple-mode sorption model was adaptive enough to (1) model these distinctly different materials and (2) predict sorption and outgassing under conditions that are distinctly different from the parameterization experiments.« less

  18. Dynamic Triple-Mode Sorption and Outgassing in Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Hom N.; Harley, Stephen J.; Sun, Yunwei

    Moisture uptake and outgassing can be detrimental to a system by altering the chemical and mechanical properties of materials within the system over time. In this work, we conducted isotherm experiments to investigate dynamic moisture sorption and desorption in markedly different materials, i.e., a polymeric material, Sylgard-184 and a ceramic aluminosilicate material, Zircar RS-1200, at different temperatures (30 °C–70 °C) by varying the water activity (0.0–0.90). Sylgard-184 showed a linear sorption and outgassing behavior with no-hysteresis over the entire temperature and water activity range considered here. Whereas, the sorption and outgassing of Zircar RS-1200 was highly non-linear with significant hysteresis,more » especially at higher water activities, at all temperatures considered here. The type of hysteresis suggested the presence of mesopores in Zircar RS-1200, whereas the lack of hysteresis in Sylgard-184 indicates that it has a nonporous structure. A diffusion model coupled with a dynamic, triple-mode sorption (Langmuir, Henry, and pooling modes) model employed in this study matched our experimental data very well and provides mechanistic insight into the processes. Our triple-mode sorption model was adaptive enough to (1) model these distinctly different materials and (2) predict sorption and outgassing under conditions that are distinctly different from the parameterization experiments.« less

  19. Phosphorus sorption-desorption and effects of temperature, pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions.

    PubMed

    Bai, Junhong; Ye, Xiaofei; Jia, Jia; Zhang, Guangliang; Zhao, Qingqing; Cui, Baoshan; Liu, Xinhui

    2017-12-01

    Wetland soils act as a sink or source of phosphorus (P) to the overlaying water due to phosphorus sorption-desorption processes. Litter information is available on sorption and desorption behaviors of phosphorus in coastal wetlands with different flooding conditions. Laboratory experiments were conducted to investigate phosphorus sorption-desorption processes, fractions of adsorbed phosphorus, and the effects of salinity, pH and temperature on phosphorus sorption on soils in tidal-flooding wetlands (TW), freshwater-flooding wetlands (FW) and seasonal-flooding wetlands (SW) in the Yellow River Delta. Our results showed that the freshly adsorbed phosphorus dominantly exists in Occluded-P and Fe/AlP and their percentages increased with increasing phosphorus adsorbed. Phosphorus sorption isotherms could be better described by the modified Langmuir model than by the modified Freundlich model. A binomial equation could be properly used to describe the effects of salinity, pH, and temperature on phosphorus sorption. Phosphorus sorption generally increased with increasing salinity, pH, and temperature at lower ranges, while decreased in excess of some threshold values. The maximum phosphorus sorption capacity (Q max ) was larger for FW soils (256 mg/kg) compared with TW (218 mg/kg) and SW soils (235 mg/kg) (p < 0.05). The percentage of phosphorus desorption (P des ) in the FW soils (7.5-63.5%) was much lower than those in TW (27.7-124.9%) and SW soils (19.2-108.5%). The initial soil organic matter, pH and the exchangeable Al, Fe and Cd contents were important factors influencing P sorption and desorption. The findings of this study indicate that freshwater restoration can contribute to controlling the eutrophication status of water bodies through increasing P sorption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Investigation of Fission Product Transport into Zeolite-A for Pyroprocessing Waste Minimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James R. Allensworth; Michael F. Simpson; Man-Sung Yim

    Methods to improve fission product salt sorption into zeolite-A have been investigated in an effort to reduce waste associated with the electrochemical treatment of spent nuclear fuel. It was demonstrated that individual fission product chloride salts were absorbed by zeolite-A in a solid-state process. As a result, recycling of LiCl-KCl appears feasible via adding a zone-freezing technique to the current treatment process. Ternary salt molten-state experiments showed the limiting kinetics of CsCl and SrCl2 sorption into the zeolite. CsCl sorption occurred rapidly relative to SrCl2 with no observed dependence on zeolite particle size, while SrCl2 sorption was highly dependent onmore » particle size. The application of experimental data to a developed reaction-diffusion-based sorption model yielded diffusivities of 8.04 × 10-6 and 4.04 × 10-7 cm2 /s for CsCl and SrCl2, respectively. Additionally, the chemical reaction term in the developed model was found to be insignificant compared to the diffusion term.« less

  1. Modeling the influence of coupled mass transfer processes on mass flux downgradient of heterogeneous DNAPL source zones

    NASA Astrophysics Data System (ADS)

    Yang, Lurong; Wang, Xinyu; Mendoza-Sanchez, Itza; Abriola, Linda M.

    2018-04-01

    Sequestered mass in low permeability zones has been increasingly recognized as an important source of organic chemical contamination that acts to sustain downgradient plume concentrations above regulated levels. However, few modeling studies have investigated the influence of this sequestered mass and associated (coupled) mass transfer processes on plume persistence in complex dense nonaqueous phase liquid (DNAPL) source zones. This paper employs a multiphase flow and transport simulator (a modified version of the modular transport simulator MT3DMS) to explore the two- and three-dimensional evolution of source zone mass distribution and near-source plume persistence for two ensembles of highly heterogeneous DNAPL source zone realizations. Simulations reveal the strong influence of subsurface heterogeneity on the complexity of DNAPL and sequestered (immobile/sorbed) mass distribution. Small zones of entrapped DNAPL are shown to serve as a persistent source of low concentration plumes, difficult to distinguish from other (sorbed and immobile dissolved) sequestered mass sources. Results suggest that the presence of DNAPL tends to control plume longevity in the near-source area; for the examined scenarios, a substantial fraction (43.3-99.2%) of plume life was sustained by DNAPL dissolution processes. The presence of sorptive media and the extent of sorption non-ideality are shown to greatly affect predictions of near-source plume persistence following DNAPL depletion, with plume persistence varying one to two orders of magnitude with the selected sorption model. Results demonstrate the importance of sorption-controlled back diffusion from low permeability zones and reveal the importance of selecting the appropriate sorption model for accurate prediction of plume longevity. Large discrepancies for both DNAPL depletion time and plume longevity were observed between 2-D and 3-D model simulations. Differences between 2- and 3-D predictions increased in the presence of sorption, especially for the case of non-ideal sorption, demonstrating the limitations of employing 2-D predictions for field-scale modeling.

  2. Sorption characteristic of uranium(VI) ion onto K-feldspar.

    PubMed

    Gao, Xiaoqing; Bi, Mingliang; Shi, Keliang; Chai, Zhifang; Wu, Wangsuo

    2017-10-01

    The effect of pH, contact time, temperature, ionic strength and initial U(VI) concentration on U(VI) sorption onto K-feldspar was investigated using batch techniques. The sorption kinetics was evaluated and the activation energy was obtained based on the rate constants at different temperature. Graphical correlations of sorption isotherm models have been evaluated and applied for U(VI) uptake by K-feldspar. Various thermodynamic parameters, such as, Gibb's free energy, entropy and enthalpy of the on-going sorption process have been calculated and the possible sorption mechanism of U(VI) was deduced. The results are expected to help better understand the migration of uranium in the host materials of granite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Effect of organic complexing agents on the interactions of Cs(+), Sr(2+) and UO(2)(2+) with silica and natural sand.

    PubMed

    Reinoso-Maset, Estela; Worsfold, Paul J; Keith-Roach, Miranda J

    2013-05-01

    Sorption processes play a key role in controlling radionuclide migration through subsurface environments and can be affected by the presence of anthropogenic organic complexing agents found at contaminated sites. The effect of these complexing agents on radionuclide-solid phase interactions is not well known. Therefore the aim of this study was to examine the processes by which EDTA, NTA and picolinate affect the sorption kinetics and equilibria of Cs(+), Sr(2+) and UO2(2+) onto natural sand. The caesium sorption rate and equilibrium were unaffected by the complexing agents. Strontium however showed greater interaction with EDTA and NTA in the presence of desorbed matrix cations than geochemical modelling predicted, with SrNTA(-) enhancing sorption and SrEDTA(2-) showing lower sorption than Sr(2+). Complexing agents reduced UO2(2+) sorption to silica and enhanced the sorption rate in the natural sand system. Elevated concentrations of picolinate reduced the sorption of Sr(2+) and increased the sorption rate of UO2(2+), demonstrating the potential importance of this complexing agent. These experiments provide a direct comparison of the sorption behaviour of Cs(+), Sr(2+) and UO2(2+)onto natural sand and an assessment of the relative effects of EDTA, NTA and picolinate on the selected elements. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid.

    PubMed

    Rahmani-Sani, Abolfazl; Hosseini-Bandegharaei, Ahmad; Hosseini, Seyyed-Hossein; Kharghani, Keivan; Zarei, Hossein; Rastegar, Ayoob

    2015-04-09

    In this work, the removal of uranium and thorium ions from aqueous solutions was studied by solid-liquid extraction using an advantageous extractant-impregnated resin (EIR) prepared by loading carminic acid (CA) onto Amberlite XAD-16 resin beads. Batch sorption experiments using CA/XAD-16 beads for the removal of U(VI) and Th(IV) ions were carried out as a function of several parameters, like equilibration time, metal ion concentration, etc. The equilibrium data obtained from the sorption experiments were adjusted to the Langmuir isotherm model and the calculated maximum sorption capacities in terms of monolayer sorption were in agreement with those obtained from the experiments. The experimental data on the sorption behavior of both metal ions onto the EIR beads fitted well in both Bangham and intra-particle diffusion kinetic models, indicating that the intra-particle diffusion is the rate-controlling step. The thermodynamic studies at different temperatures revealed the feasibility and the spontaneous nature of the sorption process for both uranium and thorium ions. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Moisture Sorption–desorption Characteristics and the Corresponding Thermodynamic Properties of Carvedilol Phosphate

    PubMed Central

    Allada, Ravikiran; Maruthapillai, Arthanareeswari; Palanisamy, Kamaraj; Chappa, Praveen

    2017-01-01

    Aims: Carvedilol phosphate (CDP) is a nonselective beta-blocker used for the treatment of heart failures and hypertension. In this work, moisture sorption–desorption characteristics and thermodynamic properties of CDP have been investigated. Materials and Methods: The isotherms were determined using dynamic vapor sorption analyzer at different humidity conditions (0%–90% relative humidity) and three pharmaceutically relevant temperatures (20°C, 30°C, and 40°C). The experimental sorption data determined were fitted to various models, namely, Brunauer–Emmett–Teller; Guggenheim-Anderson-De Boer (GAB); Peleg; and modified GAB. Isosteric heats of sorption were evaluated through the direct use of sorption isotherms by means of the Clausius-Clapeyron equation. Statistical Analysis Used: The sorption model parameters were determined from the experimental sorption data using nonlinear regression analysis, and mean relative percentage deviation (P), correlation (Correl), root mean square error, and model efficiency were considered as the criteria to select the best fit model. Results: The sorption–desorption isotherms have sigmoidal shape – confirming to Type II isotherms. Based on the statistical data analysis, modified GAB model was found to be more adequate to explain sorption characteristics of CDP. It is noted that the rate of adsorption and desorption is specific to the temperature at which it was being studied. It is observed that isosteric heat of sorption decreased with increasing equilibrium moisture content. Conclusions: The calculation of the thermodynamic properties was further used to draw an understanding of the properties of water and energy requirements associated with the sorption behavior. The sorption–desorption data and the set of equations are useful in the simulation of processing, handling, and storage of CDP and further behavior during manufacture and storage of CDP formulations. PMID:28584488

  6. Sorption of perfluorooctanoic acid, perfluorooctane sulfonate and perfluoroheptanoic acid on granular activated carbon.

    PubMed

    Zhang, Di; Luo, Qi; Gao, Bin; Chiang, Sheau-Yun Dora; Woodward, David; Huang, Qingguo

    2016-02-01

    The sorption of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and perfluoroheptanoic acid (PFHpA) on granular activated carbon (GAC) was characterized and compared to explore the underlying mechanisms. Sorption of the three perfluoroalkyl acids (PFAAs) on GAC appeared to be a rapid intra-particle diffusion process, which were well represented by the pseudo-second-order rate model with the sorption rate following the order PFOS > PFOA > PFHpA. Sorption isotherm data were well fitted by the Freundlich model with the sorption capacity (Kf) of PFOS, PFOA and PFHpA being 4.45, 2.42 and 1.66 respectively. This suggests that the hydrophilic head group on PFAAs, i.e. sulfonate vs carboxylic, has a strong influence on their sorption. Comparison between PFOA and PFHpA revealed that hydrophobicity could also play a role in the sorption of PFAAs on GAC when the fluorocarbon chain length is different. Analyses using Attenuated Total Reflection (ATR)-Fourier Transform Infrared (FTIR) spectroscopy suggested possible formation of a negative charge-assisted H-bond between PFAAs and the functionalities on GAC surfaces, including non-aromatic ketones, sulfides, and halogenated hydrocarbons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. FATE OF PATHOGENIC MICROORGANISMS IN SOIL

    EPA Science Inventory

    In order to forecast the effect of viruses contaminating the ground water supply, sorption of pathogens on soil and subsurface materials was studied. Considering that change in free energy for the process is directly proportional to the degree of sorption, a model has been develo...

  8. Sorption kinetics of diuron on volcanic ash derived soils.

    PubMed

    Cáceres-Jensen, Lizethly; Rodríguez-Becerra, Jorge; Parra-Rivero, Joselyn; Escudey, Mauricio; Barrientos, Lorena; Castro-Castillo, Vicente

    2013-10-15

    Diuron sorption kinetic was studied in Andisols, Inceptisol and Ultisols soils in view of their distinctive physical and chemical properties: acidic pH and variable surface charge. Two types of kinetic models were used to fit the experimental dates: those that allow to establish principal kinetic parameters and modeling of sorption process (pseudo-first-order, pseudo-second-order), and some ones frequently used to describe solute transport mechanisms of organic compounds on different sorbents intended for remediation purposes (Elovich equation, intraparticle diffusion, Boyd, and two-site nonequilibrium models). The best fit was obtained with the pseudo-second-order model. The rate constant and the initial rate constant values obtained through this model demonstrated the behavior of Diuron in each soil, in Andisols were observed the highest values for both parameters. The application of the models to describe solute transport mechanisms allowed establishing that in all soils the mass transfer controls the sorption kinetic across the boundary layer and intraparticle diffusion into macropores and micropores. The slowest sorption rate was observed on Ultisols, behavior which must be taken into account when the leaching potential of Diuron is considered. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Sorption-desorption of fipronil in some soils, as influenced by ionic strength, pH and temperature.

    PubMed

    Singh, Anand; Srivastava, Anjana; Srivastava, Prakash C

    2016-08-01

    The sorption-desorpion of fipronil insecticide is influenced by soil properties and variables such as pH, ionic strength, temperature, etc. A better understanding of soil properties and these variables in sorption-desorption processes by quantification of fipronil using liquid chromatography may help to optimise suitable soil management to reduce contamination of surface and groundwaters. In the present investigation, the sorption-desorption of fipronil was studied in some soils at varying concentrations, ionic strengths, temperatures and pH values, and IR specta of fipronil sorbed onto soils were studied. The sorption of fipronil onto soils conformed to the Freundlich isotherm model. The sorption-desorption of fipronil varied with ionic strength in each of the soils. Sorption decreased but desorption increased with temperature. Sorption did not change with increasing pH, but for desorption there was no correlation. The cumulative desorption of fipronil from soil was significantly and inversely related to soil organic carbon content. IR spectra of sorbed fipronil showed the involvement of amino, nitrile, sulfone, chloro and fluoro groups and the pyrazole nucleus of the fipronil molecule. The sorption of fipronil onto soils appeared to be a physical process with the involvement of hydrogen bonding. An increase in soil organic carbon may help to reduce desorption of fipronil. High-temperature regimes are more conducive to the desorption. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  10. Reactive Radial Diffusion Model for the Aging/Sequestration Process

    NASA Astrophysics Data System (ADS)

    Ginn, T. R.; Basagaoglu, H.; McCoy, B. J.; Scow, K. M.

    2001-12-01

    A radial diffusion model has been formulated to simulate age-dependent bioavailability of chemical compounds to micro-organisms residing outside (and/or inside) the porous soil particles. Experimental findings in the literature indicate that the sequestration and reduction in bioavailability of contaminants are controlled presumably by the diffusion-limited sorption kinetics and the time-variant desorption process. Here we combine radial-diffusion mass transfer modeling with the exposure-time concept to generate mass-balance equations for the intra- and extra-particle concentrations. The model accomodates reversible sorption kinetics involving sorption time-dependence of the rate coefficients, distinct intra- and extra-particle biodegradation rates; and a dynamic mass interaction between the intra- and extra-particle concentrations arising from the radial diffusion concept. The model explicitly treats multiple particle classes distributed in size and chemical properties in a bulk aquifer or soil volume, which allows the simulation of the sequestration and bioavailability of contaminants in different particle size classes that have distinct diffusion, reaction, and aging properties.

  11. Sorption of organic cations onto silica surfaces over a wide concentration range of competing electrolytes.

    PubMed

    Kutzner, Susann; Schaffer, Mario; Licha, Tobias; Worch, Eckhard; Börnick, Hilmar

    2016-12-15

    The fundamental understanding of organic cation-solid phase interactions is essential for improved predictions of the transport and ultimate environmental fates of widely used substances (e.g., pharmaceutical compounds) in the aquatic environment. We report sorption experiments of two cationic model compounds using two silica gels and a natural aquifer sediment. The sorbents were extensively characterized and the results of surface titrations under various background electrolyte concentrations were discussed. The salt dependency of sorption was systematically studied in batch experiments over a wide concentration range (five orders of magnitude) of inorganic ions in order to examine the influence of increasing competition on the sorption of organic cations. The organic cation uptake followed the Freundlich isotherm model and the sorption capacity decreases with an increase in the electrolyte concentration due to the underlying cation exchange processes. However, the sorption recovers considerably at high ionic strength (I>1M). To our knowledge, this effect has not been observed before and appears to be independent from the sorbent characteristics and sorbate structure. Furthermore, the recovery of sorption was attributed to specific, non-ionic interactions and a connection between the sorption coefficient and activity coefficient of the medium is presumed. Eventually, the reasons for the differing sorption affinities of both sorbates are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. A Study of Moisture Sorption and Dielectric Processes of Starch and Sodium Starch Glycolate : Theme: Formulation and Manufacturing of Solid Dosage Forms Guest Editors: Tony Zhou and Tonglei Li.

    PubMed

    Hiew, Tze Ning; Huang, Rongying; Popov, Ivan; Feldman, Yuri; Heng, Paul Wan Sia

    2017-12-01

    This study explored the potential of combining the use of moisture sorption isotherms and dielectric relaxation profiles of starch and sodium starch glycolate (SSG) to probe the location of moisture in dried and hydrated samples. Starch and SSG samples, dried and hydrated, were prepared. For hydrated samples, their moisture contents were determined. The samples were probed by dielectric spectroscopy using a frequency band of 0.1 Hz to 1 MHz to investigate their moisture-related relaxation profiles. The moisture sorption and desorption isotherms of starch and SSG were generated using a vapor sorption analyzer, and modeled using the Guggenheim-Anderson-de Boer equation. A clear high frequency relaxation process was detected in both dried and hydrated starches, while for dried starch, an additional slower low frequency process was also detected. The high frequency relaxation processes in hydrated and dried starches were assigned to the coupled starch-hydrated water relaxation. The low frequency relaxation in dried starch was attributed to the local chain motions of the starch backbone. No relaxation process associated with water was detected in both hydrated and dried SSG within the frequency and temperature range used in this study. The moisture sorption isotherms of SSG suggest the presence of high energy free water, which could have masked the relaxation process of the bound water during dielectric measurements. The combined study of moisture sorption isotherms and dielectric spectroscopy was shown to be beneficial and complementary in probing the effects of moisture on the relaxation processes of starch and SSG.

  13. Effects of sorption competition on caesium diffusion through compacted argillaceous rock

    NASA Astrophysics Data System (ADS)

    Jakob, Andreas; Pfingsten, Wilfried; Van Loon, Luc

    2009-05-01

    We carried out a small-scale laboratory diffusion experiment on a disk-like sample of Opalinus clay from the Mont Terri underground laboratory (Switzerland) using 134Cs as tracer. A through-diffusion phase was followed by an out-diffusion phase where the tracer taken up by the sample was released again. Since the tracer concentration at both boundaries was monitored, careful mass-balance considerations were feasible. A first analysis of the experimental data was done in the frame of a single-species model accounting only for transport and non-linear sorption of caesium. The model could match the data of the through-diffusion phase, however only, when strongly reducing the sorption data based on batch sorption experiments. Yet, such a procedure was in strong contradiction with sorption measurements performed on dispersed and compacted systems. In addition, predictions concerning tracer out-diffusion and mass-balance considerations clearly revealed the shortcomings of this type of model. In a second attempt we applied a multi-species transport model where now the whole water chemistry and a sorption model for caesium were considered. First, the value for the diffusion coefficient was fixed to the best-fit value of the single-species model. But again, the sorption site densities had to be reduced strongly albeit the reduction factor was smaller. Only when fixing the sorption site densities to those values of the sorption model and letting the effective diffusion coefficient D e free for the adjustment, could through-diffusion data be reasonably well fitted and out-diffusion as well as mass-balances be predicted in a satisfying manner. The main results are: (1) The best-fit could be achieved with a value for D e of 1.8 × 10 -10 m 2 s -1 which is rather high but corroborated by results of a molecular modelling study. (2) If caesium arrives in the Opalinus clay sample potassium and sodium (calcium etc.) ions are released and caesium ions are sorbed. The released cations diffuse to lower concentration regions according to their individual concentration gradients. Since locally the cation concentration for potassium, (sodium and calcium) is increased, sorption of these cations is also locally enhanced, affecting in return the sorption behaviour of migrating caesium. Consequently, the sorption process of caesium in such diffusion experiments cannot be addressed by a non-linear isotherm formalism any longer. (3) A reasonable analysis of such single tracer diffusion experiments therefore requires the combined description of transport (diffusion) and sorption of many cations and the whole complex water chemistry of the system. Thus, single-species models can only be applied with care in the considered concentration ranges.

  14. Re-evaluation of the sorption behaviour of Bromide and Sulfamethazine under field conditions using leaching data and modelling methods

    NASA Astrophysics Data System (ADS)

    Gassmann, Matthias; Olsson, Oliver; Höper, Heinrich; Hamscher, Gerd; Kümmerer, Klaus

    2016-04-01

    The simulation of reactive transport in the aquatic environment is hampered by the ambiguity of environmental fate process conceptualizations for a specific substance in the literature. Concepts are usually identified by experimental studies and inverse modelling under controlled lab conditions in order to reduce environmental uncertainties such as uncertain boundary conditions and input data. However, since environmental conditions affect substance behaviour, a re-evaluation might be necessary under environmental conditions which might, in turn, be affected by uncertainties. Using a combination of experimental data and simulations of the leaching behaviour of the veterinary antibiotic Sulfamethazine (SMZ; synonym: sulfadimidine) and the hydrological tracer Bromide (Br) in a field lysimeter, we re-evaluated the sorption concepts of both substances under uncertain field conditions. Sampling data of a field lysimeter experiment in which both substances were applied twice a year with manure and sampled at the bottom of two lysimeters during three subsequent years was used for model set-up and evaluation. The total amount of leached SMZ and Br were 22 μg and 129 mg, respectively. A reactive transport model was parameterized to the conditions of the two lysimeters filled with monoliths (depth 2 m, area 1 m²) of a sandy soil showing a low pH value under which Bromide is sorptive. We used different sorption concepts such as constant and organic-carbon dependent sorption coefficients and instantaneous and kinetic sorption equilibrium. Combining the sorption concepts resulted in four scenarios per substance with different equations for sorption equilibrium and sorption kinetics. The GLUE (Generalized Likelihood Uncertainty Estimation) method was applied to each scenario using parameter ranges found in experimental and modelling studies. The parameter spaces for each scenario were sampled using a Latin Hypercube method which was refined around local model efficiency maxima. Results of the cumulative SMZ leaching simulations suggest a best conceptualization combination of instantaneous sorption to organic carbon which is consistent with the literature. The best Nash-Sutcliffe efficiency (Neff) was 0.96 and the 5th and 95th percentile of the uncertainty estimation were 18 and 27 μg. In contrast, both scenarios of kinetic Br sorption had similar results (Neff =0.99, uncertainty bounds 110-176 mg and 112-176 mg) but were clearly better than instantaneous sorption scenarios. Therefore, only the concept of sorption kinetics could be identified for Br modelling whereas both tested sorption equilibrium coefficient concepts performed equally well. The reasons for this specific case of equifinality may be uncertainties of model input data under field conditions or an insensitivity of the sorption equilibrium method due to relatively low adsorption of Br. Our results show that it may be possible to identify or at least falsify specific sorption concepts under uncertain field conditions using a long-term leaching experiment and modelling methods. Cases of environmental fate concept equifinality arouse the possibility of future model structure uncertainty analysis using an ensemble of models with different environmental fate concepts.

  15. Analysis of efficiency of phosphates sorption by different granulation of selected reactive material

    NASA Astrophysics Data System (ADS)

    Kasprzyk, Magda; Węgler, Jarosław; Gajewska, Magdalena

    2018-01-01

    In the light of the need to find an effective way to remove phosphorus from wastewater, studies on the suitability of sorption materials in this process should be conducted. The aim of the study was to examine the potential benefits of using selected adsorbents to reduce orthophosphates from the model solution under steady conditions. The study was conducted on a laboratory scale using synthetic wastewater with concentration of P-PO4 in the range of 5-100 mg/dm3. Experiment has shown that fine-grained material M1 (0-2 mm) is highly effective at removal of phosphorus compounds at the level of 97.8% at the highest concentration of P-PO4. The sorption capacity achieved during the investigation was 9.6 mg/g, while the maximum sorption capacity from the Langmuir model could reach up to 256 mg/g. Material M2 (2-8 mm) did not show satisfactory sorption capacity (maximum calculated sorption capacity: 0.36 mg/g) and the effectiveness of phosphate reduction did not exceeded 6% at the lowest concentration of P-PO4.

  16. Metals sorption from aqueous solutions by Kluyveromyces marxianus: process optimization, equilibrium modeling and chemical characterization.

    PubMed

    Pal, Rama; Tewari, Saumyata; Rai, Jai P N

    2009-10-01

    The dead Kluyveromyces marxianus biomass, a fermentation industry waste, was used to explore its sorption potential for lead, mercury, arsenic, cobalt, and cadmium as a function of pH, biosorbent dosage, contact time, agitation speed, and initial metal concentration. The equilibrium data fitted the Langmuir model better for cobalt and cadmium, but Freundlich isotherm for all metals tested. At equilibrium, the maximum uptake capacity (Qmax) was highest for lead followed by mercury, arsenic, cobalt, and cadmium. The RL values ranged between 0-1, indicating favorable sorption of all test metals by the biosorbent. The maximum Kf value of Pb showed its efficient removal from the solution. However, multi-metal analysis depicted that sorption of all metals decreased except Pb. The potentiometric titration of biosorbent revealed the presence of functional groups viz. amines, carboxylic acids, phosphates, and sulfhydryl group involved in heavy metal sorption. The extent of contribution of functional groups and lipids to biosorption was in the order: carboxylic>lipids>amines>phosphates. Blocking of sulfhydryl group did not have any significant effect on metal sorption.

  17. Thermodynamic, Kinetic, and Equilibrium Parameters for the Removal of Lead and Cadmium from Aqueous Solutions with Calcium Alginate Beads

    PubMed Central

    Alfaro-Cuevas-Villanueva, Ruth; Hidalgo-Vázquez, Aura Roxana; Cortés Penagos, Consuelo de Jesús; Cortés-Martínez, Raúl

    2014-01-01

    The sorption of cadmium (Cd) and lead (Pb) by calcium alginate beads (CAB) from aqueous solutions in batch systems was investigated. The kinetic and thermodynamic parameters, as well as the sorption capacities of CAB in each system at different temperatures, were evaluated. The rate of sorption for both metals was rapid in the first 10 minutes and reached a maximum in 50 minutes. Sorption kinetic data were fitted to Lagergren, pseudo-second-order and Elovich models and it was found that the second-order kinetic model describes these data for the two metals; comparing kinetic parameters for Cd and Pb sorption a higher kinetic rate (K 2) for Pb was observed, indicating that the interaction between lead cations and alginate beads was faster than for cadmium. Similarly, isotherm data were fitted to different models reported in literature and it was found that the Langmuir-Freundlich (L-F) and Dubinin-Radushkevich (D-R) models describe the isotherms in all cases. CAB sorption capacity for cadmium was 27.4 mg/g and 150.4 mg/g for lead, at 25°C. Sorption capacities of Cd and Pb increase as temperature rises. According to the thermodynamic parameters, the cadmium and lead adsorption process was spontaneous and endothermic. It was also found that pH has an important effect on the adsorption of these metals by CAB, as more were removed at pH values between 6 and 7. PMID:24587740

  18. Sorption and desorption studies of a reactive azo dye on effective disposal of redundant material.

    PubMed

    Çelekli, Abuzer; Bozkurt, Hüseyin

    2013-07-01

    The effective disposal of redundant elephant dung (ED) is important for environmental protection and utilization of resource. The aim of this study was to remove a toxic-azo dye, Reactive Red (RR) 120, using this relatively cheap material as a new adsorbent. The FTIR-ATR spectra of ED powders before and after the sorption of RR 120 and zero point charge (pHzpc) of ED were determined. The sorption capacity of ED for removing of RR 120 were carried out as functions of particle size, adsorbent dose, pH, temperature, ionic strength, initial dye concentration, and contact time. Sorption isotherm, kinetic, activation energy, thermodynamic, and desorption parameters of RR 120 on ED were studied. The sorption process was found to be dependent on particle size, adsorbent dose, pH, temperature, ionic strength, initial dye concentration, and contact time. FTIR-ATR spectroscopy indicated that amine and amide groups have significant role on the sorption of RR 120 on ED. The pHzpc of ED was found to be 7.3. Sorption kinetic of RR 120 on ED was well described by sigmoidal Logistic model. The Langmuir isotherm was well fitted to the equilibrium data. The maximum sorption capacity was 95.71 mg g(-1). The sorption of RR 120 on ED was mainly physical and exothermic according to results of D-R isotherm, Arrhenius equation, thermodynamic, and desorption studies. The thermodynamic parameters showed that this process was feasible and spontaneous. This study showed that ED as a low-cost adsorbent had a great potential for the removal of RR 120 as an alternative eco-friendly process.

  19. EXAFS study of mercury(II) sorption to Fe- and Al-(hydr)oxides: I. Effects of pH

    USGS Publications Warehouse

    Kim, C.S.; Rytuba, J.J.; Brown, Gordon E.

    2004-01-01

    The study of mercury sorption products in model systems using appropriate in situ molecular-scale probes can provide detailed information on the modes of sorption at mineral/water interfaces. Such studies are essential for assessing the influence of sorption processes on the transport of Hg in contaminated natural systems. Macroscopic uptake of Hg(II) on goethite (??-FeOOH), ??-alumina (??-Al2O3), and bayerite (??-Al(OH)3) as a function of pH has been combined with Hg L III-edge EXAFS spectroscopy, FTIR spectroscopy, and bond valence analysis of possible sorption products to provide this type of information. Macroscopic uptake measurements show that Hg(II) sorbs strongly to fine-grained powders of synthetic goethite (Hg sorption density ??=0.39-0.42 ??mol/m2) and bayerite (??=0.39-0.44 ??mol/m2), while sorbing more weakly to ??-alumina (??=0.04-0.13 ??mol/m 2). EXAFS spectroscopy on the sorption samples shows that the dominant mode of Hg sorption on these phases is as monodentate and bidentate inner-sphere complexes. The mode of Hg(II) sorption to goethite was similar over the pH range 4.3-7.4, as were those of Hg(II) sorption to bayerite over the pH range 5.1-7.9. Conversion of the ??-Al2O3 sorbent to a bayerite-like phase in addition to the apparent reduction of Hg(II) to Hg(I), possibly by photoreduction during EXAFS data collection, resulted in enhanced Hg uptake from pH 5.2-7.8 and changes in the modes of sorption that correlate with the formation of the bayerite-like phase. Bond valence calculations are consistent with the sorption modes proposed from EXAFS analysis. EXAFS analysis of Hg(II) sorption products on a natural Fe oxyhydroxide precipitate and Al/Si-bearing flocculent material showed sorption products and modes of surface attachment similar to those for the model substrates, indicating that the model substrates are useful surrogates for the natural sediments. ?? 2003 Elsevier Inc. All rights reserved.

  20. Characterization of the atrazine sorption process on Andisol and Ultisol volcanic ash-derived soils: kinetic parameters and the contribution of humic fractions.

    PubMed

    Báez, María E; Fuentes, Edwar; Espinoza, Jeannette

    2013-07-03

    Atrazine sorption was studied in six Andisol and Ultisol soils. Humic and fulvic acids and humin contributions were established. Sorption on soils was well described by the Freundlich model. Kf values ranged from 2.2-15.6 μg(1-1/n)mL(1/n)g⁻¹. The relevance of humic acid and humin was deduced from isotherm and kinetics experiments. KOC values varied between 221 and 679 mLg⁻¹ for these fractions. Fulvic acid presented low binding capacity. Sorption was controlled by instantaneous equilibrium followed by a time-dependent phase. The Elovich equation, intraparticle diffusion model, and a two-site nonequilibrium model allowed us to conclude that (i) there are two rate-limited phases in Andisols related to intrasorbent diffusion in organic matter and retarded intraparticle diffusion in the organo-mineral complex and that (ii) there is one rate-limited phase in Ultisols attributed to the mineral composition. The lower organic matter content of Ultisols and the slower sorption rate and mechanisms involved must be considered to assess the leaching behavior of atrazine.

  1. Kinetic modeling of antimony(III) oxidation and sorption in soils.

    PubMed

    Cai, Yongbing; Mi, Yuting; Zhang, Hua

    2016-10-05

    Kinetic batch and saturated column experiments were performed to study the oxidation, adsorption and transport of Sb(III) in two soils with contrasting properties. Kinetic and column experiment results clearly demonstrated the extensive oxidation of Sb(III) in soils, and this can in return influence the adsorption and transport of Sb. Both sorption capacity and kinetic oxidation rate were much higher in calcareous Huanjiang soil than in acid red Yingtan soil. The results indicate that soil serve as a catalyst in promoting oxidation of Sb(III) even under anaerobic conditions. A PHREEQC model with kinetic formulations was developed to simulate the oxidation, sorption and transport of Sb(III) in soils. The model successfully described Sb(III) oxidation and sorption data in kinetic batch experiment. It was less successful in simulating the reactive transport of Sb(III) in soil columns. Additional processes such as colloid facilitated transport need to be quantified and considered in the model. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Selective Sorption of Dissolved Organic Carbon Compounds by Temperate Soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jagadamma, Sindhu; Mayes, Melanie; Phillips, Jana Randolph

    Physico-chemical sorption of dissolved organic carbon (DOC) on soil minerals is one of the major processes of organic carbon (OC) stabilization in soils, especially in deeper layers. The attachment of C on soil solids is related to the reactivity of the soil minerals and the chemistry of the sorbate functional groups, but the sorption studies conducted without controlling microbial activity may overestimate the sorption potential of soil. This study was conducted to examine the sorptive characteristics of a diverse functional groups of simple OC compounds (D-glucose, L-alanine, oxalic acid, salicylic acid, and sinapyl alcohol) on temperate climate soil orders (Mollisols,more » Ultisols and Alfisols) with and without biological degradative processes. Equilibrium batch experiments were conducted using 0-100 mg C L-1 at a solid-solution ratio of 1:60 for 48 hrs and the sorption parameters were calculated by Langmuir model fitting. The amount of added compounds that remained in the solution phase was detected by high performance liquid chromatography (HPLC) and total organic C (TOC) analysis. Soil sterilization was performed by -irradiation technique and experiments were repeated to determine the contribution of microbial degradation to apparent sorption. Overall, Ultisols did not show a marked preference for apparent sorption of any of the model compounds, as indicated by a narrower range of maximum sorption capacity (Smax) of 173-527 mg kg soil-1 across compounds. Mollisols exhibited a strong preference for apparent sorption of oxalic acid (Smax of 5290 mg kg soil-1) and sinapyl alcohol (Smax of 2031 mg kg soil-1) over the other compounds. The propensity for sorption of oxalic acid is mainly attributed to the precipitation of insoluble Ca-oxalate due to the calcareous nature of most Mollisol subsoils and its preference for sinapyl alcohol could be linked to the polymerization of this lignin monomer on 2:2 mineral dominated soils. The reactivity of Alfisols to DOC was in between that of Ultisols and Mollisols. HPLC results revealed significantly higher sorption of D-glucose and L-alanine than did TOC results, and duplicate experiments with sterilized soils confirmed that glucose and alanine were mineralized leading to higher apparent sorption values via HPLC. This study demonstrated that three common temperate soil orders experienced differential sorption of simple OC compounds, indicating that sorbate chemistry plays a significant role in the sorptive stabilization of DOC.« less

  3. Part V--Sorption of pharmaceuticals and personal care products.

    PubMed

    Pan, Bo; Ning, Ping; Xing, Baoshan

    2009-01-01

    Pharmaceuticals and personal care products (PPCPs) including antibiotics, endocrine-disrupting chemicals, and veterinary pharmaceuticals are emerging pollutants, and their environmental risk was not emphasized until a decade ago. These compounds have been reported to cause adverse impacts on wildlife and human. However, compared to the studies on hydrophobic organic contaminants (HOCs) whose sorption characteristics is reviewed in Part IV of this review series, information on PPCPs is very limited. Thus, a summary of recent research progress on PPCP sorption in soils or sediments is necessary to clarify research requirements and directions. We reviewed the research progress on PPCP sorption in soils or sediments highlighting PPCP sorption different from that of HOCs. Special function of humic substances (HSs) on PPCP behavior is summarized according to several features of PPCP-soil or sediment interaction. In addition, we discussed the behavior of xenobiotic chemicals in a three-phase system (dissolved organic matter (DOM)-mineral-water). The complexity of three-phase systems was also discussed. Nonideal sorption of PPCPs in soils or sediments is generally reported, and PPCP sorption behavior is relatively a more complicated process compared to HOC sorption, such as the contribution of inorganic fractions, fast degradation and metabolite sorption, and species-specific sorption mechanism. Thus, mechanistic studies are urgently needed for a better understanding of their environmental risk and for pollution control. Recent research progress on nonideal sorption has not been incorporated into fate modeling of xenobiotic chemicals. A major reason is the complexity of the three-phase system. First of all, lack of knowledge in describing DOM fractionation after adsorption by mineral particles is one of the major restrictions for an accurate prediction of xenobiotic chemical behavior in the presence of DOM. Secondly, no explicit mathematical relationship between HS chemical-physical properties, and their sorption characteristics has been proposed. Last but not least, nonlinear interactions could exponentially increase the complexity and uncertainties of environmental fate models for xenobiotics. Discussion on proper simplification of fate modeling in the framework of nonlinear interactions is still unavailable. Although the methodologies and concepts for studying HOC environmental fate could be adopted for PPCP study, their differences should be highly understood. Prediction of PPCP environmental behavior needs to combine contributions from various fractions of soils or sediments and the sorption of their metabolites and different species. More detailed studies on PPCP sorption in separated soil or sediment fractions are needed in order to propose a model predicting PPCP sorption in soils or sediments based on soil or sediment properties. The information on sorption of PPCP metabolites and species and the competition between them is still not enough to be incorporated into any predictive models.

  4. Sorption-desorption of imidacloprid onto a lacustrine Egyptian soil and its clay and humic acid fractions.

    PubMed

    Kandil, Mahrous M; El-Aswad, Ahmed F; Koskinen, William C

    2015-01-01

    Sorption-desorption of the insecticide imidacloprid 1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine onto a lacustrine sandy clay loam Egyptian soil and its clay and humic acid (HA) fractions was investigated in 24-h batch equilibrium experiments. Imidacloprid (IMDA) sorption-desorption isotherms onto the three sorbents were found to belong to a non-linear L-type and were best described by the Freundlich model. The value of the IMDA adsorption distribution coefficient, Kd(ads), varied according to its initial concentration and was ranged 40-84 for HA, 14-58 for clay and 1.85-4.15 for bulk soil. Freundlich sorption coefficient, Kf(ads), values were 63.0, 39.7 and 4.0 for HA, clay and bulk soil, respectively. The normalized soil Koc value for imidacloprid sorption was ∼800 indicating its slight mobility in soils. Nonlinear sorption isotherms were indicated by 1/n(ads) values <1 for all sorbents. Values of the hysteresis index (H) were <1, indicating the irreversibility of imidacloprid sorption process with all tested sorbents. Gibbs free energy (ΔG) values indicated a spontaneous and physicosorption process for IMDA and a more favorable sorption to HA than clay and soil. In conclusion, although the humic acid fraction showed the highest capacity and affinity for imidacloprid sorption, the clay fraction contributed to approximately 95% of soil-sorbed insecticide. Clay and humic acid fractions were found to be the major two factors controlling IMDA sorption in soils. The slight mobility of IMDA in soils and the hysteresis phenomenon associated with the irreversibility of its sorption onto, mainly, clay and organic matter of soils make its leachability unlikely to occur.

  5. Sorption-desorption of carbamazepine by palygorskite-montmorillonite (PM) filter medium.

    PubMed

    Berhane, Tedros M; Levy, Jonathan; Krekeler, Mark P S; Danielson, Neil D; Stalcup, Apryll

    2015-01-23

    Palygorskite-montmorillonite (PM) was studied as a potential sewage treatment effluent filter material for carbamazepine. Batch sorption experiments were conducted as a function of granule size (0.3-0.6, 1.7-2.0 and 2.8mm) and different sewage effluent conditions (pH, ionic strength and temperature). Results showed PM had a mix of fibrous and plate-like morphologies. Sorption and desorption isotherms were fitted to the Freundlich model. Sorption is granule size-dependent and the medium granule size would be an appropriate size for optimizing both flow and carbamazepine retention. Highest and lowest sorption capacities corresponded to the smallest and the largest granule sizes, respectively. The lowest and the highest equilibrium aqueous (Ce) and sorbed (qe) carbamazepine concentrations were 0.4 mg L(-1) and 4.5 mg L(-1), and 0.6 mg kg(-1) and 411.8 mg kg(-1), respectively. Observed higher relative sorption at elevated concentrations with a Freundlich exponent greater than one, indicated cooperative sorption. The sorption-desorption hysteresis (isotherm non-singularity) indicated irreversible sorption. Higher sorption observed at higher rather than at lower ionic strength conditions is likely due to a salting-out effect. Negative free energy and the inverse sorption capacity-temperature relationship indicated the carbamazepine sorption process was favorable or spontaneous. Solution pH had little effect on sorption. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Kinetics of Methylmercury Production Revisited

    DOE PAGES

    Olsen, Todd A.; Muller, Katherine A.; Painter, Scott L.; ...

    2018-01-27

    Laboratory measurements of the biologically mediated methylation of mercury (Hg) to the neurotoxin monomethylmercury (MMHg) often exhibit kinetics that are inconsistent with first-order kinetic models. Using time-resolved measurements of filter passing Hg and MMHg during methylation/demethylation assays, a multisite kinetic sorption model, and reanalyses of previous assays, we show in this paper that competing kinetic sorption reactions can lead to time-varying availability and apparent non-first-order kinetics in Hg methylation and MMHg demethylation. The new model employing a multisite kinetic sorption model for Hg and MMHg can describe the range of behaviors for time-resolved methylation/demethylation data reported in the literature includingmore » those that exhibit non-first-order kinetics. Additionally, we show that neglecting competing sorption processes can confound analyses of methylation/demethylation assays, resulting in rate constant estimates that are systematically biased low. Finally, simulations of MMHg production and transport in a hypothetical periphyton biofilm bed illustrate the implications of our new model and demonstrate that methylmercury production may be significantly different than projected by single-rate first-order models.« less

  7. Cesium sorption reversibility and kinetics on illite, montmorillonite, and kaolinite

    DOE PAGES

    Durrant, Chad B.; Begg, James D.; Kersting, Annie B.; ...

    2017-08-17

    Understanding sorption and desorption processes is essential to predicting the mobility of radionuclides in the environment. In this study, we investigate adsorption/desorption of cesium in both binary (Cs + one mineral) and ternary (Cs + two minerals) experiments to study component additivity and sorption reversibility over long time periods (500 days). Binary Cs sorption experiments were performed with illite, montmorillonite, and kaolinite in a 5 mM NaCl/0.7 mM NaHCO3 solution (pH 8) and Cs concentration range of 10 –3 to 10 –11 M. The binary sorption experiments were followed by batch desorption experiments. The sorption behavior was modeled with themore » FIT4FD code and the results used to predict desorption behavior. Sorption to montmorillonite and kaolinite was linear over the entire concentration range but sorption to illite was non-linear, indicating the presence of multiple sorption sites. Based on the 14 day batch desorption data, cesium sorption appeared irreversible at high surface loadings in the case of illite but reversible at all concentrations for montmorillonite and kaolinite. Additionally, a novel experimental approach, using a dialysis membrane, was adopted in the ternary experiments, allowing investigation of the effect of a second mineral on Cs desorption from the original mineral. Cs was first sorbed to illite, montmorillonite or kaolinite, then a 3.5–5 kDalton Float-A-Lyzer® dialysis bag with 0.3 g of illite was introduced to each experiment inducing desorption. Nearly complete Cs desorption from kaolinite and montmorillonite was observed over the experiment, consistent with our equilibrium model, indicating complete Cs desorption from these minerals. Results from the long-term ternary experiments show significantly greater Cs desorption compared to the binary desorption experiments. Approximately ~ 45% of Cs desorbed from illite. However, our equilibrium model predicted ~ 65% desorption. Importantly, the data imply that in some cases, slow desorption kinetics rather than permanent fixation may play an important role in apparent irreversible Cs sorption.« less

  8. Sorption of water alkalinity and hardness from high-strength wastewater on bifunctional activated carbon: process optimization, kinetics and equilibrium studies.

    PubMed

    Amosa, Mutiu K

    2016-08-01

    Sorption optimization and mechanism of hardness and alkalinity on bifunctional empty fruit bunch-based powdered activation carbon (PAC) were studied. The PAC possessed both high surface area and ion-exchange properties, and it was utilized in the treatment of biotreated palm oil mill effluent. Batch adsorption experiments designed with Design Expert(®) were conducted in correlating the singular and interactive effects of the three adsorption parameters: PAC dosage, agitation speed and contact time. The sorption trends of the two contaminants were sequentially assessed through a full factorial design with three factor interaction models and a central composite design with polynomial models of quadratic order. Analysis of variance revealed the significant factors on each design response with very high R(2) values indicating good agreement between model and experimental values. The optimum operating conditions of the two contaminants differed due to their different regions of operating interests, thus necessitating the utility of desirability factor to get consolidated optimum operation conditions. The equilibrium data for alkalinity and hardness sorption were better represented by the Langmuir isotherm, while the pseudo-second-order kinetic model described the adsorption rates and behavior better. It was concluded that chemisorption contributed majorly to the adsorption process.

  9. Sorption of perfluoroalkyl substances to two types of minerals.

    PubMed

    Hellsing, Maja S; Josefsson, Sarah; Hughes, Arwel V; Ahrens, Lutz

    2016-09-01

    The sorption of perfluoroalkyl substances (PFASs) was investigated for two model soil mineral surfaces, alumina (Al2O3) and silica (SiO2), on molecular level using neutron scattering. The PFASs were selected (i.e. perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorooctane sulfonic acid (PFOS)) to examine the role of hydrophobic chain length and hydrophilic functional group on their sorption behaviour. All four PFASs were found to sorb to alumina surface (positively charged) forming a hydrated layer consisting of 50% PFASs. The PFAS solubility limit, which decrease with chain length, was found to strongly influence the sorption behaviour. The sorbed PFAS layer could easily be removed by gentle rinsing with water, indicating release upon rainfall in the environment. No sorption was observed for PFOA and PFOS at silica surface (negatively charged), showing electrostatic interaction being the driving force in the sorption process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Effect of temperature and salinity on phosphate sorption on marine sediments.

    PubMed

    Zhang, Jia-Zhong; Huang, Xiao-Lan

    2011-08-15

    Our previous studies on the phosphate sorption on sediments in Florida Bay at 25 °C in salinity 36 seawater revealed that the sorption capacity varies considerably within the bay but can be attributed to the content of sedimentary P and Fe. It is known that both temperature and salinity influence the sorption process and their natural variations are the greatest in estuaries. To provide useful sorption parameters for modeling phosphate cycle in Florida Bay, a systematic study was carried out to quantify the effects of salinity and temperature on phosphate sorption on sediments. For a given sample, the zero equilibrium phosphate concentration and the distribution coefficient were measured over a range of salinity (2-72) and temperature (15-35 °C) conditions. Such a suite of experiments with combinations of different temperature and salinity were performed for 14 selected stations that cover a range of sediment characteristics and geographic locations of the bay. Phosphate sorption was found to increase with increasing temperature or decreasing salinity and their effects depended upon sediment's exchangeable P content. This study provided the first estimate of the phosphate sorption parameters as a function of salinity and temperature in marine sediments. Incorporation of these parameters in water quality models will enable them to predict the effect of increasing freshwater input, as proposed by the Comprehensive Everglades Restoration Plan, on the seasonal cycle of phosphate in Florida Bay.

  11. Sorption of vanadium (V) onto natural soil colloids under various solution pH and ionic strength conditions.

    PubMed

    Luo, Xiuhua; Yu, Lin; Wang, Changzhao; Yin, Xianqiang; Mosa, Ahmed; Lv, Jialong; Sun, Huimin

    2017-02-01

    Batch sorption kinetics and isothermal characteristics of V(V) were investigated on three natural soil colloids (manual loessial soil colloid (MSC), aeolian sandy soil colloid (ASC), and cultivated loessial soil colloid (CSC)) under various solution pH and ionic strength (IS) conditions. Colloids were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD), and fourier transform infrared spectroscopy (FTIR). AFM micrographs showed CSC with an aggregated shape with larger particle diameter as compared with ASC and MSC. XRD spectra revealed the presence of different minerals in natural soil colloids including biotite, kaolinite, calcite and quartz, which might contribute to sorption process. The sorption ability decreased with increase of colloidal particle size. The sorption was mainly attributed to complexation by active carboxylate and alcohol groups of colloidal components. Sorption kinetics and isotherms of V(V) onto natural soil colloids were best fitted with Pseudo-second-order and Freundlich models. Langmuir model indicated that sorption capacity of MSC and ASC was comparable (285.7 and 238.1 mg g -1 ); however, CSC exhibited the lowest sorption capacity (41.5 mg g -1 ) due to its larger particle diameter and aggregated shape. The maximum V(V) sorption capacity reached plateau values at a solution pH ranged between 5.0 and 9.0 for MSC and ASC, and 6.0-8.0 for CSC. Sorption capacity of V(V) onto natural soil colloids decreased with increasing IS. Based on result of this study we can conclude that sorption of V(V) onto natural soil colloids is pH- and IS-dependent. These findings provide insights on the remediation of vanadium-contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Incorporating Non-Linear Sorption into High Fidelity Subsurface Reactive Transport Models

    NASA Astrophysics Data System (ADS)

    Matott, L. S.; Rabideau, A. J.; Allen-King, R. M.

    2014-12-01

    A variety of studies, including multiple NRC (National Research Council) reports, have stressed the need for simulation models that can provide realistic predictions of contaminant behavior during the groundwater remediation process, most recently highlighting the specific technical challenges of "back diffusion and desorption in plume models". For a typically-sized remediation site, a minimum of about 70 million grid cells are required to achieve desired cm-level thickness among low-permeability lenses responsible for driving the back-diffusion phenomena. Such discretization is nearly three orders of magnitude more than is typically seen in modeling practice using public domain codes like RT3D (Reactive Transport in Three Dimensions). Consequently, various extensions have been made to the RT3D code to support efficient modeling of recently proposed dual-mode non-linear sorption processes (e.g. Polanyi with linear partitioning) at high-fidelity scales of grid resolution. These extensions have facilitated development of exploratory models in which contaminants are introduced into an aquifer via an extended multi-decade "release period" and allowed to migrate under natural conditions for centuries. These realistic simulations of contaminant loading and migration provide high fidelity representation of the underlying diffusion and sorption processes that control remediation. Coupling such models with decision support processes is expected to facilitate improved long-term management of complex remediation sites that have proven intractable to conventional remediation strategies.

  13. Use of carbonised beet pulp carbon for removal of Remazol Turquoise Blue-G 133 from aqueous solution.

    PubMed

    Dursun, Arzu Y; Tepe, Ozlem; Dursun, Gülbeyi

    2013-01-01

    Carbonised beet pulp (BPC) produced from agricultural solid waste by-product in sugar industry was used as adsorbent for the removal of Remazol Turquoise Blue-G 133 (RTB-G 133) dye in this study. The kinetics and equilibrium of sorption process were investigated with respect to pH, temperature and initial dye concentration. Adsorption studies with real textile wastewater were also performed. The results showed that adsorption was a strongly pH-dependent process, and optimum pH was determined as 1.0. The maximum dye adsorption capacity was obtained as 47.0 mg g(-1)at the temperature of 25 °C at this pH value. The Freundlich and Langmuir adsorption models were used for describing the adsorption equilibrium data of the dye, and isotherm constants were evaluated depending on sorption temperature. Equilibrium data of RTB-G 133 sorption fitted very well to the Freundlich isotherm. Mass transfer and kinetic models were applied to the experimental data to examine the mechanisms of adsorption and potential rate-controlling steps. It was found that both external mass transfer and intra-particle diffusion played an important role in the adsorption mechanisms of dye and adsorption kinetics followed the pseudo second-order type kinetic model. The thermodynamic analysis indicated that the sorption process was exothermic and spontaneous in nature.

  14. Mechanistic understanding of crystal violet dye sorption by woody biochar: implications for wastewater treatment.

    PubMed

    Wathukarage, Awanthi; Herath, Indika; Iqbal, M C M; Vithanage, Meththika

    2017-08-17

    Dye-based industries, particularly small and medium scale, discharge their effluents into waterways without treatment due to cost considerations. We investigated the use of biochars produced from the woody tree Gliricidia sepium at 300 °C (GBC300) and 500 °C (GBC500) in the laboratory and at 700 °C from a dendro bioenergy industry (GBC700), to evaluate their potential for sorption of crystal violet (CV) dye. Experiments were conducted to assess the effect of pH reaction time and CV loading on the adsorption process. The equilibrium adsorption capacity was higher with GBC700 (7.9 mg g -1 ) than GBC500 (4.9 mg g -1 ) and GBC300 (4.4 mg g -1 ), at pH 8. The CV sorption process was dependent on the pH, surface area and pore volume of biochar (GBC). Both Freundlich and Hill isotherm models fitted best to the equilibrium isotherm data suggesting cooperative interactions via physisorption and chemisorption mechanisms for CV sorption. The highest Hill sorption capacity of 125.5 mg g -1 was given by GBC700 at pH 8. Kinetic data followed the pseudo-second-order model, suggesting that the sorption process is more inclined toward the chemisorption mechanism. Pore diffusion, π-π electron donor-acceptor interaction and H-bonding were postulated to be involved in physisorption, whereas electrostatic interactions of protonated amine group of CV and negatively charged GBC surface led to a chemisorption type of adsorption. Overall, GBC produced as a by-product of the dendro industry could be a promising remedy for CV removal from an aqueous environment.

  15. Transport of polar and non-polar volatile compounds in polystyrene foam and oriented strand board

    NASA Astrophysics Data System (ADS)

    Yuan, Huali; Little, John C.; Hodgson, Alfred T.

    Transport of hexanal and styrene in polystyrene foam (PSF) and oriented strand board (OSB) was characterized. A microbalance was used to measure sorption/desorption kinetics and equilibrium data. While styrene transport in PSF can be described by Fickian diffusion with a symmetrical and reversible sorption/desorption process, hexanal transport in both PSF and OSB exhibited significant hysteresis, with desorption being much slower than sorption. A porous media diffusion model that assumes instantaneous local equilibrium governed by a nonlinear Freundlich isotherm was found to explain the hysteresis in hexanal transport. A new nonlinear sorption and porous diffusion emissions model was, therefore, developed and partially validated using independent chamber data. The results were also compared to the more conventional linear Fickian-diffusion emissions model. While the linear emissions model predicts styrene emissions from PSF with reasonable accuracy, it substantially underestimates the rate of hexanal emissions from OSB. Although further research and more rigorous validation is needed, the new nonlinear emissions model holds promise for predicting emissions of polar VOCs such as hexanal from porous building materials.

  16. Dynamic Simulation of a Periodic 10 K Sorption Cryocooler

    NASA Technical Reports Server (NTRS)

    Bhandari, P.; Rodriguez, J.; Bard, S.; Wade, L.

    1994-01-01

    A transient thermal simulation model has been developed to simulate the dynamic performance of a multiple-stage 10 K sorption cryocooler for spacecraft sensor cooling applications that require periodic quick-cooldown (under 2 minutes) , negligible vibration, low power consumption, and long life (5 to 10 years). The model was specifically designed to represent the Brilliant Eyes Ten-Kelvin Sorption Cryocooler Experiment (BETSCE), but it can be adapted to represent other sorption cryocooler systems as well. The model simulates the heat transfer, mass transfer, and thermodynamic processes in the cryostat and the sorbent beds for the entire refrigeration cycle, and includes the transient effects of variable hydrogen supply pressures due to expansion and overflow of hydrogen during the cooldown operation. The paper describes model limitations and simplifying assumptions, with estimates of errors induced by them, and presents comparisons of performance predictions with ground experiments. An important benefit of the model is its ability to predict performance sensitivities to variations of key design and operational parameters. The insights thus obtained are expected to lead to higher efficiencies and lower weights for future designs.

  17. Transport of sulfadiazine in soil columns — Experiments and modelling approaches

    NASA Astrophysics Data System (ADS)

    Wehrhan, Anne; Kasteel, Roy; Simunek, Jirka; Groeneweg, Joost; Vereecken, Harry

    2007-01-01

    Antibiotics, such as sulfadiazine, reach agricultural soils directly through manure of grazing livestock or indirectly through the spreading of manure or sewage sludge on the field. Knowledge about the fate of antibiotics in soils is crucial for assessing the environmental risk of these compounds, including possible transport to the groundwater. Transport of 14C-labelled sulfadiazine was investigated in disturbed soil columns at a constant flow rate of 0.26 cm h - 1 near saturation. Sulfadiazine was applied in different concentrations for either a short or a long pulse duration. Breakthrough curves of sulfadiazine and the non-reactive tracer chloride were measured. At the end of the leaching period the soil concentration profiles were determined. The peak maxima of the breakthrough curves were delayed by a factor of 2 to 5 compared to chloride and the decreasing limbs are characterized by an extended tailing. However, the maximum relative concentrations differed as well as the eluted mass fractions, ranging from 18 to 83% after 500 h of leaching. To identify relevant sorption processes, breakthrough curves of sulfadiazine were fitted with a convective-dispersive transport model, considering different sorption concepts with one, two and three sorption sites. Breakthrough curves can be fitted best with a three-site sorption model, which includes two reversible kinetic and one irreversible sorption site. However, the simulated soil concentration profiles did not match the observations for all of the used models. Despite this incomplete process description, the obtained results have implications for the transport behavior of sulfadiazine in the field. Its leaching may be enhanced if it is frequently applied at higher concentrations.

  18. Migration and sorption phenomena in packaged foods.

    PubMed

    Gnanasekharan, V; Floros, J D

    1997-10-01

    Rapidly developing analytical capabilities and continuously evolving stringent regulations have made food/package interactions a subject of intense research. This article focuses on: (1) the migration of package components such as oligomers and monomers, processing aids, additives, and residual reactants in to packaged foods, and (2) sorption of food components such as flavors, lipids, and moisture into packages. Principles of diffusion and thermodynamics are utilized to describe the mathematics of migration and sorption. Mathematical models are developed from first principles, and their applicability is illustrated using numerical simulations and published data. Simulations indicate that available models are system (polymer-penetrant) specific. Furthermore, some models best describe the early stages of migration/sorption, whereas others should be used for the late stages of these phenomena. Migration- and/or sorption-related problems with respect to glass, metal, paper-based and polymeric packaging materials are discussed, and their importance is illustrated using published examples. The effects of migrating and absorbed components on food safety, quality, and the environment are presented for various foods and packaging materials. The impact of currently popular packaging techniques such as microwavable, ovenable, and retortable packaging on migration and sorption are discussed with examples. Analytical techniques for investigating migration and sorption phenomena in food packaging are critically reviewed, with special emphasis on the use and characteristics of food-simulating liquids (FSLs). Finally, domestic and international regulations concerning migration in packaged foods, and their impact on food packaging is briefly presented.

  19. Development and characterization of a new encapsulating agent from orange juice by-products.

    PubMed

    Kaderides, Kyriakos; Goula, Athanasia M

    2017-10-01

    The replacement of maltodextrins as carriers for the spray drying of sticky and sugar based bioactives is an important development for the food industry. In this work, orange juice industry by-product was used to obtain a high dietary fiber powder to be used as carrier material. This powder was characterized with respect to its physical and chemical properties related to the process of encapsulation by spray drying. Adsorption isotherms of orange waste powder were determined at 30, 45, and 60°C. The data were fitted to several models including two-parameter (BET, Halsey, Smith, and Oswin), three-parameter (GAB), and four-parameter (Peleg) relationships. The GAB model best fitted the experimental data. The isosteric heat of sorption was determined from the equilibrium sorption data using the Clausius-Clapeyron equation. Isosteric heats of sorption were found to decrease exponentially with increasing moisture content. The enthalpy-entropy compensation theory was applied to the sorption isotherms and indicated an enthalpy controlled sorption process. Glass transition temperatures (T g ) of orange waste powder conditioned at various water activities were determined and a strong plasticizing effect of water on T g was found. These data were satisfactory correlated by the Gordon and Taylor model. The critical water activity and moisture content for the orange waste powder were 0.82 and 0.18g water/g solids, respectively, at a storage temperature of 25°C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Modification of a method-of-characteristics solute-transport model to incorporate decay and equilibrium-controlled sorption or ion exchange

    USGS Publications Warehouse

    Goode, D.J.; Konikow, Leonard F.

    1989-01-01

    The U.S. Geological Survey computer model of two-dimensional solute transport and dispersion in ground water (Konikow and Bredehoeft, 1978) has been modified to incorporate the following types of chemical reactions: (1) first-order irreversible rate-reaction, such as radioactive decay; (2) reversible equilibrium-controlled sorption with linear, Freundlich, or Langmuir isotherms; and (3) reversible equilibrium-controlled ion exchange for monovalent or divalent ions. Numerical procedures are developed to incorporate these processes in the general solution scheme that uses method-of- characteristics with particle tracking for advection and finite-difference methods for dispersion. The first type of reaction is accounted for by an exponential decay term applied directly to the particle concentration. The second and third types of reactions are incorporated through a retardation factor, which is a function of concentration for nonlinear cases. The model is evaluated and verified by comparison with analytical solutions for linear sorption and decay, and by comparison with other numerical solutions for nonlinear sorption and ion exchange.

  1. Cadmium biosorption rate in protonated Sargassum biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, J.; Volesky, B.

    1999-03-01

    Biosorption of the heavy metal ion Cd{sup 2+} by protonated nonliving brown alga Sargassum fluitans biomass was accompanied by the release of hydrogen protons from the biomass. The uptake of cadmium and the release of proton matched each other throughout the biosorption process. The end-point titration methodology was used to maintain the constant pH 4.0 for developing the dynamic sorption rate. The sorption isotherm could be well represented by the Langmuir sorption model. A mass transfer model assuming the intraparticle diffusion in a one-dimensional thin plate as a controlling step was developed to describe the overall biosorption rate of cadmiummore » ions in flat seaweed biomass particles. The overall biosorption mathematical model equations were solved numerically yielding the effective diffusion coefficient D{sub e} about 3.5 {times} 10{sup {minus}6} cm{sup 2}/s. This value matches that obtained for the desorption process and is approximately half of that of the molecular diffusion coefficient for cadmium ions in aqueous solution.« less

  2. Study of sorption-retarded U(VI) diffusion in Hanford silt/clay material.

    PubMed

    Bai, Jing; Liu, Chongxuan; Ball, William P

    2009-10-15

    A diffusion cell method was applied to measure the effective pore diffusion coefficient (Dp) for U(VI) under strictly controlled chemical conditions in a silt/clay sediment from the U.S. Department of Energy Hanford site, WA. "Inward-flux" diffusion studies were conducted in which [U(VI)] in both aqueous and solid phases was measured as a function of distance in the diffusion cell under conditions of constant concentration at the cell boundaries. A sequential extraction method was developed to measure sorbed contaminant U(VI) in the solid phase containing extractable background U(VI). The effect of sorption kinetics on U(VI) interparticle diffusion was evaluated by comparing sorption-retarded diffusion models with sorption described either as equilibrium or intraparticle diffusion-limited processes. Both experimental and modeling results indicated that (1) a single pore diffusion coefficient can simulate the diffusion of total aqueous U(VI), and (2) the local equilibrium assumption (LEA) is appropriate for modeling sorption-retarded diffusion under the given experimental conditions. Dp of 1.6-1.7 x 10(-6) cm2/s was estimated in aqueous solution at pH 8.0 and saturated with respect to calcite, as relevant to some subsurface regions of the Hanford site.

  3. Effect of pH on lead removal from water using tree fern as the sorbent.

    PubMed

    Ho, Yuh-Shan

    2005-07-01

    The sorption of lead from water onto an agricultural by-product, tree fern, was examined as a function of pH. The sorption processes were carried out using an agitated and baffled system. Pseudo-second-order kinetic analyses were performed to determine the rate constant of sorption, the equilibrium sorption capacity, and the initial sorption rate. Application of the pseudo-second-order kinetics model produced very high coefficients of determination. Results showed the efficiency of tree fern as a sorbent for lead. The optimum pH for lead removal was between 4 and 7, with pH 4.9 resulting in better lead removal. Ion exchange occurred in the initial reaction period. In addition, a relation between the change in the solution hydrogen ion concentration and equilibrium capacity was developed and is presented.

  4. Evaluation of theoretical and empirical water vapor sorption isotherm models for soils

    NASA Astrophysics Data System (ADS)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per; de Jonge, Lis W.

    2016-01-01

    The mathematical characterization of water vapor sorption isotherms of soils is crucial for modeling processes such as volatilization of pesticides and diffusive and convective water vapor transport. Although numerous physically based and empirical models were previously proposed to describe sorption isotherms of building materials, food, and other industrial products, knowledge about the applicability of these functions for soils is noticeably lacking. We present an evaluation of nine models for characterizing adsorption/desorption isotherms for a water activity range from 0.03 to 0.93 based on measured data of 207 soils with widely varying textures, organic carbon contents, and clay mineralogy. In addition, the potential applicability of the models for prediction of sorption isotherms from known clay content was investigated. While in general, all investigated models described measured adsorption and desorption isotherms reasonably well, distinct differences were observed between physical and empirical models and due to the different degrees of freedom of the model equations. There were also considerable differences in model performance for adsorption and desorption data. While regression analysis relating model parameters and clay content and subsequent model application for prediction of measured isotherms showed promise for the majority of investigated soils, for soils with distinct kaolinitic and smectitic clay mineralogy predicted isotherms did not closely match the measurements.

  5. Adsorptive removal of Cu(II) from aqueous solution and industrial effluent using natural/agricultural wastes.

    PubMed

    Singha, Biswajit; Das, Sudip Kumar

    2013-07-01

    The potentiality of low cost natural/agricultural waste biomasses for the removal of Cu(II) ion from aqueous solution has been investigated in batch experiments. The effect of various physico-chemical parameters such as initial pH, initial Cu(II) concentration, adsorbent dosage, contact time and temperature has been studied. The optimum pH for adsorption was found to be 6 for all adsorbents used. Kinetics data were best described by the pseudo-2nd-order model. The experimental data were fitted well with Freundlich and Halsey isotherm models. The diffusion coefficient and sorption energy indicated that the adsorption process was chemical in nature. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated, and it was observed that the adsorption process was spontaneous and endothermic. The mean sorption energy was calculated using Dubinin-Radushkevich isotherm model and it confirmed that the sorption process was chemical in nature. Different active functional groups were identified by FTIR studies which were responsible for Cu(II) ion adsorption process. Application study using electroplating industrial waste water and regeneration experiment of the adsorbent were also investigated. Design procedure for the batch process was also reported. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Sorption of organic gases in a furnished room

    NASA Astrophysics Data System (ADS)

    Singer, Brett C.; Revzan, Kenneth L.; Hotchi, Toshifumi; Hodgson, Alfred T.; Brown, Nancy J.

    We present experimental data and semi-empirical models describing the sorption of organic gases in a simulated indoor residential environment. Two replicate experiments were conducted with 20 volatile organic compounds (VOCs) in a 50-m 3 room finished with painted wallboard, carpet and cushion, draperies and furnishings. The VOCs span a wide volatility range and include ten hazardous air pollutants. VOCs were introduced to the static chamber as a pulse and their gas-phase concentrations were measured during a net adsorption period and a subsequent net desorption period. Three sorption models were fit to the measured concentrations for each compound to determine the simplest formulation needed to adequately describe the observed behavior. Sorption parameter values were determined by fitting the models to adsorption period data then checked by comparing measured and predicted behavior during desorption. The adequacy of each model was evaluated using a goodness of fit parameter calculated for each period. Results indicate that sorption usually does not greatly affect indoor concentrations of methyl- tert-butyl ether, 2-butanone, isoprene and benzene. In contrast, sorption appears to be a relevant indoor process for many of the VOCs studied, including C 8-C 10 aromatic hydrocarbons (HC), terpenes, and pyridine. These compounds sorbed at rates close to typical residential air change rates and exhibited substantial sorptive partitioning at equilibrium. Polycyclic aromatic HCs, aromatic alcohols, ethenylpyridine and nicotine initially adsorbed to surfaces at rates of 1.5->6 h -1 and partitioned 95->99% in the sorbed phase at equilibrium.

  7. Sorption of fluoride using chemically modified Moringa oleifera leaves

    NASA Astrophysics Data System (ADS)

    Dan, Shabnam; Chattree, Amit

    2018-05-01

    Contamination of drinking water due to fluoride is a severe health hazard problem. Excess of fluoride (> 1.5 mg/L) in drinking water is harmful to human health. Various treatment technologies for removing fluoride from groundwater have been investigated. The present study showed that the leaves of Moringa oleifera, a herbal plant is an effective adsorbent for the removal of fluoride from aqueous solution. Acid treated Moringa oleifera leaves powder showed good adsorption capacity than alkali treated Moringa oleifera leaves powder. Batch sorptive defluoridation was conducted under the variable experimental condition such as pH, contact time, adsorbent dose and initial fluoride ion concentration. Maximum defluoridation was achieved at pH 1. The percentage of fluoride removal increases with adsorbent dose. The equilibrium sorption data were fitted into Langmuir, Freundlich and Temkin isotherms. Of the three adsorption isotherms, the R 2 value of Langmuir isotherm model was the highest. The maximum monolayer coverage ( Q max) from Langmuir isotherm model was determined to be 1.1441 mg/g, the separation factor indicating a favorable sorption experiment is 0.035. It was also discovered that the adsorption did not conform to the Freundlich adsorption isotherm. The heat of sorption process was estimated from Temkin Isotherm model to be - 0.042 J/mol which vividly proved that the adsorption experiment followed a physical process.

  8. Forces dictating colloidal interactions between viruses and soil

    USGS Publications Warehouse

    Chattopadhyay, Sandip; Puls, Robert W.

    2000-01-01

    The fate and transport of viruses in soil and aquatic environments were studied with respect to the different forces involved in the process of sorption of these viruses on soil particles. In accordance with the classical DLVO theory, we have calculated the repulsive electrostatic forces and the attractive van der Waals forces. Bacteriophages have been used as model sorbates, while different clays have been used as model sorbents. The equations used for the determination of the change in free energy for the process (ΔG) takes into consideration the roughness of the sorbent surfaces. Results indicate that attractive van der Waals forces predominate the process of sorption of the selected bacteriophages on clays.

  9. Iron and manganese oxides modified maize straw to remove tylosin from aqueous solutions.

    PubMed

    Yin, Yongyuan; Guo, Xuetao; Peng, Dan

    2018-08-01

    Maize straw modified by iron and manganese oxides was synthesized via a simple and environmentally friendly method. Three maize straw materials, the original maize straw, maize straw modified by manganese oxides and maize straw modified by iron and manganese oxides, were detected by SEM, BET, XPS, XRD and FTIR. The results showed that maize straw was successfully modified and maize straw modified by iron and manganese oxides has a larger surface area than MS. According to the experimental data, the sorption trend could conform to the pseudo-second-order kinetic model well, and the sorption ability of tylosin on sorbents followed the order of original maize straw < maize straw modified by manganese oxides < maize straw modified by iron and manganese oxides. The study indicated that manganese oxides and iron-manganese oxides could significantly enhance the sorption capacity of original maize straw. The sorption isotherm data of tylosin on original maize straw fit a linear model well, while Freundlich models were more suitable for maize straw modified by manganese oxides and maize straw modified by iron and manganese oxides. The pH, ionic strength and temperature can affect the sorption process. The sorption mechanisms of tylosin on iron and manganese oxides modified maize straw were attribute to the surface complexes, electrostatic interactions, H bonding and hydrophobic interactions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Solute induced relaxation in glassy polymers: Experimental measurements and nonequilibrium thermodynamic model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minelli, Matteo; Doghieri, Ferruccio

    2014-05-15

    Data for kinetics of mass uptake from vapor sorption experiments in thin glassy polymer samples are here interpreted in terms of relaxation times for volume dilation. To this result, both models from non-equilibrium thermodynamics and from mechanics of volume relaxation contribute. Different kind of sorption experiments have been considered in order to facilitate the direct comparison between kinetics of solute induced volume dilation and corresponding data from process driven by pressure or temperature jumps.

  11. The sorption kinetics and isotherms of sulfamethoxazole with polyethylene microplastics.

    PubMed

    Xu, Baile; Liu, Fei; Brookes, Philip C; Xu, Jianming

    2018-06-01

    Microplastics and sulfamethoxazole coexist ubiquitously in the marine environment, and microplastics tend to sorb organic pollutants from the surrounding environment. Here, the sorption kinetics and isotherms of sulfamethoxazole on polyethylene (PE) microplastics closely fitted a pseudo-second-order model (R 2  = 0.98) and linear model (R 2  = 0.99), respectively, indicating that the sorption process was partition-dominant interaction. The main binding mechanism was possibly the van der Waals interaction for hydrophilic sulfamethoxazole onto hydrophobic PE microplastics. The effects of pH, dissolved organic matter and salinity on sorption behavior were also studied. The sorption behavior of sulfamethoxazole on PE microplastics was not significantly influenced by pH and salinity, probably because the electrostatic repulsion played a minor role. In addition, the negligible effect of dissolved organic matter was attributed to the greater affinity of sulfamethoxazole to PE microplastics than to dissolved organic matter. Our results demonstrated that PE microplastics may serve as a carrier for sulfamethoxazole in the aquatic environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Salinity Effects on the Adsorption of Nucleic Acid Compounds on Na-Montmorillonite: a Prebiotic Chemistry Experiment

    NASA Astrophysics Data System (ADS)

    Villafañe-Barajas, Saúl A.; Baú, João Paulo T.; Colín-García, María; Negrón-Mendoza, Alicia; Heredia-Barbero, Alejandro; Pi-Puig, Teresa; Zaia, Dimas A. M.

    2018-02-01

    Any proposed model of Earth's primitive environments requires a combination of geochemical variables. Many experiments are prepared in aqueous solutions and in the presence of minerals. However, most sorption experiments are performed in distilled water, and just a few in seawater analogues, mostly inconsistent with a representative primitive ocean model. Therefore, it is necessary to perform experiments that consider the composition and concentration of dissolved salts in the early ocean to understand how these variables could have affected the absorption of organic molecules into minerals. In this work, the adsorption of adenine, adenosine, and 5'AMP onto Na+montmorillonite was studied using a primitive ocean analog (4.0 Ga) from experimental and computational approaches. The order of sorption of the molecules was: 5'AMP > adenine > adenosine. Infrared spectra showed that the interaction between these molecules and montmorillonite occurs through the NH2 group. In addition, electrostatic interaction between negatively charged montmorillonite and positively charge N1 of these molecules could occur. Results indicate that dissolved salts affect the sorption in all cases; the size and structure of each organic molecule influence the amount sorbed. Specifically, the X-ray diffraction patterns show that dissolved salts occupy the interlayer space in Na-montmorillonite and compete with organic molecules for available sites. The adsorption capacity is clearly affected by dissolved salts in thermodynamic terms as deduced by isotherm models. Indeed, molecular dynamic models suggest that salts are absorbed in the interlamellar space and can interact with oxygen atoms exposed in the edges of clay or in its surface, reducing the sorption of the organic molecules. This research shows that the sorption process could be affected by high concentration of salts, since ions and organic molecules may compete for available sites on inorganic surfaces. Salt concentration in primitive oceans may have strongly affected the sorption, and hence the concentration processes of organic molecules on minerals.

  13. Quantitative high-resolution mapping of phenanthrene sorption to black carbon particles.

    PubMed

    Obst, Martin; Grathwohl, Peter; Kappler, Andreas; Eibl, Oliver; Peranio, Nicola; Gocht, Tilman

    2011-09-01

    Sorption of hydrophobic organic contaminants such as polycyclic aromatic hydrocarbons (PAHs) to black carbon (BC) particles has been the focus of numerous studies. Conclusions on sorption mechanisms of PAH on BC were mostly derived from studies of sorption isotherms and sorption kinetics, which are based on batch experiments. However, mechanistic modeling approaches consider processes at the subparticle scale, some including transport within the pore-space or different spatial pore-domains. Direct evidence based on analytical techniques operating at the submicrometer scale for the location of sorption sites and the adsorbed species is lacking. In this work, we identified, quantified, and mapped the sorption of PAHs on different BC particles (activated carbon, charcoal and diesel soot) on a 25-100 nm scale using scanning transmission X-ray microscopy (STXM). In addition, we visualized the pore structure of the particles by transmission electron microscopy (TEM) on the 1-10 nm-scale. The combination of the chemical information from STXM with the physical information from TEM revealed that phenanthrene accumulates in the interconnected pore-system along primary "cracks" in the particles, confirming an adsorption mechanism.

  14. Sorption of selected pesticides on soils, sediment and straw from a constructed agricultural drainage ditch or pond.

    PubMed

    Vallée, Romain; Dousset, Sylvie; Billet, David; Benoit, Marc

    2014-04-01

    Buffer zones such as ponds and ditches are used to reduce field-scale losses of pesticides from subsurface drainage waters to surface waters. The objective of this study was to assess the efficiency of these buffer zones, in particular constructed wetlands, focusing specifically on sorption processes. We modelled the sorption processes of three herbicides [2-methyl-4-chlorophenoxyacetic acid (2,4-MCPA), isoproturon and napropamide] and three fungicides (boscalid, prochloraz and tebuconazole) on four substrates (two soils, sediment and straw) commonly found in a pond and ditch in Lorraine (France). A wide range of Freundlich coefficient (K fads) values was obtained, from 0.74 to 442.63 mg(1 - n) L (n) kg(-1), and the corresponding K foc values ranged from 56 to 3,725 mg(1 - n) L (n) kg(-1). Based on potential retention, the substrates may be classified as straw > sediments > soils. These results show the importance of organic carbon content and nature in the process of sorption. Similarly, the studied pesticides could be classified according to their adsorption capacity as follows: prochloraz > tebuconazole-boscalid > napropamide > MCPA-isoproturon. This classification is strongly influenced by the physico-chemical properties of pesticides, especially solubility and K oc. Straw exhibited the largest quantity of non-desorbable pesticide residues, from 12.1 to 224.2 mg/L for all pesticides. The presence of plants could increase soil-sediment sorption capacity. Thus, establishment and maintenance of plants and straw filters should be promoted to optimise sorption processes and the efficiency of ponds and ditches in reducing surface water pollution.

  15. Lead and vanadium removal from a real industrial wastewater by gravitational settling/sedimentation and sorption onto Pinus sylvestris sawdust.

    PubMed

    Kaczala, F; Marques, M; Hogland, W

    2009-01-01

    Batch sorption with untreated Pinus sylvestris sawdust after settling/sedimentation phase to remove vanadium and lead from a real industrial wastewater was investigated using different adsorbent doses, initial pH, and contact time. The development of pH along the sorption test and a parallel investigation of metals release from sawdust in distilled water were carried out. In order to evaluate kinetic parameters and equilibrium isotherms, Lagergren first-order, pseudo-second-order, intra-particle diffusion and Freundlich models were explored. When the initial pH was reduced from 7.4 to 4.0, the sorption efficiency increased from 32% to 99% for Pb and from 43% to 95% for V. Whereas, V removal was positively correlated with the adsorbent dose, Pb removal was not. The sorption process was best described by pseudo-second-order kinetics. According to Freundlich parameters (K(f) and n) sawdust presented unfavourable intensity for sorption of V.

  16. Effect of steam activation of biochar produced from a giant Miscanthus on copper sorption and toxicity.

    PubMed

    Shim, Taeyong; Yoo, Jisu; Ryu, Changkook; Park, Yong-Kwon; Jung, Jinho

    2015-12-01

    This study aims to evaluate the physiochemical properties, sorption characteristics, and toxicity effects of biochar (BC) produced from Miscanthus sacchariflorus via slow pyrolysis at 500°C and its steam activation product (ABC). Although BC has a much lower surface area than ABC (181 and 322m(2)g(-1), respectively), the Cu sorption capacities of BC and ABC are not significantly different (p>0.05). A two-compartment model successfully explains the sorption of BC and ABC as being dominated by fast and slow sorption processes, respectively. In addition, both BC and ABC efficiently eliminate the toxicity of Cu towards Daphnia magna. However, ABC itself induced acute toxicity to D. magna, which is possibly due to increased aromaticity upon steam activation. These findings suggest that activation of BC produced from M. sacchariflorus at a pyrolytic temperature of 500°C may not be appropriate in terms of Cu sorption and toxicity reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Zeolite formation from coal fly ash and heavy metal ion removal characteristics of thus-obtained Zeolite X in multi-metal systems.

    PubMed

    Jha, Vinay Kumar; Nagae, Masahiro; Matsuda, Motohide; Miyake, Michihiro

    2009-06-01

    Zeolitic materials have been prepared from coal fly ash as well as from a SiO(2)-Al(2)O(3) system upon NaOH fusion treatment, followed by subsequent hydrothermal processing at various NaOH concentrations and reaction times. During the preparation process, the starting material initially decomposed to an amorphous form, and the nucleation process of the zeolite began. The carbon content of the starting material influenced the formation of the zeolite by providing an active surface for nucleation. Zeolite A (Na-A) was transformed into zeolite X (Na-X) with increasing NaOH concentration and reaction time. The adsorption isotherms of the obtained Na-X based on the characteristics required to remove heavy ions such as Ni(2+), Cu(2+), Cd(2+) and Pb(2+) were examined in multi-metal systems. Thus obtained experimental data suggests that the Langmuir and Freundlich models are more accurate compared to the Dubinin-Kaganer-Radushkevich (DKR) model. However, the sorption energy obtained from the DKR model was helpful in elucidating the mechanism of the sorption process. Further, in going from a single- to multi-metal system, the degree of fitting for the Freundlich model compared with the Langmuir model was favored due to its basic assumption of a heterogeneity factor. The Extended-Langmuir model may be used in multi-metal systems, but gives a lower value for equilibrium sorption compared with the Langmuir model.

  18. Effect of Temperature on the Kinetics of Sorption of Co2+ and Ni2+ Ions by a Sorbent Based on an Inositol Hexaphosphoric Acid Derivative

    NASA Astrophysics Data System (ADS)

    Yarusova, S. B.; Makarenko, N. V.; Gordienko, P. S.; Karpenko, M. A.; Novikova, E. S.

    2018-03-01

    Data on the effect temperature has on the kinetics of the removal of Co2+ and Ni2+ ions under static conditions by a sorbent based on a derivative of phytic acid fabricated from rice production waste are presented. It is shown that when the temperature is raised from 20 to 60°C, the sorption capacity of the sorbent based on phytic acid increases over the period of sorption and within 180 min reaches values of 1.4 mmol g-1 for Co2+ ions and 1.3 mmol g-1 for Ni2+ ions. It is established that for the investigated range of temperatures, order n of the sorption of Co2+ and Ni2+ ions is <1, which characterizes the reactions accompanied by diffusion processes. It is found that the process of removal of Co2+ and Ni2+ ions is characterized with low activation energy (20.74 kJ mol-1 for Co2+ ions and 14.2 kJ mol-1 for Ni2+ ions). It is also demonstrated that the sorption process in the considered time frame is best described by a kinetic model of a pseudo-second order, as is indicated by respective correlation coefficients.

  19. New insights into the interactions between cork chemical components and pesticides. The contribution of π-π interactions, hydrogen bonding and hydrophobic effect.

    PubMed

    Olivella, M À; Bazzicalupi, C; Bianchi, A; Fiol, N; Villaescusa, I

    2015-01-01

    The role of chemical components of cork in the sorption of several pesticides has been investigated. For this purpose raw cork and three cork extracted fractions (i.e. cork free of aliphatic extractives, cork free of all extractives and cork free of all extractives and suberin) were used as sorbent of three ionic pesticides (propazine, 2,4-dichlorophenoxy acetic acid (2,4-D) and alachlor) and five non-ionic pesticides (chlorpyrifos, isoproturon, metamitron, methomyl and oxamyl) with a logKow within the range -0.47 to 4.92. The effect of cations on the ionic pesticides, propazine and 2,4-D sorption was also analyzed. Results indicated that the highest yields were obtained for chlorpyrifos and alachlor sorption onto raw cork (>55%). After removal of aliphatic extractives sorption of all pesticides increased that ranged from 3% for propazine to 31% for alachlor. In contrast, removal of phenolic extractives caused a sorption decrease. Low sorption yields were obtained for hydrophobic pesticides such as metamitron, oxamyl and methomyl (<11%) by using all cork fractions and extremely low when using raw cork (<1%). FTIR analysis was useful to indicate that lignin moieties were the main components involved on the sorption process. Modelling calculations evidenced that π-stacking interactions with the aromatic groups of lignin play a major role in determining the adsorption properties of cork toward aromatic pesticides. Results presented in this paper gain insights into the cork affinities for pesticides and the interactions involved in the sorption process and also enables to envisage sorption affinity of cork for other organic pollutants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Sorption isotherm characteristics of aonla flakes.

    PubMed

    Alam, Md Shafiq; Singh, Amarjit

    2011-06-01

    The equilibrium moisture content was determined for un-osmosed and osmosed (salt osmosed and sugar osmosed) aonla flakes using the static method at temperatures of 25, 40,50, 60 and 70 °C over a range of relative humidities from 20 to 90%. The sorption capacity of aonla decreased with an increase in temperature at constant water activity. The sorption isotherms exhibited hysteresis, in which the equilibrium moisture content was higher at a particular equilibrium relative humidity for desorption curve than for adsorption. The hysteresis effect was more pertinent for un-osmosed and salt osmosed samples in comparison to sugar osmosed samples. Five models namely the modified Chung Pfost, modified Halsey, modified Henderson, modified Exponential and Guggenheim-Anderson-de Boer (GAB) were evaluated to determine the best fit for the experimental data. For both adsorption and desorption process of aonla fruit, the equilibrium moisture content of un-osmosed and osmosed aonla samples can be predicted well by GAB model as well as modified Exponential model. Moreover, the modified Exponential model was found to be the best for describing the sorption behaviour of un-osmosed and salt osmosed samples while, GAB model for sugar osmosed aonla samples.

  1. Sorption interactions of heavy metals with biochar in soil remediation studies

    NASA Astrophysics Data System (ADS)

    Fristak, Vladimir; Friesl-Hanl, Wolfgang; Wawra, Anna; Soja, Gerhard

    2015-04-01

    The search for new materials in soil remediation applications has led to new conversion technologies such as carbonization and pyrolysis. Biochar represents the pyrolytic product of different biomass input materials processed at 350-1000°C and anoxic conditions. The pyrolysis temperature and feedstock have a considerable influence on the quality of the charred product and also its main physico-chemical properties. Biochar as porous material with large specific surface and C-stability is utilized in various environmental and agricultural technologies. Carbon sequestration, increase of soil water-holding capacity and pH as well as sorption of different xenobiotics present only a fraction of the multitude of biochar application possibilities. Heavy metals as potential sources of ecotoxicological risks are characterized by their non-degradability and the potential transfer into the food chain. Carbonaceous materials have been used for a long time as sorbents for heavy metals and organic contaminants in soil and water technologies. The similarity of biochar with activated carbon predetermines this material as remediation tool which plays an important role in heavy metal immobilization and retention with a parallel reduction in the risk of ground water and food crop contamination. In all this processes the element-specific sorption behaviour of biochar creates new conditions for pollutant binding. Sorption interaction and separation of contaminants from soil solution or waste effluent can be affected by wide-ranging parameters. In detail, our study was based on batch-sorption comparisons of two biochars produced from wood chips and green waste residues. We observed that sorption efficiency of biochar for model bivalent heavy metals (Cd, Zn, Cu) can be influenced by equilibrium parameters such as pH, contact time, initial concentration of metal in reaction solutions, presence of surfactants and chemical modification by acid hydrolysis, esterification and methylation. The study of sorption mechanisms showed differences in the sorption of the targeted heavy metals in relation to the contribution of ion-exchange and precipitation processes. We confirmed the effectivity of physico-chemical artificial aging on sorption capacity of biochar in terms of changes in surface structure. Based on these results, the application potential of biochar as sorption material for stabilizing heavy metals in soils is discussed.

  2. A review of model applications for structured soils: b) Pesticide transport.

    PubMed

    Köhne, John Maximilian; Köhne, Sigrid; Simůnek, Jirka

    2009-02-16

    The past decade has seen considerable progress in the development of models simulating pesticide transport in structured soils subject to preferential flow (PF). Most PF pesticide transport models are based on the two-region concept and usually assume one (vertical) dimensional flow and transport. Stochastic parameter sets are sometimes used to account for the effects of spatial variability at the field scale. In the past decade, PF pesticide models were also coupled with Geographical Information Systems (GIS) and groundwater flow models for application at the catchment and larger regional scales. A review of PF pesticide model applications reveals that the principal difficulty of their application is still the appropriate parameterization of PF and pesticide processes. Experimental solution strategies involve improving measurement techniques and experimental designs. Model strategies aim at enhancing process descriptions, studying parameter sensitivity, uncertainty, inverse parameter identification, model calibration, and effects of spatial variability, as well as generating model emulators and databases. Model comparison studies demonstrated that, after calibration, PF pesticide models clearly outperform chromatographic models for structured soils. Considering nonlinear and kinetic sorption reactions further enhanced the pesticide transport description. However, inverse techniques combined with typically available experimental data are often limited in their ability to simultaneously identify parameters for describing PF, sorption, degradation and other processes. On the other hand, the predictive capacity of uncalibrated PF pesticide models currently allows at best an approximate (order-of-magnitude) estimation of concentrations. Moreover, models should target the entire soil-plant-atmosphere system, including often neglected above-ground processes such as pesticide volatilization, interception, sorption to plant residues, root uptake, and losses by runoff. The conclusions compile progress, problems, and future research choices for modelling pesticide displacement in structured soils.

  3. The Effects of Polymer Carrier, Hot Melt Extrusion Process and Downstream Processing Parameters on the Moisture Sorption Properties of Amorphous Solid Dispersions

    PubMed Central

    Feng, Xin; Vo, Anh; Patil, Hemlata; Tiwari, Roshan V.; Alshetaili, Abdullah S.; Pimparade, Manjeet B.; Repka, Michael A.

    2017-01-01

    Objective The aim of this study was to evaluate the effect of polymer carrier, hot melt extrusion (HME) and downstream processing parameters on the water uptake properties of amorphous solid dispersions. Methods Three polymers and a model drug were used to prepare amorphous solid dispersions utilizing HME technology. The sorption-desorption isotherms of solid dispersions and their physical mixtures were measured by the Dynamic Vapor Sorption system, and the effect of polymer hydrophobicity, hygroscopicity, molecular weight and the HME process were investigated. FTIR imaging was performed to understand the phase separation driven by the moisture. Key findings Solid dispersions with polymeric carriers with lower hydrophilicity, hygroscopicity, and higher molecular weight could sorb less moisture under the high RH conditions. The water uptake ability of polymer-drug solid dispersion systems were decreased compared to the physical mixture after HME, which might be due to the decreased surface area and porosity. The FTIR imaging indicated the homogeneity of the drug molecularly dispersed within the polymer matrix was changed after exposure to high RH. Conclusion Understanding the effect of formulation and processing on the moisture sorption properties of solid dispersions is essential for the development of drug products with desired physical and chemical stability. PMID:26589107

  4. Titanium Pyrophosphate for Removal of Trivalent Heavy Metals and Actinides Simulated by Retention of Europium

    PubMed Central

    Flores-Espinosa, Rosa María; Ordoñez-Regil, Eduardo; Fernández-Valverde, Suilma Marisela

    2017-01-01

    This work addresses the synthesis of titanium pyrophosphate, as well as the characterization and evaluation of the sorption process of europium, for removal of trivalent heavy metals and actinides simulate. The evaluation of the surface properties of titanium pyrophosphate was carried out determining the surface roughness and surface acidity constants. The values obtained from the determination of the surface roughness of the synthesized solid indicate that the surface of the material presents itself as slightly smooth. The FITEQL program was used to fit the experimental titration curves to obtain the surface acidity constants: log⁡K+ = 3.59 ± 0.06 and log⁡K− = −3.90 ± 0.05. The results of sorption kinetics evidenced that the pseudo-order model explains the retention process of europium, in which the initial sorption velocity was 8.3 × 10−4 mg g−1 min−1 and kinetic constant was 1.8 × 10−3 g mg min−1. The maximum sorption capacity was 0.6 mg g−1. The results obtained from sorption edge showed the existence of two bidentate complexes on the surface. PMID:28785720

  5. Application of Empirical Peleg Model to Study the Water Adsorption of Full Cream Milk in Drying Process

    NASA Astrophysics Data System (ADS)

    Hashib, S. Abd; Rosli, H.; Suzihaque, M. U. H.; Zaki, N. A. Md; Ibrahim, U. K.

    2017-06-01

    The ability of spray dryer in producing full cream milk at different inlet temperatures and the effectiveness of empirical model used in order to interpret the drying process data is evaluated in this study. In this study, a lab-scale spray dryer was used to dry full cream milk into powder with inlet temperature from 100 to 160°C with a constant pump speed 4rpm. Peleg empirical model was chosen in order to manipulate the drying data into the mathematical equation. This research was carry out specifically to determine the equilibrium moisture content of full cream milk powder at various inlet temperature and to evaluate the effectiveness of Peleg empirical model equation in order to describe the moisture sorption curves for full cream milk. There were two conditions set for this experiments; in the first condition (C1), further drying process of milk powder in the oven at 98°C to 100°C while the second condition (C2) is mixing the milk powder with different salt solutions like Magnesium Chloride (MgCl), Potassium Nitrite (KNO2), Sodium Nitrite (NaNO2) and Ammonium Sulfate ((NH4)2SO4). For C1, the optimum temperature were 160°C with equilibrium moisture content at 3.16 weight dry basis and slowest sorption rates (dM/dt) at 0.0743 weight dry basis/hr. For C2, the best temperature for the mixture of dry samples with MgCl is at 115°C with equilibrium moisture content and sorption rates is -78.079 weight dry basis and 0.01 weight dry basis/hr. The best temperature for the mixture of milk powder with KNO2 is also at 115°C with equilibrium moisture content and sorption rates at -83.9645 weight dry basis and 0.0008 weight dry basis/hr respectively. For mixture of dry samples with NaNO2, the best temperature is 160°C with equilibrium moisture content and sorption rates at 84.1306 weight dry basis and 0.0013 weight dry basis/hr respectively. Lastly, the mixture of dry samples with ((NH4)2SO4 where the best temperature is at 115°C with equilibrium moisture content -83.8778 weight dry basis and sorption rates at 0.0021 weight dry basis/hr. The best temperature selected best on the lowest moisture content formed and also the slowest sorption rates.

  6. Reactive transport modeling of subsurface arsenic removal systems in rural Bangladesh.

    PubMed

    Rahman, M M; Bakker, M; Patty, C H L; Hassan, Z; Röling, W F M; Ahmed, K M; van Breukelen, B M

    2015-12-15

    Subsurface Arsenic Removal (SAR) is a technique for in-situ removal of arsenic from groundwater. Extracted groundwater is aerated and re-injected into an anoxic aquifer, where the oxygen in the injected water reacts with ferrous iron in the aquifer to form hydrous ferric oxide (HFO). Subsequent extraction of groundwater contains temporarily lower As concentrations, because As sorbs onto the HFO. Injection, storage, and extraction together is called a cycle. A reactive transport model (RTM) was developed in PHREEQC to determine the hydrogeochemical processes responsible for As (im)mobilization during experimental SAR operation performed in Bangladesh. Oxidation of Fe(II) and As(III) were modeled using kinetic-rate expressions. Cation exchange, precipitation of HFO, and surface complexation, were modeled as equilibrium processes. A best set of surface complexation reactions and corresponding equilibrium constants was adopted from previous studies to simulate all 20 cycles of a SAR experiment. The model gives a reasonable match with observed concentrations of different elements in the extracted water (e.g., the r(2) value of As was 0.59 or higher). As concentrations in the extracted water are governed by four major processes. First, As concentration decreases in response to the elevated pH of injection water and likewise increases when native neutral pH groundwater flows in. Second, the sorption capacity for As increases due to the gradual buildup of HFO. Third, As sorption is enhanced by preferential removal of As(V). Fourth, competitive sorption of Si limits the capacity of freshly precipitated HFO for As sorption. Transferability of the developed reactive transport model was demonstrated through successful application of the model, without further calibration, to two additional SAR sites in Bangladesh. This gives confidence that the model could be useful to assess potential SAR performance at locations in Bangladesh based on local hydrogeochemical conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Modeling coupled sorption and transformation of 17β-estradiol-17-sulfate in soil-water systems

    NASA Astrophysics Data System (ADS)

    Bai, Xuelian; Shrestha, Suman L.; Casey, Francis X. M.; Hakk, Heldur; Fan, Zhaosheng

    2014-11-01

    Animal manure is the primary source of exogenous free estrogens in the environment, which are known endocrine-disrupting chemicals to disorder the reproduction system of organisms. Conjugated estrogens can act as precursors to free estrogens, which may increase the total estrogenicity in the environment. In this study, a comprehensive model was used to simultaneously simulate the coupled sorption and transformation of a sulfate estrogen conjugate, 17β-estradiol-17-sulfate (E2-17S), in various soil-water systems (non-sterile/sterile; topsoil/subsoil). The simulated processes included multiple transformation pathways (i.e. hydroxylation, hydrolysis, and oxidation) and mass transfer between the aqueous, reversibly sorbed, and irreversibly sorbed phases of all soils for E2-17S and its metabolites. The conceptual model was conceived based on a series of linear sorption and first-order transformation expressions. The model was inversely solved using finite difference to estimate process parameters. A global optimization method was applied for the inverse analysis along with variable model restrictions to estimate 36 parameters. The model provided a satisfactory simultaneous fit (R2adj = 0.93 and d = 0.87) of all the experimental data and reliable parameter estimates. This modeling study improved the understanding on fate and transport of estrogen conjugates under various soil-water conditions.

  8. Experimental binding of lead to a low cost on biosorbent: Nopal (Opuntia streptacantha).

    PubMed

    Miretzky, Patricia; Muñoz, Carolina; Carrillo-Chávez, Alejandro

    2008-03-01

    The use of nopal cladodes (Opuntia streptacantha) as raw material for Pb(2+) biosorption was investigated. Batch experiments were carried out to determine Pb(2+) sorption capacity and the efficiency of the sorption process under different pH, initial Pb(2+) and nopal biomass concentrations. The experimental data showed a good fit to Langmuir and Freundlich isotherms models. The maximum adsorption capacity for Pb(2+) was 0.14 mmol g(-1) with an efficiency higher than 94% (pH 5.0 and 2.5 g L(-1) nopal biomass). The Pb(2+) kinetics were best described by the pseudo-second-order rate model. The rate constant, the initial sorption rate and the equilibrium sorption capacity were determined. The practical implication of this study is the development of an effective and economic technology in which the nopal biomass did not undergo any chemical or physical pretreatment, which added to nopal abundance in Mexico and its low cost makes it a good option for Pb(2+) removal from contaminated waters.

  9. Multi-process herbicide transport in structured soil columns: Experiments and model analysis

    NASA Astrophysics Data System (ADS)

    Köhne, J. Maximilian; Köhne, Sigrid; Šimůnek, Jirka

    2006-05-01

    Model predictions of pesticide transport in structured soils are complicated by multiple processes acting concurrently. In this study, the hydraulic, physical, and chemical nonequilibrium (HNE, PNE, and CNE, respectively) processes governing herbicide transport under variably saturated flow conditions were studied. Bromide (Br -), isoproturon (IPU, 3-(4-isoprpylphenyl)-1,1-dimethylurea) and terbuthylazine (TER, N2-tert-butyl-6-chloro- N4-ethyl-1,3,5-triazine-2,4-diamine) were applied to two soil columns. An aggregated Ap soil column and a macroporous, aggregated Ah soil column were irrigated at a rate of 1 cm h - 1 for 3 h. Two more irrigations at the same rate and duration followed in weekly intervals. Nonlinear (Freundlich) equilibrium and two-site kinetic sorption parameters were determined for IPU and TER using batch experiments. The observed water flow and Br - transport were inversely simulated using mobile-immobile (MIM), dual-permeability (DPM), and combined triple-porosity (DP-MIM) numerical models implemented in HYDRUS-1D, with improving correspondence between empirical data and model results. Using the estimated HNE and PNE parameters together with batch-test derived equilibrium sorption parameters, the preferential breakthrough of the weakly adsorbed IPU in the Ah soil could be reasonably well predicted with the DPM approach, whereas leaching of the strongly adsorbed TER was predicted less well. The transport of IPU and TER through the aggregated Ap soil could be described consistently only when HNE, PNE, and CNE were simultaneously accounted for using the DPM. Inverse parameter estimation suggested that two-site kinetic sorption in inter-aggregate flow paths was reduced as compared to within aggregates, and that large values for the first-order degradation rate were an artifact caused by irreversible sorption. Overall, our results should be helpful to enhance the understanding and modeling of multi-process pesticide transport through structured soils during variably saturated water flow.

  10. Effects of hydrodynamic conditions on the sorption behaviors of aniline on sediment with coexistence of nitrobenzene.

    PubMed

    Wang, Peng; Hua, Zulin; Cai, Yunjie; Shen, Xia; Li, Qiongqiong; Liu, Xiaoyuan

    2015-08-01

    The sorption behaviors of pollutants affected by hydrodynamic conditions were confirmed in natural water environment. The effects of hydrodynamic conditions on the sorption behaviors of aniline on sediment with coexistence of nitrobenzene were investigated. The particle entrainment simulator (PES) was used to simulate varied bottom shear stresses. The batch equilibrium method was applied to the experiments with the stress levels and the action time controlled at 0.2-0.5 N/m(2) and 24 h, respectively. The findings indicated that apparent partition coefficient of aniline on sediment increased with the shear stress significantly, while decreased with nitrobenzene concentration. On the contrary, both the sorption amount of aniline on suspended particulate matter (Q s) and the effect of nitrobenzene concentration on Q s declined as the shear stress increased. The sorption kinetic results showed that the sorption process followed the pseudo-second-order kinetics equation, and the process included two stages: fast sorption stage and slow sorption stage, among which the average sorption rate of fast stage was 7.5-9.5 times that of slow one. The effect of shear stress on the average sorption rate of aniline was enhanced with the increase of nitrobenzene concentration. And shear stress weakened the disturbance of cosolute on main solute sorption process. In addition, experiment results of sorption kinetic show that only the initial sorption rate was affected by shear stress and cosolute concentration. In the first 5 min, shear stress had positive effects on the sorption rate. After that, the sorption rate barely changed with shear stress and cosolute concentration.

  11. Assessing the sorption and leaching behaviour of three sulfonamides in pasture soils through batch and column studies.

    PubMed

    Srinivasan, Prakash; Sarmah, Ajit K

    2014-09-15

    We investigated the sorption potential and transport behaviour of three sulfonamides, namely, sulfamethoxazole (SMO), sulfachloropyridazine (SCP) and sulfamethazine (SM), and a conservative bromide tracer (Br(-)) in two undisturbed soil columns collected from the dairy farming regions in the North Island of New Zealand. Based on the low log Koc values obtained from the sorption study, all three sulfonamides are likely to have high mobility, making them a potential threat to surface and ground water. Soil column studies also showed that the mobility of the sulfonamides varied among soils and antibiotic type. Sulfonamides exhibited a mobility pattern similar to that of conservative Br(-) tracer. Considerable retardation was observed for the Hamilton soil, and the delayed peak arrival time (or maxima) was due to the role of sorption-related retention processes under saturated flow conditions. Residual antibiotic concentrations for SMO and SCP were detected in all soil sections including at 18 cm depth, while no resident concentration of SM was detected at any depth in the entire length of the core for both soils. The deterministic, physical equilibrium model (CXTFIT) described the peak arrival time as well as the maximum concentration of the antibiotic breakthrough curves reasonably, but showed some underestimation at the advanced stages of the leaching process. There was a significant difference in the model estimated retardation factors obtained from column study and the experimental retardation factors obtained from the conventional batch sorption experiments. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Sorption kinetics, isotherms, and mechanism of aniline aerofloat to agricultural soils with various physicochemical properties.

    PubMed

    Xiang, Lei; Xiao, Tao; Mo, Ce-Hui; Zhao, Hai-Ming; Li, Yan-Wen; Li, Hui; Cai, Quan-Ying; Zhou, Dong-Mei; Wong, Ming-Hung

    2018-06-15

    Aniline aerofloat (AAF), a high-toxic organic flotation reagent, is widely used in mineral processing industry. However, little information on its environmental fate is available. AAF sorption to four types of agricultural soils at low concentrations (1-10 mg/L) was investigated using batch experiments. AAF sorption kinetics involved both boundary layer diffusion and intraparticle diffusion, following pseudo-second-order kinetics with equilibrium time within 120 min. Both Langmuir and Freundlich models fitted well the AAF sorption with the former better. Sorption of AAF to soils was a spontaneous and favorable physical sorption that was controlled by ion bridge effect and hydrophobic interaction that was related to van der Waals force and π-π coordination based on FTIR analyses. AAF sorption was remarkably affected by soil constituents, positively correlating with the contents of organic matter and clay. The relatively higher logK oc values (3.53-4.66) of AAF at environmental concentrations (1-5 mg/L) imply that soils are serving as a sink of AAF from beneficiation wastewater, posing great potential risks to environment and human health. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution.

    PubMed

    Hüffer, Thorsten; Hofmann, Thilo

    2016-07-01

    The presence of microscale polymer particles (i.e., microplastics) in the environment has become a major concern in recent years. Sorption of organic compounds by microplastics may affect the phase distribution within both sediments and aqueous phases. To investigate this process, isotherms were determined for the sorption of seven aliphatic and aromatic organic probe sorbates by four polymers with different physico-chemical properties. Sorption increased in the order polyamide < polyethylene < polyvinylchloride < polystyrene. This order does not reflect the particle sizes of the investigated microplastics within the aqueous dispersions, indicating the influence of additional factors (e.g., π-π-interactions) on the sorption of aromatic compounds by polystyrene. Linear isotherms by polyethylene suggested that sorbate uptake was due to absorption into the bulk polymer. In contrast, non-linear isotherms for sorption by PS, PA, and PVC suggest a predominance of adsorption onto the polymer surface, which is supported by the best fit of these isotherms using the Polanyi-Manes model. A strong relationship between the sorption coefficients of the microplastics and the hydrophobicity of the sorbates suggests that hydrophobic interactions are of major importance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Removal of perfluorinated surfactants from wastewater by adsorption and ion exchange - Influence of material properties, sorption mechanism and modeling.

    PubMed

    Schuricht, Falk; Borovinskaya, Ekaterina S; Reschetilowski, Wladimir

    2017-04-01

    Perfluorooctane sulfonate (PFOS) has attracted increasing concern in recent years due to its world-wide distribution, persistence, bioaccumulation and potential toxicity. The influence of sorbent properties on the adsorptive elimination of PFOS from wastewater by activated carbons, polymer adsorbents and anion exchange resins was investigated with regard to their isotherms and kinetics. The batch and column tests were combined with physicochemical characterization methods, e.g., N 2 physisorption, mercury porosimetry, infrared spectroscopy, differential scanning calorimetry, titrations, as well as modeling. Sorption kinetics was successfully modelled applying the linear driving force (LDF) approach for surface diffusion after introducing a load dependency of the mass transfer coefficient β s . The big difference in the initial mass transfer coefficient β s,0 , when non-functionalized adsorbents and ion-exchange resins are compared, suggests that the presence of functional groups impedes the intraparticle mass transport. The more functional groups a resin possesses and the longer the alkyl moieties are the bigger is the decrease in sorption rate. But the selectivity for PFOS sorption is increasing when the character of the functional groups becomes more hydrophobic. Accordingly, ion exchange and hydrophobic interaction were found to be involved in the sorption processes on resins, while PFOS is only physisorptively bound to activated carbons and polymer adsorbents. In agreement with the different adsorption mechanisms, resins possess higher total sorption capacities than adsorbents. Hence, the latter ones are rendered more effective in PFOS elimination at concentrations in the low μg/L range, due to a less pronounced convex curvature of the sorption isotherm in this concentration range. Copyright © 2016. Published by Elsevier B.V.

  15. Reliability analysis of nutrient removal from stormwater runoff with green sorption media under varying influent conditions.

    PubMed

    Jones, Jamie; Chang, Ni-Bin; Wanielista, Martin P

    2015-01-01

    To support nutrient removal, various stormwater treatment technologies have been developed via the use of green materials, such as sawdust, tire crumbs, sand, clay, sulfur, and limestone, as typical constituents of filter media mixes. These materials aid in the physiochemical sorption and precipitation of orthophosphates as well as in the biological transformation of ammonia, nitrates and nitrites. However, these processes are dependent upon influent conditions such as hydraulic residence time, influent orthophosphate concentrations, and other chemical species present in the inflow. This study aims to compare the physiochemical removal of orthophosphate by isotherm and column tests under differing influent conditions to realize the reliability of orthophosphate removal process with the aid of green sorption media. The green sorption media of interest in this study is composed of a 5:2:2:1 (by volume) mixture of cement sand, tire crumb, fine expanded clay, and limestone. Scenarios of manipulating the hydraulic residence time of the water from 18 min and 60 min, the influent dissolved phosphorus concentrations of 1.0 mg·L(-1) and 0.5 mg·L(-1), and influent water types of distilled and pond water, were all investigated in the column tests. Experimental data were compared with the outputs from the Thomas Model based on orthophosphate removal to shed light on the equilibrium condition versus kinetic situation. With ANOVA tests, significant differences were confirmed between the experimental data sets of the breakthrough curves in the column tests. SEM imaging analysis helps to deepen the understanding of pore structures and pore networks of meta-materials being used in the green sorption media. Life expectancy curves derived from the output of Thomas Model may be applicable for future system design of engineering processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Behaviour of five pharmaceuticals with high baseline toxicity in wastewater treatment

    NASA Astrophysics Data System (ADS)

    van Driezum, Inge; McArdell, Christa; Fenner, Kathrin; Helbling, Damian; van Breukelen, Boris

    2013-04-01

    Many pharmaceuticals enter the aquatic environment through sewer systems and are partially removed in wastewater treatment plants (WWTP) by sorption to sludge biomass or biodegradation. Biodegradation often does not lead to complete mineralization but to the formation of stable transformation products (TPs), which might still be harmful to the environment. Recently, a study was undertaken to assess the risk of the top 100 pharmaceuticals from wastewater of a hospital in Switzerland. The predicted toxicity was linked to the predicted environmental concentration in order to assess overall risk potential. In this study, biodegradation and sorption studies were carried out on the top five selected pharmaceuticals (amiodarone, atorvastatin, clotrimazole, meclozine and ritonavir). Potential TPs that are formed during activated sludge treatment were identified and concentrations of both the parent compounds and TPs were measured in the WWTP. With this data, the fate of these compounds was modeled in a WWTP system using a multi-reactor steady-state WWTP model. This study showed that sorption was the most important loss process for amiodarone and meclozine. They had an elimination of more than 99%. Sorption was also the main loss process for clotrimazole, but it was combined with some biodegradation. For ritonavir, both biodegradation and sorption played a role in the loss of this compound. The most important removal process for atorvastatin was biodegradation. Four TPs, formed through β-oxidation and monohydroxilation, were identified in both the activated sludge batch reactors and the WWTP effluent. In the WWTP effluent, only atorvastatin, clotrimazole and ritonavir were found. All identified TPs of atorvastatin were detected in the effluent. Risk quotients (RQ) of all five pharmaceuticals were estimated based on effluent concentration and baseline toxicity and ranged from zero to 2.14. Only ritonavir potentially poses an ecotoxicological risk for the aquatic environment.

  17. MODEL -- BIOPLUME III VERSION 1.0 - SEPTEMBER 1997 (SUBSURFACE PROTECTION AND REMEDIATION DIVISION, NRMRL)

    EPA Science Inventory

    BIOPLUME III is a 2D, finite difference model for simulating the natural attenuation of organic contaminants in groundwater due to the processes of advection, dispersion, sorption, and biodegradation. Biotransformation processes are potentially important in the restoration of aq...

  18. The analysis of isotherms of radionuclides sorption by inorganic sorbents

    NASA Astrophysics Data System (ADS)

    Bykova, E. P.; Nedobukh, T. A.

    2017-09-01

    The isotherm of cesium sorption by an inorganic sorbent based on granulated glauconite obtained in a wide cesium concentrations range was mathematically treated using Langmuir, Freundlich and Redlich-Peterson sorption models. The algorithms of mathematical treatment of experimental data using these models were described; parameters of all isotherms were determined. It was shown that estimating the correctness of various sorption models relies not only on the correlation coefficient values but also on the closeness of the calculated and experimental data. Various types of sorption sites were found as a result of mathematical treatment of the isotherm of cesium sorption. The algorithm was described and calculation of parameters of the isotherm was performed under the assumption that simultaneous sorption on all three types of sorption sites occurs in accordance with Langmuir isotherm.

  19. Microplastics play a minor role in tetracycline sorption in the presence of dissolved organic matter.

    PubMed

    Xu, Baile; Liu, Fei; Brookes, Philip C; Xu, Jianming

    2018-09-01

    Microplastics have a great potential to sorb organic pollutants from the adjacent environment. In this study, the sorption of tetracycline, a polar and ionizable antibiotic, on three types of microplastics (polyethylene (PE), polypropylene (PP) and polystyrene (PS)) were investigated in batch sorption experiments. The sorption isotherms were well fitted by the Langmuir model, indicating that not only hydrophobic interactions but also other interactions (e.g. electrostatic interactions) played important roles in the sorption process. PS had the maximum sorption capacity, following the order PS > PP > PE, which can be attributed to polar interactions and π-π interactions. The sorption of tetracycline on microplastics was significantly influenced by pH, with sorption capacity increasing gradually, peaking at pH 6.0 and then decreasing, likely due to the influence of tetracycline speciation with the change of pH. Fulvic acid was selected as representative dissolved organic matter (DOM) to examine the effect on sorption. The increasing concentration of fulvic acid inhibited the sorption of tetracycline on three microplastics, decreasing them by more than 90% at the fulvic acid concentration of 20 mg/L, which implied a greater affinity of tetracycline to fulvic acid than to microplastics. Increasing salinity from 0.05 to 3.5% had negligible effects on the sorption of tetracycline on the three microplastics. Our results highlight the importance of pH and DOM on the sorption of tetracycline on microplastics, and suggest the relatively minor role of microplastics in the fate and transport of tetracycline in the aquatic environment in the presence of DOM. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Removal of uranyl ions by p-hexasulfonated calyx[6]arene acid

    NASA Astrophysics Data System (ADS)

    Popescu (Hoştuc), Ioana-Carmen; Petru, Filip; Humelnicu, Ionel; Mateescu, Marina; Militaru, Ecaterina; Humelnicu, Doina

    2014-10-01

    Radioactive pollution is a significant threat for the people's health. Therefore highly effective radioactive decontamination methods are required. Ion exchange, biotechnologies and phytoremediation in constructed wetlands have been used as radioactive decontamination technologies for uranium contaminated soil and water remediation. Recently, beside those classical methods the calix[n]arenic derivatives' utilization as radioactive decontaminators has jogged attention. The present work aims to present the preliminary research results of uranyl ion sorption studies on the p-hexasulfonated calyx[6]arenic acid. The effect of temperature, contact time, sorbent amount and uranyl concentration variation on sorption efficiency was investigated. Isotherm models revealed that the sorption process fit better Langmuir isotherm.

  1. Effect of humic substances on P sorption capacity of three different soils

    NASA Astrophysics Data System (ADS)

    Delgado, Antonio

    2010-05-01

    Organic matter decreases P sorption by soils. It has been demonstrated the effect of low molecular weight compounds decreasing P adsorption on active surfaces and the effect of humic and fulvic acids inhibiting the precipitation of hydroxyapatite and favouring the formation of more soluble phosphates. This contributes to increase the recovery of applied P fertilizer. The objective of this work was to study the effect of 4 different humic substances (commercially available and provided by Tradecorp Internacional S.A.) on the sorption capacity of three soils differing widely in chemical properties (two calcareous from south Spain, pH 8 and 8.5, and other acidic from Brazil, pH 5.9 and 50 % of exchangeable basic cations). To this end, sorption isotherms were performed at a soil:0.01 M CaCl2 ratio of 1:10 at 6, 30 and 90 days. 2.5 mg of humic substances per g of soil were added to the solution. Data were fitted to the best model and linearized sorption curves for each humic substance were compared with the linearized sorption curve for the control without humic substances application (intersection point and slopes). Soil from Brazil showed a much higher sorption capacity (400 mg P kg-1 soil sorbed at 1 mg L-1 of P in the solution at 1 day) than the other two soils (50 and 100 mg P kg-1). Slow reactions significantly contributed to P sorption in the three soils, amounts sorbed at 90 days being twice than those sorbed at 1 day. Two of the products increased P sorption in the soil from Brazil at 1 day. At 90 days all the products increased P sorption significantly. This increased P sorption can be only explained by metal complexation by the substances applied, which may result in organo-metallic compounds with a high P sorption capacity. This effect was independent of the proportion of humic and fulvic acids in the applied products because the amounts of metal complexed by these compouds depend on the amount of functional groups to coordinate with metals. In the Spanish calcareous soils, the most effective product decreasing P sortion was one constituted by 8 % humic acids + 2 % fulvic acids. In general terms, this product promoted a lower intercept point and a higher slope than the control without application of humic substances. This indicates that the decrease in P sorption was more evident at low P concentrations in the solution, perhaps indicating a significant effect decreasing adsorption process, more than precipitation of Ca phosphates which are assumed to be the dominant process involved in P sorption above 10-4 M P in the solution. Other products only decreased the intercept point at 1 or 30 days in these calcareous soils, less evidently than the first product, indicating an interaction with adsorption and precipitation processes. In calcareous soils, fulvic based products were, in general terms, less efficient decreasing P sorption than those based on acid + fulvic acids mixtures. However, products with a similar content of humic and fulvic acids did not necessarily promote similar effects, thus revealing that other factors related to these organic compounds, such as type and amount of functional groups, may affect the interaction with P sorption processes. These results reveal that the application of mixtures of P fertilizer with humic + fulvic acids could be effective in increasing the efficiency of P fertilizers applied thus revealing the potential interest of the knowledge of the effect of organic matter on the P cycle in soil.

  2. Estimation of soil sorption coefficients of veterinary pharmaceuticals from soil properties.

    PubMed

    ter Laak, Thomas L; Gebbink, Wouter A; Tolls, Johannes

    2006-04-01

    Environmental exposure assessment of veterinary pharmaceuticals requires estimating the sorption to soil. Soil sorption coefficients of three common, ionizable, antimicrobial agents (oxytetracycline [OTC], tylosin [TYL], and sulfachloropyridazine [SCP]) were studied in relation to the soil properties of 11 different soils. The soil sorption coefficient at natural pH varied from 950 to 7,200, 10 to 370, and 0.4 to 35 L/kg for OTC, TYL, and SCP, respectively. The variation increased by almost two orders of magnitude for OTC and TYL when pH was artificially adjusted. Separate soil properties (pH, organic carbon content, clay content, cation-exchange capacity, aluminum oxyhydroxide content, and iron oxyhydroxide content) were not able to explain more than half the variation observed in soil sorption coefficients. This reflects the complexity of the sorbent-sorbate interactions. Partial-least-squares (PLS) models, integrating all the soil properties listed above, were able to explain as much as 78% of the variation in sorption coefficients. The PLS model was able to predict the sorption coefficient with an accuracy of a factor of six. Considering the pH-dependent speciation, species-specific PLS models were developed. These models were able to predict species-specific sorption coefficients with an accuracy of a factor of three to four. However, the species-specific sorption models did not improve the estimation of sorption coefficients of species mixtures, because these models were developed with a reduced data set at standardized aqueous concentrations. In conclusion, pragmatic approaches like PLS modeling might be suitable to estimate soil sorption for risk assessment purposes.

  3. Moisture sorption characteristics of extrusion-cooked starch protective loose-fill cushioning foams

    NASA Astrophysics Data System (ADS)

    Combrzyński, Maciej; Mościcki, Leszek; Kwaśniewska, Anita; Oniszczuk, Tomasz; Wójtowicz, Agnieszka; Sołowiej, Bartosz; Gładyszewska, Bożena; Muszyński, Siemowit

    2017-10-01

    The aim of this work was to determine the water vapour sorption properties of thermoplastic starch filling foams processed by extrusion-cooking technique from various combinations of potato starch and two foaming agents: poly(vinyl) alcohol and Plastronfoam, in amount of 1, 2 and 3% each. Foams were processed with the single screw extruder-cooker at two different screw rotational speeds 100 and 130 r.p.m. The sorption isotherms of samples were determined and described using the Guggenheim-Anderson-de Boer model. Also, the kinetics of water vapour adsorption by foams, as a function of time, was measured and fitted with Peleg model. On the basis of the analysis the influence of the applied foaming agents, as well as the technological parameters of extrusion-cooking process in relation to water vapour adsorption by thermoplastic starch foams was demonstrated. There was no difference between the shapes of the isotherms for poly(vinyl) alcohol foams while for Plastronfoam foams a notable difference among foams extruded at 100 r.p.m. was observed in the regions of low and high humidity content. The analysis of the Guggenheim-Anderson-de Boer model parameters showed that the water molecules were less strongly bound with the foam surface when extruded at a lower screw speed.

  4. Sorption of phenol and alkylphenols from aqueous solution onto organically modified montmorillonite and applications of dual-mode sorption model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huh, J.K.; Song, D.I.; Jeon, Y.W.

    2000-01-01

    Single- and multisolute competitive sorptions were carried out in a batch reactor to investigate the uptake of phenol, 4-methylphenol (MeP), 2,4-dimethylphenol (DMeP), and 4-ethylphenol (EtP) dissolved in water at 25 C onto organically modified montmorillonite. Hexadecyltrimethylammonium (HDTMA) cation was exchanged for metal cations on the montmorillonite to the extent of the cation-exchange capacity (CEC) of the montmorillonite to prepare HDTMA-montmorillonite, changing its surface property from hydrophilic to organophilic. It was observed from the experimental results that the adsorption affinity on HDTMA-montmorillonite was in the order 4-EtP {approx} 2,4-DMeP > 4-MeP > phenol. The Langmuir, dual-mode sorption (DS), and Redlich-Peterson (RP)more » models were used to analyze the single-solute sorption equilibria. The competitive Langmuir model (CLM), competitive dual-mode sorption model (CDSM), and ideal adsorbed solution theory (IAST), coupled with the single-solute models (i.e., Langmuir, DS, and RP models), were used to predict the multisolute competitive sorption equilibria. All the models considered in this work yielded favorable representations of both single- and multisolute sorption behaviors. DSM, CDSM, and IAST coupled with the DSM were found to be other satisfactory models to describe the single- and multisolute sorption of the phenolic compounds onto HDTMA-montmorillonite.« less

  5. Adsorptive removal of direct azo dye from aqueous phase onto coal based sorbents: a kinetic and mechanistic study.

    PubMed

    Venkata Mohan, S; Chandrasekhar Rao, N; Karthikeyan, J

    2002-03-01

    This communication presents the results pertaining to the investigation conducted on color removal of trisazo direct dye, C.I. Direct Brown 1:1 by adsorption onto coal based sorbents viz. charfines, lignite coal, bituminous coal and comparing results with activated carbon (Filtrasorb-400). The kinetic sorption data indicated the sorption capacity of the different coal based sorbents. The sorption interaction of direct dye on to coal based sorbents obeys first-order irreversible rate equation and activated carbon fits with the first-order reversible rate equation. Intraparticle diffusion studies revealed the dye sorption interaction was complex and intraparticle diffusion was not only the rate limiting step. Isothermal data fit well with the rearranged Langmuir adsorption model. R(L) factor revealed the favorable nature of the isotherm of the dye-coal system. Neutral solution pH yielded maximum dye color removal. Desorption and interruption studies further indicated that the coal based sorbents facilitated chemisorption in the process of dye sorption while, activated carbon resulted in physisorption interaction.

  6. Modeling Np and Pu transport with a surface complexation model and spatially variant sorption capacities: Implications for reactive transport modeling and performance assessments of nuclear waste disposal sites

    USGS Publications Warehouse

    Glynn, P.D.

    2003-01-01

    One-dimensional (1D) geochemical transport modeling is used to demonstrate the effects of speciation and sorption reactions on the ground-water transport of Np and Pu, two redox-sensitive elements. Earlier 1D simulations (Reardon, 1981) considered the kinetically limited dissolution of calcite and its effect on ion-exchange reactions (involving 90Sr, Ca, Na, Mg and K), and documented the spatial variation of a 90Sr partition coefficient under both transient and steady-state chemical conditions. In contrast, the simulations presented here assume local equilibrium for all reactions, and consider sorption on constant potential, rather than constant charge, surfaces. Reardon's (1981) seminal findings on the spatial and temporal variability of partitioning (of 90Sr) are reexamined and found partially caused by his assumption of a kinetically limited reaction. In the present work, sorption is assumed the predominant retardation process controlling Pu and Np transport, and is simulated using a diffuse-double-layer-surface-complexation (DDLSC) model. Transport simulations consider the infiltration of Np- and Pu-contaminated waters into an initially uncontaminated environment, followed by the cleanup of the resultant contamination with uncontaminated water. Simulations are conducted using different spatial distributions of sorption capacities (with the same total potential sorption capacity, but with different variances and spatial correlation structures). Results obtained differ markedly from those that would be obtained in transport simulations using constant Kd, Langmuir or Freundlich sorption models. When possible, simulation results (breakthrough curves) are fitted to a constant K d advection-dispersion transport model and compared. Functional differences often are great enough that they prevent a meaningful fit of the simulation results with a constant K d (or even a Langmuir or Freundlich) model, even in the case of Np, a weakly sorbed radionuclide under the simulation conditions. Functional behaviors that cannot be fit include concentration trend reversals and radionuclide desorption spikes. Other simulation results are fit successfully but the fitted parameters (Kd and dispersivity) vary significantly depending on simulation conditions (e.g. "infiltration" vs. "cleanup" conditions). Notably, an increase in the variance of the specified sorption capacities results in a marked increase in the dispersion of the radionuclides. The results presented have implications for the simulation of radionuclide migration in performance assessments of nuclear waste-disposal sites, for the future monitoring of those sites, and more generally for modeling contaminant transport in ground-water environments. ?? 2003 Published by Elsevier Science Ltd.

  7. Characterization of sorption processes for the development of low-cost pesticide decontamination techniques.

    PubMed

    Rojas, Raquel; Vanderlinden, Eva; Morillo, José; Usero, José; El Bakouri, Hicham

    2014-08-01

    The adsorption/desorption behavior of four pesticides (atrazine, alachlor, endosulfan sulfate and trifluralin) in aqueous solutions onto four adsorbents (sunflower seed shells, rice husk, composted sewage sludge and soil) was investigated. Pesticide determination was carried out using stir bar sorptive extraction and gas chromatography coupled with mass spectroscopy. Maximum removal efficiency (73.9%) was reached using 1 g of rice husk and 50 mL of pesticide solution (200 μg L(-1)). The pseudo adsorption equilibrium was reached with 0.6 g organic residue, which was used in subsequent experiments. The pseudo-first-order, pseudo-second-order kinetics and the intra-particle diffusion models were used to describe the kinetic data and rate constants were evaluated. The first model was more suitable for the sorption of atrazine and alachlor while the pseudo-second-order best described endosulfan sulfate and trifluralin adsorption, which showed the fastest sorption rates. 4h was considered as the equilibrium time for determining adsorption isotherms. Experimental data were modeled by Langmuir and Freundlich models. In most of the studied cases both models can describe the adsorption process, although the Freundlich model was applicable in all cases. The sorption capacity increased with the hydrophobic character of the pesticides and decreased with their water solubility. Rice husk was revealed as the best adsorbent for three of the four studied pesticides (atrazine, alachlor and endosulfan sulfate), while better results were obtained with composted sewage sludge and sunflower seed shell for the removal of trifluralin. Although desorption percentages were not high (with the exception of alachlor, which reached a desorption rate of 57%), the Kfd values were lower than the Kf values for adsorption and all H values were below 100, indicating that the adsorption was weak. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Numerical model for the uptake of groundwater contaminants by phreatophytes

    USGS Publications Warehouse

    Widdowson, M.A.; El-Sayed, A.; Landmeyer, J.E.

    2008-01-01

    Conventional solute transport models do not adequately account for the effects of phreatophytic plant systems on contaminant concentrations in shallow groundwater systems. A numerical model was developed and tested to simulate threedimensional reactive solute transport in a heterogeneous porous medium. Advective-dispersive transport is coupled to biodegradation, sorption, and plantbased attenuation processes including plant uptake and sorption by plant roots. The latter effects are a function of the physical-chemical properties of the individual solutes and plant species. Models for plant uptake were tested and evaluated using the experimental data collected at a field site comprised of hybrid poplar trees. A non-linear equilibrium isotherm model best represented site conditions.

  9. The effects of polymer carrier, hot melt extrusion process and downstream processing parameters on the moisture sorption properties of amorphous solid dispersions.

    PubMed

    Feng, Xin; Vo, Anh; Patil, Hemlata; Tiwari, Roshan V; Alshetaili, Abdullah S; Pimparade, Manjeet B; Repka, Michael A

    2016-05-01

    The aim of this study was to evaluate the effect of polymer carrier, hot melt extrusion and downstream processing parameters on the water uptake properties of amorphous solid dispersions. Three polymers and a model drug were used to prepare amorphous solid dispersions utilizing the hot melt extrusion technology. The sorption-desorption isotherms of solid dispersions and their physical mixtures were measured by the dynamic vapour sorption system, and the effects of polymer hydrophobicity, hygroscopicity, molecular weight and the hot melt extrusion process were investigated. Fourier transform infrared (FTIR) imaging was performed to understand the phase separation driven by the moisture. Solid dispersions with polymeric carriers with lower hydrophilicity, hygroscopicity and higher molecular weight could sorb less moisture under the high relative humidity (RH) conditions. The water uptake ability of polymer-drug solid dispersion systems were decreased compared with the physical mixture after hot melt extrusion, which might be due to the decreased surface area and porosity. The FTIR imaging indicated that the homogeneity of the drug molecularly dispersed within the polymer matrix was changed after exposure to high RH. Understanding the effect of formulation and processing on the moisture sorption properties of solid dispersions is essential for the development of drug products with desired physical and chemical stability. © 2015 Royal Pharmaceutical Society.

  10. Sediment-Associated Reactions of Aromatic Amines

    EPA Science Inventory

    Sorption of aromatic amines to sediments and soils can occur by both reversible physical processes and irreversible chemical processes. To elucidate the significance of these sorption pathways, the sorption kinetics of aniline and pyridine were studied in resaturated pond sedimen...

  11. Sorption of diclofenac and naproxen onto MWCNT in model wastewater treated by H2O2 and/or UV.

    PubMed

    Czech, Bożena; Oleszczuk, Patryk

    2016-04-01

    The application of oxidation processes such as UV and/or H2O2 will change the physicochemical properties of carbon nanotubes (CNT). It may affect the sorption affinity of CNT to different contaminants and then affect their fate in the environment. In the present study the adsorption of two very common used pharmaceuticals (diclofenac and naproxen) onto CNT treated by UV, H2O2 or UV/H2O2 was investigated. Four different adsorption models (Freundlich, Langmuir, Temkin, Dubinin-Radushkevich) were tested. The best fitting of experimental data was observed for Freundlich or Langmuir model. The significant relationships between Q calculated from Langmuir model with O% and dispersity were observed. Kinetics of diclofenac and naproxen followed mainly pseudo-second order indicating for chemisorption limiting step of adsorption. The data showed that the mechanism of sorption was physical or chemical depending on the type of CNT modification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Sorption specificity and desorption hysteresis of gibberellic acid on ferrihydrite compared to goethite, hematite, montmorillonite, and kaolinite.

    PubMed

    Zhang, Li; Liu, Fei; Chen, Liang

    2017-08-01

    The pesticide gibberellic acid (GA 3 ) is a potential endocrine disruptor and environmental toxin; therefore, research into its environmental fate is warranted. Batch studies were conducted to investigate the sorption and desorption characteristics of GA 3 on aquifer media. The results demonstrated special sorption characteristic of GA 3 on ferrihydrite compared to goethite, hematite, montmorillonite, and kaolinite, where the sorption kinetics of GA 3 on ferrihydrite was fitted well with the pseudo-second-order, Elovich, and intra-particle diffusion models. The sorption kinetics of GA 3 on ferrihydrite indicated an initial high sorption rate followed by a slow reaction process. The initial high GA 3 sorption rate may be related to electrostatic sorption and surface complexation reactions on the outer surfaces and at the macropore entrances of ferrihydrite. While the slow step was controlled by GA 3 diffusion into mesopore of ferrihydrite. Analysis of the desorption hysteresis indicated a high hysteresis index (HI) ranging from 0.68 to 17.32, and a low desorption percentage ranging from 18 to 48%. After sufficient desorption, the calculated maximum residual GA 3 quantity due to surface complexation reactions with the ferrihydrite coordinated unsaturated sites was 9.05 ± 0.12 mg g -1 . The calculated maximum quantity of GA 3 trapped within the mesopore was 16.23 ± 0.91 mg g -1 . Graphical Abstract Schematic overview of GA 3 sorption and desorption on five minerals in groundwater.

  13. Single-solute and bisolute sorption of phenol and trichloroethylene from aqueous solution onto modified montmorillonite and application of sorption models.

    PubMed

    Wu, C D; Wang, L; Hu, C X; He, M H

    2013-01-01

    The single-solute and bisolute sorption behaviour of phenol and trichloroethylene, two organic compounds with different structures, onto cetyltrimethylammonium bromide (CTAB)-montmorillonite was studied. The monolayer Langmuir model (MLM) and empirical Freundlich model (EFM) were applied to the single-solute sorption of phenol or trichloroethylene from water onto monolayer or multilayer CTAB-montmorillonite. The parameters contained in the MLM and EFM were determined for each solute by fitting to the single-solute isotherm data, and subsequently utilized in binary sorption. The extended Langmuir model (ELM) coupled with the single-solute MLM and the ideal adsorbed solution theory (IAST) coupled with the single-solute EFM were used to predict the binary sorption of phenol and trichloroethylene onto CTAB-montmorillonite. It was found that the EFM was better than the MLM at describing single-solute sorption from water onto CTAB-montmorillonite, and the IAST was better than the ELM at describing the binary sorption from water onto CTAB-montmorillonite.

  14. Sorption and desorption of glyphosate in Mollisols and Ultisols soils of Argentina.

    PubMed

    Gómez Ortiz, Ana Maria; Okada, Elena; Bedmar, Francisco; Costa, José Luis

    2017-10-01

    In Argentina, glyphosate use has increased exponentially in recent years as a result of the widespread adoption of no-till management combined with genetically modified glyphosate-resistant crops. This massive use of glyphosate has created concern about its potential environmental impact. Sorption-desorption of glyphosate was studied in 3 Argentinean soils with contrasting characteristics. Glyphosate sorption isotherms were modeled using the Freundlich equation to estimate the sorption coefficient (K f ). Glyphosate sorption was high, and the K f varied from 115.6 to 1612 mg 1-1/n L 1/n /kg. Cerro Azul soil had the highest glyphosate sorption capacity as a result of a combination of factors such as higher clay content, cation exchange capacity, total iron, and aluminum oxides, and lower available phosphorus and pH. Desorption isotherms were also modeled using the Freundlich equation. In general, desorption was very low (<12%). The low values of hysteresis coefficient confirm that glyphosate strongly sorbs to the soils and that it is almost an irreversible process. Anguil soil had a significantly higher desorption coefficient (K fd ) than the other soils, associated with its lower clay content and higher pH and phosphorus. Glyphosate high sorption and low desorption to the studied soils may prevent groundwater contamination. However, it may also affect its bioavailability, increasing its persistence and favoring its accumulation in the environment. The results of the present study contribute to the knowledge and characterization of glyphosate retention in different soils. Environ Toxicol Chem 2017;36:2587-2592. © 2017 SETAC. © 2017 SETAC.

  15. Anionic and cationic drug sorption on interpolyelectrolyte complexes.

    PubMed

    de Lima, C R M; Gomes, D N; de Morais Filho, J R; Pereira, M R; Fonseca, J L C

    2018-06-15

    Interpolyelectrolyte complexes of chitosan and poly(sodium 4-styrenesulfonate) [NaPSS] were synthesized and obtained in the form of solid particles, with two different sulfonate to aminium molar ratios: 0.7, resulting in particles with positive zeta potential (IPEC + ), and 1.4, yielding particles with negative zeta potential (IPEC - ). Both particles were characterized as potential drug sorbents using differently charged drugs: sodium cromoglycate (negatively charged), and tetracycline hydrochloride (positively charged). The adsorption isotherm for cromoglycate and tetracycline on IPEC + was adequately described by the Langmuir model, while the IPEC - sorption of tetracycline followed the Redlich-Peterson isotherm without the occurrence of cromoglycate sorption. The sorption kinetics consisted of two processes, one fast and the other slow, which were correlated to purely surface-related interactions and processes that resulted in diffusion and/or destruction/rearrangement on the particle surface and subsurface, respectively. Charge build up equilibrium and kinetics were also monitored via zeta potential measurements, and the differences between mass drug uptake and particle charging were used to propose adsorption mechanisms for the systems studied in this work. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. BIOPLUME III

    EPA Pesticide Factsheets

    BIOPLUME III is a two-dimensional finite difference model for simulating the natural attenuation of organic contaminants in groundwater due to the processes of advection, dispersion, sorption, and biodegradation.

  17. Sorption processes affecting arsenic solubility in oxidized surface sediments from Tulare Lake Bed, California

    USGS Publications Warehouse

    Gao, S.; Goldberg, S.; Herbel, M.J.; Chalmers, A.T.; Fujii, R.; Tanji, K.K.

    2006-01-01

    Elevated concentrations of arsenic (As) in shallow groundwater in Tulare Basin pose an environmental risk because of the carcinogenic properties of As and the potential for its migration to deep aquifers that could serve as a future drinking water source. Adsorption and desorption are hypothesized to be the major processes controlling As solubility in oxidized surface sediments where arsenate [As(V)] is dominant. This study examined the relationship between sorption processes and arsenic solubility in shallow sediments from the dry Tulare Lake bed by determining sorption isotherms, pH effect on solubility, and desorption-readsorption behavior (hysteresis), and by using a surface complexation model to describe sorption. The sediments showed a high capacity to adsorb As(V). Estimates of the maximum adsorption capacity were 92 mg As kg- 1 at pH 7.5 and 70 mg As kg- 1 at pH 8.5 obtained using the Langmuir adsorption isotherm. Soluble arsenic [> 97% As(V)] did not increase dramatically until above pH 10. In the native pH range (7.5-8.5), soluble As concentrations were close to the lowest, indicating that As was strongly retained on the sediment. A surface complexation model, the constant capacitance model, was able to provide a simultaneous fit to both adsorption isotherms (pH 7.5 and 8.5) and the adsorption envelope (pH effect on soluble As), although the data ranges are one order of magnitude different. A hysteresis phenomenon between As adsorbed on the sediment and As in solution phase was observed in the desorption-readsorption processes and differs from conventional hysteresis observed in adsorption-desorption processes. The cause is most likely due to modification of adsorbent surfaces in sediment samples upon extensive extractions (or desorption). The significance of the hysteresis phenomenon in affecting As solubility and mobility may be better understood by further microscopic studies of As interaction mechanisms with sediments subjected to extensive leaching in natural environments. ?? 2006 Elsevier B.V. All rights reserved.

  18. VLEACH

    EPA Science Inventory

    VLEACH is a one-dimensional, finite difference model for making preliminary assessments of the effects on ground water from the leaching of volatile, sorbed contaminants through the vadose zone. The program models four main processes: liquid-phase advection, solid-phase sorption,...

  19. Modeling the enhanced removal of emerging organic contaminants during MAR through a reactive barrier.

    NASA Astrophysics Data System (ADS)

    Valhondo, Cristina; Carrera, Jesús; Ayora, Carlos; Martinez-Landa, Lurdes; Nödler, Karsten; Licha, Tobias

    2014-05-01

    Artificial recharge of reclaimed water is often proposed as a way of increasing water resources while improving quality. However, it is also feared that recalcitrant organic contaminants (i.e., those that are not completely removed during wastewater treatment) may reach the aquifer. Specifically, emerging organic contaminants (EOCs) have been increasingly detected in surface and ground waters and are becoming a worldwide problem. Most EOCs exhibit higher concentrations in reclaimed water used for artificial recharge than in produced groundwater, indicating that these compounds are retained and/or degraded during infiltration. Removal may be the result of sorption, which depends on organic matter and inorganic surfaces contained in the sediments, and degradation, which depends on redox conditions (some EOCs are preferentially removed under specific redox conditions). To enhance removal and retention processes, we designed a reactive barrier, which consists of compost, sand, clay and is covered by iron oxide. The role of compost is to favor sorption of neutral compounds and to release easily degradable organic carbon, so as to generate diverse redox condition, thus increasing the range of degraded EOCs. The role of iron oxides and clay is to favor sorption of anionic and cationic compounds, respectively. The barrier has been tested in the field proving its ability in promoting diverse redox conditions and indeed improving EOCs removal. However, experimental data do not allow separating sorption from degradation. To do so, we have built a flow and transport model representing the infiltration system and the aquifer beneath. The model has been calibrated against head data, collected during three years that include recharge and natural flow periods, and concentration, collected during a conservative tracer test. The calibrated model was then used to predict the fate of EOCs using sorption and half-lives from the literature. Results confirm that retention and degradation processes are greatly enhanced by the addition of the reactive layer. However, a significant portion of recharge occurs through preferential flow paths with short residence times in the reactive layer.

  20. Characterization of diatomite and its application for the retention of radiocobalt: role of environmental parameters.

    PubMed

    Sheng, Guodong; Dong, Huaping; Li, Yimin

    2012-11-01

    Clay minerals have been extensively studied because of their strong sorption and complexation ability. In this work, diatomite was characterized by using acid-base titration. Retention of radionuclide (60)Co(II) from aqueous solution by sorption onto diatomite was investigated by using batch technique under various environmental conditions such as pH, ionic strength, humic acid (HA), fulvic acid (FA), and temperature. The results indicated that the sorption of Co(II) onto diatomite was strongly dependent on pH. At low pH value, the sorption of Co(II) was dominated by outer-sphere surface complexation and ion exchange with Na(+)/H(+) on diatomite surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH value. The D-R model fitted the sorption isotherms better than the Langmuir and Freundlich models. The thermodynamic parameters (ΔH(0), ΔS(0) and ΔG(0)) calculated from the temperature-dependent sorption isotherms suggested that the sorption of Co(II) was an endothermic and spontaneous process. In addition, diatomite showed higher sorption capacity than that of lots of the sorbents reported in the literatures we surveyed. From the results of Co(II) removal by diatomite, the optimum reaction conditions can be obtained for the maximum removal of Co(II) from water. It is clear that the best pH values of the system to remove Co(II) from solution by using diatomite are 7-8. Considering the low cost and effective disposal of Co(II)-contaminated wastewaters, the best condition for Co(II) removal is at room temperature and solid content of 0.5 g/L. The results might be important for assessing the potential of practical application of diatomite in Co(II) and related radionuclide pollution management. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Role of soil sorption and microbial degradation on dissipation of mesotrione in plant-available soil water.

    PubMed

    Shaner, Dale; Brunk, Galen; Nissen, Scott; Westra, Phil; Chen, Wenlin

    2012-01-01

    Mesotrione is a carotenoid biosynthesis-inhibiting herbicide labeled for pre-emergence and postemergence weed control in corn production. Understanding the factors that influence the dissipation of mesotrione in soil and in the plant-available water (PAW) is important for the environmental fate assessment and optimal weed management practices. The present research investigated the role of soil properties and microbial activities on the interrelated sorption and degradation processes of mesotrione in four soils by direct measurements of PAW. We found that mesotrione bound to the soils time dependently, with approximately 14 d to reach equilibrium. The 24-h batch-slurry equilibrium experiments provided the sorption partition coefficient ranging from 0.26 to 3.53 L kg(-1), depending on soil organic carbon and pH. The dissipation of mesotrione in the soil-bound phase was primarily attributed to desorption to the PAW. Degradation in the PAW was rapid and primarily dependent on microbial actions, with half-degradation time (DT(50)) <3 d in all four soils tested. The rapid degradation in the PAW became rate limited by sorption as more available molecules were depleted in the soil pore water, resulting in a more slowed overall process for the total soil-water system (DT(50) <26 d). The dissipation of mesotrione in the PAW was due to microbial metabolism and time-dependent sorption to the soils. A coupled kinetics model calibrated with the data from the laboratory centrifugation technique provided an effective approach to investigate the interrelated processes of sorption and degradation in realistic soil moisture conditions. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Spectroscopic studies of U(VI) sorption at the kaolinite-water interface. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, H.A.; Parks, G.A.; Brown, G.E. Jr.

    Efficient use of U as a resource and safe handling, recycling and disposal of U-containing wastes require an understanding of the factors controlling the fate of U, where fate refers to the destination of U, typically expressed as an environmental medium or a process phase. The sorption process constitutes a change in elemental fate. Partitioning of an element from solution to a solid phase, or sorption, can be divided into three broad categories: adsorption, surface precipitation, and absorption. Extended X-ray absorption fine structure (EXAFS), a type of X-ray absorption spectroscopy (XAS), offers the possibility for distinguishing among different modes ofmore » sorption by characterizing the atomic environment of the sorbing element. In this study, the authors use EXAFS to determine the structure of U(VI) sorption complexes at the kaolinite-water interface. In Chapter One, they present an overview of selected aspects of U structural chemistry as a basis for considering the structural environment of U at the solid-water interface. To evaluate the utility of XAS for characterization of the structural environment of U(VI) at the solid-water interface, they have carried out an in-depth analysis of XAS data from U(VI)-containing solid and solution model compounds, which they describe in Chapter Two. In Chapter three, they consider sorption of U by kaolinite as a means of effecting the removal of U from surface collection pond waters on the Rocky Flats Plant site in northern Colorado.« less

  3. M4FT-16LL080302052-Update to Thermodynamic Database Development and Sorption Database Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zavarin, Mavrik; Wolery, T. J.; Atkins-Duffin, C.

    2016-08-16

    This progress report (Level 4 Milestone Number M4FT-16LL080302052) summarizes research conducted at Lawrence Livermore National Laboratory (LLNL) within the Argillite Disposal R&D Work Package Number FT-16LL08030205. The focus of this research is the thermodynamic modeling of Engineered Barrier System (EBS) materials and properties and development of thermodynamic databases and models to evaluate the stability of EBS materials and their interactions with fluids at various physico-chemical conditions relevant to subsurface repository environments. The development and implementation of equilibrium thermodynamic models are intended to describe chemical and physical processes such as solubility, sorption, and diffusion.

  4. Synthesis, characterization and study of sorption parameters of multi-walled carbon nanotubes/chitosan nanocomposite for the removal of picric acid from aqueous solutions.

    PubMed

    Khakpour, Roghayeh; Tahermansouri, Hasan

    2018-04-01

    The modification of carboxylated multi-wall carbon nanotubes (MWCNT-COOH) with chitosan (Chi) has been investigated to prepare a nanocomposite material (MWCNT-Chi) for the removal of picric acid from aqueous solutions. Materials were characterized by FT-IR, TGA, DTG, FESEM, EDX, BET and zeta potential. Batch experiments such as solution pH, dosage of adsorbents, contact time, concentration of the picric acid and temperature were achieved to study sorption process. Kinetic studies were well described by pseudo-second-order kinetic model for both adsorbents. The six isotherm models: Langmuir (four linear forms), Freundlich, Tempkin, Halsey, Harkins-Jura and Dubinin-Radushkevich models were applied to determine the characteristic parameters of the adsorption process. Isotherm studies showed that the Langmuir isotherm for MWCNT-Chi and Freundlich and Halsey models for both adsorbents were found to best represent the measured sorption data. In addition, the results of Dubinin-Radushkevich model confirmed the physical adsorption. Negative ΔG° values for MWCNT-Chi and positive ones for MWCNT-COOH indicated the nature of spontaneous and unspontaneous, respectively for adsorption process in the range of the studied concentrations. In addition, picric acid molecules can be desorbed from MWCNT-Chi up to 90% at pH = 9 and that the consumed MWCNT-Chi could be reutilized up to 5th cycle of regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Sorption and desorption of indaziflam degradates in several agricultural soils

    USDA-ARS?s Scientific Manuscript database

    Processes regulating pesticide fate in the environment are influenced by the physicochemical properties of pesticides and soils. Sorption-desorption are important processes as they regulate movement of pesticides in soil. Although sorption-desorption is widely studied for herbicides, studies involvi...

  6. Implementation of Solute Transport in the Vadose Zone into the `HYDRUS Package for MODFLOW'

    NASA Astrophysics Data System (ADS)

    Simunek, J.; Beegum, S.; Szymkiewicz, A.; Sudheer, K. P.

    2017-12-01

    The 'HYDRUS package for MODFLOW' was developed by Seo et al. (2007) and Twarakavi et al. (2008) to simultaneously evaluate transient water flow in both unsaturated and saturated zones. The package, which is based on the HYDRUS-1D model (Šimůnek et al., 2016) simulating unsaturated water flow in the vadose zone, was incorporated into MODFLOW (Harbaugh et al., 2000) simulating saturated groundwater flow. The HYDRUS package in the coupled model can be used to represent the effects of various unsaturated zone processes, including infiltration, evaporation, root water uptake, capillary rise, and recharge in homogeneous or layered soil profiles. The coupled model is effective in addressing spatially-variable saturated-unsaturated hydrological processes at the regional scale, allowing for complex layering in the unsaturated zone, spatially and temporarily variable water fluxes at the soil surface and in the root zone, and with alternating recharge and discharge fluxes (Twarakavi et al., 2008). One of the major limitations of the coupled model was that it could not be used to simulate at the same time solute transport. However, solute transport is highly dependent on water table fluctuations due to temporal and spatial variations in groundwater recharge. This is an important concern when the coupled model is used for analyzing groundwater contamination due to transport through the unsaturated zone. The objective of this study is to integrate the solute transport model (the solute transport part of HYDRUS-1D for the unsaturated zone and MT3DMS (Zheng and Wang, 1999; Zheng, 2009) for the saturated zone) into an existing coupled water flow model. The unsaturated zone component of the coupled model can consider solute transport involving many biogeochemical processes and reactions, including first-order degradation, volatilization, linear or nonlinear sorption, one-site kinetic sorption, two-site sorption, and two-kinetic sites sorption (Šimůnek and van Genuchten, 2008). Due to complex interactions at the groundwater table, certain modifications of the pressure head (compared to the original coupling) and solute concentration profiles were incorporated into the HYDRUS package. The developed integrated model is verified using HYDRUS-2D and analyzed for its computational time requirements.

  7. Linear and non-linear regression analysis for the sorption kinetics of methylene blue onto activated carbon.

    PubMed

    Kumar, K Vasanth

    2006-10-11

    Batch kinetic experiments were carried out for the sorption of methylene blue onto activated carbon. The experimental kinetics were fitted to the pseudo first-order and pseudo second-order kinetics by linear and a non-linear method. The five different types of Ho pseudo second-order expression have been discussed. A comparison of linear least-squares method and a trial and error non-linear method of estimating the pseudo second-order rate kinetic parameters were examined. The sorption process was found to follow a both pseudo first-order kinetic and pseudo second-order kinetic model. Present investigation showed that it is inappropriate to use a type 1 and type pseudo second-order expressions as proposed by Ho and Blanachard et al. respectively for predicting the kinetic rate constants and the initial sorption rate for the studied system. Three correct possible alternate linear expressions (type 2 to type 4) to better predict the initial sorption rate and kinetic rate constants for the studied system (methylene blue/activated carbon) was proposed. Linear method was found to check only the hypothesis instead of verifying the kinetic model. Non-linear regression method was found to be the more appropriate method to determine the rate kinetic parameters.

  8. Effects of removal of different chemical components on moisture sorption property of Populus euramericana Cv. under dynamic hygrothermal conditions

    NASA Astrophysics Data System (ADS)

    Yang, Tiantian; Zhou, Haizhen; Ma, Erni; Wang, Jiamin

    2018-09-01

    Effects of chemical components on wood sorption property under dynamic condition were investigated for the first time. Hemicellulose, lignin and extractive (denoted as DHC, DL and DE, respectively) were removed from Populus euramericana Cv., 20 mm in radial (R) and tangential (T) directions with thickness of 4 mm along the grain, then the wood was subjected to cyclic tests where relative humidity (RH) varied from 45% to 75% sinusoidally at 25 °C. Based on measured data automatically, the results showed that, various chemical components had different effects on dynamic sorption behaviors of wood. The DL exhibited the largest moisture content and diffusion coefficient, followed by the DE, Control and DHC. This indicated lignin or extractive removal accelerated the dynamic sorption process and improved hygroscopicity of wood, while hemicellulose removal caused opposite effects. Theoretical sorption model was further applied and the modeled curves fitted satisfactorily with experimental data. Dynamic moisture gradient distribution inside the different treated wood was investigated and amplitude of moisture showed negative relation with wood element depth, while phase lag presented an opposite trend. Amplitude of DL was the largest while its phase lag was the least. Conditioning thickness for RH was greatest for DHC, about twice as much as the minimum of DL.

  9. Fluorescent component and complexation mechanism of extracellular polymeric substances during dye wastewater biotreatment by anaerobic granular sludge

    NASA Astrophysics Data System (ADS)

    Li, Na; Wei, Dong; Sun, Qunqun; Han, Xiao; Du, Bin; Wei, Qin

    2018-02-01

    In this study, methylene blue (MB) wastewater was biotreated by anaerobic granular sludge (AnGS), and the fluorescent components of extracellular polymeric substances (EPS) and complexation mechanism were evaluated. Based on the experimental data, the sorption of MB by both live and inactivated AnGS followed the pseudo-second-order model, and the adsorption isotherm conformed well to the Langmuir model. It was shown that the difference in the sorption of live and inactivated AnGS was not significant, indicating that the sorption is mainly a physical-chemical process and metabolically mediated diffusion is negligible. The interaction between EPS and MB was proved by three-dimensional excitation-emission matrix (3D-EEM) and synchronous fluorescence spectra. 3D-EEM indicated that protein (PN)-like substances were the main peaks of EPS, and gradually quenched with increase of MB concentrations. According to synchronous fluorescence spectra, the main fluorescence quenching was caused by PN-like and humic-like fractions, and belonged to the static type of quenching. FTIR spectra demonstrated that hydroxyl and amino groups played a major role in MB sorption.

  10. Experimental study and modelling of selenite sorption onto illite and smectite clays.

    PubMed

    Missana, T; Alonso, U; García-Gutiérrez, M

    2009-06-15

    This study provides a large set of experimental selenite sorption data for pure smectite and illite. Similar sorption behavior existed in both clays: linear within a large range of the Se concentrations investigated (from 1x10(-10) to 1x10(-3) M); and independent of ionic strength. Selenite sorption was also analysed in the illite/smectite system with the clays mixed in two different proportions, as follows: (a) 30% illite-70% smectite and (b) 43% illite-57% smectite. The objective of the study was to provide the simplest model possible to fit the experimental data, a model also capable of describing selenite sorption in binary illite/smectite clay systems. Selenite sorption data, separately obtained in the single mineral systems, were modeled using both a one- and a two-site non-electrostatic model that took into account the formation of two complexes at the edge sites of the clay. Although the use of a two-site model slightly improved the fit of data at a pH below 4, the simpler one-site model reproduced satisfactorily all the sorption data from pH 3 to 8. The complexation constants obtained by fitting sorption data of the individual minerals were incorporated into a model to predict the adsorption of selenium in the illite/smectite mixtures; the model's predictions were consistent with the experimental adsorption data.

  11. One-Dimensional Transport with Equilibrium Chemistry (OTEQ) - A Reactive Transport Model for Streams and Rivers

    USGS Publications Warehouse

    Runkel, Robert L.

    2010-01-01

    OTEQ is a mathematical simulation model used to characterize the fate and transport of waterborne solutes in streams and rivers. The model is formed by coupling a solute transport model with a chemical equilibrium submodel. The solute transport model is based on OTIS, a model that considers the physical processes of advection, dispersion, lateral inflow, and transient storage. The equilibrium submodel is based on MINTEQ, a model that considers the speciation and complexation of aqueous species, acid-base reactions, precipitation/dissolution, and sorption. Within OTEQ, reactions in the water column may result in the formation of solid phases (precipitates and sorbed species) that are subject to downstream transport and settling processes. Solid phases on the streambed may also interact with the water column through dissolution and sorption/desorption reactions. Consideration of both mobile (waterborne) and immobile (streambed) solid phases requires a unique set of governing differential equations and solution techniques that are developed herein. The partial differential equations describing physical transport and the algebraic equations describing chemical equilibria are coupled using the sequential iteration approach. The model's ability to simulate pH, precipitation/dissolution, and pH-dependent sorption provides a means of evaluating the complex interactions between instream chemistry and hydrologic transport at the field scale. This report details the development and application of OTEQ. Sections of the report describe model theory, input/output specifications, model applications, and installation instructions. OTEQ may be obtained over the Internet at http://water.usgs.gov/software/OTEQ.

  12. Synthesis and characterization of poly(maleic acid)-grafted crosslinked chitosan nanomaterial with high uptake and selectivity for Hg(II) sorption.

    PubMed

    Ge, Huacai; Hua, Tingting

    2016-11-20

    Chitosan-poly(maleic acid) nanomaterial (PMACS) with the size of 400-900nm was synthesized by grafting poly(maleic acid) onto chitosan and then crosslinking with glutaraldehyde. The synthesis conditions were optimized. The structure and morphology of PMACS were characterized by FT-IR, XRD, SEM and TGA. PMACS was used to adsorb some heavy metal ions such as Hg(II), Pb(II), Cu(II), Cd(II), Co(II), and Zn(II). The results indicated that PMACS had selectivity for Hg(II) sorption. The effects of various variables for sorption of Hg(II) were further explored. The maximum capacity for Hg(II) sorption was found to be 1044mgg(-1) at pH 6.0, which could compare with the maximal value of the recently reported other sorbents. The sorption followed the pseudo-second-order kinetics and Langmuir isotherm models. The rising of temperature benefited the uptake and the sorption was a spontaneous chemical process. The sorbent could be reused with EDTA. Hence, the nanomaterial would be used as a selective and high uptake sorbent in the removal of Hg(II) from effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Numerical simulation of advective-dispersive multisolute transport with sorption, ion exchange and equilibrium chemistry

    USGS Publications Warehouse

    Lewis, F.M.; Voss, C.I.; Rubin, Jacob

    1986-01-01

    A model was developed that can simulate the effect of certain chemical and sorption reactions simultaneously among solutes involved in advective-dispersive transport through porous media. The model is based on a methodology that utilizes physical-chemical relationships in the development of the basic solute mass-balance equations; however, the form of these equations allows their solution to be obtained by methods that do not depend on the chemical processes. The chemical environment is governed by the condition of local chemical equilibrium, and may be defined either by the linear sorption of a single species and two soluble complexation reactions which also involve that species, or binary ion exchange and one complexation reaction involving a common ion. Partial differential equations that describe solute mass balance entirely in the liquid phase are developed for each tenad (a chemical entity whose total mass is independent of the reaction process) in terms of their total dissolved concentration. These equations are solved numerically in two dimensions through the modification of an existing groundwater flow/transport computer code. (Author 's abstract)

  14. Development of a graphene oxide/chitosan nanocomposite for the removal of picric acid from aqueous solutions: Study of sorption parameters.

    PubMed

    Mohseni Kafshgari, Mona; Tahermansouri, Hasan

    2017-12-01

    The functionalization of graphene oxide (GO) with chitosan (Chi) has been investigated to prepare a nanocomposite material (GO-Chi) for the removal of picric acid from aqueous solutions. Materials were characterized by FT-IR, TGA, DTG, FESEM, EDX, XRD and BET. Batch experiments such as solution pH, amount of adsorbents, contact time, concentration of the picric acid and temperature were achieved to study sorption process. Kinetic studies were well described by pseudo-second-order kinetic model for both adsorbents. Isotherm studies showed that the Langmuir isotherm for GO and Freundlich and Halsey models for GO-Chi were found to best represent the measured sorption data. Negative ΔG° values for GO-Chi and positive ones for GO indicated the nature of spontaneous and unspontaneous, respectively for adsorption process. In addition, picric acid molecules can be desorbed from GO-Chi up to 80% at pH=9 and that the consumed GO-Chi could be reutilized up to 5th cycle of regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Sorption and reemission of formaldehyde by gypsum wallboard. Report for June 1990-August 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, J.C.S.

    1993-01-01

    The paper gives results of an analysis of the sorption and desorption of formaldehyde by unpainted wallboard, using a mass transfer model based on the Langmuir sorption isotherm. The sorption and desorption rate constants are determined by short-term experimental data. Long-term sorption and desorption curves are developed by the mass transfer model without any adjustable parameters. Compared with other empirically developed models, the mass transfer model has more extensive applicability and provides an elucidation of the sorption and desorption mechanism that empirical models cannot. The mass transfer model is also more feasible and accurate than empirical models for applications suchmore » as scale-up and exposure assessment. For a typical indoor environment, the model predicts that gypsum wallboard is a much stronger sink for formaldehyde than for other indoor air pollutants such as tetrachloroethylene and ethylbenzene. The strong sink effects are reflected by the high equilibrium capacity and slow decay of the desorption curve.« less

  16. One-Dimensional Transport with Inflow and Storage (OTIS): A Solute Transport Model for Streams and Rivers

    USGS Publications Warehouse

    Runkel, Robert L.

    1998-01-01

    OTIS is a mathematical simulation model used to characterize the fate and transport of water-borne solutes in streams and rivers. The governing equation underlying the model is the advection-dispersion equation with additional terms to account for transient storage, lateral inflow, first-order decay, and sorption. This equation and the associated equations describing transient storage and sorption are solved using a Crank-Nicolson finite-difference solution. OTIS may be used in conjunction with data from field-scale tracer experiments to quantify the hydrologic parameters affecting solute transport. This application typically involves a trial-and-error approach wherein parameter estimates are adjusted to obtain an acceptable match between simulated and observed tracer concentrations. Additional applications include analyses of nonconservative solutes that are subject to sorption processes or first-order decay. OTIS-P, a modified version of OTIS, couples the solution of the governing equation with a nonlinear regression package. OTIS-P determines an optimal set of parameter estimates that minimize the squared differences between the simulated and observed concentrations, thereby automating the parameter estimation process. This report details the development and application of OTIS and OTIS-P. Sections of the report describe model theory, input/output specifications, sample applications, and installation instructions.

  17. Production and characterization of carbonized sorbent products optimized for anionic contaminants

    NASA Astrophysics Data System (ADS)

    Viglasova, Eva; Fristak, Vladimir; Galambos, Michal; Hood-Nowotny, Rebecca; Soja, Gerhard

    2017-04-01

    Processing conditions, production methods and feedstock characteristics have been shown to affect the final sorption properties of biochar-based sorbents that have been produced in pyrolysis reactors. The content of O-containing carboxyl, phenolic and hydroxyl functional groups on the biochar surfaces plays a crucial role in sorption chemistry of hazardous materials. The sorption process can be affected by the presence of non-carbonized fractions in biochar matter as well. All these characteristics indicate that biochar shows good potential as a new tool in removal and separation technologies of various pollutants from waste water or contaminated soils. The sorption potential of wood-based biochars for cationic forms of heavy metals has been studied intensively and has already led to successful pilot applications in the field. However, anionic compounds (e.g. phosphate, nitrate, sulphate, As-, Cr-compounds) do not sorb well to unmodified biochar and need specific surface modification of biochar. Based on this fact, we try to obtain data about the sorptive separation of anionic forms of various contaminants from model aqueous solutions by different types of biochar-derived sorbents, or mineral-enriched biochar-derived sorbents. An important part of this research is the assesment of the effects of varying process parameters during biomass carbonisation, the role of biomass feedstock and pre-and/or post-treatment of the biochars onto sorption processes. We specify the most appropriate application strategies with biochar for remediation purposes of waste water or contaminated waters with elevated toxic metal concentrations that might compromise the quality of surface waters. The main aim of research is the preparation of modified biochar sorbent, the characterization of its surface and the investigation about new possibilities of modified biochar sorbent applications for sorption of various contaminants, mainly their anionic forms (e.g. phosphates, nitrates, arsenates). Modification of bamboo-based biochar with clay minerals, the preparation of its composites, could increase the surface area of bamboo-based biochar from 3 to 5 times. Other ways of modification e.g. by using FeCl3 ṡ 6H2O caused a significant increase of sorption ability for anionic forms

  18. Investigations of Heavy Metal Ion Sorption Using Nanocomposites of Iron-Modified Biochar

    NASA Astrophysics Data System (ADS)

    Kołodyńska, D.; Bąk, J.; Kozioł, M.; Pylypchuk, L. V.

    2017-06-01

    Magnetic biochar nanocomposites were obtained by modification of biochar by zero-valent iron. The article provides information on the impact of contact time, initial Cd(II), Co(II), Zn(II), and Pb(II) ion concentrations, dose of the sorbents, solution pH and temperature on the adsorption capacity. On the basis of experiments, it was found that the optimum parameters for the sorption process are phase contact time 360 min (after this time, the equilibrium of all concentrations is reached), the dose of sorbent equal to 5 g/dm3, pH 5 and the temperature 295 K. The values of parameters calculated from the kinetic models and isotherms present the best match to the pseudo second order and Langmuir isotherm models. The calculated thermodynamic parameters ΔH 0, ΔS 0 and ΔG 0 indicate that the sorption of heavy metal ions is an exothermic and spontaneous process as well as favoured at lower temperatures, suggesting the physical character of sorption. The solution of nitric acid(V) at the concentration 0.1 mol/dm3 was the best acidic desorbing agent used for regeneration of metal-loaded magnetic sorbents. The physicochemical properties of synthesized composites were characterized by FTIR, SEM, XRD, XPS and TG analyses. The point characteristics of the double layer for biochar pHPZC and pHIEP were designated.

  19. A surface complexation and ion exchange model of Pb and Cd competitive sorption on natural soils

    NASA Astrophysics Data System (ADS)

    Serrano, Susana; O'Day, Peggy A.; Vlassopoulos, Dimitri; García-González, Maria Teresa; Garrido, Fernando

    2009-02-01

    The bioavailability and fate of heavy metals in the environment are often controlled by sorption reactions on the reactive surfaces of soil minerals. We have developed a non-electrostatic equilibrium model (NEM) with both surface complexation and ion exchange reactions to describe the sorption of Pb and Cd in single- and binary-metal systems over a range of pH and metal concentration. Mineralogical and exchange properties of three different acidic soils were used to constrain surface reactions in the model and to estimate surface densities for sorption sites, rather than treating them as adjustable parameters. Soil heterogeneity was modeled with >FeOH and >SOH functional groups, representing Fe- and Al-oxyhydroxide minerals and phyllosilicate clay mineral edge sites, and two ion exchange sites (X - and Y -), representing clay mineral exchange. An optimization process was carried out using the entire experimental sorption data set to determine the binding constants for Pb and Cd surface complexation and ion exchange reactions. Modeling results showed that the adsorption of Pb and Cd was distributed between ion exchange sites at low pH values and specific adsorption sites at higher pH values, mainly associated with >FeOH sites. Modeling results confirmed the greater tendency of Cd to be retained on exchange sites compared to Pb, which had a higher affinity than Cd for specific adsorption on >FeOH sites. Lead retention on >FeOH occurred at lower pH than for Cd, suggesting that Pb sorbs to surface hydroxyl groups at pH values at which Cd interacts only with exchange sites. The results from the binary system (both Pb and Cd present) showed that Cd retained in >FeOH sites decreased significantly in the presence of Pb, while the occupancy of Pb in these sites did not change in the presence of Cd. As a consequence of this competition, Cd was shifted to ion exchange sites, where it competes with Pb and possibly Ca (from the background electrolyte). Sorption on >SOH functional groups increased with increasing pH but was small compared to >FeOH sites, with little difference between single- and binary-metal systems. Model reactions and conditional sorption constants for Pb and Cd sorption were tested on a fourth soil that was not used for model optimization. The same reactions and constants were used successfully without adjustment by estimating surface site concentrations from soil mineralogy. The model formulation developed in this study is applicable to acidic mineral soils with low organic matter content. Extension of the model to soils of different composition may require selection of surface reactions that account for differences in clay and oxide mineral composition and organic matter content.

  20. Sorption behavior of tetracyclines on suspended organic matters originating from swine wastewater.

    PubMed

    Lou, Yaoyin; Ye, Zhi-Long; Chen, Shaohua; Ye, Xin; Deng, Yujun; Zhang, Jianqiao

    2018-03-01

    Tetracyclines (TCs) discharged from livestock wastewater have aroused public concerns due to their pharmacological threats to ecosystems and human health. As an important medium in the wastewater, suspended organic matters (SOMs) play vital roles in antibiotics transport and degradation. However, limited information has been reported in the relevant literature. This study investigated TCs sorption behavior on SOM, withdrawn from swine wastewater. High TCs sorption capacities were detected, with the maximum values ranging from 0.337 to 0.679mg/g. Increasing pH and temperature led to the decline of sorption capacity. Results from three-dimensional excitation-emission matrix fluorescence spectroscopy and Fourier transform infrared spectrometry revealed that amide and carboxyl groups were the main functional groups for TCs adsorption. The interactions between SOM and TCs were clarified as predominated by hydrogen-bonding and cation-exchange in acid conditions, and electrostatic repulsion in neutral or alkaline conditions. Adsorption kinetics modeling was conducted, and a satisfactory fitting was achieved with the Freundlich equation. These results indicated that the adsorption process was a rather complex process, involving a combination of cation-exchange and hydrogen-bonding. The results will provide a better understanding of the capability of SOM for TCs transport and abatement in the wastewater treatment process. Copyright © 2017. Published by Elsevier B.V.

  1. Factors influencing inapplicability of cosolvency-induced model on organic acid sorption onto humic substance from methanol mixture.

    PubMed

    Kim, Minhee; Kim, Juhee; Kim, Jeong-Gyu; Hyun, Seunghun

    2015-10-01

    Applicability of cosolvency model for describing the sorption of organic acids to humic substance was investigated by analyzing dataset of sorption (K m) and solubility (S m) of selected solutes (benzoic acid, 1-naphthoic acid, 2,4-dichlorophenoxyacetic acid, and 2,4,6-trichlorophenol (2,4,6-TCP)) as a function of pH(appCME) (apparent pH of liquid phase) and f c (methanol volume fractions). For all solutes, the K m decreased with f c with the K m reduction being less than the S m-based prediction. The slope of log K m-f c plot in the three organic carboxylic acids was well correlated with their cosolvency power, whereas the data of organic phenolic acid (2,4,6-TCP) was placed above the trend, indicating the different actions of functional groups. The occurrence of Ca(2+) bridge between carboxylate and negatively charged humic surface may explain this phenomenon. Normalizing the K m to the corresponding S m (α' = K m/S m) was not in unity over the pH(app)-f c range but decreased with f c, indicating a possible structural modification of sorption domain favoring extra sorption. For a given solute, the α' of neutral species was always greater than that of anionic species, showing that extra interaction will be likely at pH(app)

  2. A model for trace metal sorption processes at the calcite surface: Adsorption of Cd2+ and subsequent solid solution formation

    USGS Publications Warehouse

    Davis, J.A.; Fuller, C.C.; Cook, A.D.

    1987-01-01

    The rate of Cd2+ sorption by calcite was determined as a function of pH and Mg2+ in aqueous solutions saturated with respect to calcite but undersaturated with respect to CdCO3. The sorption is characterized by two reaction steps, with the first reaching completion within 24 hours. The second step proceeded at a slow and nearly constant rate for at least 7 days. The rate of calcite recrystallization was also studied, using a Ca2+ isotopic exchange technique. Both the recrystallization rate of calcite and the rate of slow Cd2+ sorption decrease with increasing pH or with increasing Mg2+. The recrystallization rate could be predicted from the number of moles of Ca present in the hydrated surface layer. A model is presented which is consistent with the rates of Cd2+ sorption and Ca2+ isotopic exchange. In the model, the first step in Cd2+ sorption involves a fast adsorption reaction that is followed by diffusion of Cd2+ into a surface layer of hydrated CaCO3 that overlies crystalline calcite. Desorption of Cd2+ from the hydrated layer is slow. The second step is solid solution formation in new crystalline material, which grows from the disordered mixture of Cd and Ca carbonate in the hydrated surface layer. Calculated distribution coefficients for solid solutions formed at the surface are slightly greater than the ratio of equilibrium constants for dissolution of calcite and CdCO3, which is the value that would be expected for an ideal solid solution in equilibrium with the aqueous solution. ?? 1987.

  3. Sorption and recovery of platinum from simulated spent catalyst solution and refinery wastewater using chemically modified biomass as a novel sorbent.

    PubMed

    Garole, Dipak J; Choudhary, Bharat C; Paul, Debajyoti; Borse, Amulrao U

    2018-04-01

    In this study, Lagerstroemia speciosa biomass modified by polyethylenimine (PEI-LS) was developed as a potential biosorbent for sorption and recovery of platinum(II) from platinum bearing waste solutions. Batch experiments were conducted to study the effect of various parameters on the sorption and recovery of platinum(II) using PEI-LS. The equilibrium time for platinum(II) sorption process was found to be 6 h. Both the sorption kinetics and sorption isotherm data fits pseudo second-order kinetic model and Langmuir isotherm, respectively. The maximum sorption capacity of platinum(II) onto PEI-LS at pH 2 for the studied temperature range (25-45 °C) is in the range of 122-154 mg/g. Evaluation of thermodynamic parameters suggests that the platinum(II) sorption is spontaneous and endothermic in nature. The regeneration of PEI-LS can be achieved using acidic thiourea as an eluent for recovery of platinum from the biosorbent. Fourier transform infrared (FT-IR) analysis suggests many functional groups were involved in platinum(II) sorption onto PEI-LS. Both the scanning electron microscope/energy dispersive spectroscopy (SEM/EDS) and X-ray photoelectron spectroscopy (XPS) analysis suggest a successful modification of raw biomass with PEI. The XPS analysis further concludes that platinum(II) sorption is governed by ion-exchange and co-ordination reaction. Finally, the PEI-LS was shown to recover ≥ 90% of platinum from two simulated solutions: the acid-leached spent catalyst solution and refinery wastewater. The biosorbent developed in this study is a low-cost and eco-friendly media that can be effectively used for platinum recovery from industrial wastewater.

  4. Sorption of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) to synthetic resins.

    PubMed

    Bi, Erping; Haderlein, Stefan B; Schmidt, Torsten C

    2005-10-01

    Methyl tert-butyl ether (MTBE) is a widely used gasoline oxygenate. Contamination of MTBE and its major degradation product tert-butyl alcohol (TBA) in groundwater and surface water has received great attention. However, sorption affinity and sorption mechanisms of MTBE and TBA to synthetic resins, which can be potentially used in removal of these contaminants from water, in passive sampling, or in enrichment of bacteria, have not been studied systemically. In this study, kinetic and equilibrium sorption experiments (single solute and binary mixtures) on four synthetic resins were conducted. The sorption affinity of the investigated sorbents for MTBE and TBA decreases in the order Ambersorb 563>Optipore L493>Amberlite XAD4>Amberlite XAD7, and all show higher sorption affinity for MTBE than for TBA. Binary experiments with o-xylene, a major compound of gasoline as co-contaminant, imply that all resins preferentially sorb o-xylene over MTBE or TBA, i.e., there is sorption competition. In the equilibrium aqueous concentration (Ceq) range (0.1-139.0 mg/L for MTBE, and 0.01-48.4 mg/L for TBA), experimental and modeling results as well as sorbent characteristics indicate that micropore filling and/or some other type of adsorption process (e.g., adsorption to specific sites of high sorption potential at low concentrations) rather than partitioning were the dominant sorption mechanisms. Optipore L493 has favourable sorption and desorption characteristics, and is a suitable sorbent, e.g., in bacteria enrichment or passive sampling for moderately polar compounds. However, for highly polar compounds such as TBA, Ambersorb 563 might be a better choice, especially in water treatment.

  5. Cs sorption to potential host rock of low-level radioactive waste repository in Taiwan: experiments and numerical fitting study.

    PubMed

    Wang, Tsing-Hai; Chen, Chin-Lung; Ou, Lu-Yen; Wei, Yuan-Yaw; Chang, Fu-Lin; Teng, Shi-Ping

    2011-09-15

    A reliable performance assessment of radioactive waste repository depends on better knowledge of interactions between nuclides and geological substances. Numerical fitting of acquired experimental results by the surface complexation model enables us to interpret sorption behavior at molecular scale and thus to build a solid basis for simulation study. A lack of consensus on a standard set of assessment criteria (such as determination of sorption site concentration, reaction formula) during numerical fitting, on the other hand, makes lower case comparison between various studies difficult. In this study we explored the sorption of cesium to argillite by conducting experiments under different pH and solid/liquid ratio (s/l) with two specific initial Cs concentrations (100mg/L, 7.5 × 10(-4)mol/L and 0.01 mg/L, 7.5 × 10(-8)mol/L). After this, numerical fitting was performed, focusing on assessment criteria and their consequences. It was found that both ion exchange and electrostatic interactions governed Cs sorption on argillite. At higher initial Cs concentration the Cs sorption showed an increasing dependence on pH as the solid/liquid ratio was lowered. In contrast at trace Cs levels, the Cs sorption was neither s/l dependent nor pH sensitive. It is therefore proposed that ion exchange mechanism dominates Cs sorption when the concentration of surface sorption site exceeds that of Cs, whereas surface complexation is attributed to Cs uptake under alkaline environments. Numerical fitting was conducted using two different strategies to determine concentration of surface sorption sites: the clay model (based on the cation exchange capacity plus surface titration results) and the iron oxide model (where the concentration of sorption sites is proportional to the surface area of argillite). It was found that the clay model led to better fitting than the iron oxide model, which is attributed to more amenable sorption sites (two specific sorption sites along with larger site density) when using clay model. Moreover, increasing s/l ratio would produce more sorption sites, which helps to suppress the impact of heterogeneous surface on Cs sorption behavior under high pH environments. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Using Weighted Least Squares Regression for Obtaining Langmuir Sorption Constants

    USDA-ARS?s Scientific Manuscript database

    One of the most commonly used models for describing phosphorus (P) sorption to soils is the Langmuir model. To obtain model parameters, the Langmuir model is fit to measured sorption data using least squares regression. Least squares regression is based on several assumptions including normally dist...

  7. Diffusion and sorption of organic micropollutants in biofilms with varying thicknesses.

    PubMed

    Torresi, Elena; Polesel, Fabio; Bester, Kai; Christensson, Magnus; Smets, Barth F; Trapp, Stefan; Andersen, Henrik R; Plósz, Benedek Gy

    2017-10-15

    Solid-liquid partitioning is one of the main fate processes determining the removal of micropollutants in wastewater. Little is known on the sorption of micropollutants in biofilms, where molecular diffusion may significantly influence partitioning kinetics. In this study, the diffusion and the sorption of 23 micropollutants were investigated in novel moving bed biofilm reactor (MBBR) carriers with controlled biofilm thickness (50, 200 and 500 μm) using targeted batch experiments (initial concentration = 1 μg L -1 , for X-ray contrast media 15 μg L -1 ) and mathematical modelling. We assessed the influence of biofilm thickness and density on the dimensionless effective diffusivity coefficient f (equal to the biofilm-to-aqueous diffusivity ratio) and the distribution coefficient K d,eq (L g -1 ). Sorption was significant only for eight positively charged micropollutants (atenolol, metoprolol, propranolol, citalopram, venlafaxine, erythromycin, clarithromycin and roxithromycin), revealing the importance of electrostatic interactions with solids. Sorption equilibria were likely not reached within the duration of batch experiments (4 h), particularly for the thickest biofilm, requiring the calculation of the distribution coefficient K d,eq based on the approximation of the asymptotic equilibrium concentration (t > 4 h). K d,eq values increased with increasing biofilm thickness for all sorptive micropollutants (except atenolol), possibly due to higher porosity and accessible surface area in the thickest biofilm. Positive correlations between K d,eq and micropollutant properties (polarity and molecular size descriptors) were identified but not for all biofilm thicknesses, thus confirming the challenge of improving predictive sorption models for positively charged compounds. A diffusion-sorption model was developed and calibrated against experimental data, and estimated f values also increased with increasing biofilm thickness. This indicates that diffusion in thin biofilms may be strongly limited (f ≪ 0.1) by the high biomass density (reduced porosity). Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Cadmium removal by bioclastic granules (Lithothamnium calcareum): batch and fixed-bed column systems sorption studies.

    PubMed

    Veneu, Diego Macedo; Schneider, Claudio Luiz; de Mello Monte, Marisa Bezerra; Cunha, Osvaldo Galvão Caldas; Yokoyama, Lídia

    2018-07-01

    The potential of Bioclastic Granules - BG (calcium-carbonate-based material) using the algae Lithothamnium calcareum as sorbent for the removal of Cd(II) from aqueous solutions by sorption was evaluated through batch and continuous systems tests using a fixed-bed column. Sorption process variables, in particular pH (2-7), particle size (<38-300 μm), initial BG concentration (0.1-1.0 g L -1 ), initial Cd(II) concentrations (5-400 mg L -1 ) and contact time (5-240 min), were evaluated. Adsorption isotherm profiles of Cd(II) per BG were similar to an L-type, or Langmuir type, with the adsorption forming a monolayer of approximately 0.61 μm, with a q max of 188.74 mg g -1 and k L of 0.710 L mg -1 . Thomas's model considers that sorption is not limited to a chemical reaction but is controlled by mass transfer at the interface. In the present study, the obtained value of k Th was 0.895 mL h -1  mg -1 , reaching a sorption capacity q o of 124.4 mg g -1 . For the Yoon-Nelson model, it was possible to obtain two important parameters to describe the behavior of the column, the rate constant (k YN ), obtaining a value of 0.09 h -1 and an τ of 82.12 h corresponding to the time required for sorption to occur of 50% of the solute in the rupture curve. X-ray diffraction and scanning electron microscopy analyses coupled to the X-ray dispersive energy system (SEM/EDS) of the BG after the Cd(II) ion sorption tests evidenced the formation of crystals with the prevalence of a new mineral phase (otavite).

  9. Glyphosate sorption to soils of Argentina. Estimation of affinity coeficient by pedotransfer function

    NASA Astrophysics Data System (ADS)

    De Geronimo, Eduardo; Aparicio, Virginia; Costa, José Luis

    2017-04-01

    Argentine agricultural production is fundamentally based on a technological package that combines direct seeding and glyphosate with transgenic crops (soybean, maize and cotton). Therefore, glyphosate is the most employed herbicide in the country, where 180 to 200 million liters are applied every year. Glyphosate is strongly sorbed to soil by binding to clay minerals, layer silicates, metal oxides, non-crystalline materials or organic matter. Sorption of glyphosate is a reversible process that regulates the half-life and mobility of the herbicide and it is therefore related to the risk of contaminating courses of surface and groundwater. However, this behavior may vary depending on the characteristics of the soil on which it is applied. In addition, pH is a determining factor since it modifies the net charge in the molecule and, with it, the force of the electrostatic interaction between the glyphosate and the components of the soil. For a reliable risk assessment of groundwater contamination from pesticides precise predictions of sorption coefficients are needed. The aim of this work is to study the affinity of glyphosate to different soils of Argentina and create a model to estimate the glyphosate Freundlich sorption coefficient (Kf) from easily measurable soil properties. Adsorption of glyphosate was investigated on 12 different agricultural soils of Argentina using batch equilibration technique and fit to Freundlich sorption model. The correlation coefficients and the effects of soil characteristic factors on glyphosate adsorption parameter were analyzed through principal component and multiple lineal regression analysis. Results indicate that pH and clay contents were found to be the most significant soil factors which affect the glyphosate adsorption process. The Freundlich (Kf) pedotransfer function obtained by stepwise regression analysis was Kf = 735.2*Clay - 104.2*pH + 0.7*Polsen - 3.8*Alin. A 97.9% of the variation of glyphosate sorption coefficient could be attributed to the variation of the soil clay contents, pH, Polsen and Alin.

  10. Sorption of Cu(2+) on humic acids sequentially extracted from a sediment.

    PubMed

    Yang, Kun; Miao, Gangfen; Wu, Wenhao; Lin, Daohui; Pan, Bo; Wu, Fengchang; Xing, Baoshan

    2015-11-01

    In addition to the diverse properties of humic acids (HAs) extracted from different soils or sediments, chemical compositions, functional groups and structures of HAs extracted from a single soil or sediment could also be diverse and thus significantly affect sorption of heavy metals, which is a key process controlling the transfer, transformation and fate of heavy metals in the environment. In this study, we sequentially extracted four HA fractions from a single sediment and conducted the sorption experiments of Cu(2+) on these HA fractions. Our results showed that aromaticity and acidic group content of HA fraction decreased with increasing extraction. Earlier extracted HA fraction had higher sorption capacity and affinity for Cu(2+). There were two fractions of adsorbed Cu(2+) on HAs, i.e., ion exchanged fraction and surface bonded fraction, which can be captured mechanically by the bi-Langmuir model with good isotherm fitting. The ion exchanged fraction had larger sorption capacity but lower sorption affinity, compared with the surface bonded fraction. The dissociated carboxyl groups of HAs were responsible for both fractions of Cu(2+) sorption, due to the more Cu(2+) sorption on the earlier extracted HA fraction with more carboxyl groups and at higher pH. The intensive competition between H(+) and the exchangeable Cu(2+) could result in the decrease of ion exchanged capacity and affinity for Cu(2+) on HAs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Cadmium mobility in sediments and soils from a coal mining area on Tibagi River watershed: environmental risk assessment.

    PubMed

    Galunin, Evgeny; Ferreti, Jeferson; Zapelini, Iago; Vieira, Isadora; Ricardo Teixeira Tarley, César; Abrão, Taufik; Santos, Maria Josefa

    2014-01-30

    The risk of cadmium contamination in the Tibagi River watershed (Parana State, Brazil) affected by past coal mining activities was assessed through sorption-desorption modeling for sediment and soil samples. The acidic character of the samples resulted in more competition between the cadmium ions and protons, thereby influencing the cadmium sorption-desorption. The sorption isotherms were fitted to the Langmuir and Freundlich single models and to the dual-site Langmuir-Freundlich (or Sips) model. The single-site models indicated a low-energy character of sorption sites on the sample sorption sites, whereas the dual-site model explained the availability of higher-affinity and lower-affinity non-specific sites. The correlation of the sorption and desorption constants with the physicochemical and mineralogical characteristics of the samples showed that the cadmium sorption behavior was significantly affected by the pH, point of zero charge, and also by the magnesium, aluminum, calcium and manganese amounts. Besides, the desorption rate and hysteresis index suggested a high risk of cadmium mobilization along the Tibagi River basin. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Surface complexation modeling of americium sorption onto volcanic tuff.

    PubMed

    Ding, M; Kelkar, S; Meijer, A

    2014-10-01

    Results of a surface complexation model (SCM) for americium sorption on volcanic rocks (devitrified and zeolitic tuff) are presented. The model was developed using PHREEQC and based on laboratory data for americium sorption on quartz. Available data for sorption of americium on quartz as a function of pH in dilute groundwater can be modeled with two surface reactions involving an americium sulfate and an americium carbonate complex. It was assumed in applying the model to volcanic rocks from Yucca Mountain, that the surface properties of volcanic rocks can be represented by a quartz surface. Using groundwaters compositionally representative of Yucca Mountain, americium sorption distribution coefficient (Kd, L/Kg) values were calculated as function of pH. These Kd values are close to the experimentally determined Kd values for americium sorption on volcanic rocks, decreasing with increasing pH in the pH range from 7 to 9. The surface complexation constants, derived in this study, allow prediction of sorption of americium in a natural complex system, taking into account the inherent uncertainty associated with geochemical conditions that occur along transport pathways. Published by Elsevier Ltd.

  13. Drivers of dissolved organic carbon export in a subarctic catchment: Importance of microbial decomposition, sorption-desorption, peatland and lateral flow.

    PubMed

    Tang, Jing; Yurova, Alla Y; Schurgers, Guy; Miller, Paul A; Olin, Stefan; Smith, Benjamin; Siewert, Matthias B; Olefeldt, David; Pilesjö, Petter; Poska, Anneli

    2018-05-01

    Tundra soils account for 50% of global stocks of soil organic carbon (SOC), and it is expected that the amplified climate warming in high latitude could cause loss of this SOC through decomposition. Decomposed SOC could become hydrologically accessible, which increase downstream dissolved organic carbon (DOC) export and subsequent carbon release to the atmosphere, constituting a positive feedback to climate warming. However, DOC export is often neglected in ecosystem models. In this paper, we incorporate processes related to DOC production, mineralization, diffusion, sorption-desorption, and leaching into a customized arctic version of the dynamic ecosystem model LPJ-GUESS in order to mechanistically model catchment DOC export, and to link this flux to other ecosystem processes. The extended LPJ-GUESS is compared to observed DOC export at Stordalen catchment in northern Sweden. Vegetation communities include flood-tolerant graminoids (Eriophorum) and Sphagnum moss, birch forest and dwarf shrub communities. The processes, sorption-desorption and microbial decomposition (DOC production and mineralization) are found to contribute most to the variance in DOC export based on a detailed variance-based Sobol sensitivity analysis (SA) at grid cell-level. Catchment-level SA shows that the highest mean DOC exports come from the Eriophorum peatland (fen). A comparison with observations shows that the model captures the seasonality of DOC fluxes. Two catchment simulations, one without water lateral routing and one without peatland processes, were compared with the catchment simulations with all processes. The comparison showed that the current implementation of catchment lateral flow and peatland processes in LPJ-GUESS are essential to capture catchment-level DOC dynamics and indicate the model is at an appropriate level of complexity to represent the main mechanism of DOC dynamics in soils. The extended model provides a new tool to investigate potential interactions among climate change, vegetation dynamics, soil hydrology and DOC dynamics at both stand-alone to catchment scales. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Comparison of tetrachloromethane sorption to an alkylammonium-clay and an alkyldiammonium-clay

    USGS Publications Warehouse

    Smith, J.A.; Jaffe, P.R.

    1991-01-01

    The interlamellar space of Wyoming bentonite (clay) was modified by exchanging either decyltrimethyl-ammonium (DTMA) or decyltrimethyldiammonium (DTMDA) cations for inorganic ions, and tetrachloromethane sorption to the resulting two organoclays from water was studied at 10, 20, and 35??C. Only one end of the 10-carbon alkyl chain of the DTMA cation is attached to the silica surface of the clay mineral, and tetrachloromethane sorption of DTMA-clay is characterized by isotherm linearity, noncompetitive sorption, weak solute uptake, and a relatively low heat of sorption. Both ends of the 10-carbon chain of the DTMDA cation are attached to the silica surface of the clay mineral, and tetrachloromethane sorption to DTMDA-clay is characterized by nonlinear isotherms, competitive sorption, strong solute uptake, and a relatively high, exothermic heat of sorption that varies as a function of the mass of tetrachloromethane sorbed. Therefore, the attachment of both ends of the alkyl chain to the interlamellar mineral surface appears to change the sorption mechanism from a partition-dominated process to an adsorption-dominated process. ?? 1991 American Chemical Society.

  15. Reactive solute transport in streams: 1. Development of an equilibrium- based model

    USGS Publications Warehouse

    Runkel, Robert L.; Bencala, Kenneth E.; Broshears, Robert E.; Chapra, Steven C.

    1996-01-01

    An equilibrium-based solute transport model is developed for the simulation of trace metal fate and transport in streams. The model is formed by coupling a solute transport model with a chemical equilibrium submodel based on MINTEQ. The solute transport model considers the physical processes of advection, dispersion, lateral inflow, and transient storage, while the equilibrium submodel considers the speciation and complexation of aqueous species, precipitation/dissolution and sorption. Within the model, reactions in the water column may result in the formation of solid phases (precipitates and sorbed species) that are subject to downstream transport and settling processes. Solid phases on the streambed may also interact with the water column through dissolution and sorption/desorption reactions. Consideration of both mobile (water-borne) and immobile (streambed) solid phases requires a unique set of governing differential equations and solution techniques that are developed herein. The partial differential equations describing physical transport and the algebraic equations describing chemical equilibria are coupled using the sequential iteration approach.

  16. Treatment of crude oil-contaminated water with chemically modified natural fiber

    NASA Astrophysics Data System (ADS)

    Onwuka, Jude Chinedu; Agbaji, Edith Bolanle; Ajibola, Victor Olatunji; Okibe, Friday Godwin

    2018-06-01

    The dependence of Nigerian Government on foreign technology for oil spill cleanup in its water bodies does not add local content value in the development of the Nation's economy. Acetylation of natural cellulose gives a material with high sorption capacity for oil in water. This research investigates crude oil sorption from water using acetylated and unacetylated lignocellulose. Oil palm empty fruit bunch (OPEFB) and cocoa pod (CP) were acetylated under mild conditions. The acetylated (modified) and unacetylated (unmodified) sorbents were used to sorb oil from water, and their sorption capacities and mechanisms were compared. Paired t test showed there was significant difference in the sorption capacities of modified and unmodified sorbents. Sorption of oil from water was found to be time and concentration dependent. Equilibrium studies showed that CP has higher sorption capacity than OPEFB and acetylation enhanced the crude sorption capacities of the sorbents. Crude oil sorption from water is a monolayer process that might have progressed from multilayer processes. Kinetic studies showed that sorption of crude oil by the sorbents was diffusion-controlled with the aid of physisorption and chemisorption mechanisms. Fourier transform infrared and scanning electron microscope analyses showed clear evidence of successful acetylation and oil sorption.

  17. Biodegradation and bio-sorption of antibiotics and non-steroidal anti-inflammatory drugs using immobilized cell process.

    PubMed

    Yu, Tsung-Hsien; Lin, Angela Yu-Chen; Panchangam, Sri Chandana; Hong, Pui-Kwan Andy; Yang, Ping-Yi; Lin, Cheng-Fang

    2011-08-01

    In the present study, the removal mechanisms of four antibiotics (sulfamethoxazole, sulfadimethoxine, sulfamethazine, and trimethoprim) and four non-steroidal anti-inflammatory drugs (acetaminophen, ibuprofen, ketoprofen, and naproxen) in immobilized cell process were investigated using batch reactors. This work principally explores the individual or collective roles of biodegradation and bio-sorption as removal routes of the target pharmaceuticals and the results were validated by various experimental and analytical tools. Biodegradation and bio-sorption were found as dominant mechanisms for the drug removal, while volatilization and hydrolysis were negligible for all target pharmaceuticals. The target pharmaceuticals responded to the two observed removal mechanisms in different ways, typically: (1) strong biodegradability and bio-sorption by acetaminophen, (2) strong biodegradability and weak bio-sorption by sulfamethoxazole, sulfadimethoxine, ibuprofen and naproxen, (3) low biodegradability and weak bio-sorption by sulfamethazine and ketoprofen, and (4) low biodegradability and medium bio-sorption by trimethoprim. In the sorption/desorption experiment, acetaminophen, sulfamethoxazole and sulfadimethoxine were characterized by strong sorption and weak desorption. A phenomenon of moderate sorption and well desorption was observed for sulfamethazine, trimethoprim and naproxen. Both ibuprofen and ketoprofen were weakly sorbed and strongly desorbed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. PCB Congener Sorption To Carbonaceous Sediment Components: Macroscopic Comparison And Characterization Of Sorption Kinetics And Mechanism

    EPA Science Inventory

    Sorption of polychlorinated biphenyls (PCBs) to sediment is a key process in determining their mobility, bioavailability, and chemical decomposition in aquatic environments. In order to examine the validity of currently used interpretation approaches for PCBs sorption, comparati...

  19. Molecular surface area based predictive models for the adsorption and diffusion of disperse dyes in polylactic acid matrix.

    PubMed

    Xu, Suxin; Chen, Jiangang; Wang, Bijia; Yang, Yiqi

    2015-11-15

    Two predictive models were presented for the adsorption affinities and diffusion coefficients of disperse dyes in polylactic acid matrix. Quantitative structure-sorption behavior relationship would not only provide insights into sorption process, but also enable rational engineering for desired properties. The thermodynamic and kinetic parameters for three disperse dyes were measured. The predictive model for adsorption affinity was based on two linear relationships derived by interpreting the experimental measurements with molecular structural parameters and compensation effect: ΔH° vs. dye size and ΔS° vs. ΔH°. Similarly, the predictive model for diffusion coefficient was based on two derived linear relationships: activation energy of diffusion vs. dye size and logarithm of pre-exponential factor vs. activation energy of diffusion. The only required parameters for both models are temperature and solvent accessible surface area of the dye molecule. These two predictive models were validated by testing the adsorption and diffusion properties of new disperse dyes. The models offer fairly good predictive ability. The linkage between structural parameter of disperse dyes and sorption behaviors might be generalized and extended to other similar polymer-penetrant systems. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Experimental and modeling study of the uranium (VI) sorption on goethite.

    PubMed

    Missana, Tiziana; García-Gutiérrez, Miguel; Maffiotte, Cesar

    2003-04-15

    Acicular goethite was synthesized in the laboratory and its main physicochemical properties (composition, microstructure, surface area, and surface charge) were analyzed as a previous step to sorption experiments. The stability of the oxide, under the conditions used in sorption studies, was also investigated. The sorption of U(VI) onto goethite was studied under O(2)- and CO(2)-free atmosphere and in a wide range of experimental conditions (pH, ionic strength, radionuclide, and solid concentration), in order to assess the validity of different surface complexation models available for the interpretation of sorption data. Three different models were used to fit the experimental data. The first two models were based on the diffuse double layer concept. The first one (Model 1) considered two different monodentate complexes with the goethite surface and the second (Model 2) a single binuclear bidentate complex. A nonelectrostatic (NE) approach was used as a third model and, in that case, the same species considered in Model 1 were used. The results showed that all the models are able to describe the sorption behavior fairly well as a function of pH, electrolyte concentration, and U(VI) concentration. However, Model 2 fails in the description of the uranium sorption behavior as a function of the sorbent concentration. This demonstrates the importance of checking the validity of any surface complexation model under the widest possible range of experimental conditions.

  1. Deviations from sorption linearity on soils of polar and nonpolar organic compounds at low relative concentrations

    USGS Publications Warehouse

    Chiou, C.T.; Kile, D.E.

    1998-01-01

    A series of single-solute and binary-solute sorption data have been obtained on representative samples of polar compounds (substituted ureas and phenolic compounds) and of nonpolar compounds (e.g., EDB and TCE) on a peat soil and a mineral (Woodburn) soil; the data extend to low relative solute concentrations (C(e)/S(w)). At relatively low C(e)/S(w), both the nonpolar and the polar solutes exhibit nonlinear sorption. The sorption nonlinearity approaches apparent saturation at about C(e)/S(w) = 0.010-0.015 for the nonpolar solutes and at about C(e)/S(w) = 0.10-0.13 for the polar solutes; above these C(e)/S(w) regions, the isotherms are practically linear. The nonlinear sorption capacities are greater for polar solutes than for nonpolar solutes and the peat soil shows a greater effect than the Woodburn soil. The small nonlinear sorption capacity for a nonpolar solute is suppressed indiscriminately by either a nonpolar or a polar cosolute at relatively low C(e)/S(w) of the cosolute. By contrast, the abilities of different cosolutes to suppress the nonlinear capacity of a nominal polar solute differ drastically. For polar solutes, a nonpolar cosolute exhibits a limited suppression even at high cosolute C(e)/S(w); effective suppression occurs when the cosolute is relatively polar and at various C(e)/S(w). These differences suggest that more than a single mechanism is required to account for the nonlinear sorption of both nonpolar and polar compounds at low C(e)/S(w). Mechanistic processes consistent with these observations and with soil surface areas are discussed along with other suggested models. Some important consequences of the nonlinear competitive sorption to the behavior of contaminants in natural systems are discussed.A number of conceptual models was postulated to account for the nonlinear solute sorption on soils of significant soil organic matter. A series of single-solute and binary-route sorption data was obtained representing samples of polar compounds of substituted ureas and phenolic compounds, and of nonpolar compounds of EDB and trichloroethylene on a peat soil and a mineral on a Woodburn soil. The nonlinear sorption capacities are greater for polar solutes than for nonpolar solutes and the peat soil shows a greater effect than the Woodburn soil.

  2. Kinetics modelling of Cu(II) biosorption on to coconut shell and Moringa oleifera seeds from tropical regions.

    PubMed

    Acheampong, Mike A; Pereira, Joana P C; Meulepas, Roel J W; Lens, Piet N L

    2012-01-01

    Adsorption kinetic studies are of great significance in evaluating the performance of a given adsorbent and gaining insight into the underlying mechanism. This work investigated the sorption kinetics of Cu(II) on to coconut shell and Moringa oleifera seeds using batch techniques. To understand the mechanisms of the biosorption process and the potential rate-controlling steps, kinetic models were used to fit the experimental data. The results indicate that kinetic data were best described by the pseudo-second-order model with correlation coefficients (R2) of 0.9974 and 0.9958 for the coconut shell and Moringa oleifera seeds, respectively. The initial sorption rates obtained for coconut shell and Moringa oleifera seeds were 9.6395 x 10(-3) and 8.3292 x 10(-2) mg g(-1) min(-1), respectively. The values of the mass transfer coefficients obtained for coconut shell (1.2106 x 10(-3) cm s(-1)) and Moringa oleifera seeds (8.965 x 10(-4) cm s(-1)) indicate that the transport of Cu(II) from the bulk liquid to the solid phase was quite fast for both materials investigated. The results indicate that intraparticle diffusion controls the rate of sorption in this study; however, film diffusion cannot be neglected, especially at the initial stage of sorption.

  3. Hyphenation of Raman spectroscopy with gravimetric analysis to interrogate water-solid interactions in pharmaceutical systems.

    PubMed

    Gift, Alan D; Taylor, Lynne S

    2007-01-04

    A moisture sorption gravimetric analyzer has been combined with a Raman spectrometer to better understand the various modes of water-solid interactions relevant to pharmaceutical systems. A commercial automated moisture sorption balance was modified to allow non-contact monitoring of the sample properties by interfacing a Raman probe with the sample holder. This hybrid instrument allows for gravimetric and spectroscopic changes to be monitored simultaneously. The utility of this instrument was demonstrated by investigating different types of water-solid interactions including stoichiometric and non-stoichiometric hydrate formation, deliquescence, amorphous-crystalline transformation, and capillary condensation. In each of the model systems, sulfaguanidine, cromolyn sodium, ranitidine HCl, amorphous sucrose and silica gel, spectroscopic changes were observed during the time course of the moisture sorption profile. Analysis of spectroscopic data provided information about the origin of the observed changes in moisture content as a function of relative humidity. Furthermore, multivariate data analysis techniques were employed as a means of processing the spectroscopic data. Principle components analysis was found to be useful to aid in data processing, handling and interpretation of the spectral changes that occurred during the time course of the moisture sorption profile.

  4. Adsorptive removal of phthalate ester (Di-ethyl phthalate) from aqueous phase by activated carbon: a kinetic study.

    PubMed

    Venkata Mohan, S; Shailaja, S; Rama Krishna, M; Sarma, P N

    2007-07-19

    Adsorptive studies were carried out on Di-ethyl phthalate (DEP) removal from aqueous phase onto activated carbon. Batch sorption studies were performed and the results revealed that activated carbon demonstrated ability to adsorb DEP. Influence of varying experimental conditions such as DEP concentration, pH of aqueous solution, and dosage of adsorbent were investigated on the adsorption process. Sorption interaction of DEP onto activated carbon obeyed the pseudo second order rate equation. Experimental data showed good fit with both the Langmuir and Freundlich adsorption isotherm models. DEP sorption was found to be dependent on the aqueous phase pH and the uptake was observed to be greater at acidic pH.

  5. Evaluating the fate of six common pharmaceuticals using a reactive transport model: insights from a stream tracer test.

    PubMed

    Riml, Joakim; Wörman, Anders; Kunkel, Uwe; Radke, Michael

    2013-08-01

    Quantitative information regarding the capacity of rivers to self-purify pharmaceutical residues is limited. To bridge this knowledge gap, we present a methodology for quantifying the governing processes affecting the fate of pharmaceuticals in streaming waters and, especially, to evaluate their relative significance for tracer observations. A tracer test in Säva Brook, Sweden was evaluated using a coupled physical-biogeochemical model framework containing surface water transport together with a representation of transient storage in slow/immobile zones of the stream, which are presumably important for the retention and attenuation of pharmaceuticals. To assess the key processes affecting the environmental fate of the compounds, we linked the uncertainty estimates of the reaction rate coefficients to the relative influence of transformation and sorption that occurred in different stream environments. The hydrological and biogeochemical contributions to the fate of the pharmaceuticals were decoupled, and the results indicate a moderate hydrological retention in the hyporheic zone as well as in the densely vegetated parts of the stream. Biogeochemical reactions in these transient storage zones further affected the fate of the pharmaceuticals, and we found that sorption was the key process for bezafibrate, metoprolol, and naproxen, while primary transformation was the most important process for clofibric acid and ibuprofen. Conversely, diclofenac was not affected by sorption or transformation. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Impact of Sequential Ammonia Fiber Expansion (AFEX) Pretreatment and Pelletization on the Moisture Sorption Properties of Corn Stover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonner, Ian J.; Thompson, David N.; Teymouri, Farzaneh

    Combining ammonia fiber expansion (AFEX™) pretreatment with a depot processing facility is a promising option for delivering high-value densified biomass to the emerging bioenergy industry. However, because the pretreatment process results in a high moisture material unsuitable for pelleting or storage (40% wet basis), the biomass must be immediately dried. If AFEX pretreatment results in a material that is difficult to dry, the economics of this already costly operation would be at risk. This work tests the nature of moisture sorption isotherms and thin-layer drying behavior of corn (Zea mays L.) stover at 20°C to 60°C before and after sequentialmore » AFEX pretreatment and pelletization to determine whether any negative impacts to material drying or storage may result from the AFEX process. The equilibrium moisture content to equilibrium relative humidity relationship for each of the materials was determined using dynamic vapor sorption isotherms and modeled with modified Chung-Pfost, modified Halsey, and modified Henderson temperature-dependent models as well as the Double Log Polynomial (DLP), Peleg, and Guggenheim Anderson de Boer (GAB) temperature-independent models. Drying kinetics were quantified under thin-layer laboratory testing and modeled using the Modified Page's equation. Water activity isotherms for non-pelleted biomass were best modeled with the Peleg temperature-independent equation while isotherms for the pelleted biomass were best modeled with the Double Log Polynomial equation. Thin-layer drying results were accurately modeled with the Modified Page's equation. The results of this work indicate that AFEX pretreatment results in drying properties more favorable than or equal to that of raw corn stover, and pellets of superior physical stability in storage.« less

  7. Thermodynamics and sorption characteristics of Zn(II) onto natural and chemically modified zeolites for agricultural and environmental using

    NASA Astrophysics Data System (ADS)

    Saltali, K.; Tazebay, N.; Kaya, M.

    2017-10-01

    Zeolites with high porous and cation exchange capacity have been widely used for agricultural and environmental purposes. This study was conducted to assess the thermodynamics and sorption characteristics of chemically modified zeolite (CMZ) from obtained natural zeolite (NZ), and to compare its properties. At first step of the sorption experiment, effects of pH, slurry concentration, stirring time, and heat on Zn removal were determined. Linear Langmuir isotherm was well fitted to data, and maximum sorption capacities ( q max) were calculated as 20.87 and 33.44 mg/g for NZ and CMZ, respectively. Dubinin-Redushkevich (D-R) isotherm showed that the adsorption process was probably controlled by chemical ion-exchange mechanism. The solubility of zinc DTPA should be so directly related to the model of D-R model. Therefore, zeolites can be used as carrier Zn in soils with insufficient zinc arid and semiarid regions. Enthalpy (Δ H°) and entropy (Δ S°) values were positive. The change values of Gibbs free energy (Δ G°) illustrated that the sorption of Zn ions onto zeolites was feasible and spontaneous. From the obtained results, it could be concluded that chemical modification increased q max value of NZ, and the findings indicate clearly the possibility of using NZ and CMZ as Zn carrier in agricultural and also environmental treatments.

  8. Modeling and Uncertainty Quantification of Vapor Sorption and Diffusion in Heterogeneous Polymers

    DOE PAGES

    Sun, Yunwei; Harley, Stephen J.; Glascoe, Elizabeth A.

    2015-08-13

    A high-fidelity model of kinetic and equilibrium sorption and diffusion is developed and exercised. The gas-diffusion model is coupled with a triple-sorption mechanism: Henry’s law absorption, Langmuir adsorption, and pooling or clustering of molecules at higher partial pressures. Sorption experiments are conducted and span a range of relative humidities (0-95%) and temperatures (30-60°C). Kinetic and equilibrium sorption properties and effective diffusivity are determined by minimizing the absolute difference between measured and modeled uptakes. Uncertainty quantification and sensitivity analysis methods are described and exercised herein to demonstrate the capability of this modeling approach. Water uptake in silica-filled and unfilled poly(dimethylsiloxane) networksmore » is investigated; however, the model is versatile enough to be used with a wide range of materials and vapors.« less

  9. Interactions between organic amendments and phosphate fertilizers modify phosphate sorption processes in an acid soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sckefe, C.R.; Patti, A.F.; Clune, T.S.

    2008-07-15

    To determine how organic amendments and phosphate fertilizers interact to modify P sorption processes, three phosphate fertilizers were applied to lignite- and compost-amended acid soil and incubated for either 3 or 26 days. The fertilizers applied were potassium dihydrogen phosphate, triple superphosphate, and diammonium phosphate (DAP). After 3 days of incubation, sorption of all three P sources was decreased in the lignite-amended treatments, whereas P sorption was increased in the compost-amended treatments. Increased incubation time (26 days) resulted in significantly decreased P sorption when DAP was added to lignite-amended treatments. Addition of triple superphosphate increased P sorption in lignite- andmore » compost-amended treatments and decreased solution pH compared with DAP application. In addition to the effect of P source, differences in P sorption between the lignite- and compost-amended treatments were driven by differences in solution chemistry, predominantly solution pH and cation dynamics. Soil amendment and fertilizer addition also increased microbial activity in the incubation systems, as measured by carbon dioxide respiration. It is proposed that the combination of lignite and DAP may contribute to decreased P sorption in acid soils, with the positive effects likely caused by both chemical and biological processes, including the formation of soluble organic-metal complexes.« less

  10. Differential water sorption studies on Kevlar 49 and As-polymerized poly(p-phenylene terephthalamide): determination of water transport properties.

    PubMed

    Mooney, Damian A; MacElroy, J M Don

    2007-11-06

    Water vapor sorption experiments have been conducted on Kevlar 49 at 30 degrees C over a range of water vapor pressures in 0-90% of saturation and on the as-polymerized form of the material at 30, 45, and 60 degrees C over a series of water vapor pressures of 0-60%, 0-25%, and 0-15%, respectively. For each of the differential steps in water vapor pressure, dynamic uptake curves were generated and analyzed according to a number of different mathematical models, including Fickian, Coaxial cylindrical, and intercalation models. The intercalation model was demonstrated to be the most successful model and considered two time-scales involved in the diffusion process, i.e., a penetrant-diffusive time-scale and a polymer-local-matrix-relaxation time-scale. The success of this model reinforces previously reported adsorption and desorption isotherms which suggested that water may penetrate into the surface layers of the polymer crystallite through a process known as intercalation.

  11. Sorption characteristics of pesticides on matrix substrates used in biopurification systems.

    PubMed

    De Wilde, Tineke; Spanoghe, Pieter; Ryckeboer, Jaak; Jaeken, Peter; Springael, Dirk

    2009-03-01

    On-farm biopurification systems were developed to remove pesticides from contaminated water generated at the farmyard. An important process in the system's efficiency is the sorption of pesticides to the substrates used in the biopurification systems. The composition and type of material present in the biobed are crucial for retention of chemicals. This study investigated the sorption of linuron, isoproturon, metalaxyl, isoxaben, bentazon and lenacil on substrates commonly used in a biopurification system, i.e. cow manure, straw, willow chopping, soil, coconut chips, garden waste compost, and peat mix. Linear, Freundlich, and Langmuir sorption isotherms were fitted to the obtained data. The best fit was obtained with the Freundlich model. More immobile pesticides (i.e. linuron and isoxaben) tended to associate with the organic substrate, while more mobile pesticides partition in the water (i.e. bentazon). According to sorption capacity, the substrates could be classified as peat mix > compost, coco chips, straw > cow manure, willow chopping > sandy loam soil. Sorption capacity was positively correlated with the organic carbon content, CaO and the cation exchange capacity. Furthermore, no significant differences in sorption could be found between technical and formulated isoproturon and bentazon. Moreover, the individual sorption coefficient K(d) was additive, which means that individual sorption coefficients can be used to calculate the sorption coefficients of a mixture of substrates. What concerns the mutual interaction of pesticides it could be observed that the sorption of linuron and metalaxyl was significantly lower in combination with isoproturon and bentazon, while the latter pesticides were not influenced by the presence of linuron and metalaxyl. As guidelines, firstly, it could be stated that using the most sorbing materials such as peat mix, might significantly increase the biopurification systems efficiency. Secondly, the treatment of very mobile pesticides, such as bentazon, should be taken with care as these will easily leach through the system. Additional chemical treatment might be necessary for these type of pesticides.

  12. Solubility properties of siloxane polymers for chemical sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grate, J.W.; Abraham, M.H.

    1995-05-01

    This paper discusses the factors governing the sorption of vapors by organic polymers. The principles have been applied in the past for designing and selecting polymers for acoustic wave sensors; however they apply equally well to sorption of vapors by polymers used on optical chemical sensors. A set of solvation parameters (a table is presented for various organic vapors) have been developed that describe the particular solubility properties of individual solute molecules; they are used in linear solvation energy relationships (LSER) that model the sorption process. LSER coefficients are tabulated for five polysiloxanes; so are individual interaction terms for eachmore » of the 5 polymers. Dispersion interactions play a major role in determining overall partition coefficients; the log L{sup 16} (gas-liquid partition coefficient of solute on hexadecane) value of vapors are important in determining overall sorption. For the detection of basic vapors such as organophosphates, a hydrogen-bond acidic polymers will be most effective at sorbing them. Currently, fiber optic sensors are being developed where the cladding serves as a sorbent layer to collect and concentrate analyte vapors, which will be detected and identified spectroscopically. These solubility models will be used to design the polymers for the cladding for particular vapors.« less

  13. Graphical determination of metal bioavailability to soil invertebrates utilizing the Langmuir sorption model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donkin, S.G.

    1997-09-01

    A new method of performing soil toxicity tests with free-living nematodes exposed to several metals and soil types has been adapted to the Langmuir sorption model in an attempt at bridging the gap between physico-chemical and biological data gathered in the complex soil matrix. Pseudo-Langmuir sorption isotherms have been developed using nematode toxic responses (lethality, in this case) in place of measured solvated metal, in order to more accurately model bioavailability. This method allows the graphical determination of Langmuir coefficients describing maximum sorption capacities and sorption affinities of various metal-soil combinations in the context of real biological responses of indigenousmore » organisms. Results from nematode mortality tests with zinc, cadmium, copper, and lead in four soil types and water were used for isotherm construction. The level of agreement between these results and available literature data on metal sorption behavior in soils suggests that biologically relevant data may be successfully fitted to sorption models such as the Langmuir. This would allow for accurate prediction of soil contaminant concentrations which have minimal effect on indigenous invertebrates.« less

  14. Impact of kerogen heterogeneity on sorption of organic pollutants. 2. Sorption equilibria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, C.; Yu, Z.Q.; Xiao, B.H.

    2009-08-15

    Phenanthrene and naphthalene sorption isotherms were measured for three different series of kerogen materials using completely mixed batch reactors. Sorption isotherms were nonlinear for each sorbate-sorbent system, and the Freundlich isotherm equation fit the sorption data well. The Freundlich isotherm linearity parameter n ranged from 0.192 to 0.729 for phenanthrene and from 0.389 to 0.731 for naphthalene. The n values correlated linearly with rigidity and aromaticity of the kerogen matrix, but the single-point, organic carbon-normalized distribution coefficients varied dramatically among the tested sorbents. A dual-mode sorption equation consisting of a linear partitioning domain and a Langmuir adsorption domain adequately quantifiedmore » the overall sorption equilibrium for each sorbent-sorbate system. Both models fit the data well, with r{sup 2} values of 0.965 to 0.996 for the Freundlich model and 0.963 to 0.997 for the dual-mode model for the phenanthrene sorption isotherms. The dual-mode model fitting results showed that as the rigidity and aromaticity of the kerogen matrix increased, the contribution of the linear partitioning domain to the overall sorption equilibrium decreased, whereas the contribution of the Langmuir adsorption domain increased. The present study suggested that kerogen materials found in soils and sediments should not be treated as a single, unified, carbonaceous sorbent phase.« less

  15. Sorption of dodecyltrimethylammonium chloride (DTAC) to agricultural soils.

    PubMed

    Xiang, Lei; Sun, Teng-Fei; Zheng, Mei-Jie; Li, Yan-Wen; Li, Hui; Wong, Ming-Hung; Cai, Quan-Ying; Mo, Ce-Hui

    2016-08-01

    Quaternary ammonium compounds (QACs) used as cationic surfactants are intensively released into environment to be pollutants receiving more and more concerns. Sorption of dodecyltrimethylammonium chloride (DTAC), one of commonly used alkyl QACs, to five types of agricultural soils at low concentrations (1-50mg/L) was investigated using batch experiments. DTAC sorption followed pseudo-second-order kinetics and reached reaction equilibrium within 120min. Both Freundlich model and Langmuir model fitted well with DTAC isotherm data with the latter better. DTAC sorption was spontaneous and favorable, presenting a physical sorption dominated by ion exchanges. Sorption distribution coefficient and sorption affinity demonstrated that soil clay contents acted as a predominant phase of DTAC sorption. DTAC could display a higher mobility and potential accumulation in crops in the soils with lower clay contents and lower pH values. Sorption of DTAC was heavily affected by ions in solution with anion promotion and cation inhibition. Copyright © 2016. Published by Elsevier B.V.

  16. Sorption of 3,3',4,4'-tetrachlorobiphenyl by microplastics: A case study of polypropylene.

    PubMed

    Zhan, Zhiwei; Wang, Jundong; Peng, Jinping; Xie, Qilai; Huang, Ying; Gao, Yifan

    2016-09-15

    Though plastics show good chemical inertness, they could sorb polychlorinated biphenyls (PCBs) and other toxic pollutants from the surrounding environment. Thus, ingestion of microplastics by marine organisms potentially enhances the transport and bioavailability of toxic chemicals. However, there is lack of studies on the sorption capacity, mechanism and factors affecting the sorption behavior. Here, sorption of PCBs by microplastics in the simulated seawater was studied using the batch oscillation equilibration technique, in which polypropylene (PP) and 3,3',4,4'-tetrachlorobiphenyl (PCB77) acted as model plastic and PCB, respectively. Factors including particle size, temperature and solution environment were investigated. Results showed that, equilibrium sorption time is about 8h and sorption capacity increase with decreasing particle size and temperature. Different sorption capacity in three solution environments was observed. Equilibrium data in three solution environments fitted very well to the Langmuir sorption model, indicating chemical sorption is the predominant mechanism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Adsorption Mechanisms of Trivalent Gold onto Iron Oxy-Hydroxides: From the Molecular Scale to the Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cances, Benjamin; Benedetti, Marc; Farges, Francois

    2007-02-02

    Gold is a highly valuable metal that can concentrate in iron-rich exogenetic horizons such as laterites. An improved knowledge of the retention mechanisms of gold onto highly reactive soil components such as iron oxy-hydroxides is therefore needed to better understand and predict the geochemical behavior of this element. In this study, we use EXAFS information and titration experiments to provide a realistic thermochemical description of the sorption of trivalent gold onto iron oxy-hydroxides. Analysis of Au LIII-edge XAFS spectra shows that aqueous Au(III) adsorbs from chloride solutions onto goethite surfaces as inner-sphere square-planar complexes (Au(III)(OH,Cl)4), with dominantly OH ligands atmore » pH > 6 and mixed OH/Cl ligands at lower pH values. In combination with these spectroscopic results, Reverse Monte Carlo simulations were used to constraint the possible sorption sites on the surface of goethite. Based on this structural information, we calculated sorption isotherms of Au(III) on Fe oxy-hydroxides surfaces, using the CD-MUSIC (Charge Distribution - MUlti SIte Complexation) model. The various Au(III)-sorbed species were identified as a function of pH, and the results of these EXAFS+CD-MUSIC models are compared with titration experiments. The overall good agreement between the predicted and measured structural models shows the potential of this combined approach to better model sorption processes of transition elements onto highly reactive solid surfaces such as goethite and ferrihydrite.« less

  18. Adsorption Mechanisms of Trivalent Gold onto Iron Oxy-Hydroxides: From the Molecular Scale to the Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cances, Benjamin; /Marne La Vallee U.; Benedetti, Marc

    2006-12-13

    Gold is a highly valuable metal that can concentrate in iron-rich exogenetic horizons such as laterites. An improved knowledge of the retention mechanisms of gold onto highly reactive soil components such as iron oxyhydroxides is therefore needed to better understand and predict the geochemical behavior of this element. In this study, we use EXAFS information and titration experiments to provide a realistic thermochemical description of the sorption of trivalent gold onto iron oxy-hydroxides. Analysis of Au L{sub III}-edge XAFS spectra shows that aqueous Au(III) adsorbs from chloride solutions onto goethite surfaces as inner-sphere square-planar complexes (Au(III)(OH,Cl){sub 4}), with dominantly OHmore » ligands at pH > 6 and mixed OH/Cl ligands at lower pH values. In combination with these spectroscopic results, Reverse Monte Carlo simulations were used to constraint the possible sorption sites on the surface of goethite. Based on this structural information, we calculated sorption isotherms of Au(III) on Fe oxy-hydroxides surfaces, using the CD-MUSIC (Charge Distribution--Multi Site Complexation) model. The various Au(III)-sorbed species were identified as a function of pH, and the results of these EXAFS+CD-MUSIC models are compared with titration experiments. The overall good agreement between the predicted and measured structural models shows the potential of this combined approach to better model sorption processes of transition elements onto highly reactive solid surfaces such as goethite and ferrihydrite.« less

  19. BIOPLUME III: NATURAL ATTENTUATION DECISION SUPPORT SYSTEM USER'S MANUAL - VERSION 1.0

    EPA Science Inventory

    The BIOPLUME III program is a two-dimensional, finite difference model for simulating the natural attenuation of organic contaminants in ground water due to the processes of advection, dispersion, sorption, and biodegradation. The model simulates the biodegradation of organic...

  20. Volatilization modeling of two herbicides from soil in a wind tunnel experiment under varying humidity conditions.

    PubMed

    Schneider, Martina; Goss, Kai-Uwe

    2012-11-20

    Volatilization of pesticides from the bare soil surface is drastically reduced when the soil is under dry conditions (i.e., water content lower than the permanent wilting point). This effect is caused by the hydrated mineral surfaces that become available as additional sorption sites under dry conditions. However, established volatilization models do not explicitly consider the hydrated mineral surfaces as an independent sorption compartment and cannot correctly cover the moisture effect on volatilization. Here we integrated the existing mechanistic understanding of sorption of organic compounds to mineral surfaces and its dependence on the hydration status into a simple volatilization model. The resulting model was tested with reported experimental data for two herbicides from a wind tunnel experiment under various well-defined humidity conditions. The required equilibrium sorption coefficients of triallate and trifluralin to the mineral surfaces, K(min/air), at 60% relative humidity were fitted to experimental data and extrapolated to other humidity conditions. The model captures the general trend of the volatilization in different humidity scenarios. The results reveal that it is essential to have high quality input data for K(min/air), the available specific surface area (SSA), the penetration depth of the applied pesticide solution, and the humidity conditions in the soil. The model approach presented here in combination with an improved description of the humidity conditions under dry conditions can be integrated into existing volatilization models that already work well for humid conditions but still lack the mechanistically based description of the volatilization process under dry conditions.

  1. Potential for biodegradation and sorption of acetaminophen, caffeine, propranolol and acebutolol in lab-scale aqueous environments.

    PubMed

    Lin, Angela Yu-Chen; Lin, Chih-Ann; Tung, Hsin-Hsin; Chary, N Sridhara

    2010-11-15

    Sorption and combined sorption-biodegradation experiments were conducted in laboratory batch studies with 100 g soil/sediments and 500 mL water to investigate the fates in aqueous environments of acetaminophen, caffeine, propranolol, and acebutolol, four frequently used and often-detected pharmaceuticals. All four compounds have demonstrated significant potential for degradation and sorption in natural aqueous systems. For acetaminophen, biodegradation was found to be a primary mechanism for degradation, with a half-life (t(1/2)) for combined sorption-biodegradation of 2.1 days; in contrast, sorption alone was responsible only for a 30% loss of aqueous-phase acetaminophen after 15 days. For caffeine, both biodegradation and sorption were important (t(1/2) for combined sorption-biodegradation was 1.5 days). However, for propranolol and acebutolol, sorption was found to be the most significant removal mechanism and was not affected by biodegradation. Desorption experiments revealed that the sorption process was mostly irreversible. High values were found for K(d) for caffeine, propranolol, and acebutolol, ranging from 250 to 1900 L kg(-1), which explained their greater tendency for sorption onto sediments, compared to the more hydrophilic acetaminophen. Experimentally derived values for logK(oc) differed markedly from values calculated from correlation equations. This discrepancy was attributed to the fact that these equations are well suited for hydrophobic interactions but may fail to predict the sorption of polar and ionic compounds. These results suggest that mechanisms other than hydrophobic interactions played an important role in the sorption process. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Fate and transport of uranium (VI) in weathered saprolite

    DOE PAGES

    Kim, Young-Jin; Brooks, Scott C.; Zhang, Fan; ...

    2014-11-09

    We conducted batch and column experiments to investigate sorption and transport of uranium (U) in the presence of saprolite derived from interbedded shale, limestone, and sandstone sequences. Sorption kinetics were measured at two initial concentrations (C0; 1, 10 mM) and three soil:solution ratios (Rs/w; 0.005, 0.25, 2 kg/L) at pH 4.5 (pH of the saprolite). The rate of U loss from solution (mmole/L/h) increased with increasing Rs/w. Uranium sorption exhibited a fast phase with 80% sorption in the first eight hours for all C0 and Rs/w values and a slow phase during which the reaction slowly approached (pseudo) equilibrium overmore » the next seven days. The pH-dependency of U sorption was apparent in pH sorption edges. U(VI) sorption increased over the pH range 4e6, then decreased sharply at pH > 7.5. U(VI) sorption edges were well described by a surface complexation model using calibrated parameters and the reaction network proposed by Waite et al. (1994). Sorption isotherms measured using the same Rs/w and pH values showed a solids concentration effect where U(VI) sorption capacity and affinity decreased with increasing solids concentration. Moreover, this effect may have been due to either particle aggregation or competition between U(VI) and exchangeable cations for sorption sites. The surface complexation model with calibrated parameters was able to predict the general sorption behavior relatively well, but failed to reproduce solid concentration effects, implying the importance of appropriate design if batch experiments are to be utilized for dynamic systems. Transport of U(VI) through the packed column was significantly retarded. We also conducted transport simulations using the reactive transport model HydroGeoChem (HGC) v5.0 that incorporated the surface complexation reaction network used to model the batch data. Model parameters reported by Waite et al. (1994) provided a better prediction of U transport than optimized parameters derived from our sorption edges. The results presented in this study highlight the challenges in defining appropriate conditions for batch-type experiments used to extrapolate parameters for transport models, and also underline a gap in our ability to transfer batch results to transport simulations.« less

  3. Synthesis, characterization and trivalent arsenic sorption potential of Ce-Al nanostructured mixed oxide

    NASA Astrophysics Data System (ADS)

    Bhattacharya, S.; Gupta, K.; Ghosh, U. C.

    2017-04-01

    Arsenic contamination in the ground water has serious health consequences in many parts of the world. The surface sorption method for arsenic mitigation has been widely investigated due to its simple method, inexpensive operation, highly efficient and low content of by-products. In the present study, nanostructured hydrated cerium aluminum oxide (NHCAO) was synthesized and characterized and its arsenic (III) sorption behavior from the aqueous solution was studied. The material was characterized in SEM, FE-SEM, TEM, AFM, XRD, and FT-IR. Batch method was used for the kinetics of As (III) sorption on nanoparticles at 303 (± 1.6) K and at pH 7.0 (± 0.2). The experiments on isotherm subject were performed individually at 288K, 303K, 318K temperatures at pH 7.0 (± 0.2) using the batch sorption method. In the kinetics study of arsenic (III) sorption, the sorption percentage was observed to remain nearly unchanged up to pH 9.0, thereafter only slight reduction in sorption percentage. The equilibrium sorption results were tested using the models of Langmuir and the Freundlich isotherm. The Langmuir model is the most fitted model for the sorption reaction. NHCAO was highly efficient in As(III) removal out of the water in the extensive range of pH and could be used for arsenic removal from contaminated water.

  4. Measuring and modeling surface sorption dynamics of organophosphate flame retardants in chambers

    EPA Science Inventory

    Understanding the sorption mechanisms for organophosphate flame retardants (OPFRs) on impervious surfaces is important to improve our understanding of the fate and transport of OPFRs in indoor environments. Langmuir and Freundlich models are widely adopted to describe sorption be...

  5. Geochemical heterogeneity in a sand and gravel aquifer: Effect of sediment mineralogy and particle size on the sorption of chlorobenzenes

    USGS Publications Warehouse

    Barber, L.B.; Thurman, E.M.; Runnells, D.R.; ,

    1992-01-01

    The effect of particle size, mineralogy and sediment organic carbon (SOC) on solution of tetrachlorobenzene and pentachlorobenzene was evaluated using batch-isotherm experiments on sediment particle-size and mineralogical fractions from a sand and gravel aquifer, Cape Cod, Massachusetts. Concentration of SOC and sorption of chlorobenzenes increase with decreasing particle size. For a given particle size, the magnetic fraction has a higher SOC content and sorption capacity than the bulk or non-magnetic fractions. Sorption appears to be controlled by the magnetic minerals, which comprise only 5-25% of the bulk sediment. Although SOC content of the bulk sediment is < 0.1%, the observed sorption of chlorobenzenes is consistent with a partition mechanism and is adequately predicted by models relating sorption to the octanol/water partition coefficient of the solute and SOC content. A conceptual model based on preferential association of dissolved organic matter with positively-charged mineral surfaces is proposed to describe micro-scale, intergranular variability in sorption properties of the aquifer sediments.The effect of particle size, mineralogy and sediment organic carbon (SOC) on sorption of tetrachlorobenzene and pentachlorobenzene was evaluated using batch-isotherm experiments on sediment particle-size and mineralogical fractions from a sand and gravel aquifer, Cape Cod, Massachusetts. Concentration of SOC and sorption of chlorobenzenes increase with decreasing particle size. For a given particle size, the magnetic fraction has a higher SOC content and sorption capacity than the bulk or non-magnetic fractions. Sorption appears to be controlled by the magnetic minerals, which comprise only 5-25% of the bulk sediment. Although SOC content of the bulk sediment is <0.1%, the observed sorption of chlorobenzenes is consistent with a partition mechanism and is adequately predicted by models relating sorption to the octanol/water partition coefficient of the solute and SOC content. A conceptual model based on preferential association of dissolved organic matter with positively-charged mineral surfaces is proposed to describe micro-scale, intergranular variability in sorption properties of the aquifer sediments.

  6. [Bromate reduction by granular activated carbon].

    PubMed

    Huang, Xin; Gao, Nai-yun; Lu, Pin-pin

    2007-10-01

    Batch experiments were conducted to evaluate the kinetics of reducing bromate to bromide by granular activated carbon. Solution conditions were studied in details, such as pH, ionic strength, temperature and initial bromate concentration. The results showed the removal capacity of GAC was positively relevant to surface basic functional groups. The whole process was inhibited by other anions in solution and the inhibition sequence was NO3(-) > SO4(2-) > Cl(-). Pseudo-second order rate equation and intraparticle diffusion model were applied to fit the process of bromate reduction and the process of bromide formation, respectively, with regression coefficients higher than 0.97 at most cases. Bromate removal was found to be favored under conditions with low pH value and low ionic strength. Both sorption rate of bromate and formation rate of bromide were decreased, and then increased along with the increase of temperature during 15-42 degree C. In this experiment, the maximum adsorption capacity of GAC is 769.23 micromol/g (98.4 mg/g), whereas the sorption process is slow and easily influenced. It is concluded that the sorption of bromate by the micropore portion of GAC was influenced by the release of bromide.

  7. Adsorptive behaviour of mercury on algal biomass: competition with divalent cations and organic compounds.

    PubMed

    Carro, Leticia; Barriada, José L; Herrero, Roberto; Sastre de Vicente, Manuel E

    2011-08-15

    Biosorption processes constitute an effective technique for mercury elimination. Sorption properties of native and acid-treated Sargassum muticum have been studied. Effect of pH, initial mercury concentration and contact time studies provided fundamental information about the sorption process. This information was used as the reference values to analyse mercury sorption under competition conditions. Saline effect has shown little influence in sorption, when only electrostatic modifications took place upon salt addition. On the contrary, if mercury speciation dramatically changed owing to the addition of an electrolyte, such as in the case of chloride salt, very large modifications in mercury sorption were observed. Competition with other divalent cations or organic compounds has shown little or none effect on mercury, indicating that a different mechanism is taking place during the removal of these pollutants. Finally, continuous flow experiments have clearly shown that a reduction process is also taking place during mercury removal. This fact is not obvious to elucidate under batch sorption experiments. Scanning Electron Microscopy analysis of the surface of the materials show deposits of mercury(I) and metallic mercury which is indicative of the reduction process proposed. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Removal of chromium (VI) using poly(methylacrylate) functionalized guar gum.

    PubMed

    Singh, Vandana; Kumari, Premlata; Pandey, Sadanand; Narayan, Tripti

    2009-03-01

    Using persulfate/ascorbic acid redox pair, poly(methylacrylate) was grafted on to guar gum and the conditions for the grafting were optimized. The copolymer sample having maximum %G was evaluated for the removal of Cr(VI) and the sorption conditions were optimized. The sorption was found pH dependent, pH 1.0 being the optimum value. Sorption data at pH 1.0 were modeled using both the Langmuir and Freundlich isotherms where the data fitted better to Freundlich isotherm. The equilibrium sorption capacity of 29.67mg/g was determined from the Langmuir isotherm. The sorption followed a pseudo-second-order kinetics with a rate constant 2.5x10(-4)gmg(-1) min(-1). The grafted product was also evaluated for Cr(VI) removal from local electroplating industrial waste water. The regeneration experiments revealed that the guar-graft-poly(methylacrylate) could be successfully reused for five cycles. In the present study conductivity measurements were used instead of conventional photometric method for determining Cr(VI) concentration in the equilibrium solutions and the results obtained have been compared with photometric method. Optimum Cr(VI) binding under highly acidic conditions indicated significant contribution of non electrostatic forces in the adsorption process.

  9. Water Absorption Behavior of Hemp Hurds Composites

    PubMed Central

    Stevulova, Nadezda; Cigasova, Julia; Purcz, Pavol; Schwarzova, Ivana; Kacik, Frantisek; Geffert, Anton

    2015-01-01

    In this paper, water sorption behavior of 28 days hardened composites based on hemp hurds and inorganic binder was studied. Two kinds of absorption tests on dried cube specimens in deionized water bath at laboratory temperature were performed. Short-term (after one hour water immersion) and long-term (up to 180 days) water absorption tests were carried out to study their durability. Short-term water sorption behavior of original hemp hurds composites depends on mean particle length of hemp and on binder nature. The comparative study of long-term water sorption behavior of composites reinforced with original and chemically modified hemp hurds in three reagents confirmed that surface treatment of filler influences sorption process. Based on evaluation of sorption curves using a model for composites based on natural fibers, diffusion of water molecules in composite reinforced with original and chemically modified hemp hurds is anomalous in terms of the Fickian behavior. The most significant decrease in hydrophility of hemp hurds was found in case of hemp hurds modified by NaOH and it relates to change in the chemical composition of hemp hurds, especially to a decrease in average degree of cellulose polymerization as well as hemicellulose content.

  10. A study of equilibrium and FTIR, SEM/EDS analysis of trimethoprim adsorption onto K10

    NASA Astrophysics Data System (ADS)

    Bekçi, Zehra; Seki, Yoldaş; Kadir Yurdakoç, M.

    2007-02-01

    The sorption behavior of K10, a type of montmorillonite for trimethoprim (TMP) drug, was studied by using batch technique under different pH and temperature. The interaction between K10 and TMP was investigated using SEM, and FTIR. It was observed that adsorption was increased between pH 2.5 and 6.3. By performing kinetic experiments, the pseudo-second-order kinetic model provides the best fit for TMP adsorption onto K10 montmorillonite. The sorption of TMP reached the equilibrium state after 6 h sorption time and has been described by using Langmuir, Freundlich and Dubinin-Radushkevich equations to obtain adsorption capacity values. The results indicate that the relative adsorption capacity values ( Kf) are decreasing with the increase of temperature in the range of 298-318 K. The sorption energy values obtained from DR isotherm show that sorption of TMP onto K10 can be explained by ion exchange mechanism at 298, 308 and 318 K. The thermodynamic studies were conducted to find the thermodynamic parameters Δ H°, Δ S° and Δ G°. It was determined that adsorption process is spontaneous and exothermic in nature.

  11. Removal of humic substances by biosorption.

    PubMed

    Vuković, Marija; Domanovac, Tomislav; Briski, Felicita

    2008-01-01

    Fungal pellets of Aspergillus niger 405, Aspergillus ustus 326, and Stachybotrys sp. 1103 were used for the removal of humic substances from aqueous solutions. Batchwise biosorption, carried out at pH 6 and 25 degrees C, was monitored spectrophotometrically and the process described with Freundlich's model. Calculated sorption coefficients K(f) and n showed that A. niger exhibited the highest efficiency. A good match between the model and experimental data and a high correlation coefficient (R2) pointed out to judicious choice of the mechanism for removal of humic substances from the reaction medium. The sorption rate constants (k) for A. ustus and Stachybotrys sp. were almost equal, however higher than that for A. niger. Comparison of test results with the simulated ones demonstrated the applicability of the designed kinetic model for removal of humic substances from natural water by biosorption with fungal pellets. Different morphological structure of the examined fungal pellets showed that faster sorption does not imply the most efficient removal of humic substances. Desorption of humic substances from fungal pellets was complete, rapid, and yielded uniform results.

  12. Reach-scale predictions of the transport and fate of contaminants of emerging concern using a multi-tracer injection at Fourmile Creek (Ankeny, Iowa)

    NASA Astrophysics Data System (ADS)

    Cullin, J. A.; Ward, A. S.; Cwiertny, D. M.; Barber, L. B.; Kolpin, D. W.; Bradley, P. M.; Keefe, S. H.; Hubbard, L. E.

    2013-12-01

    Contaminants of emerging concern (CECs) are an unregulated suite of constituents possessing the potential to cause a host of reproductive and developmental problems in humans and wildlife. CECs are frequently detected in environmental waters. Degradation pathways of several CECs are well-characterized in idealized laboratory settings, but CEC fate and transport in complex field settings is poorly understood. In the present study we used a multi-tracer solute injection study to quantify physical transport, photodegradation, and sorption in a wastewater effluent-impacted stream. Conservative tracers were used to quantify physical transport processes in the stream. Use of reactive fluorescent tracers allows for isolation of the relative contribution of photodegradation and sorption within the system. Field data was used to calibrate a one-dimensional transport model allowing us to use forward modeling to predict the transport of sulfamethoxazole, an antibiotic documented to be present in the wastewater effluent and in Fourmile Creek which is susceptible to both sorption and photolysis. Forward modeling will predict both temporal persistence and spatial extent of sulfamethoxazole in Fourmile Creek

  13. Micropollutant and sludge characterization for modeling sorption equilibria.

    PubMed

    Barret, Maialen; Carrère, Hélène; Latrille, Eric; Wisniewski, Christelle; Patureau, Dominique

    2010-02-01

    The sorption of hydrophobic micropollutants in sludge is one of the major mechanisms which drive their fate within wastewater treatment systems. The objective of this study was to investigate the influence of both sludge and micropollutant characteristics on the equilibria of sorption to particles and to dissolved and colloidal matter (DCM). For this purpose, the equilibrium constants were measured for 13 polycyclic aromatic hydrocarbons, 5 polychlorobiphenyls and the nonylphenol, and five different sludge types encountered in treatment systems: a primary sludge, a secondary sludge, the same secondary sludge after thermal treatment, after anaerobic digestion, and after both treatments. After thermal treatment, no more sorption to DCM was observed. Anaerobic biological treatment was shown to enhance micropollutants sorption to particles and to DCM of one logarithmic unit, due to matter transformation. Partial least-squares linear regressions of sorption data as a function of micropollutant and sludge properties revealed that sludge physical and chemical characteristics were more influential than micropollutant characteristics. Two models were provided to predict the sorption of such micropollutants in any sludge. To our knowledge, this is the first time that a three-compartment approach is used to accurately model micropollutant sorption in sludge and to understand the driving mechanisms.

  14. Interaction of copper and fulvic acid at the hematite-water interface

    NASA Astrophysics Data System (ADS)

    Christl, Iso; Kretzschmar, Ruben

    2001-10-01

    The influence of surface-bound fulvic acid on the sorption of Cu(II) to colloidal hematite particles was studied experimentally and the results were compared with model calculations based on the linear additivity assumption. In the first step, proton and Cu binding to colloidal hematite particles and to purified fulvic acid was studied by batch equilibration and ion-selective electrode titration experiments, respectively. The sorption data for these binary systems were modeled with a basic Stern surface complexation model for hematite and the NICA-Donnan model for fulvic acid. In the second step, pH-dependent sorption of Cu and fulvic acid in ternary systems containing Cu, hematite, and fulvic acid in NaNO3 electrolyte solutions was investigated in batch sorption experiments. Sorption of fulvic acid to the hematite decreased with increasing pH (pH 3-10) and decreasing ionic strength (0.01-0.1 M NaNO3), while the presence of 22 μM Cu had a small effect on fulvic acid sorption, only detectable at low ionic strength (0.01 M). Sorption of Cu to the solid phase separated by centrifugation was strongly affected by the presence of fulvic acid. Below pH 6, sorption of Cu to the solid phase increased by up to 40% compared with the pure hematite. Above pH 6, the presence of fulvic acid resulted in a decrease in Cu sorption due to increasing concentrations of dissolved metal-organic complexes. At low ionic strength (0.01 M), the effects of fulvic acid on Cu sorption to the solid phase were more pronounced than at higher ionic strength (0.1 M). Comparison of the experimental data with model calculations shows that Cu sorption in ternary hematite-fulvic acid systems is systematically underestimated by up to 30% using the linear additivity assumption. Therefore, specific interactions between organic matter and trace metal cations at mineral surfaces must be taken into account when applying surface complexation models to soils or sediments which contain oxides and natural organic matter.

  15. Estimation of Sorption Behavior of Europium(III) Using Biotite Flakes - 13272

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, Go; Niibori, Yuichi; Mimura, Hitoshi

    2013-07-01

    The interaction of biotite and Eu(III) (europium (III)) was examined by using secondary ion-microprobe mass spectrometer (SIMS), fluorescence emission spectrum and decay behavior of fluorescence emission spectrum in addition to the time-changes of Eu(III) and potassium ions concentrations in a solution, using the flake form samples. The results of SIMS showed that the intensity of Eu was gradually decreasing with depth, while the intensity of Eu in the case shaken for 30 days exceeded that in the case for 1 day. Furthermore, the spatial distribution of Eu(III) and potassium ions in the flake of biotite suggested that Eu ions diffusemore » mainly from the edges of biotite flake, while Eu ions can slightly diffuse through some small cracks existing on the flake surface far from the edges. Besides, the elution amount of potassium from the biotite flakes into a solution was proportional to the sorption amount of Eu(III). The changes nearly revealed ion exchange between these ions, while muscovite flake sample did not show such ion exchange reaction. In addition, from the time-change of Eu(III) concentration, an apparent diffusion coefficient was estimated to be 8.0x10{sup -12} m{sup 2}/s, by using two-dimensional diffusion model coupled with a film between the solid phase and the liquid phase. Furthermore, the fluorescent intensity decreased with the shaking (contacting) time. This means that Eu(III) gradually diffuses into the inside of biotite edges of the biotite flakes, after the sorption of Eu(III) in the edges. This tendency was observed also in the powder samples. The observed fluorescence decay (at 592 nm in wave length) showed almost similar curve in any samples, indicating a certain sorption form of Eu(III) onto the edges of the biotite flakes. These results mentioned above suggest that the diffusion processes through internal layer in biotite mainly control the sorption behavior of multivalent ions. Such diffusion processes affect the retardation-effects on fracture surfaces in the rock matrix, depending on the fluid flow velocity of groundwater. That is, a more reliable model considering the mass transfer in the internal layer of biotite may be required to estimate the sorption behavior of RNs with biotite which controls the whole sorption behavior of granite. (authors)« less

  16. Study of moisture absorption by an organoplastic

    NASA Astrophysics Data System (ADS)

    Aniskevich, A. N.; Yanson, Yu. O.

    1991-07-01

    A complex experimental study of the state of sorbed moisture in a unidirectionally reinforced organoplastic was conducted. The methods of TG, DSC, DTA, and NMR showed that moisture absorption in OP is reversible up to 8%, the sorbed moisture does not crystallize in the temperature range from -70 to 0 °C, it is finely dispersely distributed and is in the strongly and weakly bound state, and there is almost no free moisture. The results of the sorption experiments conducted on OP and its structural components: microplastic and EDT-10 binder, in a wide range of temperature-humidity conditions and the data from physical studies showed that moisture absorption in the materials basically takes place by diffusion and is satisfactorily described by a phenomenological model based on the Fick equation. A method of accelerated determination of the sorption characteristics of anisotropic composite materials was developed, using the introduced concept of the fictitious diffusion coefficient and the extrapolation method of determining the limiting moisture content. The features of migration of moisture on the interface in a multiphase system were investigated, and the possibility of successive calculation estimation of the sorption characteristics of an organoplastic at different structural levels was demonstrated: components—unidirectionally reinforced composite—model laminated article. The tested phenomenological model of the sorption process and the experimentally obtained values of the characteristics of the material were the basis for a method of calculation determination of the resource of moisture-proofing properties of a model multilayer article of CM in nonstationary external conditions.

  17. Impact of sorption processes on PCE concentrations in organohalide-respiring aquifer sediment samples.

    PubMed

    Leitner, Simon; Reichenauer, Thomas G; Watzinger, Andrea

    2018-02-15

    The evaluation of groundwater contaminant e.g. tetrachloroethene (PCE) degradation processes requires complete quantification of and pathway analysis of the groundwater contaminant under investigation. For example the reduction of PCE concentrations in the groundwater by unknown dissolution and/or sorption processes will impede interpretation of the fate and behaviour of such contaminants. In the present study PCE dissolution and sorption processes during anaerobic microbial degradation of chlorinated ethenes were investigated. For this purpose, microcosms were prepared using sediment samples from a PCE-contaminated aquifer, which in previous studies had demonstrated anaerobic organohalide respiration of PCE. Solid/water distribution coefficients (k d ) of PCE were determined and validated by loss-on-ignition (LOI) and PCE sorption experiments. The determined k d magnitudes indicated methodological congruency, yielding values for sediment samples within a range of 1.15±0.02 to 5.93±0.34L·kg -1 . The microcosm experiment showed lower PCE concentrations than expected, based on spiked PCE and observed anaerobic microbial degradation processes. Nevertheless the amount of PCE spike added was completely recovered albeit in the form of lower chlorinated metabolites. A delay due to dissolution processes was not responsible for this phenomenon. Sorption to sediments could only partially explain the reduction of PCE in the water phase. Accordingly, the results point to reversible sorption processes of PCE, possibly onto bacterial cell compartments and/or exopolymeric substances. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Sorption of biodegradation end products of nonylphenol polyethoxylates onto activated sludge.

    PubMed

    Hung, Nguyen Viet; Tateda, Masafumi; Ike, Michihiko; Fujita, Masanori; Tsunoi, Shinji; Tanaka, Minoru

    2004-01-01

    Nonylphenol(NP), nonylphenoxy acetic acid (NP1EC), nonylphenol monoethoxy acetic acid (NP2EC), nonylphenol monoethoxylate (NP1EO) and nonylphenol diethoxylate (NP2EO) are biodegradation end products (BEPs) of nonionic surfactant nonylphenolpolyethoxylates (NPnEO). In this research, sorption of these compounds onto model activated sludge was characterized. Sorption equilibrium experiments showed that NP, NP1EO and NP2EO reached equilibrium in about 12 h, while equilibrium of NP1EC and NP2EC were reached earlier, in about 4 h. In sorption isotherm experiments, obtained equilibrium data at 28 degrees C fitted well to Freundlich sorption model for all investigated compounds. For NP1EC, in addition to Freundlich, equilibrium data also fitted well to Langmuir model. Linear sorption model was also tried, and equilibrium data of all NP, NP1EO, NP2EO and NP2EC except NP1EC fitted well to this model. Calculated Freundlich coefficient (K(F)) and linear sorption coefficient (K(D)) showed that sorption capacity of the investigated compounds were in order NP > NP2EO > NP1EO > NP1EC approximately NP2EC. For NP, NP1EO and NP2EO, high values of calculated K(F) and K(D) indicated an easy uptake of these compounds from aqueous phase onto activated sludge. Whereas, NP1EC and NP2EC with low values of K(F) and K(D) absorbed weakly to activated sludge and tended to preferably remain in aqueous phase.

  19. Response Manual for Combating Spills of Floating Hazardous CHRIS chemicals

    DTIC Science & Technology

    1989-01-01

    CHRIS Chemicals CHRIS Chemical Name Code Floatability PARAFORMALDEHYDE PFA No PARALDEHYDE PDH No PARATHION PTO No PENTABORANE PTB No PENTACHLOROETHANE...5.2.1.3 Weir Skimmers ................................ 76 5.2.2 Chemical Removal Techniques ........................... 77 5.2.2.1 Sorption ...an- ditions such as high winds and rain 5.2.2.1 Sorption Sorption is commonly applied in water treatment processes. Being a surface process

  20. BIOPLUME III

    EPA Science Inventory

    Bioplume II is a two-dimensional finite difference and Method of Characteristics (MOC) model for simulating the natural attenuation of organic contaminants in ground water due to the processes of advection, dispersion, sorption and biodegradation. The transport simulation in Biop...

  1. Organic pollutants removal from 2,4,6-trinitrotoluene (TNT) red water using low cost activated coke.

    PubMed

    Zhang, Mohe; Zhao, Quanlin; Ye, Zhengfang

    2011-01-01

    We treated 2,4,6-trinitrotoluene (TNT) red water from the Chinese explosive industry with activated coke (AC) from lignite. Since the composition of TNT red water was very complicated, chemical oxygen demand (COD) was used as the index for evaluating treatment efficiency. This study focused on sorption kinetics and equilibrium sorption isotherms of AC for the removal of COD from TNT red water, and the changes of water quality before and after adsorption were evaluated using high performance liquid chromatography, UV-Vis spectra and gas chromatography/mass spectroscopy. The results showed that the sorption kinetics of COD removal from TNT red water onto AC fitted well with the pseudo second-order model. The adsorption process was an exothermic and physical process. The sorption isotherm was in good agreement with Redlich-Peterson isotherm. At the conditions of initial pH = 6.28, 20 degrees C and 3 hr of agitation, under 160 g/L AC, 64.8% of COD was removed. The removal efficiencies of 2,4-dinitrotoluene-3-sulfonate (2,4-DNT-3-SO3-) and 2,4-dinitrotoluene-5-sulfonate (2,4-DNT-5-SO3-) were 80.5% and 84.3%, respectively. After adsorption, the acute toxicity of TNT red water reduced greatly, compared with that of unprocessed TNT red water.

  2. Sorption of As(V) on aluminosilicates treated with Fe(II) nanoparticles.

    PubMed

    Dousová, Barbora; Grygar, Tomás; Martaus, Alexandr; Fuitová, Lucie; Kolousek, David; Machovic, Vladimír

    2006-10-15

    Adsorption of arsenic on clay surfaces is important for the natural and simulated removal of arsenic species from aqueous environments. In this investigation, three samples of clay minerals (natural metakaoline, natural clinoptilolite-rich tuff, and synthetic zeolite) in both untreated and Fe-treated forms were used for the sorption of arsenate from model aqueous solution. The treatment of minerals consisted of exposing them to concentrated solution of Fe(II). Within this process the mineral surface has been laden with Fe(III) oxi(hydroxides) whose high affinity for the As(V) adsorption is well known. In all investigated systems the sorption capacity of Fe(II)-treated sorbents increased significantly in comparison to the untreated material (from about 0.5 to >20.0 mg/g, which represented more than 95% of the total As removal). The changes of Fe-bearing particles in the course of treating process and subsequent As sorption were investigated by the diffuse reflectance spectroscopy and the voltammetry of microparticles. IR spectra of treated and As(V)-saturated solids showed characteristic bands caused by Fe(III)SO(4), Fe(III)O, and AsO vibrations. In untreated As(V)-saturated solids no significant AsO vibrations were observed due to the negligible content of sorbed arsenate.

  3. Modelling of hydrogen permeability of membranes for high-purity hydrogen production

    NASA Astrophysics Data System (ADS)

    Zaika, Yury V.; Rodchenkova, Natalia I.

    2017-11-01

    High-purity hydrogen is required for clean energy and a variety of chemical technology processes. Different alloys, which may be well-suited for use in gas-separation plants, were investigated by measuring specific hydrogen permeability. One had to estimate the parameters of diffusion and sorption to numerically model the different scenarios and experimental conditions of the material usage (including extreme ones), and identify the limiting factors. This paper presents a nonlinear mathematical model taking into account the dynamics of sorption-desorption processes and reversible capture of diffusing hydrogen by inhomogeneity of the material’s structure, and also modification of the model when the transport rate is high. The results of numerical modelling allow to obtain information about output data sensitivity with respect to variations of the material’s hydrogen permeability parameters. Furthermore, it is possible to analyze the dynamics of concentrations and fluxes that cannot be measured directly. Experimental data for Ta77Nb23 and V85Ni15 alloys were used to test the model. This work is supported by the Russian Foundation for Basic Research (Project No. 15-01-00744).

  4. Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars.

    PubMed

    Cui, Xiaoqiang; Hao, Hulin; Zhang, Changkuan; He, Zhenli; Yang, Xiaoe

    2016-01-01

    The objective of this study was to investigate the relationship between Cd(2+)/NH4(+) sorption and physicochemical properties of biochars produced from different wetland plants. Biochars from six species of wetland plants (i.e., Canna indica, Pennisetum purpureum Schum, Thalia dealbata, Zizania caduciflora, Phragmites australis and Vetiveria zizanioides) were obtained at 500°C and characterized, and their sorption for ammonium and cadmium was determined. There were significant differences in elemental composition, functional groups and specific surface area among the biochars derived from different wetland plant species. Sorption of ammonium and cadmium on the biochars could be described by a pseudo second order kinetic model, and the simple Langmuir model fits the isotherm data better than the Freundlich or Temkin model. The C. indica derived biochar had the largest sorption capacity for NH4(+) and Cd(2+), with a maximum sorption of 13.35 and 125.8mgg(-1), respectively. P. purpureum Schum derived biochar had a similar maximum sorption (119.3mgg(-1)) for Cd(2+). Ammonium sorption was mainly controlled by cation exchange, surface complexation with oxygen-containing functional groups and the formation of magnesium ammonium phosphate compounds, whereas for Cd(2+) sorption, the formation of cadmium phosphate precipitates, cation exchange and binding to oxygen-containing groups were the major possible mechanisms. In addition, the sorption of ammonium and cadmium was not affected by surface area and microporosity of the biochars. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Inhibitory effect on the uptake and diffusion of Cd(2+) onto soybean hull sorbent in Cd-Pb binary sorption systems.

    PubMed

    Módenes, Aparecido N; Espinoza-Quiñones, Fernando R; Colombo, Andréia; Geraldi, Claudinéia L; Trigueros, Daniela E G

    2015-05-01

    The uptake of Cd(2+) and Pb(2+) ions by a soybean hull (SH) biosorbent in single and binary systems has been investigated. Sorption tests regarding SH in natura and chemically treated were carried out testing a suitable value range of solution pH, sorption temperature and shaking velocity. Sorption capacity is improved at pH 4, 30 °C temperature and 100 rpm. When a strong base is applied, a related-to-untreated SH increasing of 20% in the sorption capacity of Pb(2+) ions was observed, but with poor results for Cd(2+) uptake. Additionally, a relatively strong decreasing in both sorption capacities of Pb(2+) and Cd(2+) ions was evidenced for all acidic treatments. Regarding untreated SH, kinetic sorption data of both metals were well-interpreted by a pseudo second-order model and a rate-limiting step on the basis of an intra-particle diffusion model was suggested to occur. An inhibitory effect of Pb(2+) diffusion over Cd(2+) one was observed, limiting to reach the obtained maximum sorption capacity in single system. Maximum adsorption capacities of 0.49 and 0.67mequivg(-1) for Cd(2+) and Pb(2+), respectively, were predicted by the Langmuir isotherm model that reproduced well the equilibrium sorption data for single systems. The inhibitory effect of one metal over the other one was verified in equilibrium sorption data for binary systems interpreted on the basis of a modified extended Langmuir isotherm model, predicting changes in metal affinity onto the SH surface. Finally, SH is an alternative biosorbent with a great potential for the wastewater treatment containing cadmium and lead ions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Competitive sorption of persistent organic pollutants onto microplastics in the marine environment.

    PubMed

    Bakir, Adil; Rowland, Steven J; Thompson, Richard C

    2012-12-01

    Plastics are known to sorb persistent organic pollutants from seawater. However, studies to quantify sorption rates have only considered the affinity of chemicals in isolation, unlike the conditions in the environment where contaminants are present as complex mixtures. Here we examine whether phenanthrene and 4,4'-DDT, in a mixture, compete for sorption sites onto PVC with no added additives (unplasticised PVC or uPVC) and Ultra-High Molecular Weight polyethylene. Interactions were investigated by exposing particles of uPVC and UHMW PE to mixtures of 3H and 14C radiolabelled Phe and DDT. Changes in sorption capacity were modelled by applying a Freundlich binding sorption isotherms. An Extended Langmuir Model and an Interaction Factor Model were also applied to predict equilibrium concentrations of pollutants onto plastic. This study showed that in a bi-solute system, DDT exhibited no significantly different sorption behaviour than in single solute systems. However, DDT did appear to interfere with the sorption of Phe onto plastic, indicating an antagonistic effect. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. A nonlinear isotherm model for sorption of anionic dyes on cellulose fibers: a case study.

    PubMed

    Xu, Changhai; Tang, Wenjuan; Du, Jinmei

    2014-02-15

    The sorption data of an anionic dye on cellulose fiber are often correlated with a log-linear model to determine the internal accessible volume of the fiber to the anionic dye (V, L/kg) and as such the standard affinity of the anionic dye to the fiber (-Δμ°, J/mol), but without taking into account the influence of ionized carboxyl groups due to cellulose oxidation ([COO(-)]f, mol/kg). In this study, a nonlinear isotherm model was derived by incorporating [COO(-)]f, V and -Δμ° as three model parameters. A set of classical sorption data of C. I. Direct Blue 1 on bleached cotton was correlated with the nonlinear isotherm model. The nonlinear curve fitting analysis showed that the nonlinear isotherm model was in excellent agreement with the sorption data and robust to determine the values of [COO(-)]f, V and -Δμ° for describing the sorption behaviors of anionic dyes on cellulose fibers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Predicting sorption of organic acids to a wide range of carbonized sorbents

    NASA Astrophysics Data System (ADS)

    Sigmund, Gabriel; Kah, Melanie; Sun, Huichao; Hofmann, Thilo

    2016-04-01

    Many contaminants and infochemicals are organic acids that undergo dissociation under environmental conditions. The sorption of dissociated anions to biochar and other carbonized sorbents is typically lower than that of neutral species. It is driven by complex processes that are not yet fully understood. It is known that predictive approaches developed for neutral compounds are unlikely to be suitable for organic acids, due to the effects of dissociation on sorption. Previous studies on the sorption of organic acids to soils have demonstrated that log Dow, which describes the decrease in hydrophobicity of acids upon dissociation, is a useful alternative to log Kow. The aim of the present study was to adapt a log Dow based approach to describe the sorption of organic acids to carbonized sorbents. Batch experiments were performed with a series of 9 sorbents (i.e., carbonized wood shavings, pig manure, and sewage sludge, carbon nanotubes and activated carbon), and four acids commonly used for pesticidal and biocidal purposes (i.e., 2,4-D, MCPA, 2,4-DB, and triclosan). Sorbents were comprehensively characterized, including by N2 and CO2 physisorption, Fourier transform infrared spectroscopy, and elemental analysis. The wide range of sorbents considered allows (i) discussing the mechanisms driving the sorption of neutral and anionic species to biochar, and (ii) their dependency on sorbate and sorbent properties. Results showed that the sorption of the four acids was influenced by factors that are usually not considered for neutral compounds (i.e., pH, ionic strength). Dissociation affected the sorption of the four compounds, and sorption of the anions ranged over five orders of magnitude, thus substantially contributing to sorption in some cases. For prediction purposes, most of the variation in sorption to carbonized sorbents (89%) could be well described with a two-parameter regression equation including log Dow and sorbent specific surface area. The proposed model may serve as a base to estimate the environmental fate of organic acids in the presence of carbonized sorbents such as biochar, and help assess (i) the potential application of biochar for remediation purposes and (ii) the potential effect of biochar addition to soil.

  9. Removal of selected pharmaceuticals from aqueous solution using magnetic chitosan: sorption behavior and mechanism.

    PubMed

    Zhang, Yalei; Shen, Zhe; Dai, Chaomeng; Zhou, Xuefei

    2014-11-01

    A novel-modified magnetic chitosan adsorbent was used to remove selected pharmaceuticals, i.e., diclofenac (DCF) and clofibric acid (CA) and carbamazepine (CBZ), from aqueous solutions. The characterization of magnetic chitosan was achieved by scanning electron and transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, vibrating sample magnetometer, and nitrogen sorption analysis. The magnetic chitosan had effective sorption affinity for DCF and CA but no sorption of CBZ was observed. The sorption capacities of CA and DCF in the individual solutions were 191.2 and 57.5 mg/g, respectively. While in mixed solution, DCF showed higher sorption affinity. Sorption kinetics indicated a quick equilibrium reached within 2 min. Lower solution pH values were found to be advantageous for the adsorption process. The sorption efficacy of CA declined significantly with increasing inorganic salt concentration. However, sorption performance of DCF was stable under different ionic strength conditions.

  10. A general computer model for predicting the performance of gas sorption refrigerators

    NASA Technical Reports Server (NTRS)

    Sigurdson, K. B.

    1983-01-01

    Projected performance requirements for cryogenic spacecraft sensor cooling systems which demand higher reliability and longer lifetimes are outlined. The gas/solid sorption refrigerator is viewed as a potential solution to cryogenic cooling needs. A software model of an entire gas sorption refrigerator system was developed. The numerical model, evaluates almost any combination and order of refrigerator components and any sorbent-sorbate pair or which the sorption isotherm data are available. Parametric curves for predicting system performance were generated for two types of refrigerators, a LaNi5-H2 absorption cooler and a Charcoal-N2 adsorption cooler. It is found that precooling temperature and heat exchanger effectiveness affect the refrigerator performance. It is indicated that gas sorption refrigerators are feasible for a number of space applications.

  11. Fate and transport of phenol in a packed bed reactor containing simulated solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saquing, Jovita M., E-mail: jmsaquing@gmail.com; Knappe, Detlef R.U., E-mail: knappe@ncsu.edu; Barlaz, Morton A., E-mail: barlaz@ncsu.edu

    Highlights: Black-Right-Pointing-Pointer Anaerobic column experiments were conducted at 37 Degree-Sign C using a simulated waste mixture. Black-Right-Pointing-Pointer Sorption and biodegradation model parameters were determined from batch tests. Black-Right-Pointing-Pointer HYDRUS simulated well the fate and transport of phenol in a fully saturated waste column. Black-Right-Pointing-Pointer The batch biodegradation rate and the rate obtained by inverse modeling differed by a factor of {approx}2. Black-Right-Pointing-Pointer Tracer tests showed the importance of hydrodynamic parameters to improve model estimates. - Abstract: An assessment of the risk to human health and the environment associated with the presence of organic contaminants (OCs) in landfills necessitates reliable predictivemore » models. The overall objectives of this study were to (1) conduct column experiments to measure the fate and transport of an OC in a simulated solid waste mixture, (2) compare the results of column experiments to model predictions using HYDRUS-1D (version 4.13), a contaminant fate and transport model that can be parameterized to simulate the laboratory experimental system, and (3) determine model input parameters from independently conducted batch experiments. Experiments were conducted in which sorption only and sorption plus biodegradation influenced OC transport. HYDRUS-1D can reasonably simulate the fate and transport of phenol in an anaerobic and fully saturated waste column in which biodegradation and sorption are the prevailing fate processes. The agreement between model predictions and column data was imperfect (i.e., within a factor of two) for the sorption plus biodegradation test and the error almost certainly lies in the difficulty of measuring a biodegradation rate that is applicable to the column conditions. Nevertheless, a biodegradation rate estimate that is within a factor of two or even five may be adequate in the context of a landfill, given the extended retention time and the fact that leachate release will be controlled by the infiltration rate which can be minimized by engineering controls.« less

  12. Role of submerged vegetation in the retention processes of three plant protection products in flow-through stream mesocosms.

    PubMed

    Stang, Christoph; Wieczorek, Matthias Valentin; Noss, Christian; Lorke, Andreas; Scherr, Frank; Goerlitz, Gerhard; Schulz, Ralf

    2014-07-01

    Quantitative information on the processes leading to the retention of plant protection products (PPPs) in surface waters is not available, particularly for flow-through systems. The influence of aquatic vegetation on the hydraulic- and sorption-mediated mitigation processes of three PPPs (triflumuron, pencycuron, and penflufen; logKOW 3.3-4.9) in 45-m slow-flowing stream mesocosms was investigated. Peak reductions were 35-38% in an unvegetated stream mesocosm, 60-62% in a sparsely vegetated stream mesocosm (13% coverage with Elodea nuttallii), and in a similar range of 57-69% in a densely vegetated stream mesocosm (100% coverage). Between 89% and 93% of the measured total peak reductions in the sparsely vegetated stream can be explained by an increase of vegetation-induced dispersion (estimated with the one-dimensional solute transport model OTIS), while 7-11% of the peak reduction can be attributed to sorption processes. However, dispersion contributed only 59-71% of the peak reductions in the densely vegetated stream mesocosm, where 29% to 41% of the total peak reductions can be attributed to sorption processes. In the densely vegetated stream, 8-27% of the applied PPPs, depending on the logKOW values of the compounds, were temporarily retained by macrophytes. Increasing PPP recoveries in the aqueous phase were accompanied by a decrease of PPP concentrations in macrophytes indicating kinetic desorption over time. This is the first study to provide quantitative data on how the interaction of dispersion and sorption, driven by aquatic macrophytes, influences the mitigation of PPP concentrations in flowing vegetated stream systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Diagnosis of Processes Controlling Dissolved Organic Carbon (DOC) Export in a Subarctic Region by a Dynamic Ecosystem Model

    NASA Astrophysics Data System (ADS)

    Tang, J.

    2015-12-01

    Permafrost thawing in high latitudes allows more soil organic carbon (SOC) to become hydrologically accessible. This can increase dissolved organic carbon (DOC) exports and carbon release to the atmosphere as CO2 and CH4, with a positive feedback to regional and global climate warming. However, this portion of carbon loss through DOC export is often neglected in ecosystem models. In this paper, we incorporate a set of DOC-related processes (DOC production, mineralization, diffusion, sorption-desorption and leaching) into an Arctic-enabled version of the dynamic ecosystem model LPJ-GUESS (LPJ-GUESS WHyMe) to mechanistically model the DOC export, and to link this flux to other ecosystem processes. The extended LPJ-GUESS WHyMe with these DOC processes is applied to the Stordalen catchment in northern Sweden. The relative importance of different DOC-related processes for mineral and peatland soils for this region have been explored at both monthly and annual scales based on a detailed variance-based Sobol sensitivity analysis. For mineral soils, the annual DOC export is dominated by DOC fluxes in snowmelt seasons and the peak in spring is related to the runoff passing through top organic rich layers. Two processes, DOC sorption-desorption and production, are found to contribute most to the annual variance in DOC export. For peatland soils, the DOC export during snowmelt seasons is constrained by frozen soils and the processes of DOC production and mineralization, determining the magnitudes of DOC desorption in snowmelt seasons as well as DOC sorption in the rest of months, play the most important role in annual variances of DOC export. Generally, the seasonality of DOC fluxes is closely correlated with runoff seasonality in this region. The current implementation has demonstrated that DOC-related processes in the framework of LPJ-GUESS WHyMe are at an appropriate level of complexity to represent the main mechanism of DOC dynamics in soils. The quantified contributions from different processes on DOC export dynamics could be further linked to the climate change, vegetation composition change and permafrost thawing in this region.

  14. [Properties of maize stalk biochar produced under different pyrolysis temperatures and its sorption capability to naphthalene].

    PubMed

    Huang, Hua; Wang, Ya-Xiong; Tang, Jing-Chun; Tang, Jing-Chun; Zhu, Wen-Ying

    2014-05-01

    Biochar was made from maize stalk under three different temperatures of 300, 500 and 700 degreeC. The elemental composition of biochar was measured by elemental analyzer. Scanning electron microscope (SEM) was used to measure the surface morphology. Sorption of naphthalene to biochar was researched by batch sorption experiments. Results showed that, with the increase of temperature, C content increased from 66. 79% to 76. 30% , H and O contents decreased from 4.92% and 19. 25% to 3. 18% and 9.53%, respectively; H/C, O/C, (O + N)/C, aromaticity and hydrophobicity increased, and polarity decreased. SEM results showed that maize stalk biochar was platy particles, and its roughness of surface increased with increasing temperature. The sorption of naphthalene on biochar followed the Lagergren pseudo-second order dynamic sorption model. Initial sorption rate and equilibrium sorption capacity increased as preparation temperatures increased at the same initial concentration of naphthalene. The isotherm sorption behavior can be described by the Freundlich model, which indicated that, as pyrolysis temperature increased, the sorption capacity of biochar increased, and nonlinearity increased first and then decreased. Biochar derived from maize stalk had distinct features when compared with other feedstocks, and its elemental composition, surface features and sorption behaviors were significantly influenced by pyrolysis temperature.

  15. Differences in sorption behavior of the herbicide 4-chloro-2-methylphenoxyacetic acid on artificial soils as a function of soil pre-aging.

    PubMed

    Waldner, Georg; Friesl-Hanl, Wolfgang; Haberhauer, Georg; Gerzabek, Martin H

    The sorption behavior of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) to three different artificial soil mixtures was investigated. Artificial soils serve as model systems for improving understanding of sorption phenomena. The soils consisted of quartz, ferrihydrite, illite, montmorillonite, and charcoal. In a previous study, several selected mixtures had been inoculated with organic matter, and microbial aging (incubation) had been performed for different periods of time (3, 12, and 18 months) before conducting the sorption experiments. The effect of this pre-incubation time on the sorption behavior was determined. Interaction of MCPA with soil surfaces was monitored by aqueous phase sorption experiments, using high-performance liquid chromatography/ultraviolet and in selected cases Fourier-transformed infrared spectroscopy. The sorption behavior showed large differences between differently aged soils; Freundlich and linear sorption model fits (with sorption constants K f , 1/ n exponents, and K d values, respectively) were given for pH = 3 and the unbuffered pH of ∼7. The largest extent of sorption from diluted solutions was found on the surfaces with a pre-incubation time of 3 months. Sorption increased at acidic pH values. Regarding the influence of aging of artificial soils, the following conclusions were drawn: young artificial soils exhibit stronger sorption at lower concentrations, with a larger K f value than aged soils. A correlation with organic carbon content was not confirmed. Thus, the sorption characteristics of the soils are more influenced by the aging of the organic carbon than by the organic carbon content itself.

  16. Sorption of small molecules in polymeric media

    NASA Astrophysics Data System (ADS)

    Camboni, Federico; Sokolov, Igor M.

    2016-12-01

    We discuss the sorption of penetrant molecules from the gas phase by a polymeric medium within a model which is very close in spirit to the dual sorption mode model: the penetrant molecules are partly dissolved within the polymeric matrix, partly fill the preexisting voids. The only difference with the initial dual sorption mode situation is the assumption that the two populations of molecules are in equilibrium with each other. Applying basic thermodynamics principles we obtain the dependence of the penetrant concentration on the pressure in the gas phase and find that this is expressed via the Lambert W-function, a different functional form than the one proposed by dual sorption mode model. The Lambert-like isotherms appear universally at low and moderate pressures and originate from the assumption that the internal energy in a polymer-penetrant-void ternary mixture is (in the lowest order) a bilinear form in the concentrations of the three components. Fitting the existing data shows that in the domain of parameters where the dual sorption mode model is typically applied, the Lambert function, which describes the same behavior as the one proposed by the gas-polymer matrix model, fits the data equally well.

  17. Sorption of the organic cation metoprolol on silica gel from its aqueous solution considering the competition of inorganic cations.

    PubMed

    Kutzner, Susann; Schaffer, Mario; Börnick, Hilmar; Licha, Tobias; Worch, Eckhard

    2014-05-01

    Systematic batch experiments with the organic monovalent cation metoprolol as sorbate and the synthetic material silica gel as sorbent were conducted with the aim of characterizing the sorption of organic cations onto charged surfaces. Sorption isotherms for metoprolol (>99% protonated in the tested pH of around 6) in competition with mono- and divalent inorganic cations (Na(+), NH4(+), Ca(2+), and Mg(2+)) were determined in order to assess their influence on cation exchange processes and to identify the role of further sorptive interactions. The obtained sorption isotherms could be described well by an exponential function (Freundlich isotherm model) with consistent exponents (about 0.8). In general, a decreasing sorption of metoprolol with increasing concentrations in inorganic cations was observed. Competing ions of the same valence showed similar effects. A significant sorption affinity of metoprolol with ion type dependent Freundlich coefficients KF,0.77 between 234.42 and 426.58 (L/kg)(0.77) could still be observed even at very high concentrations of competing inorganic cations. Additional column experiments confirm this behavior, which suggests the existence of further relevant interactions beside cation exchange. In subsequent batch experiments, the influence of mixtures with more than one competing ion and the effect of a reduced negative surface charge at a pH below the point of zero charge (pHPZC ≈ 2.5) were also investigated. Finally, the study demonstrates that cation exchange is the most relevant but not the sole mechanism for the sorption of metoprolol on silica gel. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Characterization of nicosulfuron availability in aged soils.

    PubMed

    Regitano, Jussara B; Koskinen, William C

    2008-07-23

    Sorption-desorption interactions of pesticides with soil determine their availability for transport, plant uptake, and microbial degradation. These interactions are affected by the physical-chemical properties of the pesticide and soil, and for some pesticides, their residence time in the soil. This research evaluated changes in sorption/availability of nicosulfuron (2-[[[[(4,6-dimethoxy-2-pyrimidinyl]amino]carbonyl]amino]sulfonyl]-N,N-dimethyl-3-pyridinecarboxamide) herbicide with aging in different soils, using a radiolabeled ((14)C) tracer. Aging significantly increased sorption. For instance, after the 41-day incubation, calculated K d,app increased by a factor of 2 to 3 in Mollisols from the Midwestern United States and by a factor of 5 to 9 in Oxisols from Brazil and Hawaii, as compared to freshly treated soils. In view of this outcome, potential transport of nicosulfuron would be overpredicted if freshly treated soil K d values were used to predict transport. The fact that the nicosulfuron solution concentration decreased faster than the soil concentration with time suggested that the increase in sorption was because the rate of degradation in solution and on labile sites was faster than the rate of desorption of the neutral species from the soil particles. It may have also been due to nicosulfuron anion diffusion to less accessible sites with time, leaving the more strongly bound neutral molecules for the sorption characterization. Regardless of the mechanism, these results are further evidence that increases in sorption during pesticide aging should be taken into account during the characterization of the sorption process for mathematical models of pesticide degradation and transport.

  19. Adsorption of As(III), As(V) and Cu(II) on zirconium oxide immobilized alginate beads in aqueous phase.

    PubMed

    Kwon, Oh-Hun; Kim, Jong-Oh; Cho, Dong-Wan; Kumar, Rahul; Baek, Seung Han; Kurade, Mayur B; Jeon, Byong-Hun

    2016-10-01

    A composite adsorbent to remove arsenite [As(III)], arsenate [As(V)], and copper [Cu(II)] from aqueous phase was synthesized by immobilizing zirconium oxide on alginate beads (ZOAB). The composition (wt%) of ZOAB (Zr-34.0; O-32.7; C-21.3; Ca-1.0) was confirmed by energy dispersive X-ray (EDX) analysis. Sorption studies were conducted on single and binary sorbate systems, and the effects of contact time, initial adsorbate concentration, and pH on the adsorption performance of ZOAB (pHPZC = 4.3) were monitored. The sorption process for As(III)/As(V) and Cu(II) reached an equilibrium state within 240 h and 24 h, respectively, with maximum sorption capacities of 32.3, 28.5, and 69.9 mg g(-1), respectively. The addition of Cu(II) was favorable for As(V) sorption in contrast to As(III). In the presence of 48.6 mg L(-1) Cu(II), the sorption capacity of As(V) increased from 1.5 to 3.8 mg g(-1) after 240 h. The sorption data for As(III)/As(V) and Cu(II) conformed the Freundlich and Langmuir isotherm models, respectively. The adsorption of As(III), As(V), and Cu(II) followed pseudo second order kinetics. The effect of arsenic species on Cu(II) sorption was insignificant. The results of present study demonstrated that the synthesized sorbent could be useful for the simultaneous removal of both anionic and cationic contaminants from wastewaters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Predicting Organic Cation Sorption Coefficients: Accounting for Competition from Sorbed Inorganic Cations Using a Simple Probe Molecule.

    PubMed

    Jolin, William C; Goyetche, Reaha; Carter, Katherine; Medina, John; Vasudevan, Dharni; MacKay, Allison A

    2017-06-06

    With the increasing number of emerging contaminants that are cationic at environmentally relevant pH values, there is a need for robust predictive models of organic cation sorption coefficients (K d ). Current predictive models fail to account for the differences in the identity, abundance, and affinity of surface-associated inorganic exchange ions naturally present at negatively charged receptor sites on environmental solids. To better understand how organic cation sorption is influenced by surface-associated inorganic exchange ions, sorption coefficients of 10 organic cations (including eight pharmaceuticals and two simple probe organic amines) were determined for six homoionic forms of the aluminosilicate mineral, montmorillonite. Organic cation sorption coefficients exhibited consistent trends for all compounds across the various homoionic clays with sorption coefficients (K d ) decreasing as follows: K d Na + > K d NH 4 + ≥ K d K + > K d Ca 2+ ≥ K d Mg 2+ > K d Al 3+ . This trend for competition between organic cations and exchangeable inorganic cations is consistent with the inorganic cation selectivity sequence, determined for exchange between inorganic ions. Such consistent trends in competition between organic and inorganic cations suggested that a simple probe cation, such as phenyltrimethylammonium or benzylamine, could capture soil-to-soil variations in native inorganic cation identity and abundance for the prediction of organic cation sorption to soils and soil minerals. Indeed, sorption of two pharmaceutical compounds to 30 soils was better described by phenyltrimethylammonium sorption than by measures of benzylamine sorption, effective cation exchange capacity alone, or a model from the literature (Droge, S., and Goss, K. Environ. Sci. Technol. 2013, 47, 14224). A hybrid approach integrating structural scaling factors derived from this literature model of organic cation sorption, along with phenyltrimethylammonium K d values, allowed for estimation of K d values for more structurally complex organic cations to homoionic montmorillonites and to heteroionic soils (mean absolute error of 0.27 log unit). Accordingly, we concluded that the use of phenyltrimethylammonium as a probe compound was a promising means to account for the identity, affinity, and abundance of natural exchange ions in the prediction of organic cation sorption coefficients for environmental solids.

  1. Hybrid biosorbents for removal of pollutants and remediation

    NASA Astrophysics Data System (ADS)

    Burlakovs, Juris; Klavins, Maris; Robalds, Artis; Ansone, Linda

    2014-05-01

    For remediation of soils and purification of polluted waters, wastewaters, biosorbents might be considered as prospective groups of materials. Amongst them peat have a special role due to low cost, biodegradability, high number of functional groups, well developed surface area and combination of hydrophilic/hydrophobic structural elements. Peat as sorbent have good application potential for removal of trace metals, and we have demonstrated peat sorption capacities, sorption kinetics, thermodynamics in respect to metals with different valencies - Tl(I), Cu(II), Cr(III). However, peat sorption capacity in respect to nonmetallic (anionic species) elements is low. Also peat mechanical properties do not support application in large scale column processes thereby, to expand peat application sphere, the approach of biomass based hybrid sorbents has been elaborated. The concept "hybrid sorbent" in understanding of biosorbent means natural, biomass based modified material, covered with another sorbent material, thus combining properties of both such as sorbent functionalities, surface properties etc. As the "covering layer" both inorganic substances, mineral phases (iron oxohydroxides, oxyappatite) and organic polymers (using graft polymerization) were used. The obtained sorbents were characterised by their spectral properties, surface area and elemental composition. The obtained hybrid sorbents were tested for sorption of compounds in anionic speciation forms, for example of arsenic, antimony, tellurium and phosphorous compounds in comparison with weakly basic anionites. The highest sorption capacity was observed when peat sorbents modified with iron compounds were used. Sorption of different arsenic speciation forms onto iron-modified peat sorbents was investigated as a function of pH and temperature. It was established that sorption capacity increases with a rise in temperature as the calculation of sorption process thermodynamic parameters indicates the spontaneity of sorption process and its endothermic nature. The recycling options of obtained compounds after their saturation with metal or non-metallic species are suggested.

  2. Geochemical heterogeneity in a sand and gravel aquifer: Effect of sediment mineralogy and particle size on the sorption of chlorobenzenes

    USGS Publications Warehouse

    Barber, Larry B.; Thurman, E. Michael; Runnells, Donald D.

    1992-01-01

    The effect of particle size, mineralogy and sediment organic carbon (SOC) on sorption of tetrachlorobenzene and pentachlorobenzene was evaluated using batch-isotherm experiments on sediment particle-size and mineralogical fractions from a sand and gravel aquifer, Cape Cod, Massachusetts. Concentration of SOC and sorption of chlorobenzenes increase with decreasing particle size. For a given particle size, the magnetic fraction has a higher SOC content and sorption capacity than the bulk or non-magnetic fractions. Sorption appears to be controlled by the magnetic minerals, which comprise only 5–25% of the bulk sediment. Although SOC content of the bulk sediment is <0.1%, the observed sorption of chlorobenzenes is consistent with a partition mechanism and is adequately predicted by models relating sorption to the octanol/water partition coefficient of the solute and SOC content. A conceptual model based on preferential association of dissolved organic matter with positively-charged mineral surfaces is proposed to describe micro-scale, intergranular variability in sorption properties of the aquifer sediments.

  3. Dissolution and sorption of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) residues from detonated mineral surfaces.

    PubMed

    Jaramillo, Ashley M; Douglas, Thomas A; Walsh, Marianne E; Trainor, Thomas P

    2011-08-01

    Composition B (Comp B) is a commonly used military formulation composed of the toxic explosive compounds 2,4,6-trinitrotoluene (TNT), and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Numerous studies of the temporal fate of explosive compounds in soils, surface water and laboratory batch reactors have been conducted. However, most of these investigations relied on the application of explosive compounds to the media via aqueous addition and thus these studies do not provide information on the real world loading of explosive residues during detonation events. To address this we investigated the dissolution and sorption of TNT and RDX from Comp B residues loaded to pure mineral phases through controlled detonation. Mineral phases included nontronite, vermiculite, biotite and Ottawa sand (quartz with minor calcite). High Performance Liquid Chromatography and Attenuated Total Reflectance Fourier Transform Infrared spectroscopy were used to investigate the dissolution and sorption of TNT and RDX residues loaded onto the mineral surfaces. Detonation resulted in heterogeneous loading of TNT and RDX onto the mineral surfaces. Explosive compound residues dissolved rapidly (within 9 h) in all samples but maximum concentrations for TNT and RDX were not consistent over time due to precipitation from solution, sorption onto mineral surfaces, and/or chemical reactions between explosive compounds and mineral surfaces. We provide a conceptual model of the physical and chemical processes governing the fate of explosive compound residues in soil minerals controlled by sorption-desorption processes. Published by Elsevier Ltd.

  4. pH-dependent biotransformation of ionizable organic micropollutants in activated sludge.

    PubMed

    Gulde, Rebekka; Helbling, Damian E; Scheidegger, Andreas; Fenner, Kathrin

    2014-12-02

    Removal of micropollutants (MPs) during activated sludge treatment can mainly be attributed to biotransformation and sorption to sludge flocs, whereby the latter process is known to be of minor importance for polar organic micropollutants. In this work, we investigated the influence of pH on the biotransformation of MPs with cationic-neutral speciation in an activated sludge microbial community. We performed batch biotransformation, sorption control, and abiotic control experiments for 15 MPs with cationic-neutral speciation, one control MP with neutral-anionic speciation, and two neutral MPs at pHs 6, 7, and 8. Biotransformation rate constants corrected for sorption and abiotic processes were estimated from measured concentration time series with Bayesian inference. We found that biotransformation is pH-dependent and correlates qualitatively with the neutral fraction of the ionizable MPs. However, a simple speciation model based on the assumption that only the neutral species is efficiently taken up and biotransformed by the cells tends to overpredict the effect of speciation. Therefore, additional mechanisms such as uptake of the ionic species and other more complex attenutation mechanisms are discussed. Finally, we observed that the sorption coefficients derived from our control experiments were small and showed no notable pH-dependence. From this we conclude that pH-dependent removal of polar, ionizable organic MPs in activated sludge systems is less likely an effect of pH-dependent sorption but rather of pH-dependent biotransformation. The latter has the potential to cause marked differences in the removal of polar, ionizable MPs at different operational pHs during activated sludge treatment.

  5. Sorption-desorption of indaziflam and its three metabolites in sandy soils

    USDA-ARS?s Scientific Manuscript database

    Indaziflam is a relatively new herbicide for which sorption-desorption information is lacking, and nothing is available on its metabolites. Information is needed on the multiple soil and pesticide characteristics known to influence these processes. Freundlich sorption isotherm slopes were < 1, there...

  6. Development of a Self-Consistent Model of Plutonium Sorption: Quantification of Sorption Enthalpy and Ligand-Promoted Dissolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Brian; Kaplan, Daniel I; Arai, Yuji

    2016-12-29

    This university lead SBR project is a collaboration lead by Dr. Brian Powell (Clemson University) with co-principal investigators Dan Kaplan (Savannah River National Laboratory), Yuji Arai (presently at the University of Illinois), Udo Becker (U of Michigan) and Rod Ewing (presently at Stanford University). Hypothesis: The underlying hypothesis of this work is that strong interactions of plutonium with mineral surfaces are due to formation of inner sphere complexes with a limited number of high-energy surface sites, which results in sorption hysteresis where Pu(IV) is the predominant sorbed oxidation state. The energetic favorability of the Pu(IV) surface complex is strongly influencedmore » by positive sorption entropies, which are mechanistically driven by displacement of solvating water molecules from the actinide and mineral surface during sorption. Objectives: The overarching objective of this work is to examine Pu(IV) and Pu(V) sorption to pure metal (oxyhydr)oxide minerals and sediments using variable temperature batch sorption, X-ray absorption spectroscopy, electron microscopy, and quantum-mechanical and empirical-potential calculations. The data will be compiled into a self-consistent surface complexation model. The novelty of this effort lies largely in the manner the information from these measurements and calculations will be combined into a model that will be used to evaluate the thermodynamics of plutonium sorption reactions as well as predict sorption of plutonium to sediments from DOE sites using a component additivity approach.« less

  7. Sorption of trivalent lanthanides and actinides onto montmorillonite: Macroscopic, thermodynamic and structural evidence for ternary hydroxo and carbonato surface complexes on multiple sorption sites.

    PubMed

    Fernandes, M Marques; Scheinost, A C; Baeyens, B

    2016-08-01

    The credibility of long-term safety assessments of radioactive waste repositories may be greatly enhanced by a molecular level understanding of the sorption processes onto individual minerals present in the near- and far-fields. In this study we couple macroscopic sorption experiments to surface complexation modelling and spectroscopic investigations, including extended X-ray absorption fine structure (EXAFS) and time-resolved laser fluorescence spectroscopies (TRLFS), to elucidate the uptake mechanism of trivalent lanthanides and actinides (Ln/An(III)) by montmorillonite in the absence and presence of dissolved carbonate. Based on the experimental sorption isotherms for the carbonate-free system, the previously developed 2 site protolysis non electrostatic surface complexation and cation exchange (2SPNE SC/CE) model needed to be complemented with an additional surface complexation reaction onto weak sites. The fitting of sorption isotherms in the presence of carbonate required refinement of the previously published model by reducing the strong site capacity and by adding the formation of Ln/An(III)-carbonato complexes both on strong and weak sites. EXAFS spectra of selected Am samples and TRLFS spectra of selected Cm samples corroborate the model assumptions by showing the existence of different surface complexation sites and evidencing the formation of Ln/An(III) carbonate surface complexes. In the absence of carbonate and at low loadings, Ln/An(III) form strong inner-sphere complexes through binding to three Al(O,OH)6 octahedra, most likely by occupying vacant sites in the octahedral layers of montmorillonite, which are exposed on {010} and {110} edge faces. At higher loadings, Ln/An(III) binds to only one Al octahedron, forming a weaker, edge-sharing surface complex. In the presence of carbonate, we identified a ternary mono- or dicarbonato Ln/An(III) complex binding directly to one Al(O,OH)6 octahedron, revealing that type-A ternary complexes form with the one or two carbonate groups pointing away from the surface into the solution phase. Within the spectroscopically observable concentration range these complexes could only be identified on the weak sites, in line with the small strong site capacity suggested by the refined sorption model. When the solubility of carbonates was exceeded, formation of an Am carbonate hydroxide could be identified. The excellent agreement between the thermodynamic model parameters obtained by fitting the macroscopic data, and the spectroscopically identified mechanisms, demonstrates the mature state of the 2SPNE SC/CE model for predicting and quantifying the retention of Ln/An(III) elements by montmorillonite-rich clay rocks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Reactive-transport simulation of phosphorus in the sewage plume at the Massachusetts Military Reservation, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Parkhurst, David L.; Stollenwerk, Kenneth G.; Colman, John A.

    2003-01-01

    The subsurface transport of phosphorus introduced by the disposal of treated sewage effluent to ground-infiltration disposal beds at the Massachusetts Military Reservation on western Cape Cod was simulated with a three-dimensional reactive-transport model. The simulations were used to estimate the load of phosphorus transported to Ashumet Pond during operation of the sewage-treatment plant?from 1936 to 1995?and for 60 years following cessation of sewage disposal. The model accounted for spatial and temporal changes in water discharge from the sewage-treatment plant, ground-water flow, transport of associated chemical constituents, and a set of chemical reactions, including phosphorus sorption on aquifer materials, dissolution and precipitation of iron- and manganese-oxyhydroxide and iron phosphate minerals, organic carbon sorption and decomposition, cation sorption, and irreversible denitrification. The flow and transport in the aquifer were simulated by using parameters consistent with those used in previous flow models of this area of Cape Cod, except that numerical dispersion was much larger than the physical dispersion estimated in previous studies. Sorption parameters were fit to data derived from phosphorus sorption and desorption laboratory column experiments. Rates of organic carbon decomposition were adjusted to match the location of iron concentrations in an anoxic iron zone within the sewage plume. The sensitivity of the simulated load of phosphorus transported to Ashumet Pond was calculated for a variety of processes and input parameters. Model limitations included large uncertainties associated with the loading of the sewage beds, the flow system, and the chemistry and sorption characteristics in the aquifer. The results of current model simulations indicate a small load of phosphorus transported to Ashumet Pond during 1965?85, but this small load was particularly sensitive to model parameters that specify flow conditions and the chemical process by which non-desorbable phosphorus is incorporated in the sediments. The uncertainties were large enough to make it difficult to determine whether loads of phosphorus transported to Ashumet Pond in the 1990s were greater or less than loads during the previous two decades. The model simulations indicate substantial discharge of phosphorus to Ashumet Pond after about 1965. After the period 2000?10 the simulations indicate that the load of phosphorus transported to Ashumet Pond decreases continuously, but the load of phosphorus remains substantial for many decades. The current simulations indicate a peak in phosphorus discharge to Ashumet Pond of about 1,000 kilograms per year during the 1990s; however, comparisons of simulated phosphorus concentrations with measured concentrations in 1993 indicate that the peak in phosphorus load transported to Ashumet Pond may be larger and moving more quickly in the model simulations than in the aquifer. The results of the three-dimensional reactive-transport simulations are consistent with the loading history, experimental laboratory data, and field measurements. The results of the simulations adequately reproduce the spatial distribution of phosphorus concentrations measured in 1993, the magnitude of changes in phosphorus concentration with time in a profile near the disposal beds following cessation of sewage disposal, the observed iron zone in the sewage plume, the approximate flow of treated sewage effluent into Ashumet Valley, and laboratory-column data for phosphorus sorption and desorption.

  9. Sorption properties of algae Spirogyra sp. and their use for determination of heavy metal ions concentrations in surface water.

    PubMed

    Rajfur, Małgorzata; Kłos, Andrzej; Wacławek, Maria

    2010-11-01

    Kinetics of heavy-metal ions sorption by alga Spirogyra sp. was evaluated experimentally in the laboratory, using both the static and the dynamic approach. The metal ions--Mn(2+), Cu(2+), Zn(2+) and Cd(2+)--were sorbed from aqueous solutions of their salts. The static experiments showed that the sorption equilibria were attained in 30 min, with 90-95% of metal ions sorbed in first 10 min of each process. The sorption equilibria were approximated with the Langmuir isotherm model. The algae sorbed each heavy metal ions proportionally to the amount of this metal ions in solution. The experiments confirmed that after 30 min of exposition to contaminated water, the concentration of heavy metal ions in the algae, which initially contained small amounts of these metal ions, increased proportionally to the concentration of metal ions in solution. The presented results can be used for elaboration of a method for classification of surface waters that complies with the legal regulations. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Synthesis of 3D iron and carbon-based composite as a bifunctional sorbent and catalyst for remediation of organic pollutants

    NASA Astrophysics Data System (ADS)

    Li, Ling; Shen, Yi; Wang, Zhaomei

    2017-07-01

    We prepared a 3D monolith by integrating graphite nanosheet encapsulated iron nanoparticles (Fe@GNS) into graphite felt (GF) supports. The structural properties of the resulting Fe@GNS/GF monolith are characterized by x-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, x-ray photoelectron spectroscopy and N2 adsorption-desorption isotherms. The Fe@GNS/GF monoliths are utilized as a bifunctional sorbent and catalyst for water remediation. Using Congo red and methyl violet 2B as model pollutants, the sorption and catalytic performance of the Fe@GNS/GF composite are examined. The Fe@GNS/GF monolith possesses maximum sorption capacities of 177 and 142 mg g-1 for the sorption of CR and MV-2B, respectively. It also exhibits rate constants of 0.0563 and 0.0464 min-1 for the catalytic degradation of CR and MV-2B, respectively. As a proof of concept, the Fe@GNS/GF is successfully utilized to decontaminate simulated organic waste water via a combination of sorption and catalytic degradation processes.

  11. Modeling study of natural emissions, source apportionment, and emission control of atmospheric mercury

    NASA Astrophysics Data System (ADS)

    Shetty, Suraj K.

    Mercury (Hg) is a toxic pollutant and is important to understand its cycling in the environment. In this dissertation, a number of modeling investigations were conducted to better understand the emission from natural surfaces, the source-receptor relationship of the emissions, and emission reduction of atmospheric mercury. The first part of this work estimates mercury emissions from vegetation, soil and water surfaces using a number of natural emission processors and detailed (LAI) Leaf Area Index data from GIS (Geographic Information System) satellite products. East Asian domain was chosen as it contributes nearly 50% of the global anthropogenic mercury emissions into the atmosphere. The estimated annual natural mercury emissions (gaseous elemental mercury) in the domain are 834 Mg yr-1 with 462 Mg yr-1 contributing from China. Compared to anthropogenic sources, natural sources show greater seasonal variability (highest in simmer). The emissions are significant, sometimes dominant, contributors to total mercury emission in the regions. The estimates provide possible explanation for the gaps between the anthropogenic emission estimates based on activity data and the emission inferred from field observations in the regions. To understand the contribution of domestic emissions to mercury deposition in the United States, the second part of the work applies the mercury model of Community Multi-scale Air Quality Modeling system (CMAQ-Hg v4.6) to apportion the various emission sources attributing to the mercury wet and dry deposition in the 6 United States receptor regions. Contributions to mercury deposition from electric generating units (EGU), iron and steel industry (IRST), industrial point sources excluding EGU and IRST (OIPM), the remaining anthropogenic sources (RA), natural processes (NAT), and out-of-boundary transport (BC) in domain was estimated. The model results for 2005 compared reasonably well to field observations made by MDN (Mercury Deposition Network) and CAMNet (Canadian Atmospheric Mercury Measurement Network). The model estimated a total deposition of 474 Mg yr-1 to the CONUS (Contiguous United States) domain, with two-thirds being dry deposited. Reactive gaseous mercury contributed the most to 60% of deposition. Emission speciation distribution is a key factor for local deposition as contribution from large point sources can be as high as 75% near (< 100 km) the emission sources, indicating that emission reduction may result in direct deposition decrease near the source locations. Among the sources, BC contributes to about 68% to 91% of total deposition. Excluding the BC's contribution, EGU contributes to nearly 50% of deposition caused by CONUS emissions in the Northeast, Southeast and East Central regions, while emissions from natural processes are more important in the Pacific and West Central regions (contributing up to 40% of deposition). The modeling results implies that implementation of the new emission standards proposed by USEPA (United States Environmental Protection Agency) would significantly benefit regions that have larger contributions from EGU sources. Control of mercury emissions from coal combustion processes has attracted great attention due to its toxicity and the emission-control regulations and has lead to advancement in state-of-the-art control technologies that alleviate the impact of mercury on ecosystem and human health. This part of the work applies a sorption model to simulate adsorption of mercury in flue gases, onto a confined-bed of activated carbon. The model's performances were studied at various flue gas flow rates, inlet mercury concentrations and adsorption bed temperatures. The process simulated a flue gas, with inlet mercury concentration of 300 ppb, entering at a velocity of 0.3 m s-1 from the bottom into a fixed bed (inside bed diameter of 1 m and 3 m bed height; bed temperature of 25 °C) of activated carbon (particle size of 0.004 m with density of 0.5 g cm-3 and surface area of 90.25 cm2 g -1). The model result demonstrated that a batch of activated carbon bed was capable of controlling mercury emission for approximately 275 days after which further mercury uptake starts to decrease till it reaches about 500 days when additional control ceases. An increase in bed temperature significantly reduces mercury sorption capacity of the activated carbon. Increase in flue gas flow rate may result in faster consumption of sorption capacity initially but at a later stage, the sorption rate decreases due to reduced sorption capacity. Thus, overall sorption rate remains unaffected. The activated carbon's effective life (time to reach saturation) is not affected by inlet mercury concentration, implying that the designing and operation of a mercury sorption process can be done independently. The results provide quantitative indication for designing efficient confined-bed process to remove mercury from flue gases.

  12. Effects of human management on black carbon sorption/desorption during a water transfer project: Recognizing impacts and identifying mitigation possibilities.

    PubMed

    Hao, Rong; Zhang, Jinliang; Wang, Peichao; Hu, Ronggui; Song, Yantun; Wu, Yupeng; Qiu, Guohong

    2018-05-15

    Water resources management is an important public concern. In this study, we examined the extent of sorption/desorption of trace pollutants to soil black carbon (BC) in the water level fluctuation zone (WLFZ) of the middle route of the South to North Water Transfer Project in China. In addition, we investigated the main management measures affecting these processes during the project. The results showed that the pseudo second-order model adequately describes the sorption/desorption of phenanthrene on the soil BC in the WLFZ. Water level fluctuation may indirectly influenced BC sorption/desorption by altering water chemistry. Water level residence time had negative effects on BC sorption in short-term experiments (days to months), but the impact gradually diminished with increased residence time. The results suggested that long-term field monitoring of water chemistry is urgent. During the initial period of water transfer, delaying the water supplies as drinking water source or directly irrigating crops could mitigate the adverse impacts. Future research should focus on the water-soluble products of BC degradation. The findings of this study should be useful in improving sustainable management of water resources for water transfer projects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Modeling the rate-controlled sorption of hexavalent chromium

    USGS Publications Warehouse

    Grove, D.B.; Stollenwerk, K.G.

    1985-01-01

    Sorption of chromium VI on the iron-oxide- and hydroxide-coated surface of alluvial material was numerically simulated with rate-controlled reactions. Reaction kinetics and diffusional processes, in the form of film, pore, and particle diffusion, were simulated and compared with experimental results. The use of empirically calculated rate coefficients for diffusion through the reacting surface was found to simulate experimental data; pore or particle diffusion is believed to be a possible rate-controlling mechanism. The use of rate equations to predict conservative transport and rate- and local-equilibrium-controlled reactions was shown to be feasible.

  14. A nonequilibrium model for reactive contaminant transport through fractured porous media: Model development and semianalytical solution

    NASA Astrophysics Data System (ADS)

    Joshi, Nitin; Ojha, C. S. P.; Sharma, P. K.

    2012-10-01

    In this study a conceptual model that accounts for the effects of nonequilibrium contaminant transport in a fractured porous media is developed. Present model accounts for both physical and sorption nonequilibrium. Analytical solution was developed using the Laplace transform technique, which was then numerically inverted to obtain solute concentration in the fracture matrix system. The semianalytical solution developed here can incorporate both semi-infinite and finite fracture matrix extent. In addition, the model can account for flexible boundary conditions and nonzero initial condition in the fracture matrix system. The present semianalytical solution was validated against the existing analytical solutions for the fracture matrix system. In order to differentiate between various sorption/transport mechanism different cases of sorption and mass transfer were analyzed by comparing the breakthrough curves and temporal moments. It was found that significant differences in the signature of sorption and mass transfer exists. Applicability of the developed model was evaluated by simulating the published experimental data of Calcium and Strontium transport in a single fracture. The present model simulated the experimental data reasonably well in comparison to the model based on equilibrium sorption assumption in fracture matrix system, and multi rate mass transfer model.

  15. Mechanistic understanding and performance of biosorption of metal ions by grapefruit peel using FTIR spectroscopy, kinetics and adsorption isotherms modeling, alkali and alkaline metal displacement and EDX analysis

    USDA-ARS?s Scientific Manuscript database

    The performance and mechanism of the sorptive removal of Ni2+ and Zn2+ from aqueous solution using grapefruit peel (GFP) as a new sorbent was investigated. The sorption process was fast, equilibrium was established in 60 min. The equilibrium process was described well by the Langmuir isotherm model,...

  16. Kinetic and mechanism studies of the adsorption of lead onto waste cow bone powder (WCBP) surfaces.

    PubMed

    Cha, Jihoon; Cui, Mingcan; Jang, Min; Cho, Sang-Hyun; Moon, Deok Hyun; Khim, Jeehyeong

    2011-01-01

    This study examines the adsorption isotherms, kinetics and mechanisms of Pb²(+) sorption onto waste cow bone powder (WCBP) surfaces. The concentrations of Pb²(+) in the study range from 10 to 90 mg/L. Although the sorption data follow the Langmuir and Freundlich isotherm, a detailed examination reveals that surface sorption or complexation and co-precipitation are the most important mechanisms, along with possibly ion exchange and solid diffusion also contributing to the overall sorption process. The co-precipitation of Pb²(+) with the calcium hydroxyapatite (Ca-HAP) is implied by significant changes in Ca²(+) and PO₄³⁻ concentrations during the metal sorption processes. The Pb²(+) sorption onto the WCBP surface by metal complexation with surface functional groups such as ≡ POH. The major metal surface species are likely to be ≡ POPb(+). The sorption isotherm results indicated that Pb²(+) sorption onto the Langmuir and Freundlich constant q(max) and K( F ) is 9.52 and 8.18 mg g⁻¹, respectively. Sorption kinetics results indicated that Pb²(+) sorption onto WCBP was pseudo-second-order rate constants K₂ was 1.12 g mg⁻¹ h⁻¹. The main mechanism is adsorption or surface complexation (≡POPb(+): 61.6%), co-precipitation or ion exchange [Ca₃(.)₉₃ Pb₁(.)₀₇ (PO₄)₃ (OH): 21.4%] and other precipitation [Pb 50 mg L⁻¹ and natural pH: 17%). Sorption isotherms showed that WCBP has a much higher Pb²(+) removal rate in an aqueous solution; the greater capability of WCBP to remove aqueous Pb²(+) indicates its potential as another promising way to remediate Pb²(+)-contaminated media.

  17. Effect of biochar particle size on hydrophobic organic compound sorption kinetics: Applicability of using representative size.

    PubMed

    Kang, Seju; Jung, Jihyeun; Choe, Jong Kwon; Ok, Yong Sik; Choi, Yongju

    2018-04-01

    Particle size of biochar may strongly affect the kinetics of hydrophobic organic compound (HOC) sorption. However, challenges exist in characterizing the effect of biochar particle size on the sorption kinetics because of the wide size range of biochar. The present study suggests a novel method to determine a representative value that can be used to show the dependence of HOC sorption kinetics to biochar particle size on the basis of an intra-particle diffusion model. Biochars derived from three different feedstocks are ground and sieved to obtain three daughter products each having different size distributions. Phenanthrene sorption kinetics to the biochars are well described by the intra-particle diffusion model with significantly greater sorption rates observed for finer grained biochars. The time to reach 95% of equilibrium for phenanthrene sorption to biochar is reduced from 4.6-17.9days for the original biochars to <1-4.6days for the powdered biochars with <125μm in size. A moderate linear correlation is found between the inverse square of the representative biochar particle radius obtained using particle size distribution analysis and the apparent phenanthrene sorption rates determined by the sorption kinetics experiments and normalized to account for the variation of the sorption rate-determining factors other than the biochar particle radius. The results suggest that the representative biochar particle radius reasonably describes the dependence of HOC sorption rates on biochar particle size. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Ni(II) biosorption by Cassia fistula (Golden Shower) biomass.

    PubMed

    Hanif, Muhammad Asif; Nadeem, Raziya; Bhatti, Haq Nawaz; Ahmad, Najum Rashid; Ansari, Tariq Mehmood

    2007-01-10

    Cassia fistula is a fast-growing, medium-sized, deciduous tree which is now widely cultivated worldwide as an ornamental tree for its beautiful showy yellow flowers. Methods are required to reuse fallen leaves, branches, stem bark and pods when they start getting all over lawn. This investigation studies the use of these non-useful parts of C. fistula as naturally occurring biosorbent for the batch removal of Ni(II) in a well stirred system under different experimental conditions. The data showed that the maximum pH (pHmax) for efficient sorption of Ni(II) was 6 at which evaluated biosorbent dosage, biosorbent particle size, initial concentrations of Ni(II) and sorption time were 0.1 g/100 mL, <0.255 mm, up to 200 mg/L and 720 min, respectively. The experimental results were analyzed in terms of Langmuir and Freundlich isotherms. The Langmuir isotherm model fitted well to data of Ni(II) biosorption by C. fistula biomass as compared to the model of Freundlich. The kinetic studies showed that the sorption rates could be described better by a second order expression than by a more commonly applied Lagergren equation. The magnitude of the Gibbs free energy values indicates spontaneous nature of the sorption process. The sorption ability of C. fistula biomass for Ni(II) removal tends to be in the order: leaves

  19. Identification of TCE and PCE sorption and biodegradation parameters in a sandy aquifer for fate and transport modelling: batch and column studies.

    PubMed

    Kret, E; Kiecak, A; Malina, G; Nijenhuis, I; Postawa, A

    2015-07-01

    The main aim of this study was to determine the sorption and biodegradation parameters of trichloroethene (TCE) and tetrachloroethene (PCE) as input data required for their fate and transport modelling in a Quaternary sandy aquifer. Sorption was determined based on batch and column experiments, while biodegradation was investigated using the compound-specific isotope analysis (CSIA). The aquifer materials medium (soil 1) to fine (soil 2) sands and groundwater samples came from the representative profile of the contaminated site (south-east Poland). The sorption isotherms were approximately linear (TCE, soil 1, K d = 0.0016; PCE, soil 1, K d = 0.0051; PCE, soil 2, K d = 0.0069) except for one case in which the best fitting was for the Langmuir isotherm (TCE, soil 2, K f = 0.6493 and S max = 0.0145). The results indicate low retardation coefficients (R) of TCE and PCE; however, somewhat lower values were obtained in batch compared to column experiments. In the column experiments with the presence of both contaminants, TCE influenced sorption of PCE, so that the R values for both compounds were almost two times higher. Non-significant differences in isotope compositions of TCE and PCE measured in the observation points (δ(13)C values within the range of -23.6 ÷ -24.3‰ and -26.3 ÷-27.7‰, respectively) indicate that biodegradation apparently is not an important process contributing to the natural attenuation of these contaminants in the studied sandy aquifer.

  20. Chlorophenol sorption on multi-walled carbon nanotubes: DFT modeling and structure-property relationship analysis.

    PubMed

    Watkins, Marquita; Sizochenko, Natalia; Moore, Quentarius; Golebiowski, Marek; Leszczynska, Danuta; Leszczynski, Jerzy

    2017-02-01

    The presence of chlorophenols in drinking water can be hazardous to human health. Understanding the mechanisms of adsorption under specific experimental conditions would be beneficial when developing methods to remove toxic substances from drinking water during water treatment in order to limit human exposure to these contaminants. In this study, we investigated the sorption of chlorophenols on multi-walled carbon nanotubes using a density functional theory (DFT) approach. This was applied to study selected interactions between six solvents, five types of nanotubes, and six chlorophenols. Experimental data were used to construct structure-adsorption relationship (SAR) models that describe the recovery process. Specific interactions between solvents and chlorophenols were taken into account in the calculations by using novel specific mixture descriptors.

  1. Sorption behavior of 17 phthalic acid esters on three soils: effects of pH and dissolved organic matter, sorption coefficient measurement and QSPR study.

    PubMed

    Yang, Fen; Wang, Meng; Wang, Zunyao

    2013-09-01

    This work studies the sorption behaviors of phthalic acid esters (PAEs) on three soils by batch equilibration experiments and quantitative structure property relationship (QSPR) methodology. Firstly, the effects of soil type, dissolved organic matter and pH on the sorption of four PAEs (DMP, DEP, DAP, DBP) are investigated. The results indicate that the soil organic carbon content has a crucial influence on sorption progress. In addition, a negative correlation between pH values and the sorption capacities was found for these four PAEs. However, the effect of DOM on PAEs sorption may be more complicated. The sorption of four PAEs was promoted by low concentrations of DOM, while, in the case of high concentrations, the influence of DOM on the sorption was complicated. Then the organic carbon content normalized sorption coefficient (logKoc) values of 17 PAEs on three soils were measured, and the mean values ranged from 1.50 to 7.57. The logKoc values showed good correlation with the corresponding logKow values. Finally, two QSPR models were developed with 13 theoretical parameters to get reliable logKoc predictions. The leave-one-out cross validation (CV-LOO) indicated that the internal predictive power of the two models was satisfactory. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  2. Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: Kinetic and isotherm study.

    PubMed

    Yu, Qiang; Zhang, Ruiqi; Deng, Shubo; Huang, Jun; Yu, Gang

    2009-03-01

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) have increasingly attracted global concerns in recent years due to their global distribution, persistence, strong bioaccumulation and potential toxicity. The feasibility of using powder activated carbon (PAC), granular activated carbon (GAC) and anion-exchange resin (AI400) to remove PFOS and PFOA from water was investigated with regard to their sorption kinetics and isotherms. Sorption kinetic results show that the adsorbent size influenced greatly the sorption velocity, and both the GAC and AI400 required over 168h to achieve the equilibrium, much longer than 4h for the PAC. Two kinetic models were adopted to describe the experimental data, and the pseudo-second-order model well described the sorption of PFOS and PFOA on the three adsorbents. The sorption isotherms show that the GAC had the lowest sorption capacity both for PFOS and PFOA among the three adsorbents, while the PAC and AI400 possessed the highest sorption capacity of 1.04mmolg(-1) for PFOS and 2.92mmolg(-1) for PFOA according to the Langmuir fitting. Based on the sorption behaviors and the characteristics of the adsorbents and adsorbates, ion exchange and electrostatic interaction as well as hydrophobic interaction were deduced to be involved in the sorption, and some hemi-micelles and micelles possibly formed in the intraparticle pores.

  3. Experimentally determined soil organic matter-water sorption coefficients for different classes of natural toxins and comparison with estimated numbers.

    PubMed

    Schenzel, Judith; Goss, Kai-Uwe; Schwarzenbach, René P; Bucheli, Thomas D; Droge, Steven T J

    2012-06-05

    Although natural toxins, such as mycotoxins or phytoestrogens are widely studied and were recently identified as micropollutants in the environment, many of their environmentally relevant physicochemical properties have not yet been determined. Here, the sorption affinity to Pahokee peat, a model sorbent for soil organic matter, was investigated for 29 mycotoxins and two phytoestrogens. Sorption coefficients (K(oc)) were determined with a dynamic HPLC-based column method using a fully aqueous mobile phase with 5 mM CaCl(2) at pH 4.5. Sorption coefficients varied from less than 10(0.7) L/kg(oc) (e.g., all type B trichothecenes) to 10(4.0) L/kg(oc) (positively charged ergot alkaloids). For the neutral compounds the experimental sorption data set was compared with predicted sorption coefficients using various models, based on molecular fragment approaches (EPISuite's KOCWIN or SPARC), poly parameter linear free energy relationship (pp-LFER) in combination with predicted descriptors, and quantum-chemical based software (COSMOtherm)). None of the available models was able to adequately predict absolute K(oc) numbers and relative differences in sorption affinity for the whole set of neutral toxins, largely because mycotoxins exhibit highly complex structures. Hence, at present, for such compounds fast and consistent experimental techniques for determining sorption coefficients, as the one used in this study, are required.

  4. Sorption of Cu and Pb to kaolinite-fulvic acid colloids: Assessment of sorbent interactions

    NASA Astrophysics Data System (ADS)

    Heidmann, Ilona; Christl, Iso; Kretzschmar, Ruben

    2005-04-01

    The sorption of Cu(II) and Pb(II) to kaolinite-fulvic acid colloids was investigated by potentiometric titrations. To assess the possible interactions between kaolinite and fulvic acid during metal sorption, experimental sorption isotherms were compared with predictions based on a linear additivity model (LAM). Suspensions of 5 g L -1 kaolinite and 0.03 g L -1 fulvic acid in 0.01 M NaNO 3 were titrated with Cu and Pb solutions, respectively. The suspension pH was kept constant at pH 4, 6, or 8. The free ion activities of Cu 2+ and Pb 2+ were monitored in the titration vessel using ion selective electrodes. Total dissolved concentrations of metals (by ICP-MS) and fulvic acid (by UV-absorption) were determined in samples taken after each titration step. The amounts of metals sorbed to the solid phase, comprised of kaolinite plus surface-bound fulvic acid, were calculated by difference. Compared to pure kaolinite, addition of fulvic acid to the clay strongly increased metal sorption to the solid phase. This effect was more pronounced at pH 4 and 6 than at pH 8, because more fulvic acid was sorbed to the kaolinite surface under acidic conditions. Addition of Pb enhanced the sorption of fulvic acid onto kaolinite at pH 6 and 8, but not at pH 4. Addition of Cu had no effect on the sorption of fulvic acid onto kaolinite. In the LAM, metal sorption to the kaolinite surface was predicted by a two-site, 1-pK basic Stern model and metal sorption to the fulvic acid was calculated with the NICA-Donnan model, respectively. The LAM provided good predictions of Cu sorption to the kaolinite-fulvic acid colloids over the entire range in pH and free Cu 2+ ion activity (10 -12 to 10 -5). The sorption of Pb was slightly underestimated by the LAM under most conditions. A fractionation of the fulvic acid during sorption to kaolinite was observed, but this could not explain the observed deviations of the LAM predictions from the experimental Pb sorption isotherms.

  5. Acoustic emission and sorptive deformation induced in coals of various rank by the sorption-desorption of gas

    NASA Astrophysics Data System (ADS)

    Majewska, Zofia; Ziętek, Jerzy

    2007-09-01

    Simultaneous measurements of acoustic emission (AE) and expansion/contraction of coal samples subjected to gas sorption-desorption processes were conducted on high-and medium-rank coal. The aim of this study was to examine the influence of the coal rank and type of sorbate on measured AE and strain characteristics. The experimental equipment employed in this study consisted of a pressure vessel and associated pressurisation and monitoring units. The arrangement of pressure-vacuum valves permitted the coal sample to be pressurised and depressurised. Carbon-dioxide and methane were used as sorbats. Acoustic emission and strains were recorded continuously for a period of 50 hours during sorption and for at least 12 hours during the desorption process. Tests were conducted on cylindrical coal samples at 298 K. The experimental data were presented as plots of AE basic parameters versus time and in strain diagrams. These studies lead to the following conclusions: 1. There are significant differences in AE and strain characteristics for the two systems (coal-CO2 and coal-CH4); 2. There is a direct influence of rank and type of coal on its behaviour during the sorption-desorption of gas. An attempt has been made to interpret the results obtained on the grounds of the copolymer model of coal structure. More research is needed into this topic in order to get a quantitative description of the observed facts.

  6. Water sorption in microfibrillated cellulose (MFC): The effect of temperature and pretreatment.

    PubMed

    Meriçer, Çağlar; Minelli, Matteo; Giacinti Baschetti, Marco; Lindström, Tom

    2017-10-15

    Water sorption behavior of two different microfibrillated cellulose (MFC) films, produced by delamination of cellulose pulp after different pretreatment methods, is examined at various temperatures (16-65°C) and up to 70% RH. The effect of drying temperature of MFC films on the water uptake is also investigated. The obtained solubility isotherms showed the typical downward curvature at moderate RH, while no upturn is observed at higher RH; the uptakes are in line with characteristic values for cellulose fibers. Enzymatically pretreated MFC dispersion showed lower solubility than carboxymethylated MFC, likely due to the different material structure, which results from the different preparation methods The experimental results are analyzed by Park and GAB models, which proved suitable to describe the observed behaviors. Interestingly, while no significant thermal effect is detected on water solubility above 35°C, the uptake at 16 and 25°C, at a given RH, is substantially lower than that at higher temperature, indicating that, in such range, sorption process is endothermic. Such unusual behavior for a cellulose-based system seems to be related mainly to the structural characteristics of MFC films, and to relaxation phenomena taking place upon water sorption. The diffusion kinetics, indeed, showed a clear Fickian behavior at low temperature and RH, whereas a secondary process seems to occur at high temperature and higher RH, leading to anomalous diffusion behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Short hold times in dynamic vapor sorption measurements mischaracterize the equilibrium moisture content of wood

    Treesearch

    Samuel V. Glass; Charles R. Boardman; Samuel L. Zelinka

    2017-01-01

    Recently, the dynamic vapor sorption (DVS) technique has been used to measure sorption isotherms and develop moisture-mechanics models for wood and cellulosic materials. This method typically involves measuring the time-dependent mass response of a sample following step changes in relative humidity (RH), fitting a kinetic model to the data, and extrapolating the...

  8. Adsorption Properties of Tetracycline onto Graphene Oxide: Equilibrium, Kinetic and Thermodynamic Studies

    PubMed Central

    Ghadim, Ehsan Ezzatpour; Manouchehri, Firouzeh; Soleimani, Gholamreza; Hosseini, Hadi; Kimiagar, Salimeh; Nafisi, Shohreh

    2013-01-01

    Graphene oxide (GO) nanoparticle is a high potential effective absorbent. Tetracycline (TC) is a broad-spectrum antibiotic produced, indicated for use against many bacterial infections. In the present research, a systematic study of the adsorption and release process of tetracycline on GO was performed by varying pH, sorption time and temperature. The results of our studies showed that tetracycline strongly loads on the GO surface via π–π interaction and cation–π bonding. Investigation of TC adsorption kinetics showed that the equilibrium was reached within 15 min following the pseudo-second-order model with observed rate constants of k2 = 0.2742–0.5362 g/mg min (at different temperatures). The sorption data has interpreted by the Langmuir model with the maximum adsorption of 323 mg/g (298 K). The mean energy of adsorption was determined 1.83 kJ/mol (298 K) based on the Dubinin–Radushkevich (D–R) adsorption isotherm. Moreover, the thermodynamic parameters such as ΔH°, ΔS° and ΔG° values for the adsorption were estimated which indicated the endothermic and spontaneous nature of the sorption process. The electrochemistry approved an ideal reaction for the adsorption under electrodic process. Simulation of GO and TC was done by LAMMPS. Force studies in z direction showed that tetracycline comes close to GO sheet by C8 direction. Then it goes far and turns and again comes close from amine group to the GO sheet. PMID:24302989

  9. Adsorption properties of tetracycline onto graphene oxide: equilibrium, kinetic and thermodynamic studies.

    PubMed

    Ghadim, Ehsan Ezzatpour; Manouchehri, Firouzeh; Soleimani, Gholamreza; Hosseini, Hadi; Kimiagar, Salimeh; Nafisi, Shohreh

    2013-01-01

    Graphene oxide (GO) nanoparticle is a high potential effective absorbent. Tetracycline (TC) is a broad-spectrum antibiotic produced, indicated for use against many bacterial infections. In the present research, a systematic study of the adsorption and release process of tetracycline on GO was performed by varying pH, sorption time and temperature. The results of our studies showed that tetracycline strongly loads on the GO surface via π-π interaction and cation-π bonding. Investigation of TC adsorption kinetics showed that the equilibrium was reached within 15 min following the pseudo-second-order model with observed rate constants of k2 = 0.2742-0.5362 g/mg min (at different temperatures). The sorption data has interpreted by the Langmuir model with the maximum adsorption of 323 mg/g (298 K). The mean energy of adsorption was determined 1.83 kJ/mol (298 K) based on the Dubinin-Radushkevich (D-R) adsorption isotherm. Moreover, the thermodynamic parameters such as ΔH°, ΔS° and ΔG° values for the adsorption were estimated which indicated the endothermic and spontaneous nature of the sorption process. The electrochemistry approved an ideal reaction for the adsorption under electrodic process. Simulation of GO and TC was done by LAMMPS. Force studies in z direction showed that tetracycline comes close to GO sheet by C8 direction. Then it goes far and turns and again comes close from amine group to the GO sheet.

  10. Sorption isotherm and kinetic modeling of aniline on Cr-bentonite.

    PubMed

    Zheng, Hong; Liu, Donghong; Zheng, Yan; Liang, Shuping; Liu, Zhe

    2009-08-15

    In this paper, the sorption characteristics of aniline on Cr-bentonite prepared using synthetic wastewater containing chromium was investigated in a batch system at 30 degrees C. The effects of relevant parameters, such as pH value of solution, adsorbent dosage and initial aniline concentration were examined. The experimental data were analyzed by the Langmuir and Freundlich, and Temkin models of sorption. The sorption isotherm data were fitted well to Langmuir isotherm and the monolayer sorption capacity was found to be 21.60 mg/g at 30 degrees C. Dubinin-Redushkevich (D-R) isotherm was applied to describe the nature of aniline uptake and it was found that it occurred chemically. The kinetic data obtained at different concentrations were analyzed using a pseudo first-order, pseudo second-order kinetic equation and intraparticle diffusion model. The experimental data fitted very well the pseudo second-order kinetic model. Intraparticle diffusion affects aniline uptake. The results indicate that there is significant potential for Cr-bentonite as an adsorbent material for aniline removal from aqueous solutions.

  11. Sorption of lead from aqueous solution by chemically modified carbon adsorbents.

    PubMed

    Nadeem, Muhammad; Mahmood, A; Shahid, S A; Shah, S S; Khalid, A M; McKay, G

    2006-12-01

    An indigenously prepared, steam activated and chemically modified carbon from husk and pods of Moringa oleifera (M. oleifera), an agricultural waste, was comparatively examined as an adsorbent for the removal of lead from aqueous solutions. Studies were conducted as a function of contact time, initial metal concentration, dose of adsorbent, agitation speed, particle size and pH. Maximum uptake capacities were found to be, 98.89, 96.58, 91.8, 88.63, 79.43% for cetyltrimethyl ammonium bromide (CTAB), phosphoric, sulfuric, hydrochloric acid treated and untreated carbon adsorbents, respectively. Bangham, pseudo-first- and second-order, intra-particle diffusion equations were implemented to express the sorption mechanism by utilized adsorbents. Adsorption rate of lead ions was found to be considerably faster for chemically modified adsorbents than unmodified. The results of adsorption were fitted to both the Langmuir and Freundlich models. Satisfactory agreement between the metal uptake capacities by the adsorbents at different time intervals was expressed by the correlation coefficient (R(2)). The Langmuir model represented the sorption process better than the Freundlich one, with R(2) values ranging from 0.994 to 0.998.

  12. Sorption potential of alkaline treated straw and a soil for sulfonylurea herbicide removal from aqueous solutions: An environmental management strategy.

    PubMed

    Cara, Irina-Gabriela; Rusu, Bogdan-George; Raus, Lucian; Jitareanu, Gerard

    2017-11-01

    The adsorption potential of alkaline treated straw (wheat and corn) in mixture with soil, has been investigated for the removal of sulfonylurea molecules from an aqueous solutions. The surface characteristics were investigated by scanning electron microscopy and Fourier Transform Infrared - FTIR, while the adsorbent capacity was evaluated using batch sorption tests and liquid chromatography coupled with mass spectrometry. Surface analysis of alkaline treated straw samples by scanning electron microscopy - SEM showed the increasing of the surface roughness improving their functional surface activity. An increase (337.22 mg g -1 ) of adsorption capacity of sulfonylurea molecules was obtained for all studied straw. The Langmuir isotherm model was the best model for the mathematical description of the adsorption process indicating the forming of a surface sorption monolayer with a finite number of identical sites. The kinetics of sulfonylurea herbicide followed the pseudo-second order mechanism corresponding to strong chemical interactions. The results sustained that the alkaline treated straw have biosorption characteristics, being suitable adsorbent materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Process for separating nitrogen from methane using microchannel process technology

    DOEpatents

    Tonkovich, Anna Lee [Marysville, OH; Qiu, Dongming [Dublin, OH; Dritz, Terence Andrew [Worthington, OH; Neagle, Paul [Westerville, OH; Litt, Robert Dwayne [Westerville, OH; Arora, Ravi [Dublin, OH; Lamont, Michael Jay [Hilliard, OH; Pagnotto, Kristina M [Cincinnati, OH

    2007-07-31

    The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator comprising a plurality of process microchannels containing a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the methane or nitrogen is sorbed by the sorption medium, and removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the methane or nitrogen from the sorption medium and removing the desorbed methane or nitrogen from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources.

  14. Description of two-metal biosorption equilibria by Langmuir-type models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chong, K.H.; Volesky, B.

    A biosorbent prepared from Ascophyllum nodosum seaweed biomass, FCAN2, was examined for its sorption capacity. Equilibrium batch sorption studies were performed using two-metal systems containing either (Cu+Zn), (Cu+Cd), or (Zn+Cd). In the evaluation of the two-metal sorption system performance, simple isotherm curves had to be replaced by three-dimensional sorption isotherm surfaces. In order to describe the isotherm surfaces mathematically, three Langmuir-type models were evaluated. The apparent one-parameter Langmuir constant (b) was used to quantify FCAN2 ``affinity`` for one metal in the presence of another one. The uptake of Zn decreased drastically when Cu of Cd were present. The uptake ofmore » Cd was much more sensitive to the presence of Cu than to that of Zn. The presence of Cd and Zn alter the ``affinity`` of FCAN2 for Cu the least at high Cu equilibrium concentrations. The mathematical model of the two-metal sorption system enabled quantitative estimation of one-metal (bio)sorption inhibition due to the influence of a second metal.« less

  15. The sorption of lead, cadmium, copper and zinc ions from aqueous solutions on a raw diatomite from Algeria.

    PubMed

    Safa, Messaouda; Larouci, Mohammed; Meddah, Boumediene; Valemens, Pierre

    2012-01-01

    The adsorption of Cu(2+), Zn(2+), Cd(2+) and Pb(2+) ions from aqueous solution by Algerian raw diatomite was studied. The influences of different sorption parameters such as contact pH solution, contact time and initial metal ions concentration were studied to optimize the reaction conditions. The metals ions adsorption was strictly pH dependent. The maximum adsorption capacities towards Cu(2+), Zn(2+), Cd(2+) and Pb(2+) were 0.319, 0.311, 0.18 and 0.096 mmol g(-1), respectively. The kinetic data were modelled using the pseudo-first-order and pseudo-second-order kinetic equations. Among the kinetic models studied, the pseudo-second-order equation was the best applicable model to describe the sorption process. Equilibrium isotherm data were analysed using the Langmuir and the Freundlich isotherms; the results showed that the adsorption equilibrium was well described by both model isotherms. The negative value of free energy change ΔG indicates feasible and spontaneous adsorption of four metal ions on raw diatomite. According to these results, the high exchange capacities of different metal ions at high and low concentration levels, and given the low cost of the investigated adsorbent in this work, Algerian diatomite was considered to be an excellent adsorbent.

  16. Effect of experimental variables onto Co(2+) and Sr(2+) sorption behavior in red mud-water suspensions.

    PubMed

    Milenković, Aleksandra S; Smičiklas, Ivana D; Šljivić-Ivanović, Marija Z; Živković, Ljiljana S; Vukelić, Nikola S

    2016-07-02

    The prospects of rinsed red mud (alumina production residue) utilization for liquid radioactive waste treatment have been investigated, with Co(2+) and Sr(2+) as model cations of radioactive elements. To evaluate the sorption effectiveness and corresponding binding mechanisms, the process was analyzed in batch conditions, by varying experimental conditions (pH, Co(2+) and Sr(2+) concentrations in single solutions and binary mixtures, contact time, and the concentration of competing cations and ligands common in liquid radioactive waste). Comparison of the Co(2+) and Sr(2+) sorption pH edges with the red mud isoelectric point has revealed that Co(2+) removal took place at both positive and negative red mud surface, while Sr(2+) sorption abruptly increased when the surface became negatively charged. The increase of initial cation content and pH resulted in increased equilibrium times and sorption capacity and decreased rate constants. From single metal solutions and various binary mixtures, Co(2+) was sorbed more efficiently and selectively than Sr(2+). While Sr(2+) sorption was reduced by coexisting cations in the order Al(3+) ≥ Ca(2+) >Na(+) ≥Cs(+), removal of Co(2+) was affected by Al(3+) species and complexing agents (EDTA and citrate). Desorption of Co(2+) was negligible in Ca(2+) and Sr(2+) containing media and in solutions with initial pH 4-7. Sr(2+) desorption was generally more pronounced, especially at low pH and in the presence of Co(2+). Collected macroscopic data signify that Co(2+) sorption by red mud minerals occurred via strong chemical bonds, while Sr(2+) was retained mainly by weaker ion-exchange or electrostatic interactions. Results indicate that the rinsed red mud represent an efficient, low-cost sorbent for Co(2+) and Sr(2+) immobilization.

  17. Reversible and irreversible sorption of perfluorinated compounds (PFCs) by sediments of an urban reservoir.

    PubMed

    Chen, Huiting; Reinhard, Martin; Nguyen, Viet Tung; Gin, Karina Yew-Hoong

    2016-02-01

    Uncertainty about the extent to which contaminant sorption by suspended solids and bed sediments is irreversible is a major impediment for modeling and managing the water quality of surface water resources. This study examined reversible and irreversible sorption of several perfluorinated compounds (PFCs) to bed sediments from an urban reservoir. PFCs investigated include C4, C6, C8, C9 and C10 perfluoroalkanoate homologues (PFBA, PFHxA, PFOA, PFNA and PFDA, respectively) and perfluorooctane and hexane sulfonate (PFOS and PFHxS, respectively). Although sorption branches of the PFOS, PFNA and PFDA isotherms were nearly linear (implying a partitioning-like process), desorption experiments indicated that a fraction of the sorbed PFCs were entrapped and resistant to desorption. The hysteretic desorption branches were approximately linear. Irreversibility increased with chain length and was nearly complete for PFDA (thermodynamic irreversibility index (TII) 0.98). For the weakly sorbing PFOA and PFHxS, sorption was largely reversible. Data suggest that (1) for the strongly sorbing PFCs, e.g. PFNA, PFDA and PFOS, bed sediments acted predominantly as irreversible sinks, (2) aqueous concentrations of the moderately sorbing PFCs (PFOA and PFHxS) are buffered by reversibly sorbing suspended solids, and (3) the short-chain PFCs (PFBA and PFHxA) are not significantly sorbed and therefore not expected to be significantly influenced by sediment transport. Situations in which highly contaminated particles entering relatively clean water bodies, equilibrium is approached from the reverse (desorption) direction. For irreversibly sorbed contaminants field-based K(D) values will be higher than the K(D) values derived from laboratory sorption data obtained from forward sorption experiments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Determination of Sorption Coefficient of Phosphorus Applied for Sugarcane Production in Southwestern Florida.

    PubMed

    Muwamba, A; Nkedi-Kizza, P; Morgan, K T

    2016-09-01

    Phosphorus is among the essential nutrients applied to sugarcane ( L.) fields in the form of a fertilizer mixture (N, P, and K) in southwestern Florida. Sorption coefficient is used for modeling P movement, and in this study, we hypothesized that the sorption coefficient determined using fertilizer mixture (N, P, and K) will be significantly different from values determined using KCl and CaCl, the electrolytes most commonly used for conducting sorption experiments. Supporting electrolytes, 0.01 mol L KCl, 0.005 mol L CaCl, deionized (DI) water, simulated Florida rain, and fertilizer mixture prepared in Florida rain were used to characterize P sorption. Immokalee (Sandy, siliceous, hyperthermic Arenic Alaquods) and Margate (Sandy, siliceous hyperthermic Mollic Psammaquents) are the dominant mineral soils used for sugarcane production in southwestern Florida; we used the A and B horizons of Margate soil and the A and B horizons of the Immokalee soil for sorption experiments in this study. Freundlich sorption isotherms described P sorption data. The Freundlich sorption isotherm coefficients followed the trend 0.005 mol L CaCl > 0.01 mol L KCl ≈ fertilizer mixture > simulated Florida rain ≈ DI water. Sorption coefficients were used for modeling P movement with HYDRUS 1D; similar P results were obtained with the 0.01 mol L KCl and fertilizer mixture electrolyte treatments. The sorption coefficient for DI water and simulated Florida rain overpredicted P movement. The P sorption data showed the importance of choosing the appropriate electrolyte for conducting experiments based on the composition of fertilizer. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Summary report on the evaluation of a 1977--1985 edited sorption data base for isotherm modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polzer, W.L.; Beckman, R.J.; Fuentes, H.R.

    1993-09-01

    Sorption data bases collected by Los Alamos National Laboratory (LANL) from 1977 to 1985 for the Yucca Mountain Project.(YMP) have been inventoried and fitted with isotherm expressions. Effects of variables (e.g., particle size) on the isotherm were also evaluated. The sorption data are from laboratory batch measurements which were not designed specifically for isotherm modeling. However a limited number of data sets permitted such modeling. The analysis of those isotherm data can aid in the design of future sorption experiments and can provide expressions to be used in radionuclide transport modeling. Over 1200 experimental observations were inventoried for their adequacymore » to be modeled b isotherms and to evaluate the effects of variables on isotherms. About 15% of the observations provided suitable data sets for modeling. The data sets were obtained under conditions that include ambient temperature and two atmospheres, air and CO{sub 2}.« less

  20. Actinide geochemistry: from the molecular level to the real system.

    PubMed

    Geckeis, Horst; Rabung, Thomas

    2008-12-12

    Geochemical processes leading to either mobilization or retention of radionuclides in an aquifer system are significantly influenced by their interaction with rock, sediment and colloid surfaces. Therefore, a sound safety assessment of nuclear waste disposal requires the elucidation and quantification of those processes. State-of-the-art analytical techniques as e.g. laser- and X-ray spectroscopy are increasingly applied to study solid-liquid interface reactions to obtain molecular level speciation insight. We have studied the sorption of trivalent lanthanides and actinides onto aluminium oxides, hydroxides and purified clay minerals by the time-resolved laser fluorescence spectroscopy and X-ray-absorption spectroscopy. Chemical constitution and structure of surface bound actinides are proposed based on spectroscopic information. Open questions still remain with regard to the exact nature of mineral surface ligands and the mineral/water interface. Similarities of spectroscopic data obtained for M(III) sorbed onto gamma-alumina, and clay minerals suggest the formation of very comparable inner-sphere surface complexes such as S-O-An(III)(OH)x(2-x)(H2O)5-x at pH > 5. Those speciation data are found consistent with those predicted by surface complexation modelling. The applicability of data obtained for pure mineral phases to actinide sorption onto heterogeneously composed natural clay rock is examined by experiments and by geochemical modelling. Good agreement of experiment and model calculations is found for U(VI) and trivalent actinide/lanthanide sorption to natural clay rock. The agreement of spectroscopy, geochemical modelling and batch experiments with natural rock samples and purified minerals increases the reliability in model predictions. The assessment of colloid borne actinide migration observed in various laboratory and field studies calls for detailed information on actinide-colloid interaction. Kinetic stabilization of colloid bound actinides can be due to inclusion into inorganic colloid matrix or by macromolecular rearrangement in case of organic, humic/fulvic like colloids. Only a combination of spectroscopy, microscopy and classical batch sorption experiments can help to elucidate the actinide-colloid interaction mechanisms and thus contribute to the assessment of colloids for radionuclide migration.

  1. Fundamental aspects related to batch and fixed-bed sulfate sorption by the macroporous type 1 strong base ion exchange resin Purolite A500.

    PubMed

    Guimarães, Damaris; Leão, Versiane A

    2014-12-01

    Acid mine drainage is a natural process occurring when sulfide minerals such as pyrite are exposed to water and oxygen. The bacterially catalyzed oxidation of pyrite is particularly common in coal mining operations and usually results in a low-pH water polluted with toxic metals and sulfate. Although high sulfate concentrations can be reduced by gypsum precipitation, removing lower concentrations (below 1200 mg/L) remains a challenge. Therefore, this work sought to investigate the application of ion exchange resins for sulfate sorption. The macroporous type 1 strong base IX resin Purolite A500 was selected for bath and fixed-bed sorption experiments using synthetic sulfate solutions. Equilibrium experiments showed that sulfate loading on the resin can be described by the Langmuir isotherm with a maximum uptake of 59 mg mL-resin(-1). The enthalpy of sorption was determined as +2.83 kJ mol(-1), implying an endothermic physisorption process that occurred with decreasing entropy (-15.5 J mol(-1).K(-1)). Fixed-bed experiments were performed at different bed depths, flow rates, and initial sulfate concentrations. The Miura and Hashimoto model predicted a maximum bed loading of 25-30 g L-bed(-1) and indicated that both film diffusion (3.2 × 10(-3) cm s(-1) to 22.6 × 10(-3) cm s(-1)) and surface diffusion (1.46 × 10(-7) cm(2) s(-1) to 5.64 × 10(-7) cm(2) s(-1)) resistances control the sorption process. It was shown that IX resins are an alternative for the removal of sulfate from mine waters; they ensure very low residual concentrations, particularly in effluents where the sulfate concentration is below the gypsum solubility threshold. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Sericitization of illite decreases sorption capabilities for cesium

    NASA Astrophysics Data System (ADS)

    Choung, S.; Hwang, J.; Han, W.; Shin, W.

    2017-12-01

    Release of radioactive cesium (137Cs) to environment occurs through nuclear accidents such as Chernobyl and Fukushima. The concern is that 137Cs has long half-life (t1/2 = 30.2 years) with chemical toxicity and γ-radiation. Sorption techniques are mainly applied to remove 137Cs from aquatic environment. In particular, it has been known well that clay minerals (e.g, illite) are effective and economical sorbents for 137Cs. Illite that was formed by hydrothermal alteration exist with sericite through "sericitization" processes. Although sericite has analogous composition and lattice structure with illite, the sorptive characteristics of illite and sericite for radiocesium could be different. This study evaluated the effects of hydrothermal alteration and weathering process on illite cesium sorption properties. Natural illite samples were collected at Yeongdong area in Korea as the world-largest hydrothermal deposits for illite. The samples were analyzed by XRF, XRD and SEM-EDX to determine mineralogy, chemical compositions and morphological characteristics, and used for batch sorption experiments. The Yeongdong illites predominantly consist of illite, sericite, quartz, and albite. The measured cesium sorption distribution coefficients (Kd,Cs) of reference illite and sericite were approximately 6000 and 400 L kg-1 at low aqueous concentration (Cw 10-7 M), respectively. In contrast, Kd,Cs values for the Yeongdong illite samples ranged from 500 to 4000 L kg-1 at identical concentration. The observed narrow and sharp XRD peak of sericite indicated that the sericite has better crystallinity compared to illite. These experimental results suggested that sericitization processes of illite can decline the sorption capabilities of illite for cesium under various hydrothermal conditions. In particular, weathering experiments raised the cesium sorption to illite, which seems to be related to the increase of preferential sorption sites for cesium through crystallinity destruction (i.e., frayed edge sites).

  3. Metolachlor Sorption and Degradation in Soil Amended with Fresh and Aged Biochars.

    PubMed

    Trigo, Carmen; Spokas, Kurt A; Hall, Kathleen E; Cox, Lucia; Koskinen, William C

    2016-04-27

    Addition of organic amendments such as biochar to soils can influence pesticide sorption-desorption processes and, in turn, the amount of pesticide readily availability for transport and biodegradation. Sorption-desorption processes are affected by both the physical and chemical properties of soils and pesticides, as well as soil-pesticide contact time, or aging. Changes in sorption-desorption of metolachlor with aging in soil amended with three macadamia nut shell biochars aged 0 (BCmac-fr), 1 year (BCmac-1yr), and 2 years (BCmac-2yr) and two wood biochars aged 0 (BCwood-fr) and 5 years (BCwood-5yr) were determined. Apparent sorption coefficient (Kd-app) values increased with incubation time to a greater extent in amended soil as compared to unamended soils; Kd-app increased by 1.2-fold for the unamended soil, 2.0-fold for BCwood-fr, 1.4-fold for BCwood-5yr, 2.4-fold for BCmac-fr, 2.5-fold for BCmac-1yr, and 1.9-fold for BCmac-4yr. The increase in calculated Kd-app value was the result of a 15% decrease in the metolachlor solution concentration extractable with CaCl2 solution with incubation time in soil as compared to a 50% decrease in amended soil with very little change in the sorbed concentration. Differences could possibly be due to diffusion to less accessible or stronger binding sites with time, a faster rate of degradation (in solution and on labile sites) than desorption, or a combination of the two in the amended soils. These data show that transport models would overpredict the depth of movement of metolachlor in soil if effects of aging or biochar amendments are not considered.

  4. Rates and equilibria of perfluorooctanoate (PFOA) sorption on soils from different regions of China.

    PubMed

    Miao, Yu; Guo, Xuetao; Dan Peng; Fan, Tingyu; Yang, Chen

    2017-05-01

    Understanding sorption of PFOA on soil particles is crucial to evaluate its environmental risk. Here, sorption of PFOA onto ten agricultural soils was examined. The influence of soil physico-chemical properties on PFOA sorption was investigated. The sorption rate of PFOA followed a pseudo-second-order kinetics. Isotherm data of PFOA sorption was fitted with both Freundlich and linear models and the latter fitted better. The sorption-desorption of PFOA onto ten soil samples depended on soil organic carbon content and composition of soil minerals. The sorption and desorption isotherms of PFOA on ten soils were linear, except for the sorption of PFOA onto a few soils, which was described by the Freundlich equation with the parameter N >1. The main sorption mechanism of PFOA was hydrophobic interaction between the perfluorinated carbon chain and the organic matter of soil, as evidenced by the correlation between the solid-liquid distribution coefficient and the fraction of soil organic carbon. The sorption of PFOA in soils was highly irreversible. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. MOLECULAR DYNAMICS MODELING OF SORPTION OF PESTICIDES ONTO THE SURFACES OF KAOLINITE

    EPA Science Inventory

    To accurately predict the fate of contaminants in the environment and to make sound decisions about environmental remediation, we must accurately understand sorption mechanisms and surface reactivity of environmental particles. Sorption of selected pesticides on kaolinite surface...

  6. CEC-normalized clay-water sorption isotherm

    NASA Astrophysics Data System (ADS)

    Woodruff, W. F.; Revil, A.

    2011-11-01

    A normalized clay-water isotherm model based on BET theory and describing the sorption and desorption of the bound water in clays, sand-clay mixtures, and shales is presented. Clay-water sorption isotherms (sorption and desorption) of clayey materials are normalized by their cation exchange capacity (CEC) accounting for a correction factor depending on the type of counterion sorbed on the mineral surface in the so-called Stern layer. With such normalizations, all the data collapse into two master curves, one for sorption and one for desorption, independent of the clay mineralogy, crystallographic considerations, and bound cation type; therefore, neglecting the true heterogeneity of water sorption/desorption in smectite. The two master curves show the general hysteretic behavior of the capillary pressure curve at low relative humidity (below 70%). The model is validated against several data sets obtained from the literature comprising a broad range of clay types and clay mineralogies. The CEC values, derived by inverting the sorption/adsorption curves using a Markov chain Monte Carlo approach, are consistent with the CEC associated with the clay mineralogy.

  7. Sorption Phase of Supercritical CO2 in Silica Aerogel: Experiments and Mesoscale Computer Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rother, Gernot; Vlcek, Lukas; Gruszkiewicz, Miroslaw

    2014-01-01

    Adsorption of supercritical CO2 in nanoporous silica aerogel was investigated by a combination of experiments and molecular-level computer modeling. High-pressure gravimetric and vibrating tube densimetry techniques were used to measure the mean pore fluid density and excess sorption at 35 C and 50 C and pressures of 0-200 bar. Densification of the pore fluid was observed at bulk fluid densities below 0.7 g/cm3. Far above the bulk fluid density, near-zero sorption or weak depletion effects were measured, while broad excess sorption maxima form in the vicinity of the bulk critical density region. The CO2 sorption properties are very similar formore » two aerogels with different bulk densities of 0.1 g/cm3 and 0.2 g/cm3, respectively. The spatial distribution of the confined supercritical fluid was analyzed in terms of sorption- and bulk-phase densities by means of the Adsorbed Phase Model (APM), which used data from gravimetric sorption and small-angle neutron scattering experiments. To gain more detailed insight into supercritical fluid sorption, large-scale lattice gas GCMC simulations were utilized and tuned to resemble the experimental excess sorption data. The computed three-dimensional pore fluid density distributions show that the observed maximum of the excess sorption near the critical density originates from large density fluctuations pinned to the pore walls. At this maximum, the size of these fluctuations is comparable to the prevailing pore sizes.« less

  8. Quantitative structure-property relationships for predicting sorption of pharmaceuticals to sewage sludge during waste water treatment processes.

    PubMed

    Berthod, L; Whitley, D C; Roberts, G; Sharpe, A; Greenwood, R; Mills, G A

    2017-02-01

    Understanding the sorption of pharmaceuticals to sewage sludge during waste water treatment processes is important for understanding their environmental fate and in risk assessments. The degree of sorption is defined by the sludge/water partition coefficient (K d ). Experimental K d values (n=297) for active pharmaceutical ingredients (n=148) in primary and activated sludge were collected from literature. The compounds were classified by their charge at pH7.4 (44 uncharged, 60 positively and 28 negatively charged, and 16 zwitterions). Univariate models relating log K d to log K ow for each charge class showed weak correlations (maximum R 2 =0.51 for positively charged) with no overall correlation for the combined dataset (R 2 =0.04). Weaker correlations were found when relating log K d to log D ow . Three sets of molecular descriptors (Molecular Operating Environment, VolSurf and ParaSurf) encoding a range of physico-chemical properties were used to derive multivariate models using stepwise regression, partial least squares and Bayesian artificial neural networks (ANN). The best predictive performance was obtained with ANN, with R 2 =0.62-0.69 for these descriptors using the complete dataset. Use of more complex Vsurf and ParaSurf descriptors showed little improvement over Molecular Operating Environment descriptors. The most influential descriptors in the ANN models, identified by automatic relevance determination, highlighted the importance of hydrophobicity, charge and molecular shape effects in these sorbate-sorbent interactions. The heterogeneous nature of the different sewage sludges used to measure K d limited the predictability of sorption from physico-chemical properties of the pharmaceuticals alone. Standardization of test materials for the measurement of K d would improve comparability of data from different studies, in the long-term leading to better quality environmental risk assessments. Copyright © 2016 British Geological Survey, NERC. Published by Elsevier B.V. All rights reserved.

  9. Radiation grafting of acrylamide and maleic acid on chitosan and effective application for removal of Co(II) from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Saleh, Alaaeldine Sh.; Ibrahim, Ahmed G.; Elsharma, Emad M.; Metwally, Essam; Siyam, Tharwat

    2018-03-01

    The graft copolymerization has been proven as a superior polymerization technique because it combines the functional advantages of the grafted and base polymers. In this work, the radiation-induced grafting of acrylamide (AAm) and maleic acid (MA) onto chitosan (CTS) was developed and optimized by determining the grafting percentage and efficiency as a function of grafting conditions such as AAm, MA, and CTS concentrations, and absorbed dose. Fourier transform infrared spectroscopic analysis (FTIR) confirmed the graft copolymerization. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) further characterized the grafted copolymers and showed their high thermal stability. Using batch sorption experiments and 60Co as a radiotracer, poly(CTS-AAm) and poly(CTS-MA) were evaluated for Co(II) removal from aqueous solutions. The Co(II) removal increases with increasing time, pH, polymer, and Co(II) concentrations. Experimentally, P(CTS-AAm) and P(CTS-MA) show high sorption capacities of Co(II), i.e. 150 mg g-1 and 421 mg g-1, respectively, which makes them potential sorbents of Co(II) for water and wastewater treatment. Finally, the Co(II) sorption was examined using sorption isotherm and kinetic models. The sorption was best fitted to Langmuir model which suggests the sorption is of chemisorption type. On the other hand, the sorption kinetics was best represented by Elovich model which also indicates the chemical nature of Co(II) sorption on P(CTS-AAm) and P(CTS-MA).

  10. Effects of aged sorption on pesticide leaching to groundwater simulated with PEARL.

    PubMed

    Boesten, Jos J T I

    2017-01-15

    Leaching to groundwater is an important element of the regulatory risk assessment of pesticides in western countries. Including aged sorption in this assessment is relevant because there is ample evidence of this process and because it leads to a decrease in simulated leaching. This work assesses the likely magnitude of this decrease for four groundwater scenarios used for regulatory purpose in the EU (from the UK, Portugal, Austria and Greece) and for ranges of aged-sorption parameters and substance properties using the PEARL model. Three aged-sorption parameters sets were derived from literature, representing approximately 5th, 50th and 95th percentile cases for the magnitude of the effect of aged sorption on leaching concentrations (called S, M and L, respectively). The selection of these percentile cases was based only on the f NE parameter (i.e. the ratio of the aged sorption and the equilibrium sorption coefficients) because leaching was much more affected by the uncertainty in this parameter than by the uncertainty in the desorption rate coefficient of these sites (k d ). For the UK scenario, the annual flux concentration of pesticide leaching at 1m depth decreased by typically a factor of 5, 30 and >1000 for the S, M and L parameter sets, respectively. This decrease by a factor of 30 for the M parameter set appeared to be approximately valid also for the other three scenarios. Decreasing the Freundlich exponent N from 0.9 into 0.7 for the M parameter set, increased this factor of 30 into a factor of typically 1000, considering all four scenarios. The aged-sorption sites were close to their equilibrium conditions during the leaching simulations for two of the four scenarios (for all substances considered and the M parameter set), but this was not the case for the other two scenarios. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Separation process using microchannel technology

    DOEpatents

    Tonkovich, Anna Lee [Dublin, OH; Perry, Steven T [Galloway, OH; Arora, Ravi [Dublin, OH; Qiu, Dongming [Bothell, WA; Lamont, Michael Jay [Hilliard, OH; Burwell, Deanna [Cleveland Heights, OH; Dritz, Terence Andrew [Worthington, OH; McDaniel, Jeffrey S [Columbus, OH; Rogers, Jr; William, A [Marysville, OH; Silva, Laura J [Dublin, OH; Weidert, Daniel J [Lewis Center, OH; Simmons, Wayne W [Dublin, OH; Chadwell, G Bradley [Reynoldsburg, OH

    2009-03-24

    The disclosed invention relates to a process and apparatus for separating a first fluid from a fluid mixture comprising the first fluid. The process comprises: (A) flowing the fluid mixture into a microchannel separator in contact with a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the first fluid is sorbed by the sorption medium, removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing first fluid from the sorption medium and removing desorbed first fluid from the microchannel separator. The process and apparatus are suitable for separating nitrogen or methane from a fluid mixture comprising nitrogen and methane. The process and apparatus may be used for rejecting nitrogen in the upgrading of sub-quality methane.

  12. Peat hybrid sorbents for treatment of wastewaters and remediation of polluted environment

    NASA Astrophysics Data System (ADS)

    Klavins, Maris; Burlakovs, Juris; Robalds, Artis; Ansone-Bertina, Linda

    2015-04-01

    For remediation of soils and purification of polluted waters, wastewaters, sorbents might be considered as an prospective group of materials and amongst them peat have a special role due to low cost, biodegradability, high number of functional groups, well developed surface area and combination of hydrophilic/hydrophobic structural elements. Peat as sorbent have good application potential for removal of trace metals, and we have demonstrated peat sorption capacities, sorption kinetics, thermodynamics in respect to metals with different valencies - Tl(I), Cu(II), Cr(III). However peat sorption capacity in respect to nonmetallic (anionic species) elements is low. Also peat mechanical properties do not support application in large scale column processes. To expand peat application possibilities the approach of biomass based hybrid sorbents has been elaborated. The concept "hybrid sorbent" in our understanding means natural, biomass based sorbent modified, covered with another sorbent material, thus combining two types of sorbent properties, sorbent functionalities, surface properties etc. As the "covering layer" both inorganic substances, mineral phases (iron oxohydroxides, oxyapatite) both organic polymers (using graft polymerization) were used. The obtained sorbents were characterised by their spectral properties, surface area, elemental composition. The obtained hybrid sorbents were tested for sorption of compounds in anionic speciation forms, for example of arsenic, antimony, tellurium and phosphorous compounds in comparison with weakly basic anionites. The highest sorption capacity was observed when peat sorbents modified with iron compounds were used. Sorption of different arsenic speciation forms onto iron-modified peat sorbents was investigated as a function of pH and temperature. It was established that sorption capacity increases with a rise in temperature, and the calculation of sorption process thermodynamic parameters indicates the spontaneity of sorption process and its endothermic nature. The recycling options of obtained compounds after their saturation with metal or non-metallic species are suggested. Acknowledgement: Support from a project 2014/0009/1DP/1.1.1.2.0/13/APIA/VIAA/044

  13. Analysis of sorption into single ODS-silica gel microparticles in acetonitrile-water.

    PubMed

    Nakatani, Kiyoharu; Kakizaki, Hiroshi

    2003-08-01

    Intraparticle mass transfer processes of Phenol Blue (PB) in single octadecylsilyl (ODS)-silica gel microparticles in acetonitrile-water were analyzed by microcapillary manipulation and microabsorption methods. An absorption maximum of PB, the sorption isotherm parameters, and the sorption rate in the microparticle system were highly dependent on the percentage of acetonitrile in solution. The results are discussed in terms of the microscopic polarity surrounding PB in the ODS phase and the relationship between the isotherm parameters and the sorption rate.

  14. Moisture uptake of polyoxyethylene glycol glycerides used as matrices for drug delivery: kinetic modelling and practical implications.

    PubMed

    Qi, Sheng; Belton, Peter; McAuley, William; Codoni, Doroty; Darji, Neerav

    2013-04-01

    Gelucire 50/13, a polyoxyethylene glycol glyceride mixture, has been widely used in drug delivery, but its moisture uptake behaviour is still poorly understood. In this study, the effects of relative humidity, temperature, and drug incorporation on the moisture uptake of Gelucire are reported in relation to their practical implications for preparation of solid dispersions using this material. DVS combined with kinetics modelling was used as the main experimental method to study the moisture uptake behaviour of Gelucire. Thermal and microscopic methods were employed to investigate the effect of moisture uptake on the physical properties of the material and drug loaded solid dispersions. The moisture uptake by Gelucire 50/13 is temperature and relative humidity dependent. At low temperatures and low relative humidities, moisture sorption follows a GAB model. The model fitting indicated that at high relative humidities the sorption is a complex process, potentially involving PEG being dissolved and the PEG solution acting as solvent to dissolve other components. Careful control of the storage and processing environmental conditions are required when using Gelucire 50/13. The incorporation of model drugs not only influences the moisture uptake capacity of Gelucire 50/13 but also the solidification behaviour.

  15. Spatial Moment Equations for a Groundwater Plume with Degradation and Rate-Limited Sorption

    EPA Science Inventory

    In this note, we analytically derive the solution for the spatial moments of groundwater solute concentration distributions simulated by a one-dimensional model that assumes advective-dispersive transport with first-order degradation and rate-limited sorption. Sorption kinetics...

  16. Kinetics and reversibility of micropollutant sorption in sludge.

    PubMed

    Barret, Maialen; Carrère, Hélène; Patau, Mathieu; Patureau, Dominique

    2011-10-01

    The fate of micropollutants throughout wastewater treatment systems is highly dependent on their sorption interactions with sludge matter. In this study, both the sorption and desorption kinetics of polycyclic aromatic hydrocarbons (PAHs) in activated sludge were shown to be very rapid in comparison to biodegradation kinetics. It was concluded that PAH transfer does not limit their biodegradation and that their fate is governed by the sorption/desorption equilibrium state. The effect of contact time between sludge and PAHs was also investigated. It was shown that aging did not influence the sorption/desorption equilibrium although PAH losses during aging suggest that sequestration phenomena had occurred. This implies that for PAH sorption assessment within treatment processes there is no need to include a contact time dimension. As a consequence, thanks to an innovative approach taking into account sorption equilibria and sequestration, this work has demonstrated that studies in the literature which, in main, deal with micropollutant sorption in sewage sludge with only a short contact time can be extrapolated to real systems in which sorption, desorption and aging occur.

  17. Optimization of isotherm models for pesticide sorption on biopolymer-nanoclay composite by error analysis.

    PubMed

    Narayanan, Neethu; Gupta, Suman; Gajbhiye, V T; Manjaiah, K M

    2017-04-01

    A carboxy methyl cellulose-nano organoclay (nano montmorillonite modified with 35-45 wt % dimethyl dialkyl (C 14 -C 18 ) amine (DMDA)) composite was prepared by solution intercalation method. The prepared composite was characterized by infrared spectroscopy (FTIR), X-Ray diffraction spectroscopy (XRD) and scanning electron microscopy (SEM). The composite was utilized for its pesticide sorption efficiency for atrazine, imidacloprid and thiamethoxam. The sorption data was fitted into Langmuir and Freundlich isotherms using linear and non linear methods. The linear regression method suggested best fitting of sorption data into Type II Langmuir and Freundlich isotherms. In order to avoid the bias resulting from linearization, seven different error parameters were also analyzed by non linear regression method. The non linear error analysis suggested that the sorption data fitted well into Langmuir model rather than in Freundlich model. The maximum sorption capacity, Q 0 (μg/g) was given by imidacloprid (2000) followed by thiamethoxam (1667) and atrazine (1429). The study suggests that the degree of determination of linear regression alone cannot be used for comparing the best fitting of Langmuir and Freundlich models and non-linear error analysis needs to be done to avoid inaccurate results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Time-dependent sorption of two novel fungicides in soils within a regulatory framework.

    PubMed

    Gulkowska, Anna; Buerge, Ignaz J; Poiger, Thomas; Kasteel, Roy

    2016-12-01

    Convincing experimental evidence suggests increased sorption of pesticides on soil over time, which, so far, has not been considered in the regulatory assessment of leaching to groundwater. Recently, Beulke and van Beinum (2012) proposed a guidance on how to conduct, analyse and use time-dependent sorption studies in pesticide registration. The applicability of the recommended experimental set-up and fitting procedure was examined for two fungicides, penflufen and fluxapyroxad, in four soils during a 170 day incubation experiment. The apparent distribution coefficient increased by a factor of 2.5-4.5 for penflufen and by a factor of 2.5-2.8 for fluxapyroxad. The recommended two-site, one-rate sorption model adequately described measurements of total mass and liquid phase concentration in the calcium chloride suspension and the calculated apparent distribution coefficient, passing all prescribed quality criteria for model fit and parameter reliability. The guidance is technically mature regarding the experimental set-up and parameterisation of the sorption model for the two moderately mobile and relatively persistent fungicides under investigation. These parameters can be used for transport modelling in soil, thereby recognising the existence of the experimentally observed, but in the regulatory leaching assessment of pesticides not yet routinely considered phenomenon of time-dependent sorption. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Surface Complexation Modeling of Eu(III) and U(VI) Interactions with Graphene Oxide.

    PubMed

    Xie, Yu; Helvenston, Edward M; Shuller-Nickles, Lindsay C; Powell, Brian A

    2016-02-16

    Graphene oxide (GO) has great potential for actinide removal due to its extremely high sorption capacity, but the mechanism of sorption remains unclear. In this study, the carboxylic functional group and an unexpected sulfonate functional group on GO were characterized as the reactive surface sites and quantified via diffuse layer modeling of the GO acid/base titrations. The presence of sulfonate functional group on GO was confirmed using elemental analysis and X-ray photoelectron spectroscopy. Batch experiments of Eu(III) and U(VI) sorption to GO as the function of pH (1-8) and as the function of analyte concentration (10-100, 000 ppb) at a constant pH ≈ 5 were conducted; the batch sorption results were modeled simultaneously using surface complexation modeling (SCM). The SCM indicated that Eu(III) and U(VI) complexation to carboxylate functional group is the main mechanism for their sorption to GO; their complexation to the sulfonate site occurred at the lower pH range and the complexation of Eu(III) to sulfonate site are more significant than that of U(VI). Eu(III) and U(VI) facilitated GO aggregation was observed with high Eu(III) and U(VI) concentration and may be caused by surface charge neutralization of GO after sorption.

  20. Sorption of Th (IV) to silica as a function of pH, humic/fulvic acid, ionic strength, electrolyte type.

    PubMed

    Chen, Changlun; Wang, Xiangke

    2007-02-01

    The removal behavior of thorium (Th(IV)) has been investigated in multicomponent systems containing silica (SiO2) as the model of inorganic particles because of its widespread presence in the earth's crust and soil humic acid (HA)/fulvic acid (FA) by batch experiments. The influence of pH from 2 to 12, ionic strength from 0.02 to 0.2 M KNO3, soil HA/FA concentration from 8.3 to 22.5 mg/L, and foreign cations (Li+, Na+, K+) and anions (NO3(-), Cl-) on the sorption of Th(IV) onto SiO2 was also tested. The sorption isotherms of Th(IV) at approximately constant pH (3.50+/-0.02) were determined and analyzed regressively with three kinds of sorption isotherm models, i.e., linear, Langmuir, and Freundlich models. The results demonstrated that the sorption of Th(IV) onto SiO2 increased steeply with increasing pH from 2 to 4. Generally, humic substances (HSs) were shown to enhance Th(IV) sorption at low pH, but to reduce Th(IV) sorption at intermediate and high pH. It was a hypothesis that the significantly positive influence of HA/FA at pH from 2 to 4 on the sorption of Th(IV) onto SiO2 was attributed to strong surface binding of HA/FA on SiO2 and subsequently the formation of ternary surface complexes such as [triple bond]MO-O-HA-Th or [triple bond]MO-O-FA-Th. The results also demonstrated that the sorption was strongly dependent on the concentration of HA/FA, and independent of ionic strength and foreign ions under our experimental conditions.

  1. Mini-columns for Conducting Breakthrough Experiments. Design and Construction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dittrich, Timothy M.; Reimus, Paul William; Ware, Stuart Douglas

    Experiments with moderately and strongly sorbing radionuclides (i.e., U, Cs, Am) have shown that sorption between experimental solutions and traditional column materials must be accounted for to accurately determine stationary phase or porous media sorption properties (i.e., sorption site density, sorption site reaction rate coefficients, and partition coefficients or K d values). This report details the materials and construction of mini-columns for use in breakthrough columns to allow for accurate measurement and modeling of sorption parameters. Material selection, construction techniques, wet packing of columns, tubing connections, and lessons learned are addressed.

  2. Evidence of Multiple Sorption Modes in Layered Double Hydroxides Using Mo As Structural Probe.

    PubMed

    Ma, Bin; Fernandez-Martinez, Alejandro; Grangeon, Sylvain; Tournassat, Christophe; Findling, Nathaniel; Claret, Francis; Koishi, Ayumi; Marty, Nicolas C M; Tisserand, Delphine; Bureau, Sarah; Salas-Colera, Eduardo; Elkaïm, Erik; Marini, Carlo; Charlet, Laurent

    2017-05-16

    Layered double hydroxides (LDHs) have been considered as effective phases for the remediation of aquatic environments, to remove anionic contaminants mainly through anion exchange mechanisms. Here, a combination of batch isotherm experiments and X-ray techniques was used to examine molybdate (MoO 4 2- ) sorption mechanisms on CaAl LDHs with increasing loadings of molybdate. Advanced modeling of aqueous data shows that the sorption isotherm can be interpreted by three retention mechanisms, including two types of edge sites complexes, interlayer anion exchange, and CaMoO 4 precipitation. Meanwhile, Mo geometry evolves from tetrahedral to octahedral on the edge, and back to tetrahedral coordination at higher Mo loadings, indicated by Mo K-edge X-ray absorption spectra. Moreover, an anion exchange process on both CaAl LDHs was followed by in situ time-resolved synchrotron-based X-ray diffraction, remarkably agreeing with the sorption isotherm. This detailed molecular view shows that different uptake mechanisms-edge sorption, interfacial dissolution-reprecipitation-are at play and control anion uptake under environmentally relevant conditions, which is contrast to the classical view of anion exchange as the primary retention mechanism. This work puts all these mechanisms in perspective, offering a new insight into the complex interplay of anion uptake mechanisms by LDH phases, by using changes in Mo geometry as powerful molecular-scale probe.

  3. Application potential of grapefruit peel as dye sorbent: kinetics, equilibrium and mechanism of crystal violet adsorption.

    PubMed

    Saeed, Asma; Sharif, Mehwish; Iqbal, Muhammad

    2010-07-15

    This study reports the sorption of crystal violet (CV) dye by grapefruit peel (GFP), which has application potential in the remediation of dye-contaminated wastewaters using a solid waste generated by the citrus fruit juice industry. Batch adsorption of CV was conducted to evaluate the effect of initial pH, contact time, temperature, initial dye concentration, GFP adsorbent dose, and removal of the adsorbate CV dye from aqueous solution to understand the mechanism of sorption involved. Sorption equilibrium reached rapidly with 96% CV removal in 60 min. Fit of the sorption experimental data was tested on the pseudo-first and pseudo-second-order kinetics mathematical equations, which was noted to follow the pseudo-second-order kinetics better, with coefficient of correlation > or = 0.992. The equilibrium process was well described by the Langmuir isotherm model, with maximum sorption capacity of 254.16 mg g(-1). The GFP was regenerated using 1 M NaOH, with up to 98.25% recovery of CV and could be reused as a dye sorbent in repeated cycles. GFP was also shown to be highly effective in removing CV from aqueous solution in continuous-flow fixed-bed column reactors. The study shows that GFP has the potential of application as an efficient sorbent for the removal of CV from aqueous solutions. 2010 Elsevier B.V. All rights reserved.

  4. Characterization of H3PO4-Treated Rice Husk Adsorbent and Adsorption of Copper(II) from Aqueous Solution

    PubMed Central

    Zheng, Ru; Zhao, Jiaying; Ma, Fang; Zhang, Yingchao; Meng, Qingjuan

    2014-01-01

    Rice husk, a surplus agricultural byproduct, was applied to the sorption of copper from aqueous solutions. Chemical modifications by treating rice husk with H3PO4 increased the sorption ability of rice husk for Cu(II). This work investigated the sorption characteristics for Cu(II) and examined the optimum conditions of the sorption processes. The elemental compositions of native rice husk and H3PO4-treated rice husk were determined by X-ray fluorescence (XRF) analysis. The scanning electron microscopic (SEM) analysis was carried out for structural and morphological characteristics of H3PO4-treated rice husk. The surface functional groups (i.e., carbonyl, carboxyl, and hydroxyl) of adsorbent were examined by Fourier Transform Infrared Technique (FT-IR) and contributed to the adsorption for Cu(II). Adsorption isotherm experiments were carried out at room temperature and the data obtained from batch studies fitted well with the Langmuir and Freundlich models with R 2 of 0.999 and 0.9303, respectively. The maximum sorption amount was 17.0358 mg/g at a dosage of 2 g/L after 180 min. The results showed that optimum pH was attained at pH 4.0. The equilibrium data was well represented by the pseudo-second-order kinetics. The percentage removal for Cu(II) approached equilibrium at 180 min with 88.9% removal. PMID:24678507

  5. Sorption of selected pharmaceuticals and pesticides on different river sediments.

    PubMed

    Radović, Tanja T; Grujić, Svetlana D; Kovačević, Srđan R; Laušević, Mila D; Dimkić, Milan A

    2016-12-01

    In the present work, the sorption ability of 17 pharmaceutical compounds, two metabolites, and 15 pesticides (34 target compounds in total) onto four different river sediments was investigated separately. Selected compounds present the most frequently prescribed pharmaceuticals in human and animal medicine and the most frequently used pesticides in agriculture. Their presence into the surface, ground, and waste waters was confirmed into the numerous papers in literature, as well as their presence into the river sediments (for some of them). However, investigations of their sorption onto the river sediments, as major natural protection from potential pollution of ground water by them is missing. Sorption in this study was investigated onto river sediments taken from rivers in the Republic of Serbia, where only less than 10 % of total generated waste water passes through mainly basic treatment processes. Experiments were based on batch equilibrium procedures and obtained solutions were analyzed by previously developed and validated sensitive high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analytical methods. All results were modeled by Freundlich isotherms. Obtained results have shown that Kf coefficient values are in correlation with organic carbon content. Kd sorption coefficient values were relatively low and ranged in wide ranges for almost all compounds and sediments. That implicates on the conclusion that capacities of the investigated sorbents are not large for those compounds.

  6. Thermodynamic parameters of U (VI) sorption onto soils in aquatic systems.

    PubMed

    Kumar, Ajay; Rout, Sabyasachi; Ghosh, Malay; Singhal, Rakesh Kumar; Ravi, Pazhayath Mana

    2013-01-01

    The thermodynamic parameters viz. the standard free energy (∆Gº), Standard enthalpy change (∆Hº) and standard entropy change (∆Sº) were determined using the obtained values of distribution coefficient (kd) of U (VI) in two different types of soils (agricultural and undisturbed) by conducting a batch equilibrium experiment with aqueous media (groundwater and deionised water) at two different temperatures 25°C and 50°C. The obtained distribution coefficients (kd) values of U for undisturbed soil in groundwater showed about 75% higher than in agricultural soil at 25°C while in deionised water, these values were highly insignificant for both soils indicating that groundwater was observed to be more favorable for high surface sorption. At 50°C, the increased kd values in both soils revealed that solubility of U decreased with increasing temperature. Batch adsorption results indicated that U sorption onto soils was promoted at higher temperature and an endothermic and spontaneous interfacial process. The high positive values of ∆Sº for agricultural soil suggested a decrease in sorption capacity of U in that soil due to increased randomness at solid-solution interface. The low sorption onto agricultural soil may be due to presence of high amount of coarse particles in the form of sand (56%). Geochemical modeling predicted that mixed hydroxo-carbonato complexes of uranium were the most stable and abundant complexes in equilibrium solution during experimental.

  7. Novel Magnetic Zinc Oxide Nanotubes for Phenol Adsorption: Mechanism Modeling

    PubMed Central

    Elkady, Marwa F.; Hassan, Hassan Shokry; Amer, Wael A.; Salama, Eslam; Algarni, Hamed; Shaaban, Essam Ramadan

    2017-01-01

    Considering the great impact of a material’s surface area on adsorption processes, hollow nanotube magnetic zinc oxide with a favorable surface area of 78.39 m2/g was fabricated with the assistance of microwave technology in the presence of poly vinyl alcohol (PVA) as a stabilizing agent followed by sonic precipitation of magnetite nano-particles. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) micrographs identified the nanotubes’ morphology in the synthesized material with an average aspect ratio of 3. X-ray diffraction (XRD) analysis verified the combination of magnetite material with the hexagonal wurtzite structure of ZnO in the prepared material. The immobilization of magnetite nanoparticles on to ZnO was confirmed using vibrating sample magnetometry (VSM). The sorption affinity of the synthesized magnetic ZnO nanotube for phenolic compounds from aqueous solutions was examined as a function of various processing factors. The degree of acidity of the phenolic solution has great influence on the phenol sorption process on to magnetic ZnO. The calculated value of ΔH0 designated the endothermic nature of the phenol uptake process on to the magnetic ZnO nanotubes. Mathematical modeling indicated a combination of physical and chemical adsorption mechanisms of phenolic compounds on to the fabricated magnetic ZnO nanotubes. The kinetic process correlated better with the second-order rate model compared to the first-order rate model. This result indicates the predominance of the chemical adsorption process of phenol on to magnetic ZnO nanotubes. PMID:29186853

  8. The Efficient Removal of Heavy Metal Ions from Industry Effluents Using Waste Biomass as Low-Cost Adsorbent: Thermodynamic and Kinetic Models

    NASA Astrophysics Data System (ADS)

    Indhumathi, Ponnuswamy; Sathiyaraj, Subbaiyan; Koelmel, Jeremy P.; Shoba, Srinivasan U.; Jayabalakrishnan, Chinnasamy; Saravanabhavan, Munusamy

    2018-05-01

    The ability of green micro algae Chlorella vulgaris for biosorption of Cu(II) ions from an aqueous solution was studied. The biosorption process was affected by the solution pH, contact time, temperature and initial Cu(II) concentration. Experimental data were analyzed in terms of pseudo-first order, pseudo-second order and intra particle diffusion models. Results showed that the sorption process of Cu(II) ions followed pseudo-second order kinetics. The sorption data of Cu(II) ions are fitted to Langmuir, Freundlich, and Redlich-Peterson isotherms, and the Temkin isotherm. The thermodynamic study shows the Cu(II) biosorption was exothermic in nature. The Cu(II) ions were recovered effectively from Chlorella vulgaris biomass using 0.1 M H2SO4 with up to 90.3% recovery, allowing for recycling of the Cu. Green algae from freshwater bodies showed significant potential for Cu(II) removal and recovery from industrial wastewater.

  9. Removal of Organophosphorus Pesticides from Aqueous Solution by Magnetic Fe3O4/Red Mud-Nanoparticles.

    PubMed

    Aydin, Senar

    2016-12-01

      The aim of this study was to investigate the usability of magnetic Fe3O4/red mud nanoparticles (NPs) for the removal of organophosphorus pesticides from water samples. The effect of various experimental parameters such as red mud amount in Fe3O4/red mud-NPs, pH, contact time, initial pesticide concentrations and adsorbent dose was studied in order to find the optimum conditions for their removal in a batch process. The Fe3O4/red mud-NPs were characterized by using TGA, SEM, XRD, VSM, and determination of the BET surface area. After the regenerated Fe3O4/red mud-NPs were used three times, the sorption capacity and the magnetic separability were observed to be unaffected. Freundlich model described the sorption process better than Langmuir isotherm and the pseudo second-order kinetic model was determined as the best-fit model. The film diffusion mechanism was found to be a main rate control mechanism. The Fe3O4/red mud-NPs satisfactorily removed the OPPS from real water samples.

  10. Dissolved organic matter effects on the performance of a barrier to polycyclic aromatic hydrocarbon transport by groundwater

    NASA Astrophysics Data System (ADS)

    Moon, Jung-Won; Goltz, Mark N.; Ahn, Kyu-Hong; Park, Jae-Woo

    2003-02-01

    In order to contain the movement of organic contaminants in groundwater, a subsurface sorption barrier consisting of sand or clay minerals coated with a cationic surfactant has been proposed. The effectiveness of such a sorption barrier might be affected by the presence of dissolved organic matter (DOM) in the groundwater. To study the impact of DOM on barrier performance, a series of batch experiments were performed by measuring naphthalene and phenanthrene sorption onto sand coated with cetylpyridinium chloride (CPC) and bentonite coated with hexadecyltrimethylammonium bromide (HDTMA) in the presence of various concentrations of DOM. The overall soil-water distribution coefficient ( K*) of naphthalene and phenanthrene onto CPC-coated sand decreased with increasing DOM concentration, whereas the K* of the compounds onto HDTMA-coated bentonite slightly increased with increasing DOM concentration. To describe the overall distribution of polycyclic aromatic hydrocarbons (PAHs) in the systems, a competitive multiphase sorption (CMS) model was developed and compared with an overall mechanistic sorption (OMS) model. The modeling studies showed that while the OMS model did not explain the CPC-coated sand experimental results, a model that included competitive sorption between DOM and PAH did. The experimental results and the modeling study indicated that there was no apparent competition between DOM and PAH in the HDTMA-coated bentonite system, and indicated that in groundwater systems with high DOM, a barrier using HDTMA-coated bentonite might be more effective.

  11. Mono-component versus binary isotherm models for Cu(II) and Pb(II) sorption from binary metal solution by the green alga Pithophora oedogonia.

    PubMed

    Kumar, Dhananjay; Singh, Alpana; Gaur, J P

    2008-11-01

    The sorption of Cu(II) and Pb(II) by Pithophora markedly decreased as the concentration of the secondary metal ion, Cu(II) or Pb(II), increased in the binary metal solution. However, the test alga showed a greater affinity to sorb Cu(II) than Pb(II) from the binary metal solution. Mono-component Freundlich, Langmuir, Redlich-Peterson and Sips isotherms successfully predicted the sorption of Cu(II) and Pb(II) from both single and binary metal solutions. None of the tested binary sorption isotherms could realistically predict Cu(II) and Pb(II) sorption capacity and affinity of the test alga for the binary metal solutions of varying composition, which mono-component isotherms could very well accomplish. Hence, mono-component isotherm modeling at different concentrations of the secondary metal ion seems to be a better option than binary isotherms for metal sorption from binary metal solution.

  12. Sorption of metolachlor and atrazine in fly ash amended soils: comparison of optimized isotherm models.

    PubMed

    Ghosh, Rakesh K; Singh, Neera

    2012-01-01

    Adsorption of metolachlor and atrazine was studied in the fly ash (Inderprastha and Badarpur)- amended Inceptisol and Alfisol soils using batch method. Results indicated that sorption of both the herbicides in soil+fly ash mixtures was highly nonlinear and sorption decreased with a higher herbicide concentration in the solution. Also, nonlinearity increased with an increase in the level of fly ash amendment from 0-5%. Three two-parameter monolayer isotherms viz. Langmuir, Temkin, Jovanovic and one imperical Freundlich models were used to fit the experimental data. Data analysis and comparison revealed that the Temkin and the Freundlich isotherms were best-suited to explain the sorption results and the observed and the calculated adsorption coefficient values showed less variability. The study suggested that sorption mechanism of metolachlor and atrazine involved the physical association at the sorbate surface and the nonlinearity in the sorption at higher pesticide or fly ash concentration was due to a decrease in the heat of adsorption and higher binding energy.

  13. Removal of phosphate from aqueous solution using magnesium-alginate/chitosan modified biochar microspheres derived from Thalia dealbata.

    PubMed

    Cui, Xiaoqiang; Dai, Xi; Khan, Kiran Yasmin; Li, Tingqiang; Yang, Xiaoe; He, Zhenli

    2016-10-01

    The objective of this study was to determine the feasibility of using magnesium-alginate/chitosan modified biochar microspheres to enhance removal of phosphate from aqueous solution. The introduction of MgCl2 substantially increased surface area of biochar (116.2m(2)g(-1)), and both granulation with alginate/chitosan and modification with magnesium improved phosphate sorption on the biochars. Phosphate sorption on the biochars could be well described by a simple Langmuir model, and the MgCl2-alginate modified biochar microspheres exhibited the highest phosphate sorption capacity (up to 46.56mgg(-1)). The pseudo second order kinetic model better fitted the kinetic data, and both the Yoon-Nelson and Thomas models were superior to other models in describing phosphate dynamic sorption. Precipitation with minerals and ligand exchange were the possible mechanisms of phosphate sorption on the modified biochars. These results imply that MgCl2-alginate modified biochar microspheres have potential as a green cost-effective sorbent for remediating P contaminated water environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Interfacial Mechanisms of Water Vapor Sorption into Cellulose Nanofibril Films as Revealed by Quantitative Models.

    PubMed

    Hakalahti, Minna; Faustini, Marco; Boissière, Cédric; Kontturi, Eero; Tammelin, Tekla

    2017-09-11

    Humidity is an efficient instrument for facilitating changes in local architectures of two-dimensional surfaces assembled from nanoscaled biomaterials. Here, complementary surface-sensitive methods are used to collect explicit and precise experimental evidence on the water vapor sorption into (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) oxidized cellulose nanofibril (CNF) thin film over the relative humidity (RH) range from 0 to 97%. Changes in thickness and mass of the film due to water vapor uptake are tracked using spectroscopic ellipsometry and quartz crystal microbalance with dissipation monitoring, respectively. Experimental data is evaluated by the quantitative Langmuir/Flory-Huggins/clustering model and the Brunauer-Emmett-Teller model. The isotherms coupled with the quantitative models unveil distinct regions of predominant sorption modes: specific sorption of water molecules below 10% RH, multilayer build-up between 10 to 75% RH, and clustering of water molecules above 75% RH. The study reveals the sorption mechanisms underlying the well-known water uptake behavior of TEMPO oxidized CNF directly at the gas-solid interface.

  15. Sorbed atrazine shifts into non-desorbable sites of soil organic matter during aging.

    PubMed

    Park, Jeong-Hun; Feng, Yucheng; Cho, Sung Yong; Voice, Thomas C; Boyd, Stephen A

    2004-11-01

    Soil-chemical contact time (aging) is an important determinant of the sorption and desorption characteristics of the organic contaminants and pesticides in the environment. The effects of aging on mechanism-specific sorption and desorption of atrazine were studied in soil and clay slurries. Sorption isotherm and desorption kinetic experiments were performed, and soil-water distribution coefficients and desorption rate parameters were evaluated using linear and non-linear sorption equations and a three-site desorption model, respectively. Aging time for sorption of atrazine in sterilized soil and clay slurries ranged from 2 days to 8 months. Atrazine sorption isotherms were nearly linear (r(2)>0.97) and sorption coefficients were strongly correlated to soil organic carbon content. Sorption distribution coefficients (K(d)) increased with increase in age in all five soils studied, but not for K-montmorillonite. Sorption non-linearity did not increase with increase in age except for the Houghton muck soil. Desorption profiles were well described by the three-site desorption model. The equilibrium site fraction (f(eq)) decreased and the non-desorbable site fraction (f(nd)) increased as a function of aging time in all soils. For K-montmorillonite, f(nd) approximately 0 regardless of aging, showing that aging phenomena are sorbent/mechanism specific. In all soils, it was found that when normalized to soil organic matter content, the concentration of atrazine in desorbable sites was relatively constant, whereas that in non-desorbable site increased. This, and the lack of aging effects on desorption from montmorillonite, suggests that sorption into non-desorbable sites of soil organic matter is primary source of increased atrazine sorption in soils during aging.

  16. Extended sorption partitioning models for pesticide leaching risk assessments: Can we improve upon the koc concept?

    PubMed

    Jarvis, Nicholas

    2016-01-01

    Models used to assess leaching of pesticides to groundwater still rely on the sorption koc value, even though its limitations have been known for several decades, especially for soils of low organic carbon content (i.e. subsoils). This is mainly because the general applicability of any improved model approach that is also simple enough to use for regulatory purposes has not been demonstrated. The objective of this study was to test and compare alternative models of sorption that could be useful in pesticide risk assessment and management. To this end, a database containing the results of batch sorption experiments for pesticides was compiled from published studies in the literature, which placed at least as much emphasis on measurements in subsoil horizons as in topsoil. The database includes 785 data entries from 34 different published studies and for 21 different active substances. Overall, the apparent koc value, koc(app), roughly doubled as the soil organic carbon content decreased by a factor of ten. Nevertheless, in nearly half of the individual datasets, a constant koc value proved to be an adequate model. Further analysis showed that significant increases in koc(app) in subsoil were found primarily for the more weakly adsorbing compounds (koc values

  17. Enhanced Removal of Lead by Chemically and Biologically Treated Carbonaceous Materials

    PubMed Central

    Mahmoud, Mohamed E.; Osman, Maher M.; Ahmed, Somia B.; Abdel-Fattah, Tarek M.

    2012-01-01

    Hybrid sorbents and biosorbents were synthesized via chemical and biological treatment of active carbon by simple and direct redox reaction followed by surface loading of baker's yeast. Surface functionality and morphology of chemically and biologically modified sorbents and biosorbents were studied by Fourier Transform Infrared analysis and scanning electron microscope imaging. Hybrid carbonaceous sorbents and biosorbents were characterized by excellent efficiency and superiority toward lead(II) sorption compared to blank active carbon providing a maximum sorption capacity of lead(II) ion as 500 μmol g−1. Sorption processes of lead(II) by these hybrid materials were investigated under the influence of several controlling parameters such as pH, contact time, mass of sorbent and biosorbent, lead(II) concentration, and foreign ions. Lead(II) sorption mechanisms were found to obey the Langmuir and BET isotherm models. The potential applications of chemically and biologically modified-active carbonaceous materials for removal and extraction of lead from real water matrices were also studied via a double-stage microcolumn technique. The results of this study were found to denote to superior recovery values of lead (95.0–99.0 ± 3.0–5.0%) by various carbonaceous-modified-bakers yeast biosorbents. PMID:22629157

  18. Study on the sorption behaviour of estrone on marine sediments.

    PubMed

    Zhang, Jing; Yang, Gui-Peng; Li, Quan; Cao, Xiaoyan; Liu, Guangxing

    2013-11-15

    The sorption behaviour of estrone (E1) on marine sediments treated by different methods was systematically investigated. About 22 h was required for sorption equilibrium of E1. Sorption isotherms of E1 were well fitted with Freundlich model. The sorption behaviour of E1 on HCl-treatment and H2O-treatment sediments related significantly with the sediment organic carbon contents. Additionally, clay minerals and surface areas of sediments played dominant roles in the sorption of E1 on H2O2-treatment sediments. Some external factors which could affect sorption behaviour of E1 were also investigated. Our results showed that the sorption capacity of E1 on the sediments increased with the increasing concentrations of cationic surfactant cetyltrimethylammonium bromide (CTAB), nonionic surfactant polyoxyethylene (80) sorbitan esters (Tween 80) and salinity of seawater. In contrast, the sorption capacity of E1 decreased with the increasing concentration of anionic surfactant sodium dodecylbenzene sulfonate (SDBS), pH value and temperature of seawater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Column Chromatography To Obtain Organic Cation Sorption Isotherms.

    PubMed

    Jolin, William C; Sullivan, James; Vasudevan, Dharni; MacKay, Allison A

    2016-08-02

    Column chromatography was evaluated as a method to obtain organic cation sorption isotherms for environmental solids while using the peak skewness to identify the linear range of the sorption isotherm. Custom packed HPLC columns and standard batch sorption techniques were used to intercompare sorption isotherms and solid-water sorption coefficients (Kd) for four organic cations (benzylamine, 2,4-dichlorobenzylamine, phenyltrimethylammonium, oxytetracycline) with two aluminosilicate clay minerals and one soil. A comparison of Freundlich isotherm parameters revealed isotherm linearity or nonlinearity was not significantly different between column chromatography and traditional batch experiments. Importantly, skewness (a metric of eluting peak symmetry) analysis of eluting peaks can establish isotherm linearity, thereby enabling a less labor intensive means to generate the extensive data sets of linear Kd values required for the development of predictive sorption models. Our findings clearly show that column chromatography can reproduce sorption measures from conventional batch experiments with the benefit of lower labor-intensity, faster analysis times, and allow for consistent sorption measures across laboratories with distinct chromatography instrumentation.

  20. Magnetic CuHCNPAN nano composite as an efficient adsorbent for strontium uptake

    NASA Astrophysics Data System (ADS)

    Mobtaker, Hossein Ghasemi; Pakzad, Seyed Mohammadreza; Yousefi, Taher

    2018-06-01

    An excellent composite was synthesized for sorption of strontium from solution. The composite (CuHCNPAN) components were copper hexacyanoferrate, magnetite and PAN. The XRD method confirmed the formation and presence of two crystalline phases of magnetite and copper hexacyanoferrate in composite. Particle sizes were determined by XRD and SEM methods. It was found that the particles were nano size. Some other methods such as FT IR, BET and TG methods were also used to determine the properties of the composite. The composite was used for sorption of strontium from solution. It was found that the kinetic of strontium sorption by the composite could be modeled by pseudo-second order. Among the isotherms applied to modeling the sorption in various concentrations, the Langmuir isotherm was founded to be more appropriate to fitting the experimental data. An excellent correlation coefficient was obtained (R2 > 0.98). The qmax for sorption of strontium ions which was calculated by Langmuir model was 80 mg/g. The thermodynamic parameters were calculated by determination of sorption in various temperatures and using the Vant Hoff plot. ΔG°, ΔH°, and ΔS° were calculated as -19.15, 2.28 and 0.071 kJ/mol respectively.

  1. Sorption and desorption of organophosphate esters with different hydrophobicity by soils.

    PubMed

    Cristale, Joyce; Álvarez-Martín, Alba; Rodríguez-Cruz, Sonia; Sánchez-Martín, María J; Lacorte, Silvia

    2017-12-01

    Organophosphate esters (OPEs) are ubiquitous contaminants with potentially hazardous effects on both the environment and human health. Knowledge about the soil sorption-desorption process of organic chemicals is important in order to understand their fate, mobility, and bioavailability, enabling an estimation to be made of possible risks to the environment and biota. The aim of this study was to use the batch equilibrium technique to evaluate the sorption-desorption behavior of seven OPEs (TCEP, TCPP, TBEP, TDCP, TBP, TPhP, and EHDP) in soils with distinctive characteristics (two unamended soils and a soil amended with sewage sludge). The equilibrium concentrations of the OPEs were determined by high performance liquid chromatography coupled to a triple quadrupole mass spectrometer (HPLC-MS/MS). All the compounds were sorbed by the soils, and soil organic carbon (OC) played an important role in this process. The sorption of the most soluble OPEs (TCEP, TCPP, and TBEP) depended on soil OC content, although desorption was ≥ 58.1%. The less water-soluble OPEs (TDCP, TBP, TPhP, and EHDP) recorded total sorption (100% for TPhP and EHDP) or very high sorption (≥ 34.9%) by all the soils and were not desorbed, which could be explained by their highly hydrophobic nature, as indicated by the logarithmic octanol/water partition coefficient (K ow ) values higher than 3.8, resulting in a high affinity for soil OC. The results of the sorption-desorption of the OPEs by soils with different characteristics highlighted the influence of these compounds' physicochemical properties and the content and nature of soil OC in this process.

  2. Sorption of 4-ethylphenol and 4-ethylguaiacol by suberin from cork.

    PubMed

    Gallardo-Chacón, Joan-Josep; Karbowiak, Thomas

    2015-08-15

    Cork shows an active role in the sorption of volatile phenols from wine. The sorption properties of 4-ethylphenol and 4-ethylguaiacol phenols in hydro-alcoholic medium placed in contact with suberin extracted from cork were especially investigated. To that purpose, suberin was immersed in model wine solutions containing several concentrations of each phenol and the amount of the compound remaining in the liquid phase was determined by SPME-GC-MS. Sorption isotherms of 4-ethylguaiacol and 4-ethylphenol by suberin followed the Henry's model. The solid/liquid partition coefficients (KSL) between the suberin and the model wine were also determined for several other volatile phenols. Suberin displayed rather high sorption capacity, which was positively correlated to the hydrophobicity of the volatile. Finally, the capacity of suberin to decrease the concentration of 4-ethylphenol and 4-ethylguaiacol was also tested in real wines affected by a Brettanomyces character. It also lead to a significant reduction of their concentration in wine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Factors influencing sorption of ciprofloxacin onto activated sludge: experimental assessment and modelling implications.

    PubMed

    Polesel, Fabio; Lehnberg, Kai; Dott, Wolfgang; Trapp, Stefan; Thomas, Kevin V; Plósz, Benedek Gy

    2015-01-01

    Many of the pharmaceuticals and personal care products occurring in municipal sewage are ionizing substances, and their partitioning behaviour is affected by ionic interactions with solid matrices. In activated sludge systems, such interactions have currently not been adequately understood and described, particularly for zwitterionic chemicals. Here we present an assessment of the effects of pH and iron salt dosing on the sorption of ciprofloxacin onto activated sludge using laboratory experiments and full-scale fate modelling. Experimental results were described with Freundlich isotherms and showed that non-linear sorption occurred under all the conditions tested. The greatest sorption potential was measured at pH=7.4, at which ciprofloxacin is speciated mostly as zwitterion. Iron salt dosing increased sorption under aerobic and, to a lesser extent, anoxic conditions, whereas no effect was registered under anaerobic conditions. The activated sludge model for xenobiotics (ASM-X) was extended with Freundlich-based sorption kinetics and used to predict the fate of ciprofloxacin in a wastewater treatment plant (WWTP). Scenario simulations, using experimental Freundlich parameters, were used to identify whether the assessed factors caused a significant increase of aqueous ciprofloxacin concentration in full-scale bioreactors. Simulation results suggest that a pH increase, rather than a reduction in iron salt dosing, could be responsible for a systematic deterioration of sorption of ciprofloxacin in the WWTP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Micropore clogging by leachable pyrogenic organic carbon: A new perspective on sorption irreversibility and kinetics of hydrophobic organic contaminants to black carbon.

    PubMed

    Wang, Bingyu; Zhang, Wei; Li, Hui; Fu, Heyun; Qu, Xiaolei; Zhu, Dongqiang

    2017-01-01

    Black carbon (BC) plays a crucial role in sequestering hydrophobic organic contaminants in the environment. This study investigated key factors and mechanisms controlling nonideal sorption (e.g., sorption irreversibility and slow kinetics) of model hydrophobic organic contaminants (nitrobenzene, naphthalene, and atrazine) by rice-straw-derived BC. After removing the fraction of leachable pyrogenic organic carbon (LPyOC) (referring to composites of dissoluble non-condensed organic carbon and associated mineral components) with deionized water or 0.5 M NaOH, sorption of these sorbates to BC was enhanced. The sorption enhancement was positively correlated with sorbate molecular size in the order of atrazine > naphthalene > nitrobenzene. The removal of LPyOC also accelerated sorption kinetics and reduced sorption irreversibility. These observations were attributed to increased accessibility of BC micropores initially clogged by the LPyOC. Comparison of BC pore size distributions before and after atrazine sorption further suggested that the sorbate molecules preferred to access the micropores that were more open, and the micropore accessibility was enhanced by the removal of LPyOC. Consistently, the sorption of nitrobenzene and atrazine to template-synthesized mesoporous carbon (CMK3), a model sorbent with homogeneous pore structures, showed decreased kinetics, but increased irreversibility by impregnating sorbent pores with surface-grafted alkylamino groups and by subsequent loading of humic acid. These findings indicated an important and previously unrecognized role of LPyOC (i.e., micropore clogging) in the nonideal sorption of organic contaminants to BC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Sorption of Ochratoxin A from aqueous solutions using beta-cyclodextrin-polyurethane polymer

    USDA-ARS?s Scientific Manuscript database

    The ability of a cyclodextrin-polyurethane polymer to remove ochratoxin A from aqueous solutions, including wine, was examined by batch rebinding assays and equilibrium sorption isotherms. The results were fit to two parameter models. Freundlich analysis of the sorption isotherm indicates the polyme...

  6. A conversion of CO2-ECBM related lab observations to reservoir requirements

    NASA Astrophysics Data System (ADS)

    Gensterblum, Yves; Merkel, Alexej; Busch, Andreas; Krooß, Bernhard

    2013-04-01

    To predict a CBM production profile either during primary or secondary production, aspects like coal permeability and porosity, density, ash and moisture content, initial gas-in-place (GIP) (from canister desorption tests), gas sorption capacity from laboratory isotherms (to obtain gas saturations and desorption pressure), gas diffusivities, coal volumetrics (thickness and areal extent) need to be understood as a minimum requirement. When dealing with CO2-ECBM selective adsorption, counter diffusion in the coal matrix, or coal shrinkage and swelling (from CH4 desorption and CO2 adsorption, respectively) and the influence of moisture need to be investigated in addition to the parameters above. During CO2-ECBM processes, the areal distribution of the CO2 injected is accomplished by flow through the cleat network. When CO2 is entering the coal matrix by a combined sorption/diffusion process it will adsorb to the coal inner surface and at the same time replace part of the CH4. This replacement occurs either by a reduction in the CH4 partial pressure or by a higher selective sorption of CO2 over CH4. Because of a concentration gradient between CH4 in the matrix compared to the cleat system, CH4 diffuses from the coal matrix into the cleat system where, by pressure drawdown towards a production well, it can be produced. In this context this presentation summarizes gas (CO2, CH4) and water sorption on coal and specifically addresses the following topics: • CH4 and CO2 sorption capacity as a function depth and rank • CO2 and CH4 sorption on natural coals and its dependence on coal specific parameters like coal rank, maceral composition or ash content (Busch and Gensterblum, 2011). • Water sorption on coal, its dependence on coal properties such as rank and coal chemistry and gas sorption in the presence of water (Busch and Gensterblum, 2011). • Uncertainties in reservoir characterisation (Gensterblum et al., 2010; Gensterblum et al., 2009) • Sorption uptake kinetic as a function of surface coverage and the influence of moisture on the kinetic Busch, A. and Gensterblum, Y., 2011. CBM and CO2-ECBM related sorption processes in coal: A review. International Journal of Coal Geology, 87: 49-71. Gensterblum, Y. et al., 2010. European inter-laboratory comparison of high pressure CO2 sorption isotherms II: Natural coals. International Journal of Coal Geology, 84(2): 115-124. Gensterblum, Y. et al., 2009. European inter-laboratory comparison of high pressure CO2 sorption isotherms. I: Activated carbon. Carbon, 47(13): 2958-2969.

  7. Transport processes and mutual interactions of three bacterial strains in saturated porous media

    NASA Astrophysics Data System (ADS)

    Stumpp, Christine; Lawrence, John R.; Hendry, M. Jim; Maloszewski, Pitor

    2010-05-01

    Transport processes of the bacterial strains Klebsiella oxytoca, Burkholderia cepacia G4PR-1 and Pseudomonas sp #5 were investigated in saturated column experiments to study the differences in transport characteristics and the mutual interactions of these strains during transport. Soil column experiments (114 mm long x 33 mm in diameter) were conducted with constant water velocities (3.9-5.7 cm/h) through a medium to coarse grained silica sand. All experiments were performed in freshly packed columns in quadruplicate. Chloride was used as tracer to determine the mean transit time, dispersivity and flow rate. It was injected as a pulse into the columns together with the bacterial strains suspended in artificial groundwater medium. In the first setup, each strain was investigated alone. In the second setup, transport processes were performed injecting two strains simultaneously. Finally, the transport characteristics were studied in successive experiments when one bacterium was resident on the sand grains prior to the introduction of the second strain. In all experiments the peak C/Co bacterial concentrations were attenuated with respect to the conservative tracer chloride and a well defined tailing was observed. A one dimensional mathematical model for advective-dispersive transport that accounts for irreversible and reversible sorption was used to analyze the bacterial breakthrough curves and tailing patterns. It was shown that the sorption parameters were different for the three strains that can be explained by the properties of the bacteria. For the species Klebsiella oxytoca and Burkholderia cepacia G4PR-the transport parameters were mostly in the same range independent of the experimental setup. However, Pseudomonas sp #5, which is a motile bacterium, showed differences in the breakthrough curves and sorption parameters during the experiments. The simultaneous and successive experiments indicated an influence on the reversible sorption processes when another strain was present during the transport processes.

  8. Acoustics of multiscale sorptive porous materials

    NASA Astrophysics Data System (ADS)

    Venegas, R.; Boutin, C.; Umnova, O.

    2017-08-01

    This paper investigates sound propagation in multiscale rigid-frame porous materials that support mass transfer processes, such as sorption and different types of diffusion, in addition to the usual visco-thermo-inertial interactions. The two-scale asymptotic method of homogenization for periodic media is successively used to derive the macroscopic equations describing sound propagation through the material. This allowed us to conclude that the macroscopic mass balance is significantly modified by sorption, inter-scale (micro- to/from nanopore scales) mass diffusion, and inter-scale (pore to/from micro- and nanopore scales) pressure diffusion. This modification is accounted for by the dynamic compressibility of the effective saturating fluid that presents atypical properties that lead to slower speed of sound and higher sound attenuation, particularly at low frequencies. In contrast, it is shown that the physical processes occurring at the micro-nano-scale do not affect the macroscopic fluid flow through the material. The developed theory is exemplified by introducing an analytical model for multiscale sorptive granular materials, which is experimentally validated by comparing its predictions with acoustic measurements on granular activated carbons. Furthermore, we provide empirical evidence supporting an alternative method for measuring sorption and mass diffusion properties of multiscale sorptive materials using sound waves.

  9. [Equilibrium sorption isotherm for Cu2+ onto Hydrilla verticillata Royle and Myriophyllum spicatum].

    PubMed

    Yan, Chang-zhou; Zeng, A-yan; Jin, Xiang-can; Wang, Sheng-rui; Xu, Qiu-jin; Zhao, Jing-zhu

    2006-06-01

    Equilibrium sorption isotherms for Cu2+ onto Hydrilla verticillata Royle and Myriophyllum spicatum were studied. Both methods of linear and non-linear fitting were applied to describe the sorption isotherms, and their applicability were analyzed and compared. The results were: (1) The applicability of simulated equation can't be compared only by R2 and chi2 when equilibrium sorption model was used to quantify and contrast the performance of different biosorbents. Both methods of linear and non-linear fitting can be applied in different fitting equations to describe the equilibrium sorption isotherms respectively in order to obtain the actual and credible fitting results, and the fitting equation best accorded with experimental data can be selected; (2) In this experiment, the Langmuir model is more suitable to describe the sorption isotherm of Cu2+ biosorption by H. verticillata and M. spicatum, and there is greater difference between the experimental data and the calculated value of Freundlich model, especially for the linear form of Freundlich model; (3) The content of crude cellulose in dry matter is one of the main factor affecting the biosorption capacity of a submerged aquatic plant, and -OH and -CONH2 groups of polysaccharides on cell wall maybe are active center of biosorption; (4) According to the coefficients qm of the linear form of Langmuir model, the maximum sorption capacity of Cu2+ was found to be 21.55 mg/g and 10.80mg/g for H. verticillata and M. spicatum, respectively. The maximum specific surface area for H. verticillata for binding Cu2+ was 3.23m2/g, and it was 1.62m2/g for M. spicatum.

  10. Development of a sorption data base for the cementitious near-field of a repository for radioactive waste

    NASA Astrophysics Data System (ADS)

    Wieland, E.; Bradbury, M. H.; van Loon, L.

    2003-01-01

    The migration of radionuclides within a repository for radioactive waste is retarded due to interaction with the engineered barrier system. Sorption processes play a decisive role in the retardation of radionuclides in the repository environment, and thus, the development of sorption data bases (SDBs) is an important task and an integral part of performance assessment. The methodology applied in the development of a SDB for the cementitious near-field of a repository for long-lived intermediate-level waste is presented in this study. The development of such a SDB requires knowledge of the chemical conditions of the near-field and information on the uptake process of radionuclides by hardened cement paste. The principles upon which the selection of the “best available” laboratory sorption values is based are outlined. The influence of cellulose degradation products, cement additives and cement-derived colloids on the sorption behaviour of radionuclides is addressed in conjunction with the development of the SDB.

  11. The role of sorption processes in the removal of pharmaceuticals by fungal treatment of wastewater.

    PubMed

    Lucas, D; Castellet-Rovira, F; Villagrasa, M; Badia-Fabregat, M; Barceló, D; Vicent, T; Caminal, G; Sarrà, M; Rodríguez-Mozaz, S

    2018-01-01

    The contribution of the sorption processes in the elimination of pharmaceuticals (PhACs) during the fungal treatment of wastewater has been evaluated in this work. The sorption of four PhACs (carbamazepine, diclofenac, iopromide and venlafaxine) by 6 different fungi was first evaluated in batch experiments. Concentrations of PhACs in both liquid and solid (biomass) matrices from the fungal treatment were measured. Contribution of the sorption to the total removal of pollutants ranged between 3% and 13% in relation to the initial amount. The sorption of 47 PhACs in fungi was also evaluated in a fungal treatment performed in 26days in a continuous bioreactor treating wastewater from a veterinary hospital. PhACs levels measured in the fungal biomass were similar to those detected in conventional wastewater treatment (WWTP) sludge. This may suggest the necessity of manage fungal biomass as waste in the same manner that the WWTP sludge is managed. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effect of Cosolutes on the Sorption of Phenanthrene onto Mineral Surface of River Sediments and Kaolinite

    PubMed Central

    2014-01-01

    Sorption of phenanthrene onto the natural sediment with low organic carbon content (OC%), organic-free sediment, and kaolinite was investigated through isotherm experiments. Effects of cosolutes (pyrene, 4-n-nonyphenol (NP), and humic acid (HA)) on phenanthrene sorption were also studied by comparing apparent solid-water distribution coefficients (K d app) of phenanthrene. Two addition sequences, including “cosolute added prior to phenanthrene” and “cosolute and phenanthrene added simultaneously,” were adopted. The Freundlich model fits phenanthrene sorption on all 3 sorbents well. The sorption coefficients on these sorbents were similar, suggesting that mineral surface plays an important role in the sorption of hydrophobic organic contaminants on low OC% sediments. Cosolutes could affect phenanthrene sorption on the sorbents, which depended on their properties, concentrations, and addition sequences. Pyrene inhibited phenanthrene sorption. Sorbed NP inhibited phenanthrene sorption at low levels and promoted sorption at high levels. Similar to NP, effect of HA on phenanthrene sorption onto the natural sediment depended on its concentrations, whereas, for the organic-free sediment and kaolinite, preloading of HA at high levels led to an enhancement in phenanthrene K d app while no obvious effect was observed at low HA levels; dissolved HA could inhibit phenanthrene sorption on the two sorbents. PMID:25147865

  13. Sorption, degradation and transport phenomena of alcohol ethoxysulfates in agricultural soils. Laboratory studies.

    PubMed

    Fernández-Ramos, C; Rodríguez-Gómez, R; Reis, M S; Zafra-Gómez, A; Verge, C; de Ferrer, J A; Pérez-Pascual, M; Vílchez, J L

    2017-03-01

    In the present work, laboratory studies were conducted in order to determine and model the sorption, degradation and transport processes of alcohol ethoxysulfates (AES), one of the most important groups of anionic surfactants. Adsorption/desorption isotherms were obtained for several structurally related AES ethoxymers (homologue AES-C 12 E n with n = 0-10 ethoxymer units and homologue AES-C 14 E n with n = 0-7 ethoxymer units) using a batch equilibrium method. Data were fitted to a linear and a Freundlich isotherm models. Additionally, experiments in continuous-flow soil columns were also carried out and the breakthrough curves observed for each compound were studied. Breakthrough curves were used to determine the fundamental parameters of the transport model (hydrodynamic dispersion coefficient, degradation rate constant and adsorption/desorption isotherm slope), that is the main phenomena that take place simultaneously when AES move through agricultural soil. When the results obtained for the AES ethoxymers are combined, they reveal a clear and consistent trend towards a sorption increase with the number of ethoxylated units and with the length of the alkyl chain that opens the possibility to estimate the values of the transport parameters for other structurally related ethoxymers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Removal of lindane from an aqueous solution by using aminopropyl silica gel-immobilized calix[6]arene.

    PubMed

    Tor, Ali; Aydin, Mehmet Emin; Aydin, Senar; Tabakci, Mustafa; Beduk, Fatma

    2013-11-15

    An aminopropyl silica gel-immobilized calix[6]arene (C[6]APS) has been used for the removal of lindane from an aqueous solution in batch sorption technique. The C[6]APS was synthesized with p-tert-butylcalix[6]arene hexacarboxylate derivative and aminopropyl silica gel in the presence of N,N'-diisopropyl carbodiimide coupling reagent. The sorption study was carried out as functions of solution pH, contact time, initial lindane concentration, C[6]APS dosage and ionic strength of solution. The matrix effect of natural water samples on the sorption efficiency of C[6]APS was also investigated. Maximum lindane removal was obtained at a wide pH range of 2-8 and sorption equilibrium was achieved in 2h. The isotherm analysis indicated that the sorption data can be represented by both Langmuir and Freundlich isotherm models. Increasing ionic strength of the solutions increased the sorption efficiency and matrix of natural water samples had no effect on the sorption of lindane. By using multilinear regression model, regression equation was also developed to explain the effects of the experimental variables. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Sorption isotherm modeling of different peanut types

    USDA-ARS?s Scientific Manuscript database

    Peanuts are becoming more important food product and in recent years its production is increasing rapidly. In North America most of the peanuts are grown in southeastern states. Peanuts from there are processed and exported to other parts of the country. Peanuts are harvested at high moisture levels...

  16. Adsorption of bacteriophages on clay minerals

    USGS Publications Warehouse

    Chattopadhyay, Sandip; Puls, Robert W.

    1999-01-01

    The ability to predict the fate of microorganisms in soil is dependent on an understanding of the process of their sorption on soil and subsurface materials. Presently, we have focused on studying the thermodynamics of sorption of bacteriophages (T-2, MS-2, and φX-174) on clays (hectorite, saponite, kaolinite, and clay fraction of samples collected from a landfill site). The thermodynamic study not only determines the feasibility of the process but also provides information on the relative magnitudes of the different forces under a particular set of conditions. The total free energy of interaction during sorption of bacteriophages on clays (ΔG) has been assumed to be the summation of ΔGH (ΔG due to hydrophobic interactions) and ΔGEL (ΔG due to electrostatic interactions). The magnitude of ΔGH was determined from the different interfacial tensions (γ) present in the system, while ΔGEL was calculated from ζ-potentials of the colloidal particles. Calculated results show that surface hydrophobicities of the selected sorbents and sorbates dictate sorption. Among the selected bacteriophages, maximum sorption was observed with T-2, while hectorite has the maximum sorption capacity. Experimental results obtained from the batch adsorption studies also corroborated those obtained from the theoretical study.

  17. Removal of chromium from aqueous solutions by diatomite treated with microemulsion.

    PubMed

    Dantas, T N; Dantas Neto, A A; Moura, M C

    2001-06-01

    In order to evaluate the sorption of heavy metals, a crude diatomite was impregnated with a microemulsion which showed remarkable increase in chromium sorption capacity as compared to untreated diatomite. Samples with two different granulometries were investigated, both yielding practically complete adsorption. The adsorption process is pH dependent and the best results for the initial Cr (III) concentration of 1.5 g/L were obtained at pH 2.95. The effect of the concentration of the chromium synthetic solution was also investigated. The adsorption isotherms were obtained (30. 40 and 50 degrees C) and the Freundlich and Langmuir models were used to determine the adsorption capacity of the adsorbent. Following the adsorption step, a desorption process was carried out using several eluant solutions. The best results were obtained using hydrochloric acid (100%) as eluant.

  18. Sorption of Groundwater Dissolved Organic Carbon onto Minerals

    NASA Astrophysics Data System (ADS)

    Rutlidge, H.; Oudone, P.; McDonough, L.; Meredith, K.; Andersen, M. S.; O'Carrol, D. M.; Baker, A.

    2017-12-01

    Our understanding of groundwater organic matter (OM) as a carbon source or sink in the environmental carbon cycle is limited. The dynamics of groundwater OM is mainly governed by biological processing and its sorption to minerals. In saturated groundwaters, dissolved OM (DOM) represents one part of the groundwater organic carbon pool. Without consideration of the DOM sorption, it is not possible to quantify governing groundwater OM processes. This research explores the rate and extent of DOM sorption on different minerals. Groundwater DOM samples, and International Humic Substances Society (IHSS) standard solutions, were analysed. Each was mixed with a range of masses of iron coated quartz, clean quartz, and calcium carbonate, and shaken for 2 hours to reach equilibrium before being filtered through 0.2 μm for total dissolved organic carbon (DOC) and composition analysis by size-exclusion chromatography-organic carbon detection (LC-OCD). Sorption isotherms were constructed and groundwater DOM sorption were compared to the sorption of IHSS standards. Initial results suggest that for the IHSS standards, the operationally-defined humic substances fraction had the strongest sorption compared to the other LC-OCD fractions and total DOC. Some samples exhibited a small increase in the low molecular weight neutral (LMW-N) aqueous concentration with increasing humic substances sorption. This gradual increase observed could be the result of humic substances desorbing or their breakdown during the experiment. Further results comparing these IHSS standards with groundwater samples will be presented. In conjunction with complementary studies, these results can help provide more accurate prediction of whether groundwater OM is a carbon source or sink, which will enable the management of the groundwater resources as part of the carbon economy.

  19. Sorption and transport of iodine species in sediments from the Savannah River and Hanford Sites.

    PubMed

    Hu, Qinhong; Zhao, Pihong; Moran, Jean E; Seaman, John C

    2005-07-01

    Iodine is an important element in studies of environmental protection and human health, global-scale hydrologic processes and nuclear nonproliferation. Biogeochemical cycling of iodine is complex, because iodine occurs in multiple oxidation states and as inorganic and organic species that may be hydrophilic, atmophilic, and biophilic. In this study, we applied new analytical techniques to study the sorption and transport behavior of iodine species (iodide, iodate, and 4-iodoaniline) in sediments collected at the Savannah River and Hanford Sites, where anthropogenic (129)I from prior nuclear fuel processing activities poses an environmental risk. We conducted integrated column and batch experiments to investigate the interconversion, sorption and transport of iodine species, and the sediments we examined exhibit a wide range in organic matter, clay mineralogy, soil pH, and texture. The results of our experiments illustrate complex behavior with various processes occurring, including iodate reduction, irreversible retention or mass loss of iodide, and rate-limited and nonlinear sorption. There was an appreciable iodate reduction to iodide, presumably mediated by the structural Fe(II) in some clay minerals; therefore, careful attention must be given to potential interconversion among species when interpreting the biogeochemical behavior of iodine in the environment. The different iodine species exhibited dramatically different sorption and transport behavior in three sediment samples, possessing different physico-chemical properties, collected from different depths at the Savannah River Site. Our study yielded additional insight into processes and mechanisms affecting the geochemical cycling of iodine in the environment, and provided quantitative estimates of key parameters (e.g., extent and rate of sorption) for risk assessment at these sites.

  20. Phenanthrene and 2,2',5,5'-PCB sorption by several soils from methanol-water solutions: the effect of weathering and solute structure.

    PubMed

    Hyun, Seunghun; Kim, Minhee; Baek, Kitae; Lee, Linda S

    2010-01-01

    The effect of the sorption of phenanthrene and 2,2',5,5'-polychlorinated biphenyl (PCB52) by five differently weathered soils were measured in water and low methanol volume fraction (f(c)0.5) as a function of the apparent solution pH (pH(app)). Two weathered oxisols (A2 and DRC), and moderately weathered alfisols (Toronto) and two young soils (K5 and Webster) were used. The K(m) (linear sorption coefficient) values, which log-linearly decreases with f(c), were interpreted using a cosolvency sorption model. For phenanthrene sorption at the natural pH, the empirical constant (alpha) ranged between 0.95 and 1.14, and was in the order of oxisols (A2 and DRC)

  1. Quaternized Cellulose Hydrogels as Sorbent Materials and Pickering Emulsion Stabilizing Agents

    PubMed Central

    Udoetok, Inimfon A.; Wilson, Lee D.; Headley, John V.

    2016-01-01

    Quaternized (QC) and cross-linked/quaternized (CQC) cellulose hydrogels were prepared by cross-linking native cellulose with epichlorohydrin (ECH), with subsequent grafting of glycidyl trimethyl ammonium chloride (GTMAC). Materials characterization via carbon, hydrogen and nitrogen (CHN) analysis, thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR)/13C solid state NMR spectroscopy provided supportive evidence of the hydrogel synthesis. Enhanced thermal stability of the hydrogels was observed relative to native cellulose. Colloidal stability of octanol and water mixtures revealed that QC induces greater stabilization over CQC, as evidenced by the formation of a hexane–water Pickering emulsion system. Equilibrium sorption studies with naphthenates from oil sands process water (OSPW) and 2-naphthoxy acetic acid (NAA) in aqueous solution revealed that CQC possess higher affinity relative to QC with the naphthenates. According to the Langmuir isotherm model, the sorption capacity of CQC for OSPW naphthenates was 33.0 mg/g and NAA was 69.5 mg/g. CQC displays similar affinity for the various OSPW naphthenate component species in aqueous solution. Kinetic uptake of NAA at variable temperature, pH and adsorbent dosage showed that increased temperature favoured the uptake process at 303 K, where Qm = 76.7 mg/g. Solution conditions at pH 3 or 9 had a minor effect on the sorption process, while equilibrium was achieved in a shorter time at lower dosage (ca. three-fold lower) of hydrogel (100 mg vs. 30 mg). The estimated activation parameters are based on temperature dependent rate constants, k1, which reveal contributions from enthalpy-driven electrostatic interactions. The kinetic results indicate an ion-based associative sorption mechanism. This study contributes to a greater understanding of the adsorption and physicochemical properties of cellulose-based hydrogels. PMID:28773767

  2. Steady-state equation of water vapor sorption for CaCl2-based chemical sorbents and its application

    PubMed Central

    Zhang, Haiquan; Yuan, Yanping; Sun, Qingrong; Cao, Xiaoling; Sun, Liangliang

    2016-01-01

    Green CaCl2-based chemical sorbent has been widely used in sorption refrigeration, air purification and air desiccation. Methods to improve the sorption rate have been extensively investigated, but the corresponding theoretical formulations have not been reported. In this paper, a sorption system of solid-liquid coexistence is established based on the hypothesis of steady-state sorption. The combination of theoretical analysis and experimental results indicates that the system can be described by steady-state sorption process. The steady-state sorption equation, μ = (η − γT) , was obtained in consideration of humidity, temperature and the surface area. Based on engineering applications and this equation, two methods including an increase of specific surface area and adjustment of the critical relative humidity (γ) for chemical sorbents, have been proposed to increase the sorption rate. The results indicate that the CaCl2/CNTs composite with a large specific surface area can be obtained by coating CaCl2 powder on the surface of carbon nanotubes (CNTs). The composite reached sorption equilibrium within only 4 h, and the sorption capacity was improved by 75% compared with pure CaCl2 powder. Furthermore, the addition of NaCl powder to saturated CaCl2 solution could significantly lower the solution’s γ. The sorption rate was improved by 30% under the same environment. PMID:27682811

  3. Steady-state equation of water vapor sorption for CaCl2-based chemical sorbents and its application

    NASA Astrophysics Data System (ADS)

    Zhang, Haiquan; Yuan, Yanping; Sun, Qingrong; Cao, Xiaoling; Sun, Liangliang

    2016-09-01

    Green CaCl2-based chemical sorbent has been widely used in sorption refrigeration, air purification and air desiccation. Methods to improve the sorption rate have been extensively investigated, but the corresponding theoretical formulations have not been reported. In this paper, a sorption system of solid-liquid coexistence is established based on the hypothesis of steady-state sorption. The combination of theoretical analysis and experimental results indicates that the system can be described by steady-state sorption process. The steady-state sorption equation, μ = (η - γT) , was obtained in consideration of humidity, temperature and the surface area. Based on engineering applications and this equation, two methods including an increase of specific surface area and adjustment of the critical relative humidity (γ) for chemical sorbents, have been proposed to increase the sorption rate. The results indicate that the CaCl2/CNTs composite with a large specific surface area can be obtained by coating CaCl2 powder on the surface of carbon nanotubes (CNTs). The composite reached sorption equilibrium within only 4 h, and the sorption capacity was improved by 75% compared with pure CaCl2 powder. Furthermore, the addition of NaCl powder to saturated CaCl2 solution could significantly lower the solution’s γ. The sorption rate was improved by 30% under the same environment.

  4. Testosterone sorption and desorption: effects of soil particle size.

    PubMed

    Qi, Yong; Zhang, Tian C; Ren, Yongzheng

    2014-08-30

    Soils contain a wide range of particles of different diameters with different mobility during rainfall events. Effects of soil particles on sorption and desorption behaviors of steroid hormones have not been investigated. In this study, wet sieve washing and repeated sedimentation methods were used to fractionate the soils into five ranges. The sorption and desorption properties and related mechanisms of testosterone in batch reactors filled with fractionated soil particles were evaluated. Results of sorption and desorption kinetics indicate that small soil particles have higher sorption and lower desorption rates than that of big ones. Thermodynamic results show the sorption processes are spontaneous and exothermal. The sorption capacity ranks as clay>silt>sand, depending mainly on specific surface area and surface functional groups. The urea control test shows that hydrogen bonding contributes to testosterone sorption onto clay and silt but not on sand. Desorption tests indicate sorption is 36-65% irreversible from clay to sand. Clays have highest desorption hysteresis among these five soil fractions, indicating small particles like clays have less potential for desorption. The results provide indirect evidence on the colloid (clay)-facilitated transport of hormones (micro-pollutants) in soil environments. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Inhibitory effects of extracellular polymeric substances on ofloxacin sorption by natural biofilms.

    PubMed

    Zhang, Liwen; Dong, Deming; Hua, Xiuyi; Guo, Zhiyong

    2018-06-01

    Natural biofilms have strong affinities for organic contaminants, and their extracellular polymeric substances (EPS) have been thought to control the sorption process. However, the role of EPS in the sorption of antibiotics, an emerging concern, is poorly understood. Here, soluble (SEPS) and bound EPS (BEPS) were extracted from intact biofilms incubated at different lengths of time to obtain SEPS- and BEPS-free biofilms. Batch sorption experiments and infrared spectroscopy were used to investigate the role of EPS in the sorption of ofloxacin (OFL) by natural biofilms. The sorption capacities of OFL onto intact biofilms were lower than that those onto SEPS-free and BEPS-free biofilms. Partition and Langmuir adsorption contributed to the sorption of OFL onto these biofilms. SEPS and BEPS suppressed partitioning of OFL into biofilm organic matter. Meanwhile, the formation of hydrogen bonds could affect the Langmuir adsorption of OFL onto BEPS-free biofilms. These sorption mechanisms occurred simultaneously and enhanced the sorption capacities of biofilms after EPS removal. The information obtained in this study is beneficial for understanding the interaction mechanisms between antibiotics and natural biofilms. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Use of red mud (bauxite residue) for the retention of aqueous inorganic mercury(II).

    PubMed

    Rubinos, David A; Barral, María Teresa

    2015-11-01

    The effectiveness of the oxide-rich residue from bauxite refining (red mud) to remove inorganic Hg(II) from aqueous solutions was assessed. The aspects studied comprised the kinetics of the process (t = 1 min-24 h), the effect of pH (3.5-11.5), the interacting effect between salt concentration (0.01-1 M NaNO3) and pH and the Hg(II) sorption isotherm. Hg leaching from spent red mud was evaluated using the toxicity characteristics leaching procedure (TCLP) method. The sorption of Hg(II) onto red mud was very fast, with most of Hg(II) (97.0-99.7%) being removed from 0.5-50 μM Hg solutions in few minutes. The kinetic process was best described by Ho's pseudo-second order equation, pointing to chemisorption as the rate controlling step. Hg(II) sorption efficiency was very high (% removal between 93.9 and 99.8%) within all the studied pH range (3.5-11.5) and added Hg concentrations (5 and 50 μM), being optimal at pH 5-8 and decreasing slightly at both lowest and highest pH. The effect of background electrolyte concentration suggests specific sorption as the main interaction mechanism between Hg(II) and red mud, but the increasing non-sorbed Hg concentrations at low and high pH for higher electrolyte concentrations also revealed the contribution of an electrostatic component to the process. The sorption isotherm showed the characteristic shape of high affinity sorbents, and it was better described by the Redlich-Peterson and Freundlich equations, which are models that assume sorbent heterogeneity and involvement of more than one mechanism. The estimated Hg(II) sorption capacity from the Langmuir equation (q m ~9 mmol/kg) was comparable to those of some inorganic commercial sorbents but lower than most bio- or specifically designed sorbents. The leachability of retained Hg(II) from spent red mud (0.02, 0.25 and 2.42 mmol Hg/kg sorbed concentration) was low (0.28, 1.15 and 2.23 μmol/kg, respectively) and accounted for 1.2, 0.5 and 0.1% of previously sorbed Hg, indicating that Hg(II) is tightly bound by red mud once sorbed.

  7. Experimental determination of sorption in fractured flow systems

    NASA Astrophysics Data System (ADS)

    Zimmerman, Mitchell D.; Bennett, Philip C.; Sharp, John M.; Choi, Wan-Joo

    2002-09-01

    Fracture "skins" are alteration zones on fracture surfaces created by a variety of biological, chemical, and physical processes. Skins increase surface area, where sorption occurs, compared to the unaltered rock matrix. This study examines the sorption of organic solutes on altered fracture surfaces in an experimental fracture-flow apparatus. Fracture skins containing abundant metal oxides, clays, and organic material from the Breathitt Formation (Kentucky, USA) were collected in a manner such that skin surface integrity was maintained. The samples were reassembled in the lab in a flow-through apparatus that simulated ˜2.7 m of a linear fracture "conduit." A dual-tracer injection scheme was utilized with the sorbing or reactive tracer compared to a non-reactive tracer (chloride) injected simultaneously. Sorption was assessed from the ratio of the first temporal moments of the breakthrough curves and from the loss of reactive tracer mass and evaluated as a function of flow velocity and solute type. The breakthrough curves suggest dual-flow regimes in the fracture with both sorbing and non-sorbing flow fields. Significant sorption occurs for the reactive components, and sorption increased with decreasing flow rate and decreasing compound solubility. Based on moment analysis, however, there was little retardation of the center of solute mass. These data suggest that non-equilibrium sorption processes dominate and that slow desorption and boundary layer diffusion cause extensive tailing in the breakthrough curves.

  8. Mercury (II) reduction and co-precipitation of metallic mercury on hydrous ferric oxide in contaminated groundwater.

    PubMed

    Richard, Jan-Helge; Bischoff, Cornelia; Ahrens, Christian G M; Biester, Harald

    2016-01-01

    Mercury (Hg) speciation and sorption analyses in contaminated aquifers are useful for understanding transformation, retention, and mobility of Hg in groundwater. In most aquifers hydrous ferric oxides (HFOs) are among the most important sorbents for trace metals; however, their role in sorption or mobilization of Hg in aquifers has been rarely analyzed. In this study, we investigated Hg chemistry and Hg sorption to HFO under changing redox conditions in a highly HgCl2-contaminated aquifer (up to 870μgL(-1) Hg). Results from aqueous and solid phase Hg measurements were compared to modeled (PHREEQC) data. Speciation analyses of dissolved mercury indicated that Hg(II) forms were reduced to Hg(0) under anoxic conditions, and adsorbed to or co-precipitated with HFO. Solid phase Hg thermo-desorption measurements revealed that between 55 and 93% of Hg bound to HFO was elemental Hg (Hg(0)). Hg concentrations in precipitates reached more than 4 weight %, up to 7000 times higher than predicted by geochemical models that do not consider unspecific sorption to and co-precipitation of elemental Hg with HFO. The observed process of Hg(II) reduction and Hg(0) formation, and its retention and co-precipitation by HFO is thought to be crucial in HgCl2-contaminated aquifers with variable redox-conditions regarding the related decrease in Hg solubility (factor of ~10(6)), and retention of Hg in the aquifer. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Design and performance analysis of gas sorption compressors

    NASA Technical Reports Server (NTRS)

    Chan, C. K.

    1984-01-01

    Compressor kinetics based on gas adsorption and desorption processes by charcoal and for gas absorption and desorption processes by LaNi5 were analyzed using a two-phase model and a three-component model, respectively. The assumption of the modeling involved thermal and mechanical equilibria between phases or among the components. The analyses predicted performance well for compressors which have heaters located outside the adsorbent or the absorbent bed. For the rapidly-cycled compressor, where the heater was centrally located, only the transient pressure compared well with the experimental data.

  10. Sorption kinetics and isotherm studies of a cationic dye using agricultural waste: broad bean peels.

    PubMed

    Hameed, B H; El-Khaiary, M I

    2008-06-15

    In this paper, broad bean peels (BBP), an agricultural waste, was evaluated for its ability to remove cationic dye (methylene blue) from aqueous solutions. Batch mode experiments were conducted at 30 degrees C. Equilibrium sorption isotherms and kinetics were investigated. The kinetic data obtained at different concentrations have been analyzed using pseudo-first-order, pseudo-second-order and intraparticle diffusion equations. The experimental data fitted very well the pseudo-first-order kinetic model. Analysis of the temportal change of q indicates that at the beginning of the process the overall rate of adsorption is controlled by film-diffusion, then at later stage intraparticle-diffusion controls the rate. Diffusion coefficients and times of transition from film to pore-diffusion control were estimated by piecewise linear regression. The experimental data were analyzed by the Langmuir and Freundlich models. The sorption isotherm data fitted well to Langmuir isotherm and the monolayer adsorption capacity was found to be 192.7 mg/g and the equilibrium adsorption constant Ka is 0.07145 l/mg at 30 degrees C. The results revealed that BBP was a promising sorbent for the removal of methylene blue from aqueous solutions.

  11. A three-compartment model for micropollutants sorption in sludge: methodological approach and insights.

    PubMed

    Barret, Maialen; Patureau, Dominique; Latrille, Eric; Carrère, Hélène

    2010-01-01

    In sludge resulting from wastewater treatment, organic micropollutants sorb to particles and to dissolved/colloidal matter (DCM). Both interactions may influence their physical and biological fate throughout the wastewater treatment processes. To our knowledge, sludge has never been considered as a three-compartment matrix, in which micropollutants coexist in three states: freely dissolved, sorbed-to-particles and sorbed-to-DCM. A methodology is proposed to concomitantly determine equilibrium constants of sorption to particles (K(part)) and to DCM (K(DCM)). Polycyclic Aromatic Hydrocarbons (PAHs) were chosen as model compounds for the experiments. The logarithm of estimated equilibrium constants ranged from 3.1 to 4.3 and their usual correlation to PAH hydrophobicity was verified. Moreover, PAH affinities for particles and for DCM could be compared. Affinity for particles was found to be stronger, probably due to their physical and chemical characteristics. This work provided a useful tool to assess the freely dissolved, sorbed-to-particles and sorbed-to-DCM concentrations of contaminants, which are necessary to accurately predict their fate. Besides, guidelines to investigate the link between sorption and the fundamental concept of bioavailability were proposed. (c) 2009 Elsevier Ltd. All rights reserved.

  12. Determination of Chlorinated Solvent Sorption by Porous Material-Application to Trichloroethene Vapor on Cement Mortar.

    PubMed

    Musielak, Marion; Brusseau, Mark L; Marcoux, Manuel; Morrison, Candice; Quintard, Michel

    2014-08-01

    Experiments have been performed to investigate the sorption of trichloroethene (TCE) vapor by concrete material or, more specifically, the cement mortar component. Gas-flow experiments were conducted using columns packed with small pieces of cement mortar obtained from the grinding of typical concrete material. Transport and retardation of TCE at high vapor concentrations (500 mg L -1 ) was compared to that of a non-reactive gas tracer (Sulfur Hexafluoride, SF6). The results show a large magnitude of retardation (retardation factor = 23) and sorption (sorption coefficient = 10.6 cm 3 g -1 ) for TCE, compared to negligible sorption for SF6. This magnitude of sorption obtained with pollutant vapor is much bigger than the one obtained for aqueous-flow experiments conducted for water-saturated systems. The considerable sorption exhibited for TCE under vapor-flow conditions is attributed to some combination of accumulation at the air-water interface and vapor-phase adsorption, both of which are anticipated to be significant for this system given the large surface area associated with the cement mortar. Transport of both SF6 and TCE was simulated successfully with a two-region physical non-equilibrium model, consistent with the dual-medium structure of the crushed cement mortar. This work emphasizes the importance of taking into account sorption phenomena when modeling transport of volatile organic compounds through concrete material, especially in regard to assessing vapor intrusion.

  13. Chemistry and photochemistry of low-volatility organic chemicals on environmental surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, G.C.; Hebert, V.R.; Zepp, R.G.

    Hydrophobic organic xenobiotics such as polychlorinated dibenzodioxins and polycyclic aromatic hydrocarbons have strong tendencies to sorb on environmental surfaces. This paper summarizes a workshop in which scientists and modelers assembled to discuss nonbiological processes that affect sorption to soil or sediment surfaces and on atmospheric particles. The 20 scientists discussed a variety of topics with a major emphasis on the fate of chlorinated dioxins. The topics include transformation processes, mobility of organic pollutants, fate of organics, and evaluative fate models.

  14. Sorption of Eu(III) on granite: EPMA, LA-ICP-MS, batch and modeling studies.

    PubMed

    Fukushi, Keisuke; Hasegawa, Yusuke; Maeda, Koushi; Aoi, Yusuke; Tamura, Akihiro; Arai, Shoji; Yamamoto, Yuhei; Aosai, Daisuke; Mizuno, Takashi

    2013-11-19

    Eu(III) sorption on granite was assessed using combined microscopic and macroscopic approaches in neutral to acidic conditions where the mobility of Eu(III) is generally considered to be high. Polished thin sections of the granite were reacted with solutions containing 10 μM of Eu(III) and were analyzed using EPMA and LA-ICP-MS. On most of the biotite grains, Eu enrichment up to 6 wt % was observed. The Eu-enriched parts of biotite commonly lose K, which is the interlayer cation of biotite, indicating that the sorption mode of Eu(III) by the biotite is cation exchange in the interlayer. The distributions of Eu appeared along the original cracks of the biotite. Those occurrences indicate that the prior water-rock interaction along the cracks engendered modification of biotite to possess affinity to the Eu(III). Batch Eu(III) sorption experiments on granite and biotite powders were conducted as functions of pH, Eu(III) loading, and ionic strength. The macroscopic sorption behavior of biotite was consistent with that of granite. At pH > 4, there was little pH dependence but strong ionic strength dependence of Eu(III) sorption. At pH < 4, the sorption of Eu(III) abruptly decreased with decreased pH. The sorption behavior at pH > 4 was reproducible reasonably by the modeling considering single-site cation exchange reactions. The decrease of Eu(III) sorption at pH < 4 was explained by the occupation of exchangeable sites by dissolved cationic species such as Al and Fe from granite and biotite in low-pH conditions. Granites are complex mineral assemblages. However, the combined microscopic and macroscopic approaches revealed that elementary reactions by a single mineral phase can be representative of the bulk sorption reaction in complex mineral assemblages.

  15. Effects of pH, dissolved organic matter, and salinity on ibuprofen sorption on sediment.

    PubMed

    Oh, Sanghwa; Shin, Won Sik; Kim, Hong Tae

    2016-11-01

    Ibuprofen is well known as one of the most frequently detected pharmaceuticals and personal care products (PPCPs) in rivers. However, sorption of ibuprofen onto sediment has not been considered in spite of its high K ow (3.5). In this study, the effects of various environmental conditions such as pH (4, 5.3, and 7), the concentrations of dissolved organic matters (0 to 1.0 mM citrate and urea), salinity (0, 10, 20, and 30 part per thousand), and presence of other PPCP (salicylic acid) on ibuprofen sorption were investigated. Linear model mainly fitted the experimental data for analysis. The distribution coefficient (K d ) in the linear model decreased from 6.76 at pH 4 to near zero at pH 7, indicating that neutral form of ibuprofen at pH below pKa (5.2) was easily sorbed onto the sediment whereas the sorption of anionic form at pH over pKa was not favorable. To investigate the effect of dissolved organic matters (DOMs) on ibuprofen sorption, citrate and urea were used as DOMs. As citrate concentration increased, the K d value decreased but urea did not interrupt the ibuprofen sorption. Citrate has three carboxyl functional groups which can attach easily ibuprofen and hinder its sorption onto sediment. Salinity also affected ibuprofen sorption due to decrease of the solubility of ibuprofen as salinity increased. In competitive sorption experiment, the addition of salicylic acid also led to enhance ibuprofen sorption. Conclusively, ibuprofen can be more easily sorbed onto the acidified sediments of river downstream, especially estuaries or near-shore environment with low DOM concentration.

  16. Effect of Moisture Sorption State on Vibrational Properties of Wood

    Treesearch

    Jianxiong Lu; Jiali Jiang; Yiqiang Wu; Xianjun Li; Zhiyong Cai

    2012-01-01

    The purpose of this study was to investigate the vibrational properties and corresponding anisotropicity in wood during different states of moisture sorption. Samples of maple (Acer spp.) and red oak (Quercus rubra Michx.f.) were moisture conditioned by the adsorption process from an ovendried state and by the desorption process...

  17. Reactive Transport Modeling of Subsurface Arsenic Removal Systems in Rural Bangladesh

    NASA Astrophysics Data System (ADS)

    Bakker, M.; Rahman, M. M.; van Breukelen, B. M.; Ahmed, K. M.

    2014-12-01

    Elevated concentrations of arsenic (As) in the groundwater of the shallow aquifers of Bangladesh are a major public health concern. Subsurface Arsenic Removal (SAR) is a relatively new treatment option that can potentially be a cost effective method for arsenic removal for community-based drinking water supplies. The basic idea of SAR is to extract water, aerate it, and re-inject it, after which groundwater with reduced arsenic concentrations may be extracted. The main process for As reduction is sorption to Hydrous Ferric Oxides (HFO) that forms after injection of the aerated water. The purpose of this poster is to investigate the major geochemical processes responsible for the (im)mobilization of As during SAR operation. SAR was applied at a test site in Muradnagar upazila in Comilla district about 100 km southeast of Dhaka in Bangladesh. Multiple extraction/aeration/re-injection cycles were performed and water samples were analyzed. A PHREEQC reactive transport model (RTM) was used in a radial flow setting to try to reproduce the measurements. Kinetic oxidation/dissolution reactions, cation exchange, and surface complexation were simulated. The simulation of different reactions enables the possibility to discern the reaction parameters involved in the im(mobilization) of As. The model fit has reasonable agreement with the observed data for major ions and trace elements. The model suggests an increasing sorption capacity due to the gradual development of HFO precipitates resulting from the injection phases. Modeled breakthrough curves of As, Fe(II), and Mn, match the measured increase of As, Fe(II), and Mn removal with successive cycles. The model illustrates that the pH of groundwater during SAR operation has a great impact on As sorption in the subsurface. The surface complexation modeling suggests that competitive displacement of As by H4SiO4 is an important factor limiting As removal during SAR operation.

  18. Effect of α-stable sorptive waiting times on microbial transport in microflow cells

    NASA Astrophysics Data System (ADS)

    Bonilla, F. Alejandro; Cushman, John H.

    2002-09-01

    The interaction of bacteria in the fluid phase with pore walls of a porous material involves a wide range of effective reaction times which obey a diversity of substrate-bacteria adhesion conditions, and adhesive mechanisms. For a transported species, this heterogeneity in sorption conditions occurs both in time and space. Modern experimental methods allow one to measure adhesive reaction times of individual bacteria. This detailed information may be incorporated into nonequilibrium transport-sorption models that capture the heterogeneity in reaction times caused by varying chemical conditions. We have carried out particle (Brownian dynamic) simulations of adhesive, self-motile bacteria convected between two infinite plates as a model for a microflow cell. The adhesive heterogeneity is included by introducing adhesive reaction time (understood as time spent at a solid boundary once the particle collides against it) as a random variable that can be infinite (irreversible sorption) or vary over a wide range of values. This is made possible by treating this reaction time random variable as having an α-stable probability distribution whose properties (e.g., infinite moments and long tails) are distinctive from the standard exponential distribution commonly used to model reversible sorption. In addition, the α-stable distribution is renormalizable and hence upscalable to complex porous media. Simulations are performed in a pressure-driven microflow cell. Bacteria motility (driven by an effective Brownian force) acts as a dispersive component in the convective field. Upon collision with the pore wall, bacteria attachment or detachment occurs. The time bacteria spend at the wall varies over a wide range of time scales. This model has the advantage of being parsimonious, that is, involving very few parameters to model complex irreversible or reversible adhesion in heterogeneous environments. It is shown that, as in Taylor dispersion, the ratio of the channel half width b to the Brownian bacteria motility coefficient (D0 or dispersion coefficient) tb=b2/D0 controls the different adhesion regimes along with the value of α. Universal scalings (with respect to dimensionless time t*=t/tb) for the mean position, =V*efftθ*, and mean-square displacement, <ΔX2>=D*efftγ* exist for long-time dispersion and the coefficients were obtained. The model can account for a great many sorptive processes including reversible and irreversible sorption, and sub- and superdispersive regimes with just a few parameters.

  19. Characterization of Sweetmeat Waste and Its Suitability for Sorption of As(III) in Aqueous Media.

    PubMed

    Islam, Md Mirajul; Adak, Asok; Paul, Prabir K

    2017-04-01

      Presence of arsenic in effluents from mining, mineral processing, and metal plating industries pose a serious health hazard to human beings. In this research, suitability of cheap sweetmeat waste (SMW), which is sweet industry byproduct, was investigated for the treatment of As(III). The physicochemical properties of the sorbent were characterized. The SEM images revealed highly heterogeneous sorbent surface. XRD analysis showed the presence of different polysaccharides mainly containing hydroxyl functional group. FTIR analysis was also performed to confirm the functional groups present in the sorbent. Batch experiments were conducted for kinetic analysis, effect of initial As(III) concentration, sorbent dose, electrolytes, pH, and temperature in order to understand sorption behavior. Presence of electrolyte, solution pH, and temperature were found to affect the performance of the sorbent. The sorption followed pseudo-second order reaction and Langmuir isotherm model best. The studies revealed SMW to be an efficient media for removal of As(III) from aqueous environment.

  20. Experimental and modeling studies of sorption of ceria nanoparticle on microbial biofilms.

    PubMed

    Jing, Hengye; Mezgebe, Bineyam; Aly Hassan, Ashraf; Sahle-Demessie, Endalkachew; Sorial, George A; Bennett-Stamper, Christina

    2014-06-01

    This study focuses on the interaction of ceria nanoparticles (CeO2-NPs) with Pseudomonas fluorescens and Mycobacterium smegmatis biofilms. Confocal laser microscopy and transmission electron microscopy determined the distribution of NPs in the complex structures of biofilm at molecular levels. Visual data showed that most of the adsorption takes place on the bacterial cell walls and spores. The interaction of nanoparticles (NPs) with biofilms reached equilibrium after the initial high adsorption rate regardless of biofilm heterogeneity and different nanoparticle concentrations in the bulk liquid. Physical processes may dominate this sorption phenomenon. Pseudo first order sorption kinetics was used to estimate adsorption and desorption rate of CeO2-NPs onto biofilms. When biofilms got exposed to CeO2-NPs, a self-protecting mechanism was observed. Cells moved away from the bulk solution in the biofilm matrix, and portions of biofilm outer layer were detached, hence releasing some CeO2-NPs back to the bulk phase. Published by Elsevier Ltd.

  1. Feasibility of using drinking water treatment residuals as a novel chlorpyrifos adsorbent.

    PubMed

    Zhao, Yuanyuan; Wang, Changhui; Wendling, Laura A; Pei, Yuansheng

    2013-08-07

    Recent efforts have increasingly focused on the development of low-cost adsorbents for pesticide retention. In this work, the novel reuse of drinking water treatment residuals (WTRs), a nonhazardous ubiquitous byproduct, as an adsorbent for chlorpyrifos was investigated. Results showed that the kinetics and isothermal processes of chlorpyrifos sorption to WTRs were better described by a pseudo-second-order model and by the Freundlich equation, respectively. Moreover, compared with paddy soil and other documented absorbents, the WTRs exhibited a greater affinity for chlorpyrifos (log Koc = 4.76-4.90) and a higher chlorpyrifos sorption capacity (KF = 5967 mg(1-n)·L·kg(-1)) owing to the character and high content of organic matter. Further investigation demonstrated that the pH had a slight but statistically insignificant effect on chlorpyrifos sorption to WTRs; solution ionic strength and the presence of low molecular weight organic acids both resulted in concentration-dependent inhibition effects. Overall, these results confirmed the feasibility of using WTRs as a novel chlorpyrifos adsorbent.

  2. The role of external and internal mass transfer in the process of Cu2+ removal by natural mineral sorbents.

    PubMed

    Sljivić, M; Smiciklas, I; Plećas, I; Pejanović, S

    2011-07-01

    The kinetics of Cu2+ sorption on to zeolite, clay and diatomite was investigated as a function of initial metal concentrations. For consideration of the mass transfer phenomena, single resistance models based on both film and intraparticle diffusion were tested and compared. The obtained results suggested that the rate-limiting step in Cu2+ sorption strongly depended on the sorbent type, as well as on initial cation concentration. The decrease in external mass transfer coefficients with the increase in initial metal concentrations was in excellent agreement with expressions based on Sherwood and Schmidt dimensionless numbers. The internal diffusivities through zeolite particles were in the range 1.0 x 10(-11) to 1.0 x 10(-13) m2/min, depending on the Cu2+ concentration and the applied theoretical model.

  3. Sorption of selected pharmaceuticals by a river sediment: role and mechanisms of sediment or Aldrich humic substances.

    PubMed

    Le Guet, Thibaut; Hsini, Ilham; Labanowski, Jérôme; Mondamert, Leslie

    2018-05-01

    Sorption of pharmaceuticals onto sediments is frequently related to organic matter content. Thus, the present work aimed to compare the effect of humic substances (HS) extracted from a river sediment versus Aldrich (HS) on the sorption of selected pharmaceuticals onto this river sediment. The results exhibited no "unique" effect of the presence of HS from the same origin. Thus, the sediment HS increased the sorption of sulfamethoxazole (SMX), diclofenac (DCF), and trimethoprim (TMP), but reduced the sorption of atenolol (ATN). The presence of Aldrich HS increased the sorption of TMP and ATN and decreased the sorption of SMX and DCF. Fluorescence quenching measurements revealed that these effects cannot be explained only by the presence of pharmaceutical HS associations. The use of several sorption models suggested that the sorption of SMX, DCF, and ATN involves multilayer mechanisms. Furthermore, it was pointed out that the presence of HS does not change the sorption mechanisms although it was observed interaction between HS and the sediment. Indeed, the sediment HS sorbs onto the sediment whereas the Aldrich HS tends to mobilize organic compounds from the sediment to the solution.

  4. Kinetic and equilibrium characteristics of sorption of saponin of Quillaja Saponaria Molina on chitosan

    NASA Astrophysics Data System (ADS)

    Mironenko, N. V.; Smuseva, S. O.; Brezhneva, T. A.; Selemenev, V. F.

    2016-12-01

    The equilibrium and kinetic curves of the sorption of saponin of Quillaja saponaria molina on chitosan were analyzed. The inner diffusion was found to be limiting, and its coefficients were calculated. It was found that the form of the curves of the sorption isotherms of saponin is determined by the competing processes of association in solution and absorption by chitosan.

  5. Ultrasound-assisted xanthation of cellulose from lignocellulosic biomass optimized by response surface methodology for Pb(II) sorption.

    PubMed

    Wang, Chongqing; Wang, Hui; Gu, Guohua

    2018-02-15

    Alkali treatment of lignocellulosic biomass is conducted to remove hemi-cellulose and lignin, further increasing the reactivity and accessibility of cellulose. Ultrasound-assisted xanthation of alkali cellulose is optimized by response surface methodology (RSM) with a Box-Behnken design. A predicting mathematical model is obtained by fitting experimental data, and it is verified by analysis of variance. Response surface plots and the contour plots obtained from the model are applied to determine the interactions of experimental variables. The optimum conditions are NaOH concentration 1.3mol/L, ultrasonic time 71.6min and CS 2 dosage 1.5mL. FTIR, SEM and XPS characterizations confirm the synthesis and sorption mechanism of cellulose xanthate (CX). Biosorption of Pb (II) onto CX obeys pseudo-second order model and Langmuir model. The sorption mechanism is attributed to surface complexation or ion exchange. CX shows good reusability for Pb (II) sorption. The maximum sorption capacity of Pb(II) is 134.41mg/g, higher than that of other biosorbents. CX has great potential as an efficient and low-cost biosorbent for wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Sorption of chlorophenols from aqueous solution by granular activated carbon, filter coal, pine and hardwood.

    PubMed

    Hossain, G S M; McLaughlan, R G

    2012-09-01

    Wood and coal, as low-cost sorbents, have been evaluated as an alternative to commercial granular activated carbon (GAC) for chlorophenol removal. Kinetic experiments indicated that filter coal had a significantly lower rate of uptake (approximately 10% of final uptake was achieved after three hours) than the other sorbents, owing to intra-particle diffusion limitations. The data fitted a pseudo-second-order model. Sorption capacity data showed that GAC had a high sorption capacity (294-467 mg g(-1)) compared with other sorbents (3.2-7.5 mg(g-1)). However, wood and coal had a greater sorption capacity per unit surface area than GAC. Sorption equilibrium data was best predicted using a Freundlich adsorption model. The sorption capacity for all sorbents was 2-chlorophenol < 4-chlorophenol < 2, 4-dichlorophenol, which correlates well with solute hydrophobicity, although the relative differences were much less for coal than the other sorbents. The results showed that pine, hardwood and filter coal can be used as sorbent materials for the removal of chlorophenol from water; however, kinetic considerations may limit the application of filter coal.

  7. Design, characterization and evaluation of hydroxyethylcellulose based novel regenerable supersorbent for heavy metal ions uptake and competitive adsorption.

    PubMed

    Abbas, Azhar; Hussain, Muhammad Ajaz; Sher, Muhammad; Irfan, Muhammad Imran; Tahir, Muhammad Nawaz; Tremel, Wolfgang; Hussain, Syed Zajif; Hussain, Irshad

    2017-09-01

    Hydroxyethylcellulose succinate-Na (HEC-Suc-Na) was designed and evaluated for removal of some heavy metal ions from aqueous solution. Pristine sorbent HEC-Suc-Na was thoroughly characterized by FTIR and solid-state CP/MAS 13 C NMR spectroscopy, SEM-EDS and zero point charge analyses. Langmuir isotherm, pseudo second order kinetic and ion exchange models provided best fit to the experimental data of sorption of metal ions. Maximum sorption capacities of supersorbent HEC-Suc-Na for sorption of heavy metal ions from aqueous solution as calculated by Langmuir isotherm model were found to be 1000, 909.09, 666.6, 588 and 500mgg -1 for Pb(II), Cr(VI), Co(II), Cu(II) and Ni(II), respectively. Competitive sorption of these heavy metal ions was carried out from galvanic and nuclear waste water simulated environment. The negative values of ΔG° and ΔH° indicated spontaneity and exothermic nature of sorption. The sorbent was efficiently regenerated with no significant decrease in sorption capacity after five cycles. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles.

    PubMed

    Fan, Fang-Li; Qin, Zhi; Bai, Jing; Rong, Wei-Dong; Fan, Fu-You; Tian, Wei; Wu, Xiao-Lei; Wang, Yang; Zhao, Liang

    2012-04-01

    Rapid removal of U(VI) from aqueous solutions was investigated using magnetic Fe(3)O(4)@SiO(2) composite particles as the novel adsorbent. Batch experiments were conducted to study the effects of initial pH, amount of adsorbent, shaking time and initial U(VI) concentrations on uranium sorption efficiency as well as the desorbing of U(VI). The sorption of uranium on Fe(3)O(4)@SiO(2) composite particles was pH-dependent, and the optimal pH was 6.0. In kinetics studies, the sorption equilibrium can be reached within 180 min, and the experimental data were well fitted by the pseudo-second-order model, and the equilibrium sorption capacities calculated by the model were almost the same as those determined by experiments. The Langmuir sorption isotherm model correlates well with the uranium sorption equilibrium data for the concentration range of 20-200 mg/L. The maximum uranium sorption capacity onto magnetic Fe(3)O(4)@SiO(2) composite particles was estimated to be about 52 mg/g at 25 °C. The highest values of uranium desorption (98%) was achieved using 0.01 M HCl as the desorbing agent. Fe(3)O(4)@SiO(2) composite particles showed a good selectivity for uranium from aqueous solution with other interfering cation ions. Present study suggested that magnetic Fe(3)O(4)@SiO(2) composite particles can be used as a potential adsorbent for sorption uranium and also provided a simple, fast separation method for removal of heavy metal ion from aqueous solution. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Ion reactivity of calcium-deficient hydroxyapatite in standard cell culture media.

    PubMed

    Gustavsson, J; Ginebra, M P; Engel, E; Planell, J

    2011-12-01

    Solution-mediated surface reactions occur for most calcium phosphate-based biomaterials and may influence cellular response. A reasonable extrapolation of such processes observed in vitro to in vivo performance requires a deep understanding of the underlying mechanisms. We therefore systematically investigated the nature of ion reactivity of calcium-deficient hydroxyapatite (CDHA) by exposing it for different periods of time to standard cell culture media of different chemical composition (DMEM and McCoy medium, with and without osteogenic supplements and serum proteins). Kinetic ion interaction studies of principal extracellular ions revealed non-linear sorption of Ca²⁺ (∼50% sorption) and K⁺ (∼8%) as well as acidification of all media during initial contact with CDHA (48h). Interestingly, inorganic phosphorus (P(i)) was sorbed from McCoy medium (∼50%) or when using osteogenic media containing β-glycerophosphate, but not from DMEM medium. Non-linear sorption data could be perfectly described by pseudo-first-order and pseudo-second-order sorption models. At longer contact time (21 days), and with frequent renewal of culture medium, sorption of Ca²⁺ remained constant throughout the experiment, while sorption of P(i) gradually decreased in McCoy medium. In great contrast, CDHA began to release P(i) slowly with time when using DMEM medium. Infrared spectra showed that CDHA exposed to culture media had a carbonated surface chemistry, suggesting that carbonate plays a key role in the ion reactivity of CDHA. Our data show that different compositions of the aqueous environment may provoke opposite ion reactivity of CDHA, and this must be carefully considered when evaluating the osteoinductive potential of the material. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Synthesis optimization of oil palm empty fruit bunch and rice husk biochars for removal of imazapic and imazapyr herbicides.

    PubMed

    Yavari, Saba; Malakahmad, Amirhossein; Sapari, Nasiman B; Yavari, Sara

    2017-05-15

    Imidazolinones are a family of herbicides that are used to control a broad range of weeds. Their high persistence and leaching potential make them probable risk to the ecosystems. In this study, biochar, the biomass-derived solid material, was produced from oil palm empty fruit bunches (EFB) and rice husk (RH) through pyrolysis process. Feedstock and pyrolysis variables can control biochar sorption capacity. Therefore, the present study attempts to evaluate effects of three pyrolysis variables (temperature, heating rate and retention time) on abilities of biochars for removal of imazapic and imazapyr herbicides from soil. Response surface methodology (RSM) was used for optimizing the variables to achieve maximum sorption performance of the biochars. Experimental data were interpreted accurately by quadratic models. Based on the results, sorption capacities of both biochars raised when temperature decreased to 300 °C, mainly because of increased biochars effective functionality in sorption of polar molecules. Heating rate of 3°C/min provided optimum conditions to maximize the sorption capacities of both biochars. Retention time of about 1 h and 3 h were found to be the best for EFB and RH biochars, respectively. EFB biochar was more efficient in removal of the herbicides, especially imazapyr due to its chemical composition and higher polarity index (0.42) rather than RH biochar (0.39). Besides, higher cation exchange capacity (CEC) values of EFB biochar (83.90 cmol c /kg) in comparison with RH biochar (70.73 cmol c /kg) represented its higher surface polarity effective in sorption of the polar herbicides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Combined performance of biochar sorption and magnetic separation processes for treatment of chromium-contained electroplating wastewater.

    PubMed

    Wang, Sheng-ye; Tang, Yan-kui; Li, Kun; Mo, Ya-yuan; Li, Hao-feng; Gu, Zhan-qi

    2014-12-01

    Magnetic biochar was prepared with eucalyptus leaf residue remained after essential oil being extracted. Batch experiments were conducted to examine the capacity of the magnetic biochar to remove Cr (VI) from electroplating wastewater and to be separated by an external magnetic field. The results show that the initial solution pH plays an important role on both sorption and separation. The removal rates of Cr (VI), total Cr, Cu (II), and Ni (II) were 97.11%, 97.63%, 100% and 100%, respectively. The turbidity of the sorption-treated solution was reduced to 21.8NTU from 4075NTU after 10min magnetic separation. The study also confirms that the magnetic biochar still retains the original magnetic separation performance after the sorption process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Sorption Isotherm Modelling Of Fermented Cassava Flour by Red Yeast Rice

    NASA Astrophysics Data System (ADS)

    Cahyanti, M. N.; Alfiah, M. N.; Hartini, S.

    2018-04-01

    The objective of the study is to determine the characteristic of moisture sorption isotherm from fermented cassava flour by red yeast rice using various modeling. This research used seven salt solutions and storage temperature of 298K, 303K, and 308K. The models used were Brunauer-Emmet-Teller (BET), Guggenheim-Anderson-de Boer (GAB) and Caurie model. The monolayer moisture content was around 4.51 – 5.99% db. Constant related to absorption heat in the multilayer area of [GAB model was around 0.86-0,91. Constant related to absorption heat in the monolayer area of GAB model was around 4.67-5.97. Constant related to absorption heat in the monolayer area of BET model was around 4.83-7.04. Caurie constant was around 1.25-1.59. The equilibrium and monolayer moisture content on fermented cassava flour by red yeast rice was decreasing as increasing temperature. GAB constant value indicated that the process of moisture absorption on the fermented cassava flour by red yeast rice categorized in type II.

  13. Soil-adjusted sorption isotherms for arsenic(V) and vanadium(V)

    NASA Astrophysics Data System (ADS)

    Rückamp, Daniel; Utermann, Jens; Florian Stange, Claus

    2017-04-01

    The sorption characteristic of a soil is usually determined by fitting a sorption isotherm model to laboratory data. However, such sorption isotherms are only valid for the studied soil and cannot be transferred to other soils. For this reason, a soil-adjusted sorption isotherm can be calculated by using the data of several soils. Such soil-adjusted sorption isotherms exist for cationic heavy metals, but are lacking for heavy metal oxyanions. Hence, the aim of this study is to establish soil-adjusted sorption isotherms for the oxyanions arsenate (arsenic(V)) and vanadate (vanadium(V)). For the laboratory experiment, 119 soils (samples from top- and subsoils) typical for Germany were chosen. The batch experiments were conducted with six concentrations of arsenic(V) and vanadium(V), respectively. By using the laboratory data, sorption isotherms for each soil were derived. Then, the soil-adjusted sorption isotherms were calculated by non-linear regression of the sorption isotherms with additional soil parameters. The results indicated a correlation between the sorption strength and oxalate-extractable iron, organic carbon, clay, and electrical conductivity for both, arsenic and vanadium. However, organic carbon had a negative regression coefficient. As total organic carbon was correlated with dissolved organic carbon; we attribute this observation to an effect of higher amounts of dissolved organic substances. We conclude that these soil-adjusted sorption isotherms can be used to assess the potential of soils to adsorb arsenic(V) and vanadium(V) without performing time-consuming sorption experiments.

  14. Variability in goethite surface site density: evidence from proton and carbonate sorption.

    PubMed

    Villalobos, Mario; Trotz, Maya A; Leckie, James O

    2003-12-15

    Goethite is a representative iron oxide in natural environments due to its abundance and thermodynamic stability and may be responsible for many surface-mediated processes, including ion retention and mobility in aqueous settings. A large variability in morphologies and specific surface areas of goethite crystals exists but little work has been done to compare surface reactivity between them. The present work offers experimental evidence for the existence of an inverse relationship between sorption capacity for protons and carbonate ions and specific surface area of goethite for three synthetic goethite preparations spanning surface area differences by a factor of 2. An explanation for this was found by assuming a variable reactive site density between preparations in direct relationship to their sorption capacity based on congruency of carbonate sorption computed on a per-site basis. Previous evidence of maximum sorption capacities supports this explanation, and site density ratios between the goethites studied here were obtained. Triple layer surface complexation modeling was successful in describing adsorption data for all goethite preparations using equal stoichiometries. A new formulation of standard state for activities of surface species based on a 1.0 mole fraction of sites on the solid allowed transformation of the conventional molar concentration-based affinity constants to values based on site occupancy. In this fashion, by applying the appropriate site density ratios, a single set of affinity constant values was found that described accurately the adsorption data for all preparations.

  15. Sorption Isotherm of Southern Yellow Pine-High Density Polyethylene Composites.

    PubMed

    Liu, Feihong; Han, Guangping; Cheng, Wanli; Wu, Qinglin

    2015-01-20

    Temperature and relative humidity (RH) are two major external factors, which affect equilibrium moisture content (EMC) of wood-plastic composites (WPCs). In this study, the effect of different durability treatments on sorption and desorption isotherms of southern yellow pine (SYP)-high density polyethylene (HDPE) composites was investigated. All samples were equilibriumed at 20 °C and various RHs including 16%, 33%, 45%, 66%, 75%, 85%, 93%, and100%. EMCs obtained from desorption and absorption for different WPC samples were compared with Nelson's sorption isotherm model predictions using the same temperature and humidity conditions. The results indicated that the amount of moisture absorbed increased with the increases in RH at 20 °C. All samples showed sorption hysteresis at a fixed RH. Small difference between EMC data of WPC samples containing different amount of ultraviolet (UV) stabilizers were observed. Similar results were observed among the samples containing different amount of zinc borate (ZB). The experimental data of EMCs at various RHs fit to the Nelson's sorption isotherm model well. The Nelson's model can be used to predicate EMCs of WPCs under different RH environmental conditions.

  16. Tracer Movement in a Single Fissure in Granitic Rock: Some Experimental Results and Their Interpretation

    NASA Astrophysics Data System (ADS)

    Neretnieks, Ivars; Eriksen, Tryggve; TäHtinen, PäIvi

    1982-08-01

    Radionuclide migration was studied in a natural fissure in a granite core. The fissure was oriented parallel to the axis in a cylindrical core 30 cm long and 20 cm in diameter. The traced solution was injected at one end of the core and collected at the other. Breakthrough curves were obtained for the nonsorbing tracers, tritiated water, and a large-molecular-weight lignosulphonate molecule and for the sorbing tracers, cesium and strontium. From the breakthrough curves for the nonsorbing tracers it could be concluded that channeling occurs in the single fissure. A `dispersion' model based on channeling is presented. The results from the sorbing tracers indicate that there is substantial diffusion into and sorption in the rock matrix. Sorption on the surface of the fissure also accounts for a part of the retardation effect of the sorbing species. A model which includes the mechanisms of channeling, surface sorption, matrix diffusion, and matrix sorption is presented. The experimental breakthrough curves can be fitted fairly well by this model by use of independently obtained data on diffusivities and matrix sorption.

  17. Competitive sorption affinity of sulfonamides and chloramphenicol antibiotics toward functionalized biochar for water and wastewater treatment.

    PubMed

    Ahmed, Mohammad Boshir; Zhou, John L; Ngo, Huu Hao; Guo, Wenshan; Johir, Md Abu Hasan; Belhaj, Dalel

    2017-08-01

    Competitive sorption of sulfamethazine (SMT), sulfamethoxazole (SMX), sulfathiazole (STZ) and chloramphenicol (CP) toward functionalized biochar (fBC) was highly pH dependent with maximum sorption at pH ∼4.0-4.25. Equilibrium data were well represented by the Langmuir and Freundlich models in the order STZ>SMX>CP>SMT. Kinetics data were slightly better fitted by the pseudo second-order model than pseudo first-order and intra-particle-diffusion models. Maximum sorptive interactions occurred at pH 4.0-4.25 through H-bonds formations for neutral sulfonamides species and through negative charge assisted H-bond (CAHB) formation for CP, in addition to π-π electron-donor-acceptor (EDA) interactions. EDA was the main mechanism for the sorption of positive sulfonamides species and CP at pH<2.0. Sorption of negative sulfonamides species and CP at pH>7.0 was regulated by H-bond formation and proton exchange with water by forming CAHB, respectively. The results suggested fBC to be highly efficient in removing antibiotics mixture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Sorption Isotherm of Southern Yellow Pine—High Density Polyethylene Composites

    PubMed Central

    Liu, Feihong; Han, Guangping; Cheng, Wanli; Wu, Qinglin

    2015-01-01

    Temperature and relative humidity (RH) are two major external factors, which affect equilibrium moisture content (EMC) of wood-plastic composites (WPCs). In this study, the effect of different durability treatments on sorption and desorption isotherms of southern yellow pine (SYP)-high density polyethylene (HDPE) composites was investigated. All samples were equilibriumed at 20 °C and various RHs including 16%, 33%, 45%, 66%, 75%, 85%, 93%, and100%. EMCs obtained from desorption and absorption for different WPC samples were compared with Nelson’s sorption isotherm model predictions using the same temperature and humidity conditions. The results indicated that the amount of moisture absorbed increased with the increases in RH at 20 °C. All samples showed sorption hysteresis at a fixed RH. Small difference between EMC data of WPC samples containing different amount of ultraviolet (UV) stabilizers were observed. Similar results were observed among the samples containing different amount of zinc borate (ZB). The experimental data of EMCs at various RHs fit to the Nelson’s sorption isotherm model well. The Nelson’s model can be used to predicate EMCs of WPCs under different RH environmental conditions. PMID:28787943

  19. Assessment of bioavailability of soil-sorbed atrazine.

    PubMed

    Park, Jeong-Hun; Feng, Yucheng; Ji, Pingsheng; Voice, Thomas C; Boyd, Stephen A

    2003-06-01

    Bioavailability of pesticides sorbed to soils is an important determinant of their environmental fate and impact. Mineralization of sorbed atrazine was studied in soil and clay slurries, and a desorption-biodegradation-mineralization (DBM) model was developed to quantitatively evaluate the bioavailability of sorbed atrazine. Three atrazine-degrading bacteria that utilized atrazine as a sole N source (Pseudomonas sp. strain ADP, Agrobacterium radiobacter strain J14a, and Ralstonia sp. strain M91-3) were used in the bioavailability assays. Assays involved establishing sorption equilibrium in sterile soil slurries, inoculating the system with organisms, and measuring the CO(2) production over time. Sorption and desorption isotherm analyses were performed to evaluate distribution coefficients and desorption parameters, which consisted of three desorption site fractions and desorption rate coefficients. Atrazine sorption isotherms were linear for mineral and organic soils but displayed some nonlinearity for K-saturated montmorillonite. The desorption profiles were well described by the three-site desorption model. In many instances, the mineralization of atrazine was accurately predicted by the DBM model, which accounts for the extents and rates of sorption/desorption processes and assumes biodegradation of liquid-phase, but not sorbed, atrazine. However, for the Houghton muck soil, which manifested the highest sorbed atrazine concentrations, enhanced mineralization rates, i.e., greater than those expected on the basis of aqueous-phase atrazine concentration, were observed. Even the assumption of instantaneous desorption could not account for the elevated rates. A plausible explanation for enhanced bioavailability is that bacteria access the localized regions where atrazine is sorbed and that the concentrations found support higher mineralization rates than predicted on the basis of aqueous-phase concentrations. Characteristics of high sorbed-phase concentration, chemotaxis, and attachment of cells to soil particles seem to contribute to the bioavailability of soil-sorbed atrazine.

  20. Assessment of Bioavailability of Soil-Sorbed Atrazine

    PubMed Central

    Park, Jeong-Hun; Feng, Yucheng; Ji, Pingsheng; Voice, Thomas C.; Boyd, Stephen A.

    2003-01-01

    Bioavailability of pesticides sorbed to soils is an important determinant of their environmental fate and impact. Mineralization of sorbed atrazine was studied in soil and clay slurries, and a desorption-biodegradation-mineralization (DBM) model was developed to quantitatively evaluate the bioavailability of sorbed atrazine. Three atrazine-degrading bacteria that utilized atrazine as a sole N source (Pseudomonas sp. strain ADP, Agrobacterium radiobacter strain J14a, and Ralstonia sp. strain M91-3) were used in the bioavailability assays. Assays involved establishing sorption equilibrium in sterile soil slurries, inoculating the system with organisms, and measuring the CO2 production over time. Sorption and desorption isotherm analyses were performed to evaluate distribution coefficients and desorption parameters, which consisted of three desorption site fractions and desorption rate coefficients. Atrazine sorption isotherms were linear for mineral and organic soils but displayed some nonlinearity for K-saturated montmorillonite. The desorption profiles were well described by the three-site desorption model. In many instances, the mineralization of atrazine was accurately predicted by the DBM model, which accounts for the extents and rates of sorption/desorption processes and assumes biodegradation of liquid-phase, but not sorbed, atrazine. However, for the Houghton muck soil, which manifested the highest sorbed atrazine concentrations, enhanced mineralization rates, i.e., greater than those expected on the basis of aqueous-phase atrazine concentration, were observed. Even the assumption of instantaneous desorption could not account for the elevated rates. A plausible explanation for enhanced bioavailability is that bacteria access the localized regions where atrazine is sorbed and that the concentrations found support higher mineralization rates than predicted on the basis of aqueous-phase concentrations. Characteristics of high sorbed-phase concentration, chemotaxis, and attachment of cells to soil particles seem to contribute to the bioavailability of soil-sorbed atrazine. PMID:12788728

  1. The Importance of Parameter Variances, Correlations Lengths, and Cross-Correlations in Reactive Transport Models: Key Considerations for Assessing the Need for Microscale Information (Invited)

    NASA Astrophysics Data System (ADS)

    Reimus, P. W.

    2010-12-01

    A process-oriented modeling approach is implemented to examine the importance of parameter variances, correlation lengths, and especially cross-correlations in contaminant transport predictions over large scales. It is shown that the most important consideration is the correlation between flow rates and retardation processes (e.g., sorption, matrix diffusion) in the system. If flow rates are negatively correlated with retardation factors in systems containing multiple flow pathways, then characterizing these negative correlation(s) may have more impact on reactive transport modeling than microscale information. Such negative correlations are expected in porous-media systems where permeability is negatively correlated with clay content and rock alteration (which are usually associated with increased sorption). Likewise, negative correlations are expected in fractured rocks where permeability is positively correlated with fracture apertures, which in turn are negatively correlated with sorption and matrix diffusion. Parameter variances and correlation lengths are also shown to have important effects on reactive transport predictions, but they are less important than parameter cross-correlations. Microscale information pertaining to contaminant transport has become more readily available as characterization methods and spectroscopic instrumentation have achieved lower detection limits, greater resolution, and better precision. Obtaining detailed mechanistic insights into contaminant-rock-water interactions is becoming a routine practice in characterizing reactive transport processes in groundwater systems (almost necessary for high-profile publications). Unfortunately, a quantitative link between microscale information and flow and transport parameter distributions or cross-correlations has not yet been established. One reason for this is that quantitative microscale information is difficult to obtain in complex, heterogeneous systems, so simple systems that lack the complexity and heterogeneity of real aquifer materials are often studied. Another is that instrumentation used to obtain microscale information often probes only one variable or family of variables at a time, so linkages to other variables must be inferred by indirect means from other lines of evidence. Despite these limitations, microscale information can be useful in the development and validation of reactive transport models. For example, knowledge of mineral phases that have strong affinities for contaminants can help in the development of cross-correlations between flow and sorption parameters via characterization of permeability and mineral distributions in aquifers. Likewise, microscale information on pore structures in low-permeability zones and contaminant penetration distances into these zones from higher-permeability zones (e.g., fractures) can provide valuable constraints on the representation of diffusive mass transfer processes between flowing porosity and secondary porosity. The prioritization of obtaining microscale information in any groundwater system can be informed by modeling exercises such as those conducted for this study.

  2. Fast hydrogen sorption from MgH2-VO2(B) composite materials

    NASA Astrophysics Data System (ADS)

    Milošević, Sanja; Kurko, Sandra; Pasquini, Luca; Matović, Ljiljana; Vujasin, Radojka; Novaković, Nikola; Novaković, Jasmina Grbović

    2016-03-01

    The hydrogen sorption kinetics of MgH2‒VO2(B) composites synthesised by mechanical milling have been studied. The microstructural properties of composites were characterized by means of X-ray diffraction (XRD), Raman spectroscopy, Scanning electron microscopy (SEM), Particle size analysis (PSD), while sorption behaviour was followed by differential scanning calorimetry (DSC) and Sievert measurements. Results have shown that although desorption temperature reduction is moderate; there is a substantial improvement in hydrogen sorption kinetics. The complete desorption of pure MgH2 at elevated temperature takes place in more than 30 min while the composite fully desorbs in less than 2 min even at lower temperatures. It has been shown that the metastable γ-MgH2 phase and the point defects have a decisive role in desorption process only in the first sorption cycle, while the second and the subsequent sorption cycles are affected by microstructural and morphological characteristics of the composite.

  3. Pressure impact of autoclave treatment on water sorption and pectin composition of flax cellulosic-fibres.

    PubMed

    Alix, S; Colasse, L; Morvan, C; Lebrun, L; Marais, S

    2014-02-15

    The tensile properties of flax fibres might permit them to be used in composites as reinforcement in organic resin, as long as their mechanical properties are reproducible and their water sorption are reduced. In this study, to minimise the variability of mechanical properties, several samples of flax fibres were blended as a non-woven fabric. In order to reduce the water absorption of this non-woven technical fibres, an autoclave treatment was performed which was expected to remove the pectins and then to reduce the water sorption on their negative charges. The impact of autoclave pressure (0.5, 1 and 2 bars) on water sorption was investigated by using a gravimetric static equilibrium method. The Park model based on the three sorption modes: Langmuir, Henry's law and clustering, was successfully used to simulate the experimental sorption data. The lowest pressure treatments impacted only the Langmuir contribution while the 2 bar autoclave-treatment positively impacted the water resistance in the core of fibres by reducing Henry's absorption rate. This was shown to be related to the chemical modifications at the surface and in the core of fibres. A schematic model is presented relating the water sorption and the pectic composition of the fabric. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Sorption of agrochemical model compounds by sorbent materials containing beta-cyclodextrin.

    PubMed

    Wilson, Lee D; Mohamed, Mohamed H; Guo, Rui; Pratt, Dawn Y; Kwon, Jae Hyuck; Mahmud, Sarker T

    2010-04-01

    Polymeric sorbent materials that incorporate beta-cyclodextrin (CD) have been prepared and their sorption behavior toward two model agrochemical contaminant compounds, p-nitrophenol (PNP) and methyl chloride examined. The sorption of PNP was studied in aqueous solution using ultraviolet-visible (UV-Vis) spectroscopy, whereas the sorption of methyl chloride from the gas phase was studied using a Langmuir adsorption method. The sorption results for PNP in solution were compared between granular activated carbon (GAC), modified GAC, CD copolymers, and CD-based mesoporous silica hybrid materials. Nitrogen porosimetry at 77 K was used to estimate the surface area and pore structure properties of the sorbent materials. The sorbents displayed variable surface areas as follows: copolymers (36.2-157 m(2)/g), CD-silica materials (307-906 m(2)/g), surface modified GAC (657 m(2)/g), and granular activated carbon (approximately 10(3) m(2)/g). The sorption capacities for PNP and methyl chloride with the different sorbents are listed in descending order as follows: GAC > copolymers > surface modified GAC > CD-silica hybrid materials. In general, the differences in the sorption properties of the sorbents were related to the following: (i) surface area of the sorbent, (ii) CD content and accessibility, (iii) and the chemical nature of the sorbent material.

  5. Sorption of ionic and nonionic organic solutes onto giant Miscanthus-derived biochar from methanol-water mixtures.

    PubMed

    Kim, Juhee; Hyun, Seunghun

    2018-02-15

    The sorption of naphthalene (NAP) and 1-naphthoic acid (1-NAPA) onto giant Miscanthus-derived biochar was investigated in methanol volume fractions (f c ) of 0-0.6 as a function of ionic composition (5mM CaCl 2 and 10mM KCl) and liquid pH (2 and 7). The sorption onto biochar was nonlinear with 0.42≤N≤0.95; thus, a concentration-specific sorption constant (K m ) was compared. The K m log linearly decreased with increasing f c , except for 1-NAPA from a CaCl 2 mixture at pH7. Isotherm data was fitted with a cosolvency sorption model through which the slope (ασ) of the inverse log linear K m -f c plot and empirical constant (α) were obtained. NAP sorption was well described by the cosolvency model with the α value being 0.41-0.53, indicating a methanol-biochar interaction favoring more sorption than the cosolvency based prediction. In particular, the slope (ασ) of 1-NAPA was lower than that of NAP, indicating less reduction of 1-NAPA sorption (i.e., lower α value) by methanol. In comparison with other sorbents, the α value was approximately intermediate between a humic substance and kaolinite clay. An analysis of FT-IR spectra suggested the transformation of O-containing functional groups by methanol, which will subsequently boost the π-π interaction between an organic solute and biochar. Moreover, Ca 2+ -induced sorption between anionic 1-NAPA and a negatively charged biochar surface was also fortified in the methanol mixture. The results revealed unexplored cosolvent effects on organic solute sorption onto biochar and identified the hydrophobic and hydrophilic sorption moieties of biochar as affected by the cosolvent. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A conversion of CO2-ECBM related lab observations to reservoir requirements

    NASA Astrophysics Data System (ADS)

    Gensterblum, Y.; Merkel, A.; Busch, A.; Krooss, B. M.

    2012-04-01

    To predict a CBM production profile either during primary or secondary production, aspects like coal permeability and porosity, density, ash and moisture content, initial gas-in-place (GIP) (from canister desorption tests), gas sorption capacity from laboratory isotherms (to obtain gas saturations and desorption pressure), gas diffusivities, coal volumetrics (thickness and areal extent) need to be understood as a minimum requirement. When dealing with CO2-ECBM selective adsorption, counter diffusion in the coal matrix, or coal shrinkage and swelling (from CH4 desorption and CO2 adsorption, respectively) and the influence of moisture need to be investigated in addition to the parameters above. During CO2-ECBM processes, the areal distribution of the CO2 injected is accomplished by flow through the cleat network. When CO2 is entering the coal matrix by a combined sorption/diffusion process it will adsorb to the coal inner surface and at the same time replace part of the CH4. This replacement occurs either by a reduction in the CH4 partial pressure or by a higher selective sorption of CO2 over CH4. Because of a concentration gradient between CH4 in the matrix compared to the cleat system, CH4 diffuses from the coal matrix into the cleat system where, by pressure drawdown towards a production well, it can be produced. In this context this presentation summarizes gas (CO2, CH4) and water sorption on coal and specifically addresses the following topics: • CH4 and CO2 sorption capacity as a function depth and rank • CO2 and CH4 sorption on natural coals and its dependence on coal specific parameters like coal rank, maceral composition or ash content (Busch and Gensterblum, 2011). • Water sorption on coal, its dependence on coal properties such as rank and coal chemistry and gas sorption in the presence of water (Busch and Gensterblum, 2011). • N2, CH4, CO2 displacement experiments and the volumetric response of the coal on the present gas type (sorbing or inert) in the pore system • Uncertainties in reservoir characterisation (Gensterblum et al., 2010; Gensterblum et al., 2009) • Sorption uptake kinetic as a function of surface coverage and the influence of moisture on the kinetic Busch, A. and Gensterblum, Y., 2011. CBM and CO2-ECBM related sorption processes in coal: A review. International Journal of Coal Geology, 87: 49-71. Gensterblum, Y. et al., 2010. European inter-laboratory comparison of high pressure CO2 sorption isotherms II: Natural coals. International Journal of Coal Geology, 84(2): 115-124. Gensterblum, Y. et al., 2009. European inter-laboratory comparison of high pressure CO2 sorption isotherms. I: Activated carbon. Carbon, 47(13): 2958-2969.

  7. Meta-analysis of pesticide sorption in subsoils

    NASA Astrophysics Data System (ADS)

    Jarvis, Nicholas

    2017-04-01

    It has been known for several decades that sorption koc values tend to be larger in soils that are low in organic carbon (i.e. subsoils). Nevertheless, in a regulatory context, the models used to assess leaching of pesticides to groundwater still rely on a constant koc value, which is usually measured on topsoil samples. This is mainly because the general applicability of any improved model approach that is also simple enough to use for regulatory purposes has not been demonstrated. The objective of this study was therefore first to summarize and generalize available literature data in order to assess the magnitude of any systematic increase of koc values in subsoil and to test an alternative model of subsoil sorption that could be useful in pesticide risk assessment and management. To this end, a database containing the results of batch sorption experiments for pesticides was compiled from published studies in the literature, which placed at least as much emphasis on measurements in subsoil horizons as in topsoil. The database includes 967 data entries from 46 studies and for 34 different active substances (15 non-ionic compounds, 13 weak acids, 6 weak bases). In order to minimize pH effects on sorption, data for weak acids and bases were only included if the soil pH was more than two units larger than the compound pKa. A simple empirical model, whereby the sorption constant is given as a power law function of the soil organic carbon content, gave good fits to most data sets. Overall, the apparent koc value, koc(app), for non-ionic compounds and weak bases roughly doubled as the soil organic carbon content decreased by a factor of ten. The typical increase in koc(app) was even larger for weak acids: on average koc(app) increased by a factor of six as soil organic carbon content decreased by a factor of ten. These results suggest the koc concept currently used in leaching models should be replaced by an alternative approach that gives a more realistic representation of pesticide sorption in subsoil. The model tested in this study appears to be widely applicable and simple enough to parameterize for risk assessment purposes. However, more data on subsoil sorption should first be included in the analysis to enable reliable estimation of worst-case percentile values of the power law exponent in the model.

  8. Laboratory Experiments on Bentonite Samples: FY16 Progress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruth M. Tinnacher; Tournassat, Christophe; James A. Davis

    2016-08-22

    The primary goal of this study is to improve the understanding of U(VI) sorption and diffusion behavior in sodium-montmorillonite in order to support the development of realistic conceptual models describing these processes in performance assessment models while (1) accounting for potential changes in system conditions over time and space, (2) avoiding overly conservative transport predictions, and (3) using a minimum number of fitting parameters.

  9. Sorption of sulphamethoxazole by the biochars derived from rice straw and alligator flag.

    PubMed

    Li, Tingqiang; Han, Xuan; Liang, Chengfeng; Shohag, M J I; Yang, Xiaoe

    2015-01-01

    The sorption ability of sulphamethoxazole (SMX) by biochar derived from rice straw (RS) and alligator flag (AF) at 600°C was studied to assess the ability of biochar as adsorbent to remove SMX from aqueous solution. The results indicated that sorption of SMX by biochars was well described using the Langmuir equation (R2>0.94), and the maximum sorption parameter (Q) of RS (3650 mg kg(-1)) was much higher than that of AF (1963 mg kg(-1)). Temperature had no effect on SMX sorption by biochars, while thermodynamics analysis indicated that the sorption of SMX on both biochars was a spontaneous physical process. The d 250 RS (diameter of RS sieved through 250 µm) and d 150 AF (diameter of AF sieved through 150 µm) showed excellent sorption ability for SMX. The sorption amount of RS was larger than that of AF when pH<7, whereas, the sorption amount of AF surpassed RS when pH≥7. The presence of Cu2+ and/or Cd2+ ion at low concentrations (20 mg L(-1)) significantly (P<0.05) increased the sorption of SMX on both RS and AF. Our study confirms that biochar derived from the wetland plants could be used as effective adsorbents to remove SMX from aqueous solution.

  10. Conditions and processes affecting radionuclide transport

    USGS Publications Warehouse

    Simmons, Ardyth M.; Neymark, Leonid A.

    2012-01-01

    Understanding of unsaturated-zone transport is based on laboratory and field-scale experiments. Fractures provide advective transport pathways. Sorption and matrix diffusion may contribute to retardation of radionuclides. Conversely, sorption onto mobile colloids may enhance radionuclide transport.

  11. Dysprosium sorption by polymeric composite bead: robust parametric optimization using Taguchi method.

    PubMed

    Yadav, Kartikey K; Dasgupta, Kinshuk; Singh, Dhruva K; Varshney, Lalit; Singh, Harvinderpal

    2015-03-06

    Polyethersulfone-based beads encapsulating di-2-ethylhexyl phosphoric acid have been synthesized and evaluated for the recovery of rare earth values from the aqueous media. Percentage recovery and the sorption behavior of Dy(III) have been investigated under wide range of experimental parameters using these beads. Taguchi method utilizing L-18 orthogonal array has been adopted to identify the most influential process parameters responsible for higher degree of recovery with enhanced sorption of Dy(III) from chloride medium. Analysis of variance indicated that the feed concentration of Dy(III) is the most influential factor for equilibrium sorption capacity, whereas aqueous phase acidity influences the percentage recovery most. The presence of polyvinyl alcohol and multiwalled carbon nanotube modified the internal structure of the composite beads and resulted in uniform distribution of organic extractant inside polymeric matrix. The experiment performed under optimum process conditions as predicted by Taguchi method resulted in enhanced Dy(III) recovery and sorption capacity by polymeric beads with minimum standard deviation. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Evaluation of the sorption mechanism of ionic liquids onto multi-walled carbon nanotubes.

    PubMed

    Wojsławski, Jerzy; Białk-Bielińska, Anna; Paszkiewicz, Monika; Toński, Michał; Stepnowski, Piotr; Dołżonek, Joanna

    2018-01-01

    The knowledge of the sorption mechanism of different chemicals onto third generation carbon sorbents such as carbon nanotubes (CNTs) is needed in order to project systems for the effective removal of pollutants from the environment. This paper reports evaluation of the sorption mechanism of selected ionic liquids (ILs), being considered as potential pollutant in environment, onto various CNTs. CNTs characterized by the smallest diameter and the biggest surface area showed the highest sorption capacity to isolate ILs from an aqueous solution. CNTs with a bigger diameter, a functionalized surface and particularly a helical shape showed a lower sorption capacity. The sorption mechanism has been defined as complex, including van der Waals, π-π and electrostatic interactions with dominating π-π interactions. Due to the relatively high sorption coefficient (355.98 ± 20.69-6397.10 ± 355.42 L kg -1 depending on the IL) the study showed that multi-walled carbon nanotubes can potentially be used to effectively isolate ILs from an aqueous solution. Moreover, proved in this study, the fast sorption kinetic, and uncomplicated regeneration process, leading to an even higher sorption capacity, means that CNTs are promising material which could find potential applications in the treatment of water contaminated by ILs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Treatment of model and galvanic waste solutions of copper(II) ions using a lignin/inorganic oxide hybrid as an effective sorbent.

    PubMed

    Ciesielczyk, Filip; Bartczak, Przemysław; Klapiszewski, Łukasz; Jesionowski, Teofil

    2017-04-15

    A study was made concerning the removal of copper(II) ions from model and galvanic waste solutions using a new sorption material consisting of lignin in combination with an inorganic oxide system. Specific physicochemical properties of the material resulted from combining the activity of the functional groups present in the structure of lignin with the high surface area of the synthesized oxide system (585m 2 /g). Analysis of the porous structure parameters, particle size and morphology, elemental composition and characteristic functional groups confirmed the effective synthesis of the new type of sorbent. A key element of the study was a series of tests of adsorption of copper(II) ions from model solutions. It was determined how the efficiency of the adsorption process was affected by the process time, mass of sorbent, concentration of adsorbate, pH and temperature. Potential regeneration of adsorbent, which provides the possibility of its reusing and recovering the adsorbed copper, was also analyzed. The sorption capacity of the material was measured (83.98mg/g), and the entire process was described using appropriate kinetic models. The results were applied to the design of a further series of adsorption tests, carried out on solutions of real sewage from a galvanizing plant. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Soil Cd, Cr, Cu, Ni, Pb and Zn sorption and retention models using SVM: Variable selection and competitive model.

    PubMed

    González Costa, J J; Reigosa, M J; Matías, J M; Covelo, E F

    2017-09-01

    The aim of this study was to model the sorption and retention of Cd, Cu, Ni, Pb and Zn in soils. To that extent, the sorption and retention of these metals were studied and the soil characterization was performed separately. Multiple stepwise regression was used to produce multivariate models with linear techniques and with support vector machines, all of which included 15 explanatory variables characterizing soils. When the R-squared values are represented, two different groups are noticed. Cr, Cu and Pb sorption and retention show a higher R-squared; the most explanatory variables being humified organic matter, Al oxides and, in some cases, cation-exchange capacity (CEC). The other group of metals (Cd, Ni and Zn) shows a lower R-squared, and clays are the most explanatory variables, including a percentage of vermiculite and slime. In some cases, quartz, plagioclase or hematite percentages also show some explanatory capacity. Support Vector Machine (SVM) regression shows that the different models are not as regular as in multiple regression in terms of number of variables, the regression for nickel adsorption being the one with the highest number of variables in its optimal model. On the other hand, there are cases where the most explanatory variables are the same for two metals, as it happens with Cd and Cr adsorption. A similar adsorption mechanism is thus postulated. These patterns of the introduction of variables in the model allow us to create explainability sequences. Those which are the most similar to the selectivity sequences obtained by Covelo (2005) are Mn oxides in multiple regression and change capacity in SVM. Among all the variables, the only one that is explanatory for all the metals after applying the maximum parsimony principle is the percentage of sand in the retention process. In the competitive model arising from the aforementioned sequences, the most intense competitiveness for the adsorption and retention of different metals appears between Cr and Cd, Cu and Zn in multiple regression; and between Cr and Cd in SVM regression. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Sorption of Pseudomonas putida onto differently structured kaolinite minerals

    NASA Astrophysics Data System (ADS)

    Vasiliadou, I. A.; Papoulis, D.; Chrysikopoulos, C.; Panagiotaras, D.; Karakosta, E.; Fardis, M.; Papavassiliou, G.

    2010-12-01

    The presence of bio-colloids (e.g. bacteria and viruses) in the subsurface could be attributed to the release of particles from septic tanks, broken sewer lines or from artificial recharge with treated municipal wastewater. Bio-colloid transport in the subsurface is significantly affected by sorption onto the solid matrix. Bio-colloid attachment onto mobile or suspended in the aqueous phase soil particles (e.g. clay or other minerals) also may influence their fate and transport in the subsurface. The present study focuses on the investigation of Pseudomonas (Ps.) putida sorption onto well (KGa-1) and poorly (KGa-2) crystallized kaolinite minerals. Batch experiments were carried out to determine the sorption isotherms of Ps. putida onto both types of kaolinite particles. The sorption process of Ps. putida onto KGa-1 and KGa-2 is adequately described by a Langmuir isotherm. Attenuated Total Reflection Fourier Transform Infrared Spectroscopy as well as Nuclear Magnetic Resonance were employed to study the sorption mechanisms of Ps. putida. Experimental results indicated that KGa-2 presented higher affinity and sorption capacity than KGa-1. It was shown that electrostatic interactions and structural disorders can influence the sorption capacity of clay particles.

  16. Modeling Fission Product Sorption in Graphite Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szlufarska, Izabela; Morgan, Dane; Allen, Todd

    2013-04-08

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high- temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributionsmore » of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission products on each type of graphite site. The model will include multiple simultaneous adsorbing species, which will allow for competitive adsorption effects between different fission product species and O and OH (for modeling accident conditions).« less

  17. Effect of humic acid on the sorption of perfluorooctane sulfonate (PFOS) and perfluorobutane sulfonate (PFBS) on boehmite.

    PubMed

    Wang, Fei; Shih, Kaimin; Leckie, James O

    2015-01-01

    The sorption of PFOS and PFBS on boehmite was significantly retarded by the competitive sorption of humic acid (HA), implying that PFOS and PFBS are likely more mobile in water and groundwater systems enriched with HA. The sorption behavior of PFOS and PFBS on the HA-modified boehmite surface were also found to differ due to their different chain lengths. For a partially HA-modified boehmite surface, the isotherm study showed that PFOS had a much higher maximum sorption capacity than PFBS and that PFOS might possess additional surface interactions besides electrostatic interaction. For a HA-saturated boehmite, a linear sorption isotherm was found for PFOS while nearly no PFBS sorption was observed. This indicates that sorption behavior between PFOS and the sorbed HA on boehmite was dominated by hydrophobic interactions, instead of electrostatic interaction. In addition, a conceptual model combining hydrophobic and electrostatic interaction was established to explain the sorption behavior of PFOS and PFBS on HA-modified boehmite. Finally, the results revealed that the sorption of PFOS and PFBS on HA-modified boehmite is pH-dependent. The neutralization of negative sites on HA-modified boehmite reduced the electrostatic repulsion and enhanced the partitioning of PFBS on the sorbed HA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. TWO-DIMENSIONAL MODELING OF AQUIFER REMEDIATION INFLUENCED BY SORPTION NONEQUILIBRIUM AND HYDRAULIC CONDUCTIVITY HETEROGENEITY

    EPA Science Inventory

    A computational model was developed to simulate aquifer remediation by pump and treat for a confined, perfectly stratified aquifer. plit-operator finite element numerical technique was utilized to incorporate flow field heterogeneity and nonequilibrium sorption into a two-dimensi...

  19. Measuring and Modeling Surface Sorption Dynamics of Organophosphate Flame Retardants in Chambers

    EPA Science Inventory

    Understanding the sorption mechanisms for organophosphate flame retardants (OPFRs) on impervious surfaces is important if we are to improve our understanding of the fate and transport of OPFRs in indoor environments. Traditional Langmuir and Freundlich models are widely adopted t...

  20. Measurement of Moisture Sorption Isotherm by DVS Hydrosorb

    NASA Astrophysics Data System (ADS)

    Kurniawan, Y. R.; Purwanto, Y. A.; Purwanti, N.; Budijanto, S.

    2018-05-01

    Artificial rice made from corn flour, sago, glycerol monostearate, vegetable oil, water and jelly powder was developed by extrusion method through the process stages of material mixing, extrusion, drying, packaging and storage. Sorption isotherm pattern information on food ingredients used to design and optimize the drying process, packaging, storage. Sorption isotherm of water of artificial rice was measured using humidity generating method with Dynamic Vapor Sorption device that has an advantage of equilibration time is about 10 to 100 times faster than saturated salt slurry method. Relative humidity modification technique are controlled automatically by adjusting the proportion of mixture of dry air and water saturated air. This paper aims to develop moisture sorption isotherm using the Hydrosorb 1000 Water Vapor Sorption Analyzer. Sample preparation was conducted by degassing sample in a heating mantle of 65°C. Analysis parameters need to be fulfilled were determination of Po, sample data, selection of water activity points, and equilibrium conditions. The selected analytical temperatures were 30°C and 45°C. Analysis lasted for 45 hours and curves of adsorption and desorption were obtained. Selected bottom point of water activity 0.05 at 30°C and 45°C yielded adsorbed mass of 0.1466 mg/g and 0.3455 mg/g, respectively, whereas selected top water activity point 0.95 at 30°C and 45°C yielded adsorbed mass of 190.8734 mg/g and 242.4161mg/g, respectively. Moisture sorption isotherm measurements of articial rice made from corn flour at temperature of 30°C and 45°C using Hydrosorb showed that the moisture sorption curve approximates sigmoid-shaped type II curve commonly found in corn-based foodstuffs (high- carbohydrate).

  1. Environmental behavior of the enantiomers of the chiral fungicide metalaxyl in Mediterranean agricultural soils.

    PubMed

    Celis, R; Gámiz, B; Adelino, M A; Hermosín, M C; Cornejo, J

    2013-02-01

    Improving the existing knowledge on the enantioselectivity of processes affecting chiral pesticide enantiomers in the environment is necessary to maximize the efficacy and minimize the environmental impact caused by the use of pesticides with chiral properties. In this work, the enantioselectivity of the sorption, degradation, and leaching processes of the chiral fungicide metalaxyl in three slightly alkaline, agricultural soils from southern Spain was studied. Batch sorption experiments indicated that the sorption of racemic-metalaxyl on soils, their clay (<2 μm) fractions, and a number of model sorbents simulating naturally-occurring soil colloidal particles was non-enantioselective; the S-enantiomer was sorbed to the same extent as the R-enantiomer on all soil materials. Soil incubation experiments revealed that the R-enantiomer of metalaxyl was degraded faster than the S-enantiomer in all three soils, but the extent and enantioselectivity of metalaxyl degradation was soil-dependent, occurring more slowly and with less enantioselectivity in the fine-textured soil (soil 1) than in the coarse-textured soils (soils 2 and 3). For soils 2 and 3, S- and R-metalaxyl dissipation data were very well described by single first-order kinetics, whereas for soil 1 dissipation data were better fitted by two coupled first-order equations. It is suggested that sorption and entrapment of metalaxyl enantiomers in the abundant small-size pores of soil 1 (i.e., pore radius<100 nm) could have resulted in a fraction of the fungicide of reduced bioavailability, and consequently, protected from enantioselective degradation. Metalaxyl leaching through soil columns was also enantioselective; the concentration of S-metalaxyl in all leachates collected was greater than that of R-metalaxyl. Despite being non-enantioselective, sorption influenced the enantioselectivity of metalaxyl leaching, as it determined the residence time of the fungicide within the soil column, and consequently, the extent and enantioselectivity of its degradation during leaching. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Atomic-deficient nanostructurization in water-sorption alumomagnesium spinel ceramics MgAl2O4

    NASA Astrophysics Data System (ADS)

    Ingram, A.

    2018-02-01

    Atomic-deficient nanostructurization in alumomagnesium MgAl2O4 ceramics sintered at 1100-1400 °C caused by water sorption are studied employing positron annihilation lifetime spectroscopy. Detected PAL spectra are reconstructed from unconstrained x4-term decomposition, and further transformed to x3-term form to be applicable for analysis with x3-x2-CDA (coupling decomposition algorithm). It is proved that water-immersion processes reduce positronium (Ps) decaying in large-size holes of ceramics (1.70-1.84 nm in radius) at the expense of enhanced trapping in tiny ( 0.2 nm in radius) Ps-traps. The water sorption is shown to be more pronounced in structurally imperfect ceramics sintered at T s = 1100-1200 °C due to irreversible transformations between constituting phases, while reversible physical-sorption processes are dominated in structurally uniform ceramics composed of main spinel phase.

  3. Cadmium sorption and extractability in tropical soils with variable charge.

    PubMed

    Colzato, Marina; Alleoni, Luís Reynaldo Ferracciú; Kamogawa, Marcos Yassuo

    2018-05-14

    The availability of cadmium (Cd) for plants and its impact in the environment depends on Cd sorption in soil colloids. The study of Cd sorption in soil and its fractionation is an interesting tool for the evaluation of Cd affinity with soil pools. The objective with this study was to evaluate Cd sorption and desorption in tropical soils with variable charge (three Oxisols), in a Mollisol and in two Entisols with diverse physical, chemical, and mineralogical attributes. We used a thermodynamic approach to evaluate Cd sorption and performed a chemical fractionation of Cd in the six soils. Data from Cd sorption fit the Langmuir model (r > 0.94), and the sorption capacity ranged from 0.33 to 11.5 mmol kg -1 . The Gibbs standard free energy was positively correlated to Cd sorption capacity (r = 0.74, except for the Quartzipsamments), and it was more favorable in soils with great sorption capacity. Distribution of Cd among fractions was not affected (t test, α = 0.05) by initial concentration, and there was a predominance of Cd extractable in 0.1 mol L -1 CaCl 2 .

  4. Competitive sorption of carbonate and arsenic to hematite: combined ATR-FTIR and batch experiments.

    PubMed

    Brechbühl, Yves; Christl, Iso; Elzinga, Evert J; Kretzschmar, Ruben

    2012-07-01

    The competitive sorption of carbonate and arsenic to hematite was investigated in closed-system batch experiments. The experimental conditions covered a pH range of 3-7, arsenate concentrations of 3-300 μM, and arsenite concentrations of 3-200 μM. Dissolved carbonate concentrations were varied by fixing the CO(2) partial pressure at 0.39 (atmospheric), 10, or 100 hPa. Sorption data were modeled with a one-site three plane model considering carbonate and arsenate surface complexes derived from ATR-FTIR spectroscopy analyses. Macroscopic sorption data revealed that in the pH range 3-7, carbonate was a weak competitor for both arsenite and arsenate. The competitive effect of carbonate increased with increasing CO(2) partial pressure and decreasing arsenic concentrations. For arsenate, sorption was reduced by carbonate only at slightly acidic to neutral pH values, whereas arsenite sorption was decreased across the entire pH range. ATR-FTIR spectra indicated the predominant formation of bidentate binuclear inner-sphere surface complexes for both sorbed arsenate and sorbed carbonate. Surface complexation modeling based on the dominant arsenate and carbonate surface complexes indicated by ATR-FTIR and assuming inner-sphere complexation of arsenite successfully described the macroscopic sorption data. Our results imply that in natural arsenic-contaminated systems where iron oxide minerals are important sorbents, dissolved carbonate may increase aqueous arsenite concentrations, but will affect dissolved arsenate concentrations only at neutral to alkaline pH and at very high CO(2) partial pressures. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Modeling the Effect of Nonlinear and Rate-Limited Sorption on the Natural Attenuation of Chlorinated Ethenes

    DTIC Science & Technology

    2000-03-01

    toxicity. Determine what parameters lead to minimized risk to human health. 64 6.0 Bibliography Atlas , R.M. and R. Bartha . Microbial Ecology ...single-celled organisms ( Atlas and Bartha , 1993). Biodegradation - Process where bacteria mineralize or transform contaminants using organic...NRC, 1994) Methanogenesis - The process of creating methane from H2 and CO2 during the respiration of methanogens ( Atlas and Bartha , 1993

  6. Experimental and Numerical Investigations on Colloid-facilitated Plutonium Reactive Transport in Fractured Tuffaceous Rocks

    NASA Astrophysics Data System (ADS)

    Dai, Z.; Wolfsberg, A. V.; Zhu, L.; Reimus, P. W.

    2017-12-01

    Colloids have the potential to enhance mobility of strongly sorbing radionuclide contaminants in fractured rocks at underground nuclear test sites. This study presents an experimental and numerical investigation of colloid-facilitated plutonium reactive transport in fractured porous media for identifying plutonium sorption/filtration processes. The transport parameters for dispersion, diffusion, sorption, and filtration are estimated with inverse modeling for minimizing the least squares objective function of multicomponent concentration data from multiple transport experiments with the Shuffled Complex Evolution Metropolis (SCEM). Capitalizing on an unplanned experimental artifact that led to colloid formation and migration, we adopt a stepwise strategy to first interpret the data from each experiment separately and then to incorporate multiple experiments simultaneously to identify a suite of plutonium-colloid transport processes. Nonequilibrium or kinetic attachment and detachment of plutonium-colloid in fractures was clearly demonstrated and captured in the inverted modeling parameters along with estimates of the source plutonium fraction that formed plutonium-colloids. The results from this study provide valuable insights for understanding the transport mechanisms and environmental impacts of plutonium in fractured formations and groundwater aquifers.

  7. Fate and transport with material response characterization of green sorption media for copper removal via desorption process.

    PubMed

    Chang, Ni-Bin; Houmann, Cameron; Lin, Kuen-Song; Wanielista, Martin

    2016-07-01

    Multiple adsorption and desorption cycles are required to achieve the reliable operation of copper removal and recovery. A green sorption media mixture composed of recycled tire chunk, expanded clay aggregate, and coconut coir was evaluated in this study for its desorptive characteristics as a companion study of the corresponding adsorption process in an earlier publication. We conducted a screening of potential desorbing agents, batch desorption equilibrium and kinetic studies, and batch tests through 3 adsorption/desorption cycles. The desorbing agent screening revealed that hydrochloric acid has good potential for copper desorption. Equilibrium data fit the Freundlich isotherm, whereas kinetic data had high correlation with the Lagergren pseudo second-order model and revealed a rapid desorption reaction. Batch equilibrium data over 3 adsorption/desorption cycles showed that the coconut coir and media mixture were the most resilient, demonstrating they could be used through 3 or more adsorption/desorption cycles. FE-SEM imaging, XRD, and EDS analyses supported the batch adsorption and desorption results showing significant surface sorption of CuO species in the media mixture and coconut coir, followed by partial desorption using 0.1 M HCl as a desorbing agent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. High adsorption performance for As(III) and As(V) onto novel aluminum-enriched biochar derived from abandoned Tetra Paks.

    PubMed

    Ding, Zhuhong; Xu, Xuebin; Phan, Thihongnhung; Hu, Xin; Nie, Guangze

    2018-06-12

    In order to develop promising sorbents for value-added application of solid wastes, low-cost aluminum-enriched biochar was prepared from abandoned Tetra Pak used to hold milks, a paper-polyethylence-Al foil laminated package box, after acid pretreatment and subsequent slow pyrolysis under an oxygen-limited environment at 600 °C. The basic physicochemical properties of the resultant biochar were characterized and the sorption performance of aqueous As(III) and As(V) was investigated via batch and column sorption experiments. Carbon (49.1%), Ca (7.41%) and Al (13.5%) were the most abundant elements in the resultant biochar; and the specific surface area and the pH value at the point of zero charge (pHPZC) were 174 m 2  g -1 and 9.3, respectively. Batch sorption showed excellent sorption performance for both As(III) (24.2 mg g -1 ) and As(V) (33.2 mg g -1 ) and experimental data were fitted well with Langmuir model for the sorption isotherms and pseudo-second order kinetic model for the sorption kinetics. The residual concentrations of As(V) after sorption were below the limited value of arsenic in WHO Guidelines for Drinking water Quality (0.01 mg L -1 ) even if coexistence of PO 4 3- . Column sorption confirmed the high sorption performance for As(III) and As(V). So the slow pyrolysis of abandoned Tetra Paks as low-cost and value-added sorbents is a sustainable strategy for solid waste disposal and wastewater treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Coconut coir as biosorbent for Cr(VI) removal from laboratory wastewater.

    PubMed

    Gonzalez, Mário H; Araújo, Geórgia C L; Pelizaro, Claudia B; Menezes, Eveline A; Lemos, Sherlan G; de Sousa, Gilberto Batista; Nogueira, Ana Rita A

    2008-11-30

    A high cost-effective treatment of sulphochromic waste is proposed employing a raw coconut coir as biosorbent for Cr(VI) removal. The ideal pH and sorption kinetic, sorption capacities, and sorption sites were the studied biosorbent parameters. After testing five different isotherm models with standard solutions, Redlich-Peterson and Toth best fitted the experimental data, obtaining a theoretical Cr(VI) sorption capacity (SC) of 6.3 mg g(-1). Acid-base potentiometric titration indicated around of 73% of sorption sites were from phenolic compounds, probably lignin. Differences between sorption sites in the coconut coir before and after Cr adsorption identified from Fourier transform infrared spectra suggested a modification of sorption sites after sulphochromic waste treatment, indicating that the sorption mechanism involves organic matter oxidation and chromium uptake. For sulphocromic waste treatment, the SC was improved to 26.8+/-0.2 mg g(-1), and no adsorbed Cr(VI) was reduced, remaining only Cr(III) in the final solution. The adsorbed material was calcinated to obtain Cr(2)O(3,) with a reduction of more than 60% of the original mass.

  10. Sorption properties of Th(IV) on the raw diatomite--effects of contact time, pH, ionic strength and temperature.

    PubMed

    Sheng, Guodong; Hu, Jun; Wang, Xiangke

    2008-10-01

    Diatomite has a number of unique physicochemical properties and has diversified industrial uses. Natural diatomite has been tested as a potential sorbent for the removal of Th(IV) from aqueous solutions. The results indicate that sorption of Th(IV) is strongly dependent on ionic strength at pH<3, and is independent of ionic strength at pH>3. Outer-sphere complexation or ion exchange may be the main sorption mechanism of Th(IV) to diatomite at low pH values, whereas the sorption of Th(IV) at pH>3 is mainly dominated by inner-sphere complexation or precipitation. The competition for Th(IV) between aqueous or surface adsorbed anions (e.g., herein ClO(4)(-), NO(3)(-) and Cl(-)) and surface functional groups of diatomite is important for Th(IV) sorption. The thermodynamic data (DeltaH(0), DeltaS(0), DeltaG(0)) are calculated from the temperature-dependent sorption isotherms. The results suggest that sorption process of Th(IV) on diatomite is spontaneous and endothermic.

  11. Nanoscale zero valent supported by Zeolite and Montmorillonite: Template effect of the removal of lead ion from an aqueous solution.

    PubMed

    Arancibia-Miranda, Nicolás; Baltazar, Samuel E; García, Alejandra; Muñoz-Lira, Daniela; Sepúlveda, Pamela; Rubio, María A; Altbir, Dora

    2016-01-15

    In this work, we have studied the Pb(2+) sorption capacity of Zeolite (Z) and Montmorillonite (Mt) functionalized with nanoscale zero-valent iron (nZVI), at 50% w/w, obtained by means of an impregnating process with a solvent excess. The composites were characterized by several techniques including X-ray diffraction; scanning electron microscopy (SEM); BET area; isoelectric point (IEP); and, finally a magnetic response. Comparatively significant differences in terms of electrophoretic and magnetic characteristics were found between the pristine materials and the composites. Both structures show a high efficiency and velocity in the removal of Pb(2+) up to 99.0% (200.0 ppm) after 40 min of reaction time. The removal kinetics of Pb(2+) is adequately described by the pseudo second-order kinetic model, and the maximum adsorbed amounts (q(e)) of this analyte are in close accordance with the experimental results. The intraparticle diffusion model shows that this is not the only rate-limiting step, this being the Langmuir model which was well adjusted to our experimental data. Therefore, maximum sorption capacities were found to be 115.1±11.0, 105.5±9.0, 68.3±1.3, 54.2±1.3, and 50.3±4.2 mg g(-1), for Mt-nZVI, Z-nZVI, Zeolite, Mt, and nZVI, respectively. The higher sorption capacities can be attributed to the synergetic behavior between the clay and iron nanoparticles, as a consequence of the clay coating process with nZVI. These results suggest that both composites could be used as an efficient adsorbent for the removal of lead from contaminated water sources. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Phosphorus sorption on marine carbonate sediment: phosphonate as model organic compounds.

    PubMed

    Huang, Xiao-Lan; Zhang, Jia-Zhong

    2011-11-01

    Organophosphonate, characterized by the presence of a stable, covalent, carbon to phosphorus (C-P) bond, is a group of synthetic or biogenic organophosphorus compounds. The fate of these organic phosphorus compounds in the environment is not well studied. This study presents the first investigation on the sorption of phosphorus (P) in the presence of two model phosphonate compounds, 2-aminothylphosphonoic acid (2-AEP) and phosphonoformic acid (PFA), on marine carbonate sediments. In contrast to other organic P compounds, no significant inorganic phosphate exchange was observed in seawater. P was found to adsorb on the sediment only in the presence of PFA, not 2-AEP. This indicated that sorption of P from phosphonate on marine sediment was compound specific. Compared with inorganic phosphate sorption on the same sediments, P sorption from organic phosphorus is much less in the marine environment. Further study is needed to understand the potential role of the organophosphonate compounds in biogeochemical cycle of phosphorus in the environment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Preparation and characterization of a novel graphene/biochar composite for aqueous phenanthrene and mercury removal.

    PubMed

    Tang, Jingchun; Lv, Honghong; Gong, Yanyan; Huang, Yao

    2015-11-01

    A graphene/biochar composite (G/BC) was synthesized via slow pyrolysis of graphene (G) pretreated wheat straw, and tested for the sorption characteristics and mechanisms of representative aqueous contaminants (phenanthrene and mercury). Structure and morphology analysis showed that G was coated on the surface of biochar (BC) mainly through π-π interactions, resulting in a larger surface area, more functional groups, greater thermal stability, and higher removal efficiency of phenanthrene and mercury compared to BC. Pseudo second-order model adequately simulated sorption kinetics, and sorption isotherms of phenanthrene and mercury were simulated well by dual-mode and BET models, respectively. FTIR and SEM analysis suggested that partitioning and surface sorption were dominant mechanisms for phenanthrene sorption, and that surface complexation between mercury and C-O, CC, -OH, and OC-O functional groups was responsible for mercury removal. The results suggested that the G/BC composite is an efficient, economic, and environmentally friendly multifunctional adsorbent for environmental remediation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Revealing chemophoric sites in organophosphorus insecticides through the MIA-QSPR modeling of soil sorption data.

    PubMed

    Daré, Joyce K; Silva, Cristina F; Freitas, Matheus P

    2017-10-01

    Soil sorption of insecticides employed in agriculture is an important parameter to probe the environmental fate of organic chemicals. Therefore, methods for the prediction of soil sorption of new agrochemical candidates, as well as for the rationalization of the molecular characteristics responsible for a given sorption profile, are extremely beneficial for the environment. A quantitative structure-property relationship method based on chemical structure images as molecular descriptors provided a reliable model for the soil sorption prediction of 24 widely used organophosphorus insecticides. By means of contour maps obtained from the partial least squares regression coefficients and the variable importance in projection scores, key molecular moieties were targeted for possible structural modification, in order to obtain novel and more environmentally friendly insecticide candidates. The image-based descriptors applied encode molecular arrangement, atoms connectivity, groups size, and polarity; consequently, the findings in this work cannot be achieved by a simple relationship with hydrophobicity, usually described by the octanol-water partition coefficient. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Enhancement of the bentonite sorption properties.

    PubMed

    Mockovciaková, Annamária; Orolínová, Zuzana; Skvarla, Jirí

    2010-08-15

    The almost monomineral fraction of bentonite rock-montmorillonite was modified by magnetic particles to enhance its sorption properties. The method of clay modification consists in the precipitation of magnetic nanoparticles, often used in preparing of ferrofluids, on the surface of clay. The influence of the synthesis temperature (20 and 85 degrees C) and the weight ratio of bentonite/iron oxides (1:1 and 5:1) on the composite materials properties were investigated. The obtained materials were characterized by the X-ray diffraction method and Mössbauer spectroscopy. Changes in the surface and pore properties of the magnetic composites were studied by the low nitrogen adsorption method and the electrokinetic measurements. The natural bentonite and magnetic composites were used in sorption experiments. The sorption of toxic metals (zinc, cadmium and nickel) from the model solutions was well described by the linearized Langmuir and Freundlich sorption model. The results show that the magnetic bentonite is better sorbent than the unmodified bentonite if the initial concentration of studied metals is very low. Copyright 2010 Elsevier B.V. All rights reserved.

  16. NMR measurements of gaseous sulfur hexafluoride (SF6) to probe the cross-linking of EPDM rubber.

    PubMed

    Terekhov, M; Neutzler, S; Aluas, M; Hoepfel, D; Oellrich, L R

    2005-11-01

    The effects of embedding gaseous SF6 into EPDM rubber were investigated using NMR methods. It was found that observed sorption and desorption processes follow the behavior of the dual mode sorption model. A strong correlation was found between EPDM cross-linking and transversal relaxation time of embedded SF6. EPDM samples with different cross-link densities, preliminarily determined by 1H transversal relaxation using the Gotlib model and Litvinov's method, were investigated using embedded SF6. The sensitivity of the 19F transversal relaxation rate of SF6 to the EPDM cross-link density variation was found to be at least 10 times higher than for 1H in the polymer chain. First experiments on probing the swelling effects in EPDM due to its contact with polar liquids have been performed. Copyright (c) 2005 John Wiley & Sons, Ltd.

  17. Sorption-desorption of cadmium in aqueous palygorskite, sepiolite, and calcite suspensions: isotherm hysteresis.

    PubMed

    Shirvani, Mehran; Kalbasi, Mahmoud; Shariatmadari, Hosein; Nourbakhsh, Farshid; Najafi, Bijan

    2006-12-01

    Sorption isotherms have been widely used to assess the heavy metal retention characteristics of soil particles. Desorption behavior of the retained metals, however, usually differ from that of sorption, leading to a lack of coincidence in the experimentally obtained sorption and desorption isotherms. In this study, we examine the nonsingularity of cadmium (Cd) sorption-desorption isotherms, to check the possible hysteresis and reversibility phenomena, in aqueous palygorskite, sepiolite and calcite systems. Sorption of Cd was carried out using a 24-h batch equilibration experiment with eight different Cd solution concentrations, equivalent to 20-100% of maximum sorption capacity of each mineral. Immediately after sorption, desorption took place using successive dilution method with five consecutive desorption steps. Both Cd sorption and desorption data were adequately described by Freundlich equation (0.81

  18. Distribution of phenanthrene between soil and an aqueous phase in the presence of anionic micelle-like amphiphilic polyurethane particles.

    PubMed

    Lee, Kangtaek; Choi, Heon-Sik; Kim, Ju-Young; Ahn, Ik-Sung

    2003-12-12

    Sorption of micelle-like amphiphilic polyurethane (APU) particles to soil was studied and compared to that of a model anionic surfactant, sodium dodecyl sulfate (SDS). Three types of APU particles with different hydrophobicity were synthesized from urethane acrylate anionomers (UAA) and used in this study. Due to the chemically cross-linked structure, APU exhibited less sorption to the soil than SDS and a greater reduction in the sorption of phenanthrene, a model soil contaminant, to the soil was observed in the presence of APU than SDS even though the solubility of phenanthrene was higher in the presence of SDS than APU. A mathematical model was developed to describe the phenanthrene distribution between soil and an aqueous phase containing APU particles. The sorption of phenanthrene to the test soil could be well described by Linear isotherm. APU sorption to the soil was successfully described by Langmuir and Freundlich isotherms. The partition of phenanthrene between water and APU were successfully explained with a single partition coefficient. The model, which accounts for the limited solubilization of phenanthrene in sorbed APU particles, successfully described the experimental data for the distribution of phenanthrene between the soil and the aqueous phase in the presence of APU.

  19. Performance of chromatographic systems to model soil-water sorption.

    PubMed

    Hidalgo-Rodríguez, Marta; Fuguet, Elisabet; Ràfols, Clara; Rosés, Martí

    2012-08-24

    A systematic approach for evaluating the goodness of chromatographic systems to model the sorption of neutral organic compounds by soil from water is presented in this work. It is based on the examination of the three sources of error that determine the overall variance obtained when soil-water partition coefficients are correlated against chromatographic retention factors: the variance of the soil-water sorption data, the variance of the chromatographic data, and the variance attributed to the dissimilarity between the two systems. These contributions of variance are easily predicted through the characterization of the systems by the solvation parameter model. According to this method, several chromatographic systems besides the reference octanol-water partition system have been selected to test their performance in the emulation of soil-water sorption. The results from the experimental correlations agree with the predicted variances. The high-performance liquid chromatography system based on an immobilized artificial membrane and the micellar electrokinetic chromatography systems of sodium dodecylsulfate and sodium taurocholate provide the most precise correlation models. They have shown to predict well soil-water sorption coefficients of several tested herbicides. Octanol-water partitions and high-performance liquid chromatography measurements using C18 columns are less suited for the estimation of soil-water partition coefficients. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Influence of soil γ-irradiation and spiking on sorption of p,p'-DDE and soil organic matter chemistry.

    PubMed

    Škulcová, Lucia; Scherr, Kerstin E; Chrást, Lukáš; Hofman, Jakub; Bielská, Lucie

    2018-07-15

    The fate of organic chemicals and their metabolites in soils is often investigated in model matrices having undergone various pre-treatment steps that may qualitatively or quantitatively interfere with the results. Presently, effects associated with soil sterilization by γ-irradiation and soil spiking using an organic solvent were studied in one freshly spiked soil (sterilization prior to contamination) and its field-contaminated (sterilization after contamination) counterpart for the model organic compound 1,1-Dichloro-2,2-bis(4-chlorophenyl)ethene (p,p'-DDE). Changes in the sorption and potential bioavailability of spiked and native p,p'-DDE were measured by supercritical fluid extraction (SFE), XAD-assisted extraction (XAD), and solid-phase microextraction (SPME) and linked to qualitative changes in soil organic matter (SOM) chemistry measured by diffuse reflectance infrared Fourier-transform (DRIFT) spectroscopy. Reduced sorption of p,p´-DDE detected with XAD and SPME was associated more clearly with spiking than with sterilization, but SFE showed a negligible impact. Spiking resulted in an increase of the DRIFT-derived hydrophobicity index, but irradiation did not. Spectral peak height ratio descriptors indicated increasing hydrophobicity and hydrophilicity in pristine soil following sterilization, and a greater reduction of hydrophobic over hydrophilic groups as a consequence of spiking. In parallel, reduced sorption of p,p´-DDE upon spiking was observed. Based on the present samples, γ-irradiation appears to alter soil sorptive properties to a lesser extent when compared to common laboratory processes such as spiking with organic solvents. Copyright © 2018. Published by Elsevier Inc.

  1. Removal of nitrate and phosphate using chitosan/Al2O3/Fe3O4 composite nanofibrous adsorbent: Comparison with chitosan/Al2O3/Fe3O4 beads.

    PubMed

    Bozorgpour, Farahnaz; Ramandi, Hossein Fasih; Jafari, Pooya; Samadi, Saman; Yazd, Shabnam Sharif; Aliabadi, Majid

    2016-12-01

    In the present study the chitosan/Al 2 O 3 /Fe 3 O 4 composite nanofibrous adsorbent was prepared by electrospinning process and its application for the removal of nitrate and phosphate were compared with chitosan/Al 2 O 3 /Fe 3 O 4 composite bead adsorbent. The influence of Al 2 O 3 /Fe 3 O 4 composite content, pH, contact time, nitrate and phosphate initial concentrations and temperature on the nitrate and phosphate sorption using synthesized bead and nanofibrous adsorbents was investigated in a single system. The reusability of chitosan/Al 2 O 3 /Fe 3 O 4 composite beads and nanofibers after five sorption-desorption cycles were carried out. The Box-Behnken design was used to investigate the interaction effects of adsorbent dosage, nitrate and phosphate initial concentrations on the nitrate and phosphate removal efficiency. The pseudo-second-order kinetic model and known Freundlich and Langmuir isotherm models were used to describe the kinetic and equilibrium data of nitrate and phosphate sorption using chitosan/Al 2 O 3 /Fe 3 O 4 composite beads and nanofibers. The influence of other anions including chloride, fluoride and sulphate on the sorption efficiency of nitrate and phosphate was examined. The obtained results revealed the higher potential of chitosan/Al 2 O 3 /Fe 3 O 4 composite nanofibers for nitrate and phosphate compared with chitosan/Al 2 O 3 /Fe 3 O 4 composite beads. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Evaluation of magnetic- and carbon-based nano-adsorbents application in pre-purification of paclitaxel from needles of Taxus baccata

    NASA Astrophysics Data System (ADS)

    Naghavi, M. R.; Motamedi, E.; Nasiri, J.; Alizadeh, H.; Fattahi Moghadam, M. R.; Mashouf, A.

    2015-01-01

    In this investigation, the proficiency of a number of magnetic carbon-based nano-adsorbents is evaluated in pre-purification process of the crude paclitaxel extract obtained from fresh needles of yew tree ( Taxus baccata L.). The effectiveness and removal ability of color and impurities from crude extracts, for three novel candidate nano-adsorbents (i.e., Fe3O4 nanoparticles (Fe3O4Nps), graphite oxide (GO), and their hybrids Fe3O4Nps/GO) are compared with commercial graphite in three different solvents. In general, both HPLC and UV-Vis spectroscopy results demonstrate that in less polar solvent (i.e., dichloromethane), the adsorption is greatly affected by the electrostatic attractions, while in more polar solvents (i.e., acetone and ethanol) π-π electron interactions taking place between adsorbent and adsorbate are the most dominant factors in sorption. Considering decolorization efficiency, purity of taxol, recovery and reusability of adsorbents, Fe3O4Nps/GO (50 g/L) in dichloromethane is selected as the best medium for pre-purification of paclitaxel. Additionally, in kinetic studies the sorption equilibrium can be reached within 120 min, and the experimental data are well fitted by the pseudo-second-order model. The Langmuir sorption isotherm model correlates well with the sorption equilibrium data for the crude extract concentration (500-2,000 mg/L). Our findings display promising applications of Fe3O4Nps/GO, as a cost-effective nano-adsorbent, to provide a suitable vehicle toward improvement of paclitaxel pre-purification.

  3. TWO-DIMENSIONAL MODELING OF AQUIFER REMEDIATION INFLUENCED BY SORPTION NONEQUILIBRIUM AND HYDRAULIC CONDUCTIVITY HETEROGENEITY

    EPA Science Inventory

    A computational model was developed to simulate aquifer remediation by pump and treat for a confined, perfectly stratified aquifer. A split-operator finite element numerical technique was utilized to incorporate flow field heterogeneity and nonequilibrium sorption into a two-dime...

  4. Experimental study of Pb (II) solution sorption behavior onto Coffee Husk Bioactivated Carbon

    NASA Astrophysics Data System (ADS)

    Fona, Z.; Habibah, U.

    2018-04-01

    Coffee husk which is abundantly produced in the coffee plantations is potential to be a challenging adsorbent. The fate of Pb (II) solution in the sorption mechanism onto the adsorbent has been investigated. This paper aimed to study the efficiency of Pb (II) aqueous solution removal using activated carbon from coffee husk (CAC). The sorption characteristics were using two isotherm models, Langmuir and Freundlich, were also reported. The coffee husk from local plantations in Middle Aceh was carbonized and sieved to 120/140 mesh. The charcoal was activated using hydrochloric acid before contacted with the different initial concentrations of Pb (II) solution. The remaining concentrations of the metal in the specified contact times were determined using Atomic Adsorption Spectrophotometer at 283.3 wavelength. The result showed that the equilibrium concentrations were obtained in about 30 minutes which depended on the initial concentration. The sorption mechanism followed Freundlich isotherm model where the adsorption constant and capacity were accordingly 1.353 and 1.195 mgg‑1. The iodine sorption was up to 1,053 mgg‑1. Based on the ash and moisture content, as well as iodine sorption, the activated carbon met the national standard.

  5. 40 CFR 63.694 - Testing methods and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... determine treatment process required HAP biodegradation efficiency (Rbio) for compliance with standards... procedures to minimize the loss of compounds due to volatilization, biodegradation, reaction, or sorption... compounds due to volatilization, biodegradation, reaction, or sorption during the sample collection, storage...

  6. 40 CFR 63.694 - Testing methods and procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... determine treatment process required HAP biodegradation efficiency (Rbio) for compliance with standards... procedures to minimize the loss of compounds due to volatilization, biodegradation, reaction, or sorption... compounds due to volatilization, biodegradation, reaction, or sorption during the sample collection, storage...

  7. 40 CFR 63.694 - Testing methods and procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... determine treatment process required HAP biodegradation efficiency (Rbio) for compliance with standards... procedures to minimize the loss of compounds due to volatilization, biodegradation, reaction, or sorption... compounds due to volatilization, biodegradation, reaction, or sorption during the sample collection, storage...

  8. Roles of functional groups of naproxen in its sorption to kaolinite.

    PubMed

    Yu, Chenglong; Bi, Erping

    2015-11-01

    The sorption of acidic anti-inflammatory drugs to soils is important for evaluating their fate and transformations in the water-soil environment. However, roles of functional groups of ionisable drugs onto mineral surfaces have not been sufficiently studied. In this study, batch experiments of naproxen (NPX, anti-inflammatory drug) and two kinds of competitors to kaolinite were studied. The Kd of naproxen to kaolinite is 1.30-1.62 L kg(-1). The n-π electron donor-acceptor (n-π EDA) interaction between diaromatic ring of naproxen (π-electron acceptors) and the siloxane oxygens (n-donors) of kaolinite is the dominant sorption mechanism. The carboxyl group of naproxen can contribute to the overall sorption. A conception model was put forward to elucidate to sorption mechanisms, in which the contribution of n-π EDA and hydrogen bond to overall sorption was quantified. These sorption mechanisms can be helpful for estimating the fate and mobility of acid pharmaceuticals in soil-water environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Feasibility study on the application of coal gangue as landfill liner material.

    PubMed

    Wu, Hui; Wen, Qingbo; Hu, Liming; Gong, Meng; Tang, Zili

    2017-05-01

    Coal gangue is one of the largest industrial solid waste all over the world, and many methods have been proposed for the recycling of coal gangue. In the present study, the feasibility of using coal gangue as landfill liner material is studied through a series of laboratory tests in terms of hydraulic conductivity, sorption characteristics and leaching behavior. The results indicated that the hydraulic conductivity of coal gangue could be smaller than the regulatory requirement 1×10 -7 cm/s with a void ratio less than 0.60. The batch sorption experiments performed on Pb 2+ and Zn 2+ illustrated that the coal gangue showed remarkable sorption capacity for the two heavy metals, and the sorption capacity for Pb 2+ was larger than that for Zn 2+ . Both the pseudo first-order and pseudo second-order models fitted well with the sorption kinetics data of the Pb 2+ and Zn 2+ on the coal gangue, and the Langmuir model was found to best-fit the sorption isotherms. The sorption capacity decreased in presence of multiple heavy metals, both for Pb 2+ and Zn 2+ . Concentrations of heavy metals leached from the coal gangue were all below the regulatory limits from China MEP and U.S. EPA. These desirable characteristics indicated that the coal gangue has potential to be used as landfill liner materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Treatment of model solutions and wastewater containing selected hazardous metal ions using a chitin/lignin hybrid material as an effective sorbent.

    PubMed

    Bartczak, Przemysław; Klapiszewski, Łukasz; Wysokowski, Marcin; Majchrzak, Izabela; Czernicka, Weronika; Piasecki, Adam; Ehrlich, Hermann; Jesionowski, Teofil

    2017-12-15

    A chitin/lignin material with defined physicochemical and morphological properties was used as an effective adsorbent of environmentally toxic metals from model systems. Particularly significant is its use in the neutralization of real industrial wastes. The ions Ni 2+ , Cu 2+ , Zn 2+ and Pb 2+ were adsorbed on the functional sorbent, confirming the high sorption capacity of the newly obtained product, primarily due to the presence on its surface of numerous active functional groups from the component biopolymers. The kinetics of the process of ion adsorption from model solution were investigated, and the experimental data were found to fit significantly better to a type 1 pseudo-second-order kinetic model, as confirmed by the high correlation coefficient of 0.999 for adsorption of both nickel(II) copper(II) zinc(II) and lead(II) ions. The experimental data obtained on the basis of adsorption isotherms corresponded to the Langmuir model. The sorption capacity of the chitin/lignin material was measured at 70.41 mg(Ni 2+ )/g, 75.70 mg(Cu 2+ )/g, 82.41 mg(Zn 2+ )/g and 91.74 mg(Pb 2+ )/g. Analysis of thermodynamic parameters confirmed the endothermic nature of the process. It was also shown that nitric acid is a very effective desorbing (regenerating) agent, enabling the chitin/lignin material to be reused as an effective sorbent of metal ions. The sorption abilities of the chitin/lignin system with respect to particular metal ions can be ordered in the sequence Ni 2+

  11. A reactive transport model for mercury fate in soil--application to different anthropogenic pollution sources.

    PubMed

    Leterme, Bertrand; Blanc, Philippe; Jacques, Diederik

    2014-11-01

    Soil systems are a common receptor of anthropogenic mercury (Hg) contamination. Soils play an important role in the containment or dispersion of pollution to surface water, groundwater or the atmosphere. A one-dimensional model for simulating Hg fate and transport for variably saturated and transient flow conditions is presented. The model is developed using the HP1 code, which couples HYDRUS-1D for the water flow and solute transport to PHREEQC for geochemical reactions. The main processes included are Hg aqueous speciation and complexation, sorption to soil organic matter, dissolution of cinnabar and liquid Hg, and Hg reduction and volatilization. Processes such as atmospheric wet and dry deposition, vegetation litter fall and uptake are neglected because they are less relevant in the case of high Hg concentrations resulting from anthropogenic activities. A test case is presented, assuming a hypothetical sandy soil profile and a simulation time frame of 50 years of daily atmospheric inputs. Mercury fate and transport are simulated for three different sources of Hg (cinnabar, residual liquid mercury or aqueous mercuric chloride), as well as for combinations of these sources. Results are presented and discussed with focus on Hg volatilization to the atmosphere, Hg leaching at the bottom of the soil profile and the remaining Hg in or below the initially contaminated soil layer. In the test case, Hg volatilization was negligible because the reduction of Hg(2+) to Hg(0) was inhibited by the low concentration of dissolved Hg. Hg leaching was mainly caused by complexation of Hg(2+) with thiol groups of dissolved organic matter, because in the geochemical model used, this reaction only had a higher equilibrium constant than the sorption reactions. Immobilization of Hg in the initially polluted horizon was enhanced by Hg(2+) sorption onto humic and fulvic acids (which are more abundant than thiols). Potential benefits of the model for risk management and remediation of contaminated sites are discussed.

  12. Biosorptive uptake of arsenic(V) by steam activated carbon from mung bean husk: equilibrium, kinetics, thermodynamics and modeling

    NASA Astrophysics Data System (ADS)

    Mondal, Sandip; Aikat, Kaustav; Halder, Gopinath

    2017-12-01

    The present investigation emphasizes on the biosorptive removal of toxic pentavalent arsenic from water using steam activated carbon prepared from mung bean husk (SAC-MBH). Characterization of the synthesized sorbent was done using different instrumental techniques, i.e., SEM, BET and point of zero charge. Sorptive uptake of As(V) over steam activated MBH as a function of pH (3-9), agitation speed (40-200 rpm), dosage (50-1000 mg) and temperature (298-313 K) was studied by batch process at arsenic concentration of 2 mg L-1. Lower pH increases the arsenic removal over the pH range of 3-9. Among three adsorption isotherm models examined, Langmuir model was observed to show superior results over Freundlich model. The mean sorption energy (E) estimated by Dubinin-Radushkevich model suggested that the process of adsorption was chemisorption. Thermodynamic parameters confer that the sorption process was spontaneous, exothermic and feasible in nature. The pseudo-second-order rate kinetics of arsenic gave better correlation coefficients as compared to pseudo-first-order kinetics equation. Three process parameters, viz. adsorbent dosage, agitation speed and pH were opted for optimizing As(V) elimination using central composite design matrix of response surface methodology (RSM). The identical design setup was used for artificial neural network (ANN) for comparing its prediction capability with RSM towards As(V) removal. Maximum arsenic removal was observed to be 98.75% at sorbent dosage 0.75 gm L-1, pH 3.0, agitation speed 160 rpm and temperature 308 K. The study concluded that SAC-MBH could be a competent adsorbent for As(V) removal and ANN model was better in arsenic removal predictability results than RSM model.

  13. Non-Fickian dispersive transport of strontium in laboratory-scale columns: Modelling and evaluation

    NASA Astrophysics Data System (ADS)

    Liu, Dongxu; Jivkov, Andrey P.; Wang, Lichun; Si, Gaohua; Yu, Jing

    2017-06-01

    In the context of environmental remediation of contaminated sites and safety assessment of nuclear waste disposal in the near-surface zone, we investigate the leaching and non-Fickian dispersive migration with sorption of strontium (mocking strontium-90) through columns packed with sand and clay. Analysis is based on breakthrough curves (BTCs) from column experiments, which simulated rainfall infiltration and source term release scenario, rather than applying constant tracer solution at the inlet as commonly used. BTCs are re-evaluated and transport parameters are estimated by inverse modelling using two approaches: (1) equilibrium advection-dispersion equation (ADE); and (2) continuous time random walk (CTRW). Firstly, based on a method for calculating leach concentration, the inlet condition with an exponential decay input is identified. Secondly, the results show that approximately 39%-58% of Br- and 16%-49% of Sr2+ are eluted from the columns at the end of the breakthrough experiments. This suggests that trapping mechanisms, including diffusion into immobile zones and attachment of tracer on mineral surfaces, are more pronounced for Sr2+ than for Br-. Thirdly, we demonstrate robustness of CTRW-based truncated power-law (TPL) model in capturing non-Fickian reactive transport with 0 < β < 2, and Fickian transport with β > 2. The non-Fickian dispersion observed experimentally is explained by variations of local flow field from preferential flow paths due to physical heterogeneities. Particularly, the additional sorption process of strontium on clay minerals contributes to the delay of the peak concentration and the tailing features, which leads to an enhanced non-Fickian transport for strontium. Finally, the ADE and CTRW approaches to environmental modelling are evaluated. It is shown that CTRW with a sorption term can describe non-Fickian dispersive transport of strontium at laboratory scale by identifying appropriate parameters, while the traditional ADE with a retardation factor fails to reproduce the complex non-Fickian transport of strontium with strong sorption on clay surface.

  14. Soil sorption of organic vapors and effects of humidity on sorptive mechanism and capacity

    USGS Publications Warehouse

    Chiou, C.T.; Shoup, T.D.

    1985-01-01

    Vapor sorption isotherms on dry Woodburn soil at 20-30??C were determined for benzene, chlorobenzene, p-dichlorobenzene, m-dichlorobenzene, 1,2,4-trichlorobenzene, and water as single vapors and for benzene, m-dichlorobenzene, and 1,2,4-trichlorobenzene as functions of relative humidity (RH). Isotherms for all compounds on dry soil samples are distinctively nonlinear, with water showing the greatest capacity. Water vapor sharply reduced the sorption capacities of organic compounds with the dry soil; on water-saturated soil, the reduction was about 2 orders of magnitude. The markedly higher sorption of organic vapors at subsaturation humidities is attributed to adsorption on the mineral matter, which predominates over the simultaneous uptake by partition into the organic matter. At about 90% RH, the sorption capacities of organic compounds become comparable to those in aqueous systems. The effect of humidity is attributed to adsorptive displacement by water of organics adsorbed on the mineral matter. A small residual uptake is attributed to the partition into the soil-organic phase that has been postulated in aqueous systems. The results are essentially in keeping with the model that was previously proposed for sorption on the soil from water and from organic solvents.Vapor sorption isotherms on dry Woodburn soil at 20-30 degree C were determined for benzene, chlorobenzene, p-dichlorobenzene, m-dichlorobenzene, 1,2,4-trichlorobenzene, and water as single vapors and for benzene, m-dichlorobenzene, and 1,2,4-trichlorobenzene as functions of relative humidity (RH). Isotherms for all compounds on dry soil samples are distinctively nonlinear, with water showing the greatest capacity. Water vapor sharply reduced the sorption capacities of organic compounds with the dry soil; on water-saturated soil, the reduction was about 2 orders of magnitude. The markedly higher sorption of organic vapors at subsaturation humidities is attributed to adsorption on the mineral matter. The results are essentially in keeping with the model that was previously proposed for sorption on the soil from water and from organic solvents.

  15. Cobalt sorption onto anaerobic granular sludge: isotherm and spatial localization analysis.

    PubMed

    van Hullebusch, Eric D; Gieteling, Jarno; Zhang, Min; Zandvoort, Marcel H; Daele, Wim Van; Defrancq, Jacques; Lens, Piet N L

    2006-01-24

    This study investigated the effect of different feeding regimes on the cobalt sorption capacity of anaerobic granular sludge from a full-scale bioreactor treating paper mill wastewater. Adsorption experiments were done with non-fed granules in monometal (only Co) and competitive conditions (Co and Ni in equimolar concentrations). In order to modify the extracellular polymeric substances and sulfides content of the granules, the sludge was fed for 30 days with glucose (pH 7, 30 degrees C, organic loading rate=1.2 g glucose l(-1) day-1) in the presence (COD/SO4(2-)=1) or absence of sulfate. The partitioning of the sorbed cobalt between the exchangeable, carbonates, organic matter/sulfides and residual fractions was determined using a sequential extraction procedure (modified Tessier). Experimental equilibrium sorption data for cobalt were analysed by the Langmuir, Freundlich and Redlich-Peterson isotherm equations. The total Langmuir maximal sorption capacity of the sludge fed with glucose and sulfate loaded with cobalt alone displayed a significantly higher maximal cobalt sorption (Qmax =18.76 mg g-1 TSS) than the sludge fed with glucose alone (Qmax =13.21 mg g-1 TSS), essentially due to an increased sorption capacity of the exchangeable (30-107%) and organic/sulfides fractions (70-30%). Environmental scanning electron microscopy coupled with an energy dispersive X-ray analysis of granular cross-sections showed that mainly iron minerals (i.e. iron sulfides) were involved in the cobalt accumulation. Moreover, the sorbed cobalt was mainly located at the edge of the granules. The sorption characteristics of the exchangeable and carbonates fractions fitted well to the Redlich-Peterson model (intermediate multi-layer sorption behaviour), whereas the sorption characteristics of the organic matter/sulfides and residual fractions fitted well to the Langmuir model (monolayer sorption behaviour). The organic matter/sulfides fraction displayed the highest affinity for cobalt for the three sludge types investigated.

  16. Sorption Behavior of Dye Compounds onto Natural Sediment of Qinghe River.

    PubMed

    Liu, Ruixia; Liu, Xingmin; Tang, Hongxiao; Su, Yongbo

    2001-07-15

    The objective of this study is to assess the adsorption behavior of C.I. Basic Yellow X-5GL, C.I. Basic Red 13, C.I. Direct Blue 86, C.I. Vat Yellow 2, and C.I. Mordant Black 11 on natural sediment and to identify sediment characteristics that play a predominant role in the adsorption of the dyes. The potentiometric titration experiment is used to investigate acid-base properties of the sediment surface with a constant capacitance surface complexation model. The parameters controlling the sorption such as solution pH and ion strength, as well as the influence of organic carbon and Ca(2+) ion on the adsorption, are evaluated. It is shown that the titration data can be successfully described by the surface protonation and deprotonation model with the least-squares FITEQL program 2.0. The sorption isotherm data are fitted to the Freundlich equation in a nonlinear form (1/n=0.3-0.9) for all tested dyes. With increasing pH value, the sorption of C.I. Mordant Black 11 and C.I. Direct Blue 86 on the sediment decreases, while for C.I. Basic Yellow X-5GL and C.I. Basic Red 13, the extent of sorption slightly increases. In addition, ion strength also exhibits a considerably different effect on the sorption behavior of these dye compounds. The addition of Ca(2+) can greatly reduce the sorption of C.I. Basic Red 13 on the sediment surface, while it enhances the sorption of C.I. Direct Blue 6. The removal of organic carbon decreases the sorption of C.I. Mordant Black 11 and C.I. Direct Blue 86. In contrast, the sorption of C.I. Basic Red 13 and C.I. Basic Yellow X-5GL is obviously enhanced after the removal of organic carbon. The differences in adsorption behavior are mainly attributed to the physicochemical properties of these dye compounds. Copyright 2001 Academic Press.

  17. Reactive solute transport in streams: A surface complexation approach for trace metal sorption

    USGS Publications Warehouse

    Runkel, Robert L.; Kimball, Briant A.; McKnight, Diane M.; Bencala, Kenneth E.

    1999-01-01

    A model for trace metals that considers in-stream transport, metal oxide precipitation-dissolution, and pH-dependent sorption is presented. Linkage between a surface complexation submodel and the stream transport equations provides a framework for modeling sorption onto static and/or dynamic surfaces. A static surface (e.g., an iron- oxide-coated streambed) is defined as a surface with a temporally constant solid concentration. Limited contact between solutes in the water column and the static surface is considered using a pseudokinetic approach. A dynamic surface (e.g., freshly precipitated metal oxides) has a temporally variable solid concentration and is in equilibrium with the water column. Transport and deposition of solute mass sorbed to the dynamic surface is represented in the stream transport equations that include precipitate settling. The model is applied to a pH-modification experiment in an acid mine drainage stream. Dissolved copper concentrations were depressed for a 3 hour period in response to the experimentally elevated pH. After passage of the pH front, copper was desorbed, and dissolved concentrations returned to ambient levels. Copper sorption is modeled by considering sorption to aged hydrous ferric oxide (HFO) on the streambed (static surface) and freshly precipitated HFO in the water column (dynamic surface). Comparison of parameter estimates with reported values suggests that naturally formed iron oxides may be more effective in removing trace metals than synthetic oxides used in laboratory studies. The model's ability to simulate pH, metal oxide precipitation-dissolution, and pH-dependent sorption provides a means of evaluating the complex interactions between trace metal chemistry and hydrologic transport at the field scale.

  18. Sorption of Sr, Co and Zn on illite: Batch experiments and modelling including Co in-diffusion measurements on compacted samples

    NASA Astrophysics Data System (ADS)

    Montoya, V.; Baeyens, B.; Glaus, M. A.; Kupcik, T.; Marques Fernandes, M.; Van Laer, L.; Bruggeman, C.; Maes, N.; Schäfer, T.

    2018-02-01

    Experimental investigations on the uptake of divalent cations (Sr, Co and Zn) onto illite (Illite du Puy, Le-Puy-en-Velay, France) were carried out by three different international research groups (Institute for Nuclear Waste Disposal, KIT (Germany), Group Waste & Disposal, SCK-CEN, (Belgium) and Laboratory for Waste Management, PSI (Switzerland)) in the framework of the European FP7 CatClay project. The dependence of solid-liquid distribution ratios (Rd values) on pH at trace metal conditions (sorption edges) and on the metal ion concentration (sorption isotherms) was determined in dilute suspensions of homo-ionic Na-illite (Na-IdP) under controlled N2 atmosphere. The experimental results were modelled using the 2 Site Protolysis Non Electrostatic Surface Complexation and Cation Exchange (2SPNE SC/CE) sorption model. The sorption of Sr depends strongly on ionic strength, while a rather weak pH dependence is observed in a pH range between 3 and 11. The data were modelled with cation exchange reactions, taking into account competition with H, K, Ca, Mg and Al, and surface complexation on weak amphotheric edge sites at higher pH values. The sorption of Co on Na-IdP, however, is strongly pH dependent. Cation exchange on the planar sites and surface complexation on strong and weak amphoteric edge sites were used to describe the Co sorption data. Rd values for Co derived from in-diffusion measurements on compacted Na-IdP samples (bulk-dry density of 1700 kg m-3) between pH 5.0 and 9.0 are in good agreement with the batch sorption data. The equivalence of both approaches to measure sorption was thus confirmed for the present test system. In addition, the results highlight the importance of both major and minor surface species for the diffusive transport behaviour of strongly sorbing metal cations. While surface complexes at the edge sites determine largely the Rd value, the diffusive flux may be governed by those species bound to the planar sites, even at low fractional occupancies. The pH dependent sorption determined for trace Zn concentrations showed large Rd values across the entire pH range with almost no dependence on the background electrolyte concentration. Additional sorption experiments carried out at substantial fractional Zn loadings demonstrated that the selectivity for the exchange of Na+ for Zn2+ at the planar sites could not explain the large Rd values measured at low pH and trace Zn concentrations. This suggests that another mechanism is ruling Zn uptake under these conditions.

  19. The partition behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanesulfonamide (FOSA) on microplastics.

    PubMed

    Wang, Fei; Shih, Kai Min; Li, Xiao Yan

    2015-01-01

    Microplastics have been recognized as transport vectors for heavy metals and organic pollutants to marine animals. Thus, the sorption behavior of contaminant on microplastic is crucial to their transport in marine system. In this study, the sorption behavior of PFOS and FOSA (two perfluorochemicals) on three kinds of microplastics (PE, PS, and PVC) are reported. The isotherm study showed that the sorption of PFOS and FOSA on microplastics is highly linear, and it indicated that partition by hydrophobic interaction is the predominant sorption mechanism. The Kd values of FOSA on three kinds of microplastics are all higher than those of PFOS, and the reason is attributed to their different functional groups. The Kd value of FOSA on three types of microplastics followed the order as: PE>PVC>PS. Such finding may indicate that the molecule composition and structure of microplastics play important roles in their sorption processes of organic pollutants. The PFOS sorption levels on PE and PS particles were increased with the increase of NaCl and CaCl2 concentrations, while the ion concentrations have no effect on FOSA sorption. The study on the pH effects on PFOS and FOSA sorption indicated FOSA could partition under various pH conditions on three types of microplastics while PFOS sorption on PE and PS were favored with lower pH. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. A novel benzimidazole-functionalized 2-D COF material: synthesis and application as a selective solid-phase extractant for separation of uranium.

    PubMed

    Li, Juan; Yang, Xiaodan; Bai, Chiyao; Tian, Yin; Li, Bo; Zhang, Shuang; Yang, Xiaoyu; Ding, Songdong; Xia, Chuanqin; Tan, Xinyu; Ma, Lijian; Li, Shoujian

    2015-01-01

    A novel COF-based material (COF-COOH) containing large amounts of carboxylic groups was prepared for the first time by using a simple and effective one-step synthetic method, in which the cheap and commercially available raw materials, trimesoyl chloride and p-phenylenediamine, were used. The as-synthesized COF-COOH was modified with previously synthesized 2-(2,4-dihydroxyphenyl)-benzimidazole (HBI) by "grafting to" method, and a new solid-phase extractant (COF-HBI) with highly efficient sorption performance for uranium(VI) was consequently obtained. A series of characterizations demonstrated that COF-COOH and COF-HBI exhibited great thermostabilities and irradiation stabilities. Sorption behavior of the COF-based materials toward U(VI) was compared in simulated nuclear industrial effluent containing UO2(2+) and 11 undesired ions, and the UO2(2+) sorption amount of COF-HBI was 81 mg g(-1), accounting for approximately 58% of the total sorption amount, which was much higher than the sorption selectivity of COF-COOH to UO2(2+) (39%). Batch sorption experiment results indicated that the uranium(VI) sorption on COF-HBI was a pH dependent, rapid (sorption equilibrium was reached in 30 min), endothermic and spontaneous process. In the most favorable conditions, the equilibrium sorption capacity of the adsorbent for uranium could reach 211 mg g(-1). Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Theoretical and experimental evaluation of effective stress-induced sorption capacity change and its influence on coal permeability

    NASA Astrophysics Data System (ADS)

    Li, Chengwu; Dong, Lihui; Xu, Xiaomeng; Hu, Po; Tian, Jianwei; Zhang, Yihuai; Yang, Leilei

    2017-06-01

    The gas sorption effect is an important factor affecting the gas permeability of a coal seam, which has been proved in many previous experimental measurements and analytical permeability studies. However, the sorption capacity of coal is usually not static due to the complexity of external stress variation and internal gas media features. The stress-induced sorption capacity variation and its effect on the coal permeability change have not been fully identified yet. Thus, in this paper we present a preliminary evaluation of the stress-induced sorption capacity change by introducing the adsorption capacity modified term, and an experiment is carried out to verify the influence of the altered effective stress on coal permeability. Langmuir-like adsorption deformation constant parameters were combined into the modified coal permeability model and were given values to fully estimate the influence on permeability caused by the modification term. We found that different change modes of effective stress would yield different change effects on the permeability, that is, with the same effective stress change amount, the altered external stress-induced change had less influence than the altered-pore pressure-induced change; however, both modes demonstrated that the model taking sorption capacity change into consideration is more consistent with the experimental data. The effect of sorption capacity change on coal permeability variation was also found to be tightly connected with the physical and mechanical properties of the coal itself. It is proved that considering stress-induced sorption ability change has a critical role in characterizing the permeability variation of coal.

  2. Biodegradation of sorbed chemicals in soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scow, K.M.; Fan, S.; Johnson, C.

    Rates of biodegradation of sorbed chemicals are usually lower in soil than in aqueous systems, in part because sorption reduces the availability of the chemical to microorganisms. Biodegradation, sorption, and diffusion occur simultaneously and are tightly coupled. In soil, the rate of biodegradation is a function of a chemical`s diffusion coefficient, sorption partition coefficient, the distance it must diffuse from the site of sorption to microbial populations that can degrade it, and its biodegradation rate constant. A model (DSB model) was developed that describes biodegradation of chemicals limited in the availability by sorption and diffusion. Different kinetics expressions describe biodegradationmore » depending on whether the reaction is controlled by mass transfer (diffusion and sorption) or the intrinsic biodegradation rate, and whether biodegradation begins during or after the majority of sorption has occurred. We tested the hypothesis that there is a direct relationship between how strongly a chemical is sorbed and the chemical`s biodegradation rate. In six soils with different organic carbon contents, there was no relationship between the extent or rate of biodegradation and the sorption partition coefficient for phenanthrene. Aging of phenanthrene residues in soil led to a substantial reduction in the rate of biodegradation compared to biodegradation rates of recently added phenanthrene. Considerable research has focused on identification and development of techniques for enhancing in situ biodegradation of sorbed chemicals. Development of such techniques, especially those involving inoculation with microbial strains, should consider physical mass transfer limitations and potential decreases in bioavailability over time. 4 refs., 3 figs., 1 tab.« less

  3. ADSORPTION OF BACTERIOPHAGES ON CLAY MINERALS

    EPA Science Inventory

    Theability to predict the fate of microorganisms in soil is dependent on an understanding of the process of their sorption on soil and subsurface materials. Presently, we have focused on studying the thermodynamics of sorption of bacteriophages (T-2, MS-2, and

  4. Fractionation of sulfur and oxygen isotopes in sulfate by soil sorption

    NASA Astrophysics Data System (ADS)

    Van Stempvoort, D. R.; Reardon, E. J.; Fritz, P.

    1990-10-01

    Both field and laboratory data indicate that there is no significant isotope fractionation of sulfate during sorption in upland forest Podzols. The dominant sulfate sorption process in these soils is adsorption onto mineral surfaces. In the Plastic Lake watershed, Dorset, Ontario, Canada, fractions of sulfate from Podzol B-horizons have the following mean isotope (%.) compositions: water soluble sulfate, δ34S = +6.4; δ18O = -5.3; bicarbonate-exchanged sulfate by two methods, δ34S = + 4.5 and + 3.4; δ18O =-6.2 and -5.6; dissolved sulfate in B-horizon soilwater seepage, δ34S = + 4.8; δ18O = -5.4. These data indicate that soil sorption enriches dissolved sulfate in 34S by approximately 1 ± 1%. and in 18O by 0 +- 1 %. relative to sorbed sulfate. Similar results were obtained by laboratory sorption of sulfate by prepared goethite, which is a mineral representative of soil sorption sites in acidic Podzols like the one at Plastic Lake. The mean fractionation between sorbed and dissolved sulfate was found to be - 0.3%. for 34S and 0.1 %. for 18O. Earlier literature has confused the term adsorption; in many cases the more general term sorption, or retention, should be used. Pronounced fractionation of S and O isotopes in sulfate by lake and ocean sediments has been attributed to "adsorption" or "retention" but is more likely the result of sulfate reduction. Apparently, at Earth-surface conditions the only substantial isotope shifts in sulfate occur during microbial processes.

  5. Sorption kinetics and leachability of heavy metal from the contaminated soil amended with immobilizing agent (humus soil and hydroxyapatite).

    PubMed

    Chaturvedi, Pranav Kumar; Seth, Chandra Shekhar; Misra, Virendra

    2006-08-01

    Release of heavy metals onto the soil as a result of agricultural and industrial activities may pose a serious threat to the environment. This study investigated the kinetics of sorption of heavy metals on the non-humus soil amended with (1:3) humus soil and 1% hydroxyapatite used for in situ immobilization and leachability of heavy metals from these soils. For this, a batch equilibrium experiment was performed to evaluate metal sorption in the presence of 0.05 M KNO(3) background electrolyte solutions. The Langmuir isotherms applied for sorption studies showed that the amount of metal sorbed on the amended soil decreased in the order of Pb(2+)>Zn(2+)>Cd(2+). The data suggested the possibility of immobilization of Pb due to sorption process and immobilization of Zn and Cd by other processes like co-precipitation and ion exchange. The sorption kinetics data showed the pseudo-second-order reaction kinetics rather than pseudo-first-order kinetics. Leachability study was performed at various pHs (ranging from 3 to 10). Leachability rate was slowest for the Pb(2+) followed by Zn(2+) and Cd(2+). Out of the metal adsorbed on the soil only 6.1-21.6% of Pb, 7.3-39% of Zn and 9.3-44.3% of Cd leached out from the amended soil.

  6. Surfactant-enhanced remediation of a trichloroethene-contaminated aquifer. 1. Transport of triton X-100

    USGS Publications Warehouse

    Smith, J.A.; Sahoo, D.; Mclellan, H.M.; Imbrigiotta, T.E.

    1997-01-01

    Transport of a nonionic surfactant (Triton X-100) at aqueous concentrations less than 400 mg/L through a trichloroethene-contaminated sand-and-gravel aquifer at Picatinny Arsenal, NJ, has been studied through a series of laboratory and field experiments. In the laboratory, batch and column experiments were conducted to quantify the rate and amount of Triton X-100 sorption to the aquifer sediments. In the field, a 400 mg/L aqueous Triton X-100 solution was injected into the aquifer at a rate of 26.5 L/min for a 35-d period. The transport of Triton X-100 was monitored by sampling and analysis of groundwater at six locations surrounding the injection well. Equilibrium batch sorption experiments showed that Triton X-100 sorbs strongly and nonlinearly to the field soil with the sharpest inflection point of the isotherm occurring at an equilibrium aqueous Triton X-100 concentration close to critical micelle concentration. Batch, soil column, and field experimental data were analyzed with zero-, one-, and two- dimensional (respectively) transient solute transport models with either equilibrium or rate-limited sorption. These analyses reveal that Triton X- 100 sorption to the aquifer solids is slow relative to advective and dispersive transport and that an equilibrium sorption model cannot simulate accurately the observed soil column and field data. Comparison of kinetic sorption parameters from batch, column, and field transport data indicate that both physical heterogeneities and Triton X-100 mass transfer between water and soil contribute to the kinetic transport effects.Transport of a nonionic surfactant (Triton X-100) at aqueous concentrations less than 400 mg/L through a trichloroethene-contaminated sand-and-gravel aquifer was studied. Equilibrium batch sorption experiments showed that Triton X-100 sorbs strongly and nonlinearly to the field soil with the sharpest inflection point of the isotherm occurring at an equilibrium aqueous Triton X-100 concentration close to critical micelle concentration. Batch, soil column, and field experimental data were analyzed with zero-, one-, and two-dimensional transient solute transport models with either equilibrium or rate-limited sorption. These analyses revealed that Triton X-100 sorption to the aquifer solids was slow relative to advective and dispersive transport.

  7. Sorption of Cm(III) and Eu(III) onto clay minerals under saline conditions: Batch adsorption, laser-fluorescence spectroscopy and modeling

    NASA Astrophysics Data System (ADS)

    Schnurr, Andreas; Marsac, Rémi; Rabung, Thomas; Lützenkirchen, Johannes; Geckeis, Horst

    2015-02-01

    The present work reports experimental data for trivalent metal cation (Cm/Eu) sorption onto illite (Illite du Puy) and montmorillonite (Na-SWy-2) in NaCl solutions up to 4.37 molal (m) in the absence of carbonate. Batch sorption experiments were carried out for a given ionic strength at fixed metal concentration (mEu = 2 × 10-7 m, labeled with 152Eu for γ-counting) and at a constant solid to liquid ratio (S:L = 2 g/L) for 3 < pHm < 12 (pHm = -log mH+). The amount of clay sorbed Eu approaches almost 100% (with log KD > 5) for pHm > 8, irrespective of the NaCl concentration. Variations in Eu uptake are minor at elevated NaCl concentrations. Time-resolved laser fluorescence spectroscopy (TRLFS) studies on Cm sorption covering a wide range of NaCl concentrations reveal nearly identical fluorescence emission spectra after peak deconvolution, i.e. no significant variation of Cm surface speciation with salinity. Beyond the three surface complexes already found in previous studies an additional inner-sphere surface species with a fluorescence peak maximum at higher wavelength (λ ∼ 610 nm) could be resolved. This new surface species appears in the high pH range and is assumed to correspond to a clay/curium/silicate complex as already postulated in the literature for kaolinite. The 2 site protolysis non-electrostatic surface complexation and cation exchange sorption model (2SPNE SC/CE) was applied to describe Eu sorption data by involving the Pitzer and SIT (specific ion interaction) formalism in the calculation of the activities of dissolved aqueous species. Good agreement of model and experiment is achieved for sorption data at pHm < 6 without the need of adjusting surface complexation constants. For pHm > 6 in case of illite and pHm > 8 in case of montmorillonite calculated sorption data systematically fall below experimental data with increasing ionic strength. Under those conditions sorption is almost quantitative and deviations must be discussed considering uncertainties of measured Eu concentrations in the range of analytical detection limits.

  8. Sorption and Transport of Pharmaceutical chemicals in Organic- and Mineral-rich Soils

    NASA Astrophysics Data System (ADS)

    Vulava, V. M.; Schwindaman, J.; Murphey, V.; Kuzma, S.; Cory, W.

    2011-12-01

    Pharmaceutical, active ingredients in personal care products (PhACs), and their derivative compounds are increasingly ubiquitous in surface waters across the world. Sorption and transport of four relatively common PhACs (naproxen, ibuprofen, cetirizine, and triclosan) in different natural soils was measured. All of these compounds are relatively hydrophobic (log KOW>2) and have acid/base functional groups, including one compound that is zwitterionic (cetirizine.) The main goal of this study was to correlate organic matter (OM) and clay content in natural soils and sediment with sorption and degradation of PhACs and ultimately their potential for transport within the subsurface environment. A- and B-horizon soils were collected from four sub-regions within a pristine managed forested watershed near Charleston, SC, with no apparent sources of anthropogenic contamination. These four soil series had varying OM content (fOC) between 0.4-9%, clay mineral content between 6-20%, and soil pH between 4.5-6. The A-horizon soils had higher fOC and lower clay content than the B-horizon soils. Sorption isotherms measured from batch sorption experimental data indicated a non-linear sorption relationship in all A- and B-horizon soils - stronger sorption was observed at lower PhAC concentrations and lower sorption at higher concentrations. Three PhACs (naproxen, ibuprofen, and triclosan) sorbed more strongly with higher fOC A-horizon soils compared with the B-horizon soils. These results show that soil OM had a significant role in strongly binding these three PhACs, which had the highest KOW values. In contrast, cetirizine, which is predominantly positively charged at pH below 8, strongly sorbed to soils with higher clay mineral content and least strongly to higher fOC soils. All sorption isotherms fitted well to the Freundlich model. For naproxen, ibuprofen, and triclosan, there was a strong and positive linear correlation between the Freundlich adsorption constant, Kf, and fOC, again indicating that these PhACs preferentially partition into the soil OM. Such a correlation was absent for cetirizine. Breakthrough curves of PhACs measured in homogeneous packed soil columns indicated that PhAC transport was affected by chemical nonequilibrium processes depending on the soil and PhAC chemistry. The shape of the breakthrough curves indicated that there were two distinct sorption sites - OM and clay minerals - which influence nonequilibrium transport of these compounds. The retardation factor estimated using the distribution coefficient, Kd, measured from the sorption experiments was very similar to the measured value. While the sorption and transport data do not provide mechanistic information regarding the nature of PhAC interaction with chemical reactive components within geological materials, they do provide important information regarding potential fate of such compounds in the environment. The results also show the role that soil OM and mineral surfaces play in sequestering or transporting these chemicals. These insights have implications to the quality of the water resources in our communities.

  9. Pb(II) sorption from aqueous solution by novel biochar loaded with nano-particles.

    PubMed

    Wang, Chongqing; Wang, Hui

    2018-02-01

    Novel sorbent (HBC) is prepared by introducing nano-particles (Maghemite and EDTA functionalized layered double hydroxides) on biochar surface. FTIR, XRD, SEM and EDS are used to characterize the biochar nanocomposites. Pb(II) sorption is highly dependent on solution pH. Sorption kinetics and isotherms indicate that Pb(II) sorption onto the sorbents follows pseudo-second order model and Langmuir isotherm. The maximum sorption capacity of Pb(II) onto HBC is up to146.84 mg g -1 , higher than previously reported sorbents. The magnetic particles enable easy separation of HBC from aqueous solution by external magnetic fields. HBC can be used as effective sorbent for removal of heavy metals from wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effects of Radiation and Temperature on Iodide Sorption by Surfactant-Modified Bentonite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choung, Sungwook; Kim, Min Kyung; Yang, Jungseok

    2014-08-04

    Bentonite, which is used as an engineered barrier in geological repositories, is ineffective for sorbing anionic radionuclides because of its negatively charged surface. This study modified raw bentonite using a cationic surfactant (i.e., hexadecyltrimethylammonium [HDTMA]-Br) to improve its sorption capability for radioactive iodide. The effects of temperature and radiation on the iodide sorption of surfactant-modified bentonite (SMB) were evaluated under alkaline pH condition similar to that found in repository environments. Different amounts of surfactant, equivalent to the 50, 100, and 200% cation-exchange capacity of the bentonite, were used to produce the HDTMA-SMB for iodide sorption. The sorption reaction of themore » SMB with iodide reached equilibrium rapidly within 10 min regardless of temperature and radiation conditions. The rate of iodide sorption increased as the amount of the added surfactant was increased and nonlinear sorption behavior was exhibited. However, high temperature and γ-irradiation (60Co) resulted in significantly (~2–10 times) lower iodide Kd values for the SMB. The results of Fourier transform infrared spectroscopy analysis suggested that the decrease in iodide sorption may be caused by weakened physical electrostatic force between the HDTMA and iodide, and by the surfactant becoming detached from the SMB during the heating and irradiation processes.« less

  11. Role of interlayer hydration in lincomycin sorption by smectite clays.

    PubMed

    Wang, Cuiping; Ding, Yunjie; Teppen, Brian J; Boyd, Stephen A; Song, Cunyi; Li, Hui

    2009-08-15

    Lincomycin, an antibiotic widely administered as a veterinary medicine, is frequently detected in water. Little is known about the soil-water distribution of lincomycin despite the fact that this is a major determinant of its environmental fate and potential for exposure. Cation exchange was found to be the primary mechanism responsible for lincomycin sorption by soil clay minerals. This was evidenced by pH-dependent sorption, and competition with inorganic cations for sorptive sites. As solution pH increased, lincomycin sorption decreased. The extent of reduction was consistent with the decrease in cationic lincomycin species in solution. The presence of Ca2+ in solution diminished lincomycin sorption. Clay interlayer hydration status strongly influenced lincomycin adsorption. Smectites with the charge deficit from isomorphic substitution in tetrahedral layers (i.e., saponite) manifest a less hydrated interlayer environment resulting in greater sorption than that by octahedrally substituted clays (i.e., montmorillonite). Strongly hydrated exchangeable cations resulted in a more hydrated clay interlayer environment reducing sorption in the order of Ca- < K- < Cs-smectite. X-ray diffraction revealed that lincomycin was intercalated in smectite clay interlayers. Sorption capacity was limited by clay surface area rather than by cation exchange capacity. Smectite interlayer hydration was shown to be a major, yet previously unrecognized, factor influencing the cation exchange process of lincomycin on aluminosilicate mineral surfaces.

  12. Equilibrium sorption and diffusion rate studies with halogenated organic chemical and sandy aquifer material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ball, W.P.

    1990-01-01

    Concepts for rate limitation of sorptive uptake of hydrophobic organic solutes by aquifer solids are reviewed, emphasizing physical diffusion models and in the context of effects on contaminant transport. Data for the sorption of tetrachloroethene (PCE) and 1,2,4,5-tetrachlorobenzene (TeCB) on Borden sand are presented, showing that equilibrium is attained very slowly, requiring equilibration times on the order of tens of days for PCE and hundreds of days for TeCB. The rate of approach to equilibrium decreased with increasing particle size and sorption distribution coefficient, in accordance with retarded intragranular diffusion models. Pulverization of the samples significantly decreased the required timemore » to equilibrium without changing the sorption capacity of the solids. Batch sorption methodology was refined to allow accurate measurement of long-term distribution coefficients, using purified {sup 14}C-labelled solute spikes and sealed glass ampules. Sorption isotherms for PCE and TeCB were conducted with size fractions of Borden sand over four to five orders of magnitude in aqueous concentration, and were found to be slightly nonlinear (Freundlich exponent = 0.8). A concentrated set of data in the low concentration range (<50 ug/L) revealed that sorption in this range could be equally well described by a linear isotherm. Distribution coefficients of the two solutes with seven size fractions of Borden sand, measured at low concentration and at full equilibrium, were between seven and sixty times the value predicted on the basis of recent correlations with organic carbon content. Rate results for coarse size fractions support a simple pore diffusion model, with pore diffusion coefficients estimated to be approximately 3 {times} 10{sup {minus}8} cm{sup 2}/sec, more than 200{times} lower than the aqueous diffusivities.« less

  13. Moisture sorption isotherms and thermodynamic properties of bovine leather

    NASA Astrophysics Data System (ADS)

    Fakhfakh, Rihab; Mihoubi, Daoued; Kechaou, Nabil

    2018-04-01

    This study was aimed at the determination of bovine leather moisture sorption characteristics using a static gravimetric method at 30, 40, 50, 60 and 70 °C. The curves exhibit type II behaviour according to the BET classification. The sorption isotherms fitting by seven equations shows that GAB model is able to reproduce the equilibrium moisture content evolution with water activity for moisture range varying from 0.02 to 0.83 kg/kg d.b (0.9898 < R2 < 0.999). The sorption isotherms exhibit hysteresis effect. Additionally, sorption isotherms data were used to determine the thermodynamic properties such as isosteric heat of sorption, sorption entropy, spreading pressure, net integral enthalpy and entropy. Net isosteric heat of sorption and differential entropy were evaluated through direct use of moisture isotherms by applying the Clausius-Clapeyron equation and used to investigate the enthalpy-entropy compensation theory. Both sorption enthalpy and entropy for desorption increase to a maximum with increasing moisture content, and then decrease sharply with rising moisture content. Adsorption enthalpy decreases with increasing moisture content. Whereas, adsorption entropy increases smoothly with increasing moisture content to a maximum of 6.29 J/K.mol. Spreading pressure increases with rising water activity. The net integral enthalpy seemed to decrease and then increase to become asymptotic. The net integral entropy decreased with moisture content increase.

  14. Aminocyclopyrachlor sorption-desorption and leaching from three Brazilian soils.

    PubMed

    Francisco, Jeane G; Mendes, Kassio F; Pimpinato, Rodrigo F; Tornisielo, Valdemar L; Guimarães, Ana C D

    2017-07-03

    This study aimed to evaluate the sorption-desorption and leaching of aminocyclopyrachlor from three Brazilian soils. The sorption-desorption of 14 C-aminocyclopyrachlor was evaluated using the batch method and leaching was assessed in glass columns. The Freundlich model showed an adequate fit for the sorption-desorption of aminocyclopyrachlor. The Freundlich sorption coefficient [K f (sorption) ] ranged from 0.37 to 1.34 µmol (1-1/n) L 1/n kg -1 and showed a significant positive correlation with the clay content of the soil, while the K f (desorption) ranged from 3.62 to 5.36 µmol (1-1/n) L 1/n kg -1 . The K f (desorption) values were higher than their respective K f (sorption) , indicating that aminocyclopyrachlor sorption is reversible, and the fate of this herbicide in the environment can be affected by leaching. Aminocyclopyrachlor was detected at all depths (0-30 cm) in all the studied soils, where leaching was influenced by soil texture. The total herbicide leaching from the sandy clay and clay soils was <0.06%, whereas, ∼3% leached from the loamy sand soil. The results suggest that aminocyclopyrachlor has a high potential of leaching, based on its low sorption and high desorption capacities. Therefore, this herbicide can easily contaminate underground water resources.

  15. Herbicide and antibiotic removal by woodchip denitrification filters: Sorption processes

    USDA-ARS?s Scientific Manuscript database

    Batch sorption and desorption experiments to evaluate the retention of the agrichemicals onto wood chips from an in situ wood chip denitrification wall were conducted for atrazine, enrofloxacin, monensin and sulfamethazine. Estimated Freundlich distribution coefficients (Kf) showed that the order of...

  16. Herbicide and antibiotic removal by woodchip denitrification filters: Sorption processes

    USDA-ARS?s Scientific Manuscript database

    Batch sorption and desorption experiments to evaluate the retention of the agrichemicals onto wood chips from an in situ wood chip denitrification wall were conducted for atrazine, enrofloxacin, monensin, and sulfamethazine. Estimated Freundlich distribution coefficients (Kf) showed that the order o...

  17. Indoor sorption of surrogates for sarin and related nerve agents.

    PubMed

    Singer, Brett C; Hodgson, Alfred T; Destaillats, Hugo; Hotchi, Toshifumi; Revzan, Kenneth L; Sextro, Richard G

    2005-05-01

    Sorption rate parameters were determined for three organophosphorus (OP) compounds [dimethyl methylphosphonate (DMMP), diethyl ethylphosphonate (DEEP), and triethyl phosphate (TEP)] as surrogates for the G-type nerve agents sarin (GB), soman (GD), and tabun (GA). OP surrogates were injected and vaporized with additional volatile organic compounds into a 50 m3 chamber finished with painted wallboard. Experiments were conducted at two furnishing levels: (i) chamber containing only hard surfaces including a desk, a bookcase, tables, and chairs and (ii) with the addition of plush materials including carpet with cushion, draperies, and upholstered furniture. Each furnishing level was studied with aged and new painted wallboard. Gas-phase concentrations were measured during sealed chamber adsorb and desorb phases and then fit to three mathematical variations of a previously proposed sorption model having a surface sink and allowing for an embedded sink. A four-parameter model allowing unequal transport rates between surface and embedded sinks provided excellent fits for all conditions. To evaluate the potential effect of sorption, this model was incorporated into an indoor air quality simulation model to predict indoor concentrations of a G-type agent and a nonsorbing agent for hypothetical outdoor releases with shelter-in-place (SIP) response. Sorption was simulated using a range of parameters obtained experimentally. Simulations considered outdoor Gaussian plumes of 1- and 5-h duration and infiltration rates of 0.1, 0.3, and 0.9 h(-1). Indoor toxic loads (TL) for a 10-h SIP were calculated as integral C2 dt for a G-type agent. For the 5-h plume, sheltering reduced TLs for the nonsorbing agent to approximately 10-65% of outdoor levels. Analogous TLs for a G-type agent were 2-31% or 0.3-12% of outdoor levels assuming slow or moderate sorption. The relative effect of sorption was more pronounced for the longer plume and higher infiltration rates.

  18. Surface complexation modeling of zinc sorption onto ferrihydrite.

    PubMed

    Dyer, James A; Trivedi, Paras; Scrivner, Noel C; Sparks, Donald L

    2004-02-01

    A previous study involving lead(II) [Pb(II)] sorption onto ferrihydrite over a wide range of conditions highlighted the advantages of combining molecular- and macroscopic-scale investigations with surface complexation modeling to predict Pb(II) speciation and partitioning in aqueous systems. In this work, an extensive collection of new macroscopic and spectroscopic data was used to assess the ability of the modified triple-layer model (TLM) to predict single-solute zinc(II) [Zn(II)] sorption onto 2-line ferrihydrite in NaNO(3) solutions as a function of pH, ionic strength, and concentration. Regression of constant-pH isotherm data, together with potentiometric titration and pH edge data, was a much more rigorous test of the modified TLM than fitting pH edge data alone. When coupled with valuable input from spectroscopic analyses, good fits of the isotherm data were obtained with a one-species, one-Zn-sorption-site model using the bidentate-mononuclear surface complex, (triple bond FeO)(2)Zn; however, surprisingly, both the density of Zn(II) sorption sites and the value of the best-fit equilibrium "constant" for the bidentate-mononuclear complex had to be adjusted with pH to adequately fit the isotherm data. Although spectroscopy provided some evidence for multinuclear surface complex formation at surface loadings approaching site saturation at pH >/=6.5, the assumption of a bidentate-mononuclear surface complex provided acceptable fits of the sorption data over the entire range of conditions studied. Regressing edge data in the absence of isotherm and spectroscopic data resulted in a fair number of surface-species/site-type combinations that provided acceptable fits of the edge data, but unacceptable fits of the isotherm data. A linear relationship between logK((triple bond FeO)2Zn) and pH was found, given by logK((triple bond FeO)2Znat1g/l)=2.058 (pH)-6.131. In addition, a surface activity coefficient term was introduced to the model to reduce the ionic strength dependence of sorption. The results of this research and previous work with Pb(II) indicate that the existing thermodynamic framework for the modified TLM is able to reproduce the metal sorption data only over a limited range of conditions. For this reason, much work still needs to be done in fine-tuning the thermodynamic framework and databases for the TLM.

  19. The effect of mineral composition on the sorption of cesium ions on geological formations.

    PubMed

    Kónya, József; Nagy, Noémi M; Nemes, Zoltán

    2005-10-15

    The sorption of cesium-137 on rock samples, mainly on clay rocks, is determined as a function of the mineral composition of the rocks. A relation between the mineral groups (tectosilicates, phyllosilicates, clay minerals, carbonates) and their cesium sorption properties is shown. A linear model is constructed by which the distribution coefficients of the different minerals can be calculated from the mineral composition and the net distribution coefficient of the rock. On the basis of the distribution coefficients of the minerals the cesium sorption properties of other rocks can be predicted.

  20. Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N2O production

    USDA-ARS?s Scientific Manuscript database

    Better understanding of process controls over nitrous oxide (N2O) production in urine-impacted ‘hot spots’ and fertilizer bands is needed to improve mitigation strategies and emission models. Following amendment with bovine (Bos taurus) urine (Bu) or urea (Ur), we measured inorganic N, pH, N2O, and...

  1. Site energy distribution analysis and influence of Fe3O4 nanoparticles on sulfamethoxazole sorption in aqueous solution by magnetic pine sawdust biochar.

    PubMed

    Reguyal, Febelyn; Sarmah, Ajit K

    2018-02-01

    Magnetisation of carbonaceous adsorbents using iron oxides has been found to be one of the potential solutions for easy recovery of adsorbent after use. We evaluated the effects of Fe 3 O 4 nanoparticle addition on the physico-chemical properties of biochar and its sorption properties. Five adsorbents with varying amount of Fe 3 O 4 per mass of adsorbent (0%, 25%, 50%, 75% and 100%) were used to adsorb sulfamethoxazole (SMX), an emerging micropollutant. Five isotherm models were used to evaluate the sorption behaviour of SMX onto the adsorbents where Redlich-Peterson model was found to best describe the data. Based on this model, the approximate site energy distribution for each adsorbent was determined. Surface area and sorption capacity had strong negative linear relationship with the amount of Fe 3 O 4 per mass of adsorbent while the pore volume and saturation magnetisation of the adsorbent increased with increasing percentage of Fe 3 O 4 . The results of the approximate site energy distribution analysis showed that the addition of Fe 3 O 4 on biochar reduced the area under the frequency distribution curve of sorption site energies leading to the lowering of the sorption sites available for SMX. This could be attributed to the blockage of the hydrophobic surface of biochar reducing the hydrophobic interaction between SMX and biochar. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Characterization of spectral responses of dissolved organic matter (DOM) for atrazine binding during the sorption process onto black soil.

    PubMed

    Wang, Yifan; Zhang, Xinyuan; Zhang, Xing; Meng, Qingjuan; Gao, Fengjie; Zhang, Ying

    2017-08-01

    This study was aim to investigate the interaction between soil-derived dissolved organic matter (DOM) and atrazine as a kind of pesticides during the sorption process onto black soil. According to the experimental data, the adsorption capacity of Soil + DOM, Soil and DOM were 41.80, 31.45 and 9.35 mg kg -1 , separately, which indicated that DOM significantly enhanced the adsorption efficiency of atrazine by soil. Data implied that the pseudo-second-order kinetic equation could well explain the adsorption process. The adsorption isotherms (R 2  > 0.99) had a satisfactory fit in both Langmuir and Freundlich models. Three-dimensional excitation-emission matrix (3D-EEM), synchronous fluorescence, two-dimensional correlation spectroscopy (2D-COS) and Fourier transform infrared spectroscopy (FT-IR) were selected to analyze the interaction between DOM and atrazine. 3D-EEM showed that humic acid-like substances were the main component of DOM. The fluorescence of DOM samples were gradually quenched with the increased of atrazine concentrations. Synchronous fluorescence spectra showed that static fluorescence quenching was the main quenching process. 2D-COS indicated that the order of the spectral changes were as following: 336 nm > 282 nm. Furthermore, the fluorescence quenching of humic-like fraction occurred earlier than that of protein-like fraction under atrazine surroundings. FT-IR spectra indicated that main compositions of soil DOM include proteins, polysaccharides and humic substances. The findings of this study are significant to reveal DOM played an important role in the environmental fate of pesticides during sorption process onto black soil and also provide more useful information for understanding the interaction between DOM and pesticides by using spectral responses. Copyright © 2017. Published by Elsevier Ltd.

  3. Investigation of copper sorption by sugar beet processing lime waste.

    PubMed

    Ippolito, J A; Strawn, D G; Scheckel, K G

    2013-01-01

    In the western United States, sugar beet processing for sugar recovery generates a lime-based waste product (∼250,000 Mg yr) that has little liming value in the region's calcareous soils. This area has recently experienced an increase in dairy production, with dairies using copper (Cu)-based hoof baths to prevent hoof diseases. A concern exists regarding soil Cu accumulation because spent hoof baths may be disposed of in waste ponds, with pond waters being used for irrigation. The objective of this preliminary study was to evaluate the ability of lime waste to sorb Cu. Lime waste was mixed with increasing Cu-containing solutions (up to 100,000 mg Cu kg lime waste) at various buffered pH values (pH 6, 7, 8, and 9) and shaken over various time periods (up to 30 d). Copper sorption phenomenon was quantified using sorption maximum fitting, and the sorption mechanism was investigated using X-ray absorption spectroscopy. Results showed that sorption onto lime waste increased with decreasing pH and that the maximum Cu sorption of ∼45,000 mg kg occurred at pH 6. X-ray absorption spectroscopy indicated that Cu(OH) was the probable species present, although the precipitate existed as small multinuclear precipitates on the surface of the lime waste. Such structures may be precursors for larger surface precipitates that develop over longer incubation times. Findings suggest that sugar beet processing lime waste can viably sorb Cu from liquid waste streams, and thus it may have the ability to remove Cu from spent hoof baths. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Effects of sulfate ligand on uranyl carbonato surface species on ferrihydrite surfaces

    USGS Publications Warehouse

    Arai, Yuji; Fuller, C.C.

    2012-01-01

    Understanding uranium (U) sorption processes in permeable reactive barriers (PRB) are critical in modeling reactive transport for evaluating PRB performance at the Fry Canyon demonstration site in Utah, USA. To gain insight into the U sequestration mechanism in the amorphous ferric oxyhydroxide (AFO)-coated gravel PRB, U(VI) sorption processes on ferrihydrite surfaces were studied in 0.01 M Na2SO4 solutions to simulate the major chemical composition of U-contaminatedgroundwater (i.e., [SO42-]~13 mM L-1) at the site. Uranyl sorption was greater at pH 7.5 than that at pH 4 in both air- and 2% pCO2-equilibrated systems. While there were negligible effects of sulfate ligands on the pH-dependent U(VI) sorption (<24 h) in both systems, X-ray absorption spectroscopy (XAS) analysis showed sulfate ligand associated U(VI) surface species at the ferrihydrite–water interface. In air-equilibrated systems, binary and mono-sulfate U(VI) ternary surface species co-existed at pH 5.43. At pH 6.55–7.83, a mixture of mono-sulfate and bis-carbonato U(VI) ternary surface species became more important. At 2% pCO2, there was no contribution of sulfate ligands on the U(VI) ternary surface species. Instead, a mixture of bis-carbonato inner-sphere (38%) and tris-carbonato outer-sphere U(VI) ternary surface species (62%) was found at pH 7.62. The study suggests that the competitive ligand (bicarbonate and sulfate) coordination on U(VI) surface species might be important in evaluating the U solid-state speciation in the AFO PRB at the study site where pCO2 fluctuates between 1 and 2 pCO2%.

  5. Effects of sulfate ligand on uranyl carbonato surface species on ferrihydrite surfaces.

    PubMed

    Arai, Yuji; Fuller, C C

    2012-01-01

    Understanding uranium (U) sorption processes in permeable reactive barriers (PRB) are critical in modeling reactive transport for evaluating PRB performance at the Fry Canyon demonstration site in Utah, USA. To gain insight into the U sequestration mechanism in the amorphous ferric oxyhydroxide (AFO)-coated gravel PRB, U(VI) sorption processes on ferrihydrite surfaces were studied in 0.01 M Na(2)SO(4) solutions to simulate the major chemical composition of U-contaminated groundwater (i.e., [SO(4)(2-)] ~13 mM L(-1)) at the site. Uranyl sorption was greater at pH 7.5 than that at pH 4 in both air- and 2% pCO(2)-equilibrated systems. While there were negligible effects of sulfate ligands on the pH-dependent U(VI) sorption (<24 h) in both systems, X-ray absorption spectroscopy (XAS) analysis showed sulfate ligand associated U(VI) surface species at the ferrihydrite-water interface. In air-equilibrated systems, binary and mono-sulfate U(VI) ternary surface species co-existed at pH 5.43. At pH 6.55-7.83, a mixture of mono-sulfate and bis-carbonato U(VI) ternary surface species became more important. At 2% pCO(2), there was no contribution of sulfate ligands on the U(VI) ternary surface species. Instead, a mixture of bis-carbonato inner-sphere (38%) and tris-carbonato outer-sphere U(VI) ternary surface species (62%) was found at pH 7.62. The study suggests that the competitive ligand (bicarbonate and sulfate) coordination on U(VI) surface species might be important in evaluating the U solid-state speciation in the AFO PRB at the study site where pCO(2) fluctuates between 1 and 2 pCO(2)%. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Moisture Sorption and Thermodynamic Properties of Vacuum-Dried Capsosiphon fulvescens Powder

    PubMed Central

    Zuo, Li; Rhim, Jong-Whan; Lee, Jun Ho

    2015-01-01

    The moisture sorption isotherms of vacuum-dried edible green alga (Capsosiphon fulvescens) powders were determined at 25, 35, and 45°C and water activity (aw) in the range of 0.11~0.94. An inversion effect of temperature was found at high water activity (>0.75). Various mathematical models were fitted to the experimental data, and Brunauer, Emmett, and Teller model was found to be the most suitable model describing the relationship between equilibrium moisture content and water activity (<0.45). Henderson model could also provide excellent agreement between the experimental and predicted values despite of the intersection point. Net isosteric heat of adsorption decreased from 15.77 to 9.08 kJ/mol with an increase in equilibrium moisture content from 0.055 to 0.090 kg H2O/kg solids. The isokinetic temperature (Tβ) was 434.79 K, at which all the adsorption reactions took place at the same rate. The enthalpy-entropy compensation suggested that the mechanism of the adsorption process was shown to be enthalpy-driven. PMID:26451360

  7. Hydrogen peroxide modified sodium titanates with improved sorption capabilities

    DOEpatents

    Nyman, May D [Albuquerque, NM; Hobbs, David T [North Augusta, SC

    2009-02-24

    The sorption capabilities (e.g., kinetics, selectivity, capacity) of the baseline monosodium titanate (MST) sorbent material currently being used to sequester Sr-90 and alpha-emitting radioisotopes at the Savannah River Site are significantly improved when treated with hydrogen peroxide; either during the original synthesis of MST, or, as a post-treatment step after the MST has been synthesized. It is expected that these peroxide-modified MST sorbent materials will have significantly improved sorption capabilities for non-radioactive cations found in industrial processes and waste streams.

  8. Biochar: a green sorbent to sequester acidic organic contaminants

    NASA Astrophysics Data System (ADS)

    Sigmund, Gabriel; Kah, Melanie; Sun, Huichao; Hofmann, Thilo

    2015-04-01

    Biochar is a carbon rich product of biomass pyrolysis that exhibits a high sorption potential towards a wide variety of inorganic and organic contaminants. Because it is a valuable soil additive and a potential carbon sink that can be produced from renewable resources, biochar has gained growing attention for the development of more sustainable remediation strategies. A lot of research efforts have been dedicated to the sorption of hydrophobic contaminants and metals to biochar. Conversely, the understanding of the sorption of acidic organic contaminants remains limited, and questions remain on the influence of biochar characteristics (e.g. ash content) on the sorption behaviour of acidic organic contaminants. To address this knowledge gap, sorption batch experiments were conducted with a series of structurally similar acidic organic contaminants covering a range of dissociation constant (2,4-D, MCPA, 2,4-DB and triclosan). The sorbents selected for experimentation included a series of 10 biochars covering a range of characteristics, multiwalled carbon nanotubes as model for pure carbonaceous phases, and an activated carbon as benchmark. Overall, sorption coefficient [L/kg] covered six orders of magnitude and generally followed the order 2,4-D < MCPA < 2,4-DB < triclosan. Combining comprehensive characterization of the sorbents with the sorption dataset allowed the discussion of sorption mechanisms and driving factors of sorption. Statistical analysis suggests that (i) partitioning was the main driver for sorption to sorbents with small specific surface area (< 25 m²/g), whereas (ii) specific mechanisms dominated sorption to sorbents with larger specific surface area. Results showed that factors usually not considered for the sorption of neutral contaminants play an important role for the sorption of organic acids. The pH dependent lipophilicity ratio (i.e. D instead of Kow), ash content and ionic strength are key factors influencing the sorption of acidic organic contaminants to biochars. Overall, the identified factors, as well as the environmental matrix, should be carefully considered when selecting the type of biochar for sequestration purposes.

  9. The sorption of silver by poorly crystallized manganese oxides

    USGS Publications Warehouse

    Anderson, B.J.; Jenne, E.A.; Chao, T.T.

    1973-01-01

    The sorption of silver by poorly crystallized manganese oxides was studied using synthesized samples of three members of the manganous manganite (birnessite) group, of different chemical composition and crystallinity, and a poorly organized ??-MnO2. All four oxides sorbed significant quantities of silver. The manganous manganites showed the greatest sorption (up to 0.5 moles silver/mole MnOx at pH 7) while the ??-MnO2 showed the least (0.3 moles silver/ mole MnOx at pH 7). Sorption of silver was adequately described by the Langmuir equation over a considerable concentration range. The relationship failed at low pH values and high equilibrium silver concentrations. The sorption capacity showed a direct relationship with pH. However, the rate of increase of sorption capacity decreased at the higher pH values. Silver sorption maxima. were not directly related to surface area but appeared to vary with the amount of occluded sodium and potassium present in the manganese oxide. The important processes involved in the uptake of silver by the four poorly crystallized manganese oxides ara considered to be surface exchange for manganese, potassium and sodium as well as exchange for structural manganese, potassium and sodium. ?? 1973.

  10. [Aluminum dissolution and changes of pH in soil solution during sorption of copper by aggregates of paddy soil].

    PubMed

    Xu, Hai-Bo; Zhao, Dao-Yuan; Qin, Chao; Li, Yu-Jiao; Dong, Chang-Xun

    2014-01-01

    Size fractions of soil aggregates in Lake Tai region were collected by the low-energy ultrasonic dispersion and the freeze-desiccation methods. The dissolution of aluminum and changes of pH in soil solution during sorption of Cu2+ and changes of the dissolution of aluminum at different pH in the solution of Cu2+ by aggregates were studied by the equilibrium sorption method. The results showed that in the process of Cu2+ sorption by aggregates, the aluminum was dissoluted and the pH decreased. The elution amount of aluminum and the decrease of pH changed with the sorption of Cu2+, both increasing with the increase of Cu2+ sorption. Under the same conditions, the dissolution of aluminum and the decrease of pH were in the order of coarse silt fraction > silt fraction > sand fraction > clay fraction, which was negatively correlated with the amount of iron oxide, aluminum and organic matter. It suggested that iron oxide, aluminum and organic matters had inhibitory and buffering effect on the aluminum dissolution and the decrease of pH during the sorption of Cu2+.

  11. Raw or incubated olive-mill wastes and its biotransformed products as agricultural soil amendments-effect on sorption-desorption of triazine herbicides.

    PubMed

    Delgado-Moreno, Laura; Almendros, Gonzalo; Peña, Aránzazu

    2007-02-07

    Raw olive-mill waste and soil amendments obtained from their traditional composting or vermicomposting were added, at rates equivalent to 200 Mg ha-1, to a calcareous silty clay loam soil in a laboratory test, in order to improve its fertility and physicochemical characteristics. In particular, the effects on the sorption-desorption processes of four triazine herbicides have been examined. We found that comparatively hydrophobic herbicides terbuthylazine and prometryn increased their retention on amended soil whereas the more polar herbicides simazine and cyanazine were less affected. Soil application of olive cake, without transformation, resulted in the highest herbicide retention. Its relatively high content in aliphatic fractions and lipids could explain the increased herbicide retention through hydrophobic bonding and herbicide diffusion favored by poorly condensed macromolecular structures. On the other hand, the condensed aromatic structure of the compost and vermicompost from olive cake could hinder diffusion processes, resulting in lower herbicide sorption. In fact, the progressive humification in soil of olive-mill solid waste led to a decrease of sorption capacity, which suggested important changes in organic matter quality and interactions during the mineralization process. When soil amended with vermicompost was incubated for different periods of time, the enhanced herbicide sorption capacity persisted for 2 months. Pesticide desorption was reduced by the addition of fresh amendments but was enhanced during the transformation process of amendments in soil. Our results indicate the potential of soil amendments based on olive-mill wastes in the controlled, selective release of triazine herbicides, which varies depending on the maturity achieved by their biological transformation.

  12. Porous nano-cerium oxide wood chip biochar composites for aqueous levofloxacin removal and sorption mechanism insights.

    PubMed

    Yi, Shengze; Sun, Yuanyuan; Hu, Xin; Xu, Hongxia; Gao, Bin; Wu, Jichun

    2017-01-14

    The adsorption removal of levofloxacin (LEV), a widely used fluoroquinolone antibiotic, by using the biochars derived from the pyrolysis of pine wood chip pretreated with cerium trichloride was investigated through batch sorption experiments and multiple characterization techniques. The differences in the basic physicochemical properties between Ce-impregnated biochars and the pristine biochars were confirmed by the analysis of elemental compositions, specific surface areas, energy dispersive spectrometry, X-ray diffraction, and thermo-gravimetry. FT-IR spectra of the pre- and post-sorption biochars confirmed the chemical adsorption for LEV sorption onto the biochars. Large shifts in the binding energy of Ce 3d , O 1s , C 1s , and N 1s regions on the pre- and post-sorption biochars indicated the surface complexation of LEV molecule onto the biochars. The binding species of Ce 4+ and Ce 3+ identified by X-ray photoelectron spectroscopy reflect the role of Ce oxides during sorption. Batch adsorption showed the significant enhancement of adsorption capacity for LEV after the Ce modification. Batch adsorption kinetic data fitted well with the pseudo-second-order model. Both the Langmuir and the Freundlich models reproduced the isotherm data well. Findings from this work indicated that Ce-impregnated biochars can be effective for the removal of aqueous LEV.

  13. Chemically modified biochar produced from conocarpus waste increases NO3 removal from aqueous solutions.

    PubMed

    Usman, Adel R A; Ahmad, Mahtab; El-Mahrouky, Mohamed; Al-Omran, Abdulrasoul; Ok, Yong Sik; Sallam, Abdelazeem Sh; El-Naggar, Ahmed H; Al-Wabel, Mohammad I

    2016-04-01

    Biochar has emerged as a universal sorbent for the removal of contaminants from water and soil. However, its efficiency is lower than that of commercially available sorbents. Engineering biochar by chemical modification may improve its sorption efficiency. In this study, conocarpus green waste was chemically modified with magnesium and iron oxides and then subjected to thermal pyrolysis to produce biochar. These chemically modified biochars were tested for NO3 removal efficiency from aqueous solutions in batch sorption isothermal and kinetic experiments. The results revealed that MgO-biochar outperformed other biochars with a maximum NO3 sorption capacity of 45.36 mmol kg(-1) predicted by the Langmuir sorption model. The kinetics data were well described by the Type 1 pseudo-second-order model, indicating chemisorption as the dominating mechanism of NO3 sorption onto biochars. Greater efficiency of MgO-biochar was related to its high specific surface area (391.8 m(2) g(-1)) and formation of strong ionic complexes with NO3. At an initial pH of 2, more than 89 % NO3 removal efficiency was observed for all of the biochars. We conclude that chemical modification can alter the surface chemistry of biochar, thereby leading to enhanced sorption capacity compared with simple biochar.

  14. Sorption of organic compounds by aged polystyrene microplastic particles.

    PubMed

    Hüffer, Thorsten; Weniger, Anne-Katrin; Hofmann, Thilo

    2018-05-01

    Microplastics that are released into the environment undergo aging and interact with other substances such as organic contaminants. Understanding the sorption interactions between aged microplastics and organic contaminants is therefore essential for evaluating the impact of microplastics on the environment. There is little information available on how the aging of microplastics affects their sorption behavior and other properties. We have therefore investigated the effects of an accelerated UV-aging procedure on polystyrene microplastics, which are used in products such as skin cleaners and foams. Physical and chemical particle characterizations showed that aging led to significant surface oxidation and minor localized microcrack formation. Sorption coefficients of organic compounds by polystyrene microplastics following aging were up to one order of magnitude lower than for pristine particles. Sorption isotherms were experimentally determined using a diverse set of probe sorbates covering a variety of substance classes allowing an in-depth evaluation of the poly-parameter linear free-energy relationship (ppLFER) modelling used to investigate the contribution of individual molecular interactions to overall sorption. The ppLFER modelling was validated using internal cross-validation, which confirmed its robustness. This approach therefore yields improved estimates of the interactions between aged polystyrene microplastics and organic contaminants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. HIGH TEMPERATURE SORPTION OF CESIUM AND STRONTIUM ON DISPERSED KAOLINITE POWDERS

    EPA Science Inventory

    Sorption of cesium and strontium on kaolinite powders was investigated as a means to minimize the emissions of these metals during certain high-temperature processes currently being developed to isolate and dispose of radiological and mixed wastes. In this work, nonradioactive aq...

  16. QSAR ANALYSIS OF SORPTION-CORRECTED RATE CONSTANTS FOR REDUCTIVE BIOTRANSFORMATION OF HALOGENATED AROMATICS

    EPA Science Inventory

    The inherent coupling among geochemical and microbial reactions may have significant effects on the environmental fate of a containinant. For example, sorption processes may decrease the concentration of an organic compound in solution, thereby reducing the biodegradation rate of...

  17. Production of sorbent from paper industry solid waste for oil spill cleanup.

    PubMed

    Demirel Bayık, G; Altın, A

    2017-12-15

    The aim of the study is to select a cellulosic waste material from paper industry solid wastes and process it for sorbent production. Four different solid wastes were collected from a local paper production facility and rejects were selected due to its sorption capacity and processability. Oil sorption experiments were conducted according to the ASTM F 726-12 method. Effect of sorbent dosage, contact and dripping time, recovery of the oil, reusability of the sorbent and sorption from the water surface were also determined. Maximum oil sorption capacity was determined as 9.67, 12.92 and 12.84g/g for diesel oil, 0W30 and 10W30 motor oils respectively for the static test and 8.27, 10.45 and 11.69g/g for the dynamic test. An efficient and low-cost sorbent was produced from paper industry rejects that can be used on land and on water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Phosphorus fraction and phosphate sorption-release characteristics of the wetland sediments in the Yellow River Delta

    NASA Astrophysics Data System (ADS)

    Cui, Yuan; Xiao, Rong; Xie, Ying; Zhang, Mingxiang

    2018-02-01

    The aim of this study was to investigate phosphorus (P) fractions and phosphate sorption-release characteristics of the surface sediments regarding the wetland restoration in the Yellow River Delta (YRD). Sediments samples were collected from three typical sample plots: Phragmites australis community (p), Suaeda salsa community (s), and bare land (b) both in natural wetland (N) and restored wetland (R). The results showed that the mean content of TP was 541.58 mg/kg, and the rank order of P fractions were: inorganic phosphorus (IP) (65.6%) > residual phosphorus (RP) (24.9%) > organic phosphorus (OP) (9.5%). For sediments under the same land cover, TP and OP contents were significantly higher in natural wetlands than those in restored wetlands. This indicated that the restoration project really made a difference in TP content of sediments, and the decreased TP might result from decreased OP. For P kinetics sorption, a quick sorption mainly occurred within 0.5 h. The maximum phosphorus adsorption capacities (Qmax) ranging from 139.40 mg/kg to 224.06 mg/kg and the bonding energy constant (K) ranging from 0.33 mg/L to 1.37 mg/L were both obtained using a Langmuir model. In addition, Qmax, P release (Pr) and P release rates (Prr) were in the order of Nb > Np > Ns > Rb > Rp > Rs, Np > Rp > Ns > Rs = Nb > Rb and Rp > Ns > Rs > Rb > Np > Nb, respectively. This indicated that sediments from natural wetland could adsorb more P as well as release more P into overlying water, moreover, more content of P were left in sediments comparing to restored wetland. Sediments from bare land were more likely to retain P as a pool because of the highest sorption capacity while lowest release potential. Our study showed that P sorption-release and the quick sorption processes were mainly affected by sediment moisture, amorphous iron and aluminum oxides (Feox and Alox). Besides, Qmax was related to background value of sediments P. OP was the major P fraction adsorbed by sediments, and the P adsorbed by sediments was mainly adsorbed on Feox and Alox.

  19. Sorption and speciation of selenium in boreal forest soil.

    PubMed

    Söderlund, Mervi; Virkanen, Juhani; Holgersson, Stellan; Lehto, Jukka

    2016-11-01

    Sorption and speciation of selenium in the initial chemical forms of selenite and selenate were investigated in batch experiments on humus and mineral soil samples taken from a 4-m deep boreal forest soil excavator pit on Olkiluoto Island, on the Baltic Sea coast in southwestern Finland. The HPLC-ICP-MS technique was used to monitor any possible transformations in the selenium liquid phase speciation and to determine the concentrations of selenite and selenate in the samples for calculation of the mass distribution coefficient, K d , for both species. Both SeO 3 2- and SeO 4 2- proved to be resistant forms in the prevailing soil conditions and no changes in selenium liquid phase speciation were seen in the sorption experiments in spite of variations in the initial selenium species, incubation time or conditions, pH, temperature or microbial activity. Selenite sorption on the mineral soil increased with time in aerobic conditions whilst the opposite trend was seen for the anaerobic soil samples. Selenite retention correlated with the contents of organic matter and weakly crystalline oxides of aluminum and iron, solution pH and the specific surface area. Selenate exhibited poorer sorption on soil than selenite and on average the K d values were 27-times lower. Mineral soil was more efficient in retaining selenite and selenate than humus, implicating the possible importance of weakly crystalline aluminum and iron oxides for the retention of oxyanions in Olkiluoto soil. Sterilization of the soil samples decreased the retention of selenite, thus implying some involvement of soil microbes in the sorption processes or a change in sample composition, but it produced no effect for selenate. There was no sorption of selenite by quartz, potassium feldspar, hornblende or muscovite. Biotite showed the best retentive properties for selenite in the model soil solution at about pH 8, followed by hematite, plagioclase and chlorite. The K d values for these minerals were 18, 14, 8 and 7 L/kg, respectively. It is proposed that selenite sorption is affected by the structural Fe(II) in biotite, which is capable of inducing the reduction of SeO 3 2- to Se(0). Selenite probably forms a surface complex with Fe(III) atoms on the surface of hematite, thus explaining its retention on this mineral. None of the minerals retained selenate to any extent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, M.A.; Khan, S.A.

    Sorption studies of cesium, strontium, and cobalt (Cs, Sr, and Co) on bentonite under various experimental conditions, such as contact time, pH, sorbent and sorbate concentration, and temperature, have been performed. The sorption data for all these metals have been interpreted in terms of Freundlich, Langmuir, and Dubinin-Radushkevich equations. Thermodynamics parameters, such as heat of sorption {Delta}H{degrees}, free energy change {Delta}G{degrees}, and entropy change {Delta}S{degrees}, for the sorption of these metals on bentonite have been calculated. The value of {Delta}H{degrees} shows that the sorption of Cs was exothermic, while the sorption of Sr and Co on bentonite were endothermic inmore » nature. The value of {Delta}G{degrees} for their sorption was negative, showing the spontaneity of the process. The maximum loading capacity of Cs, Sr, and Co were 75.5, 22, and 27.5 meq, respectively, for 100 g of bentonite. The mean free energy E of Cs, Sr, and Co sorption on bentonite was 14.5, 9, and 7.7 kJ/mol, respectively. The value of E indicates that ion exchange may be the predominant mode of sorption for these radionuclides. The desorption studies with 0.01 M CaCl{sub 2} and groundwater at low-metal loading on bentonite showed that about 95% of Cs, 85-90% of Sr, and 97% of Co were irreversibly sorbed. Bentonite could be effectively used for the decontamination of wastewater effluent containing low concentrations of radioactive nuclides of Cs, Sr, and Co. 16 refs., 7 figs., 3 tabs.« less

Top