Beckett, Kate; Earthy, Sarah; Sleney, Jude; Barnes, Jo; Kellezi, Blerina; Barker, Marcus; Clarkson, Julie; Coffey, Frank; Elder, Georgina; Kendrick, Denise
2014-01-01
Objective To explore views of service providers caring for injured people on: the extent to which services meet patients’ needs and their perspectives on factors contributing to any identified gaps in service provision. Design Qualitative study nested within a quantitative multicentre longitudinal study assessing longer term impact of unintentional injuries in working age adults. Sampling frame for service providers was based on patient-reported service use in the quantitative study, patient interviews and advice of previously injured lay research advisers. Service providers’ views were elicited through semistructured interviews. Data were analysed using thematic analysis. Setting Participants were recruited from a range of settings and services in acute hospital trusts in four study centres (Bristol, Leicester, Nottingham and Surrey) and surrounding areas. Participants 40 service providers from a range of disciplines. Results Service providers described two distinct models of trauma care: an ‘ideal’ model, informed by professional knowledge of the impact of injury and awareness of best models of care, and a ‘real’ model based on the realities of National Health Service (NHS) practice. Participants’ ‘ideal’ model was consistent with standards of high-quality effective trauma care and while there were examples of services meeting the ideal model, ‘real’ care could also be fragmented and inequitable with major gaps in provision. Service provider accounts provide evidence of comprehensive understanding of patients’ needs, awareness of best practice, compassion and research but reveal significant organisational and resource barriers limiting implementation of knowledge in practice. Conclusions Service providers envisage an ‘ideal’ model of trauma care which is timely, equitable, effective and holistic, but this can differ from the care currently provided. Their experiences provide many suggestions for service improvements to bridge the gap between ‘real’ and ‘ideal’ care. Using service provider views to inform service design and delivery could enhance the quality, patient experience and outcomes of care. PMID:25005598
Void Growth and Coalescence Simulations
2013-08-01
distortion and damage, minimum time step, and appropriate material model parameters. Further, a temporal and spatial convergence study was used to...estimate errors, thus, this study helps to provide guidelines for modeling of materials with voids. Finally, we use a Gurson model with Johnson-Cook...spatial convergence study was used to estimate errors, thus, this study helps to provide guidelines for modeling of materials with voids. Finally, we
Kim, Hea-Won; Park, Taekyung; Quiring, Stephanie; Barrett, Diana
2018-01-01
A coalition model is often used to serve victims of human trafficking but little is known about whether the model is adequately meeting the needs of the victims. The purpose of this study was to examine anti-human trafficking collaboration model in terms of its impact and the collaborative experience, including challenges and lessons learned from the service providers' perspective. Mixed methods study was conducted to evaluate the impact of a citywide anti-trafficking coalition model from the providers' perspectives. Web-based survey was administered with service providers (n = 32) and focus groups were conducted with Core Group members (n = 10). Providers reported the coalition model has made important impacts in the community by increasing coordination among the key agencies, law enforcement, and service providers and improving quality of service provision. Providers identified the improved and expanded partnerships among coalition members as the key contributing factor to the success of the coalition model. Several key strategies were suggested to improve the coalition model: improved referral tracking, key partner and protocol development, and information sharing.
Geomagnetic field models for satellite angular motion studies
NASA Astrophysics Data System (ADS)
Ovchinnikov, M. Yu.; Penkov, V. I.; Roldugin, D. S.; Pichuzhkina, A. V.
2018-03-01
Four geomagnetic field models are discussed: IGRF, inclined, direct and simplified dipoles. Geomagnetic induction vector expressions are provided in different reference frames. Induction vector behavior is compared for different models. Models applicability for the analysis of satellite motion is studied from theoretical and engineering perspectives. Relevant satellite dynamics analysis cases using analytical and numerical techniques are provided. These cases demonstrate the benefit of a certain model for a specific dynamics study. Recommendations for models usage are summarized in the end.
Beckett, Kate; Earthy, Sarah; Sleney, Jude; Barnes, Jo; Kellezi, Blerina; Barker, Marcus; Clarkson, Julie; Coffey, Frank; Elder, Georgina; Kendrick, Denise
2014-07-08
To explore views of service providers caring for injured people on: the extent to which services meet patients' needs and their perspectives on factors contributing to any identified gaps in service provision. Qualitative study nested within a quantitative multicentre longitudinal study assessing longer term impact of unintentional injuries in working age adults. Sampling frame for service providers was based on patient-reported service use in the quantitative study, patient interviews and advice of previously injured lay research advisers. Service providers' views were elicited through semistructured interviews. Data were analysed using thematic analysis. Participants were recruited from a range of settings and services in acute hospital trusts in four study centres (Bristol, Leicester, Nottingham and Surrey) and surrounding areas. 40 service providers from a range of disciplines. Service providers described two distinct models of trauma care: an 'ideal' model, informed by professional knowledge of the impact of injury and awareness of best models of care, and a 'real' model based on the realities of National Health Service (NHS) practice. Participants' 'ideal' model was consistent with standards of high-quality effective trauma care and while there were examples of services meeting the ideal model, 'real' care could also be fragmented and inequitable with major gaps in provision. Service provider accounts provide evidence of comprehensive understanding of patients' needs, awareness of best practice, compassion and research but reveal significant organisational and resource barriers limiting implementation of knowledge in practice. Service providers envisage an 'ideal' model of trauma care which is timely, equitable, effective and holistic, but this can differ from the care currently provided. Their experiences provide many suggestions for service improvements to bridge the gap between 'real' and 'ideal' care. Using service provider views to inform service design and delivery could enhance the quality, patient experience and outcomes of care. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Modeling dispersion of traffic-related pollutants in the NEXUS health study
Dispersion modeling tools have traditionally provided critical information for air quality management decisions, but have been used recently to provide exposure estimates to support health studies. However, these models can be challenging to implement, particularly in near-road s...
The Mechanisms of Manual Therapy in the Treatment of Musculoskeletal Pain: A Comprehensive Model
Bialosky, Joel E; Bishop, Mark D; Price, Don D; Robinson, Michael E; George, Steven Z
2009-01-01
Prior studies suggest manual therapy (MT) as effective in the treatment of musculoskeletal pain; however, the mechanisms through which MT exerts its effects are not established. In this paper we present a comprehensive model to direct future studies in MT. This model provides visualization of potential individual mechanisms of MT that the current literature suggests as pertinent and provides a framework for the consideration of the potential interaction between these individual mechanisms. Specifically, this model suggests that a mechanical force from MT initiates a cascade of neurophysiological responses from the peripheral and central nervous system which are then responsible for the clinical outcomes. This model provides clear direction so that future studies may provide appropriate methodology to account for multiple potential pertinent mechanisms. PMID:19027342
An agent-based simulation model to study accountable care organizations.
Liu, Pai; Wu, Shinyi
2016-03-01
Creating accountable care organizations (ACOs) has been widely discussed as a strategy to control rapidly rising healthcare costs and improve quality of care; however, building an effective ACO is a complex process involving multiple stakeholders (payers, providers, patients) with their own interests. Also, implementation of an ACO is costly in terms of time and money. Immature design could cause safety hazards. Therefore, there is a need for analytical model-based decision-support tools that can predict the outcomes of different strategies to facilitate ACO design and implementation. In this study, an agent-based simulation model was developed to study ACOs that considers payers, healthcare providers, and patients as agents under the shared saving payment model of care for congestive heart failure (CHF), one of the most expensive causes of sometimes preventable hospitalizations. The agent-based simulation model has identified the critical determinants for the payment model design that can motivate provider behavior changes to achieve maximum financial and quality outcomes of an ACO. The results show nonlinear provider behavior change patterns corresponding to changes in payment model designs. The outcomes vary by providers with different quality or financial priorities, and are most sensitive to the cost-effectiveness of CHF interventions that an ACO implements. This study demonstrates an increasingly important method to construct a healthcare system analytics model that can help inform health policy and healthcare management decisions. The study also points out that the likely success of an ACO is interdependent with payment model design, provider characteristics, and cost and effectiveness of healthcare interventions.
Stochastic and deterministic multiscale models for systems biology: an auxin-transport case study.
Twycross, Jamie; Band, Leah R; Bennett, Malcolm J; King, John R; Krasnogor, Natalio
2010-03-26
Stochastic and asymptotic methods are powerful tools in developing multiscale systems biology models; however, little has been done in this context to compare the efficacy of these methods. The majority of current systems biology modelling research, including that of auxin transport, uses numerical simulations to study the behaviour of large systems of deterministic ordinary differential equations, with little consideration of alternative modelling frameworks. In this case study, we solve an auxin-transport model using analytical methods, deterministic numerical simulations and stochastic numerical simulations. Although the three approaches in general predict the same behaviour, the approaches provide different information that we use to gain distinct insights into the modelled biological system. We show in particular that the analytical approach readily provides straightforward mathematical expressions for the concentrations and transport speeds, while the stochastic simulations naturally provide information on the variability of the system. Our study provides a constructive comparison which highlights the advantages and disadvantages of each of the considered modelling approaches. This will prove helpful to researchers when weighing up which modelling approach to select. In addition, the paper goes some way to bridging the gap between these approaches, which in the future we hope will lead to integrative hybrid models.
Dispersion modeling tools have traditionally provided critical information for air quality management decisions, but have been used recently to provide exposure estimates to support health studies. However, these models can be challenging to implement, particularly in near-road s...
Constructing service-oriented architecture adoption maturity matrix using Kano model
NASA Astrophysics Data System (ADS)
Hamzah, Mohd Hamdi Irwan; Baharom, Fauziah; Mohd, Haslina
2017-10-01
Commonly, organizations adopted Service-Oriented Architecture (SOA) because it can provide a flexible reconfiguration and can reduce the development time and cost. In order to guide the SOA adoption, previous industry and academia have constructed SOA maturity model. However, there is a limited number of works on how to construct the matrix in the previous SOA maturity model. Therefore, this study is going to provide a method that can be used in order to construct the matrix in the SOA maturity model. This study adapts Kano Model to construct the cross evaluation matrix focused on SOA adoption IT and business benefits. This study found that Kano Model can provide a suitable and appropriate method for constructing the cross evaluation matrix in SOA maturity model. Kano model also can be used to plot, organize and better represent the evaluation dimension for evaluating the SOA adoption.
A Workforce Design Model: Providing Energy to Organizations in Transition
ERIC Educational Resources Information Center
Halm, Barry J.
2011-01-01
The purpose of this qualitative study was to examine the change in performance realized by a professional services organization, which resulted in the Life Giving Workforce Design (LGWD) model through a grounded theory research design. This study produced a workforce design model characterized as an organizational blueprint that provides virtuous…
ERIC Educational Resources Information Center
Ryba, Tatiana V.; Wright, Handel Kashope
2005-01-01
This paper explores the implications of a cultural studies as praxis heuristic "model: for transforming sport psychology". It provides a brief introduction to both cultural studies and sport psychology and discusses a cultural studies intersection with sport studies and sport psychology. Cultural studies, it asserts, provides one of several…
Policy Research Challenges in Comparing Care Models for Dual-Eligible Beneficiaries.
Van Cleave, Janet H; Egleston, Brian L; Brosch, Sarah; Wirth, Elizabeth; Lawson, Molly; Sullivan-Marx, Eileen M; Naylor, Mary D
2017-05-01
Providing affordable, high-quality care for the 10 million persons who are dual-eligible beneficiaries of Medicare and Medicaid is an ongoing health-care policy challenge in the United States. However, the workforce and the care provided to dual-eligible beneficiaries are understudied. The purpose of this article is to provide a narrative of the challenges and lessons learned from an exploratory study in the use of clinical and administrative data to compare the workforce of two care models that deliver home- and community-based services to dual-eligible beneficiaries. The research challenges that the study team encountered were as follows: (a) comparing different care models, (b) standardizing data across care models, and (c) comparing patterns of health-care utilization. The methods used to meet these challenges included expert opinion to classify data and summative content analysis to compare and count data. Using descriptive statistics, a summary comparison of the two care models suggested that the coordinated care model workforce provided significantly greater hours of care per recipient than the integrated care model workforce. This likely represented the coordinated care model's focus on providing in-home services for one recipient, whereas the integrated care model focused on providing services in a day center with group activities. The lesson learned from this exploratory study is the need for standardized quality measures across home- and community-based services agencies to determine the workforce that best meets the needs of dual-eligible beneficiaries.
DOT National Transportation Integrated Search
1982-01-01
The Detailed Station Model (DSM) provides operational and performance measures of alternative station configurations and management policies with respect to vehicle and passenger capabilities. It provides an analytic tool to support tradeoff studies ...
Barnett, Anthony I; Hall, Wayne; Fry, Craig L; Dilkes-Frayne, Ella; Carter, Adrian
2017-12-14
Addiction treatment providers' views about the disease model of addiction (DMA), and their contemporary views about the brain disease model of addiction (BDMA), remain an understudied area. We systematically reviewed treatment providers' attitudes about the DMA/BDMA, examined factors associated with positive or negative attitudes and assessed their views on the potential clinical impact of both models. Pubmed, EMBASE, PsycINFO, CINAHL Plus and Sociological Abstracts were systematically searched. Original papers on treatment providers' views about the DMA/BDMA and its clinical impact were included. Studies focussing on tobacco, behavioural addictions or non-Western populations were excluded. The 34 included studies were predominantly quantitative and conducted in the USA. Among mixed findings of treatment providers' support for the DMA, strong validity studies indicated treatment providers supported the disease concept and moral, free-will or social models simultaneously. Support for the DMA was positively associated with treatment providers' age, year of qualification, certification status, religious beliefs, being in recovery and Alcoholics Anonymous attendance. Greater education was negatively associated with DMA support. Treatment providers identified potential positive (e.g. reduced stigma) and negative (e.g. increased sense of helplessness) impacts of the DMA on client behaviour. The review suggests treatment providers may endorse disease and other models while strategically deploying the DMA for presumed therapeutic benefits. Varying DMA support across workforces indicated service users may experience multiple and potentially contradictory explanations of addiction. Future policy development will benefit by considering how treatment providers adopt disease concepts in practice. © 2017 Australasian Professional Society on Alcohol and other Drugs.
O'Sullivan, Belinda G; McGrail, Matthew R; Joyce, Catherine M; Stoelwinder, Johannes
2016-06-01
Objective This paper describes the service distribution and models of rural outreach by specialist doctors living in metropolitan or rural locations. Methods The present study was a national cross-sectional study of 902 specialist doctors providing 1401 rural outreach services in the Medicine in Australia: Balancing Employment and Life study, 2008. Five mutually exclusive models of rural outreach were studied. Results Nearly half of the outreach services (585/1401; 42%) were provided to outer regional or remote locations, most (58%) by metropolitan specialists. The most common model of outreach was drive-in, drive-out (379/902; 42%). In comparison, metropolitan-based specialists were less likely to provide hub-and-spoke models of service (odd ratio (OR) 0.31; 95% confidence interval (CI) 0.21-0.46) and more likely to provide fly-in, fly-out models of service (OR 4.15; 95% CI 2.32-7.42). The distance travelled by metropolitan specialists was not affected by working in the public or private sector. However, rural-based specialists were more likely to provide services to nearby towns if they worked privately. Conclusions Service distribution and models of outreach vary according to where specialists live as well as the practice sector of rural specialists. Multilevel policy and planning is needed to manage the risks and benefits of different service patterns by metropolitan and rural specialists so as to promote integrated and accessible services. What is known about this topic? There are numerous case studies describing outreach by specialist doctors. However, there is no systematic evidence describing the distribution of rural outreach services and models of outreach by specialists living in different locations and the broad-level factors that affect this. What does this paper add? The present study provides the first description of outreach service distribution and models of rural outreach by specialist doctors living in rural versus metropolitan areas. It shows that metropolitan and rural-based specialists have different levels of service reach and provide outreach through different models. Further, the paper highlights that practice sector has no effect on metropolitan specialists, but private rural specialists limit their travel distance. What are the implications for practitioners? The complexity of these patterns highlights the need for multilevel policy and planning approaches to promote integrated and accessible outreach in rural and remote Australia.
Sinclair, Shane; Hack, Thomas F; Raffin-Bouchal, Shelley; McClement, Susan; Stajduhar, Kelli; Singh, Pavneet; Sinnarajah, Aynharan; Chochinov, Harvey Max
2018-01-01
Background Healthcare providers are considered the primary conduit of compassion in healthcare. Although most healthcare providers desire to provide compassion, and patients and families expect to receive it, an evidence-based understanding of the construct and its associated dimensions from the perspective of healthcare providers is needed. Objectives The aim of this study was to investigate healthcare providers’ perspectives and experiences of compassion in order to generate an empirically derived, clinically informed model. Design Data were collected via focus groups with frontline healthcare providers and interviews with peer-nominated exemplary compassionate healthcare providers. Data were independently and collectively analysed by the research team in accordance with Straussian grounded theory. Setting and participants 57 healthcare providers were recruited from urban and rural palliative care services spanning hospice, home care, hospital-based consult teams, and a dedicated inpatient unit within Alberta, Canada. Results Five categories and 13 associated themes were identified, illustrated in the Healthcare Provider Compassion Model depicting the dimensions of compassion and their relationship to one another. Compassion was conceptualised as—a virtuous and intentional response to know a person, to discern their needs and ameliorate their suffering through relational understanding and action. Conclusions An empirical foundation of healthcare providers’ perspectives on providing compassionate care was generated. While the dimensions of the Healthcare Provider Compassion Model were congruent with the previously developed Patient Model, further insight into compassion is now evident. The Healthcare Provider Compassion Model provides a model to guide clinical practice and research focused on developing interventions, measures and resources to improve it. PMID:29540416
Villalobos, Bianca T; Bridges, Ana J
2016-07-01
This study tests the parameters of Weiner's attribution model of caregiving, which describes how attributions of controllability relate to emotional reactions, which in turn influence willingness to provide support to stigmatized individuals. To date, the model has not been explored in the context of cultural variables, the caregiver-recipient relationship, or types of support. The present study examined the attribution model using a Latino community sample (N = 96) that was presented with vignettes describing an individual with depression. Support was found for the basic attribution model. Familismo was predictive of attributions of controllability and the basic model was predictive of emotional support, but not instrumental support. Participants were more willing to provide instrumental support to a partner, but had more positive affective reactions toward a sibling. The findings provide important information about contextual factors that may motivate Latino caregivers to provide support. © The Author(s) 2015.
Probability of Detection (POD) as a statistical model for the validation of qualitative methods.
Wehling, Paul; LaBudde, Robert A; Brunelle, Sharon L; Nelson, Maria T
2011-01-01
A statistical model is presented for use in validation of qualitative methods. This model, termed Probability of Detection (POD), harmonizes the statistical concepts and parameters between quantitative and qualitative method validation. POD characterizes method response with respect to concentration as a continuous variable. The POD model provides a tool for graphical representation of response curves for qualitative methods. In addition, the model allows comparisons between candidate and reference methods, and provides calculations of repeatability, reproducibility, and laboratory effects from collaborative study data. Single laboratory study and collaborative study examples are given.
Use of mouse models to study the mechanisms and consequences of RBC clearance
Hod, E. A.; Arinsburg, S. A.; Francis, R. O.; Hendrickson, J. E.; Zimring, J. C.; Spitalnik, S. L.
2013-01-01
Mice provide tractable animal models for studying the pathophysiology of various human disorders. This review discusses the use of mouse models for understanding red-blood-cell (RBC) clearance. These models provide important insights into the pathophysiology of various clinically relevant entities, such as autoimmune haemolytic anaemia, haemolytic transfusion reactions, other complications of RBC transfusions and immunomodulation by Rh immune globulin therapy. Mouse models of both antibody- and non-antibody-mediated RBC clearance are reviewed. Approaches for exploring unanswered questions in transfusion medicine using these models are also discussed. PMID:20345515
Australian Seismological Reference Model (AuSREM): crustal component
NASA Astrophysics Data System (ADS)
Salmon, M.; Kennett, B. L. N.; Saygin, E.
2013-01-01
Although Australia has been the subject of a wide range of seismological studies, these have concentrated on specific features of the continent at crustal scales and on the broad scale features in the mantle. The Australian Seismological Reference Model (AuSREM) is designed to bring together the existing information, and provide a synthesis in the form of a 3-D model that can provide the basis for future refinement from more detailed studies. Extensive studies in the last few decades provide good coverage for much of the continent, and the crustal model builds on the various data sources to produce a representative model that captures the major features of the continental structure and provides a basis for a broad range of further studies. The model is grid based with a 0.5° sampling in latitude and longitude, and is designed to be fully interpolable, so that properties can be extracted at any point. The crustal structure is built from five-layer representations of refraction and receiver function studies and tomographic information. The AuSREM crustal model is available at 1 km intervals. The crustal component makes use of prior compilations of sediment thicknesses, with cross checks against recent reflection profiling, and provides P and S wavespeed distributions through the crust. The primary information for P wavespeed comes from refraction profiles, for S wavespeed from receiver function studies. We are also able to use the results of ambient noise tomography to link the point observations into national coverage. Density values are derived using results from gravity interpretations with an empirical relation between P wavespeed and density. AuSREM is able to build on a new map of depth to Moho, which has been created using all available information including Moho picks from over 12 000 km of full crustal profiling across the continent. The crustal component of AuSREM provides a representative model that should be useful for modelling of seismic wave propagation and calculation of crustal corrections for tomography. Other applications include gravity studies and dynamic topography at the continental scale.
Effectiveness of Video Modeling Provided by Mothers in Teaching Play Skills to Children with Autism
ERIC Educational Resources Information Center
Besler, Fatma; Kurt, Onur
2016-01-01
Video modeling is an evidence-based practice that can be used to provide instruction to individuals with autism. Studies show that this instructional practice is effective in teaching many types of skills such as self-help skills, social skills, and academic skills. However, in previous studies, videos used in the video modeling process were…
The Preliminary Design of a Standardized Spacecraft Bus for Small Tactical Satellites (Volume 2)
1996-11-01
this requirement, conditions of the model need to be modified to provide some flexibility to the original solution set. In the business world this...time The mission modules modeled in the Modsat computer model are necessarily "generic" in nature to provide both flexibility in design evaluation and...methods employed during the study, the scope of the problem, the value system used to evaluate alternatives, tradeoff studies performed, modeling tools
Liu, Zhenyu; Szarecka, Agnieszka; Yonkunas, Michael; Speranskiy, Kirill; Kurnikova, Maria; Cascio, Michael
2014-01-01
The glycine receptor (GlyR), a member of the pentameric ligand-gated ion channel superfamily, is the major inhibitory neurotransmitter-gated receptor in the spinal cord and brainstem. In these receptors, the extracellular domain binds agonists, antagonists and various other modulatory ligands that act allosterically to modulate receptor function. The structures of homologous receptors and binding proteins provide templates for modeling of the ligand-binding domain of GlyR, but limitations in sequence homology and structure resolution impact on modeling studies. The determination of distance constraints via chemical crosslinking studies coupled with mass spectrometry can provide additional structural information to aid in model refinement, however it is critical to be able to distinguish between intra- and inter-subunit constraints. In this report we model the structure of GlyBP, a structural and functional homolog of the extracellular domain of human homomeric α1 GlyR. We then show that intra- and intersubunit Lys-Lys crosslinks in trypsinized samples of purified monomeric and oligomeric protein bands from SDS-polyacrylamide gels may be identified and differentiated by MALDI-TOF MS studies of limited resolution. Thus, broadly available MS platforms are capable of providing distance constraints that may be utilized in characterizing large complexes that may be less amenable to NMR and crystallographic studies. Systematic studies of state-dependent chemical crosslinking and mass spectrometric identification of crosslinked sites has the potential to complement computational modeling efforts by providing constraints that can validate and refine allosteric models. PMID:25025226
Testing Software Development Project Productivity Model
NASA Astrophysics Data System (ADS)
Lipkin, Ilya
Software development is an increasingly influential factor in today's business environment, and a major issue affecting software development is how an organization estimates projects. If the organization underestimates cost, schedule, and quality requirements, the end results will not meet customer needs. On the other hand, if the organization overestimates these criteria, resources that could have been used more profitably will be wasted. There is no accurate model or measure available that can guide an organization in a quest for software development, with existing estimation models often underestimating software development efforts as much as 500 to 600 percent. To address this issue, existing models usually are calibrated using local data with a small sample size, with resulting estimates not offering improved cost analysis. This study presents a conceptual model for accurately estimating software development, based on an extensive literature review and theoretical analysis based on Sociotechnical Systems (STS) theory. The conceptual model serves as a solution to bridge organizational and technological factors and is validated using an empirical dataset provided by the DoD. Practical implications of this study allow for practitioners to concentrate on specific constructs of interest that provide the best value for the least amount of time. This study outlines key contributing constructs that are unique for Software Size E-SLOC, Man-hours Spent, and Quality of the Product, those constructs having the largest contribution to project productivity. This study discusses customer characteristics and provides a framework for a simplified project analysis for source selection evaluation and audit task reviews for the customers and suppliers. Theoretical contributions of this study provide an initial theory-based hypothesized project productivity model that can be used as a generic overall model across several application domains such as IT, Command and Control, Simulation and etc... This research validates findings from previous work concerning software project productivity and leverages said results in this study. The hypothesized project productivity model provides statistical support and validation of expert opinions used by practitioners in the field of software project estimation.
Chisholm, Anna; Nelson, Pauline A; Pearce, Christina J; Keyworth, Chris; Griffiths, Christopher E M; Cordingley, Lis; Bundy, Christine
2016-02-01
Individuals' illness representations, including beliefs about psoriasis (a complex immune-mediated condition), and their emotional responses to the condition guide self-management behaviour. It is also plausible that health care providers' illness representations guide their own management of psoriasis. Patients commonly report poor health care experiences related to psoriasis, and the role of health care providers' beliefs, emotions, as well as their knowledge, experiences and behaviours ('personal models') in this is unexplored. This study aimed explore health care providers' personal models of psoriasis. Qualitative analysis of 23 semi-structured interviews with health care professionals providing care for psoriasis patients was performed. Purposive sampling achieved maximum variation regarding participant discipline, level of experience, gender and age. The self-regulatory/common sense model informed data collection and initial data analysis. Principles of framework analysis were used to generate predetermined and emergent key issues related to practitioners' personal models. Three types of personal model emerged. Sophisticated-Linear Model: 70% of practitioners recognized psoriasis as a complex condition but managed it as a skin condition. Mixed Model: 17% of practitioners recognized/managed some elements of psoriasis as complex and some as a skin condition. Sophisticated-Sophisticated Model: 13% recognized and managed psoriasis as a complex condition. Across the data set, five themes emerged illustrating key patterns underpinning these different models including (1) Recognising complexity, (2) Putting skin first, (3) Taking on the complexities of psoriasis with the patient, (4) Aiming for clearance, and (5) Affective experiences within psoriasis consultations. Health care providers recognized psoriasis as a complex condition but commonly reported managing psoriasis as a simple skin condition. Providers' beliefs and management approaches varied in the extent to which they were consistent with one another; and their emotional experiences during consultations may vary depending upon their personal model. Findings could inform future dermatology training programmes by highlighting the role of health care providers' illness representations in clinical management of the condition. What is already known on this subject? Health behaviour is predicted by underlying beliefs and emotions associated with an illness and its treatment. Few studies have examined health care providers' beliefs and emotions about the illnesses they manage in clinical practice. Many patients are dissatisfied with dermatology consultations and wish to be treated holistically. What does this study add? Qualitative exploration of health care providers' beliefs/emotions revealed their personal models of psoriasis. Providers' personal models of psoriasis vary in coherence and are often skin rather than whole person focused. Further investigation of health care providers' models of psoriasis and their impact on health outcomes is needed. © 2015 The British Psychological Society.
Decision-analytic modeling studies: An overview for clinicians using multiple myeloma as an example.
Rochau, U; Jahn, B; Qerimi, V; Burger, E A; Kurzthaler, C; Kluibenschaedl, M; Willenbacher, E; Gastl, G; Willenbacher, W; Siebert, U
2015-05-01
The purpose of this study was to provide a clinician-friendly overview of decision-analytic models evaluating different treatment strategies for multiple myeloma (MM). We performed a systematic literature search to identify studies evaluating MM treatment strategies using mathematical decision-analytic models. We included studies that were published as full-text articles in English, and assessed relevant clinical endpoints, and summarized methodological characteristics (e.g., modeling approaches, simulation techniques, health outcomes, perspectives). Eleven decision-analytic modeling studies met our inclusion criteria. Five different modeling approaches were adopted: decision-tree modeling, Markov state-transition modeling, discrete event simulation, partitioned-survival analysis and area-under-the-curve modeling. Health outcomes included survival, number-needed-to-treat, life expectancy, and quality-adjusted life years. Evaluated treatment strategies included novel agent-based combination therapies, stem cell transplantation and supportive measures. Overall, our review provides a comprehensive summary of modeling studies assessing treatment of MM and highlights decision-analytic modeling as an important tool for health policy decision making. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
2013-01-01
Background The integration of behavioral health services into primary care is increasingly popular, yet fidelity of implementation in this area has been infrequently assessed due to the few measurement tools available. A sentinel indicator of fidelity of implementation is provider adherence, or utilization of prescribed procedures and engagement in model-specific behaviors. This study aimed to develop the first self-report measure of behavioral health provider adherence for co-located, collaborative care, a commonly adopted model of behavioral health service delivery in primary care. Methods A preliminary 56-item measure was developed by the research team to represent critical components of adherence among behavioral health providers. To ensure the content validity of the measure, a modified Delphi study was conducted using a panel of co-located, collaborative care model experts. During three rounds of emailed surveys, panel members provided qualitative feedback regarding item content while rating each item’s relevance for behavioral health provider practice. Items with consensus ratings of 80% or greater were included in the final adherence measure. Results The panel consisted of 25 experts representing the Department of Veterans Affairs, the Department of Defense, and academic and community health centers (total study response rate of 76%). During the Delphi process, two new items were added to the measure, four items were eliminated, and a high level of consensus was achieved on the remaining 54 items. Experts identified 38 items essential for model adherence, six items compatible (although not essential) for model adherence, and 10 items that represented prohibited behaviors. Item content addressed several domains, but primarily focused on behaviors related to employing a time-limited, brief treatment model, the scope of patient concerns addressed, and interventions used by providers. Conclusions This study yielded the first content valid self-report measure of critical components of collaborative care adherence for use by behavioral health providers in primary care. Although additional psychometric evaluation is necessary, this measure may assist implementation researchers in clarifying how provider behaviors contribute to clinical outcomes. This measure may also assist clinical stakeholders in monitoring implementation and identifying ways to support frontline providers in delivering high quality services. PMID:23406425
Phillips, K A; Morrison, K R; Andersen, R; Aday, L A
1998-01-01
OBJECTIVE: The behavioral model of utilization, developed by Andersen, Aday, and others, is one of the most frequently used frameworks for analyzing the factors that are associated with patient utilization of healthcare services. However, the use of the model for examining the context within which utilization occurs-the role of the environment and provider-related factors-has been largely neglected. OBJECTIVE: To conduct a systematic review and analysis to determine if studies of medical care utilization that have used the behavioral model during the last 20 years have included environmental and provider-related variables and the methods used to analyze these variables. We discuss barriers to the use of these contextual variables and potential solutions. DATA SOURCES: The Social Science Citation Index and Science Citation Index. We included all articles from 1975-1995 that cited any of three key articles on the behavioral model, that included all articles that were empirical analyses and studies of formal medical care utilization, and articles that specifically stated their use of the behavioral model (n = 139). STUDY DESIGN: Design was a systematic literature review. DATA ANALYSIS: We used a structured review process to code articles on whether they included contextual variables: (1) environmental variables (characteristics of the healthcare delivery system, external environment, and community-level enabling factors); and (2) provider-related variables (patient factors that may be influenced by providers and provider characteristics that interact with patient characteristics to influence utilization). We also examined the methods used in studies that included contextual variables. PRINCIPAL FINDINGS: Forty-five percent of the studies included environmental variables and 51 percent included provider-related variables. Few studies examined specific measures of the healthcare system or provider characteristics or used methods other than simple regression analysis with hierarchical entry of variables. Only 14 percent of studies analyzed the context of healthcare by including both environmental and provider-related variables as well as using relevant methods. CONCLUSIONS: By assessing whether and how contextual variables are used, we are able to highlight the contributions made by studies using these approaches, to identify variables and methods that have been relatively underused, and to suggest solutions to barriers in using contextual variables. PMID:9685123
Royle, J. Andrew; Converse, Sarah J.
2014-01-01
Capture–recapture studies are often conducted on populations that are stratified by space, time or other factors. In this paper, we develop a Bayesian spatial capture–recapture (SCR) modelling framework for stratified populations – when sampling occurs within multiple distinct spatial and temporal strata.We describe a hierarchical model that integrates distinct models for both the spatial encounter history data from capture–recapture sampling, and also for modelling variation in density among strata. We use an implementation of data augmentation to parameterize the model in terms of a latent categorical stratum or group membership variable, which provides a convenient implementation in popular BUGS software packages.We provide an example application to an experimental study involving small-mammal sampling on multiple trapping grids over multiple years, where the main interest is in modelling a treatment effect on population density among the trapping grids.Many capture–recapture studies involve some aspect of spatial or temporal replication that requires some attention to modelling variation among groups or strata. We propose a hierarchical model that allows explicit modelling of group or strata effects. Because the model is formulated for individual encounter histories and is easily implemented in the BUGS language and other free software, it also provides a general framework for modelling individual effects, such as are present in SCR models.
Parametric models of reflectance spectra for dyed fabrics
NASA Astrophysics Data System (ADS)
Aiken, Daniel C.; Ramsey, Scott; Mayo, Troy; Lambrakos, Samuel G.; Peak, Joseph
2016-05-01
This study examines parametric modeling of NIR reflectivity spectra for dyed fabrics, which provides for both their inverse and direct modeling. The dye considered for prototype analysis is triarylamine dye. The fabrics considered are camouflage textiles characterized by color variations. The results of this study provide validation of the constructed parametric models, within reasonable error tolerances for practical applications, including NIR spectral characteristics in camouflage textiles, for purposes of simulating NIR spectra corresponding to various dye concentrations in host fabrics, and potentially to mixtures of dyes.
Animal models of polymicrobial pneumonia
Hraiech, Sami; Papazian, Laurent; Rolain, Jean-Marc; Bregeon, Fabienne
2015-01-01
Pneumonia is one of the leading causes of severe and occasionally life-threatening infections. The physiopathology of pneumonia has been extensively studied, providing information for the development of new treatments for this condition. In addition to in vitro research, animal models have been largely used in the field of pneumonia. Several models have been described and have provided a better understanding of pneumonia under different settings and with various pathogens. However, the concept of one pathogen leading to one infection has been challenged, and recent flu epidemics suggest that some pathogens exhibit highly virulent potential. Although “two hits” animal models have been used to study infectious diseases, few of these models have been described in pneumonia. Therefore the aims of this review were to provide an overview of the available literature in this field, to describe well-studied and uncommon pathogen associations, and to summarize the major insights obtained from this information. PMID:26170617
Sánchez-Johnsen, Lisa; Escamilla, Julia; Rodriguez, Erin M; Vega, Susan; Bolaños, Liliana
2015-01-01
Many behavioral health materials have not been translated into Spanish. Of those that are available in Spanish, some of them have not been translated correctly, many are only appropriate for a subgroup of Latinos, and/or multiple versions of the same materials exist. This article describes an innovative model of conducting bilingual English-Spanish translations as part of community-based participatory research studies and provides recommendations based on this model. In this article, the traditional process of conducting bilingual translations is reviewed, and an innovative model for conducting translations in collaboration with community partners is described. Finally, recommendations for conducting future health research studies with community partners are provided. Researchers, health care providers, educators, and community partners will benefit from learning about this innovative model that helps produce materials that are more culturally appropriate than those that are produced with the most commonly used method of conducting translations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonnard, R.; McKone, T.E.
2009-03-01
The predictions of two source-to-dose models are systematically evaluated with observed data collected in a village polluted by a currently operating secondary lead smelter. Both models were built up from several sub-models linked together and run using Monte-Carlo simulation, to calculate the distribution children's blood lead levels attributable to the emissions from the facility. The first model system is composed of the CalTOX model linked to a recoded version of the IEUBK model. This system provides the distribution of the media-specific lead concentrations (air, soil, fruit, vegetables and blood) in the whole area investigated. The second model consists of amore » statistical model to estimate the lead deposition on the ground, a modified version of the model HHRAP and the same recoded version of the IEUBK model. This system provides an estimate of the concentration of exposure of specific individuals living in the study area. The predictions of the first model system were improved in terms of accuracy and precision by performing a sensitivity analysis and using field data to correct the default value provided for the leaf wet density. However, in this case study, the first model system tends to overestimate the exposure due to exposed vegetables. The second model was tested for nine children with contrasting exposure conditions. It managed to capture the blood levels for eight of them. In the last case, the exposure of the child by pathways not considered in the model may explain the failure of the model. The interest of this integrated model is to provide outputs with lower variance than the first model system, but at the moment further tests are necessary to conclude about its accuracy.« less
Army College Fund Cost-Effectiveness Study
1990-11-01
Section A.2 presents a theory of enlistment supply to provide a basis for specifying the regression model , The model Is specified in Section A.3, which...Supplementary materials are included in the final four sections. Section A.6 provides annual trends in the regression model variables. Estimates of the model ...millions, A.S. ESTIMATION OF A YOUTH EARNINGS FORECASTING MODEL Civilian pay is an important explanatory variable in the regression model . Previous
Eldercare responsibilities, interrole conflict, and employee absence: a daily study.
Hepburn, C G; Barling, J
1996-07-01
A model was developed specifying that the number of hours employees spend providing care to or interacting with elderly parents predicts conflict between the roles of employee and caregiver. Interrole conflict was subsequently expected to predict partial absence from work (e.g., arriving late). Seventeen employed eldercare providers completed a daily questionnaire for 20 work days. The data were standardized and pooled, and the proposed model was tested by using structural equation modeling. The proposed model provided a good fit to the data. A competing model that added the direct effects of hours of interacting with and hours of providing care to parents on partial absence provided a significantly better fit. The potential impact of the findings on employees and organizations is discussed.
Computer simulation modeling of recreation use: Current status, case studies, and future directions
David N. Cole
2005-01-01
This report compiles information about recent progress in the application of computer simulation modeling to planning and management of recreation use, particularly in parks and wilderness. Early modeling efforts are described in a chapter that provides an historical perspective. Another chapter provides an overview of modeling options, common data input requirements,...
Service provision in the wake of a new funding model for community pharmacy.
Smith, Alesha J; Scahill, Shane L; Harrison, Jeff; Carroll, Tilley; Medlicott, Natalie J
2018-05-02
Recently, New Zealand has taken a system wide approach providing the biggest reform to New Zealand community pharmacy for 70 years with the aim of providing more clinically orientated patient centred services through a new funding model. The aim of this study was to understand the types of services offered in New Zealand community pharmacies since introduction of the new funding model, what the barriers are to providing these services. A survey of all community pharmacies were undertaken between August, 2014 and February, 2015. Basic descriptive statistics were completed and group comparisons were made using the chi squared test with significance set at p < 0.05. 528 responses were received. Education and advice on prescription and non-prescription medicines were the two top listed services provided. There were no significant differences in service provision between rural and metro based pharmacies. Many pharmacies were considering introducing new patient centred services. Four of the top ten frequently provided services have no public funding attached. Costs and staff availability are the most common barriers to undertake services, more predominantly in patient centred services. This study was the first to provide an evaluation of service provision in response to a new funding model for New Zealand Community Pharmacies. A broad range of services are being undertaken in New Zealand community pharmacies including patient-centred services. A number of barriers to service provision were identified. This study provides a baseline for the current levels of service provision upon which future studies can compare to and evaluate any changes in service provision with differing funding models going forward.
Using in vitro models for expression profiling studies on ethanol and drugs of abuse.
Thibault, Christelle; Hassan, Sajida; Miles, Michael
2005-03-01
The use of expression profiling with microarrays offers great potential for studying the mechanisms of action of drugs of abuse. Studies with the intact nervous system seem likely to be most relevant to understanding the mechanisms of drug abuse-related behaviours. However, the use of expression profiling with in vitro culture models offers significant advantages for identifying details of cellular signalling actions and toxicity for drugs of abuse. This study discusses general issues of the use of microarrays and cell culture models for studies on drugs of abuse. Specific results from existing studies are also discussed, providing clear examples of relevance for in vitro studies on ethanol, nicotine, opiates, cannabinoids and hallucinogens such as LSD. In addition to providing details on signalling mechanisms relevant to the neurobiology of drugs of abuse, microarray studies on a variety of cell culture systems have also provided important information on mechanisms of cellular/organ toxicity with drugs of abuse. Efforts to integrate genomic studies on drugs of abuse with both in vivo and in vitro models offer the potential for novel mechanistic rigor and physiological relevance.
Sensitivity Analysis to Turbulent Combustion Models for Combustor-Turbine Interactions
NASA Astrophysics Data System (ADS)
Miki, Kenji; Moder, Jeff; Liou, Meng-Sing
2017-11-01
The recently-updated Open National CombustionCode (Open NCC) equipped with alarge-eddy simulation (LES) is applied to model the flow field inside the Energy Efficient Engine (EEE) in conjunction with sensitivity analysis to turbulent combustion models. In this study, we consider three different turbulence-combustion interaction models, the Eddy-Breakup model (EBU), the Linear-Eddy Model (LEM) and the Probability Density Function (PDF)model as well as the laminar chemistry model. Acomprehensive comparison of the flow field and the flame structure will be provided. One of our main interests isto understand how a different model predicts thermal variation on the surface of the first stage vane. Considering that these models are often used in combustor/turbine communities, this study should provide some guidelines on numerical modeling of combustor-turbine interactions.
Research Methods in Healthcare Epidemiology and Antimicrobial Stewardship-Mathematical Modeling.
Barnes, Sean L; Kasaie, Parastu; Anderson, Deverick J; Rubin, Michael
2016-11-01
Mathematical modeling is a valuable methodology used to study healthcare epidemiology and antimicrobial stewardship, particularly when more traditional study approaches are infeasible, unethical, costly, or time consuming. We focus on 2 of the most common types of mathematical modeling, namely compartmental modeling and agent-based modeling, which provide important advantages-such as shorter developmental timelines and opportunities for extensive experimentation-over observational and experimental approaches. We summarize these advantages and disadvantages via specific examples and highlight recent advances in the methodology. A checklist is provided to serve as a guideline in the development of mathematical models in healthcare epidemiology and antimicrobial stewardship. Infect Control Hosp Epidemiol 2016;1-7.
Treating Depression in Staff-Model Versus Network-Model Managed Care Organizations
Meredith, Lisa S; Rubenstein, Lisa V; Rost, Kathryn; Ford, Daniel E; Gordon, Nancy; Nutting, Paul; Camp, Patti; Wells, Kenneth B
1999-01-01
OBJECTIVE To compare primary care providers’ depression-related knowledge, attitudes, and practices and to understand how these reports vary for providers in staff or group-model managed care organizations (MCOs) compared with network-model MCOs including independent practice associations and preferred provider organizations. DESIGN Survey of primary care providers’ depression-related practices in 1996. SETTING AND PARTICIPANTS We surveyed 410 providers, from 80 outpatient clinics, in 11 MCOs participating in four studies designed to improve the quality of depression care in primary care. MEASUREMENTS AND MAIN RESULTS We measured knowledge based on depression guidelines, attitudes (beliefs about burden, skill, and barriers) related to depression, and reported behavior. Providers in both types of MCO are equally knowledgeable about treating depression (better knowledge of pharmacologic than psychotherapeutic treatments) and perceive equivalent skills in treating depression. However, compared with network-model providers, staff/group-model providers have stronger beliefs that treating depression is burdensome to their practice. While more staff/group-model providers reported time limitations as a barrier to optimal depression treatment, more network-model providers reported limited access to mental health specialty referral as a barrier. Accordingly, these staff/group-model providers are more likely to treat patients with major depression through referral (51% vs 38%) or to assess but not treat (17% vs 7%), and network-model providers are more likely to prescribe antidepressants (57% vs 6%) as first-line treatment. CONCLUSIONS Whereas the providers from staff/group-model MCOs had greater access to and relied more on referral, the providers from network-model organizations were more likely to treat depression themselves. Given varying attitudes and behaviors, improving primary care for the treatment of depression will require unique strategies beyond enhancing technical knowledge for the two types of MCOs. PMID:9893090
Using SCADA Data, Field Studies, and Real-Time Modeling to Calibrate Flint's Hydraulic Model
EPA has been providing technical assistance to the City of Flint and the State of Michigan in response to the drinking water lead contamination incident. Responders quickly recognized the need for a water distribution system hydraulic model to provide insight on flow patterns an...
Sensitivity Analysis in Sequential Decision Models.
Chen, Qiushi; Ayer, Turgay; Chhatwal, Jagpreet
2017-02-01
Sequential decision problems are frequently encountered in medical decision making, which are commonly solved using Markov decision processes (MDPs). Modeling guidelines recommend conducting sensitivity analyses in decision-analytic models to assess the robustness of the model results against the uncertainty in model parameters. However, standard methods of conducting sensitivity analyses cannot be directly applied to sequential decision problems because this would require evaluating all possible decision sequences, typically in the order of trillions, which is not practically feasible. As a result, most MDP-based modeling studies do not examine confidence in their recommended policies. In this study, we provide an approach to estimate uncertainty and confidence in the results of sequential decision models. First, we provide a probabilistic univariate method to identify the most sensitive parameters in MDPs. Second, we present a probabilistic multivariate approach to estimate the overall confidence in the recommended optimal policy considering joint uncertainty in the model parameters. We provide a graphical representation, which we call a policy acceptability curve, to summarize the confidence in the optimal policy by incorporating stakeholders' willingness to accept the base case policy. For a cost-effectiveness analysis, we provide an approach to construct a cost-effectiveness acceptability frontier, which shows the most cost-effective policy as well as the confidence in that for a given willingness to pay threshold. We demonstrate our approach using a simple MDP case study. We developed a method to conduct sensitivity analysis in sequential decision models, which could increase the credibility of these models among stakeholders.
Value-added strategy models to provide quality services in senior health business.
Yang, Ya-Ting; Lin, Neng-Pai; Su, Shyi; Chen, Ya-Mei; Chang, Yao-Mao; Handa, Yujiro; Khan, Hafsah Arshed Ali; Elsa Hsu, Yi-Hsin
2017-06-20
The rapid population aging is now a global issue. The increase in the elderly population will impact the health care industry and health enterprises; various senior needs will promote the growth of the senior health industry. Most senior health studies are focused on the demand side and scarcely on supply. Our study selected quality enterprises focused on aging health and analyzed different strategies to provide excellent quality services to senior health enterprises. We selected 33 quality senior health enterprises in Taiwan and investigated their excellent quality services strategies by face-to-face semi-structured in-depth interviews with CEO and managers of each enterprise in 2013. A total of 33 senior health enterprises in Taiwan. Overall, 65 CEOs and managers of 33 enterprises were interviewed individually. None. Core values and vision, organization structure, quality services provided, strategies for quality services. This study's results indicated four type of value-added strategy models adopted by senior enterprises to offer quality services: (i) residential care and co-residence model, (ii) home care and living in place model, (iii) community e-business experience model and (iv) virtual and physical portable device model. The common part in these four strategy models is that the services provided are elderly centered. These models offer virtual and physical integrations, and also offer total solutions for the elderly and their caregivers. Through investigation of successful strategy models for providing quality services to seniors, we identified opportunities to develop innovative service models and successful characteristics, also policy implications were summarized. The observations from this study will serve as a primary evidenced base for enterprises developing their senior market and, also for promoting the value co-creation possibility through dialogue between customers and those that deliver service. © The Author 2017. Published by Oxford University Press in association with the International Society for Quality in Health Care. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
A study of remote sensing as applied to regional and small watersheds. Volume 1: Summary report
NASA Technical Reports Server (NTRS)
Ambaruch, R.
1974-01-01
The accuracy of remotely sensed measurements to provide inputs to hydrologic models of watersheds is studied. A series of sensitivity analyses on continuous simulation models of three watersheds determined: (1)Optimal values and permissible tolerances of inputs to achieve accurate simulation of streamflow from the watersheds; (2) Which model inputs can be quantified from remote sensing, directly, indirectly or by inference; and (3) How accurate remotely sensed measurements (from spacecraft or aircraft) must be to provide a basis for quantifying model inputs within permissible tolerances.
AAC Modeling with the iPad during Shared Storybook Reading Pilot Study
ERIC Educational Resources Information Center
Sennott, Samuel C.; Mason, Linda H.
2016-01-01
This pilot study describes an intervention package, MODELER for Read and Talk, designed to provide enriched language interaction for children with complex communication needs who require augmentative and alternative communication (AAC). MODELER (Model, Encourage, Respond) includes (a) modeling AAC as you speak, (b) encouraging communication…
NASA Astrophysics Data System (ADS)
Yue, Songshan; Chen, Min; Wen, Yongning; Lu, Guonian
2016-04-01
Earth environment is extremely complicated and constantly changing; thus, it is widely accepted that the use of a single geo-analysis model cannot accurately represent all details when solving complex geo-problems. Over several years of research, numerous geo-analysis models have been developed. However, a collaborative barrier between model providers and model users still exists. The development of cloud computing has provided a new and promising approach for sharing and integrating geo-analysis models across an open web environment. To share and integrate these heterogeneous models, encapsulation studies should be conducted that are aimed at shielding original execution differences to create services which can be reused in the web environment. Although some model service standards (such as Web Processing Service (WPS) and Geo Processing Workflow (GPW)) have been designed and developed to help researchers construct model services, various problems regarding model encapsulation remain. (1) The descriptions of geo-analysis models are complicated and typically require rich-text descriptions and case-study illustrations, which are difficult to fully represent within a single web request (such as the GetCapabilities and DescribeProcess operations in the WPS standard). (2) Although Web Service technologies can be used to publish model services, model users who want to use a geo-analysis model and copy the model service into another computer still encounter problems (e.g., they cannot access the model deployment dependencies information). This study presents a strategy for encapsulating geo-analysis models to reduce problems encountered when sharing models between model providers and model users and supports the tasks with different web service standards (e.g., the WPS standard). A description method for heterogeneous geo-analysis models is studied. Based on the model description information, the methods for encapsulating the model-execution program to model services and for describing model-service deployment information are also included in the proposed strategy. Hence, the model-description interface, model-execution interface and model-deployment interface are studied to help model providers and model users more easily share, reuse and integrate geo-analysis models in an open web environment. Finally, a prototype system is established, and the WPS standard is employed as an example to verify the capability and practicability of the model-encapsulation strategy. The results show that it is more convenient for modellers to share and integrate heterogeneous geo-analysis models in cloud computing platforms.
The ambiguity of drought events, a bottleneck for Amazon forest drought response modelling
NASA Astrophysics Data System (ADS)
De Deurwaerder, Hannes; Verbeeck, Hans; Baker, Timothy; Christoffersen, Bradley; Ciais, Philippe; Galbraith, David; Guimberteau, Matthieu; Kruijt, Bart; Langerwisch, Fanny; Meir, Patrick; Rammig, Anja; Thonicke, Kirsten; Von Randow, Celso; Zhang, Ke
2016-04-01
Considering the important role of the Amazon forest in the global water and carbon cycle, the prognosis of altered hydrological patterns resulting from climate change provides strong incentive for apprehending the direct implications of drought on the vegetation of this ecosystem. Dynamic global vegetation models have the potential of providing a useful tool to study drought impacts on various spatial and temporal scales. This however assumes the models being able to properly represent drought impact mechanisms. But how well do the models succeed in meeting this assumption? Within this study meteorological driver data and model output data of 4 different DGVMs, i.e. ORCHIDEE, JULES, INLAND and LPGmL, are studied. Using the palmer drought severity index (PDSI) and the mean cumulative water deficit (MWD), temporal and spatial representation of drought events are studied in the driver data and are referenced to historical extreme drought events in the Amazon. Subsequently, within the resulting temporal and spatial frame, we studied the drought impact on the above ground biomass (AGB) and gross primary production (GPP) fluxes. Flux tower data, field inventory data and the JUNG data-driven GPP product for the Amazon region are used for validation. Our findings not only suggest that the current state of the studied DGVMs is inadequate in representing Amazon droughts in general, but also highlights strong inter-model differences in drought responses. Using scatterplot-studies and input-output correlations, we provide insight in the origin of these encountered inter-model differences. In addition, we present directives of model development and improvement in scope of Amazon forest drought response modelling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Jaquelin M; Palchak, Joseph D; Ehlen, Annaliese K
This chapter on Andhra Pradesh is one of six state chapters included in Appendix C of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study). The objective of the state chapters is to provide modeling assumptions, results, and next steps to use and improve the model specific to each state. The model has inherent uncertainties, particularly in how the intrastate transmission network and RE generation projects will develop (e.g., locations, capacities). The model also does not include information on contracts or must-run status of particular plantsmore » for reliability purposes. By providing details on the higher spatial resolution model of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study), which better represents the impact of congestion on least-cost scheduling and dispatch, provides a deeper understanding of the relationship among renewable energy (RE) location, transmission, and system flexibility with regard to RE integration, compared to 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. I - National Study.'« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Jaquelin M; Palchak, Joseph D; Ehlen, Annaliese K
This chapter on Tamil Nadu is one of six state chapters included in Appendix C of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study). The objective of the state chapters is to provide modeling assumptions, results, and next steps to use and improve the model specific to each state. The model has inherent uncertainties, particularly in how the intrastate transmission network and RE generation projects will develop (e.g., locations, capacities). The model also does not include information on contracts or must-run status of particular plantsmore » for reliability purposes. By providing details on the higher spatial resolution model of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study), which better represents the impact of congestion on least-cost scheduling and dispatch, provides a deeper understanding of the relationship among renewable energy (RE) location, transmission, and system flexibility with regard to RE integration, compared to 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. I - National Study.'« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Jaquelin M; Palchak, Joseph D; Ehlen, Annaliese K
This chapter on Andhra Pradesh is one of six state chapters included in Appendix C of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study). The objective of the state chapters is to provide modeling assumptions, results, and next steps to use and improve the model specific to each state. The model has inherent uncertainties, particularly in how the intrastate transmission network and RE generation projects will develop (e.g., locations, capacities). The model also does not include information on contracts or must-run status of particular plantsmore » for reliability purposes. By providing details on the higher spatial resolution model of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study), which better represents the impact of congestion on least-cost scheduling and dispatch, provides a deeper understanding of the relationship among renewable energy (RE) location, transmission, and system flexibility with regard to RE integration, compared to 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. I - National Study.'« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Jaquelin M; Palchak, Joseph D; Ehlen, Annaliese K
This chapter on Andhra Pradesh is one of six state chapters included in Appendix C of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study). The objective of the state chapters is to provide modeling assumptions, results, and next steps to use and improve the model specific to each state. The model has inherent uncertainties, particularly in how the intrastate transmission network and RE generation projects will develop (e.g., locations, capacities). The model also does not include information on contracts or must-run status of particular plantsmore » for reliability purposes. By providing details on the higher spatial resolution model of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study), which better represents the impact of congestion on least-cost scheduling and dispatch, provides a deeper understanding of the relationship among renewable energy (RE) location, transmission, and system flexibility with regard to RE integration, compared to 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. I - National Study.'« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Jaquelin M; Palchak, Joseph D; Ehlen, Annaliese K
This chapter on Andhra Pradesh is one of six state chapters included in Appendix C of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study). The objective of the state chapters is to provide modeling assumptions, results, and next steps to use and improve the model specific to each state. The model has inherent uncertainties, particularly in how the intrastate transmission network and RE generation projects will develop (e.g., locations, capacities). The model also does not include information on contracts or must-run status of particular plantsmore » for reliability purposes. By providing details on the higher spatial resolution model of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study), which better represents the impact of congestion on least-cost scheduling and dispatch, provides a deeper understanding of the relationship among renewable energy (RE) location, transmission, and system flexibility with regard to RE integration, compared to 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. I - National Study.'« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Jaquelin M; Palchak, Joseph D; Ehlen, Annaliese K
This chapter on Andhra Pradesh is one of six state chapters included in Appendix C of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study). The objective of the state chapters is to provide modeling assumptions, results, and next steps to use and improve the model specific to each state. The model has inherent uncertainties, particularly in how the intrastate transmission network and RE generation projects will develop (e.g., locations, capacities). The model also does not include information on contracts or must-run status of particular plantsmore » for reliability purposes. By providing details on the higher spatial resolution model of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study), which better represents the impact of congestion on least-cost scheduling and dispatch, provides a deeper understanding of the relationship among renewable energy (RE) location, transmission, and system flexibility with regard to RE integration, compared to 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. I - National Study.'« less
Scientific white paper on concentration-QTc modeling.
Garnett, Christine; Bonate, Peter L; Dang, Qianyu; Ferber, Georg; Huang, Dalong; Liu, Jiang; Mehrotra, Devan; Riley, Steve; Sager, Philip; Tornoe, Christoffer; Wang, Yaning
2018-06-01
The International Council for Harmonisation revised the E14 guideline through the questions and answers process to allow concentration-QTc (C-QTc) modeling to be used as the primary analysis for assessing the QTc interval prolongation risk of new drugs. A well-designed and conducted QTc assessment based on C-QTc modeling in early phase 1 studies can be an alternative approach to a thorough QT study for some drugs to reliably exclude clinically relevant QTc effects. This white paper provides recommendations on how to plan and conduct a definitive QTc assessment of a drug using C-QTc modeling in early phase clinical pharmacology and thorough QT studies. Topics included are: important study design features in a phase 1 study; modeling objectives and approach; exploratory plots; the pre-specified linear mixed effects model; general principles for model development and evaluation; and expectations for modeling analysis plans and reports. The recommendations are based on current best modeling practices, scientific literature and personal experiences of the authors. These recommendations are expected to evolve as their implementation during drug development provides additional data and with advances in analytical methodology.
Preliminary shuttle structural dynamics modeling design study
NASA Technical Reports Server (NTRS)
1972-01-01
The design and development of a structural dynamics model of the space shuttle are discussed. The model provides for early study of structural dynamics problems, permits evaluation of the accuracy of the structural and hydroelastic analysis methods used on test vehicles, and provides for efficiently evaluating potential cost savings in structural dynamic testing techniques. The discussion is developed around the modes in which major input forces and responses occur and the significant structural details in these modes.
Tomasone, Jennifer R; Brouwers, Melissa C; Vukmirovic, Marija; Grunfeld, Eva; O'Brien, Mary Ann; Urquhart, Robin; Walker, Melanie; Webster, Fiona; Fitch, Margaret
2016-01-01
Coordination of patient care between primary care and oncology care providers is vital to care quality and outcomes across the cancer continuum, yet it is known to be challenging. We conducted a systematic review to evaluate current or new models of care and/or interventions aimed at improving coordination between primary care and oncology care providers for patients with adult breast and/or colorectal cancer. MEDLINE, EMBASE, CINAHL, Cochrane Library Database of Systematic Reviews, and the Centre for Reviews and Dissemination were searched for existing English language studies published between January 2000 and 15 May 2015. Systematic reviews, meta-analyses, randomised controlled trials (RCTs) and non-randomised studies were included if they evaluated a specific model/intervention that was designed to improve care coordination between primary care and oncology care providers, for any stage of the cancer continuum, for patients with adult breast and/or colorectal cancer. Two reviewers extracted data and assessed risk of bias. Twenty-two studies (5 systematic reviews, 6 RCTs and 11 non-randomised studies) were included and varied with respect to the targeted phase of the cancer continuum, type of model or intervention tested, and outcome measures. The majority of studies showed no statistically significant changes in any patient, provider or system outcomes. Owing to conceptual and methodological limitations in this field, the review is unable to provide specific conclusions about the most effective or preferred model/intervention to improve care coordination. Imprecise results that lack generalisability and definitiveness provide limited evidence to base the development of future interventions and policies. CRD42015025006.
Undermining the rules in home care services for the elderly in Norway: flexibility and cooperation.
Wollscheid, Sabine; Eriksen, John; Hallvik, Jørgen
2013-06-01
This study explores the provision of home care services (home nursing and domiciliary help) for the elderly in Norwegian municipalities with purchaser-provider split model. The study draws on the assumption that flexibility in adjusting services to the care receivers' needs, and cooperation between provider and purchasers are indicators of good quality of care. Data were collected through semi-structured telephone interviews with 22 team leaders of provider units in nine municipalities. Data were collected in 2008-2009. The study has been approved by the Norwegian Social Science Data Services. We identified four different ways of organising home care services under a purchaser-provider split model: Provider empowerment, New Public Management, Vague instructions and undermining the rules. High flexibility in providing care and cooperation with the purchaser unit were identified by the team leaders as characteristics for good care. Our findings suggest that the care providers use individual strategies that allow flexibility and cooperation rather than rigidly abiding to the regulations the purchaser-provider split models implies. Ironically, in provider units where the 'rules were undermined', the informants (team leaders of provider units) seemed to be most satisfied with the quality of home care that they delivered. © 2012 Nordic College of Caring Science.
ERIC Educational Resources Information Center
Kasmaee, Roya Babaee; Nadi, Mohammad Ali; Shahtalebi, Badri
2016-01-01
Purpose: The purpose of this paper is to study and identify the effective components of higher education marketing and providing a marketing model for Iranian higher education private sector institutions. Design/methodology/approach: This study is a qualitative research. For identifying the effective components of higher education marketing and…
Murine Models of Systemic Lupus Erythematosus
Perry, Daniel; Sang, Allison; Yin, Yiming; Zheng, Ying-Yi; Morel, Laurence
2011-01-01
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disorder. The study of diverse mouse models of lupus has provided clues to the etiology of SLE. Spontaneous mouse models of lupus have led to identification of numerous susceptibility loci from which several candidate genes have emerged. Meanwhile, induced models of lupus have provided insight into the role of environmental factors in lupus pathogenesis as well as provided a better understanding of cellular mechanisms involved in the onset and progression of disease. The SLE-like phenotypes present in these models have also served to screen numerous potential SLE therapies. Due to the complex nature of SLE, it is necessary to understand the effect specific targeted therapies have on immune homeostasis. Furthermore, knowledge gained from mouse models will provide novel therapy targets for the treatment of SLE. PMID:21403825
Estimating true instead of apparent survival using spatial Cormack-Jolly-Seber models
Schaub, Michael; Royle, J. Andrew
2014-01-01
Spatial CJS models enable study of dispersal and survival independent of study design constraints such as imperfect detection and size of the study area provided that some of the dispersing individuals remain in the study area. We discuss possible extensions of our model: alternative dispersal models and the inclusion of covariates and of a habitat suitability map.
Harvey, Adam C; Vrij, Aldert; Leal, Sharon; Lafferty, Marcus; Nahari, Galit
2017-03-01
The Verifiability Approach (VA) is verbal lie detection tool that has shown promise when applied to insurance claims settings. This study examined the effectiveness of incorporating a Model Statement comprised of checkable information to the VA protocol for enhancing the verbal differences between liars and truth tellers. The study experimentally manipulated supplementing (or withholding) the VA with a Model Statement. It was hypothesised that such a manipulation would (i) encourage truth tellers to provide more verifiable details than liars and (ii) encourage liars to report more unverifiable details than truth tellers (compared to the no model statement control). As a result, it was hypothesized that (iii) the model statement would improve classificatory accuracy of the VA. Participants reported 40 genuine and 40 fabricated insurance claim statements, in which half the liars and truth tellers where provided with a model statement as part of the VA procedure, and half where provide no model statement. All three hypotheses were supported. In terms of accuracy, the model statement increased classificatory rates by the VA considerably from 65.0% to 90.0%. Providing interviewee's with a model statement prime consisting of checkable detail appears to be a useful refinement to the VA procedure. Copyright © 2017 Elsevier B.V. All rights reserved.
2015-06-01
Definitions are provided for this section to distinguish between adaptive training and education elements and also to highlight their relationships ...illustrate this point Franke (2011) asserts that through the use of case study examples, instruction can provide the pedagogical foundation for decision...a prime example of an adaptive training and education system: a learner or trainee model, an instructional or pedagogical model, a domain model
Simulation Model for Scenario Optimization of the Ready-Mix Concrete Delivery Problem
NASA Astrophysics Data System (ADS)
Galić, Mario; Kraus, Ivan
2016-12-01
This paper introduces a discrete simulation model for solving routing and network material flow problems in construction projects. Before the description of the model a detailed literature review is provided. The model is verified using a case study of solving the ready-mix concrete network flow and routing problem in metropolitan area in Croatia. Within this study real-time input parameters were taken into account. Simulation model is structured in Enterprise Dynamics simulation software and Microsoft Excel linked with Google Maps. The model is dynamic, easily managed and adjustable, but also provides good estimation for minimization of costs and realization time in solving discrete routing and material network flow problems.
Comparative study of two approaches to model the offshore fish cages
NASA Astrophysics Data System (ADS)
Zhao, Yun-peng; Wang, Xin-xin; Decew, Jud; Tsukrov, Igor; Bai, Xiao-dong; Bi, Chun-wei
2015-06-01
The goal of this paper is to provide a comparative analysis of two commonly used approaches to discretize offshore fish cages: the lumped-mass approach and the finite element technique. Two case studies are chosen to compare predictions of the LMA (lumped-mass approach) and FEA (finite element analysis) based numerical modeling techniques. In both case studies, we consider several loading conditions consisting of different uniform currents and monochromatic waves. We investigate motion of the cage, its deformation, and the resultant tension in the mooring lines. Both model predictions are sufficient close to the experimental data, but for the first experiment, the DUT-FlexSim predictions are slightly more accurate than the ones provided by Aqua-FE™. According to the comparisons, both models can be successfully utilized to the design and analysis of the offshore fish cages provided that an appropriate safety factor is chosen.
Baudrot, Virgile; Preux, Sara; Ducrot, Virginie; Pave, Alain; Charles, Sandrine
2018-02-06
Toxicokinetic-toxicodynamic (TKTD) models, as the General Unified Threshold model of Survival (GUTS), provide a consistent process-based framework compared to classical dose-response models to analyze both time and concentration-dependent data sets. However, the extent to which GUTS models (Stochastic Death (SD) and Individual Tolerance (IT)) lead to a better fitting than classical dose-response model at a given target time (TT) has poorly been investigated. Our paper highlights that GUTS estimates are generally more conservative and have a reduced uncertainty through smaller credible intervals for the studied data sets than classical TT approaches. Also, GUTS models enable estimating any x% lethal concentration at any time (LC x,t ), and provide biological information on the internal processes occurring during the experiments. While both GUTS-SD and GUTS-IT models outcompete classical TT approaches, choosing one preferentially to the other is still challenging. Indeed, the estimates of survival rate over time and LC x,t are very close between both models, but our study also points out that the joint posterior distributions of SD model parameters are sometimes bimodal, while two parameters of the IT model seems strongly correlated. Therefore, the selection between these two models has to be supported by the experimental design and the biological objectives, and this paper provides some insights to drive this choice.
Statistical field theory of futures commodity prices
NASA Astrophysics Data System (ADS)
Baaquie, Belal E.; Yu, Miao
2018-02-01
The statistical theory of commodity prices has been formulated by Baaquie (2013). Further empirical studies of single (Baaquie et al., 2015) and multiple commodity prices (Baaquie et al., 2016) have provided strong evidence in support the primary assumptions of the statistical formulation. In this paper, the model for spot prices (Baaquie, 2013) is extended to model futures commodity prices using a statistical field theory of futures commodity prices. The futures prices are modeled as a two dimensional statistical field and a nonlinear Lagrangian is postulated. Empirical studies provide clear evidence in support of the model, with many nontrivial features of the model finding unexpected support from market data.
Wu, Alex Chi; Morell, Matthew K.; Gilbert, Robert G.
2013-01-01
A core set of genes involved in starch synthesis has been defined by genetic studies, but the complexity of starch biosynthesis has frustrated attempts to elucidate the precise functional roles of the enzymes encoded. The chain-length distribution (CLD) of amylopectin in cereal endosperm is modeled here on the basis that the CLD is produced by concerted actions of three enzyme types: starch synthases, branching and debranching enzymes, including their respective isoforms. The model, together with fitting to experiment, provides four key insights. (1) To generate crystalline starch, defined restrictions on particular ratios of enzymatic activities apply. (2) An independent confirmation of the conclusion, previously reached solely from genetic studies, of the absolute requirement for debranching enzyme in crystalline amylopectin synthesis. (3) The model provides a mechanistic basis for understanding how successive arrays of crystalline lamellae are formed, based on the identification of two independent types of long amylopectin chains, one type remaining in the amorphous lamella, while the other propagates into, and is integral to the formation of, an adjacent crystalline lamella. (4) The model provides a means by which a small number of key parameters defining the core enzymatic activities can be derived from the amylopectin CLD, providing the basis for focusing studies on the enzymatic requirements for generating starches of a particular structure. The modeling approach provides both a new tool to accelerate efforts to understand granular starch biosynthesis and a basis for focusing efforts to manipulate starch structure and functionality using a series of testable predictions based on a robust mechanistic framework. PMID:23762422
Soler, María José; Riera, Marta; Batlle, Daniel
2012-01-01
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. The use of experimental models of DN has provided valuable information regarding many aspects of DN, including pathophysiology, progression, implicated genes, and new therapeutic strategies. A large number of mouse models of diabetes have been identified and their kidney disease was characterized to various degrees. Most experimental models of type 2 DN are helpful in studying early stages of DN, but these models have not been able to reproduce the characteristic features of more advanced DN in humans such as nodules in the glomerular tuft or glomerulosclerosis. The generation of new experimental models of DN created by crossing, knockdown, or knockin of genes continues to provide improved tools for studying DN. These models provide an opportunity to search for new mechanisms involving the development of DN, but their shortcomings should be recognized as well. Moreover, it is important to recognize that the genetic background has a substantial effect on the susceptibility to diabetes and kidney disease development in the various models of diabetes. PMID:22461787
NASA Astrophysics Data System (ADS)
Fernandes, A.; Riffler, M.; Ferreira, J.; Wunderle, S.; Borrego, C.; Tchepel, O.
2015-04-01
Satellite data provide high spatial coverage and characterization of atmospheric components for vertical column. Additionally, the use of air pollution modelling in combination with satellite data opens the challenging perspective to analyse the contribution of different pollution sources and transport processes. The main objective of this work is to study the AOD over Portugal using satellite observations in combination with air pollution modelling. For this purpose, satellite data provided by Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) on-board the geostationary Meteosat-9 satellite on AOD at 550 nm and modelling results from the Chemical Transport Model (CAMx - Comprehensive Air quality Model) were analysed. The study period was May 2011 and the aim was to analyse the spatial variations of AOD over Portugal. In this study, a multi-temporal technique to retrieve AOD over land from SEVIRI was used. The proposed method takes advantage of SEVIRI's high temporal resolution of 15 minutes and high spatial resolution. CAMx provides the size distribution of each aerosol constituent among a number of fixed size sections. For post processing, CAMx output species per size bin have been grouped into total particulate sulphate (PSO4), total primary and secondary organic aerosols (POA + SOA), total primary elemental carbon (PEC) and primary inert material per size bin (CRST1 to CRST_4) to be used in AOD quantification. The AOD was calculated by integration of aerosol extinction coefficient (Qext) on the vertical column. The results were analysed in terms of temporal and spatial variations. The analysis points out that the implemented methodology provides a good spatial agreement between modelling results and satellite observation for dust outbreak studied (10th -17th of May 2011). A correlation coefficient of r=0.79 was found between the two datasets. This work provides relevant background to start the integration of these two different types of the data in order to improve air pollution assessment.
Conducting field studies for testing pesticide leaching models
Smith, Charles N.; Parrish, Rudolph S.; Brown, David S.
1990-01-01
A variety of predictive models are being applied to evaluate the transport and transformation of pesticides in the environment. These include well known models such as the Pesticide Root Zone Model (PRZM), the Risk of Unsaturated-Saturated Transport and Transformation Interactions for Chemical Concentrations Model (RUSTIC) and the Groundwater Loading Effects of Agricultural Management Systems Model (GLEAMS). The potentially large impacts of using these models as tools for developing pesticide management strategies and regulatory decisions necessitates development of sound model validation protocols. This paper offers guidance on many of the theoretical and practical problems encountered in the design and implementation of field-scale model validation studies. Recommendations are provided for site selection and characterization, test compound selection, data needs, measurement techniques, statistical design considerations and sampling techniques. A strategy is provided for quantitatively testing models using field measurements.
Statistical emulators of maize, rice, soybean and wheat yields from global gridded crop models
Blanc, Élodie
2017-01-26
This study provides statistical emulators of crop yields based on global gridded crop model simulations from the Inter-Sectoral Impact Model Intercomparison Project Fast Track project. The ensemble of simulations is used to build a panel of annual crop yields from five crop models and corresponding monthly summer weather variables for over a century at the grid cell level globally. This dataset is then used to estimate, for each crop and gridded crop model, the statistical relationship between yields, temperature, precipitation and carbon dioxide. This study considers a new functional form to better capture the non-linear response of yields to weather,more » especially for extreme temperature and precipitation events, and now accounts for the effect of soil type. In- and out-of-sample validations show that the statistical emulators are able to replicate spatial patterns of yields crop levels and changes overtime projected by crop models reasonably well, although the accuracy of the emulators varies by model and by region. This study therefore provides a reliable and accessible alternative to global gridded crop yield models. By emulating crop yields for several models using parsimonious equations, the tools provide a computationally efficient method to account for uncertainty in climate change impact assessments.« less
Statistical emulators of maize, rice, soybean and wheat yields from global gridded crop models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanc, Élodie
This study provides statistical emulators of crop yields based on global gridded crop model simulations from the Inter-Sectoral Impact Model Intercomparison Project Fast Track project. The ensemble of simulations is used to build a panel of annual crop yields from five crop models and corresponding monthly summer weather variables for over a century at the grid cell level globally. This dataset is then used to estimate, for each crop and gridded crop model, the statistical relationship between yields, temperature, precipitation and carbon dioxide. This study considers a new functional form to better capture the non-linear response of yields to weather,more » especially for extreme temperature and precipitation events, and now accounts for the effect of soil type. In- and out-of-sample validations show that the statistical emulators are able to replicate spatial patterns of yields crop levels and changes overtime projected by crop models reasonably well, although the accuracy of the emulators varies by model and by region. This study therefore provides a reliable and accessible alternative to global gridded crop yield models. By emulating crop yields for several models using parsimonious equations, the tools provide a computationally efficient method to account for uncertainty in climate change impact assessments.« less
Liu, Ruixin; Zhang, Xiaodong; Zhang, Lu; Gao, Xiaojie; Li, Huiling; Shi, Junhan; Li, Xuelin
2014-06-01
The aim of this study was to predict the bitterness intensity of a drug using an electronic tongue (e-tongue). The model drug of berberine hydrochloride was used to establish a bitterness prediction model (BPM), based on the taste evaluation of bitterness intensity by a taste panel, the data provided by the e-tongue and a genetic algorithm-back-propagation neural network (GA-BP) modeling method. The modeling characteristics of the GA-BP were compared with those of multiple linear regression, partial least square regression and BP methods. The determination coefficient of the BPM was 0.99965±0.00004, the root mean square error of cross-validation was 0.1398±0.0488 and the correlation coefficient of the cross-validation between the true and predicted values was 0.9959±0.0027. The model is superior to the other three models based on these indicators. In conclusion, the model established in this study has a high fitting degree and may be used for the bitterness prediction modeling of berberine hydrochloride of different concentrations. The model also provides a reference for the generation of BPMs of other drugs. Additionally, the algorithm of the study is able to conduct a rapid and accurate quantitative analysis of the data provided by the e-tongue.
LIU, RUIXIN; ZHANG, XIAODONG; ZHANG, LU; GAO, XIAOJIE; LI, HUILING; SHI, JUNHAN; LI, XUELIN
2014-01-01
The aim of this study was to predict the bitterness intensity of a drug using an electronic tongue (e-tongue). The model drug of berberine hydrochloride was used to establish a bitterness prediction model (BPM), based on the taste evaluation of bitterness intensity by a taste panel, the data provided by the e-tongue and a genetic algorithm-back-propagation neural network (GA-BP) modeling method. The modeling characteristics of the GA-BP were compared with those of multiple linear regression, partial least square regression and BP methods. The determination coefficient of the BPM was 0.99965±0.00004, the root mean square error of cross-validation was 0.1398±0.0488 and the correlation coefficient of the cross-validation between the true and predicted values was 0.9959±0.0027. The model is superior to the other three models based on these indicators. In conclusion, the model established in this study has a high fitting degree and may be used for the bitterness prediction modeling of berberine hydrochloride of different concentrations. The model also provides a reference for the generation of BPMs of other drugs. Additionally, the algorithm of the study is able to conduct a rapid and accurate quantitative analysis of the data provided by the e-tongue. PMID:24926369
Kruger, Jen; Pollard, Daniel; Basarir, Hasan; Thokala, Praveen; Cooke, Debbie; Clark, Marie; Bond, Rod; Heller, Simon; Brennan, Alan
2015-10-01
. Health economic modeling has paid limited attention to the effects that patients' psychological characteristics have on the effectiveness of treatments. This case study tests 1) the feasibility of incorporating psychological prediction models of treatment response within an economic model of type 1 diabetes, 2) the potential value of providing treatment to a subgroup of patients, and 3) the cost-effectiveness of providing treatment to a subgroup of responders defined using 5 different algorithms. . Multiple linear regressions were used to investigate relationships between patients' psychological characteristics and treatment effectiveness. Two psychological prediction models were integrated with a patient-level simulation model of type 1 diabetes. Expected value of individualized care analysis was undertaken. Five different algorithms were used to provide treatment to a subgroup of predicted responders. A cost-effectiveness analysis compared using the algorithms to providing treatment to all patients. . The psychological prediction models had low predictive power for treatment effectiveness. Expected value of individualized care results suggested that targeting education at responders could be of value. The cost-effectiveness analysis suggested, for all 5 algorithms, that providing structured education to a subgroup of predicted responders would not be cost-effective. . The psychological prediction models tested did not have sufficient predictive power to make targeting treatment cost-effective. The psychological prediction models are simple linear models of psychological behavior. Collection of data on additional covariates could potentially increase statistical power. . By collecting data on psychological variables before an intervention, we can construct predictive models of treatment response to interventions. These predictive models can be incorporated into health economic models to investigate more complex service delivery and reimbursement strategies. © The Author(s) 2015.
Estimation and identification study for flexible vehicles
NASA Technical Reports Server (NTRS)
Jazwinski, A. H.; Englar, T. S., Jr.
1973-01-01
Techniques are studied for the estimation of rigid body and bending states and the identification of model parameters associated with the single-axis attitude dynamics of a flexible vehicle. This problem is highly nonlinear but completely observable provided sufficient attitude and attitude rate data is available and provided all system bending modes are excited in the observation interval. A sequential estimator tracks the system states in the presence of model parameter errors. A batch estimator identifies all model parameters with high accuracy.
Enhancing Access to Patient Education Information: A Pilot Usability Study
Beaudoin, Denise E.; Rocha, Roberto A.; Tse, Tony
2005-01-01
Health care organizations are developing Web-based portals to provide patient access to personal health information and enhance patient-provider communication. This pilot study investigates two navigation models (“serial” and “menu-driven”) for improving access to education materials available through a portal. There was a trend toward greater user satisfaction with the menu-driven model. Model preference was influenced by frequency of Web use. Results should aid in the improvement of existing portals and in the development of new ones. PMID:16779179
Watershed and Economic Data InterOperability (WEDO) ...
Watershed and Economic Data InterOperability (WEDO) is a system of information technologies designed to publish watershed modeling studies for reuse. WEDO facilitates three aspects of interoperability: discovery, evaluation and integration of data. This increased level of interoperability goes beyond the current practice of publishing modeling studies as reports or journal articles. Rather than summarized results, modeling studies can be published with their full complement of input data, calibration parameters and output with associated metadata for easy duplication by others. Reproducible science is possible only if researchers can find, evaluate and use complete modeling studies performed by other modelers. WEDO greatly increases transparency by making detailed data available to the scientific community.WEDO is a next generation technology, a Web Service linked to the EPA’s EnviroAtlas for discovery of modeling studies nationwide. Streams and rivers are identified using the National Hydrography Dataset network and stream IDs. Streams with modeling studies available are color coded in the EnviroAtlas. One can select streams within a watershed of interest to readily find data available via WEDO. The WEDO website is linked from the EnviroAtlas to provide a thorough review of each modeling study. WEDO currently provides modeled flow and water quality time series, designed for a broad range of watershed and economic models for nutrient trading market analysis. M
Software for Brain Network Simulations: A Comparative Study
Tikidji-Hamburyan, Ruben A.; Narayana, Vikram; Bozkus, Zeki; El-Ghazawi, Tarek A.
2017-01-01
Numerical simulations of brain networks are a critical part of our efforts in understanding brain functions under pathological and normal conditions. For several decades, the community has developed many software packages and simulators to accelerate research in computational neuroscience. In this article, we select the three most popular simulators, as determined by the number of models in the ModelDB database, such as NEURON, GENESIS, and BRIAN, and perform an independent evaluation of these simulators. In addition, we study NEST, one of the lead simulators of the Human Brain Project. First, we study them based on one of the most important characteristics, the range of supported models. Our investigation reveals that brain network simulators may be biased toward supporting a specific set of models. However, all simulators tend to expand the supported range of models by providing a universal environment for the computational study of individual neurons and brain networks. Next, our investigations on the characteristics of computational architecture and efficiency indicate that all simulators compile the most computationally intensive procedures into binary code, with the aim of maximizing their computational performance. However, not all simulators provide the simplest method for module development and/or guarantee efficient binary code. Third, a study of their amenability for high-performance computing reveals that NEST can almost transparently map an existing model on a cluster or multicore computer, while NEURON requires code modification if the model developed for a single computer has to be mapped on a computational cluster. Interestingly, parallelization is the weakest characteristic of BRIAN, which provides no support for cluster computations and limited support for multicore computers. Fourth, we identify the level of user support and frequency of usage for all simulators. Finally, we carry out an evaluation using two case studies: a large network with simplified neural and synaptic models and a small network with detailed models. These two case studies allow us to avoid any bias toward a particular software package. The results indicate that BRIAN provides the most concise language for both cases considered. Furthermore, as expected, NEST mostly favors large network models, while NEURON is better suited for detailed models. Overall, the case studies reinforce our general observation that simulators have a bias in the computational performance toward specific types of the brain network models. PMID:28775687
The Theory of Planned Behavior as a Model of Heavy Episodic Drinking Among College Students
Collins, Susan E.; Carey, Kate B.
2008-01-01
This study provided a simultaneous, confirmatory test of the theory of planned behavior (TPB) in predicting heavy episodic drinking (HED) among college students. It was hypothesized that past HED, drinking attitudes, subjective norms and drinking refusal self-efficacy would predict intention, which would in turn predict future HED. Participants consisted of 131 college drinkers (63% female) who reported having engaged in HED in the previous two weeks. Participants were recruited and completed questionnaires within the context of a larger intervention study (see Collins & Carey, 2005). Latent factor structural equation modeling was used to test the ability of the TPB to predict HED. Chi-square tests and fit indices indicated good fit for the final structural models. Self-efficacy and attitudes but not subjective norms significantly predicted baseline intention, and intention and past HED predicted future HED. Contrary to hypotheses, however, a structural model excluding past HED provided a better fit than a model including it. Although further studies must be conducted before a definitive conclusion is reached, a TPB model excluding past behavior, which is arguably more parsimonious and theory driven, may provide better prediction of HED among college drinkers than a model including past behavior. PMID:18072832
ERIC Educational Resources Information Center
Burton, Emily; Stice, Eric; Seeley, John R.
2004-01-01
The stress-buffering model posits that social support mitigates the relation between negative life events and onset of depression, but prospective studies have provided little support for this assertion. The authors sought to provide a more sensitive test of this model by addressing certain methodological and statistical limitations of past…
Multilevel Modeling and School Psychology: A Review and Practical Example
ERIC Educational Resources Information Center
Graves, Scott L., Jr.; Frohwerk, April
2009-01-01
The purpose of this article is to provide an overview of the state of multilevel modeling in the field of school psychology. The authors provide a systematic assessment of published research of multilevel modeling studies in 5 journals devoted to the research and practice of school psychology. In addition, a practical example from the nationally…
School-Based Job Placement Service Model: Phase I, Planning. Final Report.
ERIC Educational Resources Information Center
Gingerich, Garland E.
To assist school administrators and guidance personnel in providing job placement services, a study was conducted to: (1) develop a model design for a school-based job placement system, (2) identify students to be served by the model, (3) list specific services provided to students, and (4) develop job descriptions for each individual responsible…
ERIC Educational Resources Information Center
Dixon, Mark R.; Belisle, Jordan; Munoz, Bridget E.; Stanley, Caleb R.; Rowsey, Kyle E.
2017-01-01
The study evaluated the efficacy of observational learning using the rival-model technique in teaching three children with autism to state metaphorical statements about emotions when provided a picture, as well as to intraverbally state an appropriate emotion when provided a scenario and corresponding metaphorical emotion. The results provide a…
Watershed modeling applications in south Texas
Pedraza, Diana E.; Ockerman, Darwin J.
2012-01-01
This fact sheet presents an overview of six selected watershed modeling studies by the USGS and partners that address a variety of water-resource issues in south Texas. These studies provide examples of modeling applications and demonstrate the usefulness and versatility of watershed models in aiding the understanding of hydrologic systems.
Modeling Evacuation of a Hospital without Electric Power.
Vugrin, Eric D; Verzi, Stephen J; Finley, Patrick D; Turnquist, Mark A; Griffin, Anne R; Ricci, Karen A; Wyte-Lake, Tamar
2015-06-01
Hospital evacuations that occur during, or as a result of, infrastructure outages are complicated and demanding. Loss of infrastructure services can initiate a chain of events with corresponding management challenges. This report describes a modeling case study of the 2001 evacuation of the Memorial Hermann Hospital in Houston, Texas (USA). The study uses a model designed to track such cascading events following loss of infrastructure services and to identify the staff, resources, and operational adaptations required to sustain patient care and/or conduct an evacuation. The model is based on the assumption that a hospital's primary mission is to provide necessary medical care to all of its patients, even when critical infrastructure services to the hospital and surrounding areas are disrupted. Model logic evaluates the hospital's ability to provide an adequate level of care for all of its patients throughout a period of disruption. If hospital resources are insufficient to provide such care, the model recommends an evacuation. Model features also provide information to support evacuation and resource allocation decisions for optimizing care over the entire population of patients. This report documents the application of the model to a scenario designed to resemble the 2001 evacuation of the Memorial Hermann Hospital, demonstrating the model's ability to recreate the timeline of an actual evacuation. The model is also applied to scenarios demonstrating how its output can inform evacuation planning activities and timing.
Future-year ozone prediction for the United States using updated models and inputs.
Collet, Susan; Kidokoro, Toru; Karamchandani, Prakash; Shah, Tejas; Jung, Jaegun
2017-08-01
The relationship between emission reductions and changes in ozone can be studied using photochemical grid models. These models are updated with new information as it becomes available. The primary objective of this study was to update the previous Collet et al. studies by using the most up-to-date (at the time the study was done) modeling emission tools, inventories, and meteorology available to conduct ozone source attribution and sensitivity studies. Results show future-year, 2030, design values for 8-hr ozone concentrations were lower than base-year values, 2011. The ozone source attribution results for selected cities showed that boundary conditions were the dominant contributors to ozone concentrations at the western U.S. locations, and were important for many of the eastern U.S. Point sources were generally more important in the eastern United States than in the western United States. The contributions of on-road mobile emissions were less than 5 ppb at a majority of the cities selected for analysis. The higher-order decoupled direct method (HDDM) results showed that in most of the locations selected for analysis, NOx emission reductions were more effective than VOC emission reductions in reducing ozone levels. The source attribution results from this study provide useful information on the important source categories and provide some initial guidance on future emission reduction strategies. The relationship between emission reductions and changes in ozone can be studied using photochemical grid models, which are updated with new available information. This study was to update the previous Collet et al. studies by using the most current, at the time the study was done, models and inventory to conduct ozone source attribution and sensitivity studies. The source attribution results from this study provide useful information on the important source categories and provide some initial guidance on future emission reduction strategies.
Immunity to viruses: learning from successful human vaccines.
Pulendran, Bali; Oh, Jason Z; Nakaya, Helder I; Ravindran, Rajesh; Kazmin, Dmitri A
2013-09-01
For more than a century, immunologists and vaccinologists have existed in parallel universes. Immunologists have for long reveled in using 'model antigens', such as chicken egg ovalbumin or nitrophenyl haptens, to study immune responses in model organisms such as mice. Such studies have yielded many seminal insights about the mechanisms of immune regulation, but their relevance to humans has been questioned. In another universe, vaccinologists have relied on human clinical trials to assess vaccine efficacy, but have done little to take advantage of such trials for studying the nature of immune responses to vaccination. The human model provides a nexus between these two universes, and recent studies have begun to use this model to study the molecular profile of innate and adaptive responses to vaccination. Such 'systems vaccinology' studies are beginning to provide mechanistic insights about innate and adaptive immunity in humans. Here, we present an overview of such studies, with particular examples from studies with the yellow fever and the seasonal influenza vaccines. Vaccination with the yellow fever vaccine causes a systemic acute viral infection and thus provides an attractive model to study innate and adaptive responses to a primary viral challenge. Vaccination with the live attenuated influenza vaccine causes a localized acute viral infection in mucosal tissues and induces a recall response, since most vaccinees have had prior exposure to influenza, and thus provides a unique opportunity to study innate and antigen-specific memory responses in mucosal tissues and in the blood. Vaccination with the inactivated influenza vaccine offers a model to study immune responses to an inactivated immunogen. Studies with these and other vaccines are beginning to reunite the estranged fields of immunology and vaccinology, yielding unexpected insights about mechanisms of viral immunity. Vaccines that have been proven to be of immense benefit in saving lives offer us a new fringe benefit: lessons in viral immunology. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Schulz, S A; Draper, H R; Naidoo, P
2013-12-01
Although health policy in South Africa calls for the integration of services, the effectiveness of different models of integration on patient outcomes has not been well demonstrated. To evaluate the outcomes of coinfected patients starting antiretroviral treatment (ART) in a tuberculosis (TB) hospital who received different models of ongoing care. This cohort study compared outcomes for 271 coinfected patients who started ART in a TB hospital in the Western Cape. After discharge, one group of patients received anti-tuberculosis treatment and ART from different providers, in the same or in different clinics (vertical care). The other group received anti-tuberculosis treatment and ART at the same visit from the same service provider (integrated care). Demographic and clinical data and TB and ART outcomes were compared. The vertical care model had more unfavourable outcomes for anti-tuberculosis treatment (28.7% vs. 5.9%, P < 0.001) and ART (30.1% vs. 7.4%, P < 0.001) than the integrated care model. The vertical care model showed no difference whether services were provided by two service providers in the same or in geographically separate primary health care clinics. Patient outcomes were better when TB and HIV care was received from the same service provider at the same visit.
Spaceflight Nutrition Research: Platforms and Analogs
NASA Technical Reports Server (NTRS)
Smith, Scott M.; Uchakin, Peter N.; Tobin, Brian W.
2002-01-01
Understanding human adaptation to weightlessness requires research in either the true microgravity environment or iii a ground-based model. Over the years, many flight platforms have been available, and many ground models have emerged for both human and animal studies of the effects of spaceflight on physiology. In this review, we provide a brief description of these models and the main points to be considered when choosing a model. We do not intend to provide a comprehensive overview of each platform or model, but rather to provide the reader with an overview of the options available for space nutrition research, and the relative merits and/or drawbacks of each.
Kiper, Pawel; Szczudlik, Andrzej; Venneri, Annalena; Stozek, Joanna; Luque-Moreno, Carlos; Opara, Jozef; Baba, Alfonc; Agostini, Michela; Turolla, Andrea
2016-10-15
Computational approaches for modelling the central nervous system (CNS) aim to develop theories on processes occurring in the brain that allow the transformation of all information needed for the execution of motor acts. Computational models have been proposed in several fields, to interpret not only the CNS functioning, but also its efferent behaviour. Computational model theories can provide insights into neuromuscular and brain function allowing us to reach a deeper understanding of neuroplasticity. Neuroplasticity is the process occurring in the CNS that is able to permanently change both structure and function due to interaction with the external environment. To understand such a complex process several paradigms related to motor learning and computational modeling have been put forward. These paradigms have been explained through several internal model concepts, and supported by neurophysiological and neuroimaging studies. Therefore, it has been possible to make theories about the basis of different learning paradigms according to known computational models. Here we review the computational models and motor learning paradigms used to describe the CNS and neuromuscular functions, as well as their role in the recovery process. These theories have the potential to provide a way to rigorously explain all the potential of CNS learning, providing a basis for future clinical studies. Copyright © 2016 Elsevier B.V. All rights reserved.
Local-Scale Air Quality Modeling in Support of Human Health and Exposure Research (Invited)
NASA Astrophysics Data System (ADS)
Isakov, V.
2010-12-01
Spatially- and temporally-sparse information on air quality is a key concern for air-pollution-related environmental health studies. Monitor networks are sparse in both space and time, are costly to maintain, and are often designed purposely to avoid detecting highly localized sources. Recent studies have shown that more narrowly defining the geographic domain of the study populations and improvements in the measured/estimated ambient concentrations can lead to stronger associations between air pollution and hospital admissions and mortality records. Traditionally, ambient air quality measurements have been used as a primary input to support human health and exposure research. However, there is increasing evidence that the current ambient monitoring network is not capturing sharp gradients in exposure due to the presence of high concentration levels near, for example, major roadways. Many air pollutants exhibit large concentration gradients near large emitters such as major roadways, factories, ports, etc. To overcome these limitations, researchers are now beginning to use air quality models to support air pollution exposure and health studies. There are many advantages to using air quality models over traditional approaches based on existing ambient measurements alone. First, models can provide spatially- and temporally-resolved concentrations as direct input to exposure and health studies and thus better defining the concentration levels for the population in the geographic domain. Air quality models have a long history of use in air pollution regulations, and supported by regulatory agencies and a large user community. Also, models can provide bidirectional linkages between sources of emissions and ambient concentrations, thus allowing exploration of various mitigation strategies to reduce risk to exposure. In order to provide best estimates of air concentrations to support human health and exposure studies, model estimates should consider local-scale features, regional-scale transport, and photochemical transformations. Since these needs are currently not met by a single model, hybrid air quality modeling has recently been developed to combine these capabilities. In this paper, we present the results of two studies where we applied the hybrid modeling approach to provide spatial and temporal details in air quality concentrations to support exposure and health studies: a) an urban-scale air quality accountability study involving near-source exposures to multiple ambient air pollutants, and b) an urban-scale epidemiological study involving human health data based on emergency department visits.
NASA Astrophysics Data System (ADS)
Yi, H.; Gao, X.; Sorooshian, S.
2002-05-01
As one aspect of the study of interactions between the atmosphere, vegetation, soil, and hydrology, there has been on going efforts to assimilate soil moisture data using coupled and uncoupled land surface-atmosphere hydrology models. The assimilation of soil moisture is expected to have influence due to its vital function in regulating runoff, partitioning latent and sensible heat, and through determining groundwater recharge. Soil moisture can provides long-term memory or persistence of the surface boundary condition, influencing large-scale atmospheric circulation over subsequent intervals. Now that the application of satellite remote sensing has become obvious to provide input parameters associated with land surface processes to the numerical models, this study utilizes remotely sensed precipitation data, PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) to assimilate soil moisture and other soil surface characteristics. Compared to the other earlier modeling experiments of seasonal or interannual temporal scale in continental or global spatial scale, this study investigates short term predictability in regional scale with the southwest United States as a study area, which has unique metrological and geographical features that provide special difficulties for mesoscale modeling. Research objectives are to assimilate the PERSIANN precipitation data into the mesoscale model for model initialization, examine the influence and memory of model precipitation errors on the land surface and atmospheric processes, and thereby study the short term predictability of meteorology and hydrology in the Southwest United States.
FEASIBILITY STUDY ON EXECUTIVE PROGRAM DEVELOPMENT FOR BASIN ECOSYSTEMS MODELING
The project was undertaken in order to provide a feasibility study in developing and implementing a complete executive program to interface automatically various basin-wide water quality models for use by relatively inexperienced modelers. This executive program should ultimately...
NASA Astrophysics Data System (ADS)
Li, Lu; Xu, Chong-Yu; Engeland, Kolbjørn
2013-04-01
SummaryWith respect to model calibration, parameter estimation and analysis of uncertainty sources, various regression and probabilistic approaches are used in hydrological modeling. A family of Bayesian methods, which incorporates different sources of information into a single analysis through Bayes' theorem, is widely used for uncertainty assessment. However, none of these approaches can well treat the impact of high flows in hydrological modeling. This study proposes a Bayesian modularization uncertainty assessment approach in which the highest streamflow observations are treated as suspect information that should not influence the inference of the main bulk of the model parameters. This study includes a comprehensive comparison and evaluation of uncertainty assessments by our new Bayesian modularization method and standard Bayesian methods using the Metropolis-Hastings (MH) algorithm with the daily hydrological model WASMOD. Three likelihood functions were used in combination with standard Bayesian method: the AR(1) plus Normal model independent of time (Model 1), the AR(1) plus Normal model dependent on time (Model 2) and the AR(1) plus Multi-normal model (Model 3). The results reveal that the Bayesian modularization method provides the most accurate streamflow estimates measured by the Nash-Sutcliffe efficiency and provide the best in uncertainty estimates for low, medium and entire flows compared to standard Bayesian methods. The study thus provides a new approach for reducing the impact of high flows on the discharge uncertainty assessment of hydrological models via Bayesian method.
Mathematical modeling of urea transport in the kidney.
Layton, Anita T
2014-01-01
Mathematical modeling techniques have been useful in providing insights into biological systems, including the kidney. This article considers some of the mathematical models that concern urea transport in the kidney. Modeling simulations have been conducted to investigate, in the context of urea cycling and urine concentration, the effects of hypothetical active urea secretion into pars recta. Simulation results suggest that active urea secretion induces a "urea-selective" improvement in urine concentrating ability. Mathematical models have also been built to study the implications of the highly structured organization of tubules and vessels in the renal medulla on urea sequestration and cycling. The goal of this article is to show how physiological problems can be formulated and studied mathematically, and how such models may provide insights into renal functions.
NASA Astrophysics Data System (ADS)
Fox Maule, Cathrine; Sloth Madsen, Marianne; May, Wilhelm; Hesselbjerg Christensen, Jens; Yang, Shuting; Christensen, Ole B.
2015-04-01
Climate impact studies are based on climate simulations originating from regional or global climate models, provided either through the climate modeling centers directly or through climate data portals. In order to give the most beneficial results, the climate model data need to fulfill various requirements related to the respective impact models. These requirements, however, are often not well defined and subjected to individual impact models, and hence, can lead to discrepancies between the climate data provided by the climate modeling community and the data required by the impact models. As the climate model data are the first step in a process chain, limitations and problems with these data will affect the studies based on the results by the impact models and, hence, might confine the value of a project working with these results. DMI has over the past years provided climate scenario data for impact studies in several international and national research projects, including ENSEMBLES, WATCH, CRES and HYACINTS as well as the still ongoing projects IMPRESSIONS, IMPACT2C and MODEXTREME, dealing with numerous different impact sectors. Thus DMI has gained experience with a wide range of projects from very different disciplines including agriculture, hydrology, socio-economics, air-pollution and sea-level rise. The lessons learned from all these projects is that there is no standard procedure that can be implemented, but rather that individual solutions have to be constructed on a case-by-case basis for each project. This is due to the fact that the requirements for different impact models differ. For example, some impact models may need monthly input data, while others need daily data. Some need very high horizontal resolution while others may make do with relatively coarse resolution; some operate on global scale while others focus on regional or local scale. Some models need only a few variables as e.g. precipitation and temperature, while others also require e.g. radiation and evaporation. All of these requirements - and many more - shape the outcome of each individual project. Here, we highlight some of the procedures developed in some of the projects we have been involved in, and reason why the given steps were taken in those projects; focus is on MODEXTREME and IMPRESSIONS. We also point out some of the limiting factors that arise in concrete cases, often due to lack of useful observations or simulations. To conclude, we suggest a flow chart for decision as guidance to ease the procedure of providing suitable climate model output data for impact studies in future projects.
Fundamentals of Modeling, Data Assimilation, and High-performance Computing
NASA Technical Reports Server (NTRS)
Rood, Richard B.
2005-01-01
This lecture will introduce the concepts of modeling, data assimilation and high- performance computing as it relates to the study of atmospheric composition. The lecture will work from basic definitions and will strive to provide a framework for thinking about development and application of models and data assimilation systems. It will not provide technical or algorithmic information, leaving that to textbooks, technical reports, and ultimately scientific journals. References to a number of textbooks and papers will be provided as a gateway to the literature.
Rácz, A; Bajusz, D; Héberger, K
2015-01-01
Recent implementations of QSAR modelling software provide the user with numerous models and a wealth of information. In this work, we provide some guidance on how one should interpret the results of QSAR modelling, compare and assess the resulting models, and select the best and most consistent ones. Two QSAR datasets are applied as case studies for the comparison of model performance parameters and model selection methods. We demonstrate the capabilities of sum of ranking differences (SRD) in model selection and ranking, and identify the best performance indicators and models. While the exchange of the original training and (external) test sets does not affect the ranking of performance parameters, it provides improved models in certain cases (despite the lower number of molecules in the training set). Performance parameters for external validation are substantially separated from the other merits in SRD analyses, highlighting their value in data fusion.
Stratospheric free chlorine measured by balloon-borne in situ resonance fluorescence
NASA Technical Reports Server (NTRS)
Anderson, J. G.; Grassl, H. J.; Shetter, R. E.; Margitan, J. J.
1980-01-01
Eight balloon-borne in situ measurements of ClO in the stratosphere are analyzed and are compared with recent model calculations. While the use of in situ stratospheric studies of free radicals to test models by comparing observed and predicted concentration profiles is essential for a prognosis of changes in stratospheric ozone, resulting from future changes in stratospheric ozone, such studies provide only limited insight into the nature of stratospheric photochemistry, because natural variability and the large number of fast reactions which compete in the coupling among the key radicals frustrate a detailed comparison between a mean distribution provided by the models and an instantaneous distribution provided by a single observation.
NASA Technical Reports Server (NTRS)
Cushman, Paula P.
1993-01-01
Research will be undertaken in this contract in the area of Modeling Resource and Facilities Enhancement to include computer, technical and educational support to NASA investigators to facilitate model implementation, execution and analysis of output; to provide facilities linking USRA and the NASA/EADS Computer System as well as resident work stations in ESAD; and to provide a centralized location for documentation, archival and dissemination of modeling information pertaining to NASA's program. Additional research will be undertaken in the area of Numerical Model Scale Interaction/Convective Parameterization Studies to include implementation of the comparison of cloud and rain systems and convective-scale processes between the model simulations and what was observed; and to incorporate the findings of these and related research findings in at least two refereed journal articles.
Evaluating the capabilities of watershed-scale models in estimating sediment yield at field-scale.
Sommerlot, Andrew R; Nejadhashemi, A Pouyan; Woznicki, Sean A; Giri, Subhasis; Prohaska, Michael D
2013-09-30
Many watershed model interfaces have been developed in recent years for predicting field-scale sediment loads. They share the goal of providing data for decisions aimed at improving watershed health and the effectiveness of water quality conservation efforts. The objectives of this study were to: 1) compare three watershed-scale models (Soil and Water Assessment Tool (SWAT), Field_SWAT, and the High Impact Targeting (HIT) model) against calibrated field-scale model (RUSLE2) in estimating sediment yield from 41 randomly selected agricultural fields within the River Raisin watershed; 2) evaluate the statistical significance among models; 3) assess the watershed models' capabilities in identifying areas of concern at the field level; 4) evaluate the reliability of the watershed-scale models for field-scale analysis. The SWAT model produced the most similar estimates to RUSLE2 by providing the closest median and the lowest absolute error in sediment yield predictions, while the HIT model estimates were the worst. Concerning statistically significant differences between models, SWAT was the only model found to be not significantly different from the calibrated RUSLE2 at α = 0.05. Meanwhile, all models were incapable of identifying priorities areas similar to the RUSLE2 model. Overall, SWAT provided the most correct estimates (51%) within the uncertainty bounds of RUSLE2 and is the most reliable among the studied models, while HIT is the least reliable. The results of this study suggest caution should be exercised when using watershed-scale models for field level decision-making, while field specific data is of paramount importance. Copyright © 2013 Elsevier Ltd. All rights reserved.
2016-01-01
Abstract Ability of environmental stressors to induce transgenerational diseases has been experimentally demonstrated in plants, worms, fish, and mammals, indicating that exposures affect not only human health but also fish and ecosystem health. Small aquarium fish have been reliable model to study genetic and epigenetic basis of development and disease. Additionally, fish can also provide better, economic opportunity to study transgenerational inheritance of adverse health and epigenetic mechanisms. Molecular mechanisms underlying germ cell development in fish are comparable to those in mammals and humans. This review will provide a short overview of long-term effects of environmental chemical contaminant exposure in various models, associated epigenetic mechanisms, and a perspective on fish as model to study environmentally induced transgenerational inheritance of altered phenotypes. PMID:29492282
A Disability Studies Framework for Policy Activism in Postsecondary Education
ERIC Educational Resources Information Center
Gabel, Susan L.
2010-01-01
This article uses disability studies and the social model of disability as theoretical foundations for policy activism in postsecondary education. The social model is discussed and a model for policy activism is described. A case study of how disability studies and policy activism can be applied is provided utilizing the "3C Project to Provide…
Pugliese, Laura; Woodriff, Molly; Crowley, Olga; Lam, Vivian; Sohn, Jeremy; Bradley, Scott
2016-03-16
Rising rates of smartphone ownership highlight opportunities for improved mobile application usage in clinical trials. While current methods call for device provisioning, the "bring your own device" (BYOD) model permits participants to use personal phones allowing for improved patient engagement and lowered operational costs. However, more evidence is needed to demonstrate the BYOD model's feasibility in research settings. To assess if CentrosHealth, a mobile application designed to support trial compliance, produces different outcomes in medication adherence and application engagement when distributed through study-provisioned devices compared to the BYOD model. 87 participants were randomly selected to use the mobile application or no intervention for a 28-day pilot study at a 2:1 randomization ratio (2 intervention: 1 control) and asked to consume a twice-daily probiotic supplement. The application users were further randomized into two groups: receiving the application on a personal "BYOD" or study-provided smartphone. In-depth interviews were performed in a randomly-selected subset of the intervention group (five BYOD and five study-provided smartphone users). The BYOD subgroup showed significantly greater engagement than study-provided phone users, as shown by higher application use frequency and duration over the study period. The BYOD subgroup also demonstrated a significant effect of engagement on medication adherence for number of application sessions (unstandardized regression coefficient beta=0.0006, p=0.02) and time spent therein (beta=0.00001, p=0.03). Study-provided phone users showed higher initial adherence rates, but greater decline (5.7%) than BYOD users (0.9%) over the study period. In-depth interviews revealed that participants preferred the BYOD model over using study-provided devices. Results indicate that the BYOD model is feasible in health research settings and improves participant experience, calling for further BYOD model validity assessment. Although group differences in medication adherence decline were insignificant, the greater trend of decline in provisioned device users warrants further investigation to determine if trends reach significance over time. Significantly higher application engagement rates and effect of engagement on medication adherence in the BYOD subgroup similarly imply that greater application engagement may correlate to better medication adherence over time.
Computational modeling of peripheral pain: a commentary.
Argüello, Erick J; Silva, Ricardo J; Huerta, Mónica K; Avila, René S
2015-06-11
This commentary is intended to find possible explanations for the low impact of computational modeling on pain research. We discuss the main strategies that have been used in building computational models for the study of pain. The analysis suggests that traditional models lack biological plausibility at some levels, they do not provide clinically relevant results, and they cannot capture the stochastic character of neural dynamics. On this basis, we provide some suggestions that may be useful in building computational models of pain with a wider range of applications.
San Joaquin River Up-Stream DO TMDL Project Task 4: MonitoringStudy Interim Task Report #3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stringfellow, William; Borglin, Sharon; Dahlgren, Randy
2007-03-30
The purpose of the Dissolved Oxygen Total Maximum Daily LoadProject (DO TMDLProject) is to provide a comprehensive understanding ofthe sources and fate of oxygen consuming materials in the San JoaquinRiver (SJR) watershed between Channel Point and Lander Avenue (upstreamSJR). When completed, this study will provide the stakeholders anunderstanding of the baseline conditions of the basin, provide input foran allocation decision, and provide the stakeholders with a tool formeasuring the impact of any waterquality management program that may beimplemented as part of the DO TMDL process. Previous studies haveidentified algal biomass as the most significant oxygen-demandingsubstance in the DO TMDL Projectmore » study-area between of Channel Point andLander Ave onthe SJR. Other oxygen-demanding substances found in theupstream SJR include ammonia and organic carbon from sources other thanalgae. The DO TMDL Project study-area contains municipalities, dairies,wetlands, cattle ranching, irrigated agriculture, and industries thatcould potentially contribute biochemical oxygen demand (BOD) to the SJR.This study is designed to discriminate between algal BOD and othersources of BOD throughout the entire upstream SJR watershed. Algalbiomass is not a conserved substance, but grows and decays in the SJR;hence, characterization of oxygen-demanding substances in the SJR isinherently complicated and requires an integrated effort of extensivemonitoring, scientific study, and modeling. In order to achieve projectobjectives, project activities were divided into a number of Tasks withspecific goals and objectives. In this report, we present the results ofmonitoring and research conducted under Task 4 of the DO TMDL Project.The major objective of Task 4 is to collect sufficient hydrologic (flow)and water quality (WQ) data to characterize the loading of algae, otheroxygen-demanding materials, and nutrients fromindividual tributaries andsub-watersheds of the upstream SJR between Mossdale and Lander Avenue.This data is specifically being collected to provide data for the Task 6Modeling effort. Task 4 provides input and calibration data for flow andWQ modeling associated with the low DO problems in the SJR watershed,including modeling on the linkage among nutrients, algae, and low DO.Task 4 is providing a higher volume of high quality and coherent data tothe modeling team than was available in the past for the upstream SJR.The monitoring and research activities under Task 4 are integrated withthe Modeling effort (Task 6) and are not designed to be a stand aloneprogram. Although, the majority of analysis of the Task 4 data isoccurring as part of the Task 6 Modeling program, analysis of Task 4 dataindependently of the modeling effort is also an important component ofthe DO TMDL Project effort. In this report, we present the results ofmonitoring and research conducted under Task 4. The major purposes ofthis report are to 1) document activities undertaken as part of theDOTMDL Project; 2) organize electronic data for delivery to Stateagencies, stakeholders and principal investigators (cooperators) on theDO TMDL Project; 3) provide a summary analysis of the data for referenceand to assist stakeholders in planning watershed activities inresponse tothe DO TMDL requirements; and 5) provide a preliminary scientificinterpretation independently of the Task 6 Modeling effort. Due to theextensive scope of theTask 4 portion of the DO TMDL Project, the Task 4March 2007 Interim Report is divided into a numbers of chapters andassociated appendixes designed to be able to stand1-3 independently ofeach other. The purpose of this chapter is to provide an overview of Task4 data collection and to explain the structure of the overallreport.« less
Modelling of individual subject ozone exposure response kinetics.
Schelegle, Edward S; Adams, William C; Walby, William F; Marion, M Susan
2012-06-01
A better understanding of individual subject ozone (O(3)) exposure response kinetics will provide insight into how to improve models used in the risk assessment of ambient ozone exposure. To develop a simple two compartment exposure-response model that describes individual subject decrements in forced expiratory volume in one second (FEV(1)) induced by the acute inhalation of O(3) lasting up to 8 h. FEV(1) measurements of 220 subjects who participated in 14 previously completed studies were fit to the model using both particle swarm and nonlinear least squares optimization techniques to identify three subject-specific coefficients producing minimum "global" and local errors, respectively. Observed and predicted decrements in FEV(1) of the 220 subjects were used for validation of the model. Further validation was provided by comparing the observed O(3)-induced FEV(1) decrements in an additional eight studies with predicted values obtained using model coefficients estimated from the 220 subjects used in cross validation. Overall the individual subject measured and modeled FEV(1) decrements were highly correlated (mean R(2) of 0.69 ± 0.24). In addition, it was shown that a matrix of individual subject model coefficients can be used to predict the mean and variance of group decrements in FEV(1). This modeling approach provides insight into individual subject O(3) exposure response kinetics and provides a potential starting point for improving the risk assessment of environmental O(3) exposure.
Blader, Steven L; Tyler, Tom R
2009-03-01
Two field studies tested and extended the group engagement model (Tyler & Blader, 2000, Tyler & Blader, 2003) by examining the model with regard to employee extrarole behavior. Consistent with the group engagement model's predictions, results of these studies indicate that the social identities employees form around their work groups and their organizations are strongly related to whether employees engage in extrarole behaviors. Moreover, the studies demonstrated that social identity explains the impact of other factors that have previously been linked to extrarole behavior. In particular, the findings indicate that social identity mediates the effect of procedural justice judgments and economic outcomes on supervisor ratings of extrarole behavior. Overall, these studies provide compelling indication that social identity is an important determinant of behavior within work organizations and provide strong support for the application of the group engagement model in organizational settings. (c) 2009 APA, all rights reserved.
User acceptance of mobile commerce: an empirical study in Macau
NASA Astrophysics Data System (ADS)
Lai, Ivan K. W.; Lai, Donny C. F.
2014-06-01
This study aims to examine the positive and negative factors that can significantly explain user acceptance of mobile commerce (m-commerce) in Macau. A technology acceptance model for m-commerce with five factors is constructed. The proposed model is tested using data collected from 219 respondents. Confirmatory factor analysis is performed to examine the reliability and validity of the model, and structural equation modelling is performed to access the relationship between behaviour intention and each factor. The acceptance of m-commerce is influenced by factors including performance expectancy, social influence, facilitating conditions and privacy concern; while effort expectancy is insignificant in this case. The results of the study are useful for m-commerce service providers to adjust their strategies for promoting m-commerce services. This study contributes to the practice by providing a user technology acceptance model for m-commerce that can be used as a foundation for future research.
ERIC Educational Resources Information Center
Peacock, Christopher
2012-01-01
The purpose of this research effort was to develop a model that provides repeatable Location Management (LM) testing using a network simulation tool, QualNet version 5.1 (2011). The model will provide current and future protocol developers a framework to simulate stable protocol environments for development. This study used the Design Science…
Steele Gray, Carolyn; Barnsley, Jan; Gagnon, Dominique; Belzile, Louise; Kenealy, Tim; Shaw, James; Sheridan, Nicolette; Wankah Nji, Paul; Wodchis, Walter P
2018-06-26
Information communication technology (ICT) is a critical enabler of integrated models of community-based primary health care; however, little is known about how existing technologies have been used to support new models of integrated care. To address this gap, we draw on data from an international study of integrated models, exploring how ICT is used to support activities of integrated care and the organizational and environmental barriers and enablers to its adoption. We take an embedded comparative multiple-case study approach using data from a study of implementation of nine models of integrated community-based primary health care, the Implementing Integrated Care for Older Adults with Complex Health Needs (iCOACH) study. Six cases from Canada, three each in Ontario and Quebec, and three in New Zealand, were studied. As part of the case studies, interviews were conducted with managers and front-line health care providers from February 2015 to March 2017. A qualitative descriptive approach was used to code data from 137 interviews and generate word tables to guide analysis. Despite different models and contexts, we found strikingly similar accounts of the types of activities supported through ICT systems in each of the cases. ICT systems were used most frequently to support activities like care coordination by inter-professional teams through information sharing. However, providers were limited in their ability to efficiently share patient data due to data access issues across organizational and professional boundaries and due to system functionality limitations, such as a lack of interoperability. Even in innovative models of care, managers and providers in our cases mainly use technology to enable traditional ways of working. Technology limitations prevent more innovative uses of technology that could support disruption necessary to improve care delivery. We argue the barriers to more innovative use of technology are linked to three factors: (1) information access barriers, (2) limited functionality of available technology, and (3) organizational and provider inertia.
Friedman, Daniela B; Freedman, Darcy A; Choi, Seul Ki; Anadu, Edith C; Brandt, Heather M; Carvalho, Natalia; Hurley, Thomas G; Young, Vicki M; Hébert, James R
2014-03-01
Farmers' markets have the potential to improve the health of underserved communities, shape people's perceptions, values, and behaviors about healthy eating, and serve as a social space for both community members and vendors. This study explored the influence of health care provider communication and role modeling for diabetic patients within the context of a farmers' market located at a federally qualified health center. Although provider communication about diet decreased over time, communication strategies included: providing patients with "prescriptions" and vouchers for market purchases; educating patients about diet; and modeling healthy purchases. Data from patient interviews and provider surveys revealed that patients enjoyed social aspects of the market including interactions with their health care provider, and providers distributed prescriptions and vouchers to patients, shopped at the market, and believed that the market had potential to improve the health of staff and patients of the federally qualified health center. Provider modeling of healthy behaviors may influence patients' food-related perceptions and dietary behaviors.
Friedman, Daniela B.; Freedman, Darcy A.; Choi, Seul Ki; Anadu, Edith C.; Brandt, Heather M.; Carvalho, Natalia; Hurley, Thomas G.; Young, Vicki M.; Hebert, James R.
2013-01-01
Farmers’ markets have the potential to improve the health of underserved communities, shape people’s perceptions, values, and behaviors about healthy eating, and serve as a social space for both community members and vendors. This study explored the influence of health care provider communication and role modeling for diabetic patients within the context of a farmers’ market located at a federally qualified health center (FQHC). Although provider communication about diet decreased over time, communication strategies included: providing patients with “prescriptions” and vouchers for market purchases; educating patients about diet; and modeling healthy purchases. Data from patient interviews and provider surveys revealed that patients enjoyed social aspects of the market including interactions with their health care provider, and providers distributed prescriptions and vouchers to patients, shopped at the market, and believed the market had potential to improve the health of FHQC staff and patients. Provider modeling of healthy behaviors may influence patients’ food-related perceptions and dietary behaviors. PMID:23986503
NASA Astrophysics Data System (ADS)
Cheung, Shao-Yong; Lee, Chieh-Han; Yu, Hwa-Lung
2017-04-01
Due to the limited hydrogeological observation data and high levels of uncertainty within, parameter estimation of the groundwater model has been an important issue. There are many methods of parameter estimation, for example, Kalman filter provides a real-time calibration of parameters through measurement of groundwater monitoring wells, related methods such as Extended Kalman Filter and Ensemble Kalman Filter are widely applied in groundwater research. However, Kalman Filter method is limited to linearity. This study propose a novel method, Bayesian Maximum Entropy Filtering, which provides a method that can considers the uncertainty of data in parameter estimation. With this two methods, we can estimate parameter by given hard data (certain) and soft data (uncertain) in the same time. In this study, we use Python and QGIS in groundwater model (MODFLOW) and development of Extended Kalman Filter and Bayesian Maximum Entropy Filtering in Python in parameter estimation. This method may provide a conventional filtering method and also consider the uncertainty of data. This study was conducted through numerical model experiment to explore, combine Bayesian maximum entropy filter and a hypothesis for the architecture of MODFLOW groundwater model numerical estimation. Through the virtual observation wells to simulate and observe the groundwater model periodically. The result showed that considering the uncertainty of data, the Bayesian maximum entropy filter will provide an ideal result of real-time parameters estimation.
Determinants of Linear Judgment: A Meta-Analysis of Lens Model Studies
ERIC Educational Resources Information Center
Karelaia, Natalia; Hogarth, Robin M.
2008-01-01
The mathematical representation of E. Brunswik's (1952) lens model has been used extensively to study human judgment and provides a unique opportunity to conduct a meta-analysis of studies that covers roughly 5 decades. Specifically, the authors analyzed statistics of the "lens model equation" (L. R. Tucker, 1964) associated with 249 different…
Evidence for a General ADHD Factor from a Longitudinal General School Population Study
ERIC Educational Resources Information Center
Normand, Sebastien; Flora, David B.; Toplak, Maggie E.; Tannock, Rosemary
2012-01-01
Recent factor analytic studies in Attention-Deficit/Hyperactivity Disorder (ADHD) have shown that hierarchical models provide a better fit of ADHD symptoms than correlated models. A hierarchical model includes a general ADHD factor and specific factors for inattention, and hyperactivity/impulsivity. The aim of this 12-month longitudinal study was…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Jaquelin; Palchak, David
The Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid study uses advanced weather and power system modeling to explore the operational impacts of meeting India's 2022 renewable energy targets and identify actions that may be favorable for integrating high levels of renewable energy into the Indian grid. The study relies primarily on a production cost model that simulates optimal scheduling and dispatch of available generation in a future year (2022) by minimizing total production costs subject to physical, operational, and market constraints. This fact sheet provides a detailed look at each of thesemore » models, including their common assumptions and the insights provided by each.« less
Experimental Flow Models for SSME Flowfield Characterization
NASA Technical Reports Server (NTRS)
Abel, L. C.; Ramsey, P. E.
1989-01-01
Full scale flow models with extensive instrumentation were designed and manufactured to provide data necessary for flow field characterization in rocket engines of the Space Shuttle Main Engine (SSME) type. These models include accurate flow path geometries from the pre-burner outlet through the throat of the main combustion chamber. The turbines are simulated with static models designed to provide the correct pressure drop and swirl for specific power levels. The correct turbopump-hot gas manifold interfaces were designed into the flow models to permit parametric/integration studies for new turbine designs. These experimental flow models provide a vehicle for understanding the fluid dynamics associated with specific engine issues and also fill the more general need for establishing a more detailed fluid dynamic base to support development and verification of advanced math models.
The behavior of the Higgs field in the new inflationary universe
NASA Technical Reports Server (NTRS)
Guth, Alan H.; Pi, So-Young
1986-01-01
Answers are provided to questions about the standard model of the new inflationary universe (NIU) which have raised concerns about the model's validity. A baby toy problem which consists of the study of a single particle moving in one dimension under the influence of a potential with the form of an upside-down harmonic oscillator is studied, showing that the quantum mechanical wave function at large times is accurately described by classical physics. Then, an exactly soluble toy model for the behavior of the Higgs field in the NIU is described which should provide a reasonable approximation to the behavior of the Higgs field in the NIU. The dynamics of the toy model is described, and calculative results are reviewed which, the authors claim, provide strong evidence that the basic features of the standard picture are correct.
Soleus muscles of SAMP8 mice provide an accelerated model of skeletal muscle senescence.
Derave, Wim; Eijnde, Bert O; Ramaekers, Monique; Hespel, Peter
2005-07-01
Animal models are valuable research tools towards effective prevention of sarcopenia and towards a better understanding of the mechanisms underlying skeletal muscle aging. We investigated whether senescence-accelerated mouse (SAM) strains provide valid models for skeletal muscle aging studies. Male senescence-prone mice SAMP6 and SAMP8 were studied at age 10, 25 and 60 weeks and compared with senescence-resistant strain, SAMR1. Soleus and EDL muscles were tested for in vitro contractile properties, phosphocreatine content, muscle mass and fiber-type distribution. Declined muscle mass and contractility were observed at 60 weeks, the differences being more pronounced in SAMP8 than SAMP6 and more pronounced in soleus than EDL. Likewise, age-related decreases in muscle phosphocreatine content and type-II fiber size were most pronounced in SAMP8 soleus. In conclusion, typical features of muscular senescence occur at relatively young age in SAMP8 and nearly twice as fast as compared with other models. We suggest that soleus muscles of SAMP8 mice provide a cost-effective model for muscular aging studies.
Patient-reported access to primary care in Ontario: effect of organizational characteristics.
Muggah, Elizabeth; Hogg, William; Dahrouge, Simone; Russell, Grant; Kristjansson, Elizabeth; Muldoon, Laura; Devlin, Rose Anne
2014-01-01
To describe patient-reported access to primary health care across 4 organizational models of primary care in Ontario, and to explore how access is associated with patient, provider, and practice characteristics. Cross-sectional survey. One hundred thirty-seven randomly selected primary care practices in Ontario using 1 of 4 delivery models (fee for service, established capitation, reformed capitation, and community health centres). Patients included were at least 18 years of age, were not severely ill or cognitively impaired, were not known to the survey administrator, had consenting providers at 1 of the participating primary care practices, and were able to communicate in English or French either directly or through a translator. Patient-reported access was measured by a 4-item scale derived from the previously validated adult version of the Primary Care Assessment Tool. Questions were asked about physician availability during and outside of regular office hours and access to health information via telephone. Responses to the scale were normalized, with higher scores reflecting greater patient-reported access. Linear regressions were used to identify characteristics independently associated with access to care. Established capitation model practices had the highest patient-reported access, although the difference in scores between models was small. Our multilevel regression model identified several patient factors that were significantly (P = .05) associated with higher patient-reported access, including older age, female sex, good-to-excellent self-reported health, less mental health disability, and not working. Provider experience (measured as years since graduation) was the only provider or practice characteristic independently associated with improved patient-reported access. This study adds to what is known about access to primary care. The study found that established capitation models outperformed all the other organizational models, including reformed capitation models, independent of provider and practice variables save provider experience. This suggests that the capitation models might provide better access to care and that it might take time to realize the benefits of organizational reforms.
Simone, Joanne; Hoyt, Mary Jo; Storm, Deborah S; Finocchario-Kessler, Sarah
2018-06-05
Preconception care can improve maternal and infant outcomes by identifying and modifying health risks before pregnancy and reducing unplanned pregnancies. However, information about how preconception care is provided to persons living with HIV (PLWH) is lacking. This study uses qualitative interviews with HIV care providers to describe current models of preconception care and explore factors influencing services. Single, anonymous, telephone interviews were conducted with 92 purposively selected HIV healthcare providers in Atlanta, Baltimore, Houston, Kansas City, Newark, Philadelphia, and San Francisco in 2013-2014. Content analysis and a grounded theory approach were used to analyze data. Participants included 57% physicians with a median of 10 [interquartile range (IQR) = 5-17] years HIV care experience; the mean proportion of female patients was 45%. Participants described Individual Provider (48.9%), Team-based (43.2%), and Referral-only (7.6%) models of preconception care, with 63% incorporating referrals outside their clinics. Thematic analysis identified five key elements influencing the provision of preconception care within and across models: consistency of delivery, knowledge and attitudes, clinic characteristics, coordination of care, and referral accessibility. Described models of preconception care reflect the complexity of our healthcare system. Qualitative analysis offers insights about how HIV clinicians provide preconception care and how key elements influence services. However, additional research about the models and outcomes of preconception care services are needed. To improve preconception care for PLWH, research and quality improvement initiatives must utilize available strengths and tackle existing barriers, identified by our study and others, to define and implement effective models of preconception care services.
Detonation models of fast combustion waves in nanoscale Al-MoO3 bulk powder media
NASA Astrophysics Data System (ADS)
Shaw, Benjamin D.; Pantoya, Michelle L.; Dikici, Birce
2013-02-01
The combustion of nanometric aluminum (Al) powder with an oxidiser such as molybdenum trioxide (MoO3) is studied analytically. This study focuses on detonation wave models and a Chapman-Jouget detonation model provides reasonable agreement with experimentally-observed wave speeds provided that multiphase equilibrium sound speeds are applied at the downstream edge of the detonation wave. The results indicate that equilibrium sound speeds of multiphase mixtures can play a critical role in determining speeds of fast combustion waves in nanoscale Al-MoO3 powder mixtures.
NASA Astrophysics Data System (ADS)
Li, Wenlian; Xiao, Faqi; Zhou, Mingming; Jiang, Xuejin; Liu, Jun; Si, Hongzong; Xie, Meng; Ma, Xiuting; Duan, Yunbo; Zhai, Honglin
2016-09-01
The three dimensional-quantitative structure activity relationship (3D-QSAR) study was performed on a series of 4-hydroxyamino α-pyranone carboxamide analogues using comparative molecular similarity indices analysis (COMSIA). The purpose of the present study was to develop a satisfactory model providing a reliable prediction based on 4-hydroxyamino α-pyranone carboxamide analogues as anti-HCV (hepatitis C virus) inhibitors. The statistical results and the results of validation of this optimum COMSIA model were satisfactory. Furthermore, analysis of the contour maps helped to provide guidelines for finding structural requirement. Therefore, the satisfactory results from this study may provide useful guidelines for drug development of anti-HCV inhibitors.
One-Dimensional Modeling Studies of the Gaseous Electronics Conference RF Reference Cell
Govindan, T. R.; Meyyappan, M.
1995-01-01
A review of the one-dimensional modeling studies in the literature of the Gaseous Electronics Conference (GEC) reference plasma reactor is presented. Most of the studies are based on the fluid model description of the discharge and some utilize hybrid fluid-kinetic schemes. Both models are discussed here briefly. The models provide a basic understanding of the discharge mechanisms and reproduce several critical discharge features observed experimentally. PMID:29151755
NASA Astrophysics Data System (ADS)
Hosseiny, S. M. H.; Zarzar, C.; Gomez, M.; Siddique, R.; Smith, V.; Mejia, A.; Demir, I.
2016-12-01
The National Water Model (NWM) provides a platform for operationalize nationwide flood inundation forecasting and mapping. The ability to model flood inundation on a national scale will provide invaluable information to decision makers and local emergency officials. Often, forecast products use deterministic model output to provide a visual representation of a single inundation scenario, which is subject to uncertainty from various sources. While this provides a straightforward representation of the potential inundation, the inherent uncertainty associated with the model output should be considered to optimize this tool for decision making support. The goal of this study is to produce ensembles of future flood inundation conditions (i.e. extent, depth, and velocity) to spatially quantify and visually assess uncertainties associated with the predicted flood inundation maps. The setting for this study is located in a highly urbanized watershed along the Darby Creek in Pennsylvania. A forecasting framework coupling the NWM with multiple hydraulic models was developed to produce a suite ensembles of future flood inundation predictions. Time lagged ensembles from the NWM short range forecasts were used to account for uncertainty associated with the hydrologic forecasts. The forecasts from the NWM were input to iRIC and HEC-RAS two-dimensional software packages, from which water extent, depth, and flow velocity were output. Quantifying the agreement between output ensembles for each forecast grid provided the uncertainty metrics for predicted flood water inundation extent, depth, and flow velocity. For visualization, a series of flood maps that display flood extent, water depth, and flow velocity along with the underlying uncertainty associated with each of the forecasted variables were produced. The results from this study demonstrate the potential to incorporate and visualize model uncertainties in flood inundation maps in order to identify the high flood risk zones.
ERIC Educational Resources Information Center
Abu-Hilal, Maher M.
A study tested predictions for I/E (internal external) frame of reference model and extended this model to include locus of control. A sample of upper elementary (n=181) and junior high (n=191) students in the United Arab Emirates participated in the study. Structural equation modeling (SEM) analyses provided support to the external comparison…
ERIC Educational Resources Information Center
Akmanoglu, Nurgul; Yanardag, Mehmet; Batu, E. Sema
2014-01-01
Teaching play skills is important for children with autism. The purpose of the present study was to compare effectiveness and efficiency of providing video modeling and graduated guidance together and video modeling alone for teaching role playing skills to children with autism. The study was conducted with four students. The study was conducted…
On the magnetic circular dichroism of benzene. A density-functional study
NASA Astrophysics Data System (ADS)
Kaminský, Jakub; Kříž, Jan; Bouř, Petr
2017-04-01
Spectroscopy of magnetic circular dichroism (MCD) provides enhanced information on molecular structure and a more reliable assignment of spectral bands than absorption alone. Theoretical modeling can significantly enhance the information obtained from experimental spectra. In the present study, the time dependent density functional theory is employed to model the lowest-energy benzene transitions, in particular to investigate the role of the Rydberg states and vibrational interference in spectral intensities. The effect of solvent is explored on model benzene-methane clusters. For the lowest-energy excitation, the vibrational sub-structure of absorption and MCD spectra is modeled within the harmonic approximation, providing a very good agreement with the experiment. The simulations demonstrate that the Rydberg states have a much stronger effect on the MCD intensities than on the absorption, and a very diffuse basis set must be used to obtain reliable results. The modeling also indicates that the Rydberg-like states and associated transitions may persist in solutions. Continuum-like solvent models are thus not suitable for their modeling; solvent-solute clusters appear to be more appropriate, providing they are large enough.
Markov Decision Process Measurement Model.
LaMar, Michelle M
2018-03-01
Within-task actions can provide additional information on student competencies but are challenging to model. This paper explores the potential of using a cognitive model for decision making, the Markov decision process, to provide a mapping between within-task actions and latent traits of interest. Psychometric properties of the model are explored, and simulation studies report on parameter recovery within the context of a simple strategy game. The model is then applied to empirical data from an educational game. Estimates from the model are found to correlate more strongly with posttest results than a partial-credit IRT model based on outcome data alone.
Systematic Review of Measles and Rubella Serology Studies.
Thompson, Kimberly M; Odahowski, Cassie L
2016-07-01
Serological tests provide information about individual immunity from historical infection or immunization. Cross-sectional serological studies provide data about the age- and sex-specific immunity levels for individuals in the studied population, and these data can provide a point of comparison for the results of transmission models. In the context of developing an integrated model for measles and rubella transmission, we reviewed the existing measles and rubella literature to identify the results of national serological studies that provided cross-sectional estimates of population immunity at the time of data collection. We systematically searched PubMed, the Science Citation Index, and references we identified from relevant articles published in English. We extracted serological data for comparison to transmission model outputs. For rubella, serological studies of women of child-bearing age provide information about the potential risks of infants born with congenital rubella syndrome. Serological studies also document the loss of maternal antibodies, which occurs at different rates for the different viruses and according to the nature of the induced immunity (i.e., infection or vaccine). The serological evidence remains limited for some areas, with studies from developed countries representing a disproportionate part of the evidence. The collection and review of serological evidence can help program managers identify immunity gaps in the population, which may help them better understand the characteristics of individuals within their populations who may participate in transmission and manage risks. © 2015 Society for Risk Analysis.
Tawhai, Merryn H.; Clark, Alys R.; Burrowes, Kelly S.
2011-01-01
Biophysically-based computational models provide a tool for integrating and explaining experimental data, observations, and hypotheses. Computational models of the pulmonary circulation have evolved from minimal and efficient constructs that have been used to study individual mechanisms that contribute to lung perfusion, to sophisticated multi-scale and -physics structure-based models that predict integrated structure-function relationships within a heterogeneous organ. This review considers the utility of computational models in providing new insights into the function of the pulmonary circulation, and their application in clinically motivated studies. We review mathematical and computational models of the pulmonary circulation based on their application; we begin with models that seek to answer questions in basic science and physiology and progress to models that aim to have clinical application. In looking forward, we discuss the relative merits and clinical relevance of computational models: what important features are still lacking; and how these models may ultimately be applied to further increasing our understanding of the mechanisms occurring in disease of the pulmonary circulation. PMID:22034608
Particle Interactions Mediated by Dynamical Networks: Assessment of Macroscopic Descriptions
NASA Astrophysics Data System (ADS)
Barré, J.; Carrillo, J. A.; Degond, P.; Peurichard, D.; Zatorska, E.
2018-02-01
We provide a numerical study of the macroscopic model of Barré et al. (Multiscale Model Simul, 2017, to appear) derived from an agent-based model for a system of particles interacting through a dynamical network of links. Assuming that the network remodeling process is very fast, the macroscopic model takes the form of a single aggregation-diffusion equation for the density of particles. The theoretical study of the macroscopic model gives precise criteria for the phase transitions of the steady states, and in the one-dimensional case, we show numerically that the stationary solutions of the microscopic model undergo the same phase transitions and bifurcation types as the macroscopic model. In the two-dimensional case, we show that the numerical simulations of the macroscopic model are in excellent agreement with the predicted theoretical values. This study provides a partial validation of the formal derivation of the macroscopic model from a microscopic formulation and shows that the former is a consistent approximation of an underlying particle dynamics, making it a powerful tool for the modeling of dynamical networks at a large scale.
Particle Interactions Mediated by Dynamical Networks: Assessment of Macroscopic Descriptions.
Barré, J; Carrillo, J A; Degond, P; Peurichard, D; Zatorska, E
2018-01-01
We provide a numerical study of the macroscopic model of Barré et al. (Multiscale Model Simul, 2017, to appear) derived from an agent-based model for a system of particles interacting through a dynamical network of links. Assuming that the network remodeling process is very fast, the macroscopic model takes the form of a single aggregation-diffusion equation for the density of particles. The theoretical study of the macroscopic model gives precise criteria for the phase transitions of the steady states, and in the one-dimensional case, we show numerically that the stationary solutions of the microscopic model undergo the same phase transitions and bifurcation types as the macroscopic model. In the two-dimensional case, we show that the numerical simulations of the macroscopic model are in excellent agreement with the predicted theoretical values. This study provides a partial validation of the formal derivation of the macroscopic model from a microscopic formulation and shows that the former is a consistent approximation of an underlying particle dynamics, making it a powerful tool for the modeling of dynamical networks at a large scale.
Azmat, Syed Khurram; Ali, Moazzam; Hameed, Waqas; Awan, Muhammad Ali
2018-01-01
Studies have documented the impact of quality family planning services on improved contraceptive uptake and continuation, however, relatively little is known about their quality of service provision especially in the context of social franchising. This study examined the quality of clinical services and user experiences among two models in franchised service providers in rural Pakistan. This facility-based assessment was carried out during May-June 2015 at the 20 randomly selected social franchise providers from Chakwal and Faisalabad. In our case, a franchise health facility was a private clinic (mostly) run by a single provider, supported by an assistant. Within the selected health facilities, a total 39 user-provider interactions were observed and same users were interviewed separately. Most of the health facilities were in the private sector. Comparatively, service providers at Greenstar Social Marketing/Population Services International (GSM/PSI) model franchised facilities had higher number of rooms and staff employed, with more providers' ownership. Quality of service indices showed high scores for both Marie Stopes Society (MSS) and GSM/PSI franchised providers. MSS franchised providers demonstrated comparative edge in terms of clinical governance, better method mix and they were more user-focused, while PSI providers offered broader range of non-FP services. Quality of counselling services were similar among both models. Service providers performed well on all indicators of interpersonal care however overall low scores were noted in technical care. For both models, service providers attained an average score of 6.7 (out of the maximum value of 8) on waste disposal mechanism, supplies 12.5 (out of the maximum value of 15), user-centred facility 2.7 (out of the maximum value of 4), and clinical governance 6.5 (out of the maximum value of 11) and respecting clients' privacy. The exit interviews yielded high user satisfaction in both service models. The findings seem suggesting that the MSS and GSM/PSI service providers were maintaining high quality standards in provision of family planning information, services, and commodities but overall there was not much difference between the two models in terms of quality and satisfaction. The results demonstrate that service quality and client satisfaction are an important determinant of use of clinical contraceptive methods in Pakistan.
A Flexible System for Simulating Aeronautical Telecommunication Network
NASA Technical Reports Server (NTRS)
Maly, Kurt; Overstreet, C. M.; Andey, R.
1998-01-01
At Old Dominion University, we have built Aeronautical Telecommunication Network (ATN) Simulator with NASA being the fund provider. It provides a means to evaluate the impact of modified router scheduling algorithms on the network efficiency, to perform capacity studies on various network topologies and to monitor and study various aspects of ATN through graphical user interface (GUI). In this paper we describe briefly about the proposed ATN model and our abstraction of this model. Later we describe our simulator architecture highlighting some of the design specifications, scheduling algorithms and user interface. At the end, we have provided the results of performance studies on this simulator.
Li, Haitao; Qian, Dongfu; Griffiths, Sian; Chung, Roger Yat-Nork; Wei, Xiaolin
2015-11-10
There are three major models of primary care providers (Community Health Centers, CHCs) in China, i.e., government managed, hospital managed and privately owned CHCs. We performed a systematic review of structures and health care delivery patterns of the three models of CHCs. Studies from relevant English and Chinese databases for the period of 1997-2011 were searched. Two independent researchers extracted data from the eligible studies using a standardized abstraction form. Methodological quality of included articles was assessed with the Mixed Methods Appraisal Tool (MMAT). A total of 13 studies was included in the final analysis. Compared with the other two models, private CHCs had a smaller health workforce and lower share of government funding in their total revenues. Private CHCs also had fewer training opportunities, were less recognized by health insurance schemes and tended to provide primary care services of poor quality. Hospital managed CHCs attracted patients through their higher quality of clinical care, while private CHCs attracted users through convenience and medical equipment. Our study suggested that government and hospital managed CHCs were more competent and provided better primary care than privately owned CHCs. Further studies are warranted to comprehensively compare performances among different models of CHCs.
Agent-Based Modeling of Chronic Diseases: A Narrative Review and Future Research Directions
Lawley, Mark A.; Siscovick, David S.; Zhang, Donglan; Pagán, José A.
2016-01-01
The United States is experiencing an epidemic of chronic disease. As the US population ages, health care providers and policy makers urgently need decision models that provide systematic, credible prediction regarding the prevention and treatment of chronic diseases to improve population health management and medical decision-making. Agent-based modeling is a promising systems science approach that can model complex interactions and processes related to chronic health conditions, such as adaptive behaviors, feedback loops, and contextual effects. This article introduces agent-based modeling by providing a narrative review of agent-based models of chronic disease and identifying the characteristics of various chronic health conditions that must be taken into account to build effective clinical- and policy-relevant models. We also identify barriers to adopting agent-based models to study chronic diseases. Finally, we discuss future research directions of agent-based modeling applied to problems related to specific chronic health conditions. PMID:27236380
Agent-Based Modeling of Chronic Diseases: A Narrative Review and Future Research Directions.
Li, Yan; Lawley, Mark A; Siscovick, David S; Zhang, Donglan; Pagán, José A
2016-05-26
The United States is experiencing an epidemic of chronic disease. As the US population ages, health care providers and policy makers urgently need decision models that provide systematic, credible prediction regarding the prevention and treatment of chronic diseases to improve population health management and medical decision-making. Agent-based modeling is a promising systems science approach that can model complex interactions and processes related to chronic health conditions, such as adaptive behaviors, feedback loops, and contextual effects. This article introduces agent-based modeling by providing a narrative review of agent-based models of chronic disease and identifying the characteristics of various chronic health conditions that must be taken into account to build effective clinical- and policy-relevant models. We also identify barriers to adopting agent-based models to study chronic diseases. Finally, we discuss future research directions of agent-based modeling applied to problems related to specific chronic health conditions.
Modeling individual effects in the Cormack-Jolly-Seber Model: A state-space formulation
Royle, J. Andrew
2008-01-01
In population and evolutionary biology, there exists considerable interest in individual heterogeneity in parameters of demographic models for open populations. However, flexible and practical solutions to the development of such models have proven to be elusive. In this article, I provide a state-space formulation of open population capture-recapture models with individual effects. The state-space formulation provides a generic and flexible framework for modeling and inference in models with individual effects, and it yields a practical means of estimation in these complex problems via contemporary methods of Markov chain Monte Carlo. A straightforward implementation can be achieved in the software package WinBUGS. I provide an analysis of a simple model with constant parameter detection and survival probability parameters. A second example is based on data from a 7-year study of European dippers, in which a model with year and individual effects is fitted.
Models of wound healing: an emphasis on clinical studies.
Wilhelm, K-P; Wilhelm, D; Bielfeldt, S
2017-02-01
The healing of wounds has always provided challenges for the medical community whether chronic or acute. Understanding the processes which enable wounds to heal is primarily carried out by the use of models, in vitro, animal and human. It is generally accepted that the use of human models offers the best opportunity to understand the factors that influence wound healing as well as to evaluate efficacy of treatments applied to wounds. The objective of this article is to provide an overview of the different methodologies that are currently used to experimentally induce wounds of various depths in human volunteers and examines the information that may be gained from them. There is a number of human volunteer healing models available varying in their invasiveness to reflect the different possible depth levels of wounds. Currently available wound healing models include sequential tape stripping, suction blister, abrasion, laser, dermatome, and biopsy techniques. The various techniques can be utilized to induce wounds of variable depth, from removing solely the stratum corneum barrier, the epidermis to even split-thickness or full thickness wounds. Depending on the study objective, a number of models exist to study wound healing in humans. These models provide efficient and reliable results to evaluate treatment modalities. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Changes of glaciers in the Andes of Chile and priorities for future work.
Pellicciotti, F; Ragettli, S; Carenzo, M; McPhee, J
2014-09-15
Glaciers in the Andes of Chile seem to be shrinking and possibly loosing mass, but the number and types of studies conducted, constrained mainly by data availability, are not sufficient to provide a synopsis of glacier changes for the past or future or explain in an explicit way causes of the observed changes. In this paper, we provide a systematic review of changes in glaciers for the entire country, followed by a discussion of the studies that have provided evidence of such changes. We identify a missing type of work in distributed, physically-oriented modelling studies that are needed to bridge the gap between the numerous remote sensing studies and the specific, point scale works focused on process understanding. We use an advanced mass balance model applied to one of the best monitored glaciers in the region to investigate four main research issues that should be addressed in modelling studies for a sound assessment of glacier changes: 1) the use of physically-based models of glacier ablation (energy balance models) versus more empirical models (enhanced temperature index approaches); 2) the importance of the correct extrapolation of air temperature forcing on glaciers and in high elevation areas and the large uncertainty in model outputs associated with it; 3) the role played by snow gravitational redistribution; and 4) the uncertainty associated with future climate scenarios. We quantify differences in model outputs associated with each of these choices, and conclude with suggestions for future work directions. © 2013 Elsevier B.V. All rights reserved.
Generation of improved humanized mouse models for human infectious diseases
Brehm, Michael A.; Wiles, Michael V.; Greiner, Dale L.; Shultz, Leonard D.
2014-01-01
The study of human-specific infectious agents has been hindered by the lack of optimal small animal models. More recently development of novel strains of immunodeficient mice has begun to provide the opportunity to utilize small animal models for the study of many human-specific infectious agents. The introduction of a targeted mutation in the IL2 receptor common gamma chain gene (IL2rgnull) in mice already deficient in T and B cells led to a breakthrough in the ability to engraft hematopoietic stem cells, as well as functional human lymphoid cells and tissues, effectively creating human immune systems in immunodeficient mice. These humanized mice are becoming increasingly important as pre-clinical models for the study of human immunodeficiency virus-1 (HIV-1) and other human-specific infectious agents. However, there remain a number of opportunities to further improve humanized mouse models for the study of human-specific infectious agents. This is being done by the implementation of innovative technologies, which collectively will accelerate the development of new models of genetically modified mice, including; i) modifications of the host to reduce innate immunity, which impedes human cell engraftment; ii) genetic modification to provide human-specific growth factors and cytokines required for optimal human cell growth and function; iii) and new cell and tissue engraftment protocols. The development of “next generation” humanized mouse models continues to provide exciting opportunities for the establishment of robust small animal models to study the pathogenesis of human-specific infectious agents, as well as for testing the efficacy of therapeutic agents and experimental vaccines. PMID:24607601
Lindsay, Ana Cristina; Greaney, Mary L; Wallington, Sherrie F; Wright, Julie A
2017-11-12
Latinos are the largest and most rapidly growing minority population group in the USA and are disproportionally affected by obesity and related chronic diseases. Child care providers likely influence the eating and physical activity behaviours of children in their care, and therefore are important targets for interventions designed to prevent childhood obesity. Nonetheless, there is a paucity of research examining the behaviours of family child care home (FCCH) providers and whether they model healthy eating and physical activity behaviours. Therefore, this study explored Latino FCCH providers' beliefs and practices related to healthy eating, physical activity and sedentary behaviours, and how they view their ability to serve as role models for these behaviours for young children in their care. This is a qualitative study consisting of six focus groups conducted in Spanish with a sample of 44 state-licensed Latino FCCH providers in the state of Massachusetts. Translated transcripts were analysed using thematic analyses to identify meaningful patterns. Analyses revealed that Latino FCCH providers have positive beliefs and attitudes about the importance of healthy eating and physical activity for children in their care, but personally struggle with these same behaviours and with maintaining a healthy weight status. The ability of Latino FCCH providers to model healthy eating and physical activity may be limited by their low self-efficacy in their ability to be physically active, eat a healthy diet and maintain a healthy weight. Interventions designed to improve healthy eating and physical activity behaviours of children enrolled in FCCHs should address providers' own health behaviours as well as their modelling of these health behaviours. Future research can build on the findings of this qualitative study by quantifying Latino FCCH providers' eating and physical activity behaviours, and determining how these behaviours influence behaviours and health outcomes of children in their care. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Partially composite particle physics with and without supersymmetry
NASA Astrophysics Data System (ADS)
Kramer, Thomas A.
Theories in which the Standard Model fields are partially compositeness provide elegant and phenomenologically viable solutions to the Hierarchy Problem. In this thesis we will study types of models from two different perspectives. We first derive an effective field theory describing the interactions of the Standard Models fields with their lightest composite partners based on two weakly coupled sectors. Technically, via the AdS/CFT correspondence, our model is dual to a highly deconstructed theory with a single warped extra-dimension. This two sector theory provides a simplified approach to the phenomenology of this important class of theories. We then use this effective field theoretic approach to study models with weak scale accidental supersymmetry. Particularly, we will investigate the possibility that the Standard Model Higgs field is a member of a composite supersymmetric sector interacting weakly with the known Standard Model fields.
NASA Astrophysics Data System (ADS)
Chacón-Barrantes, Silvia; López-Venegas, Alberto; Sánchez-Escobar, Rónald; Luque-Vergara, Néstor
2018-04-01
Historical records have shown that tsunami have affected the Caribbean region in the past. However infrequent, recent studies have demonstrated that they pose a latent hazard for countries within this basin. The Hazard Assessment Working Group of the ICG/CARIBE-EWS (Intergovernmental Coordination Group of the Early Warning System for Tsunamis and Other Coastal Threats for the Caribbean Sea and Adjacent Regions) of IOC/UNESCO has a modeling subgroup, which seeks to develop a modeling platform to assess the effects of possible tsunami sources within the basin. The CaribeWave tsunami exercise is carried out annually in the Caribbean region to increase awareness and test tsunami preparedness of countries within the basin. In this study we present results of tsunami inundation using the CaribeWave15 exercise scenario for four selected locations within the Caribbean basin (Colombia, Costa Rica, Panamá and Puerto Rico), performed by tsunami modeling researchers from those selected countries. The purpose of this study was to provide the states with additional results for the exercise. The results obtained here were compared to co-seismic deformation and tsunami heights within the basin (energy plots) provided for the exercise to assess the performance of the decision support tools distributed by PTWC (Pacific Tsunami Warning Center), the tsunami service provider for the Caribbean basin. However, comparison of coastal tsunami heights was not possible, due to inconsistencies between the provided fault parameters and the modeling results within the provided exercise products. Still, the modeling performed here allowed to analyze tsunami characteristics at the mentioned states from sources within the North Panamá Deformed Belt. The occurrence of a tsunami in the Caribbean may affect several countries because a great variety of them share coastal zones in this basin. Therefore, collaborative efforts similar to the one presented in this study, particularly between neighboring countries, are critical to assess tsunami hazard and increase preparedness within the countries.
NASA Astrophysics Data System (ADS)
Chacón-Barrantes, Silvia; López-Venegas, Alberto; Sánchez-Escobar, Rónald; Luque-Vergara, Néstor
2017-10-01
Historical records have shown that tsunami have affected the Caribbean region in the past. However infrequent, recent studies have demonstrated that they pose a latent hazard for countries within this basin. The Hazard Assessment Working Group of the ICG/CARIBE-EWS (Intergovernmental Coordination Group of the Early Warning System for Tsunamis and Other Coastal Threats for the Caribbean Sea and Adjacent Regions) of IOC/UNESCO has a modeling subgroup, which seeks to develop a modeling platform to assess the effects of possible tsunami sources within the basin. The CaribeWave tsunami exercise is carried out annually in the Caribbean region to increase awareness and test tsunami preparedness of countries within the basin. In this study we present results of tsunami inundation using the CaribeWave15 exercise scenario for four selected locations within the Caribbean basin (Colombia, Costa Rica, Panamá and Puerto Rico), performed by tsunami modeling researchers from those selected countries. The purpose of this study was to provide the states with additional results for the exercise. The results obtained here were compared to co-seismic deformation and tsunami heights within the basin (energy plots) provided for the exercise to assess the performance of the decision support tools distributed by PTWC (Pacific Tsunami Warning Center), the tsunami service provider for the Caribbean basin. However, comparison of coastal tsunami heights was not possible, due to inconsistencies between the provided fault parameters and the modeling results within the provided exercise products. Still, the modeling performed here allowed to analyze tsunami characteristics at the mentioned states from sources within the North Panamá Deformed Belt. The occurrence of a tsunami in the Caribbean may affect several countries because a great variety of them share coastal zones in this basin. Therefore, collaborative efforts similar to the one presented in this study, particularly between neighboring countries, are critical to assess tsunami hazard and increase preparedness within the countries.
A general U-block model-based design procedure for nonlinear polynomial control systems
NASA Astrophysics Data System (ADS)
Zhu, Q. M.; Zhao, D. Y.; Zhang, Jianhua
2016-10-01
The proposition of U-model concept (in terms of 'providing concise and applicable solutions for complex problems') and a corresponding basic U-control design algorithm was originated in the first author's PhD thesis. The term of U-model appeared (not rigorously defined) for the first time in the first author's other journal paper, which established a framework for using linear polynomial control system design approaches to design nonlinear polynomial control systems (in brief, linear polynomial approaches → nonlinear polynomial plants). This paper represents the next milestone work - using linear state-space approaches to design nonlinear polynomial control systems (in brief, linear state-space approaches → nonlinear polynomial plants). The overall aim of the study is to establish a framework, defined as the U-block model, which provides a generic prototype for using linear state-space-based approaches to design the control systems with smooth nonlinear plants/processes described by polynomial models. For analysing the feasibility and effectiveness, sliding mode control design approach is selected as an exemplary case study. Numerical simulation studies provide a user-friendly step-by-step procedure for the readers/users with interest in their ad hoc applications. In formality, this is the first paper to present the U-model-oriented control system design in a formal way and to study the associated properties and theorems. The previous publications, in the main, have been algorithm-based studies and simulation demonstrations. In some sense, this paper can be treated as a landmark for the U-model-based research from intuitive/heuristic stage to rigour/formal/comprehensive studies.
McClain, Zachary; Hawkins, Linda A; Yehia, Baligh R
2016-01-01
Health outcomes are affected by patient, provider, and environmental factors. Previous studies have evaluated patient-level factors; few focusing on environment. Safe clinical spaces are important for lesbian, gay, bisexual, and transgender (LGBT) communities. This study evaluates current models of LGBT health care delivery, identifies strengths and weaknesses, and makes recommendations for LGBT spaces. Models are divided into LGBT-specific and LGBT-embedded care delivery. Advantages to both models exist, and they provide LGBT patients different options of healthcare. Yet certain commonalities must be met: a clean and confidential system. Once met, LGBT-competent environments and providers can advocate for appropriate care for LGBT communities, creating environments where they would want to seek care.
This report provides detailed comparisons and sensitivity analyses of three candidate models, MESOPLUME, MESOPUFF, and MESOGRID. This was not a validation study; there was no suitable regional air quality data base for the Four Corners area. Rather, the models have been evaluated...
ERIC Educational Resources Information Center
Hidiroglu, Çaglar Naci; Bukova Güzel, Esra
2013-01-01
The aim of the present study is to conceptualize the approaches displayed for validation of model and thought processes provided in mathematical modeling process performed in technology-aided learning environment. The participants of this grounded theory study were nineteen secondary school mathematics student teachers. The data gathered from the…
The Onion Model: Myth or Reality in the Field of Individual Differences Psychology?
ERIC Educational Resources Information Center
Cools, Eva; Bellens, Kim
2012-01-01
To bring order in concepts related to individual learner differences, Curry (1983) designed the three-layered onion model. As this model provides an interesting way to distinguish related concepts--such as cognitive styles and approaches to studying--on the basis of their stability in learning situations, ample studies build further on this model.…
NASA Astrophysics Data System (ADS)
Li, N.; Kinzelbach, W.; Li, H.; Li, W.; Chen, F.; Wang, L.
2017-12-01
Data assimilation techniques are widely used in hydrology to improve the reliability of hydrological models and to reduce model predictive uncertainties. This provides critical information for decision makers in water resources management. This study aims to evaluate a data assimilation system for the Guantao groundwater flow model coupled with a one-dimensional soil column simulation (Hydrus 1D) using an Unbiased Ensemble Square Root Filter (UnEnSRF) originating from the Ensemble Kalman Filter (EnKF) to update parameters and states, separately or simultaneously. To simplify the coupling between unsaturated and saturated zone, a linear relationship obtained from analyzing inputs to and outputs from Hydrus 1D is applied in the data assimilation process. Unlike EnKF, the UnEnSRF updates parameter ensemble mean and ensemble perturbations separately. In order to keep the ensemble filter working well during the data assimilation, two factors are introduced in the study. One is called damping factor to dampen the update amplitude of the posterior ensemble mean to avoid nonrealistic values. The other is called inflation factor to relax the posterior ensemble perturbations close to prior to avoid filter inbreeding problems. The sensitivities of the two factors are studied and their favorable values for the Guantao model are determined. The appropriate observation error and ensemble size were also determined to facilitate the further analysis. This study demonstrated that the data assimilation of both model parameters and states gives a smaller model prediction error but with larger uncertainty while the data assimilation of only model states provides a smaller predictive uncertainty but with a larger model prediction error. Data assimilation in a groundwater flow model will improve model prediction and at the same time make the model converge to the true parameters, which provides a successful base for applications in real time modelling or real time controlling strategies in groundwater resources management.
NASA Astrophysics Data System (ADS)
Hogue, T. S.; He, M.; Franz, K. J.; Margulis, S. A.; Vrugt, J. A.
2010-12-01
The current study presents an integrated uncertainty analysis and data assimilation approach to improve streamflow predictions while simultaneously providing meaningful estimates of the associated uncertainty. Study models include the National Weather Service (NWS) operational snow model (SNOW17) and rainfall-runoff model (SAC-SMA). The proposed approach uses the recently developed DiffeRential Evolution Adaptive Metropolis (DREAM) to simultaneously estimate uncertainties in model parameters, forcing, and observations. An ensemble Kalman filter (EnKF) is configured with the DREAM-identified uncertainty structure and applied to assimilating snow water equivalent data into the SNOW17 model for improved snowmelt simulations. Snowmelt estimates then serves as an input to the SAC-SMA model to provide streamflow predictions at the basin outlet. The robustness and usefulness of the approach is evaluated for a snow-dominated watershed in the northern Sierra Mountains. This presentation describes the implementation of DREAM and EnKF into the coupled SNOW17 and SAC-SMA models and summarizes study results and findings.
Blue, Christine M.; Funkhouser, D. Ellen; Riggs, Sheila; Rindal, D. Brad; Worley, Donald; Pihlstrom, Daniel J.; Benjamin, Paul; Gilbert, Gregg H.
2014-01-01
Objectives The purpose of this study was to quantify within The National Dental Practice-Based Research Network current utilization of dental hygienists and assistants with expanded functions and quantify network dentists’ attitudes toward a new non-dentist provider model - the dental therapist. Methods Dental practice-based research network practitioner-investigators participated in a single, cross-sectional administration of a questionnaire. Results Current non-dentist providers are not being utilized by network practitioner-investigators to the fullest extent allowed by law. Minnesota practitioners, practitioners in large group practices, and those with prior experience with expanded function non-dentist providers delegate at a higher rate and had more-positive perceptions of the new dental therapist model. Conclusions Expanding scopes of practice for dental hygienists and assistants has not translated to the maximal delegation allowed by law among network practices. This finding may provide insight into dentists’ acceptance of newer non-dentist provider models. PMID:23668892
A downloadable meshed human canine tooth model with PDL and bone for finite element simulations.
Boryor, Andrew; Hohmann, Ansgar; Geiger, Martin; Wolfram, Uwe; Sander, Christian; Sander, Franz Günter
2009-09-01
The aim of this study is to relieve scientists from the complex and time-consuming task of model generation by providing a model of a canine tooth and its periradicular tissues for Finite Element Method (FEM) simulations. This was achieved with diverse commercial software, based on a micro-computed tomography of the specimen. The Finite Element (FE) Model consists of enamel, dentin, nerve (innervation), periodontal ligament (PDL), and the surrounding cortical bone with trabecular structure. The area and volume meshes are of a very high quality in order to represent the model in a detailed form. Material properties are to be set individually by every user. The tooth model is provided for Abaqus, Ansys, HyperMesh, Nastran and as STL files, in an ASCII format for free download. This can help reduce the cost and effort of generating a tooth model for some research institutions, and may encourage other research groups to provide their high quality models for other researchers. By providing FE models, research results, especially FEM simulations, could be easily verified by others.
DIAGNOSTIC TOOL DEVELOPMENT AND APPLICATION THROUGH REGIONAL CASE STUDIES
Case studies are a useful vehicle for developing and testing conceptual models, classification systems, diagnostic tools and models, and stressor-response relationships. Furthermore, case studies focused on specific places or issues of interest to the Agency provide an excellent ...
Palfreyman, Zoe; Haycraft, Emma; Meyer, Caroline
2015-03-01
Parents are important role models for their children's eating behaviours. This study aimed to further validate the recently developed Parental Modelling of Eating Behaviours Scale (PARM) by examining the relationships between maternal self-reports on the PARM with the modelling practices exhibited by these mothers during three family mealtime observations. Relationships between observed maternal modelling and maternal reports of children's eating behaviours were also explored. Seventeen mothers with children aged between 2 and 6 years were video recorded at home on three separate occasions whilst eating a meal with their child. Mothers also completed the PARM, the Children's Eating Behaviour Questionnaire and provided demographic information about themselves and their child. Findings provided validation for all three PARM subscales, which were positively associated with their observed counterparts on the observational coding scheme (PARM-O). The results also indicate that habituation to observations did not change the feeding behaviours displayed by mothers. In addition, observed maternal modelling was significantly related to children's food responsiveness (i.e., their interest in and desire for foods), enjoyment of food, and food fussiness. This study makes three important contributions to the literature. It provides construct validation for the PARM measure and provides further observational support for maternal modelling being related to lower levels of food fussiness and higher levels of food enjoyment in their children. These findings also suggest that maternal feeding behaviours remain consistent across repeated observations of family mealtimes, providing validation for previous research which has used single observations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Finite Element Modeling of the Buckling Response of Sandwich Panels
NASA Technical Reports Server (NTRS)
Rose, Cheryl A.; Moore, David F.; Knight, Norman F., Jr.; Rankin, Charles C.
2002-01-01
A comparative study of different modeling approaches for predicting sandwich panel buckling response is described. The study considers sandwich panels with anisotropic face sheets and a very thick core. Results from conventional analytical solutions for sandwich panel overall buckling and face-sheet-wrinkling type modes are compared with solutions obtained using different finite element modeling approaches. Finite element solutions are obtained using layered shell element models, with and without transverse shear flexibility, layered shell/solid element models, with shell elements for the face sheets and solid elements for the core, and sandwich models using a recently developed specialty sandwich element. Convergence characteristics of the shell/solid and sandwich element modeling approaches with respect to in-plane and through-the-thickness discretization, are demonstrated. Results of the study indicate that the specialty sandwich element provides an accurate and effective modeling approach for predicting both overall and localized sandwich panel buckling response. Furthermore, results indicate that anisotropy of the face sheets, along with the ratio of principle elastic moduli, affect the buckling response and these effects may not be represented accurately by analytical solutions. Modeling recommendations are also provided.
Denton, M. H.; Henderson, M. G.; Jordanova, V. K.; ...
2016-07-01
In this study, a new empirical model of the electron fluxes and ion fluxes at geosynchronous orbit (GEO) is introduced, based on observations by Los Alamos National Laboratory (LANL) satellites. The model provides flux predictions in the energy range ~1 eV to ~40 keV, as a function of local time, energy, and the strength of the solar wind electric field (the negative product of the solar wind speed and the z component of the magnetic field). Given appropriate upstream solar wind measurements, the model provides a forecast of the fluxes at GEO with a ~1 h lead time. Model predictionsmore » are tested against in-sample observations from LANL satellites and also against out-of-sample observations from the Compact Environmental Anomaly Sensor II detector on the AMC-12 satellite. The model does not reproduce all structure seen in the observations. However, for the intervals studied here (quiet and storm times) the normalized root-mean-square deviation < ~0.3. It is intended that the model will improve forecasting of the spacecraft environment at GEO and also provide improved boundary/input conditions for physical models of the magnetosphere.« less
Using conceptual work products of health care to design health IT.
Berry, Andrew B L; Butler, Keith A; Harrington, Craig; Braxton, Melissa O; Walker, Amy J; Pete, Nikki; Johnson, Trevor; Oberle, Mark W; Haselkorn, Jodie; Paul Nichol, W; Haselkorn, Mark
2016-02-01
This paper introduces a new, model-based design method for interactive health information technology (IT) systems. This method extends workflow models with models of conceptual work products. When the health care work being modeled is substantially cognitive, tacit, and complex in nature, graphical workflow models can become too complex to be useful to designers. Conceptual models complement and simplify workflows by providing an explicit specification for the information product they must produce. We illustrate how conceptual work products can be modeled using standard software modeling language, which allows them to provide fundamental requirements for what the workflow must accomplish and the information that a new system should provide. Developers can use these specifications to envision how health IT could enable an effective cognitive strategy as a workflow with precise information requirements. We illustrate the new method with a study conducted in an outpatient multiple sclerosis (MS) clinic. This study shows specifically how the different phases of the method can be carried out, how the method allows for iteration across phases, and how the method generated a health IT design for case management of MS that is efficient and easy to use. Copyright © 2015 Elsevier Inc. All rights reserved.
Statistical Methodology for the Analysis of Repeated Duration Data in Behavioral Studies.
Letué, Frédérique; Martinez, Marie-José; Samson, Adeline; Vilain, Anne; Vilain, Coriandre
2018-03-15
Repeated duration data are frequently used in behavioral studies. Classical linear or log-linear mixed models are often inadequate to analyze such data, because they usually consist of nonnegative and skew-distributed variables. Therefore, we recommend use of a statistical methodology specific to duration data. We propose a methodology based on Cox mixed models and written under the R language. This semiparametric model is indeed flexible enough to fit duration data. To compare log-linear and Cox mixed models in terms of goodness-of-fit on real data sets, we also provide a procedure based on simulations and quantile-quantile plots. We present two examples from a data set of speech and gesture interactions, which illustrate the limitations of linear and log-linear mixed models, as compared to Cox models. The linear models are not validated on our data, whereas Cox models are. Moreover, in the second example, the Cox model exhibits a significant effect that the linear model does not. We provide methods to select the best-fitting models for repeated duration data and to compare statistical methodologies. In this study, we show that Cox models are best suited to the analysis of our data set.
ODE constrained mixture modelling: a method for unraveling subpopulation structures and dynamics.
Hasenauer, Jan; Hasenauer, Christine; Hucho, Tim; Theis, Fabian J
2014-07-01
Functional cell-to-cell variability is ubiquitous in multicellular organisms as well as bacterial populations. Even genetically identical cells of the same cell type can respond differently to identical stimuli. Methods have been developed to analyse heterogeneous populations, e.g., mixture models and stochastic population models. The available methods are, however, either incapable of simultaneously analysing different experimental conditions or are computationally demanding and difficult to apply. Furthermore, they do not account for biological information available in the literature. To overcome disadvantages of existing methods, we combine mixture models and ordinary differential equation (ODE) models. The ODE models provide a mechanistic description of the underlying processes while mixture models provide an easy way to capture variability. In a simulation study, we show that the class of ODE constrained mixture models can unravel the subpopulation structure and determine the sources of cell-to-cell variability. In addition, the method provides reliable estimates for kinetic rates and subpopulation characteristics. We use ODE constrained mixture modelling to study NGF-induced Erk1/2 phosphorylation in primary sensory neurones, a process relevant in inflammatory and neuropathic pain. We propose a mechanistic pathway model for this process and reconstructed static and dynamical subpopulation characteristics across experimental conditions. We validate the model predictions experimentally, which verifies the capabilities of ODE constrained mixture models. These results illustrate that ODE constrained mixture models can reveal novel mechanistic insights and possess a high sensitivity.
Edkins, Renee E; Cairns, Bruce A; Hultman, C Scott
2014-03-01
Accreditation Council for Graduate Medical Education mandated work-hour restrictions have negatively impacted many areas of clinical care, including management of burn patients, who require intensive monitoring, resuscitation, and procedural interventions. As surgery residents become less available to meet service needs, new models integrating advanced practice providers (APPs) into the burn team must emerge. We performed a systematic review of APPs in critical care questioning, how best to use all providers to solve these workforce challenges? We performed a systematic review of PubMed, CINAHL, Ovid, and Google Scholar, from 2002 to 2012, using the key words: nurse practitioner, physician assistant, critical care, and burn care. After applying inclusion/exclusion criteria, 18 relevant articles were selected for review. In addition, throughput and financial models were developed to examine provider staffing patterns. Advanced practice providers in critical care settings function in various models, both with and without residents, reporting to either an intensivist or an attending physician. When APPs participated, patient outcomes were similar or improved compared across provider models. Several studies reported considerable cost-savings due to decrease length of stay, decreased ventilator days, and fewer urinary tract infections when nurse practitioners were included in the provider mix. Restrictions in resident work-hours and changing health care environments require that new provider models be created for acute burn care. This article reviews current utilization of APPs in critical care units and proposes a new provider model for burn centers.
Review of early assessment models of innovative medical technologies.
Fasterholdt, Iben; Krahn, Murray; Kidholm, Kristian; Yderstræde, Knud Bonnet; Pedersen, Kjeld Møller
2017-08-01
Hospitals increasingly make decisions regarding the early development of and investment in technologies, but a formal evaluation model for assisting hospitals early on in assessing the potential of innovative medical technologies is lacking. This article provides an overview of models for early assessment in different health organisations and discusses which models hold most promise for hospital decision makers. A scoping review of published studies between 1996 and 2015 was performed using nine databases. The following information was collected: decision context, decision problem, and a description of the early assessment model. 2362 articles were identified and 12 studies fulfilled the inclusion criteria. An additional 12 studies were identified and included in the review by searching reference lists. The majority of the 24 early assessment studies were variants of traditional cost-effectiveness analysis. Around one fourth of the studies presented an evaluation model with a broader focus than cost-effectiveness. Uncertainty was mostly handled by simple sensitivity or scenario analysis. This review shows that evaluation models using known methods assessing cost-effectiveness are most prevalent in early assessment, but seems ill-suited for early assessment in hospitals. Four models provided some usable elements for the development of a hospital-based model. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
BPS sectors of the Skyrme model and their non-BPS extensions
NASA Astrophysics Data System (ADS)
Adam, C.; Foster, D.; Krusch, S.; Wereszczynski, A.
2018-02-01
Two recently found coupled Bogomol'nyi-Prasad-Sommerfield (BPS) submodels of the Skyrme model are further analyzed. First, we provide a geometrical formulation of the submodels in terms of the eigenvalues of the strain tensor. Second, we study their thermodynamical properties and show that the mean-field equations of state coincide at high pressure and read p =ρ ¯/3 . We also provide evidence that matter described by the first BPS submodel has some similarity with a Bose-Einstein condensate. Moreover, we show that extending the second submodel to a non-BPS model by including certain additional terms of the full Skyrme model does not spoil the respective ansatz, leading to an ordinary differential equation for the profile of the Skymion, for any value of the topological charge. This allows for an almost analytical description of the properties of Skyrmions in this model. In particular, we analytically study the breaking and restoration of the BPS property. Finally, we provide an explanation of the success of the rational map ansatz.
NASA Astrophysics Data System (ADS)
Witarsyah Jacob, Deden; Fudzee, Mohd Farhan Md; Aizi Salamat, Mohamad; Kasim, Shahreen; Mahdin, Hairulnizam; Azhar Ramli, Azizul
2017-08-01
Many governments around the world increasingly use internet technologies such as electronic government to provide public services. These services range from providing the most basic informational website to deploying sophisticated tools for managing interactions between government agencies and beyond government. Electronic government (e-government) aims to provide a more accurate, easily accessible, cost-effective and time saving for the community. In this study, we develop a new model of e-government adoption service by extending the Unified Theory of Acceptance and Use of Technology (UTAUT) through the incorporation of some variables such as System Quality, Information Quality and Trust. The model is then tested using a large-scale, multi-site survey research of 237 Indonesian citizens. This model will be validated by using Structural Equation Modeling (SEM). The result indicates that System Quality, Information Quality and Trust variables proven to effect user behavior. This study extends the current understanding on the influence of System Quality, Information Quality and Trust factors to researchers, practitioners, and policy makers.
NASA Astrophysics Data System (ADS)
Wei, Zhen-lei; Xu, Yue-Ping; Sun, Hong-yue; Xie, Wei; Wu, Gang
2018-05-01
Excessive water in a channel is an important factor that triggers channelized debris flows. Floods and debris flows often occur in a cascading manner, and thus, calculating the amount of runoff accurately is important for predicting the occurrence of debris flows. In order to explore the runoff-rainfall relationship, we placed two measuring facilities at the outlet of a small, debris flow-prone headwater catchment to explore the hydrological response of the catchment. The runoff responses generally consisted of a rapid increase in runoff followed by a slower decrease. The peak runoff often occurred after the rainfall ended. The runoff discharge data were simulated by two different modeling approaches, i.e., the NAM model and the Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) model. The results showed that the NAM model performed better than the HEC-HMS model. The NAM model provided acceptable simulations, while the HEC-HMS model did not. Then, we coupled the calculated results of the NAM model with an empirically based debris flow initiation model to obtain a new integrated cascading disaster modeling system to provide improved disaster preparedness and hazard management. In this case study, we found that the coupled model could correctly predict the occurrence of debris flows. Furthermore, we evaluated the effect of the range of input parameter values on the hydrographical shape of the runoff. We also used the grey relational analysis to conduct a sensitivity analysis of the parameters of the model. This study highlighted the important connections between rainfall, hydrological processes, and debris flow, and it provides a useful prototype model system for operational forecasting of debris flows.
A Descriptive Study of Differing School Health Delivery Models
ERIC Educational Resources Information Center
Becker, Sherri I.; Maughan, Erin
2017-01-01
The purpose of this exploratory qualitative study was to identify and describe emerging models of school health services. Participants (N = 11) provided information regarding their models in semistructured phone interviews. Results identified a variety of funding sources as well as different staffing configurations and supervision. Strengths of…
Modeling patients' acceptance of provider-delivered e-health.
Wilson, E Vance; Lankton, Nancy K
2004-01-01
Health care providers are beginning to deliver a range of Internet-based services to patients; however, it is not clear which of these e-health services patients need or desire. The authors propose that patients' acceptance of provider-delivered e-health can be modeled in advance of application development by measuring the effects of several key antecedents to e-health use and applying models of acceptance developed in the information technology (IT) field. This study tested three theoretical models of IT acceptance among patients who had recently registered for access to provider-delivered e-health. An online questionnaire administered items measuring perceptual constructs from the IT acceptance models (intrinsic motivation, perceived ease of use, perceived usefulness/extrinsic motivation, and behavioral intention to use e-health) and five hypothesized antecedents (satisfaction with medical care, health care knowledge, Internet dependence, information-seeking preference, and health care need). Responses were collected and stored in a central database. All tested IT acceptance models performed well in predicting patients' behavioral intention to use e-health. Antecedent factors of satisfaction with provider, information-seeking preference, and Internet dependence uniquely predicted constructs in the models. Information technology acceptance models provide a means to understand which aspects of e-health are valued by patients and how this may affect future use. In addition, antecedents to the models can be used to predict e-health acceptance in advance of system development.
An Experimental Study of a Pulsed Electromagnetic Plasma Accelerator
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Eskridge, Richard; Lee, Mike; Smith, James; Martin, Adam; Markusic, Tom E.; Cassibry, Jason T.; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) pulsed electromagnetic plasma accelerator (PEPA-0). Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.
Feature-based component model for design of embedded systems
NASA Astrophysics Data System (ADS)
Zha, Xuan Fang; Sriram, Ram D.
2004-11-01
An embedded system is a hybrid of hardware and software, which combines software's flexibility and hardware real-time performance. Embedded systems can be considered as assemblies of hardware and software components. An Open Embedded System Model (OESM) is currently being developed at NIST to provide a standard representation and exchange protocol for embedded systems and system-level design, simulation, and testing information. This paper proposes an approach to representing an embedded system feature-based model in OESM, i.e., Open Embedded System Feature Model (OESFM), addressing models of embedded system artifacts, embedded system components, embedded system features, and embedded system configuration/assembly. The approach provides an object-oriented UML (Unified Modeling Language) representation for the embedded system feature model and defines an extension to the NIST Core Product Model. The model provides a feature-based component framework allowing the designer to develop a virtual embedded system prototype through assembling virtual components. The framework not only provides a formal precise model of the embedded system prototype but also offers the possibility of designing variation of prototypes whose members are derived by changing certain virtual components with different features. A case study example is discussed to illustrate the embedded system model.
Church, Stephanie J; Begley, Paul; Kureishy, Nina; McHarg, Selina; Bishop, Paul N; Bechtold, David A; Unwin, Richard D; Cooper, Garth J S
2015-05-08
Ob/ob mice provide an animal model for non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH) in patients with obesity and type-2 diabetes. Low liver copper has been linked to hepatic lipid build-up (steatosis) in animals with systemic copper deficiency caused by low-copper diets. However, hepatic copper status in patients with NAFLD or NASH is uncertain, and a validated animal model useful for the study of hepatic copper regulation in common forms of metabolic liver disease is lacking. Here, we report parallel measurements of essential metal levels in whole-liver tissue and defatted-dried liver tissue from ob/ob and non-obese control mice. Measurements in whole-liver tissue from ob/ob mice at an age when they have developed NAFLD/NASH, provide compelling evidence for factitious lowering of copper and all other essential metals by steatosis, and so cannot be used to study hepatic metal regulation in this model. By marked contrast, metal measurements in defatted-dried liver samples reveal that most essential metals were actually normal and indicate specific lowering of copper in ob/ob mice, consistent with hepatic copper deficiency. Thus ob/ob mice can provide a model useful for the study of copper regulation in NAFLD and NASH, provided levels are measured in defatted-dried liver tissue. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Delta 2 Explosion Plume Analysis Report
NASA Technical Reports Server (NTRS)
Evans, Randolph J.
2000-01-01
A Delta II rocket exploded seconds after liftoff from Cape Canaveral Air Force Station (CCAFS) on 17 January 1997. The cloud produced by the explosion provided an opportunity to evaluate the models which are used to track potentially toxic dispersing plumes and clouds at CCAFS. The primary goal of this project was to conduct a case study of the dispersing cloud and the models used to predict the dispersion resulting from the explosion. The case study was conducted by comparing mesoscale and dispersion model results with available meteorological and plume observations. This study was funded by KSC under Applied Meteorology Unit (AMU) option hours. The models used in the study are part of the Eastern Range Dispersion Assessment System (ERDAS) and include the Regional Atmospheric Modeling System (RAMS), HYbrid Particle And Concentration Transport (HYPACT), and Rocket Exhaust Effluent Dispersion Model (REEDM). The primary observations used for explosion cloud verification of the study were from the National Weather Service's Weather Surveillance Radar 1988-Doppler (WSR-88D). Radar reflectivity measurements of the resulting cloud provided good estimates of the location and dimensions of the cloud over a four-hour period after the explosion. The results indicated that RAMS and HYPACT models performed reasonably well. Future upgrades to ERDAS are recommended.
Anomalous Impact in Reaction-Diffusion Financial Models
NASA Astrophysics Data System (ADS)
Mastromatteo, I.; Tóth, B.; Bouchaud, J.-P.
2014-12-01
We generalize the reaction-diffusion model A +B → /0 in order to study the impact of an excess of A (or B ) at the reaction front. We provide an exact solution of the model, which shows that the linear response breaks down: the average displacement of the reaction front grows as the square root of the imbalance. We argue that this model provides a highly simplified but generic framework to understand the square-root impact of large orders in financial markets.
Discrete Choice Experiments: A Guide to Model Specification, Estimation and Software.
Lancsar, Emily; Fiebig, Denzil G; Hole, Arne Risa
2017-07-01
We provide a user guide on the analysis of data (including best-worst and best-best data) generated from discrete-choice experiments (DCEs), comprising a theoretical review of the main choice models followed by practical advice on estimation and post-estimation. We also provide a review of standard software. In providing this guide, we endeavour to not only provide guidance on choice modelling but to do so in a way that provides a 'way in' for researchers to the practicalities of data analysis. We argue that choice of modelling approach depends on the research questions, study design and constraints in terms of quality/quantity of data and that decisions made in relation to analysis of choice data are often interdependent rather than sequential. Given the core theory and estimation of choice models is common across settings, we expect the theoretical and practical content of this paper to be useful to researchers not only within but also beyond health economics.
Reciprocal Relations Between Cognitive Neuroscience and Cognitive Models: Opposites Attract?
Forstmann, Birte U.; Wagenmakers, Eric-Jan; Eichele, Tom; Brown, Scott; Serences, John T.
2012-01-01
Cognitive neuroscientists study how the brain implements particular cognitive processes such as perception, learning, and decision-making. Traditional approaches in which experiments are designed to target a specific cognitive process have been supplemented by two recent innovations. First, formal models of cognition can decompose observed behavioral data into multiple latent cognitive processes, allowing brain measurements to be associated with a particular cognitive process more precisely and more confidently. Second, cognitive neuroscience can provide additional data to inform the development of cognitive models, providing greater constraint than behavioral data alone. We argue that these fields are mutually dependent: not only can models guide neuroscientific endeavors, but understanding neural mechanisms can provide critical insights into formal models of cognition. PMID:21612972
Taslimitehrani, Vahid; Dong, Guozhu; Pereira, Naveen L; Panahiazar, Maryam; Pathak, Jyotishman
2016-04-01
Computerized survival prediction in healthcare identifying the risk of disease mortality, helps healthcare providers to effectively manage their patients by providing appropriate treatment options. In this study, we propose to apply a classification algorithm, Contrast Pattern Aided Logistic Regression (CPXR(Log)) with the probabilistic loss function, to develop and validate prognostic risk models to predict 1, 2, and 5year survival in heart failure (HF) using data from electronic health records (EHRs) at Mayo Clinic. The CPXR(Log) constructs a pattern aided logistic regression model defined by several patterns and corresponding local logistic regression models. One of the models generated by CPXR(Log) achieved an AUC and accuracy of 0.94 and 0.91, respectively, and significantly outperformed prognostic models reported in prior studies. Data extracted from EHRs allowed incorporation of patient co-morbidities into our models which helped improve the performance of the CPXR(Log) models (15.9% AUC improvement), although did not improve the accuracy of the models built by other classifiers. We also propose a probabilistic loss function to determine the large error and small error instances. The new loss function used in the algorithm outperforms other functions used in the previous studies by 1% improvement in the AUC. This study revealed that using EHR data to build prediction models can be very challenging using existing classification methods due to the high dimensionality and complexity of EHR data. The risk models developed by CPXR(Log) also reveal that HF is a highly heterogeneous disease, i.e., different subgroups of HF patients require different types of considerations with their diagnosis and treatment. Our risk models provided two valuable insights for application of predictive modeling techniques in biomedicine: Logistic risk models often make systematic prediction errors, and it is prudent to use subgroup based prediction models such as those given by CPXR(Log) when investigating heterogeneous diseases. Copyright © 2016 Elsevier Inc. All rights reserved.
Results of an Oncology Clinical Trial Nurse Role Delineation Study.
Purdom, Michelle A; Petersen, Sandra; Haas, Barbara K
2017-09-01
To evaluate the relevance of a five-dimensional model of clinical trial nursing practice in an oncology clinical trial nurse population. . Web-based cross-sectional survey. . Online via Qualtrics. . 167 oncology nurses throughout the United States, including 41 study coordinators, 35 direct care providers, and 91 dual-role nurses who provide direct patient care and trial coordination. . Principal components analysis was used to determine the dimensions of oncology clinical trial nursing practice. . Self-reported frequency of 59 activities. . The results did not support the original five-dimensional model of nursing care but revealed a more multidimensional model. . An analysis of frequency data revealed an eight-dimensional model of oncology research nursing, including care, manage study, expert, lead, prepare, data, advance science, and ethics. . This evidence-based model expands understanding of the multidimensional roles of oncology nurses caring for patients with cancer enrolled in clinical trials.
NASA Astrophysics Data System (ADS)
Kerst, Stijn; Shyrokau, Barys; Holweg, Edward
2018-05-01
This paper proposes a novel semi-analytical bearing model addressing flexibility of the bearing outer race structure. It furthermore presents the application of this model in a bearing load condition monitoring approach. The bearing model is developed as current computational low cost bearing models fail to provide an accurate description of the more and more common flexible size and weight optimized bearing designs due to their assumptions of rigidity. In the proposed bearing model raceway flexibility is described by the use of static deformation shapes. The excitation of the deformation shapes is calculated based on the modelled rolling element loads and a Fourier series based compliance approximation. The resulting model is computational low cost and provides an accurate description of the rolling element loads for flexible outer raceway structures. The latter is validated by a simulation-based comparison study with a well-established bearing simulation software tool. An experimental study finally shows the potential of the proposed model in a bearing load monitoring approach.
A progress report on seismic model studies
Healy, J.H.; Mangan, G.B.
1963-01-01
The value of seismic-model studies as an aid to understanding wave propagation in the Earth's crust was recognized by early investigators (Tatel and Tuve, 1955). Preliminary model results were very promising, but progress in model seismology has been restricted by two problems: (1) difficulties in the development of models with continuously variable velocity-depth functions, and (2) difficulties in the construction of models of adequate size to provide a meaningful wave-length to layer-thickness ratio. The problem of a continuously variable velocity-depth function has been partly solved by a technique using two-dimensional plate models constructed by laminating plastic to aluminum, so that the ratio of plastic to aluminum controls the velocity-depth function (Healy and Press, 1960). These techniques provide a continuously variable velocity-depth function, but it is not possible to construct such models large enough to study short-period wave propagation in the crust. This report describes improvements in our ability to machine large models. Two types of models are being used: one is a cylindrical aluminum tube machined on a lathe, and the other is a large plate machined on a precision planer. Both of these modeling techniques give promising results and are a significant improvement over earlier efforts.
Evaluating and Mitigating the Impact of Complexity in Software Models
2015-12-01
Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is granted, provided the...introduction) provides our motivation to study complexity and the essential re- search questions that we address in this effort. Some background information... provides the reader with a basis for the work and related areas explored. Section 2 (The Impact of Complexity) discusses the impact of model-based
National facilities study. Volume 3: Mission and requirements model report
NASA Technical Reports Server (NTRS)
1994-01-01
The National Facility Study (NFS) was initiated in 1992 by Daniel S. Goldin, Administrator of NASA as an initiative to develop a comprehensive and integrated long-term plan for future facilities. The resulting, multi-agency NFS consisted of three Task Groups: Aeronautics, Space Operations, and Space Research and Development (R&D) Task Groups. A fourth group, the Engineering and Cost Analysis Task Group, was subsequently added to provide cross-cutting functions, such as assuring consistency in developing an inventory of space facilities. Space facilities decisions require an assessment of current and future needs. Therefore, the two task groups dealing with space developed a consistent model of future space mission programs, operations and R&D. The model is a middle ground baseline constructed for NFS analytical purposes with excursions to cover potential space program strategies. The model includes three major sectors: DOD, civilian government, and commercial space. The model spans the next 30 years because of the long lead times associated with facilities development and usage. This document, Volume 3 of the final NFS report, is organized along the following lines: Executive Summary -- provides a summary view of the 30-year mission forecast and requirements baseline, an overview of excursions from that baseline that were studied, and organization of the report; Introduction -- provides discussions of the methodology used in this analysis; Baseline Model -- provides the mission and requirements model baseline developed for Space Operations and Space R&D analyses; Excursions from the baseline -- reviews the details of variations or 'excursions' that were developed to test the future program projections captured in the baseline; and a Glossary of Acronyms.
Developing Cognitive Models for Social Simulation from Survey Data
NASA Astrophysics Data System (ADS)
Alt, Jonathan K.; Lieberman, Stephen
The representation of human behavior and cognition continues to challenge the modeling and simulation community. The use of survey and polling instruments to inform belief states, issue stances and action choice models provides a compelling means of developing models and simulations with empirical data. Using these types of data to population social simulations can greatly enhance the feasibility of validation efforts, the reusability of social and behavioral modeling frameworks, and the testable reliability of simulations. We provide a case study demonstrating these effects, document the use of survey data to develop cognitive models, and suggest future paths forward for social and behavioral modeling.
The DIVA model: A neural theory of speech acquisition and production
Tourville, Jason A.; Guenther, Frank H.
2013-01-01
The DIVA model of speech production provides a computationally and neuroanatomically explicit account of the network of brain regions involved in speech acquisition and production. An overview of the model is provided along with descriptions of the computations performed in the different brain regions represented in the model. The latest version of the model, which contains a new right-lateralized feedback control map in ventral premotor cortex, will be described, and experimental results that motivated this new model component will be discussed. Application of the model to the study and treatment of communication disorders will also be briefly described. PMID:23667281
NASA Astrophysics Data System (ADS)
Logan, J. A.
2010-12-01
Significant progress has been made in using satellite data to provide bottom-up constraints on biomass burning (BB) emissions. However, inverse studies with CO satellite data imply that tropical emissions are underestimated by current inventories, while model simulations of the ARCTAS period imply that the FLAMBE estimates of extratropical emissions are significantly overestimated. Injection heights of emissions from BB have been quantified recently using MISR data, and these data provide some constraints on 1-d plume models. I will discuss recent results in these areas, highlighting future research needs.
NASA Technical Reports Server (NTRS)
Ko, Malcolm K. W.; Weisenstein, Debra K.; Sze, Nein Dak; Shia, Run-Lie; Rodriguez, Jose M.; Heisey, Curtis
1991-01-01
The AER two-dimensional chemistry-transport model is used to study the effect of supersonic and subsonic aircraft operation in the 2010 atmosphere on stratospheric ozone (O3). The results show that: (1) the calculated O3 response is smaller in the 2010 atmosphere compared to previous calculations performed in the 1980 atmosphere; (2) with the emissions provided, the calculated decrease in O3 column is less than 1 percent; and (3) the effect of model grid resolution on O3 response is small provided that the physics is not modified.
Bernardo, Bianca C.; Sapra, Geeta; Patterson, Natalie L.; Cemerlang, Nelly; Kiriazis, Helen; Ueyama, Tomomi; Febbraio, Mark A.; McMullen, Julie R.
2015-01-01
Previous animal studies had shown that increasing heat shock protein 70 (Hsp70) using a transgenic, gene therapy or pharmacological approach provided cardiac protection in models of acute cardiac stress. Furthermore, clinical studies had reported associations between Hsp70 levels and protection against atrial fibrillation (AF). AF is the most common cardiac arrhythmia presenting in cardiology clinics and is associated with increased rates of heart failure and stroke. Improved therapies for AF and heart failure are urgently required. Despite promising observations in animal studies which targeted Hsp70, we recently reported that increasing Hsp70 was unable to attenuate cardiac dysfunction and pathology in a mouse model which develops heart failure and intermittent AF. Given our somewhat unexpected finding and the extensive literature suggesting Hsp70 provides cardiac protection, it was considered important to assess whether Hsp70 could provide protection in another mouse model of heart failure and AF. The aim of the current study was to determine whether increasing Hsp70 could attenuate adverse cardiac remodeling, cardiac dysfunction and episodes of arrhythmia in a mouse model of heart failure and AF due to overexpression of Muscle-Restricted Coiled-Coil (MURC). Cardiac function and pathology were assessed in mice at approximately 12 months of age. We report here, that chronic overexpression of Hsp70 was unable to provide protection against cardiac dysfunction, conduction abnormalities, fibrosis or characteristic molecular markers of the failing heart. In summary, elevated Hsp70 may provide protection in acute cardiac stress settings, but appears insufficient to protect the heart under chronic cardiac disease conditions. PMID:26660322
Bernardo, Bianca C; Sapra, Geeta; Patterson, Natalie L; Cemerlang, Nelly; Kiriazis, Helen; Ueyama, Tomomi; Febbraio, Mark A; McMullen, Julie R
2015-01-01
Previous animal studies had shown that increasing heat shock protein 70 (Hsp70) using a transgenic, gene therapy or pharmacological approach provided cardiac protection in models of acute cardiac stress. Furthermore, clinical studies had reported associations between Hsp70 levels and protection against atrial fibrillation (AF). AF is the most common cardiac arrhythmia presenting in cardiology clinics and is associated with increased rates of heart failure and stroke. Improved therapies for AF and heart failure are urgently required. Despite promising observations in animal studies which targeted Hsp70, we recently reported that increasing Hsp70 was unable to attenuate cardiac dysfunction and pathology in a mouse model which develops heart failure and intermittent AF. Given our somewhat unexpected finding and the extensive literature suggesting Hsp70 provides cardiac protection, it was considered important to assess whether Hsp70 could provide protection in another mouse model of heart failure and AF. The aim of the current study was to determine whether increasing Hsp70 could attenuate adverse cardiac remodeling, cardiac dysfunction and episodes of arrhythmia in a mouse model of heart failure and AF due to overexpression of Muscle-Restricted Coiled-Coil (MURC). Cardiac function and pathology were assessed in mice at approximately 12 months of age. We report here, that chronic overexpression of Hsp70 was unable to provide protection against cardiac dysfunction, conduction abnormalities, fibrosis or characteristic molecular markers of the failing heart. In summary, elevated Hsp70 may provide protection in acute cardiac stress settings, but appears insufficient to protect the heart under chronic cardiac disease conditions.
Cognitive processes and conflict in close relationships: an attribution-efficacy model.
Fincham, F D; Bradbury, T N
1987-12-01
A recently proposed model of cognitive processes underlying conflict in close relationships (Doherty, 1978, 1981a, 1981b) is revised and tested in two studies. Central to the original model are the causal attributions made for conflict and the perceived efficacy or ability to resolve conflict. The model is revised to incorporate judgments of responsibility and to provide a closer link to self-efficacy theory. The first study examines attributions and efficacy expectations in mother-child relationships. As anticipated, only weak evidence was obtained for predictions retained from the original model, high-lighting the relationship-specific nature of cognitive processes for conflict in families. A second study examines husband-wife relationships and provides evidence for the usefulness of an attribution-efficacy model for marital conflict. The attributional component of the model received greater support than that pertaining to efficacy expectations. In both studies, support was obtained for the proposal that the relation between conflict dimensions (e.g., blame) and causal dimensions is mediated by judgments of responsibility. The significance of the revisions to Doherty's model for understanding conflict in close relationships is discussed, and several avenues for further research are outlined.
Quadrupedal rodent gait compensations in a low dose monoiodoacetate model of osteoarthritis.
Lakes, Emily H; Allen, Kyle D
2018-06-01
Rodent gait analysis provides robust, quantitative results for preclinical musculoskeletal and neurological models. In prior work, surgical models of osteoarthritis have been found to result in a hind limb shuffle-stepping gait compensation, while a high dose monoiodoacetate (MIA, 3 mg) model resulted in a hind limb antalgic gait. However, it is unknown whether the antalgic gait caused by MIA is associated with severity of degeneration from the high dosage or the whole-joint degeneration associated with glycolysis inhibition. This study evaluates rodent gait changes resulting from a low dose, 1 mg unilateral intra-articular injection of MIA compared to saline injected and naïve rats. Spatiotemporal and dynamic gait parameters were collected from a total of 42 male Lewis rats spread across 3 time points: 1, 2, and 4 weeks post-injection. To provide a detailed analysis of this low dose MIA model, gait analysis was used to uniquely quantify both fore and hind limb gait parameters. Our data indicate that 1 mg of MIA caused relatively minor degeneration and a shuffle-step gait compensation, similar to the compensation observed in prior surgical models. These data from a 1 mg MIA model show a different gait compensation compared to a previously studied 3 mg model. This 1 mg MIA model resulted in gait compensations more similar to a previously studied surgical model of osteoarthritis. Additionally, this study provides detailed 4 limb analysis of rodent gait that includes spatiotemporal and dynamic data from the same gait trial. These data highlight the importance of measuring dynamic data in combination with spatiotemporal data, since compensatory gait patterns may not be captured by spatial, temporal, or dynamic characterizations alone. Copyright © 2018 Elsevier B.V. All rights reserved.
Elements of effective palliative care models: a rapid review
2014-01-01
Background Population ageing, changes to the profiles of life-limiting illnesses and evolving societal attitudes prompt a critical evaluation of models of palliative care. We set out to identify evidence-based models of palliative care to inform policy reform in Australia. Method A rapid review of electronic databases and the grey literature was undertaken over an eight week period in April-June 2012. We included policy documents and comparative studies from countries within the Organisation for Economic Co-operation and Development (OECD) published in English since 2001. Meta-analysis was planned where >1 study met criteria; otherwise, synthesis was narrative using methods described by Popay et al. (2006). Results Of 1,959 peer-reviewed articles, 23 reported systematic reviews, 9 additional RCTs and 34 non-randomised comparative studies. Variation in the content of models, contexts in which these were implemented and lack of detailed reporting meant that elements of models constituted a more meaningful unit of analysis than models themselves. Case management was the element most consistently reported in models for which comparative studies provided evidence for effectiveness. Essential attributes of population-based palliative care models identified by policy and addressed by more than one element were communication and coordination between providers (including primary care), skill enhancement, and capacity to respond rapidly to individuals’ changing needs and preferences over time. Conclusion Models of palliative care should integrate specialist expertise with primary and community care services and enable transitions across settings, including residential aged care. The increasing complexity of care needs, services, interventions and contextual drivers warrants future research aimed at elucidating the interactions between different components and the roles played by patient, provider and health system factors. The findings of this review are limited by its rapid methodology and focus on model elements relevant to Australia’s health system. PMID:24670065
Modeling false positive detections in species occurrence data under different study designs.
Chambert, Thierry; Miller, David A W; Nichols, James D
2015-02-01
The occurrence of false positive detections in presence-absence data, even when they occur infrequently, can lead to severe bias when estimating species occupancy patterns. Building upon previous efforts to account for this source of observational error, we established a general framework to model false positives in occupancy studies and extend existing modeling approaches to encompass a broader range of sampling designs. Specifically, we identified three common sampling designs that are likely to cover most scenarios encountered by researchers. The different designs all included ambiguous detections, as well as some known-truth data, but their modeling differed in the level of the model hierarchy at which the known-truth information was incorporated (site level or observation level). For each model, we provide the likelihood, as well as R and BUGS code needed for implementation. We also establish a clear terminology and provide guidance to help choosing the most appropriate design and modeling approach.
Evaluation of the ERP dispersion model using Darlington tracer-study data. Report No. 90-200-K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, S.C.
1990-01-01
In this study, site-boundary atmospheric dilution factors calculated by the atmospheric dispersion model used in the ERP (Emergency Response Planning) computer code were compared to data collected during the Darlington tracer study. The purpose of this comparison was to obtain estimates of model uncertainty under a variety of conditions. This report provides background on ERP, the ERP dispersion model and the Darlington tracer study. Model evaluation techniques are discussed briefly, and the results of the comparison of model calculations with the field data are presented and reviewed.
A Multivariate Model for the Meta-Analysis of Study Level Survival Data at Multiple Times
ERIC Educational Resources Information Center
Jackson, Dan; Rollins, Katie; Coughlin, Patrick
2014-01-01
Motivated by our meta-analytic dataset involving survival rates after treatment for critical leg ischemia, we develop and apply a new multivariate model for the meta-analysis of study level survival data at multiple times. Our data set involves 50 studies that provide mortality rates at up to seven time points, which we model simultaneously, and…
Load Diffusion in Composite Structures
NASA Technical Reports Server (NTRS)
Horgan, Cornelius O.; Simmonds, J. G.
2000-01-01
This research has been concerned with load diffusion in composite structures. Fundamental solid mechanics studies were carried out to provide a basis for assessing the complicated modeling necessary for large scale structures used by NASA. An understanding of the fundamental mechanisms of load diffusion in composite subcomponents is essential in developing primary composite structures. Analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and assessing results from finite element analyses. The decay behavior of stresses and other field quantities provides a significant aid towards this process. The results are also amendable to parameter study with a large parameter space and should be useful in structural tailoring studies.
Öhlén, J; Carlsson, G; Jepsen, A; Lindberg, I; Friberg, F
2016-06-01
In clinical palliative cancer care, the diversity of patient concerns over time makes information provision a critical issue, the demands of information-seeking patients presenting a challenge to both the communicative and organizational skills of the health provider. This study puts forward a practice model for communication between patients, their family members, and professional health providers during ongoing palliative chemotherapy; a model which supports the providers in enabling person-centered communication. A constant comparative analysis adapted to participatory action research was applied. The model was developed step-wise in three interrelated cycles, with results from previous studies from palliative cancer care processed in relation to professional health providers' experience-based clinical knowledge. In doing this, focus group discussions were carried out with providers and patients to develop and revise the model. The Enabling Sense Making model for person-centered communication gave rise to three domains (which are also the major communicative actors in palliative care): the patient, the family, and the provider. These actors were placed in the context of a communicative arena. The three respective domains were built up in different layers discriminating between significant aspects of person-centered communication, from the manifest that is most usually explicated in dialogues, to the latent that tends to be implicitly mediated. The model intends to facilitate timely reorientation of care from curative treatment or rehabilitation to palliation, as well as the introduction of appropriate palliative interventions over time during palliative phases. In this way the model is to be regarded a frame for directing the awareness of the professionals, which focuses on how to communicate and how to consider the patient's way of reasoning. The model could be used as a complement to other strategic initiatives for the advancement of palliative care communication. It needs to be further evaluated in regard to practice evidence.
Assessing uncertain human exposure to ambient air pollution using environmental models in the Web
NASA Astrophysics Data System (ADS)
Gerharz, L. E.; Pebesma, E.; Denby, B.
2012-04-01
Ambient air quality can have significant impact on human health by causing respiratory and cardio-vascular diseases. Thereby, the pollutant concentration a person is exposed to can differ considerably between individuals depending on their daily routine and movement patterns. Using a straight forward approach this exposure can be estimated by integration of individual space-time paths and spatio-temporally resolved ambient air quality data. To allow a realistic exposure assessment, it is furthermore important to consider uncertainties due to input and model errors. In this work, we present a generic, web-based approach for estimating individual exposure by integration of uncertain position and air quality information implemented as a web service. Following the Model Web initiative envisioning an infrastructure for deploying, executing and chaining environmental models as services, existing models and data sources for e.g. air quality, can be used to assess exposure. Therefore, the service needs to deal with different formats, resolutions and uncertainty representations provided by model or data services. Potential mismatch can be accounted for by transformation of uncertainties and (dis-)aggregation of data under consideration of changes in the uncertainties using components developed in the UncertWeb project. In UncertWeb, the Model Web vision is extended to an Uncertainty-enabled Model Web, where services can process and communicate uncertainties in the data and models. The propagation of uncertainty to the exposure results is quantified using Monte Carlo simulation by combining different realisations of positions and ambient concentrations. Two case studies were used to evaluate the developed exposure assessment service. In a first study, GPS tracks with a positional uncertainty of a few meters, collected in the urban area of Münster, Germany were used to assess exposure to PM10 (particulate matter smaller 10 µm). Air quality data was provided by an uncertainty-enabled air quality model system which provided realisations of concentrations per hour on a 250 m x 250 m resolved grid over Münster. The second case study uses modelled human trajectories in Rotterdam, The Netherlands. The trajectories were provided as realisations in 15 min resolution per 4 digit postal code from an activity model. Air quality estimates were provided for different pollutants as ensembles by a coupled meteorology and air quality model system on a 1 km x 1 km grid with hourly resolution. Both case studies show the successful application of the service to different resolutions and uncertainty representations.
Nathoo, Nabeela; Yong, V. Wee; Dunn, Jeff F.
2014-01-01
There are exciting new advances in multiple sclerosis (MS) resulting in a growing understanding of both the complexity of the disorder and the relative involvement of grey matter, white matter and inflammation. Increasing need for preclinical imaging is anticipated, as animal models provide insights into the pathophysiology of the disease. Magnetic resonance (MR) is the key imaging tool used to diagnose and to monitor disease progression in MS, and thus will be a cornerstone for future research. Although gadolinium-enhancing and T2 lesions on MRI have been useful for detecting MS pathology, they are not correlative of disability. Therefore, new MRI methods are needed. Such methods require validation in animal models. The increasing necessity for MRI of animal models makes it critical and timely to understand what research has been conducted in this area and what potential there is for use of MRI in preclinical models of MS. Here, we provide a review of MRI and magnetic resonance spectroscopy (MRS) studies that have been carried out in animal models of MS that focus on pathology. We compare the MRI phenotypes of animals and patients and provide advice on how best to use animal MR studies to increase our understanding of the linkages between MR and pathology in patients. This review describes how MRI studies of animal models have been, and will continue to be, used in the ongoing effort to understand MS. PMID:24936425
An Ab Initio Exciton Model Including Charge-Transfer Excited States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xin; Parrish, Robert M.; Liu, Fang
Here, the Frenkel exciton model is a useful tool for theoretical studies of multichromophore systems. We recently showed that the exciton model could be used to coarse-grain electronic structure in multichromophoric systems, focusing on singly excited exciton states. However, our previous implementation excluded charge-transfer excited states, which can play an important role in light-harvesting systems and near-infrared optoelectronic materials. Recent studies have also emphasized the significance of charge-transfer in singlet fission, which mediates the coupling between the locally excited states and the multiexcitonic states. In this work, we report on an ab initio exciton model that incorporates charge-transfer excited statesmore » and demonstrate that the model provides correct charge-transfer excitation energies and asymptotic behavior. Comparison with TDDFT and EOM-CC2 calculations shows that our exciton model is robust with respect to system size, screening parameter, and different density functionals. Inclusion of charge-transfer excited states makes the exciton model more useful for studies of singly excited states and provides a starting point for future construction of a model that also includes double-exciton states.« less
An Ab Initio Exciton Model Including Charge-Transfer Excited States
Li, Xin; Parrish, Robert M.; Liu, Fang; ...
2017-06-15
Here, the Frenkel exciton model is a useful tool for theoretical studies of multichromophore systems. We recently showed that the exciton model could be used to coarse-grain electronic structure in multichromophoric systems, focusing on singly excited exciton states. However, our previous implementation excluded charge-transfer excited states, which can play an important role in light-harvesting systems and near-infrared optoelectronic materials. Recent studies have also emphasized the significance of charge-transfer in singlet fission, which mediates the coupling between the locally excited states and the multiexcitonic states. In this work, we report on an ab initio exciton model that incorporates charge-transfer excited statesmore » and demonstrate that the model provides correct charge-transfer excitation energies and asymptotic behavior. Comparison with TDDFT and EOM-CC2 calculations shows that our exciton model is robust with respect to system size, screening parameter, and different density functionals. Inclusion of charge-transfer excited states makes the exciton model more useful for studies of singly excited states and provides a starting point for future construction of a model that also includes double-exciton states.« less
An Ab Initio Exciton Model Including Charge-Transfer Excited States.
Li, Xin; Parrish, Robert M; Liu, Fang; Kokkila Schumacher, Sara I L; Martínez, Todd J
2017-08-08
The Frenkel exciton model is a useful tool for theoretical studies of multichromophore systems. We recently showed that the exciton model could be used to coarse-grain electronic structure in multichromophoric systems, focusing on singly excited exciton states [ Acc. Chem. Res. 2014 , 47 , 2857 - 2866 ]. However, our previous implementation excluded charge-transfer excited states, which can play an important role in light-harvesting systems and near-infrared optoelectronic materials. Recent studies have also emphasized the significance of charge-transfer in singlet fission, which mediates the coupling between the locally excited states and the multiexcitonic states. In this work, we report on an ab initio exciton model that incorporates charge-transfer excited states and demonstrate that the model provides correct charge-transfer excitation energies and asymptotic behavior. Comparison with TDDFT and EOM-CC2 calculations shows that our exciton model is robust with respect to system size, screening parameter, and different density functionals. Inclusion of charge-transfer excited states makes the exciton model more useful for studies of singly excited states and provides a starting point for future construction of a model that also includes double-exciton states.
Exploring Human Diseases and Biological Mechanisms by Protein Structure Prediction and Modeling.
Wang, Juexin; Luttrell, Joseph; Zhang, Ning; Khan, Saad; Shi, NianQing; Wang, Michael X; Kang, Jing-Qiong; Wang, Zheng; Xu, Dong
2016-01-01
Protein structure prediction and modeling provide a tool for understanding protein functions by computationally constructing protein structures from amino acid sequences and analyzing them. With help from protein prediction tools and web servers, users can obtain the three-dimensional protein structure models and gain knowledge of functions from the proteins. In this chapter, we will provide several examples of such studies. As an example, structure modeling methods were used to investigate the relation between mutation-caused misfolding of protein and human diseases including epilepsy and leukemia. Protein structure prediction and modeling were also applied in nucleotide-gated channels and their interaction interfaces to investigate their roles in brain and heart cells. In molecular mechanism studies of plants, rice salinity tolerance mechanism was studied via structure modeling on crucial proteins identified by systems biology analysis; trait-associated protein-protein interactions were modeled, which sheds some light on the roles of mutations in soybean oil/protein content. In the age of precision medicine, we believe protein structure prediction and modeling will play more and more important roles in investigating biomedical mechanism of diseases and drug design.
Safety analytics for integrating crash frequency and real-time risk modeling for expressways.
Wang, Ling; Abdel-Aty, Mohamed; Lee, Jaeyoung
2017-07-01
To find crash contributing factors, there have been numerous crash frequency and real-time safety studies, but such studies have been conducted independently. Until this point, no researcher has simultaneously analyzed crash frequency and real-time crash risk to test whether integrating them could better explain crash occurrence. Therefore, this study aims at integrating crash frequency and real-time safety analyses using expressway data. A Bayesian integrated model and a non-integrated model were built: the integrated model linked the crash frequency and the real-time models by adding the logarithm of the estimated expected crash frequency in the real-time model; the non-integrated model independently estimated the crash frequency and the real-time crash risk. The results showed that the integrated model outperformed the non-integrated model, as it provided much better model results for both the crash frequency and the real-time models. This result indicated that the added component, the logarithm of the expected crash frequency, successfully linked and provided useful information to the two models. This study uncovered few variables that are not typically included in the crash frequency analysis. For example, the average daily standard deviation of speed, which was aggregated based on speed at 1-min intervals, had a positive effect on crash frequency. In conclusion, this study suggested a methodology to improve the crash frequency and real-time models by integrating them, and it might inspire future researchers to understand crash mechanisms better. Copyright © 2017 Elsevier Ltd. All rights reserved.
The development of a composite bone model for training on placement of dental implants
Alkhodary, Mohamed Ahmed; Abdelraheim, Abdelraheim Emad Eldin; Elsantawy, Abd Elaleem Hassan; Al Dahman, Yousef Hamad; Al-Mershed, Mohammed
2015-01-01
Objectives It takes a lot of training on patients for both undergraduate to develop clinical sense as regards to the placement of dental implants in the jaw bones, also, the models provided by the dental implant companies for training are usually made of strengthened synthetic foams, which are far from the composition, and tactile sense provided by natural bone during drilling for clinical placement of dental implants. Methodology This is an in-vitro experimental study which utilized bovine femur bone, where the shaft of the femur provided the surface compact layer, and the head provided the cancellous bone layer, to provide a training model similar to jaw bones macroscopic anatomy. Both the compact and cancellous bone samples were characterized using mechanical compressive testing. Results The elastic moduli of the cancellous and cortical femur bone were comparable to those of the human mandible, and the prepared training model provided a more lifelike condition during the drilling and placement of dental implants. Conclusion The composite bone model developed simulated the macroscopic anatomy of the jaw bones having a surface layer of compact bone, and a core of cancellous bone, and provided a better and a more natural hands-on experience for placement of dental implants as compared to plastic models made of polyurethane. PMID:26309434
The development of a composite bone model for training on placement of dental implants.
Alkhodary, Mohamed Ahmed; Abdelraheim, Abdelraheim Emad Eldin; Elsantawy, Abd Elaleem Hassan; Al Dahman, Yousef Hamad; Al-Mershed, Mohammed
2015-04-01
It takes a lot of training on patients for both undergraduate to develop clinical sense as regards to the placement of dental implants in the jaw bones, also, the models provided by the dental implant companies for training are usually made of strengthened synthetic foams, which are far from the composition, and tactile sense provided by natural bone during drilling for clinical placement of dental implants. This is an in-vitro experimental study which utilized bovine femur bone, where the shaft of the femur provided the surface compact layer, and the head provided the cancellous bone layer, to provide a training model similar to jaw bones macroscopic anatomy. Both the compact and cancellous bone samples were characterized using mechanical compressive testing. The elastic moduli of the cancellous and cortical femur bone were comparable to those of the human mandible, and the prepared training model provided a more lifelike condition during the drilling and placement of dental implants. The composite bone model developed simulated the macroscopic anatomy of the jaw bones having a surface layer of compact bone, and a core of cancellous bone, and provided a better and a more natural hands-on experience for placement of dental implants as compared to plastic models made of polyurethane.
Wong, Sabrina T; Lynam, M Judith; Khan, Koushambhi B; Scott, Lorine; Loock, Christine
2012-10-04
The Responsive Interdisciplinary Child-Community Health Education and Research (RICHER) initiative is an intersectoral and interdisciplinary community outreach primary health care (PHC) model. It is being undertaken in partnership with community based organizations in order to address identified gaps in the continuum of health services delivery for 'at risk' children and their families. As part of a larger study, this paper reports on whether the RICHER initiative is associated with increased: 1) access to health care for children and families with multiple forms of disadvantage and 2) patient-reported empowerment. This study provides the first examination of a model of delivering PHC, using a Social Paediatrics approach. This was a mixed-methods study, using quantitative and qualitative approaches; it was undertaken in partnership with the community, both organizations and individual providers. Descriptive statistics, including logistic regression of patient survey data (n=86) and thematic analyses of patient interview data (n=7) were analyzed to examine the association between patient experiences with the RICHER initiative and parent-reported empowerment. Respondents found communication with the provider clear, that the provider explained any test results in a way they could understand, and that the provider was compassionate and respectful. Analysis of the survey and in-depth interview data provide evidence that interpersonal communication, particularly the provider's interpersonal style (e.g., being treated as an equal), was very important. Even after controlling for parents' education and ethnicity, the provider's interpersonal style remained positively associated with parent-reported empowerment (p<0.01). This model of PHC delivery is unique in its purposeful and required partnerships between health care providers and community members. This study provides beginning evidence that RICHER can better meet the health and health care needs of people, especially those who are vulnerable due to multiple intersecting social determinants of health. Positive interpersonal communication from providers can play a key role in facilitating situations where individuals have an opportunity to experience success in managing their and their family's health.
Estimating evaporation with thermal UAV data and two-source energy balance models
NASA Astrophysics Data System (ADS)
Hoffmann, H.; Nieto, H.; Jensen, R.; Guzinski, R.; Zarco-Tejada, P.; Friborg, T.
2016-02-01
Estimating evaporation is important when managing water resources and cultivating crops. Evaporation can be estimated using land surface heat flux models and remotely sensed land surface temperatures (LST), which have recently become obtainable in very high resolution using lightweight thermal cameras and Unmanned Aerial Vehicles (UAVs). In this study a thermal camera was mounted on a UAV and applied into the field of heat fluxes and hydrology by concatenating thermal images into mosaics of LST and using these as input for the two-source energy balance (TSEB) modelling scheme. Thermal images are obtained with a fixed-wing UAV overflying a barley field in western Denmark during the growing season of 2014 and a spatial resolution of 0.20 m is obtained in final LST mosaics. Two models are used: the original TSEB model (TSEB-PT) and a dual-temperature-difference (DTD) model. In contrast to the TSEB-PT model, the DTD model accounts for the bias that is likely present in remotely sensed LST. TSEB-PT and DTD have already been well tested, however only during sunny weather conditions and with satellite images serving as thermal input. The aim of this study is to assess whether a lightweight thermal camera mounted on a UAV is able to provide data of sufficient quality to constitute as model input and thus attain accurate and high spatial and temporal resolution surface energy heat fluxes, with special focus on latent heat flux (evaporation). Furthermore, this study evaluates the performance of the TSEB scheme during cloudy and overcast weather conditions, which is feasible due to the low data retrieval altitude (due to low UAV flying altitude) compared to satellite thermal data that are only available during clear-sky conditions. TSEB-PT and DTD fluxes are compared and validated against eddy covariance measurements and the comparison shows that both TSEB-PT and DTD simulations are in good agreement with eddy covariance measurements, with DTD obtaining the best results. The DTD model provides results comparable to studies estimating evaporation with similar experimental setups, but with LST retrieved from satellites instead of a UAV. Further, systematic irrigation patterns on the barley field provide confidence in the veracity of the spatially distributed evaporation revealed by model output maps. Lastly, this study outlines and discusses the thermal UAV image processing that results in mosaics suited for model input. This study shows that the UAV platform and the lightweight thermal camera provide high spatial and temporal resolution data valid for model input and for other potential applications requiring high-resolution and consistent LST.
NASA Astrophysics Data System (ADS)
Landeras, G.; López, J. J.; Kisi, O.; Shiri, J.
2012-04-01
The correct observation/estimation of surface incoming solar radiation (RS) is very important for many agricultural, meteorological and hydrological related applications. While most weather stations are provided with sensors for air temperature detection, the presence of sensors necessary for the detection of solar radiation is not so habitual and the data quality provided by them is sometimes poor. In these cases it is necessary to estimate this variable. Temperature based modeling procedures are reported in this study for estimating daily incoming solar radiation by using Gene Expression Programming (GEP) for the first time, and other artificial intelligence models such as Artificial Neural Networks (ANNs), and Adaptive Neuro-Fuzzy Inference System (ANFIS). Traditional temperature based solar radiation equations were also included in this study and compared with artificial intelligence based approaches. Root mean square error (RMSE), mean absolute error (MAE) RMSE-based skill score (SSRMSE), MAE-based skill score (SSMAE) and r2 criterion of Nash and Sutcliffe criteria were used to assess the models' performances. An ANN (a four-input multilayer perceptron with ten neurons in the hidden layer) presented the best performance among the studied models (2.93 MJ m-2 d-1 of RMSE). A four-input ANFIS model revealed as an interesting alternative to ANNs (3.14 MJ m-2 d-1 of RMSE). Very limited number of studies has been done on estimation of solar radiation based on ANFIS, and the present one demonstrated the ability of ANFIS to model solar radiation based on temperatures and extraterrestrial radiation. By the way this study demonstrated, for the first time, the ability of GEP models to model solar radiation based on daily atmospheric variables. Despite the accuracy of GEP models was slightly lower than the ANFIS and ANN models the genetic programming models (i.e., GEP) are superior to other artificial intelligence models in giving a simple explicit equation for the phenomenon which shows the relationship between the input and output parameters. This study provided new alternatives for solar radiation estimation based on temperatures.
Study design requirements for RNA sequencing-based breast cancer diagnostics.
Mer, Arvind Singh; Klevebring, Daniel; Grönberg, Henrik; Rantalainen, Mattias
2016-02-01
Sequencing-based molecular characterization of tumors provides information required for individualized cancer treatment. There are well-defined molecular subtypes of breast cancer that provide improved prognostication compared to routine biomarkers. However, molecular subtyping is not yet implemented in routine breast cancer care. Clinical translation is dependent on subtype prediction models providing high sensitivity and specificity. In this study we evaluate sample size and RNA-sequencing read requirements for breast cancer subtyping to facilitate rational design of translational studies. We applied subsampling to ascertain the effect of training sample size and the number of RNA sequencing reads on classification accuracy of molecular subtype and routine biomarker prediction models (unsupervised and supervised). Subtype classification accuracy improved with increasing sample size up to N = 750 (accuracy = 0.93), although with a modest improvement beyond N = 350 (accuracy = 0.92). Prediction of routine biomarkers achieved accuracy of 0.94 (ER) and 0.92 (Her2) at N = 200. Subtype classification improved with RNA-sequencing library size up to 5 million reads. Development of molecular subtyping models for cancer diagnostics requires well-designed studies. Sample size and the number of RNA sequencing reads directly influence accuracy of molecular subtyping. Results in this study provide key information for rational design of translational studies aiming to bring sequencing-based diagnostics to the clinic.
RESOLVING NEIGHBORHOOD-SCALE AIR TOXICS MODELING: A CASE STUDY IN WILMINGTON, CALIFORNIA
Air quality modeling is useful for characterizing exposures to air pollutants. While models typically provide results on regional scales, there is a need for refined modeling approaches capable of resolving concentrations on the scale of tens of meters, across modeling domains 1...
Spilling over strain between elders and their caregivers in Hong Kong.
Cheung, Chau-Kiu; Chow, Esther Oi-wah
2006-01-01
According to the dialectical model, the well-being of the older care recipient, the informal caregiver, and the professional care provider mutually affect each other. Particularly, the caregiver's strain can affect the care recipient's well-being both positively and negatively. Moreover, the task-specific model suggests that as social workers are responsible for maintaining elders' well-being, the workers' strain would be particularly influential on the elders' well-being. To clarify these dialectic relationships, the present study surveyed the three parties involved in home help or home care services in Hong Kong over two successive waves using a panel design. This study reveals the significant negative effect the professional care provider's earlier strain has on the elder's later well-being. Moreover, the social worker's earlier strain was particularly detrimental to the elder's later well-being. In contrast, the effect of the informal caregiver's earlier strain was not significant. Additionally, the elder's well-being had no significant impact on the strain of either the professional care provider or the informal caregiver. Findings of this study support the qualification of the dialectical model by the task-specific model to yield a model of channeled spillover. Accordingly, dialectical influence requires a channel to materialize the spillover effect.
Determinants of patient loyalty to healthcare providers: An integrative review.
Zhou, Wei-Jiao; Wan, Qiao-Qin; Liu, Cong-Ying; Feng, Xiao-Lin; Shang, Shao-Mei
2017-08-01
Patient loyalty is key to business success for healthcare providers and also for patient health outcomes. This study aims to identify determinants influencing patient loyalty to healthcare providers and propose an integrative conceptual model of the influencing factors. PubMed, CINAHL, OVID, ProQuest and Elsevier Science Direct databases were searched. Publications about determinants of patient loyalty to health providers were screened, and 13 articles were included. Date of publication, location of the research, sample details, objectives and findings/conclusions were extracted for 13 articles. Thirteen studies explored eight determinants: satisfaction, quality, value, hospital brand image, trust, commitment, organizational citizenship behavior and customer complaints. The integrated conceptual model comprising all the determinants demonstrated the significant positive direct impact of quality on satisfaction and value, satisfaction on trust and commitment, trust on commitment and loyalty, and brand image on quality and loyalty. This review identifies and models the determinants of patient loyalty to healthcare providers. Further studies are needed to explore the influence of trust, commitment, and switching barriers on patient loyalty. © The Author 2017. Published by Oxford University Press in association with the International Society for Quality in Health Care. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Tseng, Zhijie Jack; Mcnitt-Gray, Jill L.; Flashner, Henryk; Wang, Xiaoming; Enciso, Reyes
2011-01-01
Finite Element Analysis (FEA) is a powerful tool gaining use in studies of biological form and function. This method is particularly conducive to studies of extinct and fossilized organisms, as models can be assigned properties that approximate living tissues. In disciplines where model validation is difficult or impossible, the choice of model parameters and their effects on the results become increasingly important, especially in comparing outputs to infer function. To evaluate the extent to which performance measures are affected by initial model input, we tested the sensitivity of bite force, strain energy, and stress to changes in seven parameters that are required in testing craniodental function with FEA. Simulations were performed on FE models of a Gray Wolf (Canis lupus) mandible. Results showed that unilateral bite force outputs are least affected by the relative ratios of the balancing and working muscles, but only ratios above 0.5 provided balancing-working side joint reaction force relationships that are consistent with experimental data. The constraints modeled at the bite point had the greatest effect on bite force output, but the most appropriate constraint may depend on the study question. Strain energy is least affected by variation in bite point constraint, but larger variations in strain energy values are observed in models with different number of tetrahedral elements, masticatory muscle ratios and muscle subgroups present, and number of material properties. These findings indicate that performance measures are differentially affected by variation in initial model parameters. In the absence of validated input values, FE models can nevertheless provide robust comparisons if these parameters are standardized within a given study to minimize variation that arise during the model-building process. Sensitivity tests incorporated into the study design not only aid in the interpretation of simulation results, but can also provide additional insights on form and function. PMID:21559475
Levels of Interaction Provided by Online Distance Education Models
ERIC Educational Resources Information Center
Alhih, Mohammed; Ossiannilsson, Ebba; Berigel, Muhammet
2017-01-01
Interaction plays a significant role to foster usability and quality in online education. It is one of the quality standard to reveal the evidence of practice in online distance education models. This research study aims to evaluate levels of interaction in the practices of distance education centres. It is aimed to provide online distance…
Study of providing omnidirectional vibration isolation to entire space shuttle payload packages
NASA Technical Reports Server (NTRS)
Chang, C. S.; Robinson, G. D.; Weber, D. E.
1974-01-01
Techniques to provide omnidirectional vibration isolation for a space shuttle payload package were investigated via a reduced-scale model. Development, design, fabrication, assembly and test evaluation of a 0.125-scale isolation model are described. Final drawings for fabricated mechanical components are identified, and prints of all drawings are included.
Expanded Medical Home Model Works for Children in Foster Care
ERIC Educational Resources Information Center
Jaudes, Paula Kienberger; Champagne, Vince; Harden, Allen; Masterson, James; Bilaver, Lucy A.
2012-01-01
The Illinois Child Welfare Department implemented a statewide health care system to ensure that children in foster care obtain quality health care by providing each child with a medical home. This study demonstrates that the Medical Home model works for children in foster care providing better health outcomes in higher immunization rates. These…
2-D Magnetohydrodynamic Modeling of A Pulsed Plasma Thruster
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Cassibry, J. T.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) MK-1 pulsed plasma thruster. Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.
NASA Astrophysics Data System (ADS)
Liu, C. M.
2017-12-01
Wave properties predicted by the rigid-lid and the free-surface Boussinesq equations for a two-fluid system are theoretically calculated and compared in this study. Boussinesq model is generally applied to numerically simulate surface waves in coastal regions to provide credible information for disaster prevention and breaker design. As for internal waves, Liu et al. (2008) and Liu (2016) respectively derived a free-surface model and a rigid-lid Boussinesq models for a two-fluid system. The former and the latter models respectively contain four and three key variables which may result in different results and efficiency while simulating. Therefore, present study shows the results theoretically measured by these two models to provide more detailed observation and useful information for motions of internal waves.
An Early Model for Value and Sustainability in Health Information Exchanges: Qualitative Study
2018-01-01
Background The primary value relative to health information exchange has been seen in terms of cost savings relative to laboratory and radiology testing, emergency department expenditures, and admissions. However, models are needed to statistically quantify value and sustainability and better understand the dependent and mediating factors that contribute to value and sustainability. Objective The purpose of this study was to provide a basis for early model development for health information exchange value and sustainability. Methods A qualitative study was conducted with 21 interviews of eHealth Exchange participants across 10 organizations. Using a grounded theory approach and 3.0 as a relative frequency threshold, 5 main categories and 16 subcategories emerged. Results This study identifies 3 core current perceived value factors and 5 potential perceived value factors—how interviewees predict health information exchanges may evolve as there are more participants. These value factors were used as the foundation for early model development for sustainability of health information exchange. Conclusions Using the value factors from the interviews, the study provides the basis for early model development for health information exchange value and sustainability. This basis includes factors from the research: fostering consumer engagement; establishing a provider directory; quantifying use, cost, and clinical outcomes; ensuring data integrity through patient matching; and increasing awareness, usefulness, interoperability, and sustainability of eHealth Exchange. PMID:29712623
An Early Model for Value and Sustainability in Health Information Exchanges: Qualitative Study.
Feldman, Sue S
2018-04-30
The primary value relative to health information exchange has been seen in terms of cost savings relative to laboratory and radiology testing, emergency department expenditures, and admissions. However, models are needed to statistically quantify value and sustainability and better understand the dependent and mediating factors that contribute to value and sustainability. The purpose of this study was to provide a basis for early model development for health information exchange value and sustainability. A qualitative study was conducted with 21 interviews of eHealth Exchange participants across 10 organizations. Using a grounded theory approach and 3.0 as a relative frequency threshold, 5 main categories and 16 subcategories emerged. This study identifies 3 core current perceived value factors and 5 potential perceived value factors-how interviewees predict health information exchanges may evolve as there are more participants. These value factors were used as the foundation for early model development for sustainability of health information exchange. Using the value factors from the interviews, the study provides the basis for early model development for health information exchange value and sustainability. This basis includes factors from the research: fostering consumer engagement; establishing a provider directory; quantifying use, cost, and clinical outcomes; ensuring data integrity through patient matching; and increasing awareness, usefulness, interoperability, and sustainability of eHealth Exchange. ©Sue S Feldman. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 30.04.2018.
Systematic Review of Model-Based Economic Evaluations of Treatments for Alzheimer's Disease.
Hernandez, Luis; Ozen, Asli; DosSantos, Rodrigo; Getsios, Denis
2016-07-01
Numerous economic evaluations using decision-analytic models have assessed the cost effectiveness of treatments for Alzheimer's disease (AD) in the last two decades. It is important to understand the methods used in the existing models of AD and how they could impact results, as they could inform new model-based economic evaluations of treatments for AD. The aim of this systematic review was to provide a detailed description on the relevant aspects and components of existing decision-analytic models of AD, identifying areas for improvement and future development, and to conduct a quality assessment of the included studies. We performed a systematic and comprehensive review of cost-effectiveness studies of pharmacological treatments for AD published in the last decade (January 2005 to February 2015) that used decision-analytic models, also including studies considering patients with mild cognitive impairment (MCI). The background information of the included studies and specific information on the decision-analytic models, including their approach and components, assumptions, data sources, analyses, and results, were obtained from each study. A description of how the modeling approaches and assumptions differ across studies, identifying areas for improvement and future development, is provided. At the end, we present our own view of the potential future directions of decision-analytic models of AD and the challenges they might face. The included studies present a variety of different approaches, assumptions, and scope of decision-analytic models used in the economic evaluation of pharmacological treatments of AD. The major areas for improvement in future models of AD are to include domains of cognition, function, and behavior, rather than cognition alone; include a detailed description of how data used to model the natural course of disease progression were derived; state and justify the economic model selected and structural assumptions and limitations; provide a detailed (rather than high-level) description of the cost components included in the model; and report on the face-, internal-, and cross-validity of the model to strengthen the credibility and confidence in model results. The quality scores of most studies were rated as fair to good (average 87.5, range 69.5-100, in a scale of 0-100). Despite the advancements in decision-analytic models of AD, there remain several areas of improvement that are necessary to more appropriately and realistically capture the broad nature of AD and the potential benefits of treatments in future models of AD.
Study of the Half-Day/Full-Day Kindergarten Model
ERIC Educational Resources Information Center
McInroy, Thomas R.
2012-01-01
This case study and problem analysis was an in-depth investigation of the half-day/full-day kindergarten model by utilizing interviews and focus groups to provide insight from parents, teachers, and other district personnel as to how the model has impacted the social, emotional, and academic development of the participating students. This study…
Streamflow forecasts from WRF precipitation for flood early warning in mountain tropical areas
NASA Astrophysics Data System (ADS)
Rogelis, María Carolina; Werner, Micha
2018-02-01
Numerical weather prediction (NWP) models are fundamental to extend forecast lead times beyond the concentration time of a watershed. Particularly for flash flood forecasting in tropical mountainous watersheds, forecast precipitation is required to provide timely warnings. This paper aims to assess the potential of NWP for flood early warning purposes, and the possible improvement that bias correction can provide, in a tropical mountainous area. The paper focuses on the comparison of streamflows obtained from the post-processed precipitation forecasts, particularly the comparison of ensemble forecasts and their potential in providing skilful flood forecasts. The Weather Research and Forecasting (WRF) model is used to produce precipitation forecasts that are post-processed and used to drive a hydrologic model. Discharge forecasts obtained from the hydrological model are used to assess the skill of the WRF model. The results show that post-processed WRF precipitation adds value to the flood early warning system when compared to zero-precipitation forecasts, although the precipitation forecast used in this analysis showed little added value when compared to climatology. However, the reduction of biases obtained from the post-processed ensembles show the potential of this method and model to provide usable precipitation forecasts in tropical mountainous watersheds. The need for more detailed evaluation of the WRF model in the study area is highlighted, particularly the identification of the most suitable parameterisation, due to the inability of the model to adequately represent the convective precipitation found in the study area.
de Lusignan, S; Krause, P; Michalakidis, G; Vicente, M Tristan; Thompson, S; McGilchrist, M; Sullivan, F; van Royen, P; Agreus, L; Desombre, T; Taweel, A; Delaney, B
2012-01-01
To perform a requirements analysis of the barriers to conducting research linking of primary care, genetic and cancer data. We extended our initial data-centric approach to include socio-cultural and business requirements. We created reference models of core data requirements common to most studies using unified modelling language (UML), dataflow diagrams (DFD) and business process modelling notation (BPMN). We conducted a stakeholder analysis and constructed DFD and UML diagrams for use cases based on simulated research studies. We used research output as a sensitivity analysis. Differences between the reference model and use cases identified study specific data requirements. The stakeholder analysis identified: tensions, changes in specification, some indifference from data providers and enthusiastic informaticians urging inclusion of socio-cultural context. We identified requirements to collect information at three levels: micro- data items, which need to be semantically interoperable, meso- the medical record and data extraction, and macro- the health system and socio-cultural issues. BPMN clarified complex business requirements among data providers and vendors; and additional geographical requirements for patients to be represented in both linked datasets. High quality research output was the norm for most repositories. Reference models provide high-level schemata of the core data requirements. However, business requirements' modelling identifies stakeholder issues and identifies what needs to be addressed to enable participation.
Disentangling the Role of Domain-Specific Knowledge in Student Modeling
NASA Astrophysics Data System (ADS)
Ruppert, John; Duncan, Ravit Golan; Chinn, Clark A.
2017-08-01
This study explores the role of domain-specific knowledge in students' modeling practice and how this knowledge interacts with two domain-general modeling strategies: use of evidence and developing a causal mechanism. We analyzed models made by middle school students who had a year of intensive model-based instruction. These models were made to explain a familiar but unstudied biological phenomenon: late onset muscle pain. Students were provided with three pieces of evidence related to this phenomenon and asked to construct a model to account for this evidence. Findings indicate that domain-specific resources play a significant role in the extent to which the models accounted for provided evidence. On the other hand, familiarity with the situation appeared to contribute to the mechanistic character of models. Our results indicate that modeling strategies alone are insufficient for the development of a mechanistic model that accounts for provided evidence and that, while learners can develop a tentative model with a basic familiarity of the situation, scaffolding certain domain-specific knowledge is necessary to assist students with incorporating evidence in modeling tasks.
Calibrating the ECCO ocean general circulation model using Green's functions
NASA Technical Reports Server (NTRS)
Menemenlis, D.; Fu, L. L.; Lee, T.; Fukumori, I.
2002-01-01
Green's functions provide a simple, yet effective, method to test and calibrate General-Circulation-Model(GCM) parameterizations, to study and quantify model and data errors, to correct model biases and trends, and to blend estimates from different solutions and data products.
Model Organisms Fact Sheet: Using Model Organisms to Study Health and Disease
... NIGMS use research organisms to explore the basic biology and chemistry of life. Scientists decide which organism ... controls allow for more precise understanding of the biological factors being studied and provide greater certainty about ...
Conceptual data modeling of wildlife response indicators to ecosystem change in the Arctic
Walworth, Dennis; Pearce, John M.
2015-08-06
Large research studies are often challenged to effectively expose and document the types of information being collected and the reasons for data collection across what are often a diverse cadre of investigators of differing disciplines. We applied concepts from the field of information or data modeling to the U.S. Geological Survey (USGS) Changing Arctic Ecosystems (CAE) initiative to prototype an application of information modeling. The USGS CAE initiative is collecting information from marine and terrestrial environments in Alaska to identify and understand the links between rapid physical changes in the Arctic and response of wildlife populations to these ecosystem changes. An associated need is to understand how data collection strategies are informing the overall science initiative and facilitating communication of those strategies to a wide audience. We explored the use of conceptual data modeling to provide a method by which to document, describe, and visually communicate both enterprise and study level data; provide a simple means to analyze commonalities and differences in data acquisition strategies between studies; and provide a tool for discussing those strategies among researchers and managers.
On the continuum mechanics approach for the analysis of single walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Chaudhry, M. S.; Czekanski, A.
2016-04-01
Today carbon nanotubes have found various applications in structural, thermal and almost every field of engineering. Carbon nanotubes provide great strength, stiffness resilience properties. Evaluating the structural behavior of nanoscale materials is an important task. In order to understand the materialistic behavior of nanotubes, atomistic models provide a basis for continuum mechanics modelling. Although the properties of bulk materials are consistent with the size and depends mainly on the material but the properties when we are in Nano-range, continuously change with the size. Such models start from the modelling of interatomic interaction. Modelling and simulation has advantage of cost saving when compared with the experiments. So in this project our aim is to use a continuum mechanics model of carbon nanotubes from atomistic perspective and analyses some structural behaviors of nanotubes. It is generally recognized that mechanical properties of nanotubes are dependent upon their structural details. The properties of nanotubes vary with the varying with the interatomic distance, angular orientation, radius of the tube and many such parameters. Based on such models one can analyses the variation of young's modulus, strength, deformation behavior, vibration behavior and thermal behavior. In this study some of the structural behaviors of the nanotubes are analyzed with the help of continuum mechanics models. Using the properties derived from the molecular mechanics model a Finite Element Analysis of carbon nanotubes is performed and results are verified. This study provides the insight on continuum mechanics modelling of nanotubes and hence the scope to study the effect of various parameters on some structural behavior of nanotubes.
NASA Astrophysics Data System (ADS)
Teng, Jinn-Tsair; Chang, Chun-Tao; Chern, Maw-Sheng
2012-11-01
Most researchers studied vendor-buyer supply chain inventory policies only from the perspective of an integrated model, which provides us the best cooperative solution. However, in reality, not many vendors and buyers are wholly integrated. Hence, it is necessary to study the optimal policies not only under an integrated environment but also under a non-cooperative environment. In this article, we develop a supply chain vendor-buyer inventory model with trade credit financing linked to order quantity. We then study the optimal policies for both the vendor and the buyer under a non-cooperative environment first, and then under a cooperative integrated situation. Further, we provide some numerical examples to illustrate the theoretical results, compare the differences between these two distinct solutions, and obtain some managerial insights. For example, in a cooperative environment, to reduce the total cost for both parties, the vendor should either provide a simple permissible delay without order quantity restriction or offer a long permissible delay linked order quantity. By contrast, in a non-cooperative environment, the vendor should provide a short permissible delay to reduce its total cost.
White, Lauren A; Forester, James D; Craft, Meggan E
2018-05-01
Individual differences in contact rate can arise from host, group and landscape heterogeneity and can result in different patterns of spatial spread for diseases in wildlife populations with concomitant implications for disease control in wildlife of conservation concern, livestock and humans. While dynamic disease models can provide a better understanding of the drivers of spatial spread, the effects of landscape heterogeneity have only been modelled in a few well-studied wildlife systems such as rabies and bovine tuberculosis. Such spatial models tend to be either purely theoretical with intrinsic limiting assumptions or individual-based models that are often highly species- and system-specific, limiting the breadth of their utility. Our goal was to review studies that have utilized dynamic, spatial models to answer questions about pathogen transmission in wildlife and identify key gaps in the literature. We begin by providing an overview of the main types of dynamic, spatial models (e.g., metapopulation, network, lattice, cellular automata, individual-based and continuous-space) and their relation to each other. We investigate different types of ecological questions that these models have been used to explore: pathogen invasion dynamics and range expansion, spatial heterogeneity and pathogen persistence, the implications of management and intervention strategies and the role of evolution in host-pathogen dynamics. We reviewed 168 studies that consider pathogen transmission in free-ranging wildlife and classify them by the model type employed, the focal host-pathogen system, and their overall research themes and motivation. We observed a significant focus on mammalian hosts, a few well-studied or purely theoretical pathogen systems, and a lack of studies occurring at the wildlife-public health or wildlife-livestock interfaces. Finally, we discuss challenges and future directions in the context of unprecedented human-mediated environmental change. Spatial models may provide new insights into understanding, for example, how global warming and habitat disturbance contribute to disease maintenance and emergence. Moving forward, better integration of dynamic, spatial disease models with approaches from movement ecology, landscape genetics/genomics and ecoimmunology may provide new avenues for investigation and aid in the control of zoonotic and emerging infectious diseases. © 2017 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
High dimensional linear regression models under long memory dependence and measurement error
NASA Astrophysics Data System (ADS)
Kaul, Abhishek
This dissertation consists of three chapters. The first chapter introduces the models under consideration and motivates problems of interest. A brief literature review is also provided in this chapter. The second chapter investigates the properties of Lasso under long range dependent model errors. Lasso is a computationally efficient approach to model selection and estimation, and its properties are well studied when the regression errors are independent and identically distributed. We study the case, where the regression errors form a long memory moving average process. We establish a finite sample oracle inequality for the Lasso solution. We then show the asymptotic sign consistency in this setup. These results are established in the high dimensional setup (p> n) where p can be increasing exponentially with n. Finally, we show the consistency, n½ --d-consistency of Lasso, along with the oracle property of adaptive Lasso, in the case where p is fixed. Here d is the memory parameter of the stationary error sequence. The performance of Lasso is also analysed in the present setup with a simulation study. The third chapter proposes and investigates the properties of a penalized quantile based estimator for measurement error models. Standard formulations of prediction problems in high dimension regression models assume the availability of fully observed covariates and sub-Gaussian and homogeneous model errors. This makes these methods inapplicable to measurement errors models where covariates are unobservable and observations are possibly non sub-Gaussian and heterogeneous. We propose weighted penalized corrected quantile estimators for the regression parameter vector in linear regression models with additive measurement errors, where unobservable covariates are nonrandom. The proposed estimators forgo the need for the above mentioned model assumptions. We study these estimators in both the fixed dimension and high dimensional sparse setups, in the latter setup, the dimensionality can grow exponentially with the sample size. In the fixed dimensional setting we provide the oracle properties associated with the proposed estimators. In the high dimensional setting, we provide bounds for the statistical error associated with the estimation, that hold with asymptotic probability 1, thereby providing the ℓ1-consistency of the proposed estimator. We also establish the model selection consistency in terms of the correctly estimated zero components of the parameter vector. A simulation study that investigates the finite sample accuracy of the proposed estimator is also included in this chapter.
The Application of Humanized Mouse Models for the Study of Human Exclusive Viruses.
Vahedi, Fatemeh; Giles, Elizabeth C; Ashkar, Ali A
2017-01-01
The symbiosis between humans and viruses has allowed human tropic pathogens to evolve intricate means of modulating the human immune response to ensure its survival among the human population. In doing so, these viruses have developed profound mechanisms that mesh closely with our human biology. The establishment of this intimate relationship has created a species-specific barrier to infection, restricting the virus-associated pathologies to humans. This specificity diminishes the utility of traditional animal models. Humanized mice offer a model unique to all other means of study, providing an in vivo platform for the careful examination of human tropic viruses and their interaction with human cells and tissues. These types of animal models have provided a reliable medium for the study of human-virus interactions, a relationship that could otherwise not be investigated without questionable relevance to humans.
Zhu, Chuankun; Tong, Jingou; Yu, Xiaomu; Guo, Wenjie
2015-08-01
Comparative mapping provides an efficient method to connect genomes of non-model and model fishes. In this study, we used flanking sequences of the 659 microsatellites on a genetic map of bighead carp (Aristichthys nobilis) to comprehensively study syntenic relationships between bighead carp and nine model and non-model fishes. Of the five model and two food fishes with whole genome data, Cyprinus carpio showed the highest rate of positive BLAST hits (95.3 %) with bighead carp map, followed by Danio rerio (70.9 %), Oreochromis niloticus (21.7 %), Tetraodon nigroviridis (6.4 %), Gasterosteus aculeatus (5.2 %), Oryzias latipes (4.7 %) and Fugu rubripes (3.5 %). Chromosomal syntenic analyses showed that inversion was the basic chromosomal rearrangement during genomic evolution of cyprinids, and the extent of inversions and translocations was found to be positively correlated with evolutionary relationships among fishes studied. Among the five investigated cyprinids, linkage groups (LGs) of bighead carp, Hypophthalmichthys molitrix and Ctenopharyngodon idella exhibited a one-to-one relationship. Besides, LG 9 of bighead carp and homologous LGs of silver carp and grass carp all corresponded to the chromosomes 10 and 22 of zebrafish, suggesting that chromosomal fission may have occurred in the ancestor of zebrafish. On the other hand, LGs of bighead carp and common carp showed an approximate one-to-two relationship with extensive translocations, confirming the occurrence of a 4th whole genome duplication in common carp. This study provides insights into the understanding of genome evolution among cyprinids and would aid in transferring positional and functional information of genes from model fish like zebrafish to non-model fish like bighead carp.
The Social Cognitive Model of Job Satisfaction among Teachers: Testing and Validation
ERIC Educational Resources Information Center
Badri, Masood A.; Mohaidat, Jihad; Ferrandino, Vincent; El Mourad, Tarek
2013-01-01
The study empirically tests an integrative model of work satisfaction (0280, 0140, 0300 and 0255) in a sample of 5,022 teachers in Abu Dhabi in the United Arab Emirates. The study provided more support for the Lent and Brown (2006) model. Results revealed that this model was a strong fit for the data and accounted for 82% of the variance in work…
Exploring harmonization between integrated assessment and capacity expansion models
NASA Astrophysics Data System (ADS)
Iyer, G.; Brown, M.; Cohen, S.; Macknick, J.; Patel, P.; Wise, M. A.; Horing, J.
2017-12-01
Forward-looking quantitative models of the electric sector are extensively used to provide science-based strategic decision support to national, international and private-sector entities. Given that these models are used to inform a wide-range of stakeholders and influence policy decisions, it is vital to examine how the models' underlying data and structure influence their outcomes. We conduct several experiments harmonizing key model characteristics between ReEDS—an electric sector only model, and GCAM—an integrated assessment model—to understand how different degrees of harmonization impact model outcomes. ReEDS has high spatial, temporal, and process detail but lacks electricity demand elasticity and endogenous representations of other economic sectors, while GCAM has internally consistent representations of energy (including the electric sector), agriculture, and land-use systems but relatively aggregate representations of the factors influencing electric sector investments . We vary the degree of harmonization in electricity demand, fuel prices, technology costs and performance, and variable renewable energy resource characteristics. We then identify the prominent sources of divergence in key outputs (electricity capacity, generation, and price) across the models and study how the convergence between models can be improved with permutations of harmonized characteristics. The remaining inconsistencies help to establish how differences in the models' underlying data, construction, perspective, and methodology play into each model's outcome. There are three broad contributions of this work. First, our study provides a framework to link models with similar scope but different resolutions. Second, our work provides insight into how the harmonization of assumptions contributes to a unified and robust portrayal of the US electricity sector under various potential futures. Finally, our study enhances the understanding of the influence of structural uncertainty on consistency of outcomes.
The mathematics of cancer: integrating quantitative models.
Altrock, Philipp M; Liu, Lin L; Michor, Franziska
2015-12-01
Mathematical modelling approaches have become increasingly abundant in cancer research. The complexity of cancer is well suited to quantitative approaches as it provides challenges and opportunities for new developments. In turn, mathematical modelling contributes to cancer research by helping to elucidate mechanisms and by providing quantitative predictions that can be validated. The recent expansion of quantitative models addresses many questions regarding tumour initiation, progression and metastases as well as intra-tumour heterogeneity, treatment responses and resistance. Mathematical models can complement experimental and clinical studies, but also challenge current paradigms, redefine our understanding of mechanisms driving tumorigenesis and shape future research in cancer biology.
ODE Constrained Mixture Modelling: A Method for Unraveling Subpopulation Structures and Dynamics
Hasenauer, Jan; Hasenauer, Christine; Hucho, Tim; Theis, Fabian J.
2014-01-01
Functional cell-to-cell variability is ubiquitous in multicellular organisms as well as bacterial populations. Even genetically identical cells of the same cell type can respond differently to identical stimuli. Methods have been developed to analyse heterogeneous populations, e.g., mixture models and stochastic population models. The available methods are, however, either incapable of simultaneously analysing different experimental conditions or are computationally demanding and difficult to apply. Furthermore, they do not account for biological information available in the literature. To overcome disadvantages of existing methods, we combine mixture models and ordinary differential equation (ODE) models. The ODE models provide a mechanistic description of the underlying processes while mixture models provide an easy way to capture variability. In a simulation study, we show that the class of ODE constrained mixture models can unravel the subpopulation structure and determine the sources of cell-to-cell variability. In addition, the method provides reliable estimates for kinetic rates and subpopulation characteristics. We use ODE constrained mixture modelling to study NGF-induced Erk1/2 phosphorylation in primary sensory neurones, a process relevant in inflammatory and neuropathic pain. We propose a mechanistic pathway model for this process and reconstructed static and dynamical subpopulation characteristics across experimental conditions. We validate the model predictions experimentally, which verifies the capabilities of ODE constrained mixture models. These results illustrate that ODE constrained mixture models can reveal novel mechanistic insights and possess a high sensitivity. PMID:24992156
NASA Technical Reports Server (NTRS)
Richard, Jacques C.
1995-01-01
This paper presents a dynamic model of an internal combustion engine coupled to a variable pitch propeller. The low-order, nonlinear time-dependent model is useful for simulating the propulsion system of general aviation single-engine light aircraft. This model is suitable for investigating engine diagnostics and monitoring and for control design and development. Furthermore, the model may be extended to provide a tool for the study of engine emissions, fuel economy, component effects, alternative fuels, alternative engine cycles, flight simulators, sensors, and actuators. Results show that the model provides a reasonable representation of the propulsion system dynamics from zero to 10 Hertz.
Reciprocal relations between cognitive neuroscience and formal cognitive models: opposites attract?
Forstmann, Birte U; Wagenmakers, Eric-Jan; Eichele, Tom; Brown, Scott; Serences, John T
2011-06-01
Cognitive neuroscientists study how the brain implements particular cognitive processes such as perception, learning, and decision-making. Traditional approaches in which experiments are designed to target a specific cognitive process have been supplemented by two recent innovations. First, formal cognitive models can decompose observed behavioral data into multiple latent cognitive processes, allowing brain measurements to be associated with a particular cognitive process more precisely and more confidently. Second, cognitive neuroscience can provide additional data to inform the development of formal cognitive models, providing greater constraint than behavioral data alone. We argue that these fields are mutually dependent; not only can models guide neuroscientific endeavors, but understanding neural mechanisms can provide key insights into formal models of cognition. Copyright © 2011 Elsevier Ltd. All rights reserved.
Paleoflood Data, Extreme Floods and Frequency: Data and Models for Dam Safety Risk Scenarios
NASA Astrophysics Data System (ADS)
England, J. F.; Godaire, J.; Klinger, R.
2007-12-01
Extreme floods and probability estimates are crucial components in dam safety risk analysis and scenarios for water-resources decision making. The field-based collection of paleoflood data provides needed information on the magnitude and probability of extreme floods at locations of interest in a watershed or region. The stratigraphic record present along streams in the form of terrace and floodplain deposits represent direct indicators of the magnitude of large floods on a river, and may provide 10 to 100 times longer records than conventional stream gaging records of large floods. Paleoflood data is combined with gage and historical streamflow estimates to gain insights to flood frequency scaling, model extrapolations and uncertainty, and provide input scenarios to risk analysis event trees. We illustrate current data collection and flood frequency modeling approaches via case studies in the western United States, including the American River in California and the Arkansas River in Colorado. These studies demonstrate the integration of applied field geology, hydraulics, and surface-water hydrology. Results from these studies illustrate the gains in information content on extreme floods, provide data- based means to separate flood generation processes, guide flood frequency model extrapolations, and reduce uncertainties. These data and scenarios strongly influence water resources management decisions.
NASA Astrophysics Data System (ADS)
Giuffre, Christopher James
In the natural world there is no such thing as a perfectly sharp edge, either thru wear or machining imprecation at the macroscopic scale all edges have curvature. This curvature can have significant impact when comparing results with theory. Both numerical and analytic models for the contact of an object with a sharp edge predict infinite stresses which are not present in the physical world. It is for this reason that the influence of rounded edges must be studied to better understand how they affect model response. Using a commercial available finite element package this influence will be studied in two different problems; how this edge geometry effects the shape of a contusion (bruise) and the accuracy of analytic models for the shaft loaded blister test (SLBT). The contusion study presents work that can be used to enable medical examiners to better determine if the object in question was capable of causing the contusions present. Using a simple layered tissue model which represents a generic location on the human body, a sweep of objects with different edges properties is studied using a simple strain based injury metric. This analysis aims to examine the role that contact area and energy have on the formation, location, and shape of the resulting contusion. In studying the SLBT with finite element analysis and cohesive zone modeling, the assessment of various analytic models will provide insight into how to accurately measure the fracture energy for both the simulation and experiment. This provides insight into the interactions between a film, the substrate it is bonded to and the loading plug. In addition, parametric studies are used to examine potential experimental designs and enable future work in this field. The final product of this project provides tools and insight into future study of the effect rounded edges have on contact and this work enables for more focused studies within desired regimes of interest.
Importance of Personalized Health-Care Models: A Case Study in Activity Recognition.
Zdravevski, Eftim; Lameski, Petre; Trajkovik, Vladimir; Pombo, Nuno; Garcia, Nuno
2018-01-01
Novel information and communication technologies create possibilities to change the future of health care. Ambient Assisted Living (AAL) is seen as a promising supplement of the current care models. The main goal of AAL solutions is to apply ambient intelligence technologies to enable elderly people to continue to live in their preferred environments. Applying trained models from health data is challenging because the personalized environments could differ significantly than the ones which provided training data. This paper investigates the effects on activity recognition accuracy using single accelerometer of personalized models compared to models built on general population. In addition, we propose a collaborative filtering based approach which provides balance between fully personalized models and generic models. The results show that the accuracy could be improved to 95% with fully personalized models, and up to 91.6% with collaborative filtering based models, which is significantly better than common models that exhibit accuracy of 85.1%. The collaborative filtering approach seems to provide highly personalized models with substantial accuracy, while overcoming the cold start problem that is common for fully personalized models.
Primary Retinal Cultures as a Tool for Modeling Diabetic Retinopathy: An Overview
Varano, Monica; Mallozzi, Cinzia; Gaddini, Lucia; Formisano, Giuseppe; Pricci, Flavia
2015-01-01
Experimental models of diabetic retinopathy (DR) have had a crucial role in the comprehension of the pathophysiology of the disease and the identification of new therapeutic strategies. Most of these studies have been conducted in vivo, in animal models. However, a significant contribution has also been provided by studies on retinal cultures, especially regarding the effects of the potentially toxic components of the diabetic milieu on retinal cell homeostasis, the characterization of the mechanisms on the basis of retinal damage, and the identification of potentially protective molecules. In this review, we highlight the contribution given by primary retinal cultures to the study of DR, focusing on early neuroglial impairment. We also speculate on possible themes into which studies based on retinal cell cultures could provide deeper insight. PMID:25688355
Tissue and Animal Models of Sudden Cardiac Death
Sallam, Karim; Li, Yingxin; Sager, Philip T.; Houser, Steven R.; Wu, Joseph C.
2015-01-01
Sudden Cardiac Death (SCD) is a common cause of death in patients with structural heart disease, genetic mutations or acquired disorders affecting cardiac ion channels. A wide range of platforms exist to model and study disorders associated with SCD. Human clinical studies are cumbersome and are thwarted by the extent of investigation that can be performed on human subjects. Animal models are limited by their degree of homology to human cardiac electrophysiology including ion channel expression. Most commonly used cellular models are cellular transfection models, which are able to mimic the expression of a single ion channel offering incomplete insight into changes of the action potential profile. Induced pluripotent stem cell derived Cardiomyocytes (iPSC-CMs) resemble, but are not identical, to adult human cardiomyocytes, and provide a new platform for studying arrhythmic disorders leading to SCD. A variety of platforms exist to phenotype cellular models including conventional and automated patch clamp, multi-electrode array, and computational modeling. iPSC-CMs have been used to study Long QT syndrome, catecholaminergic polymorphic ventricular tachycardia, hypertrophic cardiomyopathy and other hereditary cardiac disorders. Although iPSC-CMs are distinct from adult cardiomyocytes, they provide a robust platform to advance the science and clinical care of SCD. PMID:26044252
Efficient parameter estimation in longitudinal data analysis using a hybrid GEE method.
Leung, Denis H Y; Wang, You-Gan; Zhu, Min
2009-07-01
The method of generalized estimating equations (GEEs) provides consistent estimates of the regression parameters in a marginal regression model for longitudinal data, even when the working correlation model is misspecified (Liang and Zeger, 1986). However, the efficiency of a GEE estimate can be seriously affected by the choice of the working correlation model. This study addresses this problem by proposing a hybrid method that combines multiple GEEs based on different working correlation models, using the empirical likelihood method (Qin and Lawless, 1994). Analyses show that this hybrid method is more efficient than a GEE using a misspecified working correlation model. Furthermore, if one of the working correlation structures correctly models the within-subject correlations, then this hybrid method provides the most efficient parameter estimates. In simulations, the hybrid method's finite-sample performance is superior to a GEE under any of the commonly used working correlation models and is almost fully efficient in all scenarios studied. The hybrid method is illustrated using data from a longitudinal study of the respiratory infection rates in 275 Indonesian children.
Stamm, John W.; Long, D. Leann; Kincade, Megan E.
2012-01-01
Over the past five to ten years, zero-inflated count regression models have been increasingly applied to the analysis of dental caries indices (e.g., DMFT, dfms, etc). The main reason for that is linked to the broad decline in children’s caries experience, such that dmf and DMF indices more frequently generate low or even zero counts. This article specifically reviews the application of zero-inflated Poisson and zero-inflated negative binomial regression models to dental caries, with emphasis on the description of the models and the interpretation of fitted model results given the study goals. The review finds that interpretations provided in the published caries research are often imprecise or inadvertently misleading, particularly with respect to failing to discriminate between inference for the class of susceptible persons defined by such models and inference for the sampled population in terms of overall exposure effects. Recommendations are provided to enhance the use as well as the interpretation and reporting of results of count regression models when applied to epidemiological studies of dental caries. PMID:22710271
Skeletal assessment with finite element analysis: relevance, pitfalls and interpretation.
Campbell, Graeme Michael; Glüer, Claus-C
2017-07-01
Finite element models simulate the mechanical response of bone under load, enabling noninvasive assessment of strength. Models generated from quantitative computed tomography (QCT) incorporate the geometry and spatial distribution of bone mineral density (BMD) to simulate physiological and traumatic loads as well as orthopaedic implant behaviour. The present review discusses the current strengths and weakness of finite element models for application to skeletal biomechanics. In cadaver studies, finite element models provide better estimations of strength compared to BMD. Data from clinical studies are encouraging; however, the superiority of finite element models over BMD measures for fracture prediction has not been shown conclusively, and may be sex and site dependent. Therapeutic effects on bone strength are larger than for BMD; however, model validation has only been performed on untreated bone. High-resolution modalities and novel image processing methods may enhance the structural representation and predictive ability. Despite extensive use of finite element models to study orthopaedic implant stability, accurate simulation of the bone-implant interface and fracture progression remains a significant challenge. Skeletal finite element models provide noninvasive assessments of strength and implant stability. Improved structural representation and implant surface interaction may enable more accurate models of fragility in the future.
Dynamic Analysis of the Melanoma Model: From Cancer Persistence to Its Eradication
NASA Astrophysics Data System (ADS)
Starkov, Konstantin E.; Jimenez Beristain, Laura
In this paper, we study the global dynamics of the five-dimensional melanoma model developed by Kronik et al. This model describes interactions of tumor cells with cytotoxic T cells and respective cytokines under cellular immunotherapy. We get the ultimate upper and lower bounds for variables of this model, provide formulas for equilibrium points and present local asymptotic stability/hyperbolic instability conditions. Next, we prove the existence of the attracting set. Based on these results we come to global asymptotic melanoma eradication conditions via global stability analysis. Finally, we provide bounds for a locus of the melanoma persistence equilibrium point, study the case of melanoma persistence and describe conditions under which we observe global attractivity to the unique melanoma persistence equilibrium point.
NASA Technical Reports Server (NTRS)
Foore, Larry; Ida, Nathan
2007-01-01
This study introduces the use of a modified Longley-Rice irregular terrain model and digital elevation data representative of an analogue lunar site for the prediction of RF path loss over the lunar surface. The results are validated by theoretical models and past Apollo studies. The model is used to approximate the path loss deviation from theoretical attenuation over a reflecting sphere. Analysis of the simulation results provides statistics on the fade depths for frequencies of interest, and correspondingly a method for determining the maximum range of communications for various coverage confidence intervals. Communication system engineers and mission planners are provided a link margin and path loss policy for communication frequencies of interest.
Evaluation systems for clinical governance development: a comparative study.
Hooshmand, Elaheh; Tourani, Sogand; Ravaghi, Hamid; Ebrahimipour, Hossein
2014-01-01
Lack of scientific and confirmed researches and expert knowledge about evaluation systems for clinical governance development in Iran have made studies on different evaluation systems for clinical governance development a necessity. These studies must provide applied strategies to design criteria of implementing clinical governance for hospital's accreditation. This is a descriptive and comparative study on development of clinical governance models all over the world. Data have been gathered by reviewing related articles. Models have been studied in comprehensive review method. The evaluated models of clinical governance development were Australian, NHS, SPOCK and OPTIGOV. The final aspects extracted from these models were Responsiveness, Policies and Strategies, Organizational Structure, Allocating Resources, Education and Occupational Development, Performance Evaluation, External Evaluation, Patient Oriented Approach, Risk Management, Personnel's Participation, Information Technology, Human Resources, Research and Development, Evidence Based Medicine, Clinical Audit, Health Technology Assessment and Quality. These results are applicable for completing the present criteria which evaluating clinical governance application and provide practical framework to evaluate country's hospital on the basis of clinical governance elements.
DOT National Transportation Integrated Search
1981-01-01
The System Availability Model (SAM) is a system-level model which provides measures of vehicle and passenger availability. The SAM operates in conjunction with the AGT discrete Event Simulation Model (DESM). The DESM output is the normal source of th...
Improved numerical solutions for chaotic-cancer-model
NASA Astrophysics Data System (ADS)
Yasir, Muhammad; Ahmad, Salman; Ahmed, Faizan; Aqeel, Muhammad; Akbar, Muhammad Zubair
2017-01-01
In biological sciences, dynamical system of cancer model is well known due to its sensitivity and chaoticity. Present work provides detailed computational study of cancer model by counterbalancing its sensitive dependency on initial conditions and parameter values. Cancer chaotic model is discretized into a system of nonlinear equations that are solved using the well-known Successive-Over-Relaxation (SOR) method with a proven convergence. This technique enables to solve large systems and provides more accurate approximation which is illustrated through tables, time history maps and phase portraits with detailed analysis.
Estimating liver cancer deaths in Thailand based on verbal autopsy study.
Waeto, Salwa; Pipatjaturon, Nattakit; Tongkumchum, Phattrawan; Choonpradub, Chamnein; Saelim, Rattikan; Makaje, Nifatamah
2014-01-01
Liver cancer mortality is high in Thailand but utility of related vital statistics is limited due to national vital registration (VR) data being under reported for specific causes of deaths. Accurate methodologies and reliable supplementary data are needed to provide worthy national vital statistics. This study aimed to model liver cancer deaths based on verbal autopsy (VA) study in 2005 to provide more accurate estimates of liver cancer deaths than those reported. The results were used to estimate number of liver cancer deaths during 2000-2009. A verbal autopsy (VA) was carried out in 2005 based on a sample of 9,644 deaths from nine provinces and it provided reliable information on causes of deaths by gender, age group, location of deaths in or outside hospital, and causes of deaths of the VR database. Logistic regression was used to model liver cancer deaths and other variables. The estimated probabilities from the model were applied to liver cancer deaths in the VR database, 2000-2009. Thus, the more accurately VA-estimated numbers of liver cancer deaths were obtained. The model fits the data quite well with sensitivity 0.64. The confidence intervals from statistical model provide the estimates and their precisions. The VA-estimated numbers of liver cancer deaths were higher than the corresponding VR database with inflation factors 1.56 for males and 1.64 for females. The statistical methods used in this study can be applied to available mortality data in developing countries where their national vital registration data are of low quality and supplementary reliable data are available.
Use of the Zebrafish Larvae as a Model to Study Cigarette Smoke Condensate Toxicity
Ellis, Lee D.; Soo, Evelyn C.; Achenbach, John C.; Morash, Michael G.; Soanes, Kelly H.
2014-01-01
The smoking of tobacco continues to be the leading cause of premature death worldwide and is linked to the development of a number of serious illnesses including heart disease, respiratory diseases, stroke and cancer. Currently, cell line based toxicity assays are typically used to gain information on the general toxicity of cigarettes and other tobacco products. However, they provide little information regarding the complex disease-related changes that have been linked to smoking. The ethical concerns and high cost associated with mammalian studies have limited their widespread use for in vivo toxicological studies of tobacco. The zebrafish has emerged as a low-cost, high-throughput, in vivo model in the study of toxicology. In this study, smoke condensates from 2 reference cigarettes and 6 Canadian brands of cigarettes with different design features were assessed for acute, developmental, cardiac, and behavioural toxicity (neurotoxicity) in zebrafish larvae. By making use of this multifaceted approach we have developed an in vivo model with which to compare the toxicity profiles of smoke condensates from cigarettes with different design features. This model system may provide insights into the development of smoking related disease and could provide a cost-effective, high-throughput platform for the future evaluation of tobacco products. PMID:25526262
Use of the zebrafish larvae as a model to study cigarette smoke condensate toxicity.
Ellis, Lee D; Soo, Evelyn C; Achenbach, John C; Morash, Michael G; Soanes, Kelly H
2014-01-01
The smoking of tobacco continues to be the leading cause of premature death worldwide and is linked to the development of a number of serious illnesses including heart disease, respiratory diseases, stroke and cancer. Currently, cell line based toxicity assays are typically used to gain information on the general toxicity of cigarettes and other tobacco products. However, they provide little information regarding the complex disease-related changes that have been linked to smoking. The ethical concerns and high cost associated with mammalian studies have limited their widespread use for in vivo toxicological studies of tobacco. The zebrafish has emerged as a low-cost, high-throughput, in vivo model in the study of toxicology. In this study, smoke condensates from 2 reference cigarettes and 6 Canadian brands of cigarettes with different design features were assessed for acute, developmental, cardiac, and behavioural toxicity (neurotoxicity) in zebrafish larvae. By making use of this multifaceted approach we have developed an in vivo model with which to compare the toxicity profiles of smoke condensates from cigarettes with different design features. This model system may provide insights into the development of smoking related disease and could provide a cost-effective, high-throughput platform for the future evaluation of tobacco products.
NASA Astrophysics Data System (ADS)
Bowles, C.
2013-12-01
Ecological engineering, or eco engineering, is an emerging field in the study of integrating ecology and engineering, concerned with the design, monitoring, and construction of ecosystems. According to Mitsch (1996) 'the design of sustainable ecosystems intends to integrate human society with its natural environment for the benefit of both'. Eco engineering emerged as a new idea in the early 1960s, and the concept has seen refinement since then. As a commonly practiced field of engineering it is relatively novel. Howard Odum (1963) and others first introduced it as 'utilizing natural energy sources as the predominant input to manipulate and control environmental systems'. Mtisch and Jorgensen (1989) were the first to define eco engineering, to provide eco engineering principles and conceptual eco engineering models. Later they refined the definition and increased the number of principles. They suggested that the goals of eco engineering are: a) the restoration of ecosystems that have been substantially disturbed by human activities such as environmental pollution or land disturbance, and b) the development of new sustainable ecosystems that have both human and ecological values. Here a more detailed overview of eco engineering is provided, particularly with regard to how engineers and ecologists are utilizing multi-dimensional computational models to link ecology and engineering, resulting in increasingly successful project implementation. Descriptions are provided pertaining to 1-, 2- and 3-dimensional hydrodynamic models and their use at small- and large-scale applications. A range of conceptual models that have been developed to aid the in the creation of linkages between ecology and engineering are discussed. Finally, several case studies that link ecology and engineering via computational modeling are provided. These studies include localized stream rehabilitation, spawning gravel enhancement on a large river system, and watershed-wide floodplain modeling of the Sacramento River Valley.
WATER DISTRIBUTION SYSTEM ANALYSIS: FIELD STUDIES, MODELING AND MANAGEMENT
The user‘s guide entitled “Water Distribution System Analysis: Field Studies, Modeling and Management” is a reference guide for water utilities and an extensive summarization of information designed to provide drinking water utility personnel (and related consultants and research...
The Usage of Homebound Instruction: Training, Preparation, and Perceptions of Service Providers
ERIC Educational Resources Information Center
Petit, Constance C.
2013-01-01
This study presents the findings related to the use of homebound instruction as a special education service model and to the practices and perceptions of service providers in the areas of personal effectiveness, model effectiveness, and administrator support. A self-administered survey was distributed to a national sample of 484 educators from two…
ERIC Educational Resources Information Center
Çetinkaya, Murat
2016-01-01
Positive results of science teaching studies supported with the means provided by technology require the enrichment of the content of blended learning environments to provide more benefits. Within this context, it is thought that preparing a web-assisted model-based teaching, which is frequently used in science teaching, based on the "Matter…
Seth, Ajay; Sherman, Michael; Reinbolt, Jeffrey A; Delp, Scott L
Movement science is driven by observation, but observation alone cannot elucidate principles of human and animal movement. Biomechanical modeling and computer simulation complement observations and inform experimental design. Biological models are complex and specialized software is required for building, validating, and studying them. Furthermore, common access is needed so that investigators can contribute models to a broader community and leverage past work. We are developing OpenSim, a freely available musculoskeletal modeling and simulation application and libraries specialized for these purposes, by providing: musculoskeletal modeling elements, such as biomechanical joints, muscle actuators, ligament forces, compliant contact, and controllers; and tools for fitting generic models to subject-specific data, performing inverse kinematics and forward dynamic simulations. OpenSim performs an array of physics-based analyses to delve into the behavior of musculoskeletal models by employing Simbody, an efficient and accurate multibody system dynamics code. Models are publicly available and are often reused for multiple investigations because they provide a rich set of behaviors that enables different lines of inquiry. This report will discuss one model developed to study walking and applied to gain deeper insights into muscle function in pathological gait and during running. We then illustrate how simulations can test fundamental hypotheses and focus the aims of in vivo experiments, with a postural stability platform and human model that provide a research environment for performing human posture experiments in silico . We encourage wide adoption of OpenSim for community exchange of biomechanical models and methods and welcome new contributors.
Computational social network modeling of terrorist recruitment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, Nina M.; Turnley, Jessica Glicken; Smrcka, Julianne D.
2004-10-01
The Seldon terrorist model represents a multi-disciplinary approach to developing organization software for the study of terrorist recruitment and group formation. The need to incorporate aspects of social science added a significant contribution to the vision of the resulting Seldon toolkit. The unique addition of and abstract agent category provided a means for capturing social concepts like cliques, mosque, etc. in a manner that represents their social conceptualization and not simply as a physical or economical institution. This paper provides an overview of the Seldon terrorist model developed to study the formation of cliques, which are used as the majormore » recruitment entity for terrorist organizations.« less
Valentiner, David P; Skowronski, John J; McGrath, Patrick B; Smith, Sarah A; Renner, Kerry A
2011-10-01
A self-verification model of social anxiety views negative social self-esteem as a core feature of social anxiety. This core feature is proposed to be maintained through self-verification processes, such as by leading individuals with negative social self-esteem to prefer negative social feedback. This model is tested in two studies. In Study 1, questionnaires were administered to a college sample (N = 317). In Study 2, questionnaires were administered to anxiety disordered patients (N = 62) before and after treatment. Study 1 developed measures of preference for negative social feedback and social self-esteem, and provided evidence of their incremental validity in a college sample. Study 2 found that these two variables are not strongly related to fears of evaluation, are relatively unaffected by a treatment that targets such fears, and predict residual social anxiety following treatment. Overall, these studies provide preliminary evidence for a self-verification model of social anxiety.
Mars, John C.; Hubbard, Bernard E.; Pieri, David; Linick, Justin
2015-01-01
This study was undertaken during 2012–2013 in cooperation with the National Aeronautics and Space Administration (NASA). Since completion of this study, a new lahar modeling program (LAHAR_pz) has been released, which may produce slightly different modeling results from the LAHARZ model used in this study. The maps and data from this study should not be used in place of existing volcano hazard maps published by local authorities. For volcanoes without hazard maps and (or) published lahar-related hazard studies, this work will provide a starting point from which more accurate hazard maps can be produced. This is the first dataset to provide digital maps of altered volcanoes and adjacent watersheds that can be used for assessing volcanic hazards, hydrothermal alteration, and other volcanic processes in future studies.
An Exploratory Study of the Elements to Develop a Coaching Model
ERIC Educational Resources Information Center
Brown, Gwendolyn
2010-01-01
This exploratory study examined the elements of a coaching model based on the best practices that first focus on providing managers with the ability to develop workers and increase productivity, before using existing models that only support the process of managing workers, when it becomes apparent that the worker is not meeting expected…
An Overview of Quantitative Risk Assessment of Space Shuttle Propulsion Elements
NASA Technical Reports Server (NTRS)
Safie, Fayssal M.
1998-01-01
Since the Space Shuttle Challenger accident in 1986, NASA has been working to incorporate quantitative risk assessment (QRA) in decisions concerning the Space Shuttle and other NASA projects. One current major NASA QRA study is the creation of a risk model for the overall Space Shuttle system. The model is intended to provide a tool to estimate Space Shuttle risk and to perform sensitivity analyses/trade studies, including the evaluation of upgrades. Marshall Space Flight Center (MSFC) is a part of the NASA team conducting the QRA study; MSFC responsibility involves modeling the propulsion elements of the Space Shuttle, namely: the External Tank (ET), the Solid Rocket Booster (SRB), the Reusable Solid Rocket Motor (RSRM), and the Space Shuttle Main Engine (SSME). This paper discusses the approach that MSFC has used to model its Space Shuttle elements, including insights obtained from this experience in modeling large scale, highly complex systems with a varying availability of success/failure data. Insights, which are applicable to any QRA study, pertain to organizing the modeling effort, obtaining customer buy-in, preparing documentation, and using varied modeling methods and data sources. Also provided is an overall evaluation of the study results, including the strengths and the limitations of the MSFC QRA approach and of qRA technology in general.
Flow Boiling Critical Heat Flux in Reduced Gravity
NASA Technical Reports Server (NTRS)
Mudawar, Issam; Zhang, Hui; Hasan, Mohammad M.
2004-01-01
This study provides systematic method for reducing power consumption in reduced gravity systems by adopting minimum velocity required to provide adequate CHF and preclude detrimental effects of reduced gravity . This study proves it is possible to use existing 1 ge flow boiling and CHF correlations and models to design reduced gravity systems provided minimum velocity criteria are met
Identifying Nonprovider Factors Affecting Pediatric Emergency Medicine Provider Efficiency.
Saleh, Fareed; Breslin, Kristen; Mullan, Paul C; Tillett, Zachary; Chamberlain, James M
2017-10-31
The aim of this study was to create a multivariable model of standardized relative value units per hour by adjusting for nonprovider factors that influence efficiency. We obtained productivity data based on billing records measured in emergency relative value units for (1) both evaluation and management of visits and (2) procedures for 16 pediatric emergency medicine providers with more than 750 hours worked per year. Eligible shifts were in an urban, academic pediatric emergency department (ED) with 2 sites: a tertiary care main campus and a satellite community site. We used multivariable linear regression to adjust for the impact of shift and pediatric ED characteristics on individual-provider efficiency and then removed variables from the model with minimal effect on productivity. There were 2998 eligible shifts for the 16 providers during a 3-year period. The resulting model included 4 variables when looking at both ED sites combined. These variables include the following: (1) number of procedures billed by provider, (2) season of the year, (3) shift start time, and (4) day of week. Results were improved when we separately modeled each ED location. A 3-variable model using procedures billed by provider, shift start time, and season explained 23% of the variation in provider efficiency at the academic ED site. A 3-variable model using procedures billed by provider, patient arrivals per hour, and shift start time explained 45% of the variation in provider efficiency at the satellite ED site. Several nonprovider factors affect provider efficiency. These factors should be considered when designing productivity-based incentives.
Janssens, K; Van Brecht, A; Zerihun Desta, T; Boonen, C; Berckmans, D
2004-06-01
The present paper outlines a modeling approach, which has been developed to model the internal dynamics of heat and moisture transfer in an imperfectly mixed ventilated airspace. The modeling approach, which combines the classical heat and moisture balance differential equations with the use of experimental time-series data, provides a physically meaningful description of the process and is very useful for model-based control purposes. The paper illustrates how the modeling approach has been applied to a ventilated laboratory test room with internal heat and moisture production. The results are evaluated and some valuable suggestions for future research are forwarded. The modeling approach outlined in this study provides an ideal form for advanced model-based control system design. The relatively low number of parameters makes it well suited for model-based control purposes, as a limited number of identification experiments is sufficient to determine these parameters. The model concept provides information about the air quality and airflow pattern in an arbitrary building. By using this model as a simulation tool, the indoor air quality and airflow pattern can be optimized.
Salipur, Zdravko; Bertocci, Gina
2010-01-01
It has been shown that ANSI WC19 transit wheelchairs that are crashworthy in frontal impact exhibit catastrophic failures in rear impact and may not be able to provide stable seating support and thus occupant protection for the wheelchair occupant. Thus far only limited sled test and computer simulation data have been available to study rear impact wheelchair safety. Computer modeling can be used as an economic and comprehensive tool to gain critical knowledge regarding wheelchair integrity and occupant safety. This study describes the development and validation of a computer model simulating an adult wheelchair-seated occupant subjected to a rear impact event. The model was developed in MADYMO and validated rigorously using the results of three similar sled tests conducted to specifications provided in the draft ISO/TC 173 standard. Outcomes from the model can provide critical wheelchair loading information to wheelchair and tiedown manufacturers, resulting in safer wheelchair designs for rear impact conditions. (c) 2009 IPEM. Published by Elsevier Ltd. All rights reserved.
Servant, Mathieu; White, Corey; Montagnini, Anna; Burle, Borís
2016-10-01
A current challenge for decision-making research is in extending models of simple decisions to more complex and ecological choice situations. Conflict tasks (e.g., Simon, Stroop, Eriksen flanker) have been the focus of much interest, because they provide a decision-making context representative of everyday life experiences. Modeling efforts have led to an elaborated drift diffusion model for conflict tasks (DMC), which implements a superimposition of automatic and controlled decision activations. The DMC has proven to capture the diversity of behavioral conflict effects across various task contexts. This study combined DMC predictions with EEG and EMG measurements to test a set of linking propositions that specify the relationship between theoretical decision-making mechanisms involved in the Simon task and brain activity. Our results are consistent with a representation of the superimposed decision variable in the primary motor cortices. The decision variable was also observed in the EMG activity of response agonist muscles. These findings provide new insight into the neurophysiology of human decision-making. In return, they provide support for the DMC model framework.
Harrill, Alison H; McAllister, Kimberly A
2017-08-15
This paper provides an introduction for environmental health scientists to emerging population-based rodent resources. Mouse reference populations provide an opportunity to model environmental exposures and gene-environment interactions in human disease and to inform human health risk assessment. This review will describe several mouse populations for toxicity assessment, including older models such as the Mouse Diversity Panel (MDP), and newer models that include the Collaborative Cross (CC) and Diversity Outbred (DO) models. This review will outline the features of the MDP, CC, and DO mouse models and will discuss published case studies investigating the use of these mouse population resources in each step of the risk assessment paradigm. These unique resources have the potential to be powerful tools for generating hypotheses related to gene-environment interplay in human disease, performing controlled exposure studies to understand the differential responses in humans for susceptibility or resistance to environmental exposures, and identifying gene variants that influence sensitivity to toxicity and disease states. These new resources offer substantial advances to classical toxicity testing paradigms by including genetically sensitive individuals that may inform toxicity risks for sensitive subpopulations. Both in vivo and complementary in vitro resources provide platforms with which to reduce uncertainty by providing population-level data around biological variability. https://doi.org/10.1289/EHP1274.
Harrill, Alison H.
2017-01-01
Background: This paper provides an introduction for environmental health scientists to emerging population-based rodent resources. Mouse reference populations provide an opportunity to model environmental exposures and gene–environment interactions in human disease and to inform human health risk assessment. Objectives: This review will describe several mouse populations for toxicity assessment, including older models such as the Mouse Diversity Panel (MDP), and newer models that include the Collaborative Cross (CC) and Diversity Outbred (DO) models. Methods: This review will outline the features of the MDP, CC, and DO mouse models and will discuss published case studies investigating the use of these mouse population resources in each step of the risk assessment paradigm. Discussion: These unique resources have the potential to be powerful tools for generating hypotheses related to gene–environment interplay in human disease, performing controlled exposure studies to understand the differential responses in humans for susceptibility or resistance to environmental exposures, and identifying gene variants that influence sensitivity to toxicity and disease states. Conclusions: These new resources offer substantial advances to classical toxicity testing paradigms by including genetically sensitive individuals that may inform toxicity risks for sensitive subpopulations. Both in vivo and complementary in vitro resources provide platforms with which to reduce uncertainty by providing population-level data around biological variability. https://doi.org/10.1289/EHP1274 PMID:28886592
Karst medium characterization and simulation of groundwater flow in Lijiang Riversed, China
NASA Astrophysics Data System (ADS)
Hu, B. X.
2015-12-01
It is important to study water and carbon cycle processes for water resource management, pollution prevention and global warming influence on southwest karst region of China. Lijiang river basin is selected as our study region. Interdisciplinary field and laboratory experiments with various technologies are conducted to characterize the karst aquifers in detail. Key processes in the karst water cycle and carbon cycle are determined. Based on the MODFLOW-CFP model, new watershed flow and carbon cycle models are developed coupled subsurface and surface water flow models, flow and chemical/biological models. Our study is focused on the karst springshed in Mao village. The mechanisms coupling carbon cycle and water cycle are explored. Parallel computing technology is used to construct the numerical model for the carbon cycle and water cycle in the small scale watershed, which are calibrated and verified by field observations. The developed coupling model for the small scale watershed is extended to a large scale watershed considering the scale effect of model parameters and proper model structure simplification. The large scale watershed model is used to study water cycle and carbon cycle in Lijiang rivershed, and to calculate the carbon flux and carbon sinks in the Lijiang river basin. The study results provide scientific methods for water resources management and environmental protection in southwest karst region corresponding to global climate change. This study could provide basic theory and simulation method for geological carbon sequestration in China karst region.
Simulation of groundwater flow and evaluation of carbon sink in Lijiang Rivershed, China
NASA Astrophysics Data System (ADS)
Hu, Bill X.; Cao, Jianhua; Tong, Juxiu; Gao, Bing
2016-04-01
It is important to study water and carbon cycle processes for water resource management, pollution prevention and global warming influence on southwest karst region of China. Lijiang river basin is selected as our study region. Interdisciplinary field and laboratory experiments with various technologies are conducted to characterize the karst aquifers in detail. Key processes in the karst water cycle and carbon cycle are determined. Based on the MODFLOW-CFP model, new watershed flow and carbon cycle models are developed coupled subsurface and surface water flow models, flow and chemical/biological models. Our study is focused on the karst springshed in Mao village. The mechanisms coupling carbon cycle and water cycle are explored. Parallel computing technology is used to construct the numerical model for the carbon cycle and water cycle in the small scale watershed, which are calibrated and verified by field observations. The developed coupling model for the small scale watershed is extended to a large scale watershed considering the scale effect of model parameters and proper model structure simplification. The large scale watershed model is used to study water cycle and carbon cycle in Lijiang rivershed, and to calculate the carbon flux and carbon sinks in the Lijiang river basin. The study results provide scientific methods for water resources management and environmental protection in southwest karst region corresponding to global climate change. This study could provide basic theory and simulation method for geological carbon sequestration in China karst region.
Haji Ali Afzali, Hossein; Gray, Jodi; Karnon, Jonathan
2013-04-01
Decision analytic models play an increasingly important role in the economic evaluation of health technologies. Given uncertainties around the assumptions used to develop such models, several guidelines have been published to identify and assess 'best practice' in the model development process, including general modelling approach (e.g., time horizon), model structure, input data and model performance evaluation. This paper focuses on model performance evaluation. In the absence of a sufficient level of detail around model performance evaluation, concerns regarding the accuracy of model outputs, and hence the credibility of such models, are frequently raised. Following presentation of its components, a review of the application and reporting of model performance evaluation is presented. Taking cardiovascular disease as an illustrative example, the review investigates the use of face validity, internal validity, external validity, and cross model validity. As a part of the performance evaluation process, model calibration is also discussed and its use in applied studies investigated. The review found that the application and reporting of model performance evaluation across 81 studies of treatment for cardiovascular disease was variable. Cross-model validation was reported in 55 % of the reviewed studies, though the level of detail provided varied considerably. We found that very few studies documented other types of validity, and only 6 % of the reviewed articles reported a calibration process. Considering the above findings, we propose a comprehensive model performance evaluation framework (checklist), informed by a review of best-practice guidelines. This framework provides a basis for more accurate and consistent documentation of model performance evaluation. This will improve the peer review process and the comparability of modelling studies. Recognising the fundamental role of decision analytic models in informing public funding decisions, the proposed framework should usefully inform guidelines for preparing submissions to reimbursement bodies.
Stem Cell Models: A Guide to Understand and Mitigate Aging?
Brunauer, Regina; Alavez, Silvestre; Kennedy, Brian K
2017-01-01
Aging is studied either on a systemic level using life span and health span of animal models, or on the cellular level using replicative life span of yeast or mammalian cells. While useful in identifying general and conserved pathways of aging, both approaches provide only limited information about cell-type specific causes and mechanisms of aging. Stem cells are the regenerative units of multicellular life, and stem cell aging might be a major cause for organismal aging. Using the examples of hematopoietic stem cell aging and human pluripotent stem cell models, we propose that stem cell models of aging are valuable for studying tissue-specific causes and mechanisms of aging and can provide unique insights into the mammalian aging process that may be inaccessible in simple model organisms. © 2016 S. Karger AG, Basel.
Real-time management of a multipurpose water reservoir with a heteroscedastic inflow model
NASA Astrophysics Data System (ADS)
Pianosi, F.; Soncini-Sessa, R.
2009-10-01
Stochastic dynamic programming has been extensively used as a method for designing optimal regulation policies for water reservoirs. However, the potential of this method is dramatically reduced by its computational burden, which often forces to introduce strong approximations in the model of the system, especially in the description of the reservoir inflow. In this paper, an approach to partially remedy this problem is proposed and applied to a real world case study. It foresees solving the management problem on-line, using a reduced model of the system and the inflow forecast provided by a dynamic model. By doing so, all the hydrometeorological information that is available in real-time is fully exploited. The model here proposed for the inflow forecasting is a nonlinear, heteroscedastic model that provides both the expected value and the standard deviation of the inflow through dynamic relations. The effectiveness of such model for the purpose of the reservoir regulation is evaluated through simulation and comparison with the results provided by conventional homoscedastic inflow models.
Holgado-Tello, Fco P; Chacón-Moscoso, Salvador; Sanduvete-Chaves, Susana; Pérez-Gil, José A
2016-01-01
The Campbellian tradition provides a conceptual framework to assess threats to validity. On the other hand, different models of causal analysis have been developed to control estimation biases in different research designs. However, the link between design features, measurement issues, and concrete impact estimation analyses is weak. In order to provide an empirical solution to this problem, we use Structural Equation Modeling (SEM) as a first approximation to operationalize the analytical implications of threats to validity in quasi-experimental designs. Based on the analogies established between the Classical Test Theory (CTT) and causal analysis, we describe an empirical study based on SEM in which range restriction and statistical power have been simulated in two different models: (1) A multistate model in the control condition (pre-test); and (2) A single-trait-multistate model in the control condition (post-test), adding a new mediator latent exogenous (independent) variable that represents a threat to validity. Results show, empirically, how the differences between both the models could be partially or totally attributed to these threats. Therefore, SEM provides a useful tool to analyze the influence of potential threats to validity.
Holgado-Tello, Fco. P.; Chacón-Moscoso, Salvador; Sanduvete-Chaves, Susana; Pérez-Gil, José A.
2016-01-01
The Campbellian tradition provides a conceptual framework to assess threats to validity. On the other hand, different models of causal analysis have been developed to control estimation biases in different research designs. However, the link between design features, measurement issues, and concrete impact estimation analyses is weak. In order to provide an empirical solution to this problem, we use Structural Equation Modeling (SEM) as a first approximation to operationalize the analytical implications of threats to validity in quasi-experimental designs. Based on the analogies established between the Classical Test Theory (CTT) and causal analysis, we describe an empirical study based on SEM in which range restriction and statistical power have been simulated in two different models: (1) A multistate model in the control condition (pre-test); and (2) A single-trait-multistate model in the control condition (post-test), adding a new mediator latent exogenous (independent) variable that represents a threat to validity. Results show, empirically, how the differences between both the models could be partially or totally attributed to these threats. Therefore, SEM provides a useful tool to analyze the influence of potential threats to validity. PMID:27378991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Young June; Ahn, Kwang Sung; Kim, Minjeong
Highlights: • ATM gene-targeted pigs were produced by somatic cell nuclear transfer. • A novel large animal model for ataxia telangiectasia was developed. • The new model may provide an alternative to the mouse model. - Abstract: Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None ofmore » the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies.« less
A Fuzzy Robust Optimization Model for Waste Allocation Planning Under Uncertainty
Xu, Ye; Huang, Guohe; Xu, Ling
2014-01-01
Abstract In this study, a fuzzy robust optimization (FRO) model was developed for supporting municipal solid waste management under uncertainty. The Development Zone of the City of Dalian, China, was used as a study case for demonstration. Comparing with traditional fuzzy models, the FRO model made improvement by considering the minimization of the weighted summation among the expected objective values, the differences between two extreme possible objective values, and the penalty of the constraints violation as the objective function, instead of relying purely on the minimization of expected value. Such an improvement leads to enhanced system reliability and the model becomes especially useful when multiple types of uncertainties and complexities are involved in the management system. Through a case study, the applicability of the FRO model was successfully demonstrated. Solutions under three future planning scenarios were provided by the FRO model, including (1) priority on economic development, (2) priority on environmental protection, and (3) balanced consideration for both. The balanced scenario solution was recommended for decision makers, since it respected both system economy and reliability. The model proved valuable in providing a comprehensive profile about the studied system and helping decision makers gain an in-depth insight into system complexity and select cost-effective management strategies. PMID:25317037
A Fuzzy Robust Optimization Model for Waste Allocation Planning Under Uncertainty.
Xu, Ye; Huang, Guohe; Xu, Ling
2014-10-01
In this study, a fuzzy robust optimization (FRO) model was developed for supporting municipal solid waste management under uncertainty. The Development Zone of the City of Dalian, China, was used as a study case for demonstration. Comparing with traditional fuzzy models, the FRO model made improvement by considering the minimization of the weighted summation among the expected objective values, the differences between two extreme possible objective values, and the penalty of the constraints violation as the objective function, instead of relying purely on the minimization of expected value. Such an improvement leads to enhanced system reliability and the model becomes especially useful when multiple types of uncertainties and complexities are involved in the management system. Through a case study, the applicability of the FRO model was successfully demonstrated. Solutions under three future planning scenarios were provided by the FRO model, including (1) priority on economic development, (2) priority on environmental protection, and (3) balanced consideration for both. The balanced scenario solution was recommended for decision makers, since it respected both system economy and reliability. The model proved valuable in providing a comprehensive profile about the studied system and helping decision makers gain an in-depth insight into system complexity and select cost-effective management strategies.
ACCELERATED FAILURE TIME MODELS PROVIDE A USEFUL STATISTICAL FRAMEWORK FOR AGING RESEARCH
Swindell, William R.
2009-01-01
Survivorship experiments play a central role in aging research and are performed to evaluate whether interventions alter the rate of aging and increase lifespan. The accelerated failure time (AFT) model is seldom used to analyze survivorship data, but offers a potentially useful statistical approach that is based upon the survival curve rather than the hazard function. In this study, AFT models were used to analyze data from 16 survivorship experiments that evaluated the effects of one or more genetic manipulations on mouse lifespan. Most genetic manipulations were found to have a multiplicative effect on survivorship that is independent of age and well-characterized by the AFT model “deceleration factor”. AFT model deceleration factors also provided a more intuitive measure of treatment effect than the hazard ratio, and were robust to departures from modeling assumptions. Age-dependent treatment effects, when present, were investigated using quantile regression modeling. These results provide an informative and quantitative summary of survivorship data associated with currently known long-lived mouse models. In addition, from the standpoint of aging research, these statistical approaches have appealing properties and provide valuable tools for the analysis of survivorship data. PMID:19007875
Accelerated failure time models provide a useful statistical framework for aging research.
Swindell, William R
2009-03-01
Survivorship experiments play a central role in aging research and are performed to evaluate whether interventions alter the rate of aging and increase lifespan. The accelerated failure time (AFT) model is seldom used to analyze survivorship data, but offers a potentially useful statistical approach that is based upon the survival curve rather than the hazard function. In this study, AFT models were used to analyze data from 16 survivorship experiments that evaluated the effects of one or more genetic manipulations on mouse lifespan. Most genetic manipulations were found to have a multiplicative effect on survivorship that is independent of age and well-characterized by the AFT model "deceleration factor". AFT model deceleration factors also provided a more intuitive measure of treatment effect than the hazard ratio, and were robust to departures from modeling assumptions. Age-dependent treatment effects, when present, were investigated using quantile regression modeling. These results provide an informative and quantitative summary of survivorship data associated with currently known long-lived mouse models. In addition, from the standpoint of aging research, these statistical approaches have appealing properties and provide valuable tools for the analysis of survivorship data.
Studying the Accuracy of Software Process Elicitation: The User Articulated Model
ERIC Educational Resources Information Center
Crabtree, Carlton A.
2010-01-01
Process models are often the basis for demonstrating improvement and compliance in software engineering organizations. A descriptive model is a type of process model describing the human activities in software development that actually occur. The purpose of a descriptive model is to provide a documented baseline for further process improvement…
USDA-ARS?s Scientific Manuscript database
The coupling of land surface models and hydrological models potentially improves the land surface representation, benefiting both the streamflow prediction capabilities as well as providing improved estimates of water and energy fluxes into the atmosphere. In this study, the simple biosphere model 2...
Kosteniuk, Julie; Morgan, Debra; Innes, Anthea; Keady, John; Stewart, Norma; D'Arcy, Carl; Kirk, Andrew
2014-01-01
Little is known about the views of rural family physicians (FPs) regarding collaborative care models for patients with dementia. The study aims were to explore FPs' views regarding this issue, their role in providing dementia care, and the implications of providing dementia care in a rural setting. This study employed an exploratory qualitative design with a sample of 15 FPs. All rural FPs indicated acceptance of collaborative models. The main disadvantages of practicing rural were accessing urban-based health care and related services and a shortage of local health care resources. The primary benefit of practicing rural was FPs' social proximity to patients, families, and some health care workers. Rural FPs provided care for patients with dementia that took into account the emotional and practical needs of caregivers and families. FPs described positive and negative implications of rural dementia care, and all were receptive to models of care that included other health care professionals.
THE EPA MULTIMEDIA INTEGRATED MODELING SYSTEM SOFTWARE SUITE
The U.S. EPA is developing a Multimedia Integrated Modeling System (MIMS) framework that will provide a software infrastructure or environment to support constructing, composing, executing, and evaluating complex modeling studies. The framework will include (1) common software ...
System analysis through bond graph modeling
NASA Astrophysics Data System (ADS)
McBride, Robert Thomas
2005-07-01
Modeling and simulation form an integral role in the engineering design process. An accurate mathematical description of a system provides the design engineer the flexibility to perform trade studies quickly and accurately to expedite the design process. Most often, the mathematical model of the system contains components of different engineering disciplines. A modeling methodology that can handle these types of systems might be used in an indirect fashion to extract added information from the model. This research examines the ability of a modeling methodology to provide added insight into system analysis and design. The modeling methodology used is bond graph modeling. An investigation into the creation of a bond graph model using the Lagrangian of the system is provided. Upon creation of the bond graph, system analysis is performed. To aid in the system analysis, an object-oriented approach to bond graph modeling is introduced. A framework is provided to simulate the bond graph directly. Through object-oriented simulation of a bond graph, the information contained within the bond graph can be exploited to create a measurement of system efficiency. A definition of system efficiency is given. This measurement of efficiency is used in the design of different controllers of varying architectures. Optimal control of a missile autopilot is discussed within the framework of the calculated system efficiency.
Sutherland, Chris; Royle, Andy
2016-01-01
This chapter provides a non-technical overview of ‘closed population capture–recapture’ models, a class of well-established models that are widely applied in ecology, such as removal sampling, covariate models, and distance sampling. These methods are regularly adopted for studies of reptiles, in order to estimate abundance from counts of marked individuals while accounting for imperfect detection. Thus, the chapter describes some classic closed population models for estimating abundance, with considerations for some recent extensions that provide a spatial context for the estimation of abundance, and therefore density. Finally, the chapter suggests some software for use in data analysis, such as the Windows-based program MARK, and provides an example of estimating abundance and density of reptiles using an artificial cover object survey of Slow Worms (Anguis fragilis).
Estimating abundance: Chapter 27
Royle, J. Andrew
2016-01-01
This chapter provides a non-technical overview of ‘closed population capture–recapture’ models, a class of well-established models that are widely applied in ecology, such as removal sampling, covariate models, and distance sampling. These methods are regularly adopted for studies of reptiles, in order to estimate abundance from counts of marked individuals while accounting for imperfect detection. Thus, the chapter describes some classic closed population models for estimating abundance, with considerations for some recent extensions that provide a spatial context for the estimation of abundance, and therefore density. Finally, the chapter suggests some software for use in data analysis, such as the Windows-based program MARK, and provides an example of estimating abundance and density of reptiles using an artificial cover object survey of Slow Worms (Anguis fragilis).
Luo, X.; Gee, S.; Sohal, V.; Small, D.
2015-01-01
Optogenetics is a new tool to study neuronal circuits that have been genetically modified to allow stimulation by flashes of light. We study recordings from single neurons within neural circuits under optogenetic stimulation. The data from these experiments present a statistical challenge of modeling a high frequency point process (neuronal spikes) while the input is another high frequency point process (light flashes). We further develop a generalized linear model approach to model the relationships between two point processes, employing additive point-process response functions. The resulting model, Point-process Responses for Optogenetics (PRO), provides explicit nonlinear transformations to link the input point process with the output one. Such response functions may provide important and interpretable scientific insights into the properties of the biophysical process that governs neural spiking in response to optogenetic stimulation. We validate and compare the PRO model using a real dataset and simulations, and our model yields a superior area-under-the- curve value as high as 93% for predicting every future spike. For our experiment on the recurrent layer V circuit in the prefrontal cortex, the PRO model provides evidence that neurons integrate their inputs in a sophisticated manner. Another use of the model is that it enables understanding how neural circuits are altered under various disease conditions and/or experimental conditions by comparing the PRO parameters. PMID:26411923
Rouleau, Pascal; Guertin, Pierre A
2013-01-01
Most animal models of contused, compressed or transected spinal cord injury (SCI) require a laminectomy to be performed. However, despite advantages and disadvantages associated with each of these models, the laminectomy itself is generally associated with significant problems including longer surgery and anaesthesia (related post-operative complications), neuropathic pain, spinal instabilities, deformities, lordosis, and biomechanical problems, etc. This review provides an overview of findings obtained mainly from our laboratory that are associated with the development and characterization of a novel murine model of spinal cord transection that does not require a laminectomy. A number of studies successfully conducted with this model provided strong evidence that it constitutes a simple, reliable and reproducible transection model of complete paraplegia which is particularly useful for studies on large cohorts of wild-type or mutant animals - e.g., drug screening studies in vivo or studies aimed at characterizing neuronal and non-neuronal adaptive changes post-trauma. It is highly suitable also for studies aimed at identifying and developing new pharmacological treatments against aging associated comorbid problems and specific SCI-related dysfunctions (e.g., stereotyped motor behaviours such as locomotion, sexual response, defecation and micturition) largely related with 'command centers' located in lumbosacral areas of the spinal cord.
Immortal time bias in observational studies of time-to-event outcomes.
Jones, Mark; Fowler, Robert
2016-12-01
The purpose of the study is to show, through simulation and example, the magnitude and direction of immortal time bias when an inappropriate analysis is used. We compare 4 methods of analysis for observational studies of time-to-event outcomes: logistic regression, standard Cox model, landmark analysis, and time-dependent Cox model using an example data set of patients critically ill with influenza and a simulation study. For the example data set, logistic regression, standard Cox model, and landmark analysis all showed some evidence that treatment with oseltamivir provides protection from mortality in patients critically ill with influenza. However, when the time-dependent nature of treatment exposure is taken account of using a time-dependent Cox model, there is no longer evidence of a protective effect of treatment. The simulation study showed that, under various scenarios, the time-dependent Cox model consistently provides unbiased treatment effect estimates, whereas standard Cox model leads to bias in favor of treatment. Logistic regression and landmark analysis may also lead to bias. To minimize the risk of immortal time bias in observational studies of survival outcomes, we strongly suggest time-dependent exposures be included as time-dependent variables in hazard-based analyses. Copyright © 2016 Elsevier Inc. All rights reserved.
Induced Pathogen Resistance in Bean Plants: A Model for Studying "Vaccination" in the Classroom.
ERIC Educational Resources Information Center
Goetsch, Emily; Mathias, Christine; Mosley, Sydnie; Shull, Meredith; Brock, David L.
2002-01-01
Shows how the tobacco mosaic virus can be used in conjunction with the common bean plant Phaseolus vulgaris to provide a discernable, experimental model that students can use to study induced resistance. (Contains 17 references.) (DDR)
The Convoy Model: Explaining Social Relations From a Multidisciplinary Perspective
Antonucci, Toni C.
2014-01-01
Purpose of the Study: Social relations are a key aspect of aging and the life course. In this paper, we trace the scientific origins of the study of social relations, focusing in particular on research grounded in the convoy model. Design and Methods: We first briefly review and critique influential historical studies to illustrate how the scientific study of social relations developed. Next, we highlight early and current findings grounded in the convoy model that have provided key insights into theory, method, policy, and practice in the study of aging. Results: Early social relations research, while influential, lacked the combined approach of theoretical grounding and methodological rigor. Nevertheless, previous research findings, especially from anthropology, suggested the importance of social relations in the achievement of positive outcomes. Considering both life span and life course perspectives and grounded in a multidisciplinary perspective, the convoy model was developed to unify and consolidate scattered evidence while at the same time directing future empirical and applied research. Early findings are summarized, current evidence presented, and future directions projected. Implications: The convoy model has provided a useful framework in the study of aging, especially for understanding predictors and consequences of social relations across the life course. PMID:24142914
Animal models on HTLV-1 and related viruses: what did we learn?
Hajj, Hiba El; Nasr, Rihab; Kfoury, Youmna; Dassouki, Zeina; Nasser, Roudaina; Kchour, Ghada; Hermine, Olivier; de Thé, Hugues; Bazarbachi, Ali
2012-01-01
Retroviruses are associated with a wide variety of diseases, including immunological, neurological disorders, and different forms of cancer. Among retroviruses, Oncovirinae regroup according to their genetic structure and sequence, several related viruses such as human T-cell lymphotropic viruses types 1 and 2 (HTLV-1 and HTLV-2), simian T cell lymphotropic viruses types 1 and 2 (STLV-1 and STLV-2), and bovine leukemia virus (BLV). As in many diseases, animal models provide a useful tool for the studies of pathogenesis, treatment, and prevention. In the current review, an overview on different animal models used in the study of these viruses will be provided. A specific attention will be given to the HTLV-1 virus which is the causative agent of adult T-cell leukemia/lymphoma (ATL) but also of a number of inflammatory diseases regrouping the HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP), infective dermatitis and some lung inflammatory diseases. Among these models, rabbits, monkeys but also rats provide an excellent in vivo tool for early HTLV-1 viral infection and transmission as well as the induced host immune response against the virus. But ideally, mice remain the most efficient method of studying human afflictions. Genetically altered mice including both transgenic and knockout mice, offer important models to test the role of specific viral and host genes in the development of HTLV-1-associated leukemia. The development of different strains of immunodeficient mice strains (SCID, NOD, and NOG SCID mice) provide a useful and rapid tool of humanized and xenografted mice models, to test new drugs and targeted therapy against HTLV-1-associated leukemia, to identify leukemia stem cells candidates but also to study the innate immunity mediated by the virus. All together, these animal models have revolutionized the biology of retroviruses, their manipulation of host genes and more importantly the potential ways to either prevent their infection or to treat their associated diseases. PMID:23049525
Deschutes estuary feasibility study: hydrodynamics and sediment transport modeling
George, Douglas A.; Gelfenbaum, Guy; Lesser, Giles; Stevens, Andrew W.
2006-01-01
- Provide the completed study to the CLAMP Steering Committee so that a recommendation about a long-term aquatic environment of the basin can be made. The hydrodynamic and sediment transport modeling task developed a number of different model simulations using a process-based morphological model, Delft3D, to help address these goals. Modeling results provide a qualitative assessment of estuarine behavior both prior to dam construction and after various post-dam removal scenarios. Quantitative data from the model is used in the companion biological assessment and engineering design components of the overall study. Overall, the modeling study found that after dam removal, tidal and estuarine processes are immediately restored, with marine water from Budd Inlet carried into North and Middle Basin on each rising tide and mud flats being exposed with each falling tide. Within the first year after dam removal, tidal processes, along with the occasional river floods, act to modify the estuary bed by redistributing sediment through erosion and deposition. The morphological response of the bed is rapid during the first couple of years, then slows as a dynamic equilibrium is reached within three to five years. By ten years after dam removal, the overall hydrodynamic and morphologic behavior of the estuary is similar to the pre-dam estuary, with the exception of South Basin, which has been permanently modified by human activities. In addition to a qualitative assessment of estuarine behavior, process-based modeling provides the ability address specific questions to help to inform decision-making. Considering that predicting future conditions of a complex estuarine environment is wrought with uncertainties, quantitative results in this report are often expressed in terms of ranges of possible outcomes.
Zhang, Jiafeng; Zhang, Pei; Fraser, Katharine H.; Griffith, Bartley P.; Wu, Zhongjun J.
2012-01-01
With the recent advances in computer technology, computational fluid dynamics (CFD) has become an important tool to design and improve blood contacting artificial organs, and to study the device-induced blood damage. Commercial CFD software packages are readily available, and multiple CFD models are provided by CFD software developers. However, the best approach of using CFD effectively to characterize fluid flow and to predict blood damage in these medical devices remains debatable. This study aimed to compare these CFD models and provide useful information on the accuracy of each model in modeling blood flow in circulatory assist devices. The laminar and five turbulence models (Spalart-Allmaras, k-ε (k-epsilon), k-ω (k-omega), SST (Menter’s Shear Stress Transport), and Reynolds Stress) were implemented to predict blood flow in a clinically used circulatory assist device, CentriMag® centrifugal blood pump (Thoratec, MA). In parallel, a transparent replica of the CentriMag® pump was constructed and selected views of the flow fields were measured with digital particle image velocimetry (DPIV). CFD results were compared with the DPIV experimental results. Compared with the experiment, all the selected CFD models predicted the flow pattern fairly well except the area of the outlet. However, quantitatively, the laminar model results were the most deviated from the experimental data. On the other hand, k-ε RNG models and Reynolds Stress model are the most accurate. In conclusion, for the circulatory assist devices, turbulence models provide more accurate results than laminar model. Among the selected turbulence models, k-ε and Reynolds Stress Method models are recommended. PMID:23441681
2011-01-01
Background Recent global mental health research suggests that mental health interventions can be adapted for use across cultures and in low resource environments. As evidence for the feasibility and effectiveness of certain specific interventions begins to accumulate, guidelines are needed for how to train, supervise, and ideally sustain mental health treatment delivery by local providers in low- and middle-income countries (LMIC). Model and case presentations This paper presents an apprenticeship model for lay counselor training and supervision in mental health treatments in LMIC, developed and used by the authors in a range of mental health intervention studies conducted over the last decade in various low-resource settings. We describe the elements of this approach, the underlying logic, and provide examples drawn from our experiences working in 12 countries, with over 100 lay counselors. Evaluation We review the challenges experienced with this model, and propose some possible solutions. Discussion We describe and discuss how this model is consistent with, and draws on, the broader dissemination and implementation (DI) literature. Conclusion In our experience, the apprenticeship model provides a useful framework for implementation of mental health interventions in LMIC. Our goal in this paper is to provide sufficient details about the apprenticeship model to guide other training efforts in mental health interventions. PMID:22099582
Modeling Human Cancers in Drosophila.
Sonoshita, M; Cagan, R L
2017-01-01
Cancer is a complex disease that affects multiple organs. Whole-body animal models provide important insights into oncology that can lead to clinical impact. Here, we review novel concepts that Drosophila studies have established for cancer biology, drug discovery, and patient therapy. Genetic studies using Drosophila have explored the roles of oncogenes and tumor-suppressor genes that when dysregulated promote cancer formation, making Drosophila a useful model to study multiple aspects of transformation. Not limited to mechanism analyses, Drosophila has recently been showing its value in facilitating drug development. Flies offer rapid, efficient platforms by which novel classes of drugs can be identified as candidate anticancer leads. Further, we discuss the use of Drosophila as a platform to develop therapies for individual patients by modeling the tumor's genetic complexity. Drosophila provides both a classical and a novel tool to identify new therapeutics, complementing other more traditional cancer tools. © 2017 Elsevier Inc. All rights reserved.
Measuring the impact of a team model of nursing practice using work sampling.
Walker, Kim; Donoghue, Judith; Mitten-Lewis, Suzanne
2007-02-01
The increasing number of inexperienced graduates, as well as other levels of nurse such as the enrolled nurse and assistant-in-nursing, requires health service and nursing managers in the acute care sector to rethink the long-preferred "patient allocation" model of care provision. As well, the escalating shortage of registered nurses and subsequent low morale among those remaining in the workforce require hospitals to re-examine skills mix and staffing ratios. This paper presents the results of two work-sampling studies conducted in a major metropolitan private hospital, the first of which was to provide a rationale for changing from the patient allocation model to a team model of care. The second study aimed to evaluate and provide data on the impact of the change. Staff were heavily involved in both studies as well as the change process. The findings highlight how effective the new model has been in redistributing certain aspects of care to make better use of each nurse level's knowledge and skills.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph, Earl C.; Conway, Steve; Dekate, Chirag
This study investigated how high-performance computing (HPC) investments can improve economic success and increase scientific innovation. This research focused on the common good and provided uses for DOE, other government agencies, industry, and academia. The study created two unique economic models and an innovation index: 1 A macroeconomic model that depicts the way HPC investments result in economic advancements in the form of ROI in revenue (GDP), profits (and cost savings), and jobs. 2 A macroeconomic model that depicts the way HPC investments result in basic and applied innovations, looking at variations by sector, industry, country, and organization size. Amore » new innovation index that provides a means of measuring and comparing innovation levels. Key findings of the pilot study include: IDC collected the required data across a broad set of organizations, with enough detail to create these models and the innovation index. The research also developed an expansive list of HPC success stories.« less
The Non-Human Primate Experimental Glaucoma Model
Burgoyne, Claude F.
2015-01-01
The purpose of this report is to summarize the current strengths and weaknesses of the non-human primate (NHP) experimental glaucoma (EG) model through sections devoted to its history, methods, important findings, alternative optic neuropathy models and future directions. NHP EG has become well established for studying human glaucoma in part because the NHP optic nerve head (ONH) shares a close anatomic association with the human ONH and because it provides the only means of systematically studying the very earliest visual system responses to chronic IOP elevation, i.e. the conversion from ocular hypertension to glaucomatous damage. However, NHPs are impractical for studies that require large animal numbers, demonstrate spontaneous glaucoma only rarely, do not currently provide a model of the neuropathy at normal levels of IOP, and cannot easily be genetically manipulated, except through tissue-specific, viral vectors. The goal of this summary is to direct NHP EG and non-NHP EG investigators to the previous, current and future accomplishment of clinically relevant knowledge in this model. PMID:26070984
An experimental and modeling study of isothermal charge/discharge behavior of commercial Ni-MH cells
NASA Astrophysics Data System (ADS)
Pan, Y. H.; Srinivasan, V.; Wang, C. Y.
In this study, a previously developed nickel-metal hydride (Ni-MH) battery model is applied in conjunction with experimental characterization. Important geometric parameters, including the active surface area and micro-diffusion length for both electrodes, are measured and incorporated in the model. The kinetic parameters of the oxygen evolution reaction are also characterized using constant potential experiments. Two separate equilibrium equations for the Ni electrode, one for charge and the other for discharge, are determined to provide a better description of the electrode hysteresis effect, and their use results in better agreement of simulation results with experimental data on both charge and discharge. The Ni electrode kinetic parameters are re-calibrated for the battery studied. The Ni-MH cell model coupled with the updated electrochemical properties is then used to simulate a wide range of experimental discharge and charge curves with satisfactory agreement. The experimentally validated model is used to predict and compare various charge algorithms so as to provide guidelines for application-specific optimization.
Choosing a Model of Maternity Care: Decision Support Needs of Australian Women.
Stevens, Gabrielle; Miller, Yvette D; Watson, Bernadette; Thompson, Rachel
2016-06-01
Access to information on the features and outcomes associated with the various models of maternity care available in Australia is vital for women's informed decision-making. This study sought to identify women's preferences for information access and decision-making involvement, as well as their priority information needs, for model of care decision-making. A convenience sample of adult women of childbearing age in Queensland, Australia were recruited to complete an online survey assessing their model of care decision support needs. Knowledge on models of care and socio-demographic characteristics were also assessed. Altogether, 641 women provided usable survey data. Of these women, 26.7 percent had heard of all available models of care before starting the survey. Most women wanted access to information on models of care (90.4%) and an active role in decision-making (99.0%). Nine priority information needs were identified: cost, access to choice of mode of birth and care provider, after hours provider contact, continuity of carer in labor/birth, mobility during labor, discussion of the pros/cons of medical procedures, rates of skin-to-skin contact after birth, and availability at a preferred birth location. This information encompassed the priority needs of women across age, birth history, and insurance status subgroups. This study demonstrates Australian women's unmet needs for information that supports them to effectively compare available options for model of maternity care. Findings provide clear direction on what information should be prioritized and ideal channels for information access to support quality decision-making in practice. © 2015 Wiley Periodicals, Inc.
Tres, A; van der Veer, G; Perez-Marin, M D; van Ruth, S M; Garrido-Varo, A
2012-08-22
Organic products tend to retail at a higher price than their conventional counterparts, which makes them susceptible to fraud. In this study we evaluate the application of near-infrared spectroscopy (NIRS) as a rapid, cost-effective method to verify the organic identity of feed for laying hens. For this purpose a total of 36 organic and 60 conventional feed samples from The Netherlands were measured by NIRS. A binary classification model (organic vs conventional feed) was developed using partial least squares discriminant analysis. Models were developed using five different data preprocessing techniques, which were externally validated by a stratified random resampling strategy using 1000 realizations. Spectral regions related to the protein and fat content were among the most important ones for the classification model. The models based on data preprocessed using direct orthogonal signal correction (DOSC), standard normal variate (SNV), and first and second derivatives provided the most successful results in terms of median sensitivity (0.91 in external validation) and median specificity (1.00 for external validation of SNV models and 0.94 for DOSC and first and second derivative models). A previously developed model, which was based on fatty acid fingerprinting of the same set of feed samples, provided a higher sensitivity (1.00). This shows that the NIRS-based approach provides a rapid and low-cost screening tool, whereas the fatty acid fingerprinting model can be used for further confirmation of the organic identity of feed samples for laying hens. These methods provide additional assurance to the administrative controls currently conducted in the organic feed sector.
Zhao, M.; Golaz, J.-C.; Held, I. M.; Guo, H.; Balaji, V.; Benson, R.; Chen, J.-H.; Chen, X.; Donner, L. J.; Dunne, J. P.; Dunne, Krista A.; Durachta, J.; Fan, S.-M.; Freidenreich, S. M.; Garner, S. T.; Ginoux, P.; Harris, L. M.; Horowitz, L. W.; Krasting, J. P.; Langenhorst, A. R.; Liang, Z.; Lin, P.; Lin, S.-J.; Malyshev, S. L.; Mason, E.; Milly, Paul C.D.; Ming, Y.; Naik, V.; Paulot, F.; Paynter, D.; Phillipps, P.; Radhakrishnan, A.; Ramaswamy, V.; Robinson, T.; Schwarzkopf, D.; Seman, C. J.; Shevliakova, E.; Shen, Z.; Shin, H.; Silvers, L.; Wilson, J. R.; Winton, M.; Wittenberg, A. T.; Wyman, B.; Xiang, B.
2018-01-01
In Part 2 of this two‐part paper, documentation is provided of key aspects of a version of the AM4.0/LM4.0 atmosphere/land model that will serve as a base for a new set of climate and Earth system models (CM4 and ESM4) under development at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL). The quality of the simulation in AMIP (Atmospheric Model Intercomparison Project) mode has been provided in Part 1. Part 2 provides documentation of key components and some sensitivities to choices of model formulation and values of parameters, highlighting the convection parameterization and orographic gravity wave drag. The approach taken to tune the model's clouds to observations is a particular focal point. Care is taken to describe the extent to which aerosol effective forcing and Cess sensitivity have been tuned through the model development process, both of which are relevant to the ability of the model to simulate the evolution of temperatures over the last century when coupled to an ocean model.
Zhao, Ming; Golaz, J. -C.; Held, I. M.; ...
2018-02-19
Here, in Part 2 of this two–part paper, documentation is provided of key aspects of a version of the AM4.0/LM4.0 atmosphere/land model that will serve as a base for a new set of climate and Earth system models (CM4 and ESM4) under development at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL). The quality of the simulation in AMIP (Atmospheric Model Intercomparison Project) mode has been provided in Part 1. Part 2 provides documentation of key components and some sensitivities to choices of model formulation and values of parameters, highlighting the convection parameterization and orographic gravity wave drag. The approach taken tomore » tune the model's clouds to observations is a particular focal point. Care is taken to describe the extent to which aerosol effective forcing and Cess sensitivity have been tuned through the model development process, both of which are relevant to the ability of the model to simulate the evolution of temperatures over the last century when coupled to an ocean model.« less
NASA Astrophysics Data System (ADS)
Zhao, M.; Golaz, J.-C.; Held, I. M.; Guo, H.; Balaji, V.; Benson, R.; Chen, J.-H.; Chen, X.; Donner, L. J.; Dunne, J. P.; Dunne, K.; Durachta, J.; Fan, S.-M.; Freidenreich, S. M.; Garner, S. T.; Ginoux, P.; Harris, L. M.; Horowitz, L. W.; Krasting, J. P.; Langenhorst, A. R.; Liang, Z.; Lin, P.; Lin, S.-J.; Malyshev, S. L.; Mason, E.; Milly, P. C. D.; Ming, Y.; Naik, V.; Paulot, F.; Paynter, D.; Phillipps, P.; Radhakrishnan, A.; Ramaswamy, V.; Robinson, T.; Schwarzkopf, D.; Seman, C. J.; Shevliakova, E.; Shen, Z.; Shin, H.; Silvers, L. G.; Wilson, J. R.; Winton, M.; Wittenberg, A. T.; Wyman, B.; Xiang, B.
2018-03-01
In Part 2 of this two-part paper, documentation is provided of key aspects of a version of the AM4.0/LM4.0 atmosphere/land model that will serve as a base for a new set of climate and Earth system models (CM4 and ESM4) under development at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL). The quality of the simulation in AMIP (Atmospheric Model Intercomparison Project) mode has been provided in Part 1. Part 2 provides documentation of key components and some sensitivities to choices of model formulation and values of parameters, highlighting the convection parameterization and orographic gravity wave drag. The approach taken to tune the model's clouds to observations is a particular focal point. Care is taken to describe the extent to which aerosol effective forcing and Cess sensitivity have been tuned through the model development process, both of which are relevant to the ability of the model to simulate the evolution of temperatures over the last century when coupled to an ocean model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Ming; Golaz, J. -C.; Held, I. M.
Here, in Part 2 of this two–part paper, documentation is provided of key aspects of a version of the AM4.0/LM4.0 atmosphere/land model that will serve as a base for a new set of climate and Earth system models (CM4 and ESM4) under development at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL). The quality of the simulation in AMIP (Atmospheric Model Intercomparison Project) mode has been provided in Part 1. Part 2 provides documentation of key components and some sensitivities to choices of model formulation and values of parameters, highlighting the convection parameterization and orographic gravity wave drag. The approach taken tomore » tune the model's clouds to observations is a particular focal point. Care is taken to describe the extent to which aerosol effective forcing and Cess sensitivity have been tuned through the model development process, both of which are relevant to the ability of the model to simulate the evolution of temperatures over the last century when coupled to an ocean model.« less
Technological innovations in the development of cardiovascular clinical information systems.
Hsieh, Nan-Chen; Chang, Chung-Yi; Lee, Kuo-Chen; Chen, Jeen-Chen; Chan, Chien-Hui
2012-04-01
Recent studies have shown that computerized clinical case management and decision support systems can be used to assist surgeons in the diagnosis of disease, optimize surgical operation, aid in drug therapy and decrease the cost of medical treatment. Therefore, medical informatics has become an extensive field of research and many of these approaches have demonstrated potential value for improving medical quality. The aim of this study was to develop a web-based cardiovascular clinical information system (CIS) based on innovative techniques, such as electronic medical records, electronic registries and automatic feature surveillance schemes, to provide effective tools and support for clinical care, decision-making, biomedical research and training activities. The CIS developed for this study contained monitoring, surveillance and model construction functions. The monitoring layer function provided a visual user interface. At the surveillance and model construction layers, we explored the application of model construction and intelligent prognosis to aid in making preoperative and postoperative predictions. With the use of the CIS, surgeons can provide reasonable conclusions and explanations in uncertain environments.
Julian, Timothy R; Pickering, Amy J
2015-01-01
Diarrheal diseases are a leading cause of under-five mortality and morbidity in sub-Saharan Africa. Quantitative exposure modeling provides opportunities to investigate the relative importance of fecal-oral transmission routes (e.g. hands, water, food) responsible for diarrheal disease. Modeling, however, requires accurate descriptions of individuals' interactions with the environment (i.e., activity data). Such activity data are largely lacking for people in low-income settings. In the present study, we collected activity data and microbiological sampling data to develop a quantitative microbial exposure model for two female caretakers in peri-urban Tanzania. Activity data were combined with microbiological data of contacted surfaces and fomites (e.g. broom handle, soil, clothing) to develop example exposure profiles describing second-by-second estimates of fecal indicator bacteria (E. coli and enterococci) concentrations on the caretaker's hands. The study demonstrates the application and utility of video activity data to quantify exposure factors for people in low-income countries and apply these factors to understand fecal contamination exposure pathways. This study provides both a methodological approach for the design and implementation of larger studies, and preliminary data suggesting contacts with dirt and sand may be important mechanisms of hand contamination. Increasing the scale of activity data collection and modeling to investigate individual-level exposure profiles within target populations for specific exposure scenarios would provide opportunities to identify the relative importance of fecal-oral disease transmission routes.
Examination of simplified travel demand model. [Internal volume forecasting model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, R.L. Jr.; McFarlane, W.J.
1978-01-01
A simplified travel demand model, the Internal Volume Forecasting (IVF) model, proposed by Low in 1972 is evaluated as an alternative to the conventional urban travel demand modeling process. The calibration of the IVF model for a county-level study area in Central Wisconsin results in what appears to be a reasonable model; however, analysis of the structure of the model reveals two primary mis-specifications. Correction of the mis-specifications leads to a simplified gravity model version of the conventional urban travel demand models. Application of the original IVF model to ''forecast'' 1960 traffic volumes based on the model calibrated for 1970more » produces accurate estimates. Shortcut and ad hoc models may appear to provide reasonable results in both the base and horizon years; however, as shown by the IVF mode, such models will not always provide a reliable basis for transportation planning and investment decisions.« less
Application of Rapid Prototyping Methods to High-Speed Wind Tunnel Testing
NASA Technical Reports Server (NTRS)
Springer, A. M.
1998-01-01
This study was undertaken in MSFC's 14-Inch Trisonic Wind Tunnel to determine if rapid prototyping methods could be used in the design and manufacturing of high speed wind tunnel models in direct testing applications, and if these methods would reduce model design/fabrication time and cost while providing models of high enough fidelity to provide adequate aerodynamic data, and of sufficient strength to survive the test environment. Rapid prototyping methods utilized to construct wind tunnel models in a wing-body-tail configuration were: fused deposition method using both ABS plastic and PEEK as building materials, stereolithography using the photopolymer SL-5170, selective laser sintering using glass reinforced nylon, and laminated object manufacturing using plastic reinforced with glass and 'paper'. This study revealed good agreement between the SLA model, the metal model with an FDM-ABS nose, an SLA nose, and the metal model for most operating conditions, while the FDM-ABS data diverged at higher loading conditions. Data from the initial SLS model showed poor agreement due to problems in post-processing, resulting in a different configuration. A second SLS model was tested and showed relatively good agreement. It can be concluded that rapid prototyping models show promise in preliminary aerodynamic development studies at subsonic, transonic, and supersonic speeds.
A Comprehensive Study of Molecular Evolution at the Self-Incompatibility Locus of Rosaceae.
Ashkani, Jahanshah; Rees, D J G
2016-03-01
The family Rosaceae includes a range of important fruit trees, most of which have the S-RNase-based self-incompatibility (SI). Several models have been developed to explain how pollen (SLF) and pistil (S-RNase) components of the S-locus interact. It was discovered in 2010 that additional SLF proteins are involved in pollen specificity, and a Collaborative Non-Self Recognition model has been proposed for SI in Solanaceae; however, the validity of such model remains to be elucidated for other species. The results of this study support the divergent evolution of the S-locus genes from two Rosaceae subfamilies, Prunoideae/Amygdaloideae and Maloideae, The difference identified in the selective pressures between the two lineages provides evidence for positive selection at specific sites in both the S-RNase and the SLF proteins. The evolutionary findings of this study support the role of multiple SLF proteins leading to a Collaborative Non-Self Recognition model for SI in the Maloideae. Furthermore, the identification of the sites responsible for SI specificity determination and the mapping of these sites onto the modelled tertiary structure of ancestor proteins provide useful information for rational functional redesign and protein engineering for the future engineering of new functional alleles providing increased diversity in the SI system in the Maloideae.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, Joshua D.; Straub, Timothy M.
For over thirty years immortalized lung cells have enabled researchers to elucidate lung-pathogen molecular interactions. However, over the last five years numerous commercial companies are now providing affordable, ready-to-use primary lung cells for use in research laboratories. Despite advances in primary cell culture, studies using immortalized lung cells still dominate the recent scientific literature. In this paper, we highlight recent influenza and anthrax studies using in vitro primary lung tissue models and how these models are providing better predictive outcomes for when extrapolated to in vivo observations.
Powell, Joshua D.; Straub, Timothy M.
2018-01-17
For over thirty years immortalized lung cells have enabled researchers to elucidate lung-pathogen molecular interactions. However, over the last five years numerous commercial companies are now providing affordable, ready-to-use primary lung cells for use in research laboratories. Despite advances in primary cell culture, studies using immortalized lung cells still dominate the recent scientific literature. In this paper, we highlight recent influenza and anthrax studies using in vitro primary lung tissue models and how these models are providing better predictive outcomes for when extrapolated to in vivo observations.
Time Is Money: Opportunity Cost and Physicians' Provision of Charity Care 1996–2005
Wright, David Bradley
2010-01-01
Objective To test whether physicians' provision of charity care depends on their hourly wage. Data Sources Secondary data from four rounds of the Community Tracking Study (CTS) Physician Survey (1996–2005). Data are nationally representative of nonfederal office- and hospital-based physicians spending at least 20 hours per week on patient care. Study Design A two-part model with site-level fixed effects, time trend variables, and site–year interactions is used to model the relationship between physicians' hourly wage and both their decision to provide any charity care and the amount of charity care provided. Salaried and nonsalaried physicians are modeled separately. Data Collection/Extraction Methods Data from each round of the CTS were merged into a single cross-sectional file with 38,087 physician-year observations. Principal Findings The association between physician's hourly wage and the likelihood of providing charity care is positive for salaried physicians and negative for nonsalaried physicians. Among physicians providing any charity care, hourly wage is positively associated with the amount of charity care provided regardless of salaried status. Practice characteristics are also significant. Conclusions The financial considerations of salaried physicians differ significantly from those of nonsalaried physicians in the decision to provide charity care, but factor similarly into the amount of charity care provided. PMID:20662946
The Rangeland Hydrology and Erosion Model: A dynamic approach for predicting soil loss on rangelands
USDA-ARS?s Scientific Manuscript database
In this study we present the improved Rangeland Hydrology and Erosion Model (RHEM V2.3), a process-based erosion prediction tool specific for rangeland application. The article provides the mathematical formulation of the model and parameter estimation equations. Model performance is assessed agains...
Mathematical Modeling: A Bridge to STEM Education
ERIC Educational Resources Information Center
Kertil, Mahmut; Gurel, Cem
2016-01-01
The purpose of this study is making a theoretical discussion on the relationship between mathematical modeling and integrated STEM education. First of all, STEM education perspective and the construct of mathematical modeling in mathematics education is introduced. A review of literature is provided on how mathematical modeling literature may…
An Instructional Approach to Modeling in Microevolution.
ERIC Educational Resources Information Center
Thompson, Steven R.
1988-01-01
Describes an approach to teaching population genetics and evolution and some of the ways models can be used to enhance understanding of the processes being studied. Discusses the instructional plan, and the use of models including utility programs and analysis with models. Provided are a basic program and sample program outputs. (CW)
SIMULATION OF SULFATE AEROSOL IN EAST ASIA USING MODELS-3/CMAQ WITH RAMS METEOROLOGICAL DATA
The present study attempts to address a few challenges in utilizing the flexibility of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system. We apply the CMAQ system with the meteorological data provided by the Regional Atmospheric Modeling System (RAMS) and to a...
Interspecies correlation estimation (ICE) models were developed for 30 nonpolar aromatic compounds to allow comparison of prediction accuracy between 2 data compilation approaches. Type 1 models used data combined across studies, and type 2 models used data combined only within s...
Qualitatively modelling and analysing genetic regulatory networks: a Petri net approach.
Steggles, L Jason; Banks, Richard; Shaw, Oliver; Wipat, Anil
2007-02-01
New developments in post-genomic technology now provide researchers with the data necessary to study regulatory processes in a holistic fashion at multiple levels of biological organization. One of the major challenges for the biologist is to integrate and interpret these vast data resources to gain a greater understanding of the structure and function of the molecular processes that mediate adaptive and cell cycle driven changes in gene expression. In order to achieve this biologists require new tools and techniques to allow pathway related data to be modelled and analysed as network structures, providing valuable insights which can then be validated and investigated in the laboratory. We propose a new technique for constructing and analysing qualitative models of genetic regulatory networks based on the Petri net formalism. We take as our starting point the Boolean network approach of treating genes as binary switches and develop a new Petri net model which uses logic minimization to automate the construction of compact qualitative models. Our approach addresses the shortcomings of Boolean networks by providing access to the wide range of existing Petri net analysis techniques and by using non-determinism to cope with incomplete and inconsistent data. The ideas we present are illustrated by a case study in which the genetic regulatory network controlling sporulation in the bacterium Bacillus subtilis is modelled and analysed. The Petri net model construction tool and the data files for the B. subtilis sporulation case study are available at http://bioinf.ncl.ac.uk/gnapn.
NASA Astrophysics Data System (ADS)
Liu, P. W.; Famiglietti, J. S.; Levoe, S.; Reager, J. T., II; David, C. H.; Kumar, S.; Li, B.; Peters-Lidard, C. D.
2017-12-01
Soil moisture is one of the critical factors in terrestrial hydrology. Accurate soil moisture information improves estimation of terrestrial water storage and fluxes, that is essential for water resource management including sustainable groundwater pumping and agricultural irrigation practices. It is particularly important during dry periods when water stress is high. The Western States Water Mission (WSWM), a multiyear mission project of NASA's Jet Propulsion Laboratory, is operated to understand and estimate quantities of the water availability in the western United States by integrating observations and measurements from in-situ and remote sensing sensors, and hydrological models. WSWM data products have been used to assess and explore the adverse impacts of the California drought (2011-2016) and provide decision-makers information for water use planning. Although the observations are often more accurate, simulations using land surface models can provide water availability estimates at desired spatio-temporal scales. The Land Information System (LIS), developed by NASA's Goddard Space Flight Center, integrates developed land surface models and data processing and management tools, that enables to utilize the measurements and observations from various platforms as forcings in the high performance computing environment to forecast the hydrologic conditions. The goal of this study is to implement the LIS in the western United States for estimates of soil moisture. We will implement the NOAH-MP model at the 12km North America Land Data Assimilation System grid and compare to other land surface models included in the LIS. Findings will provide insight into the differences between model estimates and model physics. Outputs from a multi-model ensemble from LIS can also be used to enhance estimated reliability and provide quantification of uncertainty. We will compare the LIS-based soil moisture estimates to the SMAP enhanced 9 km soil moisture product to understand the mechanistic differences between the model and observation. These outcomes will contribute to the WSWM for providing robust products.
DOT National Transportation Integrated Search
2014-03-01
This study resulted in the development of the GASCAP model (the Greenhouse Gas Assessment : Spreadsheet for Transportation Capital Projects). This spreadsheet model provides a user-friendly interface for determining the greenhouse gas (GHG) emissions...
DOT National Transportation Integrated Search
1981-07-01
The Detailed Station Model (DSM) is a discrete event model representing the interrelated queueing processes associated with vehicle and passenger activities in an AGT station. The DSM will provide operational and performance measures of alternative s...
DOT National Transportation Integrated Search
1981-07-01
The Detailed Station Model (DSM) is a discrete event model representing the interrelated queueing processes associated with vehicle and passenger activities in an AGT station. The DSM will provide operational and performance measures of alternative s...
"We Don't Need Another Hero:" Heroes and Role Models in Germany and Israel
ERIC Educational Resources Information Center
Yair, Gad; Girsh, Yaron; Alayan, Samira; Hues, Henning; Or, Elad
2014-01-01
This study provides insights about attitudes toward heroes and role models in Germany and Israel. We expected German and Israeli school textbooks and teachers to provide varying renditions for the traumatic effects of World War II and the Holocaust, and for students to express different attitudes about the role of heroes in their lives. In…
Complex Dynamics in Nonequilibrium Economics and Chemistry
NASA Astrophysics Data System (ADS)
Wen, Kehong
Complex dynamics provides a new approach in dealing with economic complexity. We study interactively the empirical and theoretical aspects of business cycles. The way of exploring complexity is similar to that in the study of an oscillatory chemical system (BZ system)--a model for modeling complex behavior. We contribute in simulating qualitatively the complex periodic patterns observed from the controlled BZ experiments to narrow the gap between modeling and experiment. The gap between theory and reality is much wider in economics, which involves studies of human expectations and decisions, the essential difference from natural sciences. Our empirical and theoretical studies make substantial progress in closing this gap. With the help from the new development in nonequilibrium physics, i.e., the complex spectral theory, we advance our technique in detecting characteristic time scales from empirical economic data. We obtain correlation resonances, which give oscillating modes with decays for correlation decomposition, from different time series including S&P 500, M2, crude oil spot prices, and GNP. The time scales found are strikingly compatible with business experiences and other studies in business cycles. They reveal the non-Markovian nature of coherent markets. The resonances enhance the evidence of economic chaos obtained by using other tests. The evolving multi-humped distributions produced by the moving-time -window technique reveal the nonequilibrium nature of economic behavior. They reproduce the American economic history of booms and busts. The studies seem to provide a way out of the debate on chaos versus noise and unify the cyclical and stochastic approaches in explaining business fluctuations. Based on these findings and new expectation formulation, we construct a business cycle model which gives qualitatively compatible patterns to those found empirically. The soft-bouncing oscillator model provides a better alternative than the harmonic oscillator or the random walk model as the building block in business cycle theory. The mathematical structure of the model (delay differential equation) is studied analytically and numerically. The research pave the way toward sensible economic forecasting.
Cooperative Attention: Using Qualitative Case Studies to Study Peer Institutions
ERIC Educational Resources Information Center
Lisi, Bethany
2017-01-01
This chapter provides a conceptual model that institutional research professionals can use to develop contextual intelligence of issues of interest in higher education with the use of case studies from peer institutions. The model draws from the metaphor of the "divided brain" and how the two hemispheres must work together with both…
Blockmodels for connectome analysis
NASA Astrophysics Data System (ADS)
Moyer, Daniel; Gutman, Boris; Prasad, Gautam; Faskowitz, Joshua; Ver Steeg, Greg; Thompson, Paul
2015-12-01
In the present work we study a family of generative network model and its applications for modeling the human connectome. We introduce a minor but novel variant of the Mixed Membership Stochastic Blockmodel and apply it and two other related model to two human connectome datasets (ADNI and a Bipolar Disorder dataset) with both control and diseased subjects. We further provide a simple generative classifier that, alongside more discriminating methods, provides evidence that blockmodels accurately summarize tractography count networks with respect to a disease classification task.
1982-02-01
methodological and design inadequacies. The purposes of this study were to design and test a methodological model and to provide an objective assessment of ICR...provide an alternative to the purchase of special training equipments. Models of the Learner in Computer-assisted Instruction. TR 76-23. December 1975...3. D. Fletcher. lAD-A020 725) The adaptability of computer-assisted instruction to individuals should be en- hanced by the use of explicit models of
Update on the NASA GEOS-5 Aerosol Forecasting and Data Assimilation System
NASA Technical Reports Server (NTRS)
Colarco, Peter; da Silva, Arlindo; Aquila, Valentina; Bian, Huisheng; Buchard, Virginie; Castellanos, Patricia; Darmenov, Anton; Follette-Cook, Melanie; Govindaraju, Ravi; Keller, Christoph;
2017-01-01
GEOS-5 is the Goddard Earth Observing System model. GEOS-5 is maintained by the NASA Global Modeling and Assimilation Office. Core development is within GMAO,Goddard Atmospheric Chemistry and Dynamics Laboratory, and with external partners. Primary GEOS-5 functions: Earth system model for studying climate variability and change, provide research quality reanalyses for supporting NASA instrument teams and scientific community, provide near-real time forecasts of meteorology,aerosols, and other atmospheric constituents to support NASA airborne campaigns.
Updates on CCMC Activities and GSFC Space Weather Services
NASA Technical Reports Server (NTRS)
Zhengm Y.; Hesse, M.; Kuznetsova, M.; Pulkkinen, A.; Rastaetter, L.; Maddox, M.; Taktakishvili, A.; Berrios, D.; Chulaki, A.; Lee, H.;
2011-01-01
In this presentation, we provide updates on CCMC modeling activities, CCMC metrics and validation studies, and other CCMC efforts. In addition, an overview of GSFC Space Weather Services (a sibling organization to the Community Coordinated Modeling Center) and its products/capabilities will be given. We show how some of the research grade models, if running in an operational mode, can help address NASA's space weather needs by providing forecasting/now casting capabilities of significant space weather events throughout the solar system.
Budgen, Jacqueline; Cantiello, John
This article provides a detailed examination of the pros and cons associated with patient-centered medical homes (PCMHs). Opinions and findings from those who have studied PCMHs and those who have been directly involved with this type of health care model are outlined. Key lessons from providers are detailed, and critical success factors are highlighted. This synthesized analysis serves to lend evidence to health care managers and providers who are considering implementation of the PCMH model.
A Systematic Review of Cost-Effectiveness Models in Type 1 Diabetes Mellitus.
Henriksson, Martin; Jindal, Ramandeep; Sternhufvud, Catarina; Bergenheim, Klas; Sörstadius, Elisabeth; Willis, Michael
2016-06-01
Critiques of cost-effectiveness modelling in type 1 diabetes mellitus (T1DM) are scarce and are often undertaken in combination with type 2 diabetes mellitus (T2DM) models. However, T1DM is a separate disease, and it is therefore important to appraise modelling methods in T1DM. This review identified published economic models in T1DM and provided an overview of the characteristics and capabilities of available models, thus enabling a discussion of best-practice modelling approaches in T1DM. A systematic review of Embase(®), MEDLINE(®), MEDLINE(®) In-Process, and NHS EED was conducted to identify available models in T1DM. Key conferences and health technology assessment (HTA) websites were also reviewed. The characteristics of each model (e.g. model structure, simulation method, handling of uncertainty, incorporation of treatment effect, data for risk equations, and validation procedures, based on information in the primary publication) were extracted, with a focus on model capabilities. We identified 13 unique models. Overall, the included studies varied greatly in scope as well as in the quality and quantity of information reported, but six of the models (Archimedes, CDM [Core Diabetes Model], CRC DES [Cardiff Research Consortium Discrete Event Simulation], DCCT [Diabetes Control and Complications Trial], Sheffield, and EAGLE [Economic Assessment of Glycaemic control and Long-term Effects of diabetes]) were the most rigorous and thoroughly reported. Most models were Markov based, and cohort and microsimulation methods were equally common. All of the more comprehensive models employed microsimulation methods. Model structure varied widely, with the more holistic models providing a comprehensive approach to microvascular and macrovascular events, as well as including adverse events. The majority of studies reported a lifetime horizon, used a payer perspective, and had the capability for sensitivity analysis. Several models have been developed that provide useful insight into T1DM modelling. Based on a review of the models identified in this study, we identified a set of 'best in class' methods for the different technical aspects of T1DM modelling.
ERIC Educational Resources Information Center
Aaberg, Wayne; Thompson, Carla J.; West, Haywood V.; Swiergosz, Matthew J.
2009-01-01
This article provides a description and the results of a study that utilized the human performance (HP) model and methods to explore and analyze a training organization. The systemic and systematic practices of the HP model are applicable to military training organizations as well as civilian organizations. Implications of the study for future…
Multi-scale simulations of apatite-collagen composites: from molecules to materials
NASA Astrophysics Data System (ADS)
Zahn, Dirk
2017-03-01
We review scale-bridging simulation studies for the exploration of atomicto-meso scale processes that account for the unique structure and mechanic properties of apatite-protein composites. As the atomic structure and composition of such complex biocomposites only partially is known, the first part (i) of our modelling studies is dedicated to realistic crystal nucleation scenarios of inorganic-organic composites. Starting from the association of single ions, recent insights range from the mechanisms of motif formation, ripening reactions and the self-organization of nanocrystals, including their interplay with growth-controlling molecular moieties. On this basis, (ii) reliable building rules for unprejudiced scale-up models can be derived to model bulk materials. This is exemplified for (enamel-like) apatite-protein composites, encompassing up to 106 atom models to provide a realistic account of the 10 nm length scale, whilst model coarsening is used to reach μm length scales. On this basis, a series of deformation and fracture simulation studies were performed and helped to rationalize biocomposite hardness, plasticity, toughness, self-healing and fracture mechanisms. Complementing experimental work, these modelling studies provide particularly detailed insights into the relation of hierarchical composite structure and favorable mechanical properties.
NASA Technical Reports Server (NTRS)
Brown, Richard B.; Navard, Andrew R.; Holland, Donald E.; McKellip, Rodney D.; Brannon, David P.
2010-01-01
Barringer Meteorite Crater or Meteor Crater, AZ, has been a site of high interest for lunar and Mars analog crater and terrain studies since the early days of the Apollo-Saturn program. It continues to be a site of exceptional interest to lunar, Mars, and other planetary crater and impact analog studies because of its relatively young age (est. 50 thousand years) and well-preserved structure. High resolution (2 meter to 1 decimeter) digital terrain models of Meteor Crater in whole or in part were created at NASA Stennis Space Center to support several lunar surface analog modeling activities using photogrammetric and ground based laser scanning techniques. The dataset created by this activity provides new and highly accurate 3D models of the inside slope of the crater as well as the downslope rock distribution of the western ejecta field. The data are presented to the science community for possible use in furthering studies of Meteor Crater and impact craters in general as well as its current near term lunar exploration use in providing a beneficial test model for lunar surface analog modeling and surface operation studies.
STRESS RESPONSE STUDIES USING ANIMAL MODELS
This presentation will provide the evidence that ozone exposure in animal models induce neuroendocrine stress response and this stress response modulates lung injury and inflammation through adrenergic and glucocorticoid receptors.
Development and application of theoretical models for Rotating Detonation Engine flowfields
NASA Astrophysics Data System (ADS)
Fievisohn, Robert
As turbine and rocket engine technology matures, performance increases between successive generations of engine development are becoming smaller. One means of accomplishing significant gains in thermodynamic performance and power density is to use detonation-based heat release instead of deflagration. This work is focused on developing and applying theoretical models to aid in the design and understanding of Rotating Detonation Engines (RDEs). In an RDE, a detonation wave travels circumferentially along the bottom of an annular chamber where continuous injection of fresh reactants sustains the detonation wave. RDEs are currently being designed, tested, and studied as a viable option for developing a new generation of turbine and rocket engines that make use of detonation heat release. One of the main challenges in the development of RDEs is to understand the complex flowfield inside the annular chamber. While simplified models are desirable for obtaining timely performance estimates for design analysis, one-dimensional models may not be adequate as they do not provide flow structure information. In this work, a two-dimensional physics-based model is developed, which is capable of modeling the curved oblique shock wave, exit swirl, counter-flow, detonation inclination, and varying pressure along the inflow boundary. This is accomplished by using a combination of shock-expansion theory, Chapman-Jouguet detonation theory, the Method of Characteristics (MOC), and other compressible flow equations to create a shock-fitted numerical algorithm and generate an RDE flowfield. This novel approach provides a numerically efficient model that can provide performance estimates as well as details of the large-scale flow structures in seconds on a personal computer. Results from this model are validated against high-fidelity numerical simulations that may require a high-performance computing framework to provide similar performance estimates. This work provides a designer a new tool to conduct large-scale parametric studies to optimize a design space before conducting computationally-intensive, high-fidelity simulations that may be used to examine additional effects. The work presented in this thesis not only bridges the gap between simple one-dimensional models and high-fidelity full numerical simulations, but it also provides an effective tool for understanding and exploring RDE flow processes.
Asaad, Mazen; Lee, Jin Hyung
2018-05-18
Alzheimer's disease is a leading healthcare challenge facing our society today. Functional magnetic resonance imaging (fMRI) of the brain has played an important role in our efforts to understand how Alzheimer's disease alters brain function. Using fMRI in animal models of Alzheimer's disease has the potential to provide us with a more comprehensive understanding of the observations made in human clinical fMRI studies. However, using fMRI in animal models of Alzheimer's disease presents some unique challenges. Here, we highlight some of these challenges and discuss potential solutions for researchers interested in performing fMRI in animal models. First, we briefly summarize our current understanding of Alzheimer's disease from a mechanistic standpoint. We then overview the wide array of animal models available for studying this disease and how to choose the most appropriate model to study, depending on which aspects of the condition researchers seek to investigate. Finally, we discuss the contributions of fMRI to our understanding of Alzheimer's disease and the issues to consider when designing fMRI studies for animal models, such as differences in brain activity based on anesthetic choice and ways to interrogate more specific questions in rodents beyond those that can be addressed in humans. The goal of this article is to provide information on the utility of fMRI, and approaches to consider when using fMRI, for studies of Alzheimer's disease in animal models. © 2018. Published by The Company of Biologists Ltd.
A guide to using functional magnetic resonance imaging to study Alzheimer's disease in animal models
Asaad, Mazen
2018-01-01
ABSTRACT Alzheimer's disease is a leading healthcare challenge facing our society today. Functional magnetic resonance imaging (fMRI) of the brain has played an important role in our efforts to understand how Alzheimer's disease alters brain function. Using fMRI in animal models of Alzheimer's disease has the potential to provide us with a more comprehensive understanding of the observations made in human clinical fMRI studies. However, using fMRI in animal models of Alzheimer's disease presents some unique challenges. Here, we highlight some of these challenges and discuss potential solutions for researchers interested in performing fMRI in animal models. First, we briefly summarize our current understanding of Alzheimer's disease from a mechanistic standpoint. We then overview the wide array of animal models available for studying this disease and how to choose the most appropriate model to study, depending on which aspects of the condition researchers seek to investigate. Finally, we discuss the contributions of fMRI to our understanding of Alzheimer's disease and the issues to consider when designing fMRI studies for animal models, such as differences in brain activity based on anesthetic choice and ways to interrogate more specific questions in rodents beyond those that can be addressed in humans. The goal of this article is to provide information on the utility of fMRI, and approaches to consider when using fMRI, for studies of Alzheimer's disease in animal models. PMID:29784664
2013-09-01
model and the BRDF in the SRP model are not consistent with each other, then the resulting estimated albedo-areas and mass are inaccurate and biased...This work studies the use of physically consistent BRDF -SRP models for mass estimation. Simulation studies are used to provide an indication of the...benefits of using these new models . An unscented Kalman filter approach that includes BRDF and mass parameters in the state vector is used. The
Modeling asset price processes based on mean-field framework
NASA Astrophysics Data System (ADS)
Ieda, Masashi; Shiino, Masatoshi
2011-12-01
We propose a model of the dynamics of financial assets based on the mean-field framework. This framework allows us to construct a model which includes the interaction among the financial assets reflecting the market structure. Our study is on the cutting edge in the sense of a microscopic approach to modeling the financial market. To demonstrate the effectiveness of our model concretely, we provide a case study, which is the pricing problem of the European call option with short-time memory noise.
Wenchi Jin; Hong S. He; Frank R. Thompson
2016-01-01
Process-based forest ecosystem models vary from simple physiological, complex physiological, to hybrid empirical-physiological models. Previous studies indicate that complex models provide the best prediction at plot scale with a temporal extent of less than 10 years, however, it is largely untested as to whether complex models outperform the other two types of models...
Correcting Model Fit Criteria for Small Sample Latent Growth Models with Incomplete Data
ERIC Educational Resources Information Center
McNeish, Daniel; Harring, Jeffrey R.
2017-01-01
To date, small sample problems with latent growth models (LGMs) have not received the amount of attention in the literature as related mixed-effect models (MEMs). Although many models can be interchangeably framed as a LGM or a MEM, LGMs uniquely provide criteria to assess global data-model fit. However, previous studies have demonstrated poor…
Multi-objective optimization for generating a weighted multi-model ensemble
NASA Astrophysics Data System (ADS)
Lee, H.
2017-12-01
Many studies have demonstrated that multi-model ensembles generally show better skill than each ensemble member. When generating weighted multi-model ensembles, the first step is measuring the performance of individual model simulations using observations. There is a consensus on the assignment of weighting factors based on a single evaluation metric. When considering only one evaluation metric, the weighting factor for each model is proportional to a performance score or inversely proportional to an error for the model. While this conventional approach can provide appropriate combinations of multiple models, the approach confronts a big challenge when there are multiple metrics under consideration. When considering multiple evaluation metrics, it is obvious that a simple averaging of multiple performance scores or model ranks does not address the trade-off problem between conflicting metrics. So far, there seems to be no best method to generate weighted multi-model ensembles based on multiple performance metrics. The current study applies the multi-objective optimization, a mathematical process that provides a set of optimal trade-off solutions based on a range of evaluation metrics, to combining multiple performance metrics for the global climate models and their dynamically downscaled regional climate simulations over North America and generating a weighted multi-model ensemble. NASA satellite data and the Regional Climate Model Evaluation System (RCMES) software toolkit are used for assessment of the climate simulations. Overall, the performance of each model differs markedly with strong seasonal dependence. Because of the considerable variability across the climate simulations, it is important to evaluate models systematically and make future projections by assigning optimized weighting factors to the models with relatively good performance. Our results indicate that the optimally weighted multi-model ensemble always shows better performance than an arithmetic ensemble mean and may provide reliable future projections.
Gordon, Robert; Magee, Christopher; Frazer, Anna; Evans, Craig; McCosker, Kathryn
2010-06-01
This study compared the outcomes of an interim mechanical prosthesis program for lower limb amputees operated under a public and private model of service. Over a two-year period, 60 transtibial amputees were fitted with an interim prosthesis as part of their early amputee care. Thirty-four patients received early amputee care under a public model of service, whereby a prosthetist was employed to provide the interim mechanical prosthesis service. The remaining 26 patients received early amputee care under a private model of service, where an external company was contracted to provide the interim mechanical prosthesis service. The results suggested comparable clinical outcomes between the two patient groups. However, the public model appeared to be less expensive with the average labour cost per patient being 29.0% lower compared with the private model. The results suggest that a public model of service may provide a more comprehensive and less expensive interim prosthesis program for lower limb amputees.
Genetically Engineered Humanized Mouse Models for Preclinical Antibody Studies
Proetzel, Gabriele; Wiles, Michael V.; Roopenian, Derry C.
2015-01-01
The use of genetic engineering has vastly improved our capabilities to create animal models relevant in preclinical research. With the recent advances in gene-editing technologies, it is now possible to very rapidly create highly tunable mouse models as needs arise. Here, we provide an overview of genetic engineering methods, as well as the development of humanized neonatal Fc receptor (FcRn) models and their use for monoclonal antibody in vivo studies. PMID:24150980
Population models for passerine birds: structure, parameterization, and analysis
Noon, B.R.; Sauer, J.R.; McCullough, D.R.; Barrett, R.H.
1992-01-01
Population models have great potential as management tools, as they use infonnation about the life history of a species to summarize estimates of fecundity and survival into a description of population change. Models provide a framework for projecting future populations, determining the effects of management decisions on future population dynamics, evaluating extinction probabilities, and addressing a variety of questions of ecological and evolutionary interest. Even when insufficient information exists to allow complete identification of the model, the modelling procedure is useful because it forces the investigator to consider the life history of the species when determining what parameters should be estimated from field studies and provides a context for evaluating the relative importance of demographic parameters. Models have been little used in the study of the population dynamics of passerine birds because of: (1) widespread misunderstandings of the model structures and parameterizations, (2) a lack of knowledge of life histories of many species, (3) difficulties in obtaining statistically reliable estimates of demographic parameters for most passerine species, and (4) confusion about functional relationships among demographic parameters. As a result, studies of passerine demography are often designed inappropriately and fail to provide essential data. We review appropriate models for passerine bird populations and illustrate their possible uses in evaluating the effects of management or other environmental influences on population dynamics. We identify environmental influences on population dynamics. We identify parameters that must be estimated from field data, briefly review existing statistical methods for obtaining valid estimates, and evaluate the present status of knowledge of these parameters.
Tremblay, Dominique; Prady, Catherine; Bilodeau, Karine; Touati, Nassera; Chouinard, Maud-Christine; Fortin, Martin; Gaboury, Isabelle; Rodrigue, Jean; L'Italien, Marie-France
2017-12-16
Cancer is now viewed as a chronic disease, presenting challenges to follow-up and survivorship care. Models to shift from haphazard, suboptimal and fragmented episodes of care to an integrated cancer care continuum must be developed, tested and implemented. Numerous studies demonstrate improved care when follow-up is assured by both oncology and primary care providers rather than either group alone. However, there is little data on the roles assumed by specialized oncology teams and primary care providers and the extent to which they work together. This study aims to develop, pilot test and measure outcomes of an innovative risk-based coordinated cancer care model for patients transitioning from specialized oncology teams to primary care providers. This multiple case study using a sequential mixed-methods design rests on a theory-driven realist evaluation approach to understand how transitions might be improved. The cases are two health regions in Quebec, Canada, defined by their geographic territory. Each case includes a Cancer Centre and three Family Medicine Groups selected based on differences in their determining characteristics. Qualitative data will be collected from document review (scientific journal, grey literature, local documentation), semi-directed interviews with key informants, and observation of care coordination practices. Qualitative data will be supplemented with a survey to measure the outcome of the coordinated model among providers (scope of practice, collaboration, relational coordination, leadership) and patients diagnosed with breast, colorectal or prostate cancer (access to care, patient-centredness, communication, self-care, survivorship profile, quality of life). Results from descriptive and regression analyses will be triangulated with thematic analysis of qualitative data. Qualitative, quantitative, and mixed methods data will be interpreted within and across cases in order to identify context-mechanism associations that explain outcomes. The study will provide empirical data on a risk-based coordinated model of cancer care to guide actions at different levels in the health system. This in-depth multiple case study using a realist approach considers both the need for context-specific intervention research and the imperative to address research gaps regarding coordinated models of cancer care.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarthy, J.M.; Arnett, R.C.; Neupauer, R.M.
This report documents a study conducted to develop a regional groundwater flow model for the Eastern Snake River Plain Aquifer in the area of the Idaho National Engineering Laboratory. The model was developed to support Waste Area Group 10, Operable Unit 10-04 groundwater flow and transport studies. The products of this study are this report and a set of computational tools designed to numerically model the regional groundwater flow in the Eastern Snake River Plain aquifer. The objective of developing the current model was to create a tool for defining the regional groundwater flow at the INEL. The model wasmore » developed to (a) support future transport modeling for WAG 10-04 by providing the regional groundwater flow information needed for the WAG 10-04 risk assessment, (b) define the regional groundwater flow setting for modeling groundwater contaminant transport at the scale of the individual WAGs, (c) provide a tool for improving the understanding of the groundwater flow system below the INEL, and (d) consolidate the existing regional groundwater modeling information into one usable model. The current model is appropriate for defining the regional flow setting for flow submodels as well as hypothesis testing to better understand the regional groundwater flow in the area of the INEL. The scale of the submodels must be chosen based on accuracy required for the study.« less
Analytical Round Robin for Elastic-Plastic Analysis of Surface Cracked Plates: Phase I Results
NASA Technical Reports Server (NTRS)
Wells, D. N.; Allen, P. A.
2012-01-01
An analytical round robin for the elastic-plastic analysis of surface cracks in flat plates was conducted with 15 participants. Experimental results from a surface crack tension test in 2219-T8 aluminum plate provided the basis for the inter-laboratory study (ILS). The study proceeded in a blind fashion given that the analysis methodology was not specified to the participants, and key experimental results were withheld. This approach allowed the ILS to serve as a current measure of the state of the art for elastic-plastic fracture mechanics analysis. The analytical results and the associated methodologies were collected for comparison, and sources of variability were studied and isolated. The results of the study revealed that the J-integral analysis methodology using the domain integral method is robust, providing reliable J-integral values without being overly sensitive to modeling details. General modeling choices such as analysis code, model size (mesh density), crack tip meshing, or boundary conditions, were not found to be sources of significant variability. For analyses controlled only by far-field boundary conditions, the greatest source of variability in the J-integral assessment is introduced through the constitutive model. This variability can be substantially reduced by using crack mouth opening displacements to anchor the assessment. Conclusions provide recommendations for analysis standardization.
Exploring the changing learning environment of the gross anatomy lab.
Hopkins, Robin; Regehr, Glenn; Wilson, Timothy D
2011-07-01
The objective of this study was to assess the impact of virtual models and prosected specimens in the context of the gross anatomy lab. In 2009, student volunteers from an undergraduate anatomy class were randomly assigned to study groups in one of three learning conditions. All groups studied the muscles of mastication and completed identical learning objectives during a 45-minute lab. All groups were provided with two reference atlases. Groups were distinguished by the type of primary tools they were provided: gross prosections, three-dimensional stereoscopic computer model, or both resources. The facilitator kept observational field notes. A prepost multiple-choice knowledge test was administered to evaluate students' learning. No significant effect of the laboratory models was demonstrated between groups on the prepost assessment of knowledge. Recurring observations included students' tendency to revert to individual memorization prior to the posttest, rotation of models to match views in the provided atlas, and dissemination of groups into smaller working units. The use of virtual lab resources seemed to influence the social context and learning environment of the anatomy lab. As computer-based learning methods are implemented and studied, they must be evaluated beyond their impact on knowledge gain to consider the effect technology has on students' social development.
The Past, Present, and Future of Computational Models of Cognitive Development
ERIC Educational Resources Information Center
Schlesinger, Matthew; McMurray, Bob
2012-01-01
Does modeling matter? We address this question by providing a broad survey of the computational models of cognitive development that have been proposed and studied over the last three decades. We begin by noting the advantages and limitations of computational models. We then describe four key dimensions across which models of development can be…
ERIC Educational Resources Information Center
Jones, Brett D.; Skaggs, Gary
2016-01-01
This study provides validity evidence for the MUSIC Model of Academic Motivation Inventory (MUSIC Inventory; Jones, 2012), which measures college students' beliefs related to the five components of the MUSIC Model of Motivation (MUSIC model; Jones, 2009). The MUSIC model is a conceptual framework for five categories of teaching strategies (i.e.,…
Developing rural palliative care: validating a conceptual model.
Kelley, Mary Lou; Williams, Allison; DeMiglio, Lily; Mettam, Hilary
2011-01-01
The purpose of this research was to validate a conceptual model for developing palliative care in rural communities. This model articulates how local rural healthcare providers develop palliative care services according to four sequential phases. The model has roots in concepts of community capacity development, evolves from collaborative, generalist rural practice, and utilizes existing health services infrastructure. It addresses how rural providers manage challenges, specifically those related to: lack of resources, minimal community understanding of palliative care, health professionals' resistance, the bureaucracy of the health system, and the obstacles of providing services in rural environments. Seven semi-structured focus groups were conducted with interdisciplinary health providers in 7 rural communities in two Canadian provinces. Using a constant comparative analysis approach, focus group data were analyzed by examining participants' statements in relation to the model and comparing emerging themes in the development of rural palliative care to the elements of the model. The data validated the conceptual model as the model was able to theoretically predict and explain the experiences of the 7 rural communities that participated in the study. New emerging themes from the data elaborated existing elements in the model and informed the requirement for minor revisions. The model was validated and slightly revised, as suggested by the data. The model was confirmed as being a useful theoretical tool for conceptualizing the development of rural palliative care that is applicable in diverse rural communities.
Predictive Behavior of a Computational Foot/Ankle Model through Artificial Neural Networks.
Chande, Ruchi D; Hargraves, Rosalyn Hobson; Ortiz-Robinson, Norma; Wayne, Jennifer S
2017-01-01
Computational models are useful tools to study the biomechanics of human joints. Their predictive performance is heavily dependent on bony anatomy and soft tissue properties. Imaging data provides anatomical requirements while approximate tissue properties are implemented from literature data, when available. We sought to improve the predictive capability of a computational foot/ankle model by optimizing its ligament stiffness inputs using feedforward and radial basis function neural networks. While the former demonstrated better performance than the latter per mean square error, both networks provided reasonable stiffness predictions for implementation into the computational model.
NASA Technical Reports Server (NTRS)
Binion, T. W., Jr.
1975-01-01
Experiments were conducted in the low speed wind tunnel using two V/STOL models, a jet-flap and a jet-in-fuselage configuration, to search for a wind tunnel wall configuration to minimize wall interference on V/STOL models. Data were also obtained on the jet-flap model with a uniform slotted wall configuration to provide comparisons between theoretical and experimental wall interference. A test section configuration was found which provided some data in reasonable agreement with interference-free results over a wide range of momentum coefficients.
New animal models of cystic fibrosis: what are they teaching us?
Keiser, Nicholas W.; Engelhardt, John F.
2013-01-01
Purpose of review Cystic fibrosis is the first human genetic disease to benefit from the directed engineering of three different species of animal models (mice, pigs, and ferrets). Recent studies on the cystic fibrosis pig and ferret models are providing new information about the pathophysiology of cystic fibrosis in various organ systems. Additionally, new conditional cystic fibrosis transmembrane conductance regulator (CFTR) knockout mice are teaching unexpected lessons about CFTR function in surprising cellular locations. Comparisons between these animal models and the human condition are key to dissecting the complexities of disease pathophysiology in cystic fibrosis. Recent findings Cystic fibrosis pigs and ferrets have provided new models to study the spontaneous development of disease in the lung and pancreas, two organs that are largely spared overt spontaneous disease in cystic fibrosis mice. New cystic fibrosis mouse models are now interrogating CFTR functions involved in growth and inflammation at an organ-based level using conditional knockout technology. Together, these models are providing new insights on the human condition. Summary Basic and clinical cystic fibrosis research will benefit greatly from the comparative pathophysiology of cystic fibrosis mice, pigs, and ferrets. Both similarities and differences between these three cystic fibrosis models will inform pathophysiologically important mechanisms of CFTR function in humans and aid in the development of both organ-specific and general therapies for cystic fibrosis. PMID:21857224
Using SCADA Data, Field Studies, and Real-Time Modeling to ...
EPA has been providing technical assistance to the City of Flint and the State of Michigan in response to the drinking water lead contamination incident. Responders quickly recognized the need for a water distribution system hydraulic model to provide insight on flow patterns and water quality as well as to evaluate changes being made to the system operation to enhance corrosion control and improve chlorine residuals. EPA partnered with the City of Flint and the Michigan Department of Environmental Quality to update and calibrate an existing hydraulic model. The City provided SCADA data, GIS data, customer billing data, valve status data, design diagrams, and information on operations. Team members visited all facilities and updated pump and valve types, sizes, settings, elevations, and pump discharge curves. Several technologies were used to support this work including the EPANET-RTX based Polaris real-time modeling software, WaterGEMS, ArcGIS, EPANET, and RTX:LINK. Field studies were conducted to collect pressure and flow data from more than 25 locations throughout the distribution system. An assessment of the model performance compared model predictions for flow, pressure, and tank levels to SCADA and field data, resulting in error measurements for each data stream over the time period analyzed. Now, the calibrated model can be used with a known confidence in its performance to evaluate hydraulic and water quality problems, and the model can be easily
How the Kano model contributes to Kansei engineering in services.
Hartono, Markus; Chuan, Tan Kay
2011-11-01
Recent studies show that products and services hold great appeal if they are attractively designed to elicit emotional feelings from customers. Kansei engineering (KE) has good potential to provide a competitive advantage to those able to read and translate customer affect and emotion in actual product and services. This study introduces an integrative framework of the Kano model and KE, applied to services. The Kano model was used and inserted into KE to exhibit the relationship between service attribute performance and customer emotional response. Essentially, the Kano model categorises service attribute quality into three major groups (must-be [M], one-dimensional [O] and attractive [A]). The findings of a case study that involved 100 tourists who stayed in luxury 4- and 5-star hotels are presented. As a practical matter, this research provides insight on which service attributes deserve more attention with regard to their significant impact on customer emotional needs. STATEMENT OF RELEVANCE: Apart from cognitive evaluation, emotions and hedonism play a big role in service encounters. Through a focus on delighting qualities of service attributes, this research enables service providers and managers to establish the extent to which they prioritise their improvement efforts and to always satisfy their customer emotions beyond expectation.
(Energetics of silicate melts from thermal diffusion studies)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-01-01
Research during the past year has been concentrated in four major areas. We are continuing work initiated during the first two years on modelling thermal diffusion on multicomponent silicate liquids. We have derived appropriate relations for ternary and quaternary systems and reanalyzed experimental thermal diffusion data for the ternary system fayalite-leucite-silica. In our manuscript entitled Thermal Diffusion in Petrology'', to be published in Adv. in Phy. Geochem., we show that these model results independently recover the compositional extent and temperature of liquid immiscibility in this system. Such retrieval provides a rigorous test of our theoretical predictions and simplified treatment ofmore » complex silicate liquids reported in Geochimica Cosmochimica Acta in 1986. The usefulness of our Soret research in providing mixing energies of silicate liquids has been recently confirmed by Ghiorso (1987, Cont. Min. Pet.). This demonstration provides a strategy for incorporating Soret data into the calibration of phase equilibrium-based solution models such as the one developed by Ghiorso. During the past year we also have resumed our studies of thermal diffusion in borosilicate glasses which also exhibit liquid immiscibility. Our objectives in studying these systems are (1) to further test of our multicomponent thermal diffusion model and (2) to provide quantitative constraints on the mixing properties of these glass-forming systems which are important for evaluating their suitability for storage of high-level nuclear waste. 16 refs.« less
A system dynamics approach to analyze laboratory test errors.
Guo, Shijing; Roudsari, Abdul; Garcez, Artur d'Avila
2015-01-01
Although many researches have been carried out to analyze laboratory test errors during the last decade, it still lacks a systemic view of study, especially to trace errors during test process and evaluate potential interventions. This study implements system dynamics modeling into laboratory errors to trace the laboratory error flows and to simulate the system behaviors while changing internal variable values. The change of the variables may reflect a change in demand or a proposed intervention. A review of literature on laboratory test errors was given and provided as the main data source for the system dynamics model. Three "what if" scenarios were selected for testing the model. System behaviors were observed and compared under different scenarios over a period of time. The results suggest system dynamics modeling has potential effectiveness of helping to understand laboratory errors, observe model behaviours, and provide a risk-free simulation experiments for possible strategies.
Mexican American intergenerational caregiving model.
Escandón, Socorro
2006-08-01
This study employed grounded theory to formulate a conceptual model of intergenerational caregiving among Mexican American families. The sample consisted of 10 Mexican American caregivers of various generations older than 21 who provided at least one intermittent service (without pay at least once a month) to an elder, related through consanguinal or acquired kinship ties. The inductively generated theory of role acceptance is composed of four phases: (a) introduction--early caregiving experiences, (b) role reconciliation, (c) role imprint, and (d) providing or projecting care. This model can be used to study varied generations of Mexican American caregivers. It also provides a framework for comparison with other groups of caregivers. The results can help in designing nursing interventions to support caregivers based on understanding the issues, to create and design systems that address the varying and ever-changing needs of informal caregivers, and to assist in the formulation of policy that supports Mexican American caregivers.
Characteristics of 3-D transport simulations of the stratosphere and mesosphere
NASA Technical Reports Server (NTRS)
Fairlie, T. D. A.; Siskind, D. E.; Turner, R. E.; Fisher, M.
1992-01-01
A 3D mechanistic, primitive-equation model of the stratosphere and mesosphere is coupled to an offline spectral transport model. The dynamics model is initialized with and forced by observations so that the coupled models may be used to study specific episodes. Results are compared with those obtained by transport online in the dynamics model. Although some differences are apparent, the results suggest that coupling of the models to a comprehensive photochemical package will provide a useful tool for studying the evolution of constituents in the middle atmosphere during specific episodes.
Dantigny, Philippe; Guilmart, Audrey; Bensoussan, Maurice
2005-04-15
For over 20 years, predictive microbiology focused on food-pathogenic bacteria. Few studies concerned modelling fungal development. On one hand, most of food mycologists are not familiar with modelling techniques; on the other hand, people involved in modelling are developing tools dedicated to bacteria. Therefore, there is a tendency to extend the use of models that were developed for bacteria to moulds. However, some mould specificities should be taken into account. The use of specific models for predicting germination and growth of fungi was advocated previously []. This paper provides a short review of fungal modelling studies.
Cashin, Cheryl; Phuong, Nguyen Khanh; Shain, Ryan; Oanh, Tran Thi Mai; Thuy, Nguyen Thi
2015-01-01
Vietnam is currently considering a revision of its 2008 Health Insurance Law, including the regulation of provider payment methods. This study uses a simple spreadsheet-based, micro-simulation model to analyse the potential impacts of different provider payment reform scenarios on resource allocation across health care providers in three provinces in Vietnam, as well as on the total expenditure of the provincial branches of the public health insurance agency (Provincial Social Security [PSS]). The results show that currently more than 50% of PSS spending is concentrated at the provincial level with less than half at the district level. There is also a high degree of financial risk on district hospitals with the current fund-holding arrangement. Results of the simulation model show that several alternative scenarios for provider payment reform could improve the current payment system by reducing the high financial risk currently borne by district hospitals without dramatically shifting the current level and distribution of PSS expenditure. The results of the simulation analysis provided an empirical basis for health policy-makers in Vietnam to assess different provider payment reform options and make decisions about new models to support health system objectives.
NASA Astrophysics Data System (ADS)
Klaas, Dua K. S. Y.; Imteaz, Monzur Alam
2017-09-01
A robust configuration of pilot points in the parameterisation step of a model is crucial to accurately obtain a satisfactory model performance. However, the recommendations provided by the majority of recent researchers on pilot-point use are considered somewhat impractical. In this study, a practical approach is proposed for using pilot-point properties (i.e. number, distance and distribution method) in the calibration step of a groundwater model. For the first time, the relative distance-area ratio ( d/ A) and head-zonation-based (HZB) method are introduced, to assign pilot points into the model domain by incorporating a user-friendly zone ratio. This study provides some insights into the trade-off between maximising and restricting the number of pilot points, and offers a relative basis for selecting the pilot-point properties and distribution method in the development of a physically based groundwater model. The grid-based (GB) method is found to perform comparably better than the HZB method in terms of model performance and computational time. When using the GB method, this study recommends a distance-area ratio of 0.05, a distance-x-grid length ratio ( d/ X grid) of 0.10, and a distance-y-grid length ratio ( d/ Y grid) of 0.20.
Elissen, Arianne M J; Struijs, Jeroen N; Baan, Caroline A; Ruwaard, Dirk
2015-05-01
To support providers and commissioners in accurately assessing their local populations' health needs, this study produces an overview of Dutch predictive risk models for health care, focusing specifically on the type, combination and relevance of included determinants for achieving the Triple Aim (improved health, better care experience, and lower costs). We conducted a mixed-methods study combining document analyses, interviews and a Delphi study. Predictive risk models were identified based on a web search and expert input. Participating in the study were Dutch experts in predictive risk modelling (interviews; n=11) and experts in healthcare delivery, insurance and/or funding methodology (Delphi panel; n=15). Ten predictive risk models were analysed, comprising 17 unique determinants. Twelve were considered relevant by experts for estimating community health needs. Although some compositional similarities were identified between models, the combination and operationalisation of determinants varied considerably. Existing predictive risk models provide a good starting point, but optimally balancing resources and targeting interventions on the community level will likely require a more holistic approach to health needs assessment. Development of additional determinants, such as measures of people's lifestyle and social network, may require policies pushing the integration of routine data from different (healthcare) sources. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, Yu-Cheng; Yen, Tieh-Min; Tsai, Chih-Hung
This study provides an integrated model of Supplier Quality Performance Assesment (SQPA) activity for the semiconductor industry through introducing the ISO 9001 management framework, Importance-Performance Analysis (IPA) Supplier Quality Performance Assesment and Taguchi`s Signal-to-Noise Ratio (S/N) techniques. This integrated model provides a SQPA methodology to create value for all members under mutual cooperation and trust in the supply chain. This method helps organizations build a complete SQPA framework, linking organizational objectives and SQPA activities to optimize rating techniques to promote supplier quality improvement. The techniques used in SQPA activities are easily understood. A case involving a design house is illustrated to show our model.
Witkiewitz, Katie; Bowen, Sarah; Harrop, Erin N; Douglas, Haley; Enkema, Matthew; Sedgwick, Carly
2014-04-01
Mindfulness-based treatments are growing in popularity among addiction treatment providers, and several studies suggest the efficacy of incorporating mindfulness practices into the treatment of addiction, including the treatment of substance use disorders and behavioral addictions (i.e., gambling). The current paper provides a review of theoretical models of mindfulness in the treatment of addiction and several hypothesized mechanisms of change. We provide an overview of mindfulness-based relapse prevention (MBRP), including session content, treatment targets, and client feedback from participants who have received MBRP in the context of empirical studies. Future research directions regarding operationalization and measurement, identifying factors that moderate treatment effects, and protocol adaptations for specific populations are discussed.
Personal computer study of finite-difference methods for the transonic small disturbance equation
NASA Technical Reports Server (NTRS)
Bland, Samuel R.
1989-01-01
Calculation of unsteady flow phenomena requires careful attention to the numerical treatment of the governing partial differential equations. The personal computer provides a convenient and useful tool for the development of meshes, algorithms, and boundary conditions needed to provide time accurate solution of these equations. The one-dimensional equation considered provides a suitable model for the study of wave propagation in the equations of transonic small disturbance potential flow. Numerical results for effects of mesh size, extent, and stretching, time step size, and choice of far-field boundary conditions are presented. Analysis of the discretized model problem supports these numerical results. Guidelines for suitable mesh and time step choices are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, E Y; Felton, J S; Lightstone, F C
2006-06-06
A computational study was performed to better understand the differences between human arylamine N-acetyltransferase (NAT) 1 and 2. Homology models were constructed from available crystal structures and comparisons of the active site residues 125, 127, and 129 for these two enzymes provide insight into observed substrate differences. The NAT2 model provided a basis for understanding how some of the common mutations may affect the structure of the protein. Molecular dynamics simulations of the human NAT models and the template structure (NAT from Mycobacterium smegmatis) were performed and showed the models to be stable and reasonable. Docking studies of hydroxylated heterocyclicmore » amines in the models of NAT1 and NAT2 probed the differences exhibited by these two proteins with mutagenic agents. The hydroxylated heterocyclic amines were only able to fit into the NAT2 active site, and an alternative binding site by the P-loop was found using our models and will be discussed. Additionally, quantum mechanical calculations were performed to study the O-acetylation reaction of the hydroxylated heterocyclic amines N-OH MeIQx and N-OH PhIP. This study has given us insight into why there are substrate differences among isoenzymes and explains some of the polymorphic activity differences.« less
AQMEII Phase 2: Overview and WRF/CMAQ Application over North America
In this study, we provide an overview of the second phase of the Air Quality Model Evaluation International Initiative (AQMEII). Activities in this phase are focused on the application and evaluation of coupled meteorologychemistry models. Participating modeling systems are being...
DOT National Transportation Integrated Search
1981-01-01
The System Availability Model (SAM) is a system-level model which provides measures of vehicle and passenger availability. The SAM will be used to evaluate the system-level influence of availability concepts employed in AGT systems. This functional s...
USE OF PHARMACOKINETIC MODELS TO ASSESS OCCUPATIONAL AND RESIDENTIAL PESTICIDE EXPOSURE
Urinary biomarker measurements were analyzed using a dynamic pharmacokinetic model. The dynamic model provided the structure to link spot urine samples with corresponding exposure and absorbed dose. Data from both occupational and residential studies were analyzed. In the Agri...
The CEOP Inter-Monsoon Studies (CIMS)
NASA Technical Reports Server (NTRS)
Lau, William K. M.
2003-01-01
Prediction of climate relies on models, and better model prediction depends on good model physics. Improving model physics requires the maximal utilization of climate data of the past, present and future. CEOP provides the first example of a comprehensive, integrated global and regional data set, consisting of globally gridded data, reference site in-situ observations, model location time series (MOLTS), and integrated satellite data for a two-year period covering two complete annual cycles of 2003-2004. The monsoon regions are the most important socio-economically in terms of devastation by floods and droughts, and potential impacts from climate change md fluctuatinns nf the hydrologic cyc!e. Scientifically, it is most challenging, because of complex interactions of atmosphere, land and oceans, local vs. remote forcings in contributing to climate variability and change in the region. Given that many common features, and physical teleconnection exist among different monsoon regions, an international research focus on monsoon must be coordinated and sustained. Current models of the monsoon are grossly inadequate for regional predictions. For improvement, models must be confronted with relevant observations, and model physic developers must be made to be aware of the wealth of information from existing climate data, field measurements, and satellite data that can be used to improve models. Model transferability studles must be conducted. CIMS is a major initiative under CEOP to engage the modeling and the observational communities to join in a coordinated effort to study the monsoons. The objectives of CIMS are (a) To provide a better understanding of fundamental physical processes (diurnal cycle, annual cycle, and intraseasonal oscillations) in monsoon regions around the world and (b) To demonstrate the synergy and utility of CEOP data in providing a pathway for model physics evaluation and improvement. In this talk, I will present the basic concepts of CIMS and the key scientific problems facing monsoon climates and provide examples of common monsoon features, and possible monsoon induced teleconnections linking different parts of the world.
Seth, Ajay; Sherman, Michael; Reinbolt, Jeffrey A.; Delp, Scott L.
2015-01-01
Movement science is driven by observation, but observation alone cannot elucidate principles of human and animal movement. Biomechanical modeling and computer simulation complement observations and inform experimental design. Biological models are complex and specialized software is required for building, validating, and studying them. Furthermore, common access is needed so that investigators can contribute models to a broader community and leverage past work. We are developing OpenSim, a freely available musculoskeletal modeling and simulation application and libraries specialized for these purposes, by providing: musculoskeletal modeling elements, such as biomechanical joints, muscle actuators, ligament forces, compliant contact, and controllers; and tools for fitting generic models to subject-specific data, performing inverse kinematics and forward dynamic simulations. OpenSim performs an array of physics-based analyses to delve into the behavior of musculoskeletal models by employing Simbody, an efficient and accurate multibody system dynamics code. Models are publicly available and are often reused for multiple investigations because they provide a rich set of behaviors that enables different lines of inquiry. This report will discuss one model developed to study walking and applied to gain deeper insights into muscle function in pathological gait and during running. We then illustrate how simulations can test fundamental hypotheses and focus the aims of in vivo experiments, with a postural stability platform and human model that provide a research environment for performing human posture experiments in silico. We encourage wide adoption of OpenSim for community exchange of biomechanical models and methods and welcome new contributors. PMID:25893160
NASA Astrophysics Data System (ADS)
Shea, Joan-Emma; Brooks, Charles L., III
2001-10-01
Beginning with simplified lattice and continuum "minimalist" models and progressing to detailed atomic models, simulation studies have augmented and directed development of the modern landscape perspective of protein folding. In this review we discuss aspects of detailed atomic simulation methods applied to studies of protein folding free energy surfaces, using biased-sampling free energy methods and temperature-induced protein unfolding. We review studies from each on systems of particular experimental interest and assess the strengths and weaknesses of each approach in the context of "exact" results for both free energies and kinetics of a minimalist model for a beta-barrel protein. We illustrate in detail how each approach is implemented and discuss analysis methods that have been developed as components of these studies. We describe key insights into the relationship between protein topology and the folding mechanism emerging from folding free energy surface calculations. We further describe the determination of detailed "pathways" and models of folding transition states that have resulted from unfolding studies. Our assessment of the two methods suggests that both can provide, often complementary, details of folding mechanism and thermodynamics, but this success relies on (a) adequate sampling of diverse conformational regions for the biased-sampling free energy approach and (b) many trajectories at multiple temperatures for unfolding studies. Furthermore, we find that temperature-induced unfolding provides representatives of folding trajectories only when the topology and sequence (energy) provide a relatively funneled landscape and "off-pathway" intermediates do not exist.
Phase Two Feasibility Study for Software Safety Requirements Analysis Using Model Checking
NASA Technical Reports Server (NTRS)
Turgeon, Gregory; Price, Petra
2010-01-01
A feasibility study was performed on a representative aerospace system to determine the following: (1) the benefits and limitations to using SCADE , a commercially available tool for model checking, in comparison to using a proprietary tool that was studied previously [1] and (2) metrics for performing the model checking and for assessing the findings. This study was performed independently of the development task by a group unfamiliar with the system, providing a fresh, external perspective free from development bias.
NASA Astrophysics Data System (ADS)
Mishra, P. K.; Bernini Campos, H. E.
2016-12-01
The lower portion of the Salinas River in Monterey bay, California has a history of flood, lots of study has been made ab out the water quality since the river provides water for the crops around, but is still in need a detailed study about the river behavior and flood analysis. The floods did significant damage, affecting valuable landing farms, residences and businesses in Monterey County. The first step for this study is comprehend and collect the river bathymetry and surroundings and then analyze the discharge and how it is going to change with time. This thesis develops a model about the specific site, recruiting real data from GIS and performing a flow simulation according to flow data provided by USGS, to verify water surface elevation and floodplain. The ArcMap, developed by ESRI, was used along with an extension (HEC-GeoRAS) because it was indeed the most appropriate model to work with the Digital Elevation Model, develop the floodplain and characterizing the land surface accurately in the study site. The HEC-RAS software, developed by US Army Corp of Engineers, was used to compute one-dimension steady flow and two-dimension unsteady flow, providing flow velocity, water surface elevation and profiles, total surface area, head and friction loss and other characteristics, allowing the analysis of the flow. A mean discharge, a mean peak streamflow and a peak discharge were used for the steady flow and a Hydrograph was used for the unsteady flow, both are based on the 1995 flood and discharge history. This study provides important information about water surface elevation and water flow, allowing stakeholders and the government to analyze solutions to avoid damage to the society and landowners.
A major challenge in traffic-related air pollution exposure studies is the lack of information regarding pollutant exposure characterization. Air quality modeling can provide spatially and temporally varying exposure estimates for examining relationships between traffic-related a...
Applications of psychophysical models to the study of auditory development
NASA Astrophysics Data System (ADS)
Werner, Lynne
2003-04-01
Psychophysical models of listening, such as the energy detector model, have provided a framework from which to characterize the function of the mature auditory system and to explore how mature listeners make use of auditory information in sound identification. The application of such models to the study of auditory development has similarly provided insight into the characteristics of infant hearing and listening. Infants intensity, frequency, temporal and spatial resolution have been described at least grossly and some contributions of immature listening strategies to infant hearing have been identified. Infants psychoacoustic performance is typically poorer than adults under identical stimulus conditions. However, the infant's performance typically varies with stimulus condition in a way that is qualitatively similar to the adult's performance. In some cases, though, infants perform in a qualitatively different way from adults in psychoacoustic experiments. Further, recent psychoacoustic studies of children suggest that the classic models of listening may be inadequate to describe the children's performance. The characteristics of a model that might be appropriate for the immature listener will be outlined and the implications for models of mature listening will be discussed. [Work supported by NIH grants DC00396 and by DC04661.
On the role of passion for work in burnout: a process model.
Vallerand, Robert J; Paquet, Yvan; Philippe, Frederick L; Charest, Julie
2010-02-01
The purpose of the present research was to test a model on the role of passion for work in professional burnout. This model posits that obsessive passion produces conflict between work and other life activities because the person cannot let go of the work activity. Conversely, harmonious passion is expected to prevent conflict while positively contributing to work satisfaction. Finally, conflict is expected to contribute to burnout, whereas work satisfaction should prevent its occurrence. This model was tested in 2 studies with nurses in 2 cultures. Using a cross-sectional design, Study 1 (n=97) provided support for the model with nurses from France. In Study 2 (n=258), a prospective design was used to further test the model with nurses from the Province of Quebec over a 6-month period. Results provided support for the model. Specifically, harmonious passion predicted an increase in work satisfaction and a decrease in conflict. Conversely, obsessive passion predicted an increase of conflict. In turn, work satisfaction and conflict predicted decreases and increases in burnout changes that took place over time. The results have important implications for theory and research on passion as well as burnout.
Jun, Gyuchan Thomas; Ward, James; Clarkson, P John
2010-07-01
The UK health service, which had been diagnosed to be seriously out of step with good design practice, has been recommended to obtain knowledge of design and risk management practice from other safety-critical industries. While these other industries have benefited from a broad range of systems modelling approaches, healthcare remains a long way behind. In order to investigate the healthcare-specific applicability of systems modelling approaches, this study identified 10 distinct methods through meta-model analysis. Healthcare workers' perception on 'ease of use' and 'usefulness' was then evaluated. The characterisation of the systems modelling methods showed that each method had particular capabilities to describe specific aspects of a complex system. However, the healthcare workers found that some of the methods, although potentially very useful, would be difficult to understand, particularly without prior experience. This study provides valuable insights into a better use of the systems modelling methods in healthcare. STATEMENT OF RELEVANCE: The findings in this study provide insights into how to make a better use of various systems modelling approaches to the design and risk management of healthcare delivery systems, which have been a growing research interest among ergonomists and human factor professionals.
Ground-water models as a management tool in Florida
Hutchinson, C.B.
1984-01-01
Highly sophisticated computer models provide powerful tools for analyzing historic data and for simulating future water levels, water movement, and water chemistry under stressed conditions throughout the ground-water system in Florida. Models that simulate the movement of heat and subsidence of land in response to aquifer pumping also have potential for application to hydrologic problems in the State. Florida, with 20 ground-water modeling studies reported since 1972, has applied computer modeling techniques to a variety of water-resources problems. Models in Florida generally have been used to provide insight to problems of water supply, contamination, and impact on the environment. The model applications range from site-specific studies, such as estimating contamination by wastewater injection at St. Petersburg, to a regional model of the entire State that may be used to assess broad-scale environmental impact of water-resources development. Recently, groundwater models have been used as management tools by the State regulatory authority to permit or deny development of water resources. As modeling precision, knowledge, and confidence increase, the use of ground-water models will shift more and more toward regulation of development and enforcement of environmental laws. (USGS)
Peng, Yun; Miller, Brandi D; Boone, Timothy B; Zhang, Yingchun
2018-02-12
Weakened pelvic floor support is believed to be the main cause of various pelvic floor disorders. Modern theories of pelvic floor support stress on the structural and functional integrity of multiple structures and their interplay to maintain normal pelvic floor functions. Connective tissues provide passive pelvic floor support while pelvic floor muscles provide active support through voluntary contraction. Advanced modern medical technologies allow us to comprehensively and thoroughly evaluate the interaction of supporting structures and assess both active and passive support functions. The pathophysiology of various pelvic floor disorders associated with pelvic floor weakness is now under scrutiny from the combination of (1) morphological, (2) dynamic (through computational modeling), and (3) neurophysiological perspectives. This topical review aims to update newly emerged studies assessing pelvic floor support function among these three categories. A literature search was performed with emphasis on (1) medical imaging studies that assess pelvic floor muscle architecture, (2) subject-specific computational modeling studies that address new topics such as modeling muscle contractions, and (3) pelvic floor neurophysiology studies that report novel devices or findings such as high-density surface electromyography techniques. We found that recent computational modeling studies are featured with more realistic soft tissue constitutive models (e.g., active muscle contraction) as well as an increasing interest in simulating surgical interventions (e.g., artificial sphincter). Diffusion tensor imaging provides a useful non-invasive tool to characterize pelvic floor muscles at the microstructural level, which can be potentially used to improve the accuracy of the simulation of muscle contraction. Studies using high-density surface electromyography anal and vaginal probes on large patient cohorts have been recently reported. Influences of vaginal delivery on the distribution of innervation zones of pelvic floor muscles are clarified, providing useful guidance for a better protection of women during delivery. We are now in a period of transition to advanced diagnostic and predictive pelvic floor medicine. Our findings highlight the application of diffusion tensor imaging, computational models with consideration of active pelvic floor muscle contraction, high-density surface electromyography, and their potential integration, as tools to push the boundary of our knowledge in pelvic floor support and better shape current clinical practice.
Integrating Human Factors into Crew Exploration Vehicle (CEV) Design
NASA Technical Reports Server (NTRS)
Whitmore, Mihriban; Holden, Kritina; Baggerman, Susan; Campbell, Paul
2007-01-01
The purpose of this design process is to apply Human Engineering (HE) requirements and guidelines to hardware/software and to provide HE design, analysis and evaluation of crew interfaces. The topics include: 1) Background/Purpose; 2) HE Activities; 3) CASE STUDY: Net Habitable Volume (NHV) Study; 4) CASE STUDY: Human Modeling Approach; 5) CASE STUDY: Human Modeling Results; 6) CASE STUDY: Human Modeling Conclusions; 7) CASE STUDY: Human-in-the-Loop Evaluation Approach; 8) CASE STUDY: Unsuited Evaluation Results; 9) CASE STUDY: Suited Evaluation Results; 10) CASE STUDY: Human-in-the-Loop Evaluation Conclusions; 11) Near-Term Plan; and 12) In Conclusion
Li, Zhong; Huang, Guohe; Wang, Xiuquan; Han, Jingcheng; Fan, Yurui
2016-04-01
Over the recent years, climate change impacts have been increasingly studied at the watershed scale. However, the impact assessment is strongly dependent upon the performance of the climatic and hydrological models. This study developed a two-step method to assess climate change impacts on water resources based on the Providing Regional Climates for Impacts Studies (PRECIS) modeling system and a Hydrological Inference Model (HIM). PRECIS runs provided future temperature and precipitation projections for the watershed under the Intergovernmental Panel on Climate Change SRES A2 and B2 emission scenarios. The HIM based on stepwise cluster analysis is developed to imitate the complex nonlinear relationships between climate input variables and targeted hydrological variables. Its robust mathematical structure and flexibility in predictor selection makes it a desirable tool for fully utilizing various climate modeling outputs. Although PRECIS and HIM cannot fully cover the uncertainties in hydro-climate modeling, they could provide efficient decision support for investigating the impacts of climate change on water resources. The proposed method is applied to the Grand River Watershed in Ontario, Canada. The model performance is demonstrated with comparison to observation data from the watershed during the period 1972-2006. Future river discharge intervals that accommodate uncertainties in hydro-climatic modeling are presented and future river discharge variations are analyzed. The results indicate that even though the total annual precipitation would not change significantly in the future, the inter-annual distribution is very likely to be altered. The water availability is expected to increase in Winter while it is very likely to decrease in Summer over the Grand River Watershed, and adaptation strategies would be necessary. Copyright © 2016 Elsevier B.V. All rights reserved.
Some considerations for excess zeroes in substance abuse research.
Bandyopadhyay, Dipankar; DeSantis, Stacia M; Korte, Jeffrey E; Brady, Kathleen T
2011-09-01
Count data collected in substance abuse research often come with an excess of "zeroes," which are typically handled using zero-inflated regression models. However, there is a need to consider the design aspects of those studies before using such a statistical model to ascertain the sources of zeroes. We sought to illustrate hurdle models as alternatives to zero-inflated models to validate a two-stage decision-making process in situations of "excess zeroes." We use data from a study of 45 cocaine-dependent subjects where the primary scientific question was to evaluate whether study participation influences drug-seeking behavior. The outcome, "the frequency (count) of cocaine use days per week," is bounded (ranging from 0 to 7). We fit and compare binomial, Poisson, negative binomial, and the hurdle version of these models to study the effect of gender, age, time, and study participation on cocaine use. The hurdle binomial model provides the best fit. Gender and time are not predictive of use. Higher odds of use versus no use are associated with age; however once use is experienced, odds of further use decrease with increase in age. Participation was associated with higher odds of no-cocaine use; once there is use, participation reduced the odds of further use. Age and study participation are significantly predictive of cocaine-use behavior. The two-stage decision process as modeled by a hurdle binomial model (appropriate for bounded count data with excess zeroes) provides interesting insights into the study of covariate effects on count responses of substance use, when all enrolled subjects are believed to be "at-risk" of use.
Computer network environment planning and analysis
NASA Technical Reports Server (NTRS)
Dalphin, John F.
1989-01-01
The GSFC Computer Network Environment provides a broadband RF cable between campus buildings and ethernet spines in buildings for the interlinking of Local Area Networks (LANs). This system provides terminal and computer linkage among host and user systems thereby providing E-mail services, file exchange capability, and certain distributed computing opportunities. The Environment is designed to be transparent and supports multiple protocols. Networking at Goddard has a short history and has been under coordinated control of a Network Steering Committee for slightly more than two years; network growth has been rapid with more than 1500 nodes currently addressed and greater expansion expected. A new RF cable system with a different topology is being installed during summer 1989; consideration of a fiber optics system for the future will begin soon. Summmer study was directed toward Network Steering Committee operation and planning plus consideration of Center Network Environment analysis and modeling. Biweekly Steering Committee meetings were attended to learn the background of the network and the concerns of those managing it. Suggestions for historical data gathering have been made to support future planning and modeling. Data Systems Dynamic Simulator, a simulation package developed at NASA and maintained at GSFC was studied as a possible modeling tool for the network environment. A modeling concept based on a hierarchical model was hypothesized for further development. Such a model would allow input of newly updated parameters and would provide an estimation of the behavior of the network.
NASA Astrophysics Data System (ADS)
Brunsell, Eric Steven
An achievement gap exists between White and Hispanic students in the United States. Research has shown that improving the quality of instruction for minority students is an effective way to narrow this gap. Science education reform movements emphasize that science should be taught using a science inquiry approach. Extensive research in teaching and learning science also shows that a conceptual change model of teaching is effective in helping students learn science. Finally, research into how Hispanic students learn best has provided a number of suggestions for science instruction. The Inquiry for Conceptual Change model merges these three research strands into a comprehensive yet accessible model for instruction. This study investigates two questions. First, what are teachers' perceptions of science inquiry and its implementation in the classroom? Second, how does the use of the Inquiry for Conceptual Change model affect the learning of students in a predominantly Hispanic, urban neighborhood. Five teachers participated in a professional development project where they developed and implemented a science unit based on the Inquiry for Conceptual Change model. Three units were developed and implemented for this study. This is a qualitative study that included data from interviews, participant reflections and journals, student pre- and post-assessments, and researcher observations. This study provides an in-depth description of the role of professional development in helping teachers understand how science inquiry can be used to improve instructional quality for students in a predominantly Hispanic, urban neighborhood. These teachers demonstrated that it is important for professional development to be collaborative and provide opportunities for teachers to enact and reflect on new teaching paradigms. This study also shows promising results for the ability of the Inquiry for Conceptual Change model to improve student learning.
USDA-ARS?s Scientific Manuscript database
Crop growth simulation models can address a variety of agricultural problems, but their use to directly assist in-season irrigation management decisions is less common. Confidence in model reliability can be increased if models are shown to provide improved in-season management recommendations, whi...
Application of Game Theory to Improve the Defense of the Smart Grid
2012-03-01
Computer Systems and Networks ...............................................22 2.4.2 Trust Models ...systems. In this environment, developers assumed deterministic communications mediums rather than the “best effort” models provided in most modern... models or computational models to validate the SPSs design. Finally, the study reveals concerns about the performance of load rejection schemes
Tetrahedral Models of Learning: Application to College Reading.
ERIC Educational Resources Information Center
Nist, Sherrie L.
J. D. Bransford's tetrahedral model of learning considers four variables: (1) learning activities, (2) characteristics of the learner, (3) criterial tasks, and (4) the nature of the materials. Bransford's model provides a research-based theoretical framework that can be used to teach, model, and have students apply a variety of study strategies to…
Jefferson, Therese; Klass, Des; Lord, Linley; Nowak, Margaret; Thomas, Gail
2014-01-01
Leadership studies which focus on categorising leadership styles have been critiqued for failure to consider the lived experience of leadership. The purpose of this paper is to use the framework of Jepson's model of contextual dynamics to explore whether this framework assists understanding of the "how and why" of lived leadership experience within the nursing profession. Themes for a purposeful literature search and review, having regard to the Jepson model, are drawn from the contemporary and dynamic context of nursing. Government reports, coupled with preliminary interviews with a nurseleadership team, guided selection of contextual issues. The contextual interactions arising from managerialism, existing hierarchical models of leadership and increasing knowledge work provided insights into leadership experience in nursing, in the contexts of professional identity and changing educational and generational profiles of nurses. The authors conclude that employing a contextual frame provides insights in studying leadership experience. The author propose additions to the cultural and institutional dimensions of Jepson's model. The findings have implications for structuring and communicating key roles and policies relevant to nursing leadership. These include the need to: address perceptions around the legitimacy of current nursing leaders to provide clinical leadership; modify hierarchical models of nursing leadership; address implications of the role of the knowledge workers. Observing nursing leadership through the lens of Jepson's model of contextual dynamics confirms that this is an important way of exploring how leadership is enacted. The authors found, however, the model also provided a useful frame for considering the experience and understanding of leadership by those to be led.
A mixed model framework for teratology studies.
Braeken, Johan; Tuerlinckx, Francis
2009-10-01
A mixed model framework is presented to model the characteristic multivariate binary anomaly data as provided in some teratology studies. The key features of the model are the incorporation of covariate effects, a flexible random effects distribution by means of a finite mixture, and the application of copula functions to better account for the relation structure of the anomalies. The framework is motivated by data of the Boston Anticonvulsant Teratogenesis study and offers an integrated approach to investigate substantive questions, concerning general and anomaly-specific exposure effects of covariates, interrelations between anomalies, and objective diagnostic measurement.
Bergmo, Trine S; Berntsen, Gro K; Dalbakk, Monika; Rumpsfeld, Markus
2015-10-23
The present study protocol describes the evaluation of a comprehensive integrated care model implemented at two hospital sites at the University Hospital of North Norway (UNN). The PAtient Centred Team (PACT) model includes proactive, patient-centred interdisciplinary teams that aim to improve the continuum and quality of care of frail elderly patients and reduce health care costs. The main objectives of the evaluation are to analyse the effectiveness and cost effectiveness of using patient-centred teams as part of routine service provision for this patient group. The evaluation will analyse the effect on patient health and functional status, patient experiences and hospital utilisation, and it will conduct an economic evaluation. This paper describes the PACT model and the rationale for and design of the planned effectiveness and cost-effectiveness study. This is a prospective, non-randomised matched control before-and-after intervention study. Patients in the intervention group will be recruited from the hospital sites that have implemented the PACT model. The controls will be recruited from two hospitals without the model. The control patients and the index patients will be matched according to sex, age and number of long-term conditions. The study aims to include 600 patients in each group, which will provide sufficient power to detect a clinical change in the primary outcome. The primary outcome is the physical dimension of the Short Form Health Survey (SF-36). Secondary outcomes are the Patient Generated Index (PGI), the Patient Activation Measure (PAM), the Patient Assessment of Chronic Illness Care (PACIC), hospitalisation and length of stay. The cost-effectiveness study takes a health provider perspective and calculates the cost per quality-adjusted life-years (QALYs) gained. The data will be collected at baseline, 6 and 12 months. The data will be analysed using techniques and models that recognise the lack of randomisation and the correlation of cost and effect data. The study results will provide knowledge about whether the integrated care model implemented at UNN improves the quality of care for the frail elderly with multiple conditions. The study will establish whether the PAC. T model improves health and functional status and is cost effective compared to the usual care for this patient group. ClinicalTrials.gov: NCT02541474.
ERIC Educational Resources Information Center
Williamson, Robert L.; Casey, Laura B.; Robertson, Janna Siegel; Buggey, Tom
2013-01-01
Given the recent interest in the use of video self-modeling (VSM) to provide instruction within iPod apps and other pieces of handheld mobile assistive technologies, investigating appropriate prerequisite skills for effective use of this intervention is particularly timely and relevant. To provide additional information regarding the efficacy of…
Vickaryous, Matthew K; McLean, Katherine E
2011-01-01
Reptiles (lizards, snakes, turtles and crocodylians) are becoming increasing popular as models for developmental investigations. In this review the leopard gecko, Eublepharis macularius, is presented as a reptilian model for embryonic studies. We provide details of husbandry, breeding and modifications to two popular histological techniques (whole-mount histochemistry and immunohistochemistry). In addition, we provide a summary of basic reptilian husbandry requirements and discuss important details of embryonic nutrition, egg anatomy and sex determination.
ERIC Educational Resources Information Center
O'Dwyer, Laura M.; Parker, Caroline E.
2014-01-01
Analyzing data that possess some form of nesting is often challenging for applied researchers or district staff who are involved in or in charge of conducting data analyses. This report provides a description of the challenges for analyzing nested data and provides a primer of how multilevel regression modeling may be used to resolve these…
ERIC Educational Resources Information Center
Reinfried, Sibylle; Tempelmann, Sebastian
2014-01-01
This paper provides a video-based learning process study that investigates the kinds of mental models of the atmospheric greenhouse effect 13-year-old learners have and how these mental models change with a learning environment, which is optimised in regard to instructional psychology. The objective of this explorative study was to observe and…
A supply model for nurse workforce projection in Malaysia.
Abas, Zuraida Abal; Ramli, Mohamad Raziff; Desa, Mohamad Ishak; Saleh, Nordin; Hanafiah, Ainul Nadziha; Aziz, Nuraini; Abidin, Zaheera Zainal; Shibghatullah, Abdul Samad; Rahman, Ahmad Fadzli Nizam Abdul; Musa, Haslinda
2017-08-18
The paper aims to provide an insight into the significance of having a simulation model to forecast the supply of registered nurses for health workforce planning policy using System Dynamics. A model is highly in demand to predict the workforce demand for nurses in the future, which it supports for complete development of a needs-based nurse workforce projection using Malaysia as a case study. The supply model consists of three sub-models to forecast the number of registered nurses for the next 15 years: training model, population model and Full Time Equivalent (FTE) model. In fact, the training model is for predicting the number of newly registered nurses after training is completed. Furthermore, the population model is for indicating the number of registered nurses in the nation and the FTE model is useful for counting the number of registered nurses with direct patient care. Each model is described in detail with the logical connection and mathematical governing equation for accurate forecasting. The supply model is validated using error analysis approach in terms of the root mean square percent error and the Theil inequality statistics, which is mportant for evaluating the simulation results. Moreover, the output of simulation results provides a useful insight for policy makers as a what-if analysis is conducted. Some recommendations are proposed in order to deal with the nursing deficit. It must be noted that the results from the simulation model will be used for the next stage of the Needs-Based Nurse Workforce projection project. The impact of this study is that it provides the ability for greater planning and policy making with better predictions.
Developments in Coastal Ocean Modeling
NASA Astrophysics Data System (ADS)
Allen, J. S.
2001-12-01
Capabilities in modeling continental shelf flow fields have improved markedly in the last several years. Progress is being made toward the long term scientific goal of utilizing numerical circulation models to interpolate, or extrapolate, necessarily limited field measurements to provide additional full-field information describing the behavior of, and providing dynamical rationalizations for, complex observed coastal flow. The improvement in modeling capabilities has been due to several factors including an increase in computer power and, importantly, an increase in experience of modelers in formulating relevant numerical experiments and in analyzing model results. We demonstrate present modeling capabilities and limitations by discussion of results from recent studies of shelf circulation off Oregon and northern California (joint work with Newberger, Gan, Oke, Pullen, and Wijesekera). Strong interactions between wind-forced coastal currents and continental shelf topography characterize the flow regimes in these cases. Favorable comparisons of model and measured alongshore currents and other variables provide confidence in the model-produced fields. The dependence of the mesoscale circulation, including upwelling and downwelling fronts and flow instabilities, on the submodel used to parameterize the effects of small scale turbulence, is discussed. Analyses of model results to provide explanations for the observed, but previously unexplained, alongshore variability in the intensity of coastal upwelling, which typically results in colder surface water south of capes, and the observed development in some locations of northward currents near the coast in response to the relaxation of southward winds, are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-04-11
This manual is intended primarily for use as a reference by analysts applying the WORLD model to regional studies. It also provides overview information on WORLD features of potential interest to managers and analysts. Broadly, the manual covers WORLD model features in progressively increasing detail. Section 2 provides an overview of the WORLD model, how it has evolved, what its design goals are, what it produces, and where it can be taken with further enhancements. Section 3 reviews model management covering data sources, managing over-optimization, calibration and seasonality, check-points for case construction and common errors. Section 4 describes in detailmore » the WORLD system, including: data and program systems in overview; details of mainframe and PC program control and files;model generation, size management, debugging and error analysis; use with different optimizers; and reporting and results analysis. Section 5 provides a detailed description of every WORLD model data table, covering model controls, case and technology data. Section 6 goes into the details of WORLD matrix structure. It provides an overview, describes how regional definitions are controlled and defines the naming conventions for-all model rows, columns, right-hand sides, and bounds. It also includes a discussion of the formulation of product blending and specifications in WORLD. Several Appendices supplement the main sections.« less
Community models for wildlife impact assessment: a review of concepts and approaches
Schroeder, Richard L.
1987-01-01
The first two sections of this paper are concerned with defining and bounding communities, and describing those attributes of the community that are quantifiable and suitable for wildlife impact assessment purposes. Prior to the development or use of a community model, it is important to have a clear understanding of the concept of a community and a knowledge of the types of community attributes that can serve as outputs for the development of models. Clearly defined, unambiguous model outputs are essential for three reasons: (1) to ensure that the measured community attributes relate to the wildlife resource objectives of the study; (2) to allow testing of the outputs in experimental studies, to determine accuracy, and to allow for improvements based on such testing; and (3) to enable others to clearly understand the community attribute that has been measured. The third section of this paper described input variables that may be used to predict various community attributes. These input variables do not include direct measures of wildlife populations. Most impact assessments involve projects that result in drastic changes in habitat, such as changes in land use, vegetation, or available area. Therefore, the model input variables described in this section deal primarily with habitat related features. Several existing community models are described in the fourth section of this paper. A general description of each model is provided, including the nature of the input variables and the model output. The logic and assumptions of each model are discussed, along with data requirements needed to use the model. The fifth section provides guidance on the selection and development of community models. Identification of the community attribute that is of concern will determine the type of model most suitable for a particular application. This section provides guidelines on selected an existing model, as well as a discussion of the major steps to be followed in modifying an existing model or developing a new model. Considerations associated with the use of community models with the Habitat Evaluation Procedures are also discussed. The final section of the paper summarizes major findings of interest to field biologists and provides recommendations concerning the implementation of selected concepts in wildlife community analyses.
DOT National Transportation Integrated Search
1997-01-01
Discrete choice models have expanded the ability of transportation planners to forecast future trends. Where new services or policies are proposed, the stated-choice approach can provide an objective basis for forecasts. Stated-choice models are subj...
Genetically Engineered Mouse Models for Studying Inflammatory Bowel Disease
Mizoguchi, Atsushi; Takeuchi, Takahito; Himuro, Hidetomo; Okada, Toshiyuki; Mizoguchi, Emiko
2015-01-01
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that is mediated by very complex mechanisms controlled by genetic, immune, and environmental factors. More than 74 kinds of genetically engineered mouse strains have been established since 1993 for studying IBD. Although mouse models cannot fully reflect human IBD, they have provided significant contributions for not only understanding the mechanism, but also developing new therapeutic means for IBD. Indeed, 20 kinds of genetically engineered mouse models carry the susceptibility genes identified in human IBD, and the functions of some other IBD susceptibility genes have also been dissected out using mouse models. Cutting-edge technologies such as cell-specific and inducible knockout systems, which were recently employed to mouse IBD models, have further enhanced the ability of investigators to provide important and unexpected rationales for developing new therapeutic strategies for IBD. In this review article, we briefly introduce 74 kinds of genetically engineered mouse models that spontaneously develop intestinal inflammation. PMID:26387641
A global sensitivity analysis approach for morphogenesis models.
Boas, Sonja E M; Navarro Jimenez, Maria I; Merks, Roeland M H; Blom, Joke G
2015-11-21
Morphogenesis is a developmental process in which cells organize into shapes and patterns. Complex, non-linear and multi-factorial models with images as output are commonly used to study morphogenesis. It is difficult to understand the relation between the uncertainty in the input and the output of such 'black-box' models, giving rise to the need for sensitivity analysis tools. In this paper, we introduce a workflow for a global sensitivity analysis approach to study the impact of single parameters and the interactions between them on the output of morphogenesis models. To demonstrate the workflow, we used a published, well-studied model of vascular morphogenesis. The parameters of this cellular Potts model (CPM) represent cell properties and behaviors that drive the mechanisms of angiogenic sprouting. The global sensitivity analysis correctly identified the dominant parameters in the model, consistent with previous studies. Additionally, the analysis provided information on the relative impact of single parameters and of interactions between them. This is very relevant because interactions of parameters impede the experimental verification of the predicted effect of single parameters. The parameter interactions, although of low impact, provided also new insights in the mechanisms of in silico sprouting. Finally, the analysis indicated that the model could be reduced by one parameter. We propose global sensitivity analysis as an alternative approach to study the mechanisms of morphogenesis. Comparison of the ranking of the impact of the model parameters to knowledge derived from experimental data and from manipulation experiments can help to falsify models and to find the operand mechanisms in morphogenesis. The workflow is applicable to all 'black-box' models, including high-throughput in vitro models in which output measures are affected by a set of experimental perturbations.
Emerson, Mitchell R; Gallagher, Ryan J; Marquis, Janet G; LeVine, Steven M
2009-01-01
Advancing the understanding of the mechanisms involved in the pathogenesis of multiple sclerosis (MS) likely will lead to new and better therapeutics. Although important information about the disease process has been obtained from research on pathologic specimens, peripheral blood lymphocytes and MRI studies, the elucidation of detailed mechanisms has progressed largely through investigations using animal models of MS. In addition, animal models serve as an important tool for the testing of putative interventions. The most commonly studied model of MS is experimental autoimmune encephalomyelitis (EAE). This model can be induced in a variety of species and by various means, but there has been concern that the model may not accurately reflect the disease process, and more importantly, it may give rise to erroneous findings when it is used to test possible therapeutics. Several reasons have been given to explain the shortcomings of this model as a useful testing platform, but one idea provides a framework for improving the value of this model, and thus, it deserves careful consideration. In particular, the idea asserts that EAE studies are inadequately designed to enable appropriate evaluation of putative therapeutics. Here we discuss problem areas within EAE study designs and provide suggestions for their improvement. This paper is principally directed at investigators new to the field of EAE, although experienced investigators may find useful suggestions herein. PMID:19389303
Solid models for CT/MR image display: accuracy and utility in surgical planning
NASA Astrophysics Data System (ADS)
Mankovich, Nicholas J.; Yue, Alvin; Ammirati, Mario; Kioumehr, Farhad; Turner, Scott
1991-05-01
Medical imaging can now take wider advantage of Computer-Aided-Manufacturing through rapid prototyping technologies (RPT) such as stereolithography, laser sintering, and laminated object manufacturing to directly produce solid models of patient anatomy from processed CT and MR images. While conventional surgical planning relies on consultation with the radiologist combined with direct reading and measurement of CT and MR studies, 3-D surface and volumetric display workstations are providing a more easily interpretable view of patient anatomy. RPT can provide the surgeon with a life size model of patient anatomy constructed layer by layer with full internal detail. Although this life-size anatomic model is more easily understandable by the surgeon, its accuracy and true surgical utility remain untested. We have developed a prototype image processing and model fabrication system based on stereolithography, which provides the neurosurgeon with models of the skull base. Parallel comparison of the model with the original thresholded CT data and with a CRT displayed surface rendering showed that both have an accuracy of 99.6 percent. Because of the ease of exact voxel localization on the model, its precision was high with the standard deviation of measurement of 0.71 percent. The measurements on the surface rendered display proved more difficult to exactly locate and yielded a standard deviation of 2.37 percent. This paper presents our accuracy study and discussed ways of assessing the quality of neurosurgical plans when 3-D models a made available as planning tools.
Francis, Maureen D; Wieland, Mark L; Drake, Sean; Gwisdalla, Keri Lyn; Julian, Katherine A; Nabors, Christopher; Pereira, Anne; Rosenblum, Michael; Smith, Amy; Sweet, David; Thomas, Kris; Varney, Andrew; Warm, Eric; Wininger, David; Francis, Mark L
2015-03-01
Many internal medicine (IM) programs have reorganized their resident continuity clinics to improve trainees' ambulatory experience. Downstream effects on continuity of care and other clinical and educational metrics are unclear. This multi-institutional, cross-sectional study included 713 IM residents from 12 programs. Continuity was measured using the usual provider of care method (UPC) and the continuity for physician method (PHY). Three clinic models (traditional, block, and combination) were compared using analysis of covariance. Multivariable linear regression analysis was used to analyze the effect of practice metrics and clinic model on continuity. UPC, reflecting continuity from the patient perspective, was significantly different, and was highest in the block model, midrange in combination model, and lowest in the traditional model programs. PHY, reflecting continuity from the perspective of the resident provider, was significantly lower in the block model than in combination and traditional programs. Panel size, ambulatory workload, utilization, number of clinics attended in the study period, and clinic model together accounted for 62% of the variation found in UPC and 26% of the variation found in PHY. Clinic model appeared to have a significant effect on continuity measured from both the patient and resident perspectives. Continuity requires balance between provider availability and demand for services. Optimizing this balance to maximize resident education, and the health of the population served, will require consideration of relevant local factors and priorities in addition to the clinic model.
Francis, Maureen D.; Wieland, Mark L.; Drake, Sean; Gwisdalla, Keri Lyn; Julian, Katherine A.; Nabors, Christopher; Pereira, Anne; Rosenblum, Michael; Smith, Amy; Sweet, David; Thomas, Kris; Varney, Andrew; Warm, Eric; Wininger, David; Francis, Mark L.
2015-01-01
Background Many internal medicine (IM) programs have reorganized their resident continuity clinics to improve trainees' ambulatory experience. Downstream effects on continuity of care and other clinical and educational metrics are unclear. Methods This multi-institutional, cross-sectional study included 713 IM residents from 12 programs. Continuity was measured using the usual provider of care method (UPC) and the continuity for physician method (PHY). Three clinic models (traditional, block, and combination) were compared using analysis of covariance. Multivariable linear regression analysis was used to analyze the effect of practice metrics and clinic model on continuity. Results UPC, reflecting continuity from the patient perspective, was significantly different, and was highest in the block model, midrange in combination model, and lowest in the traditional model programs. PHY, reflecting continuity from the perspective of the resident provider, was significantly lower in the block model than in combination and traditional programs. Panel size, ambulatory workload, utilization, number of clinics attended in the study period, and clinic model together accounted for 62% of the variation found in UPC and 26% of the variation found in PHY. Conclusions Clinic model appeared to have a significant effect on continuity measured from both the patient and resident perspectives. Continuity requires balance between provider availability and demand for services. Optimizing this balance to maximize resident education, and the health of the population served, will require consideration of relevant local factors and priorities in addition to the clinic model. PMID:26217420
Feehan, M; Walsh, M; Godin, J; Sundwall, D; Munger, M A
2017-12-01
In order to improve public health, it is necessary to facilitate patients' easy access to affordable high-quality primary health care, and one enhanced approach to do so may be to provide primary healthcare services in the community pharmacy setting. Discrete choice experiments to evaluate patient demand for services in pharmacy are relatively limited and have been hampered by a focus on only a few service alternatives, most focusing on changes in more traditional pharmacy services. The study aim was to gauge patient preferences explicitly for primary healthcare services that could be delivered through community pharmacy settings in the USA, using a very large sample to accommodate multiple service delivery options. An online survey was administered to a total of 9202 adult patients from the general population. A subsequent online survey was administered to 50 payer reimbursement decision-makers. The patient survey included a discrete choice experiment (DCE) which showed competing scenarios describing primary care service offerings. The respondents chose which scenario would be most likely to induce them to switch from their current pharmacy, and an optimal patient primary care service model was derived. The likelihood this model would be reimbursed was then determined in the payer survey. The final optimal service configuration that would maximize patient preference included the pharmacy: offering appointments to see a healthcare provider in the pharmacy, having access to their full medical record, provide point-of-care diagnostic testing, offer health preventive screening, provide limited physical examinations such as measuring vital signs, and drug prescribing in the pharmacy. The optimal model had the pharmacist as the provider; however, little change in demand was evident if the provider was a nurse-practitioner or physician's assistant. The demand for this optimal model was 2-fold higher (25.5%; 95% Bayesian precision interval (BPI) 23.5%-27.0%) than for a base pharmacy offering minimal primary care services (12.6%; 95% BPI 12.2%-13.2%), and was highest among Hispanic (30.6%; 95% BPI: 25.7%-34.3%) and African American patients (30.7%; 95% BPI: 27.1%-35.2%). In the second reimbursement decision-maker survey, the majority (66%) indicated their organization would be likely to reimburse the services described in the optimal patient model if provided in the pharmacy setting. This United States national study provides empirical support for a model of providing primary care services through community pharmacy settings that would increase access, with the potential to improve the public health. © 2017 John Wiley & Sons Ltd.
The Impact of New Payment Models on Quality of Diabetes Care and Outcomes.
McGinley, Erin L; Gabbay, Robert A
2016-06-01
Historic changes in healthcare reimbursement and payment models due to the Affordable Care Act in the United States have the potential to transform how providers care for chronic diseases such as diabetes. Payment experimentation has provided insights into how changing incentives for primary care providers can yield improvements in the triple aim: improving patient experience, improving the health of populations, and reducing costs of healthcare. Much of this has involved leveraging widespread adoption of the patient-centered medical home (PCMH) with diabetes often the focus. While evidence is mounting that the PCMH can improve diabetes outcomes, some PCMH demonstrations have displayed mixed results. One of the first large-scale PCMH demonstrations developed around diabetes was conducted by the Commonwealth of Pennsylvania. Different payment models were employed across a series of staggered regional rollouts that provided a case study for the influence of innovative payment models. These learning laboratories provide insights into the role of reimbursement models and changes in how practice transformation is implemented. Ultimately, evolving payment systems focused on the total cost of care, such as Accountable Care Organizations, hold promise to transform diabetes care and produce significant cost savings through the prevention of complications.
The Genomic and Genetic Toolbox of the Teleost Medaka (Oryzias latipes)
Kirchmaier, Stephan; Naruse, Kiyoshi; Wittbrodt, Joachim; Loosli, Felix
2015-01-01
The Japanese medaka, Oryzias latipes, is a vertebrate teleost model with a long history of genetic research. A number of unique features and established resources distinguish medaka from other vertebrate model systems. A large number of laboratory strains from different locations are available. Due to a high tolerance to inbreeding, many highly inbred strains have been established, thus providing a rich resource for genetic studies. Furthermore, closely related species native to different habitats in Southeast Asia permit comparative evolutionary studies. The transparency of embryos, larvae, and juveniles allows a detailed in vivo analysis of development. New tools to study diverse aspects of medaka biology are constantly being generated. Thus, medaka has become an important vertebrate model organism to study development, behavior, and physiology. In this review, we provide a comprehensive overview of established genetic and molecular-genetic tools that render medaka fish a full-fledged vertebrate system. PMID:25855651
Thermodynamics of Biological Processes
Garcia, Hernan G.; Kondev, Jane; Orme, Nigel; Theriot, Julie A.; Phillips, Rob
2012-01-01
There is a long and rich tradition of using ideas from both equilibrium thermodynamics and its microscopic partner theory of equilibrium statistical mechanics. In this chapter, we provide some background on the origins of the seemingly unreasonable effectiveness of ideas from both thermodynamics and statistical mechanics in biology. After making a description of these foundational issues, we turn to a series of case studies primarily focused on binding that are intended to illustrate the broad biological reach of equilibrium thinking in biology. These case studies include ligand-gated ion channels, thermodynamic models of transcription, and recent applications to the problem of bacterial chemotaxis. As part of the description of these case studies, we explore a number of different uses of the famed Monod–Wyman–Changeux (MWC) model as a generic tool for providing a mathematical characterization of two-state systems. These case studies should provide a template for tailoring equilibrium ideas to other problems of biological interest. PMID:21333788
Liu, Nan; D'Aunno, Thomas
2012-01-01
Objective To develop simple stylized models for evaluating the productivity and cost-efficiencies of different practice models to involve nurse practitioners (NPs) in primary care, and in particular to generate insights on what affects the performance of these models and how. Data Sources and Study Design The productivity of a practice model is defined as the maximum number of patients that can be accounted for by the model under a given timeliness-to-care requirement; cost-efficiency is measured by the corresponding annual cost per patient in that model. Appropriate queueing analysis is conducted to generate formulas and values for these two performance measures. Model parameters for the analysis are extracted from the previous literature and survey reports. Sensitivity analysis is conducted to investigate the model performance under different scenarios and to verify the robustness of findings. Principal Findings Employing an NP, whose salary is usually lower than a primary care physician, may not be cost-efficient, in particular when the NP's capacity is underutilized. Besides provider service rates, workload allocation among providers is one of the most important determinants for the cost-efficiency of a practice model involving NPs. Capacity pooling among providers could be a helpful strategy to improve efficiency in care delivery. Conclusions The productivity and cost-efficiency of a practice model depend heavily on how providers organize their work and a variety of other factors related to the practice environment. Queueing theory provides useful tools to take into account these factors in making strategic decisions on staffing and panel size selection for a practice model. PMID:22092009
Linking Portfolio Development to Clinical Supervision: A Case Study.
ERIC Educational Resources Information Center
Zepeda, Sally J.
2002-01-01
Describes a model for portfolio supervision based on the results of a 2-year study of one elementary school's experience in implementing portfolio supervision. Includes four propositions that guided the development of the model. Describes the skills inherent in portfolio supervision. Provides general guidelines for implementation of the portfolio…
NASA Technical Reports Server (NTRS)
Hu, H.; Liu, W.
2000-01-01
The implication of this work will provide modeling study a surrogate of annual cycle of the greenhouse effect. For example, the model should be able to simulate the annual cycle before it can be used for global change study.
EPA has released an external review draft entitled, An Exploratory Study: Assessment of Modeled Dioxin Exposure in Ceramic Art Studios(External Review Draft). The public comment period and the external peer-review workshop are separate processes that provide opportunities ...
Performance and Cognitive Assessment in 3-D Modeling
ERIC Educational Resources Information Center
Fahrer, Nolan E.; Ernst, Jeremy V.; Branoff, Theodore J.; Clark, Aaron C.
2011-01-01
The purpose of this study was to investigate identifiable differences between performance and cognitive assessment scores in a 3-D modeling unit of an engineering drafting course curriculum. The study aimed to provide further investigation of the need of skill-based assessments in engineering/technical graphics courses to potentially increase…
Multilevel Modeling in Psychosomatic Medicine Research
Myers, Nicholas D.; Brincks, Ahnalee M.; Ames, Allison J.; Prado, Guillermo J.; Penedo, Frank J.; Benedict, Catherine
2012-01-01
The primary purpose of this manuscript is to provide an overview of multilevel modeling for Psychosomatic Medicine readers and contributors. The manuscript begins with a general introduction to multilevel modeling. Multilevel regression modeling at two-levels is emphasized because of its prevalence in psychosomatic medicine research. Simulated datasets based on some core ideas from the Familias Unidas effectiveness study are used to illustrate key concepts including: communication of model specification, parameter interpretation, sample size and power, and missing data. Input and key output files from Mplus and SAS are provided. A cluster randomized trial with repeated measures (i.e., three-level regression model) is then briefly presented with simulated data based on some core ideas from a cognitive behavioral stress management intervention in prostate cancer. PMID:23107843
ERIC Educational Resources Information Center
Chien, Chin-Wen
2013-01-01
Coaches can provide teachers with quality professional development experiences by mentoring, providing workshops, modeling, or encouraging professional growth (York-Barr & Duke, 2004). This study focuses on the instructional coach's role in the professional development of teachers of English language learners (ELLs). The study has the following…
NASA Technical Reports Server (NTRS)
Chatzimavroudis, George P.; Spirka, Thomas A.; Setser, Randolph M.; Myers, Jerry G.
2004-01-01
One of NASA's objectives is to be able to perform a complete, pre-flight, evaluation of cardiovascular changes in astronauts scheduled for prolonged space missions. Computational fluid dynamics (CFD) has shown promise as a method for estimating cardiovascular function during reduced gravity conditions. For this purpose, MRI can provide geometrical information, to reconstruct vessel geometries, and measure all spatial velocity components, providing location specific boundary conditions. The objective of this study was to investigate the reliability of MRI-based model reconstruction and measured boundary conditions for CFD simulations. An aortic arch model and a carotid bifurcation model were scanned in a 1.5T Siemens MRI scanner. Axial MRI acquisitions provided images for geometry reconstruction (slice thickness 3 and 5 mm; pixel size 1x1 and 0.5x0.5 square millimeters). Velocity acquisitions provided measured inlet boundary conditions and localized three-directional steady-flow velocity data (0.7-3.0 L/min). The vessel walls were isolated using NIH provided software (ImageJ) and lofted to form the geometric surface. Constructed and idealized geometries were imported into a commercial CFD code for meshing and simulation. Contour and vector plots of the velocity showed identical features between the MRI velocity data, the MRI-based CFD data, and the idealized-geometry CFD data, with less than 10% differences in the local velocity values. CFD results on models reconstructed from different MRI resolution settings showed insignificant differences (less than 5%). This study illustrated, quantitatively, that reliable CFD simulations can be performed with MRI reconstructed models and gives evidence that a future, subject-specific, computational evaluation of the cardiovascular system alteration during space travel is feasible.
De Bolle, Marleen; Beyers, Wim; De Clercq, Barbara; De Fruyt, Filip
2012-11-01
This study investigated the continuity, pathoplasty, and complication models as plausible explanations for personality-psychopathology relations in a combined sample of community (n = 571) and referred (n = 146) children and adolescents. Multivariate structural equation modeling was used to examine the structural relations between latent personality and psychopathology change across a 2-year period. Item response theory models were fitted as an additional test of the continuity hypothesis. Even after correcting for item overlap, the results provided strong support for the continuity model, demonstrating that personality and psychopathology displayed dynamic change patterns across time. Item response theory models further supported the continuity conceptualization for understanding the association between internalizing problems and emotional stability and extraversion as well as between externalizing problems and benevolence and conscientiousness. In addition to the continuity model, particular personality and psychopathology combinations provided evidence for the pathoplasty and complication models. The theoretical and practical implications of these results are discussed, and suggestions for future research are provided. (PsycINFO Database Record (c) 2012 APA, all rights reserved).
Evaluation of the National Solar Radiation Database (NSRDB) Using Ground-Based Measurements
NASA Astrophysics Data System (ADS)
Xie, Y.; Sengupta, M.; Habte, A.; Lopez, A.
2017-12-01
Solar resource is essential for a wide spectrum of applications including renewable energy, climate studies, and solar forecasting. Solar resource information can be obtained from ground-based measurement stations and/or from modeled data sets. While measurements provide data for the development and validation of solar resource models and other applications modeled data expands the ability to address the needs for increased accuracy and spatial and temporal resolution. The National Renewable Energy Laboratory (NREL) has developed and regular updates modeled solar resource through the National Solar Radiation Database (NSRDB). The recent NSRDB dataset was developed using the physics-based Physical Solar Model (PSM) and provides gridded solar irradiance (global horizontal irradiance (GHI), direct normal irradiance (DNI), and diffuse horizontal irradiance) at a 4-km by 4-km spatial and half-hourly temporal resolution covering 18 years from 1998-2015. A comprehensive validation of the performance of the NSRDB (1998-2015) was conducted to quantify the accuracy of the spatial and temporal variability of the solar radiation data. Further, the study assessed the ability of NSRDB (1998-2015) to accurately capture inter-annual variability, which is essential information for solar energy conversion projects and grid integration studies. Comparisons of the NSRDB (1998-2015) with nine selected ground-measured data were conducted under both clear- and cloudy-sky conditions. These locations provide a high quality data covering a variety of geographical locations and climates. The comparison of the NSRDB to the ground-based data demonstrated that biases were within +/- 5% for GHI and +/-10% for DNI. A comprehensive uncertainty estimation methodology was established to analyze the performance of the gridded NSRDB and includes all sources of uncertainty at various time-averaged periods, a method that is not often used in model evaluation. Further, the study analyzed the inter-annual and mean-anomaly of the 18 years of solar radiation data. This presentation will outline the validation methodology and provide detailed results of the comparison.
NASA Astrophysics Data System (ADS)
Vano, J. A.
2013-12-01
By 2007, motivated by the ongoing drought and release of new climate model projections associated with the IPCC AR4 report, multiple independent studies had made estimates of future Colorado River streamflow. Each study had a unique approach, and unique estimate for the magnitude for mid-21st century streamflow change ranging from declines of only 6% to declines of as much as 45%. The differences among studies provided for interesting scientific debates, but to many practitioners this appeared to be just a tangle of conflicting predictions, leading to the question 'why is there such a wide range of projections of impacts of future climate change on Colorado River streamflow, and how should this uncertainty be interpreted?' In response, a group of scientists from academic and federal agencies, brought together through a NOAA cross-RISA project, set forth to identify the major sources of disparities and provide actionable science and guidance for water managers and decision makers. Through this project, four major sources of disparities among modeling studies were identified that arise from both methodological and model differences. These differences, in order of importance, are: (1) the Global Climate Models (GCMs) and emission scenarios used; (2) the ability of land surface hydrology and atmospheric models to simulate properly the high elevation runoff source areas; (3) the sensitivities of land surface hydrology models to precipitation and temperature changes; and (4) the methods used to statistically downscale GCM scenarios. Additionally, reconstructions of pre-instrumental streamflows provided further insights about the greatest risk to Colorado River streamflow of a multi-decadal drought, like those observed in paleo reconstructions, exacerbated by a steady reduction in flows due to climate change. Within this talk I will provide an overview of these findings and insights into the opportunities and challenges encountered in the process of striving to make climate change projections more useful to water managers and decision makers.
Shahamiri, Seyed Reza; Salim, Siti Salwah Binti
2014-09-01
Automatic speech recognition (ASR) can be very helpful for speakers who suffer from dysarthria, a neurological disability that damages the control of motor speech articulators. Although a few attempts have been made to apply ASR technologies to sufferers of dysarthria, previous studies show that such ASR systems have not attained an adequate level of performance. In this study, a dysarthric multi-networks speech recognizer (DM-NSR) model is provided using a realization of multi-views multi-learners approach called multi-nets artificial neural networks, which tolerates variability of dysarthric speech. In particular, the DM-NSR model employs several ANNs (as learners) to approximate the likelihood of ASR vocabulary words and to deal with the complexity of dysarthric speech. The proposed DM-NSR approach was presented as both speaker-dependent and speaker-independent paradigms. In order to highlight the performance of the proposed model over legacy models, multi-views single-learner models of the DM-NSRs were also provided and their efficiencies were compared in detail. Moreover, a comparison among the prominent dysarthric ASR methods and the proposed one is provided. The results show that the DM-NSR recorded improved recognition rate by up to 24.67% and the error rate was reduced by up to 8.63% over the reference model.
NASA Technical Reports Server (NTRS)
Storms, Bruce L.; Ross, James C.; Heineck, James T.; Walker, Stephen M.; Driver, David M.; Zilliac, Gregory G.; Bencze, Daniel P. (Technical Monitor)
2001-01-01
The 1/8-scale Ground Transportation System (GTS) model was studied experimentally in the NASA Ames 7- by 10-Ft Wind Tunnel. Designed for validation of computational fluid dynamics (CFD), the GTS model has a simplified geometry with a cab-over-engine design and no tractor-trailer gap. As a further simplification, all measurements of the GTS model were made without wheels. Aerodynamic boattail plates were also tested on the rear of the trailer to provide a simple geometry modification for computation. The experimental measurements include body-axis drag, surface pressures, surface hot-film anemometry, oil-film interferometry, and 3-D particle image velocimetry (PIV). The wind-averaged drag coefficient with and without boattail plates was 0.225 and 0.277, respectively. PIV measurements behind the model reveal a significant reduction in the wake size due to the flow turning provided by the boattail plates. Hot-film measurements on the side of the cab indicate laminar separation with turbulent reattachment within 0.08 trailer width for zero and +/- 10 degrees yaw. Oil film interferometry provided quantitative measurements of skin friction and qualitative oil flow images. A complete set of the experimental data and the surface definition of the model are included on a CD-ROM for further analysis and comparison.
Roig, Francesc; Saigí, Francesc
2011-01-01
Despite the clear political will to promote telemedicine and the large number of initiatives, the incorporation of this modality in clinical practice remains limited. The objective of this study was to identify the barriers perceived by key professionals who actively participate in the design and implementation of telemedicine in a healthcare system model based on purchasing of healthcare services using providers' contracts. We performed a qualitative study based on data from semi-structured interviews with 17 key informants belonging to distinct Catalan health organizations. The barriers identified were grouped in four areas: technological, organizational, human and economic. The main barriers identified were changes in the healthcare model caused by telemedicine, problems with strategic alignment, resistance to change in the (re)definition of roles, responsibilities and new skills, and lack of a business model that incorporates telemedicine in the services portfolio to ensure its sustainability. In addition to suitable management of change and of the necessary strategic alignment, the definitive normalization of telemedicine in a mixed healthcare model based on purchasing of healthcare services using providers' contracts requires a clear and stable business model that incorporates this modality in the services portfolio and allows healthcare organizations to obtain reimbursement from the payer. 2010 SESPAS. Published by Elsevier Espana. All rights reserved.
Information-geometric measures as robust estimators of connection strengths and external inputs.
Tatsuno, Masami; Fellous, Jean-Marc; Amari, Shun-Ichi
2009-08-01
Information geometry has been suggested to provide a powerful tool for analyzing multineuronal spike trains. Among several advantages of this approach, a significant property is the close link between information-geometric measures and neural network architectures. Previous modeling studies established that the first- and second-order information-geometric measures corresponded to the number of external inputs and the connection strengths of the network, respectively. This relationship was, however, limited to a symmetrically connected network, and the number of neurons used in the parameter estimation of the log-linear model needed to be known. Recently, simulation studies of biophysical model neurons have suggested that information geometry can estimate the relative change of connection strengths and external inputs even with asymmetric connections. Inspired by these studies, we analytically investigated the link between the information-geometric measures and the neural network structure with asymmetrically connected networks of N neurons. We focused on the information-geometric measures of orders one and two, which can be derived from the two-neuron log-linear model, because unlike higher-order measures, they can be easily estimated experimentally. Considering the equilibrium state of a network of binary model neurons that obey stochastic dynamics, we analytically showed that the corrected first- and second-order information-geometric measures provided robust and consistent approximation of the external inputs and connection strengths, respectively. These results suggest that information-geometric measures provide useful insights into the neural network architecture and that they will contribute to the study of system-level neuroscience.
Describing and Modeling Workflow and Information Flow in Chronic Disease Care
Unertl, Kim M.; Weinger, Matthew B.; Johnson, Kevin B.; Lorenzi, Nancy M.
2009-01-01
Objectives The goal of the study was to develop an in-depth understanding of work practices, workflow, and information flow in chronic disease care, to facilitate development of context-appropriate informatics tools. Design The study was conducted over a 10-month period in three ambulatory clinics providing chronic disease care. The authors iteratively collected data using direct observation and semi-structured interviews. Measurements The authors observed all aspects of care in three different chronic disease clinics for over 150 hours, including 157 patient-provider interactions. Observation focused on interactions among people, processes, and technology. Observation data were analyzed through an open coding approach. The authors then developed models of workflow and information flow using Hierarchical Task Analysis and Soft Systems Methodology. The authors also conducted nine semi-structured interviews to confirm and refine the models. Results The study had three primary outcomes: models of workflow for each clinic, models of information flow for each clinic, and an in-depth description of work practices and the role of health information technology (HIT) in the clinics. The authors identified gaps between the existing HIT functionality and the needs of chronic disease providers. Conclusions In response to the analysis of workflow and information flow, the authors developed ten guidelines for design of HIT to support chronic disease care, including recommendations to pursue modular approaches to design that would support disease-specific needs. The study demonstrates the importance of evaluating workflow and information flow in HIT design and implementation. PMID:19717802
Three Dimensional Modeling via Photographs for Documentation of a Village Bath
NASA Astrophysics Data System (ADS)
Balta, H. B.; Hamamcioglu-Turan, M.; Ocali, O.
2013-07-01
The aim of this study is supporting the conceptual discussions of architectural restoration with three dimensional modeling of monuments based on photogrammetric survey. In this study, a 16th century village bath in Ulamış, Seferihisar, and Izmir is modeled for documentation. Ulamış is one of the historical villages within which Turkish population first settled in the region of Seferihisar - Urla. The methodology was tested on an antique monument; a bath with a cubical form. Within the limits of this study, only the exterior of the bath was modeled. The presentation scale for the bath was determined as 1 / 50, considering the necessities of designing structural interventions and architectural ones within the scope of a restoration project. The three dimensional model produced is a realistic document presenting the present situation of the ruin. Traditional plan, elevation and perspective drawings may be produced from the model, in addition to the realistic textured renderings and wireframe representations. The model developed in this study provides opportunity for presenting photorealistic details of historical morphologies in scale. Compared to conventional drawings, the renders based on the 3d models provide an opportunity for conceiving architectural details such as color, material and texture. From these documents, relatively more detailed restitution hypothesis can be developed and intervention decisions can be taken. Finally, the principles derived from the case study can be used for 3d documentation of historical structures with irregular surfaces.
Bioadsorber efficiency, design, and performance forecasting for alachlor removal.
Badriyha, Badri N; Ravindran, Varadarajan; Den, Walter; Pirbazari, Massoud
2003-10-01
This study discusses a mathematical modeling and design protocol for bioactive granular activated carbon (GAC) adsorbers employed for purification of drinking water contaminated by chlorinated pesticides, exemplified by alachlor. A thin biofilm model is discussed that incorporates the following phenomenological aspects: film transfer from the bulk fluid to the adsorbent particles, diffusion through the biofilm immobilized on adsorbent surface, adsorption of the contaminant into the adsorbent particle. The modeling approach involved independent laboratory-scale experiments to determine the model input parameters. These experiments included adsorption isotherm studies, adsorption rate studies, and biokinetic studies. Bioactive expanded-bed adsorber experiments were conducted to obtain realistic experimental data for determining the ability of the model for predicting adsorber dynamics under different operating conditions. The model equations were solved using a computationally efficient hybrid numerical technique combining orthogonal collocation and finite difference methods. The model provided accurate predictions of adsorber dynamics for bioactive and non-bioactive scenarios. Sensitivity analyses demonstrated the significance of various model parameters, and focussed on enhancement in certain key parameters to improve the overall process efficiency. Scale-up simulation studies for bioactive and non-bioactive adsorbers provided comparisons between their performances, and illustrated the advantages of bioregeneration for enhancing their effective service life spans. Isolation of microbial species revealed that fungal strains were more efficient than bacterial strains in metabolizing alachlor. Microbial degradation pathways for alachlor were proposed and confirmed by the detection of biotransformation metabolites and byproducts using gas chromatography/mass spectrometry.
ERIC Educational Resources Information Center
Maij-de Meij, Annette M.; Kelderman, Henk; van der Flier, Henk
2008-01-01
Mixture item response theory (IRT) models aid the interpretation of response behavior on personality tests and may provide possibilities for improving prediction. Heterogeneity in the population is modeled by identifying homogeneous subgroups that conform to different measurement models. In this study, mixture IRT models were applied to the…
ERIC Educational Resources Information Center
Koellner, Karen; Jacobs, Jennifer
2015-01-01
We posit that professional development (PD) models fall on a continuum from highly adaptive to highly specified, and that these constructs provide a productive way to characterize and distinguish among models. The study reported here examines the impact of an adaptive mathematics PD model on teachers' knowledge and instructional practices as well…
Hansen, Maj; Hyland, Philip; Karstoft, Karen-Inge; Vaegter, Henrik B.; Bramsen, Rikke H.; Nielsen, Anni B. S.; Armour, Cherie; Andersen, Søren B.; Høybye, Mette Terp; Larsen, Simone Kongshøj; Andersen, Tonny E.
2017-01-01
ABSTRACT Background: Researchers and clinicians within the field of trauma have to choose between different diagnostic descriptions of posttraumatic stress disorder (PTSD) in the DSM-5 and the proposed ICD-11. Several studies support different competing models of the PTSD structure according to both diagnostic systems; however, findings show that the choice of diagnostic systems can affect the estimated prevalence rates. Objectives: The present study aimed to investigate the potential impact of using a large (i.e. the DSM-5) compared to a small (i.e. the ICD-11) diagnostic description of PTSD. In other words, does the size of PTSD really matter? Methods: The aim was investigated by examining differences in diagnostic rates between the two diagnostic systems and independently examining the model fit of the competing DSM-5 and ICD-11 models of PTSD across three trauma samples: university students (N = 4213), chronic pain patients (N = 573), and military personnel (N = 118). Results: Diagnostic rates of PTSD were significantly lower according to the proposed ICD-11 criteria in the university sample, but no significant differences were found for chronic pain patients and military personnel. The proposed ICD-11 three-factor model provided the best fit of the tested ICD-11 models across all samples, whereas the DSM-5 seven-factor Hybrid model provided the best fit in the university and pain samples, and the DSM-5 six-factor Anhedonia model provided the best fit in the military sample of the tested DSM-5 models. Conclusions: The advantages and disadvantages of using a broad or narrow set of symptoms for PTSD can be debated, however, this study demonstrated that choice of diagnostic system may influence the estimated PTSD rates both qualitatively and quantitatively. In the current described diagnostic criteria only the ICD-11 model can reflect the configuration of symptoms satisfactorily. Thus, size does matter when assessing PTSD. PMID:29201287
Hansen, Maj; Hyland, Philip; Karstoft, Karen-Inge; Vaegter, Henrik B; Bramsen, Rikke H; Nielsen, Anni B S; Armour, Cherie; Andersen, Søren B; Høybye, Mette Terp; Larsen, Simone Kongshøj; Andersen, Tonny E
2017-01-01
Background : Researchers and clinicians within the field of trauma have to choose between different diagnostic descriptions of posttraumatic stress disorder (PTSD) in the DSM-5 and the proposed ICD-11. Several studies support different competing models of the PTSD structure according to both diagnostic systems; however, findings show that the choice of diagnostic systems can affect the estimated prevalence rates. Objectives : The present study aimed to investigate the potential impact of using a large (i.e. the DSM-5) compared to a small (i.e. the ICD-11) diagnostic description of PTSD. In other words, does the size of PTSD really matter? Methods: The aim was investigated by examining differences in diagnostic rates between the two diagnostic systems and independently examining the model fit of the competing DSM-5 and ICD-11 models of PTSD across three trauma samples: university students ( N = 4213), chronic pain patients ( N = 573), and military personnel ( N = 118). Results : Diagnostic rates of PTSD were significantly lower according to the proposed ICD-11 criteria in the university sample, but no significant differences were found for chronic pain patients and military personnel. The proposed ICD-11 three-factor model provided the best fit of the tested ICD-11 models across all samples, whereas the DSM-5 seven-factor Hybrid model provided the best fit in the university and pain samples, and the DSM-5 six-factor Anhedonia model provided the best fit in the military sample of the tested DSM-5 models. Conclusions : The advantages and disadvantages of using a broad or narrow set of symptoms for PTSD can be debated, however, this study demonstrated that choice of diagnostic system may influence the estimated PTSD rates both qualitatively and quantitatively. In the current described diagnostic criteria only the ICD-11 model can reflect the configuration of symptoms satisfactorily. Thus, size does matter when assessing PTSD.
Animal Models for the Study of Female Sexual Dysfunction
Marson, Lesley; Giamberardino, Maria Adele; Costantini, Raffaele; Czakanski, Peter; Wesselmann, Ursula
2017-01-01
Introduction Significant progress has been made in elucidating the physiological and pharmacological mechanisms of female sexual function through preclinical animal research. The continued development of animal models is vital for the understanding and treatment of the many diverse disorders that occur in women. Aim To provide an updated review of the experimental models evaluating female sexual function that may be useful for clinical translation. Methods Review of English written, peer-reviewed literature, primarily from 2000 to 2012, that described studies on female sexual behavior related to motivation, arousal, physiological monitoring of genital function and urogenital pain. Main Outcomes Measures Analysis of supporting evidence for the suitability of the animal model to provide measurable indices related to desire, arousal, reward, orgasm, and pelvic pain. Results The development of female animal models has provided important insights in the peripheral and central processes regulating sexual function. Behavioral models of sexual desire, motivation, and reward are well developed. Central arousal and orgasmic responses are less well understood, compared with the physiological changes associated with genital arousal. Models of nociception are useful for replicating symptoms and identifying the neurobiological pathways involved. While in some cases translation to women correlates with the findings in animals, the requirement of circulating hormones for sexual receptivity in rodents and the multifactorial nature of women’s sexual function requires better designed studies and careful analysis. The current models have studied sexual dysfunction or pelvic pain in isolation; combining these aspects would help to elucidate interactions of the pathophysiology of pain and sexual dysfunction. Conclusions Basic research in animals has been vital for understanding the anatomy, neurobiology, and physiological mechanisms underlying sexual function and urogenital pain. These models are important for understanding the etiology of female sexual function and for future development of pharmacological treatments for sexual dysfunctions with or without pain. PMID:27784584
NASA Astrophysics Data System (ADS)
Sornette, Didier; Zhou, Wei-Xing
2006-10-01
Following a long tradition of physicists who have noticed that the Ising model provides a general background to build realistic models of social interactions, we study a model of financial price dynamics resulting from the collective aggregate decisions of agents. This model incorporates imitation, the impact of external news and private information. It has the structure of a dynamical Ising model in which agents have two opinions (buy or sell) with coupling coefficients, which evolve in time with a memory of how past news have explained realized market returns. We study two versions of the model, which differ on how the agents interpret the predictive power of news. We show that the stylized facts of financial markets are reproduced only when agents are overconfident and mis-attribute the success of news to predict return to herding effects, thereby providing positive feedbacks leading to the model functioning close to the critical point. Our model exhibits a rich multifractal structure characterized by a continuous spectrum of exponents of the power law relaxation of endogenous bursts of volatility, in good agreement with previous analytical predictions obtained with the multifractal random walk model and with empirical facts.
A simulation model for probabilistic analysis of Space Shuttle abort modes
NASA Technical Reports Server (NTRS)
Hage, R. T.
1993-01-01
A simulation model which was developed to provide a probabilistic analysis tool to study the various space transportation system abort mode situations is presented. The simulation model is based on Monte Carlo simulation of an event-tree diagram which accounts for events during the space transportation system's ascent and its abort modes. The simulation model considers just the propulsion elements of the shuttle system (i.e., external tank, main engines, and solid boosters). The model was developed to provide a better understanding of the probability of occurrence and successful completion of abort modes during the vehicle's ascent. The results of the simulation runs discussed are for demonstration purposes only, they are not official NASA probability estimates.
SAMICS Validation. SAMICS Support Study, Phase 3
NASA Technical Reports Server (NTRS)
1979-01-01
SAMICS provides a consistent basis for estimating array costs and compares production technology costs. A review and a validation of the SAMICS model are reported. The review had the following purposes: (1) to test the computational validity of the computer model by comparison with preliminary hand calculations based on conventional cost estimating techniques; (2) to review and improve the accuracy of the cost relationships being used by the model: and (3) to provide an independent verification to users of the model's value in decision making for allocation of research and developement funds and for investment in manufacturing capacity. It is concluded that the SAMICS model is a flexible, accurate, and useful tool for managerial decision making.
Path integral for equities: Dynamic correlation and empirical analysis
NASA Astrophysics Data System (ADS)
Baaquie, Belal E.; Cao, Yang; Lau, Ada; Tang, Pan
2012-02-01
This paper develops a model to describe the unequal time correlation between rate of returns of different stocks. A non-trivial fourth order derivative Lagrangian is defined to provide an unequal time propagator, which can be fitted to the market data. A calibration algorithm is designed to find the empirical parameters for this model and different de-noising methods are used to capture the signals concealed in the rate of return. The detailed results of this Gaussian model show that the different stocks can have strong correlation and the empirical unequal time correlator can be described by the model's propagator. This preliminary study provides a novel model for the correlator of different instruments at different times.
Lee, Chang Won; Kwak, N K
2011-04-01
This paper deals with strategic enterprise resource planning (ERP) in a health-care system using a multicriteria decision-making (MCDM) model. The model is developed and analyzed on the basis of the data obtained from a leading patient-oriented provider of health-care services in Korea. Goal criteria and priorities are identified and established via the analytic hierarchy process (AHP). Goal programming (GP) is utilized to derive satisfying solutions for designing, evaluating, and implementing an ERP. The model results are evaluated and sensitivity analyses are conducted in an effort to enhance the model applicability. The case study provides management with valuable insights for planning and controlling health-care activities and services.
Application of conditional moment tests to model checking for generalized linear models.
Pan, Wei
2002-06-01
Generalized linear models (GLMs) are increasingly being used in daily data analysis. However, model checking for GLMs with correlated discrete response data remains difficult. In this paper, through a case study on marginal logistic regression using a real data set, we illustrate the flexibility and effectiveness of using conditional moment tests (CMTs), along with other graphical methods, to do model checking for generalized estimation equation (GEE) analyses. Although CMTs provide an array of powerful diagnostic tests for model checking, they were originally proposed in the econometrics literature and, to our knowledge, have never been applied to GEE analyses. CMTs cover many existing tests, including the (generalized) score test for an omitted covariate, as special cases. In summary, we believe that CMTs provide a class of useful model checking tools.
Three-dimensional cell culture models for investigating human viruses.
He, Bing; Chen, Guomin; Zeng, Yi
2016-10-01
Three-dimensional (3D) culture models are physiologically relevant, as they provide reproducible results, experimental flexibility and can be adapted for high-throughput experiments. Moreover, these models bridge the gap between traditional two-dimensional (2D) monolayer cultures and animal models. 3D culture systems have significantly advanced basic cell science and tissue engineering, especially in the fields of cell biology and physiology, stem cell research, regenerative medicine, cancer research, drug discovery, and gene and protein expression studies. In addition, 3D models can provide unique insight into bacteriology, virology, parasitology and host-pathogen interactions. This review summarizes and analyzes recent progress in human virological research with 3D cell culture models. We discuss viral growth, replication, proliferation, infection, virus-host interactions and antiviral drugs in 3D culture models.
Some considerations on the use of ecological models to predict species' geographic distributions
Peterjohn, B.G.
2001-01-01
Peterson (2001) used Genetic Algorithm for Rule-set Prediction (GARP) models to predict distribution patterns from Breeding Bird Survey (BBS) data. Evaluations of these models should consider inherent limitations of BBS data: (1) BBS methods may not sample species and habitats equally; (2) using BBS data for both model development and testing may overlook poor fit of some models; and (3) BBS data may not provide the desired spatial resolution or capture temporal changes in species distributions. The predictive value of GARP models requires additional study, especially comparisons with distribution patterns from independent data sets. When employed at appropriate temporal and geographic scales, GARP models show considerable promise for conservation biology applications but provide limited inferences concerning processes responsible for the observed patterns.
NASA Astrophysics Data System (ADS)
Tsai, F. T.; Elshall, A. S.; Hanor, J. S.
2012-12-01
Subsurface modeling is challenging because of many possible competing propositions for each uncertain model component. How can we judge that we are selecting the correct proposition for an uncertain model component out of numerous competing propositions? How can we bridge the gap between synthetic mental principles such as mathematical expressions on one hand, and empirical observation such as observation data on the other hand when uncertainty exists on both sides? In this study, we introduce hierarchical Bayesian model averaging (HBMA) as a multi-model (multi-proposition) framework to represent our current state of knowledge and decision for hydrogeological structure modeling. The HBMA framework allows for segregating and prioritizing different sources of uncertainty, and for comparative evaluation of competing propositions for each source of uncertainty. We applied the HBMA to a study of hydrostratigraphy and uncertainty propagation of the Southern Hills aquifer system in the Baton Rouge area, Louisiana. We used geophysical data for hydrogeological structure construction through indictor hydrostratigraphy method and used lithologic data from drillers' logs for model structure calibration. However, due to uncertainty in model data, structure and parameters, multiple possible hydrostratigraphic models were produced and calibrated. The study considered four sources of uncertainties. To evaluate mathematical structure uncertainty, the study considered three different variogram models and two geological stationarity assumptions. With respect to geological structure uncertainty, the study considered two geological structures with respect to the Denham Springs-Scotlandville fault. With respect to data uncertainty, the study considered two calibration data sets. These four sources of uncertainty with their corresponding competing modeling propositions resulted in 24 calibrated models. The results showed that by segregating different sources of uncertainty, HBMA analysis provided insights on uncertainty priorities and propagation. In addition, it assisted in evaluating the relative importance of competing modeling propositions for each uncertain model component. By being able to dissect the uncertain model components and provide weighted representation of the competing propositions for each uncertain model component based on the background knowledge, the HBMA functions as an epistemic framework for advancing knowledge about the system under study.
McGovern, Alice E; Mazzone, Stuart B
2014-12-01
Described in this unit are methods for establishing guinea pig models of asthma. Sufficient detail is provided to enable investigators to study bronchoconstriction, cough, airway hyperresponsiveness, inflammation, and remodeling. Copyright © 2014 John Wiley & Sons, Inc.
Population modeling and its role in toxicological studies
Sauer, John R.; Pendleton, Grey W.; Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John
1995-01-01
A model could be defined as any abstraction from reality that is used to provide some insight into the real system. In this discussion, we will use a more specific definition that a model is a set of rules or assumptions, expressed as mathematical equations, that describe how animals survive and reproduce, including the external factors that affect these characteristics. A model simplifies a system, retaining essential components while eliminating parts that are not of interest. ecology has a rich history of using models to gain insight into populations, often borrowing both model structures and analysis methods from demographers and engineers. Much of the development of the models has been a consequence of mathematicians and physicists seeing simple analogies between their models and patterns in natural systems. Consequently, one major application of ecological modeling has been to emphasize the analysis of dynamics of often complex models to provide insight into theoretical aspects of ecology.1
A climate model projection weighting scheme accounting for performance and interdependence
NASA Astrophysics Data System (ADS)
Knutti, Reto; Sedláček, Jan; Sanderson, Benjamin M.; Lorenz, Ruth; Fischer, Erich M.; Eyring, Veronika
2017-02-01
Uncertainties of climate projections are routinely assessed by considering simulations from different models. Observations are used to evaluate models, yet there is a debate about whether and how to explicitly weight model projections by agreement with observations. Here we present a straightforward weighting scheme that accounts both for the large differences in model performance and for model interdependencies, and we test reliability in a perfect model setup. We provide weighted multimodel projections of Arctic sea ice and temperature as a case study to demonstrate that, for some questions at least, it is meaningless to treat all models equally. The constrained ensemble shows reduced spread and a more rapid sea ice decline than the unweighted ensemble. We argue that the growing number of models with different characteristics and considerable interdependence finally justifies abandoning strict model democracy, and we provide guidance on when and how this can be achieved robustly.
Engineering Large Animal Species to Model Human Diseases.
Rogers, Christopher S
2016-07-01
Animal models are an important resource for studying human diseases. Genetically engineered mice are the most commonly used species and have made significant contributions to our understanding of basic biology, disease mechanisms, and drug development. However, they often fail to recreate important aspects of human diseases and thus can have limited utility as translational research tools. Developing disease models in species more similar to humans may provide a better setting in which to study disease pathogenesis and test new treatments. This unit provides an overview of the history of genetically engineered large animals and the techniques that have made their development possible. Factors to consider when planning a large animal model, including choice of species, type of modification and methodology, characterization, production methods, and regulatory compliance, are also covered. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.
Theoretical models of parental HIV disclosure: a critical review.
Qiao, Shan; Li, Xiaoming; Stanton, Bonita
2013-01-01
This study critically examined three major theoretical models related to parental HIV disclosure (i.e., the Four-Phase Model [FPM], the Disclosure Decision Making Model [DDMM], and the Disclosure Process Model [DPM]), and the existing studies that could provide empirical support to these models or their components. For each model, we briefly reviewed its theoretical background, described its components and/or mechanisms, and discussed its strengths and limitations. The existing empirical studies supported most theoretical components in these models. However, hypotheses related to the mechanisms proposed in the models have not yet tested due to a lack of empirical evidence. This study also synthesized alternative theoretical perspectives and new issues in disclosure research and clinical practice that may challenge the existing models. The current study underscores the importance of including components related to social and cultural contexts in theoretical frameworks, and calls for more adequately designed empirical studies in order to test and refine existing theories and to develop new ones.
Simulating the Interactions Among Land Use, Transportation ...
In most transportation studies, computer models that forecast travel behavior statistics for a future year use static projections of the spatial distribution of future population and employment growth as inputs. As a result, they are unable to account for the temporally dynamic and non-linear interactions among transportation, land use, and socioeconomic systems. System dynamics (SD) provides a common framework for modeling the complex interactions among transportation and other related systems. This study uses a SD model to simulate the cascading impacts of a proposed light rail transit (LRT) system in central North Carolina, USA. The Durham-Orange Light Rail Project (D-O LRP) SD model incorporates relationships among the land use, transportation, and economy sectors to simulate the complex feedbacks that give rise to the travel behavior changes forecasted by the region’s transportation model. This paper demonstrates the sensitivity of changes in travel behavior to the proposed LRT system and the assumptions that went into the transportation modeling, and compares those results to the impacts of an alternative fare-free transit system. SD models such as the D-O LRP SD model can complement transportation studies by providing valuable insight into the interdependent community systems that collectively contribute to travel behavior changes. Presented at the 35th International Conference of the System Dynamics Society in Cambridge, MA, July 18th, 2017
DAMIT: a database of asteroid models
NASA Astrophysics Data System (ADS)
Durech, J.; Sidorin, V.; Kaasalainen, M.
2010-04-01
Context. Apart from a few targets that were directly imaged by spacecraft, remote sensing techniques are the main source of information about the basic physical properties of asteroids, such as the size, the spin state, or the spectral type. The most widely used observing technique - time-resolved photometry - provides us with data that can be used for deriving asteroid shapes and spin states. In the past decade, inversion of asteroid lightcurves has led to more than a hundred asteroid models. In the next decade, when data from all-sky surveys are available, the number of asteroid models will increase. Combining photometry with, e.g., adaptive optics data produces more detailed models. Aims: We created the Database of Asteroid Models from Inversion Techniques (DAMIT) with the aim of providing the astronomical community access to reliable and up-to-date physical models of asteroids - i.e., their shapes, rotation periods, and spin axis directions. Models from DAMIT can be used for further detailed studies of individual objects, as well as for statistical studies of the whole set. Methods: Most DAMIT models were derived from photometric data by the lightcurve inversion method. Some of them have been further refined or scaled using adaptive optics images, infrared observations, or occultation data. A substantial number of the models were derived also using sparse photometric data from astrometric databases. Results: At present, the database contains models of more than one hundred asteroids. For each asteroid, DAMIT provides the polyhedral shape model, the sidereal rotation period, the spin axis direction, and the photometric data used for the inversion. The database is updated when new models are available or when already published models are updated or refined. We have also released the C source code for the lightcurve inversion and for the direct problem (updates and extensions will follow).
Animal models of the non-motor features of Parkinson’s disease
McDowell, Kimberly; Chesselet, Marie-Françoise
2012-01-01
The non-motor symptoms (NMS) of Parkinson’s disease (PD) occur in roughly 90% of patients, have a profound negative impact on their quality of life, and often go undiagnosed. NMS typically involve many functional systems, and include sleep disturbances, neuropsychiatric and cognitive deficits, and autonomic and sensory dysfunction. The development and use of animal models have provided valuable insight into the classical motor symptoms of PD over the past few decades. Toxin-induced models provide a suitable approach to study aspects of the disease that derive from the loss of nigrostriatal dopaminergic neurons, a cardinal feature of PD. This also includes some NMS, primarily cognitive dysfunction. However, several NMS poorly respond to dopaminergic treatments, suggesting that they may be due to other pathologies. Recently developed genetic models of PD are providing new ways to model these NMS and identify their mechanisms. This review summarizes the current available literature on the ability of both toxin-induced and genetically-based animal models to reproduce the NMS of PD. PMID:22236386
A case study of a team-based, quality-focused compensation model for primary care providers.
Greene, Jessica; Hibbard, Judith H; Overton, Valerie
2014-06-01
In 2011, Fairview Health Services began replacing their fee-for-service compensation model for primary care providers (PCPs), which included an annual pay-for-performance bonus, with a team-based model designed to improve quality of care, patient experience, and (eventually) cost containment. In-depth interviews and an online survey of PCPs early after implementation of the new model suggest that it quickly changed the way many PCPs practiced. Most PCPs reported a shift in orientation toward quality of care, working more collaboratively with their colleagues and focusing on their full panel of patients. The majority reported that their quality of care had improved because of the model and that their colleagues' quality had to. The comprehensive change did, however, result in lower fee-for-service billing and reductions in PCP satisfaction. While Fairview's compensation model is still a work in progress, their early experiences can provide lessons for other delivery systems seeking to reform PCP compensation.
Global Coupled Carbon and Nitrogen Models: Successes, Failures and What next?
NASA Astrophysics Data System (ADS)
Holland, E. A.
2011-12-01
Over the last few years, there has been a great deal of progress in modeling coupled terrestrial global carbon and nitrogen cycles and their roles in Earth System models. The collection of recent models provides some surprising results and insights. A critical question for Earth system models is: How do the coupled C/N model results impact atmospheric carbon dioxide concentrations compared to carbon only models? Some coupled models predict increased atmospheric carbon dioxide concentrations, the result expected from nitrogen-limited photosynthesis uptake of carbon dioxide, while others predict little change or decreased carbon dioxide uptake with a coupled carbon and nitrogen cycle. With this range of impacts for climate critical atmospheric carbon dioxide concentrations, there is clearly a need for additional comparison of measurements and models. Randerson et al.'s CLAMP study provided important constraints and comparison for primarily for aboveground carbon uptake. However, nitrogen supply is largely determined decomposition and soil processes. I will present comparisons of NCAR's CESM results with soil and litter carbon and nitrogen fluxes and standing stocks. These belowground data sets of both carbon and nitrogen provide important benchmarks for coupled C/N models.
Imputation approaches for animal movement modeling
Scharf, Henry; Hooten, Mevin B.; Johnson, Devin S.
2017-01-01
The analysis of telemetry data is common in animal ecological studies. While the collection of telemetry data for individual animals has improved dramatically, the methods to properly account for inherent uncertainties (e.g., measurement error, dependence, barriers to movement) have lagged behind. Still, many new statistical approaches have been developed to infer unknown quantities affecting animal movement or predict movement based on telemetry data. Hierarchical statistical models are useful to account for some of the aforementioned uncertainties, as well as provide population-level inference, but they often come with an increased computational burden. For certain types of statistical models, it is straightforward to provide inference if the latent true animal trajectory is known, but challenging otherwise. In these cases, approaches related to multiple imputation have been employed to account for the uncertainty associated with our knowledge of the latent trajectory. Despite the increasing use of imputation approaches for modeling animal movement, the general sensitivity and accuracy of these methods have not been explored in detail. We provide an introduction to animal movement modeling and describe how imputation approaches may be helpful for certain types of models. We also assess the performance of imputation approaches in two simulation studies. Our simulation studies suggests that inference for model parameters directly related to the location of an individual may be more accurate than inference for parameters associated with higher-order processes such as velocity or acceleration. Finally, we apply these methods to analyze a telemetry data set involving northern fur seals (Callorhinus ursinus) in the Bering Sea. Supplementary materials accompanying this paper appear online.
An object-oriented computational model to study cardiopulmonary hemodynamic interactions in humans.
Ngo, Chuong; Dahlmanns, Stephan; Vollmer, Thomas; Misgeld, Berno; Leonhardt, Steffen
2018-06-01
This work introduces an object-oriented computational model to study cardiopulmonary interactions in humans. Modeling was performed in object-oriented programing language Matlab Simscape, where model components are connected with each other through physical connections. Constitutive and phenomenological equations of model elements are implemented based on their non-linear pressure-volume or pressure-flow relationship. The model includes more than 30 physiological compartments, which belong either to the cardiovascular or respiratory system. The model considers non-linear behaviors of veins, pulmonary capillaries, collapsible airways, alveoli, and the chest wall. Model parameters were derisved based on literature values. Model validation was performed by comparing simulation results with clinical and animal data reported in literature. The model is able to provide quantitative values of alveolar, pleural, interstitial, aortic and ventricular pressures, as well as heart and lung volumes during spontaneous breathing and mechanical ventilation. Results of baseline simulation demonstrate the consistency of the assigned parameters. Simulation results during mechanical ventilation with PEEP trials can be directly compared with animal and clinical data given in literature. Object-oriented programming languages can be used to model interconnected systems including model non-linearities. The model provides a useful tool to investigate cardiopulmonary activity during spontaneous breathing and mechanical ventilation. Copyright © 2018 Elsevier B.V. All rights reserved.
Berzins, Tiffany L.; Garcia, Antonio F.; Acosta, Melina; Osman, Augustine
2017-01-01
Two instrument validation studies broadened the research literature exploring the factor structure, internal consistency reliability, and concurrent validity of scores on the Social Anxiety and Depression Life Interference—24 Inventory (SADLI-24; Osman, Bagge, Freedenthal, Guiterrez, & Emmerich, 2011). Study 1 (N = 1065) was undertaken to concurrently appraise three competing factor models for the instrument: a unidimensional model, a two-factor oblique model and a bifactor model. The bifactor model provided the best fit to the study sample data. Study 2 (N = 220) extended the results from Study 1 with an investigation of the convergent and discriminant validity for the bifactor model of the SADLI-24 with multiple regression analyses and scale-level exploratory structural equation modeling. This project yields data that augments the initial instrument development investigations for the target measure. PMID:28781401
A Bayesian Approach Based Outage Prediction in Electric Utility Systems Using Radar Measurement Data
Yue, Meng; Toto, Tami; Jensen, Michael P.; ...
2017-05-18
Severe weather events such as strong thunderstorms are some of the most significant and frequent threats to the electrical grid infrastructure. Outages resulting from storms can be very costly. While some tools are available to utilities to predict storm occurrences and damage, they are typically very crude and provide little means of facilitating restoration efforts. This study developed a methodology to use historical high-resolution (both temporal and spatial) radar observations of storm characteristics and outage information to develop weather condition dependent failure rate models (FRMs) for different grid components. Such models can provide an estimation or prediction of the outagemore » numbers in small areas of a utility’s service territory once the real-time measurement or forecasted data of weather conditions become available as the input to the models. Considering the potential value provided by real-time outages reported, a Bayesian outage prediction (BOP) algorithm is proposed to account for both strength and uncertainties of the reported outages and failure rate models. The potential benefit of this outage prediction scheme is illustrated in this study.« less
A Bayesian Approach Based Outage Prediction in Electric Utility Systems Using Radar Measurement Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Meng; Toto, Tami; Jensen, Michael P.
Severe weather events such as strong thunderstorms are some of the most significant and frequent threats to the electrical grid infrastructure. Outages resulting from storms can be very costly. While some tools are available to utilities to predict storm occurrences and damage, they are typically very crude and provide little means of facilitating restoration efforts. This study developed a methodology to use historical high-resolution (both temporal and spatial) radar observations of storm characteristics and outage information to develop weather condition dependent failure rate models (FRMs) for different grid components. Such models can provide an estimation or prediction of the outagemore » numbers in small areas of a utility’s service territory once the real-time measurement or forecasted data of weather conditions become available as the input to the models. Considering the potential value provided by real-time outages reported, a Bayesian outage prediction (BOP) algorithm is proposed to account for both strength and uncertainties of the reported outages and failure rate models. The potential benefit of this outage prediction scheme is illustrated in this study.« less
The future of community nursing: Hospital in the Home.
Lee, Gerry; Pickstone, Nicola; Facultad, Jose; Titchener, Karen
2017-04-02
With an increasing ageing population who often have multiple long-term conditions, there is a growing need to provide an alternative type of care to the traditional hospital-based model. 'Hospital in the Home' is a model that provides integrated care for patients in their home. The @home service was established in 2013 by Guy's and St Thomas' NHS Foundation Trust. The service provides health care in patients' home, supporting early discharge from hospital as well as preventing avoidable admissions and readmissions saving valuable hospital bed days and reducing length of stay. This article describes the service available with the use of a case study of a 78-year-old lady who was referred by the London Ambulance Service with exacerbation of chronic obstructive pulmonary disease (COPD). This case study highlights the ability to assess, treat and manage an acutely unwell patient with newly diagnosed heart failure in the community without the need for hospitalisation. This type of integrated care model with a multidisciplinary team is a feasible alternative to the traditional models of care in both the acute and community settings.
The joint effect of mesoscale and microscale roughness on perceived gloss.
Qi, Lin; Chantler, Mike J; Siebert, J Paul; Dong, Junyu
2015-10-01
Computer simulated stimuli can provide a flexible method for creating artificial scenes in the study of visual perception of material surface properties. Previous work based on this approach reported that the properties of surface roughness and glossiness are mutually interdependent and therefore, perception of one affects the perception of the other. In this case roughness was limited to a surface property termed bumpiness. This paper reports a study into how perceived gloss varies with two model parameters related to surface roughness in computer simulations: the mesoscale roughness parameter in a surface geometry model and the microscale roughness parameter in a surface reflectance model. We used a real-world environment map to provide complex illumination and a physically-based path tracer for rendering the stimuli. Eight observers took part in a 2AFC experiment, and the results were tested against conjoint measurement models. We found that although both of the above roughness parameters significantly affect perceived gloss, the additive model does not adequately describe their mutually interactive and nonlinear influence, which is at variance with previous findings. We investigated five image properties used to quantify specular highlights, and found that perceived gloss is well predicted using a linear model. Our findings provide computational support to the 'statistical appearance models' proposed recently for material perception. Copyright © 2015 Elsevier Ltd. All rights reserved.
Linking neuroscience with modern concepts of impulse control disorders in Parkinson’s disease
Napier, T. Celeste; Corvol, Jean-Christophe; Grace, Anthony A.; Roitman, Jamie D.; Rowe, James; Voon, Valerie; Strafella, Antonio P.
2014-01-01
Patients with Parkinson’s disease (PD) may experience impulse control disorders (ICDs) when on dopamine agonist therapy for their motor symptoms. In the last few years, there has been a rapid growth of interest for the recognition of these aberrant behaviors and their neurobiological correlates. Recent advances in neuroimaging are helping to identify the neuroanatomical networks responsible for these ICDs, and together with psychopharmacological assessments are providing new insights into the brain status of impulsive behavior. The genetic associations that may be unique to ICDs in PD are also being identified. Complementing human studies, electrophysiological and biochemical studies in animal models are providing insights into neuropathological mechanisms associated with these disorders. New animal models of ICDs in PD patients are being implemented that should provide critical means to identify efficacious therapies for PD-related motor deficits while avoiding ICD side effects. Here, we provide an overview of these recent advances, with a particular emphasis on the neurobiological correlates reported in animal models and patients along with their genetic underpinnings. PMID:25476402
David, Hamilton P; Carey, Cayelan C.; Arvola, Lauri; Arzberger, Peter; Brewer, Carol A.; Cole, Jon J; Gaiser, Evelyn; Hanson, Paul C.; Ibelings, Bas W; Jennings, Eleanor; Kratz, Tim K; Lin, Fang-Pang; McBride, Christopher G.; de Motta Marques, David; Muraoka, Kohji; Nishri, Ami; Qin, Boqiang; Read, Jordan S.; Rose, Kevin C.; Ryder, Elizabeth; Weathers, Kathleen C.; Zhu, Guangwei; Trolle, Dennis; Brookes, Justin D
2014-01-01
A Global Lake Ecological Observatory Network (GLEON; www.gleon.org) has formed to provide a coordinated response to the need for scientific understanding of lake processes, utilising technological advances available from autonomous sensors. The organisation embraces a grassroots approach to engage researchers from varying disciplines, sites spanning geographic and ecological gradients, and novel sensor and cyberinfrastructure to synthesise high-frequency lake data at scales ranging from local to global. The high-frequency data provide a platform to rigorously validate process- based ecological models because model simulation time steps are better aligned with sensor measurements than with lower-frequency, manual samples. Two case studies from Trout Bog, Wisconsin, USA, and Lake Rotoehu, North Island, New Zealand, are presented to demonstrate that in the past, ecological model outputs (e.g., temperature, chlorophyll) have been relatively poorly validated based on a limited number of directly comparable measurements, both in time and space. The case studies demonstrate some of the difficulties of mapping sensor measurements directly to model state variable outputs as well as the opportunities to use deviations between sensor measurements and model simulations to better inform process understanding. Well-validated ecological models provide a mechanism to extrapolate high-frequency sensor data in space and time, thereby potentially creating a fully 3-dimensional simulation of key variables of interest.
Dynamic modeling of neuronal responses in fMRI using cubature Kalman filtering
Havlicek, Martin; Friston, Karl J.; Jan, Jiri; Brazdil, Milan; Calhoun, Vince D.
2011-01-01
This paper presents a new approach to inverting (fitting) models of coupled dynamical systems based on state-of-the-art (cubature) Kalman filtering. Crucially, this inversion furnishes posterior estimates of both the hidden states and parameters of a system, including any unknown exogenous input. Because the underlying generative model is formulated in continuous time (with a discrete observation process) it can be applied to a wide variety of models specified with either ordinary or stochastic differential equations. These are an important class of models that are particularly appropriate for biological time-series, where the underlying system is specified in terms of kinetics or dynamics (i.e., dynamic causal models). We provide comparative evaluations with generalized Bayesian filtering (dynamic expectation maximization) and demonstrate marked improvements in accuracy and computational efficiency. We compare the schemes using a series of difficult (nonlinear) toy examples and conclude with a special focus on hemodynamic models of evoked brain responses in fMRI. Our scheme promises to provide a significant advance in characterizing the functional architectures of distributed neuronal systems, even in the absence of known exogenous (experimental) input; e.g., resting state fMRI studies and spontaneous fluctuations in electrophysiological studies. Importantly, unlike current Bayesian filters (e.g. DEM), our scheme provides estimates of time-varying parameters, which we will exploit in future work on the adaptation and enabling of connections in the brain. PMID:21396454
Validation of Model Forecasts of the Ambient Solar Wind
NASA Technical Reports Server (NTRS)
Macneice, P. J.; Hesse, M.; Kuznetsova, M. M.; Rastaetter, L.; Taktakishvili, A.
2009-01-01
Independent and automated validation is a vital step in the progression of models from the research community into operational forecasting use. In this paper we describe a program in development at the CCMC to provide just such a comprehensive validation for models of the ambient solar wind in the inner heliosphere. We have built upon previous efforts published in the community, sharpened their definitions, and completed a baseline study. We also provide first results from this program of the comparative performance of the MHD models available at the CCMC against that of the Wang-Sheeley-Arge (WSA) model. An important goal of this effort is to provide a consistent validation to all available models. Clearly exposing the relative strengths and weaknesses of the different models will enable forecasters to craft more reliable ensemble forecasting strategies. Models of the ambient solar wind are developing rapidly as a result of improvements in data supply, numerical techniques, and computing resources. It is anticipated that in the next five to ten years, the MHD based models will supplant semi-empirical potential based models such as the WSA model, as the best available forecast models. We anticipate that this validation effort will track this evolution and so assist policy makers in gauging the value of past and future investment in modeling support.
Loerbroks, Adrian; Cho, Sung-Il; Dollard, Maureen F; Zou, Jianfang; Fischer, Joachim E; Jiang, Yueying; Angerer, Peter; Herr, Raphael M; Li, Jian
2016-11-01
Epidemiological evidence suggests that work stress is associated with suicidal ideation (SI). However, only few studies in this area have drawn on well-established theoretical work stress models (i.e., the job-demand-control [JDC] model, the effort-reward-imbalance [ERI] model, and the model of organizational injustice [OJ]). Utilization of such models allows though for theory-based assessments and workplace interventions. Since evidence on those models' relationship with suicide-related outcomes is currently inconclusive (with regard to JDC), markedly sparse (OJ) or lacking (ERI), we aimed to provide additional or initial evidence. We drew on original data from six cross-sectional studies, which were conducted in four countries (i.e., South Korea, China, Australia, and Germany). Work stress was measured by established questionnaires and was categorized into tertiles. In each study, SI was assessed by either one or two items taken from validated scales. Associations of work stress with SI were estimated for each study and were pooled across studies using multivariate random-effects logistic modeling. In the pooled analyses (n=12,422) all three work stress models were significantly associated with SI with odds ratios fluctuating around 2. For instance, the pooled odds ratios for highest versus lowest work stress exposure in terms of job strain, OJ, and ERI equalled 1.91 (95% confidence interval [CI]=1.52, 2.41), 1.98 (95% CI=1.48, 2.65), and 2.77 (95% CI=1.57, 4.88), respectively. Patterns of associations were largely consistent across the individual studies. Our study provides robust evidence of a positive association between work stress and SI. Copyright © 2016 Elsevier Inc. All rights reserved.
Use of Network Inference to Elucidate Common and Chemical-specific Effects on Steoidogenesis
Microarray data is a key source for modeling gene regulatory interactions. Regulatory network models based on multiple datasets are potentially more robust and can provide greater confidence. In this study, we used network modeling on microarray data generated by exposing the fat...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, J.; Lacava, W.; Austin, J.
2015-02-01
This work investigates the minimum level of fidelity required to accurately simulate wind turbine gearboxes using state-of-the-art design tools. Excessive model fidelity including drivetrain complexity, gearbox complexity, excitation sources, and imperfections, significantly increases computational time, but may not provide a commensurate increase in the value of the results. Essential designparameters are evaluated, including the planetary load-sharing factor, gear tooth load distribution, and sun orbit motion. Based on the sensitivity study results, recommendations for the minimum model fidelities are provided.
The Value of SysML Modeling During System Operations: A Case Study
NASA Technical Reports Server (NTRS)
Dutenhoffer, Chelsea; Tirona, Joseph
2013-01-01
System models are often touted as engineering tools that promote better understanding of systems, but these models are typically created during system design. The Ground Data System (GDS) team for the Dawn spacecraft took on a case study to see if benefits could be achieved by starting a model of a system already in operations. This paper focuses on the four steps the team undertook in modeling the Dawn GDS: defining a model structure, populating model elements, verifying that the model represented reality, and using the model to answer system-level questions and simplify day-to-day tasks. Throughout this paper the team outlines our thought processes and the system insights the model provided.
The value of SysML modeling during system operations: A case study
NASA Astrophysics Data System (ADS)
Dutenhoffer, C.; Tirona, J.
System models are often touted as engineering tools that promote better understanding of systems, but these models are typically created during system design. The Ground Data System (GDS) team for the Dawn spacecraft took on a case study to see if benefits could be achieved by starting a model of a system already in operations. This paper focuses on the four steps the team undertook in modeling the Dawn GDS: defining a model structure, populating model elements, verifying that the model represented reality, and using the model to answer system-level questions and simplify day-to-day tasks. Throughout this paper the team outlines our thought processes and the system insights the model provided.
Chen, Yufeng; He, Rong; Chen, Yihua; D'Annibale, Melissa A; Langley, Brett; Kozikowski, Alan P
2009-05-01
We compare three structurally different classes of histone deacetylase (HDAC) inhibitors that contain benzamide, hydroxamate, or thiol groups as the zinc binding group (ZBG) for their ability to protect cortical neurons in culture from cell death induced by oxidative stress. This study reveals that none of the benzamide-based HDAC inhibitors (HDACIs) provides any neuroprotection whatsoever, in distinct contrast to HDACIs that contain other ZBGs. Some of the sulfur-containing HDACIs, namely the thiols, thioesters, and disulfides present modest neuroprotective activity but show toxicity at higher concentrations. Taken together, these data demonstrate that the HDAC6-selective mercaptoacetamides that were reported previously provide the best protection in the homocysteic acid model of oxidative stress, thus further supporting their study in animal models of neurodegenerative diseases.
Ocular hemodynamics and glaucoma: the role of mathematical modeling.
Harris, Alon; Guidoboni, Giovanna; Arciero, Julia C; Amireskandari, Annahita; Tobe, Leslie A; Siesky, Brent A
2013-01-01
To discuss the role of mathematical modeling in studying ocular hemodynamics, with a focus on glaucoma. We reviewed recent literature on glaucoma, ocular blood flow, autoregulation, the optic nerve head, and the use of mathematical modeling in ocular circulation. Many studies suggest that alterations in ocular hemodynamics play a significant role in the development, progression, and incidence of glaucoma. Although there is currently a limited number of studies involving mathematical modeling of ocular blood flow, regulation, and diseases (such as glaucoma), preliminary modeling work shows the potential of mathematical models to elucidate the mechanisms that contribute most significantly to glaucoma progression. Mathematical modeling is a useful tool when used synergistically with clinical and laboratory data in the study of ocular blood flow and glaucoma. The development of models to investigate the relationship between ocular hemodynamic alterations and glaucoma progression will provide a unique and useful method for studying the pathophysiology of glaucoma.
Culturicon model: A new model for cultural-based emoticon
NASA Astrophysics Data System (ADS)
Zukhi, Mohd Zhafri Bin Mohd; Hussain, Azham
2017-10-01
Emoticons are popular among distributed collective interaction user in expressing their emotion, gestures and actions. Emoticons have been proved to be able to avoid misunderstanding of the message, attention saving and improved the communications among different native speakers. However, beside the benefits that emoticons can provide, the study regarding emoticons in cultural perspective is still lacking. As emoticons are crucial in global communication, culture should be one of the extensively research aspect in distributed collective interaction. Therefore, this study attempt to explore and develop model for cultural-based emoticon. Three cultural models that have been used in Human-Computer Interaction were studied which are the Hall Culture Model, Trompenaars and Hampden Culture Model and Hofstede Culture Model. The dimensions from these three models will be used in developing the proposed cultural-based emoticon model.
van Vught, Anneke J. A. H.; Peters, Yvonne A. S.; Meermans, Geert; Peute, Joseph G. M.; Postma, Cornelis. T.; Smit, P. Casper; Verdaasdonk, Emiel; de Vries Reilingh, Tammo S.; Wensing, Michel; Laurant, Miranda G. H.
2017-01-01
Background Medical care for admitted patients in hospitals is increasingly reallocated to physician assistants (PAs). There is limited evidence about the consequences for the quality and safety of care. This study aimed to determine the effects of substitution of inpatient care from medical doctors (MDs) to PAs on patients’ length of stay (LOS), quality and safety of care, and patient experiences with the provided care. Methods In a multicenter matched-controlled study, the traditional model in which only MDs are employed for inpatient care (MD model) was compared with a mixed model in which besides MDs also PAs are employed (PA/MD model). Thirty-four wards were recruited across the Netherlands. Patients were followed from admission till one month after discharge. Primary outcome measure was patients’ LOS. Secondary outcomes concerned eleven indicators for quality and safety of inpatient care and patients’ experiences with the provided care. Results Data on 2,307 patients from 34 hospital wards was available. The involvement of PAs was not significantly associated with LOS (β 1.20, 95%CI 0.99–1.40, p = .062). None of the indicators for quality and safety of care were different between study arms. However, the involvement of PAs was associated with better experiences of patients (β 0.49, 95% CI 0.22–0.76, p = .001). Conclusions This study did not find differences regarding LOS and quality of care between wards on which PAs, in collaboration with MDs, provided medical care for the admitted patients, and wards on which only MDs provided medical care. Employing PAs seems to be safe and seems to lead to better patient experiences. Trial registration ClinicalTrials.gov Identifier: NCT01835444 PMID:28793317
Human immune system mouse models of Ebola virus infection.
Spengler, Jessica R; Prescott, Joseph; Feldmann, Heinz; Spiropoulou, Christina F
2017-08-01
Human immune system (HIS) mice, immunodeficient mice engrafted with human cells (with or without donor-matched tissue), offer a unique opportunity to study pathogens that cause disease predominantly or exclusively in humans. Several HIS mouse models have recently been used to study Ebola virus (EBOV) infection and disease. The results of these studies are encouraging and support further development and use of these models in Ebola research. HIS mice provide a small animal model to study EBOV isolates, investigate early viral interactions with human immune cells, screen vaccines and therapeutics that modulate the immune system, and investigate sequelae in survivors. Here we review existing models, discuss their use in pathogenesis studies and therapeutic screening, and highlight considerations for study design and analysis. Finally, we point out caveats to current models, and recommend future efforts for modeling EBOV infection in HIS mice. Published by Elsevier B.V.
Estimating parameters of hidden Markov models based on marked individuals: use of robust design data
Kendall, William L.; White, Gary C.; Hines, James E.; Langtimm, Catherine A.; Yoshizaki, Jun
2012-01-01
Development and use of multistate mark-recapture models, which provide estimates of parameters of Markov processes in the face of imperfect detection, have become common over the last twenty years. Recently, estimating parameters of hidden Markov models, where the state of an individual can be uncertain even when it is detected, has received attention. Previous work has shown that ignoring state uncertainty biases estimates of survival and state transition probabilities, thereby reducing the power to detect effects. Efforts to adjust for state uncertainty have included special cases and a general framework for a single sample per period of interest. We provide a flexible framework for adjusting for state uncertainty in multistate models, while utilizing multiple sampling occasions per period of interest to increase precision and remove parameter redundancy. These models also produce direct estimates of state structure for each primary period, even for the case where there is just one sampling occasion. We apply our model to expected value data, and to data from a study of Florida manatees, to provide examples of the improvement in precision due to secondary capture occasions. We also provide user-friendly software to implement these models. This general framework could also be used by practitioners to consider constrained models of particular interest, or model the relationship between within-primary period parameters (e.g., state structure) and between-primary period parameters (e.g., state transition probabilities).
Graceful Failure and Societal Resilience Analysis Via Agent-Based Modeling and Simulation
NASA Astrophysics Data System (ADS)
Schopf, P. S.; Cioffi-Revilla, C.; Rogers, J. D.; Bassett, J.; Hailegiorgis, A. B.
2014-12-01
Agent-based social modeling is opening up new methodologies for the study of societal response to weather and climate hazards, and providing measures of resiliency that can be studied in many contexts, particularly in coupled human and natural-technological systems (CHANTS). Since CHANTS are complex adaptive systems, societal resiliency may or may not occur, depending on dynamics that lack closed form solutions. Agent-based modeling has been shown to provide a viable theoretical and methodological approach for analyzing and understanding disasters and societal resiliency in CHANTS. Our approach advances the science of societal resilience through computational modeling and simulation methods that complement earlier statistical and mathematical approaches. We present three case studies of social dynamics modeling that demonstrate the use of these agent based models. In Central Asia, we exmaine mutltiple ensemble simulations with varying climate statistics to see how droughts and zuds affect populations, transmission of wealth across generations, and the overall structure of the social system. In Eastern Africa, we explore how successive episodes of drought events affect the adaptive capacity of rural households. Human displacement, mainly, rural to urban migration, and livelihood transition particularly from pastoral to farming are observed as rural households interacting dynamically with the biophysical environment and continually adjust their behavior to accommodate changes in climate. In the far north case we demonstrate one of the first successful attempts to model the complete climate-permafrost-infrastructure-societal interaction network as a complex adaptive system/CHANTS implemented as a ``federated'' agent-based model using evolutionary computation. Analysis of population changes resulting from extreme weather across these and other cases provides evidence for the emergence of new steady states and shifting patterns of resilience.
Modeling of high‐frequency seismic‐wave scattering and propagation using radiative transfer theory
Zeng, Yuehua
2017-01-01
This is a study of the nonisotropic scattering process based on radiative transfer theory and its application to the observation of the M 4.3 aftershock recording of the 2008 Wells earthquake sequence in Nevada. Given a wide range of recording distances from 29 to 320 km, the data provide a unique opportunity to discriminate scattering models based on their distance‐dependent behaviors. First, we develop a stable numerical procedure to simulate nonisotropic scattering waves based on the 3D nonisotropic scattering theory proposed by Sato (1995). By applying the simulation method to the inversion of M 4.3 Wells aftershock recordings, we find that a nonisotropic scattering model, dominated by forward scattering, provides the best fit to the observed high‐frequency direct S waves and S‐wave coda velocity envelopes. The scattering process is governed by a Gaussian autocorrelation function, suggesting a Gaussian random heterogeneous structure for the Nevada crust. The model successfully explains the common decay of seismic coda independent of source–station locations as a result of energy leaking from multiple strong forward scattering, instead of backscattering governed by the diffusion solution at large lapse times. The model also explains the pulse‐broadening effect in the high‐frequency direct and early arriving S waves, as other studies have found, and could be very important to applications of high‐frequency wave simulation in which scattering has a strong effect. We also find that regardless of its physical implications, the isotropic scattering model provides the same effective scattering coefficient and intrinsic attenuation estimates as the forward scattering model, suggesting that the isotropic scattering model is still a viable tool for the study of seismic scattering and intrinsic attenuation coefficients in the Earth.
Scaling Pharmacodynamics from In Vitro and Preclinical Animal Studies to Humans
Mager, Donald E.; Woo, Sukyung; Jusko, William J.
2013-01-01
Summary An important feature of mechanism-based pharmacokinetic/pharmacodynamic (PK/PD) models is the identification of drug- and system-specific factors that determine the intensity and time-course of pharmacological effects. This provides an opportunity to integrate information obtained from in vitro bioassays and preclinical pharmacological studies in animals to anticipate the clinical and adverse responses to drugs in humans. The fact that contemporary PK/PD modeling continues to evolve and seeks to emulate systems level properties should provide enhanced capabilities to scale-up pharmacodynamic data. Critical steps in drug discovery and development, such as lead compound and first in human dose selection, may become more efficient with the implementation and further refinement of translational PK/PD modeling. In this review, we highlight fundamental principles in pharmacodynamics and the basic expectations for in vitro bioassays and traditional allometric scaling in PK/PD modeling. Discussion of PK/PD modeling efforts for recombinant human erythropoietin is also included as a case study showing the potential for advanced systems analysis to facilitate extrapolations and improve understanding of inter-species differences in drug responses. PMID:19252333
Ionosphere research with a HF/MF cubesat radio instrument
NASA Astrophysics Data System (ADS)
Kallio, Esa; Aikio, Anita; Alho, Markku; Fontell, Mathias; Harri, Ari-Matti; Kauristie, Kirsti; Kestilä, Antti; Koskimaa, Petri; Mäkelä, Jakke; Mäkelä, Miika; Turunen, Esa; Vanhamäki, Heikki; Verronen, Pekka
2017-04-01
New technology provides new possibilities to study geospace and 3D ionosphere by using spacecraft and computer simulations. A type of nanosatellites, CubeSats, provide a cost effective possibility to provide in-situ measurements in the ionosphere. Moreover, combined CubeSat observations with ground-based observations gives a new view on auroras and associated electromagnetic phenomena. Especially joint and active CubeSat - ground based observation campaigns enable the possibility of studying the 3D structure of the ionosphere. Furthermore using several CubeSats to form satellite constellations enables much higher temporal resolution. At the same time, increasing computation capacity has made it possible to perform simulations where properties of the ionosphere, such as propagation of the electromagnetic waves in the medium frequency, MF (0.3-3 MHz) and high frequency, HF (3-30 MHz), ranges is based on a 3D ionospheric model and on first-principles modelling. Electromagnetic waves at those frequencies are strongly affected by ionospheric electrons and, consequently, those frequencies can be used for studying the plasma. On the other hand, even if the ionosphere originally enables long-range telecommunication at MF and HF frequencies, the frequent occurrence of spatiotemporal variations in the ionosphere disturbs communication channels, especially at high latitudes. Therefore, study of the MF and HF waves in the ionosphere has both a strong science and technology interests. We introduce recently developed simulation models as well as measuring principles and techniques to investigate the arctic ionosphere by a polar orbiting CubeSat whose novel AM radio instrument measures HF and MF waves. The cubesat, which contains also a white light aurora camera, is planned to be launched in late 2017 (http://www.suomi100satelliitti.fi/eng). The new models are (1) a 3D ray tracing model and (2) a 3D full kinetic electromagnetic simulation. We also introduce how combining of the cubesat measurements to ground based measurements provides new research possibilities to study 3D ionosphere.
NASA Astrophysics Data System (ADS)
Clark, Martyn; Essery, Richard
2017-04-01
When faced with the complex and interdisciplinary challenge of building process-based land models, different modelers make different decisions at different points in the model development process. These modeling decisions are generally based on several considerations, including fidelity (e.g., what approaches faithfully simulate observed processes), complexity (e.g., which processes should be represented explicitly), practicality (e.g., what is the computational cost of the model simulations; are there sufficient resources to implement the desired modeling concepts), and data availability (e.g., is there sufficient data to force and evaluate models). Consequently the research community, comprising modelers of diverse background, experience, and modeling philosophy, has amassed a wide range of models, which differ in almost every aspect of their conceptualization and implementation. Model comparison studies have been undertaken to explore model differences, but have not been able to meaningfully attribute inter-model differences in predictive ability to individual model components because there are often too many structural and implementation differences among the different models considered. As a consequence, model comparison studies to date have provided limited insight into the causes of differences in model behavior, and model development has often relied on the inspiration and experience of individual modelers rather than on a systematic analysis of model shortcomings. This presentation will summarize the use of "multiple-hypothesis" modeling frameworks to understand differences in process-based snow models. Multiple-hypothesis frameworks define a master modeling template, and include a a wide variety of process parameterizations and spatial configurations that are used in existing models. Such frameworks provide the capability to decompose complex models into the individual decisions that are made as part of model development, and evaluate each decision in isolation. It is hence possible to attribute differences in system-scale model predictions to individual modeling decisions, providing scope to mimic the behavior of existing models, understand why models differ, characterize model uncertainty, and identify productive pathways to model improvement. Results will be presented applying multiple hypothesis frameworks to snow model comparison projects, including PILPS, SnowMIP, and the upcoming ESM-SnowMIP project.
Cognitive Support During High-Consequence Episodes of Care in Cardiovascular Surgery.
Conboy, Heather M; Avrunin, George S; Clarke, Lori A; Osterweil, Leon J; Christov, Stefan C; Goldman, Julian M; Yule, Steven J; Zenati, Marco A
2017-03-01
Despite significant efforts to reduce preventable adverse events in medical processes, such events continue to occur at unacceptable rates. This paper describes a computer science approach that uses formal process modeling to provide situationally aware monitoring and management support to medical professionals performing complex processes. These process models represent both normative and non-normative situations, and are validated by rigorous automated techniques such as model checking and fault tree analysis, in addition to careful review by experts. Context-aware Smart Checklists are then generated from the models, providing cognitive support during high-consequence surgical episodes. The approach is illustrated with a case study in cardiovascular surgery.
Bittencourt-Silva, Gabriela B; Lawson, Lucinda P; Tolley, Krystal A; Portik, Daniel M; Barratt, Christopher D; Nagel, Peter; Loader, Simon P
2017-09-01
Ecological niche models (ENMs) have been used in a wide range of ecological and evolutionary studies. In biogeographic studies these models have, among other things, helped in the discovery of new allopatric populations, and even new species. However, small sample sizes and questionable taxonomic delimitation can challenge models, often decreasing their accuracy. Herein we examine the sensitivity of ENMs to the addition of new, geographically isolated populations, and the impact of applying different taxonomic delimitations. The East African reed frog Hyperolius substriatus Ahl, 1931 was selected as a case study because it has been the subject of previous ENM predictions. Our results suggest that addition of new data and reanalysis of species lineages of H. substriatus improved our understanding of the evolutionary history of this group of frogs. ENMs provided robust predictions, even when some populations were deliberately excluded from the models. Splitting the lineages based on genetic relationships and analysing the ENMs separately provided insights about the biogeographical processes that led to the current distribution of H. substriatus. Copyright © 2017 Elsevier Inc. All rights reserved.
Satisfiers and Dissatisfiers: A Two-Factor Model for Website Design and Evaluation.
ERIC Educational Resources Information Center
Zhang, Ping; von Dran, Gisela M.
2000-01-01
Investigates Web site design factors and their impact from a theoretical perspective. Presents a two-factor model that can guide Web site design and evaluation. According to the model, there are two types of design factors: hygiene and motivator. Results showed that the two-factor model provides a means for Web-user interface studies. Provides…
Pre- and posttest evaluation of a breast cancer risk assessment program for nurse practitioners.
Edwards, Quannetta T; Seibert, Diane
2010-07-01
Numerous studies have shown that healthcare providers, including nurse practitioners (NPs) fail to provide breast cancer risk assessment (BrCRA) in primary care settings. A potential barrier to the use of BrCRA is insufficient knowledge or training of risk assessment. The purpose of this study was to analyze the outcome of a BrCRA program developed to enhance NPs' knowledge of risk assessment and use of empiric risk assessment models. Thirty-five NPs participated in a before-after (pretest-posttest design) study evaluating the effectiveness of a BrCRA education program conducted at a national NP conference. Demographics, pre/post knowledge, and course satisfaction measures were all examined as a part of this pilot study. Continuing education through the implementation of a BrCRA program significantly increased NPs knowledge in assessing breast cancer risk and the use of empiric risk assessment models. Many healthcare providers, including NPs, are inadequately prepared to assess a woman's risk for breast cancer. Understanding breast cancer risk assessment is essential if NPs are to provide appropriate counseling, management, and referral strategies needed to reduce a woman's risk for developing the disease. Continuing education provides one means to enhance NP's knowledge of BrCRA.