The Modular Modeling System (MMS): A toolbox for water- and environmental-resources management
Leavesley, G.H.; Markstrom, S.L.; Viger, R.J.; Hay, L.E.; ,
2005-01-01
The increasing complexity of water- and environmental-resource problems require modeling approaches that incorporate knowledge from a broad range of scientific and software disciplines. To address this need, the U.S. Geological Survey (USGS) has developed the Modular Modeling System (MMS). MMS is an integrated system of computer software for model development, integration, and application. Its modular design allows a high level of flexibility and adaptability to enable modelers to incorporate their own software into a rich array of built-in models and modeling tools. These include individual process models, tightly coupled models, loosely coupled models, and fully- integrated decision support systems. A geographic information system (GIS) interface, the USGS GIS Weasel, has been integrated with MMS to enable spatial delineation and characterization of basin and ecosystem features, and to provide objective parameter-estimation methods for models using available digital data. MMS provides optimization and sensitivity-analysis tools to analyze model parameters and evaluate the extent to which uncertainty in model parameters affects uncertainty in simulation results. MMS has been coupled with the Bureau of Reclamation object-oriented reservoir and river-system modeling framework, RiverWare, to develop models to evaluate and apply optimal resource-allocation and management strategies to complex, operational decisions on multipurpose reservoir systems and watersheds. This decision support system approach has been developed, tested, and implemented in the Gunnison, Yakima, San Joaquin, Rio Grande, and Truckee River basins of the western United States. MMS is currently being coupled with the U.S. Forest Service model SIMulating Patterns and Processes at Landscape Scales (SIMPPLLE) to assess the effects of alternative vegetation-management strategies on a variety of hydrological and ecological responses. Initial development and testing of the MMS-SIMPPLLE integration is being conducted on the Colorado Plateau region of the western United Sates.
The Modular Modeling System (MMS): User's Manual
Leavesley, G.H.; Restrepo, Pedro J.; Markstrom, S.L.; Dixon, M.; Stannard, L.G.
1996-01-01
The Modular Modeling System (MMS) is an integrated system of computer software that has been developed to provide the research and operational framework needed to support development, testing, and evaluation of physical-process algorithms and to facilitate integration of user-selected sets of algorithms into operational physical-process models. MMS uses a module library that contains modules for simulating a variety of water, energy, and biogeochemical processes. A model is created by selectively coupling the most appropriate modules from the library to create a 'suitable' model for the desired application. Where existing modules do not provide appropriate process algorithms, new modules can be developed. The MMS user's manual provides installation instructions and a detailed discussion of system concepts, module development, and model development and application using the MMS graphical user interface.
Realization of planning design of mechanical manufacturing system by Petri net simulation model
NASA Astrophysics Data System (ADS)
Wu, Yanfang; Wan, Xin; Shi, Weixiang
1991-09-01
Planning design is to work out a more overall long-term plan. In order to guarantee a mechanical manufacturing system (MMS) designed to obtain maximum economical benefit, it is necessary to carry out a reasonable planning design for the system. First, some principles on planning design for MMS are introduced. Problems of production scheduling and their decision rules for computer simulation are presented. Realizable method of each production scheduling decision rule in Petri net model is discussed. Second, the solution of conflict rules for conflict problems during running Petri net is given. Third, based on the Petri net model of MMS which includes part flow and tool flow, according to the principle of minimum event time advance, a computer dynamic simulation of the Petri net model, that is, a computer dynamic simulation of MMS, is realized. Finally, the simulation program is applied to a simulation exmple, so the scheme of a planning design for MMS can be evaluated effectively.
Leavesley, G.H.; Markstrom, S.L.; Viger, R.J.
2004-01-01
The interdisciplinary nature and increasing complexity of water- and environmental-resource problems require the use of modeling approaches that can incorporate knowledge from a broad range of scientific disciplines. The large number of distributed hydrological and ecosystem models currently available are composed of a variety of different conceptualizations of the associated processes they simulate. Assessment of the capabilities of these distributed models requires evaluation of the conceptualizations of the individual processes, and the identification of which conceptualizations are most appropriate for various combinations of criteria, such as problem objectives, data constraints, and spatial and temporal scales of application. With this knowledge, "optimal" models for specific sets of criteria can be created and applied. The U.S. Geological Survey (USGS) Modular Modeling System (MMS) is an integrated system of computer software that has been developed to provide these model development and application capabilities. MMS supports the integration of models and tools at a variety of levels of modular design. These include individual process models, tightly coupled models, loosely coupled models, and fully-integrated decision support systems. A variety of visualization and statistical tools are also provided. MMS has been coupled with the Bureau of Reclamation (BOR) object-oriented reservoir and river-system modeling framework, RiverWare, under a joint USGS-BOR program called the Watershed and River System Management Program. MMS and RiverWare are linked using a shared relational database. The resulting database-centered decision support system provides tools for evaluating and applying optimal resource-allocation and management strategies to complex, operational decisions on multipurpose reservoir systems and watersheds. Management issues being addressed include efficiency of water-resources management, environmental concerns such as meeting flow needs for endangered species, and optimizing operations within the constraints of multiple objectives such as power generation, irrigation, and water conservation. This decision support system approach is being developed, tested, and implemented in the Gunni-son, Yakima, San Juan, Rio Grande, and Truckee River basins of the western United States. Copyright ASCE 2004.
NASA Astrophysics Data System (ADS)
Leavesley, G.; Markstrom, S.; Frevert, D.; Fulp, T.; Zagona, E.; Viger, R.
2004-12-01
Increasing demands for limited fresh-water supplies, and increasing complexity of water-management issues, present the water-resource manager with the difficult task of achieving an equitable balance of water allocation among a diverse group of water users. The Watershed and River System Management Program (WARSMP) is a cooperative effort between the U.S. Geological Survey (USGS) and the Bureau of Reclamation (BOR) to develop and deploy a database-centered, decision-support system (DSS) to address these multi-objective, resource-management problems. The decision-support system couples the USGS Modular Modeling System (MMS) with the BOR RiverWare tools using a shared relational database. MMS is an integrated system of computer software that provides a research and operational framework to support the development and integration of a wide variety of hydrologic and ecosystem models, and their application to water- and ecosystem-resource management. RiverWare is an object-oriented reservoir and river-system modeling framework developed to provide tools for evaluating and applying water-allocation and management strategies. The modeling capabilities of MMS and Riverware include simulating watershed runoff, reservoir inflows, and the impacts of resource-management decisions on municipal, agricultural, and industrial water users, environmental concerns, power generation, and recreational interests. Forecasts of future climatic conditions are a key component in the application of MMS models to resource-management decisions. Forecast methods applied in MMS include a modified version of the National Weather Service's Extended Streamflow Prediction Program (ESP) and statistical downscaling from atmospheric models. The WARSMP DSS is currently operational in the Gunnison River Basin, Colorado; Yakima River Basin, Washington; Rio Grande Basin in Colorado and New Mexico; and Truckee River Basin in California and Nevada.
The University Münster Model Surgery System for Orthognathic Surgery. Part II -- KD-MMS.
Ehmer, Ulrike; Joos, Ulrich; Ziebura, Thomas; Flieger, Stefanie; Wiechmann, Dirk
2013-01-04
Model surgery is an integral part of the planning procedure in orthognathic surgery. Most concepts comprise cutting the dental cast off its socket. The standardized spacer plates of the KD-MMS provide for a non-destructive, reversible and reproducible means of maxillary and/or mandibular plaster cast separation. In the course of development of the system various articulator types were evaluated with regard to their capability to provide a means of realizing the concepts comprised of the KD-MMS. Special attention was dedicated to the ability to perform three-dimensional displacements without cutting of plaster casts. Various utilities were developed to facilitate maxillary displacement in accordance to the planning. Objectives of this development comprised the ability to implement the values established in the course of two-dimensional ceph planning. The system - KD-MMS comprises a set of hardware components as well as a defined procedure. Essential hardware components are red spacer and blue mounting plates. The blue mounting plates replace the standard yellow SAM mounting elements. The red spacers provide for a defined leeway of 8 mm for three-dimensional movements. The non-destructive approach of the KD-MMS makes it possible to conduct different model surgeries with the same plaster casts as well as to restore the initial, pre-surgical situation at any time. Thereby, surgical protocol generation and gnathologic splint construction are facilitated. The KD-MMS hardware components in conjunction with the defined procedures are capable of increasing efficiency and accuracy of model surgery and splint construction. In cases where different surgical approaches need to be evaluated in the course of model surgery, a significant reduction of chair time may be achieved.
Leavesley, G.H.; Markstrom, S.L.; Restrepo, Pedro J.; Viger, R.J.
2002-01-01
A modular approach to model design and construction provides a flexible framework in which to focus the multidisciplinary research and operational efforts needed to facilitate the development, selection, and application of the most robust distributed modelling methods. A variety of modular approaches have been developed, but with little consideration for compatibility among systems and concepts. Several systems are proprietary, limiting any user interaction. The US Geological Survey modular modelling system (MMS) is a modular modelling framework that uses an open source software approach to enable all members of the scientific community to address collaboratively the many complex issues associated with the design, development, and application of distributed hydrological and environmental models. Implementation of a common modular concept is not a trivial task. However, it brings the resources of a larger community to bear on the problems of distributed modelling, provides a framework in which to compare alternative modelling approaches objectively, and provides a means of sharing the latest modelling advances. The concepts and components of the MMS are described and an example application of the MMS, in a decision-support system context, is presented to demonstrate current system capabilities. Copyright ?? 2002 John Wiley and Sons, Ltd.
Line-Based Registration of Panoramic Images and LiDAR Point Clouds for Mobile Mapping.
Cui, Tingting; Ji, Shunping; Shan, Jie; Gong, Jianya; Liu, Kejian
2016-12-31
For multi-sensor integrated systems, such as the mobile mapping system (MMS), data fusion at sensor-level, i.e., the 2D-3D registration between an optical camera and LiDAR, is a prerequisite for higher level fusion and further applications. This paper proposes a line-based registration method for panoramic images and a LiDAR point cloud collected by a MMS. We first introduce the system configuration and specification, including the coordinate systems of the MMS, the 3D LiDAR scanners, and the two panoramic camera models. We then establish the line-based transformation model for the panoramic camera. Finally, the proposed registration method is evaluated for two types of camera models by visual inspection and quantitative comparison. The results demonstrate that the line-based registration method can significantly improve the alignment of the panoramic image and the LiDAR datasets under either the ideal spherical or the rigorous panoramic camera model, with the latter being more reliable.
Line-Based Registration of Panoramic Images and LiDAR Point Clouds for Mobile Mapping
Cui, Tingting; Ji, Shunping; Shan, Jie; Gong, Jianya; Liu, Kejian
2016-01-01
For multi-sensor integrated systems, such as the mobile mapping system (MMS), data fusion at sensor-level, i.e., the 2D-3D registration between an optical camera and LiDAR, is a prerequisite for higher level fusion and further applications. This paper proposes a line-based registration method for panoramic images and a LiDAR point cloud collected by a MMS. We first introduce the system configuration and specification, including the coordinate systems of the MMS, the 3D LiDAR scanners, and the two panoramic camera models. We then establish the line-based transformation model for the panoramic camera. Finally, the proposed registration method is evaluated for two types of camera models by visual inspection and quantitative comparison. The results demonstrate that the line-based registration method can significantly improve the alignment of the panoramic image and the LiDAR datasets under either the ideal spherical or the rigorous panoramic camera model, with the latter being more reliable. PMID:28042855
A multimodal spectroscopy system for real-time disease diagnosis
NASA Astrophysics Data System (ADS)
Šćepanović, Obrad R.; Volynskaya, Zoya; Kong, Chae-Ryon; Galindo, Luis H.; Dasari, Ramachandra R.; Feld, Michael S.
2009-04-01
The combination of reflectance, fluorescence, and Raman spectroscopy—termed multimodal spectroscopy (MMS)—provides complementary and depth-sensitive information about tissue composition. As such, MMS is a promising tool for disease diagnosis, particularly in atherosclerosis and breast cancer. We have developed an integrated MMS instrument and optical fiber spectral probe for simultaneous collection of all three modalities in a clinical setting. The MMS instrument multiplexes three excitation sources, a xenon flash lamp (370-740 nm), a nitrogen laser (337 nm), and a diode laser (830 nm), through the MMS probe to excite tissue and collect the spectra. The spectra are recorded on two spectrograph/charge-coupled device modules, one optimized for visible wavelengths (reflectance and fluorescence) and the other for the near-infrared (Raman), and processed to provide diagnostic parameters. We also describe the design and calibration of a unitary MMS optical fiber probe 2 mm in outer diameter, containing a single appropriately filtered excitation fiber and a ring of 15 collection fibers, with separate groups of appropriately filtered fibers for efficiently collecting reflectance, fluorescence, and Raman spectra from the same tissue location. A probe with this excitation/collection geometry has not been used previously to collect reflectance and fluorescence spectra, and thus physical tissue models ("phantoms") are used to characterize the probe's spectroscopic response. This calibration provides probe-specific modeling parameters that enable accurate extraction of spectral parameters. This clinical MMS system has been used recently to analyze artery and breast tissue in vivo and ex vivo.
Bird, Scott M.; Rawlings, Andrea E.; Galloway, Johanna M.
2016-01-01
Magnetotactic bacteria are able to synthesise precise nanoparticles of the iron oxide magnetite within their cells. These particles are formed in dedicated organelles termed magnetosomes. These lipid membrane compartments use a range of biomineralisation proteins to nucleate and regulate the magnetite crystallisation process. A key component is the membrane protein Mms6, which binds to iron ions and helps to control the formation of the inorganic core. We have previously used Mms6 on gold surfaces patterned with a self-assembled monolayer to successfully produce arrays of magnetic nanoparticles. Here we use this surface system as a mimic of the interior face of the magnetosome membrane to study differences between intact Mms6 and the acid-rich C-terminal peptide subregion of the Mms6 protein. When immobilised on surfaces, the peptide is unable to reproduce the particle size or homogeneity control exhibited by the full Mms6 protein in our experimental setup. Moreover, the peptide is unable to support anchoring of a dense array of nanoparticles to the surface. This system also allows us to deconvolute particle binding from particle nucleation, and shows that Mms6 particle binding is less efficient when supplied with preformed magnetite nanoparticles when compared to particles precipitated from solution in the presence of the surface immobilised Mms6. This suggests that Mms6 binds to iron ions rather than to magnetite surfaces in our system, and is perhaps a nucleating agent rather than a controller of magnetite crystal growth. The comparison between the peptide and the protein under identical experimental conditions indicates that the full length sequence is required to support the full function of Mms6 on surfaces. PMID:27019707
Object Detection from MMS Imagery Using Deep Learning for Generation of Road Orthophotos
NASA Astrophysics Data System (ADS)
Li, Y.; Sakamoto, M.; Shinohara, T.; Satoh, T.
2018-05-01
In recent years, extensive research has been conducted to automatically generate high-accuracy and high-precision road orthophotos using images and laser point cloud data acquired from a mobile mapping system (MMS). However, it is necessary to mask out non-road objects such as vehicles, bicycles, pedestrians and their shadows in MMS images in order to eliminate erroneous textures from the road orthophoto. Hence, we proposed a novel vehicle and its shadow detection model based on Faster R-CNN for automatically and accurately detecting the regions of vehicles and their shadows from MMS images. The experimental results show that the maximum recall of the proposed model was high - 0.963 (intersection-over-union > 0.7) - and the model could identify the regions of vehicles and their shadows accurately and robustly from MMS images, even when they contain varied vehicles, different shadow directions, and partial occlusions. Furthermore, it was confirmed that the quality of road orthophoto generated using vehicle and its shadow masks was significantly improved as compared to those generated using no masks or using vehicle masks only.
Burkhart, Katelyn A; Bruno, Alexander G; Bouxsein, Mary L; Bean, Jonathan F; Anderson, Dennis E
2018-01-01
Maximum muscle stress (MMS) is a critical parameter in musculoskeletal modeling, defining the maximum force that a muscle of given size can produce. However, a wide range of MMS values have been reported in literature, and few studies have estimated MMS in trunk muscles. Due to widespread use of musculoskeletal models in studies of the spine and trunk, there is a need to determine reasonable magnitude and range of trunk MMS. We measured trunk extension strength in 49 participants over 65 years of age, surveyed participants about low back pain, and acquired quantitative computed tomography (QCT) scans of their lumbar spines. Trunk muscle morphology was assessed from QCT scans and used to create a subject-specific musculoskeletal model for each participant. Model-predicted extension strength was computed using a trunk muscle MMS of 100 N/cm 2 . The MMS of each subject-specific model was then adjusted until the measured strength matched the model-predicted strength (±20 N). We found that measured trunk extension strength was significantly higher in men. With the initial constant MMS value, the musculoskeletal model generally over-predicted trunk extension strength. By adjusting MMS on a subject-specific basis, we found apparent MMS values ranging from 40 to 130 N/cm 2 , with an average of 75.5 N/cm 2 for both men and women. Subjects with low back pain had lower apparent MMS than subjects with no back pain. This work incorporates a unique approach to estimate subject-specific trunk MMS values via musculoskeletal modeling and provides a useful insight into MMS variation. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:498-505, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Boggs, Johnny; Birgan, Latricia J.; Tsegaye, Teferi; Coleman, Tommy; Soman, Vishwas
1997-01-01
Models are used for numerous application including hydrology. The Modular Modeling System (MMS) is one of the few that can simulate a hydrology process. MMS was tested and used to compare infiltration, soil moisture, daily temperature, and potential and actual evaporation for the Elinsboro sandy loam soil and the Mattapex silty loam soil in the Microwave Radiometer Experiment of Soil Moisture Sensing at Beltsville Agriculture Research Test Site in Maryland. An input file for each location was created to nut the model. Graphs were plotted, and it was observed that the model gave a good representation for evaporation for both plots. In comparing the two plots, it was noted that infiltration and soil moisture tend to peak around the same time, temperature peaks in July and August and the peak evaporation was observed on September 15 and July 4 for the Elinsboro Mattapex plot respectively. MMS can be used successfully to predict hydrological processes as long as the proper input parameters are available.
Navigation Operations for the Magnetospheric Multiscale Mission
NASA Technical Reports Server (NTRS)
Long, Anne; Farahmand, Mitra; Carpenter, Russell
2015-01-01
The Magnetospheric Multiscale (MMS) mission employs four identical spinning spacecraft flying in highly elliptical Earth orbits. These spacecraft will fly in a series of tetrahedral formations with separations of less than 10 km. MMS navigation operations use onboard navigation to satisfy the mission definitive orbit and time determination requirements and in addition to minimize operations cost and complexity. The onboard navigation subsystem consists of the Navigator GPS receiver with Goddard Enhanced Onboard Navigation System (GEONS) software, and an Ultra-Stable Oscillator. The four MMS spacecraft are operated from a single Mission Operations Center, which includes a Flight Dynamics Operations Area (FDOA) that supports MMS navigation operations, as well as maneuver planning, conjunction assessment and attitude ground operations. The System Manager component of the FDOA automates routine operations processes. The GEONS Ground Support System component of the FDOA provides the tools needed to support MMS navigation operations. This paper provides an overview of the MMS mission and associated navigation requirements and constraints and discusses MMS navigation operations and the associated MMS ground system components built to support navigation-related operations.
Cost-effectiveness analysis of a hospital electronic medication management system
Gospodarevskaya, Elena; Li, Ling; Richardson, Katrina L; Roffe, David; Heywood, Maureen; Day, Richard O; Graves, Nicholas
2015-01-01
Objective To conduct a cost–effectiveness analysis of a hospital electronic medication management system (eMMS). Methods We compared costs and benefits of paper-based prescribing with a commercial eMMS (CSC MedChart) on one cardiology ward in a major 326-bed teaching hospital, assuming a 15-year time horizon and a health system perspective. The eMMS implementation and operating costs were obtained from the study site. We used data on eMMS effectiveness in reducing potential adverse drug events (ADEs), and potential ADEs intercepted, based on review of 1 202 patient charts before (n = 801) and after (n = 401) eMMS. These were combined with published estimates of actual ADEs and their costs. Results The rate of potential ADEs following eMMS fell from 0.17 per admission to 0.05; a reduction of 71%. The annualized eMMS implementation, maintenance, and operating costs for the cardiology ward were A$61 741 (US$55 296). The estimated reduction in ADEs post eMMS was approximately 80 actual ADEs per year. The reduced costs associated with these ADEs were more than sufficient to offset the costs of the eMMS. Estimated savings resulting from eMMS implementation were A$63–66 (US$56–59) per admission (A$97 740–$102 000 per annum for this ward). Sensitivity analyses demonstrated results were robust when both eMMS effectiveness and costs of actual ADEs were varied substantially. Conclusion The eMMS within this setting was more effective and less expensive than paper-based prescribing. Comparison with the few previous full economic evaluations available suggests a marked improvement in the cost–effectiveness of eMMS, largely driven by increased effectiveness of contemporary eMMs in reducing medication errors. PMID:25670756
Cost-effectiveness analysis of a hospital electronic medication management system.
Westbrook, Johanna I; Gospodarevskaya, Elena; Li, Ling; Richardson, Katrina L; Roffe, David; Heywood, Maureen; Day, Richard O; Graves, Nicholas
2015-07-01
To conduct a cost-effectiveness analysis of a hospital electronic medication management system (eMMS). We compared costs and benefits of paper-based prescribing with a commercial eMMS (CSC MedChart) on one cardiology ward in a major 326-bed teaching hospital, assuming a 15-year time horizon and a health system perspective. The eMMS implementation and operating costs were obtained from the study site. We used data on eMMS effectiveness in reducing potential adverse drug events (ADEs), and potential ADEs intercepted, based on review of 1 202 patient charts before (n = 801) and after (n = 401) eMMS. These were combined with published estimates of actual ADEs and their costs. The rate of potential ADEs following eMMS fell from 0.17 per admission to 0.05; a reduction of 71%. The annualized eMMS implementation, maintenance, and operating costs for the cardiology ward were A$61 741 (US$55 296). The estimated reduction in ADEs post eMMS was approximately 80 actual ADEs per year. The reduced costs associated with these ADEs were more than sufficient to offset the costs of the eMMS. Estimated savings resulting from eMMS implementation were A$63-66 (US$56-59) per admission (A$97 740-$102 000 per annum for this ward). Sensitivity analyses demonstrated results were robust when both eMMS effectiveness and costs of actual ADEs were varied substantially. The eMMS within this setting was more effective and less expensive than paper-based prescribing. Comparison with the few previous full economic evaluations available suggests a marked improvement in the cost-effectiveness of eMMS, largely driven by increased effectiveness of contemporary eMMs in reducing medication errors. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.
Modular Manufacturing Simulator: Users Manual
NASA Technical Reports Server (NTRS)
1997-01-01
The Modular Manufacturing Simulator (MMS) has been developed for the beginning user of computer simulations. Consequently, the MMS cannot model complex systems that require branching and convergence logic. Once a user becomes more proficient in computer simulation and wants to add more complexity, the user is encouraged to use one of the many available commercial simulation systems. The (MMS) is based on the SSE5 that was developed in the early 1990's by the University of Alabama in Huntsville (UAH). A recent survey by MSFC indicated that the simulator has been a major contributor to the economic impact of the MSFC technology transfer program. Many manufacturers have requested additional features for the SSE5. Consequently, the following features have been added to the MMS that are not available in the SSE5: runs under Windows, print option for both input parameters and output statistics, operator can be fixed at a station or assigned to a group of stations, operator movement based on time limit, part limit, or work-in-process (WIP) limit at next station. The movement options for a moveable operators are: go to station with largest WIP, rabbit chase where operator moves in circular sequence between stations, and push/pull where operator moves back and forth between stations. This user's manual contains the necessary information for installing the MMS on a PC, a description of the various MMS commands, and the solutions to a number of sample problems using the MMS. Also included in the beginning of this report is a brief discussion of technology transfer.
Van de Vreede, Melita; McGrath, Anne; de Clifford, Jan
2018-05-14
Objective. The aim of the present study was to identify and quantify medication errors reportedly related to electronic medication management systems (eMMS) and those considered likely to occur more frequently with eMMS. This included developing a new classification system relevant to eMMS errors. Methods. Eight Victorian hospitals with eMMS participated in a retrospective audit of reported medication incidents from their incident reporting databases between May and July 2014. Site-appointed project officers submitted deidentified incidents they deemed new or likely to occur more frequently due to eMMS, together with the Incident Severity Rating (ISR). The authors reviewed and classified incidents. Results. There were 5826 medication-related incidents reported. In total, 93 (47 prescribing errors, 46 administration errors) were identified as new or potentially related to eMMS. Only one ISR2 (moderate) and no ISR1 (severe or death) errors were reported, so harm to patients in this 3-month period was minimal. The most commonly reported error types were 'human factors' and 'unfamiliarity or training' (70%) and 'cross-encounter or hybrid system errors' (22%). Conclusions. Although the results suggest that the errors reported were of low severity, organisations must remain vigilant to the risk of new errors and avoid the assumption that eMMS is the panacea to all medication error issues. What is known about the topic? eMMS have been shown to reduce some types of medication errors, but it has been reported that some new medication errors have been identified and some are likely to occur more frequently with eMMS. There are few published Australian studies that have reported on medication error types that are likely to occur more frequently with eMMS in more than one organisation and that include administration and prescribing errors. What does this paper add? This paper includes a new simple classification system for eMMS that is useful and outlines the most commonly reported incident types and can inform organisations and vendors on possible eMMS improvements. The paper suggests a new classification system for eMMS medication errors. What are the implications for practitioners? The results of the present study will highlight to organisations the need for ongoing review of system design, refinement of workflow issues, staff education and training and reporting and monitoring of errors.
Expected Navigation Flight Performance for the Magnetospheric Multiscale (MMS) Mission
NASA Technical Reports Server (NTRS)
Olson, Corwin; Wright, Cinnamon; Long, Anne
2012-01-01
The Magnetospheric Multiscale (MMS) mission consists of four formation-flying spacecraft placed in highly eccentric elliptical orbits about the Earth. The primary scientific mission objective is to study magnetic reconnection within the Earth s magnetosphere. The baseline navigation concept is the independent estimation of each spacecraft state using GPS pseudorange measurements (referenced to an onboard Ultra Stable Oscillator) and accelerometer measurements during maneuvers. State estimation for the MMS spacecraft is performed onboard each vehicle using the Goddard Enhanced Onboard Navigation System, which is embedded in the Navigator GPS receiver. This paper describes the latest efforts to characterize expected navigation flight performance using upgraded simulation models derived from recent analyses.
Multispacecraft Observations and Modeling of the 22/23 June 2015 Geomagnetic Storm
NASA Technical Reports Server (NTRS)
Reiff, P. H.; Daou, A. G.; Sazykin, S. Y.; Nakamura, R.; Hairston, M. R.; Coffey, V.; Chandler, M. O.; Anderson, B. J.; Russell, C. T.; Welling, D.;
2016-01-01
The magnetic storm of 22-23 June 2015 was one of the largest in the current solar cycle. We present in situ observations from the Magnetospheric Multiscale Mission (MMS) and the Van Allen Probes (VAP) in the magnetotail, field-aligned currents from AMPERE (Active Magnetosphere and Planetary Electrodynamics Response), and ionospheric flow data from Defense Meteorological Satellite Program (DMSP). Our real-time space weather alert system sent out a "red alert," correctly predicting Kp indices greater than 8. We show strong outflow of ionospheric oxygen, dipolarizations in the MMS magnetometer data, and dropouts in the particle fluxes seen by the MMS Fast Plasma Instrument suite. At ionospheric altitudes, the AMPERE data show highly variable currents exceeding 20 MA. We present numerical simulations with the Block Adaptive Tree-Solarwind - Roe - Upwind Scheme (BATS-R-US) global magnetohydrodynamic model linked with the Rice Convection Model. The model predicted the magnitude of the dipolarizations, and varying polar cap convection patterns, which were confirmed by DMSP measurements.
Ji, Zhiying; LeBaron, Matthew J; Schisler, Melissa R; Zhang, Fagen; Bartels, Michael J; Gollapudi, B Bhaskar; Pottenger, Lynn H
2016-05-01
The nature of the dose-response relationship for various in vivo endpoints of exposure and effect were investigated using the alkylating agents, methyl methanesulfonate (MMS) and methylnitrosourea (MNU). Six male F344 rats/group were dosed orally with 0, 0.5, 1, 5, 25 or 50mg/kg bw/day (mkd) of MMS, or 0, 0.01, 0.1, 1, 5, 10, 25 or 50 mkd of MNU, for 4 consecutive days and sacrificed 24h after the last dose. The dose-responses for multiple biomarkers of exposure and genotoxic effect were investigated. In MMS-treated rats, the hemoglobin adduct level, a systemic exposure biomarker, increased linearly with dose (r (2) = 0.9990, P < 0.05), indicating the systemic availability of MMS; however, the N7MeG DNA adduct, a target exposure biomarker, exhibited a non-linear dose-response in blood and liver tissues. Blood reticulocyte micronuclei (MN), a genotoxic effect biomarker, exhibited a clear no-observed-genotoxic-effect-level (NOGEL) of 5 mkd as a point of departure (PoD) for MMS. Two separate dose-response models, the Lutz and Lutz model and the stepwise approach using PROC REG both supported a bilinear/threshold dose-response for MN induction. Liver gene expression, a mechanistic endpoint, also exhibited a bilinear dose-response. Similarly, in MNU-treated rats, hepatic DNA adducts, gene expression changes and MN all exhibited clear PoDs, with a NOGEL of 1 mkd for MN induction, although dose-response modeling of the MNU-induced MN data showed a better statistical fit for a linear dose-response. In summary, these results provide in vivo data that support the existence of clear non-linear dose-responses for a number of biologically significant events along the pathway for genotoxicity induced by DNA-reactive agents. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Magnetospheric Multiscale (MMS) [video
2014-05-09
MMS Spacecraft Animation The Magnetospheric Multiscale (MMS) mission is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth's magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration, and turbulence. These processes occur in all astrophysical plasma systems but can be studied in situ only in our solar system and most efficiently only in Earth's magnetosphere, where they control the dynamics of the geospace environment and play an important role in the processes known as "space weather." Learn more about MMS at www.nasa.gov/mms Learn more about MMS at www.nasa.gov/mms Credit NASA/Goddard The Magnetospheric Multiscale, or MMS, will study how the sun and the Earth's magnetic fields connect and disconnect, an explosive process that can accelerate particles through space to nearly the speed of light. This process is called magnetic reconnection and can occur throughout all space. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Magnetospheric Multiscale (MMS)
2017-12-08
MMS Spacecraft Animation The Magnetospheric Multiscale (MMS) mission is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth's magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration, and turbulence. These processes occur in all astrophysical plasma systems but can be studied in situ only in our solar system and most efficiently only in Earth's magnetosphere, where they control the dynamics of the geospace environment and play an important role in the processes known as "space weather." Learn more about MMS at www.nasa.gov/mms Learn more about MMS at www.nasa.gov/mms Credit NASA/Chris Gunn The Magnetospheric Multiscale, or MMS, will study how the sun and the Earth's magnetic fields connect and disconnect, an explosive process that can accelerate particles through space to nearly the speed of light. This process is called magnetic reconnection and can occur throughout all space. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Requirements for the Military Message System (MMS) Family: Data Types and User Commands.
1986-04-11
AD-A167 126 REQUIREMENTS FOR THE MILITARY MESSASE SYSTEM (NHS) i FRILY: DATA TYPES AND USER CONNNDS(U) NAVAL RESEARCH LAB WASHINGTON DC C L HEITHEVER... System (MMS) Family: Data Types and User Commands CONSTANCE L. HEITMEYER Computer Science and Systems Branch I Information Technology Division April 11...Security Classification) Requirements for the Military Message System (MMS) Family: Data Types and User Commands 12. PERSONAL AUTHOR(S) Heitmeer, Constance
Magnetospheric Multiscale Mission Navigation Performance During Apogee-Raising and Beyond
NASA Technical Reports Server (NTRS)
Farahmand, Mitra; Long, Anne; Hollister, Jacob; Rose, Julie; Godine, Dominic
2017-01-01
The primary objective of the Magnetospheric Multiscale (MMS) Mission is to study the magnetic reconnection phenomena in the Earths magnetosphere. The MMS mission consists of four identical spinning spacecraft with the science objectives requiring a tetrahedral formation in highly elliptical orbits. The MMS spacecraft are equipped with onboard orbit and time determination software, provided by a weak-signal Global Positioning System (GPS) Navigator receiver hosting the Goddard Enhanced Onboard Navigation System (GEONS). This paper presents the results of MMS navigation performance analysis during the Phase 2a apogee-raising campaign and Phase 2b science segment of the mission.
Perceptual video quality comparison of 3DTV broadcasting using multimode service systems
NASA Astrophysics Data System (ADS)
Ok, Jiheon; Lee, Chulhee
2015-05-01
Multimode service (MMS) systems allow broadcasters to provide multichannel services using a single HD channel. Using these systems, it is possible to provide 3DTV programs that can be watched either in three-dimensional (3-D) or two-dimensional (2-D) modes with backward compatibility. In the MMS system for 3DTV broadcasting using the Advanced Television Systems Committee standards, the left and the right views are encoded using MPEG-2 and H.264, respectively, and then transmitted using a dual HD streaming format. The left view, encoded using MPEG-2, assures 2-D backward compatibility while the right view, encoded using H.264, can be optionally combined with the left view to generate stereoscopic 3-D views. We analyze 2-D and 3-D perceptual quality when using the MMS system by comparing items in the frame-compatible format (top-bottom), which is a conventional transmission scheme for 3-D broadcasting. We performed perceptual 2-D and 3-D video quality evaluation assuming 3DTV programs are encoded using the MMS system and top-bottom format. The results show that MMS systems can be preferable with regard to perceptual 2-D and 3-D quality and backward compatibility.
Guo, Yin; Sun, LiQun; Yang, Zheng; Liu, Zilong
2016-02-20
During this study we constructed a generalized parametric modified four-objective multipass matrix system (MMS). We used an optical system comprising four asymmetrical spherical mirrors to improve the alignment process. The use of a paraxial equation for the design of the front transfer optics yielded the initial condition for modeling our MMS. We performed a ray tracing simulation to calculate the significant aberration of the system (astigmatism). Based on the calculated meridional and sagittal focus positions, the complementary focusing mirror was easily designed to provide an output beam free of astigmatism. We have presented an example of a 108-transit multipass system (5×7 matrix arrangement) with a relatively larger numerical aperture source (xenon light source). The whole system exhibits zero theoretical geometrical loss when simulated with Zemax software. The MMS construction strategy described in this study provides an anastigmatic output beam and the generalized approach to design a controllable matrix spot pattern on the field mirrors. Asymmetrical reflective mirrors aid in aligning the whole system with high efficiency. With the generalized design strategy in terms of optics configuration and asymmetrical fabrication method in this paper, other kinds of multipass matrix system coupled with different sources and detector systems also can be achieved.
30 CFR 250.1507 - How will MMS measure training results?
Code of Federal Regulations, 2010 CFR
2010-07-01
... program, using one or more of the methods in this section. (a) Training system audit. MMS or its authorized representative may conduct a training system audit at your office. The training system audit will...
NASA Astrophysics Data System (ADS)
Resdiansyah; O. K Rahmat, R. A.; Ismail, A.
2018-03-01
Green transportation refers to a sustainable transport that gives the least impact in terms of social and environmental but at the same time is able to supply energy sources globally that includes non-motorized transport strategies deployment to promote healthy lifestyles, also known as Mobility Management Scheme (MMS). As construction of road infrastructure cannot help solve the problem of congestion, past research has shown that MMS is an effective measure to mitigate congestion and to achieve green transportation. MMS consists of different strategies and policies that subdivided into categories according to how they are able to influence travel behaviour. Appropriate selection of mobility strategies will ensure its effectiveness in mitigating congestion problems. Nevertheless, determining appropriate strategies requires human expert and depends on a number of success factors. This research has successfully developed a computer clone system based on human expert, called E-MMS. The process of knowledge acquisition for MMS strategies and the next following process to selection of strategy has been encode in a knowledge-based system using a shell expert system. The newly developed computer cloning system was successfully verified, validated and evaluated (VV&E) by comparing the result output with the real transportation expert recommendation in which the findings suggested Introduction
NASA Astrophysics Data System (ADS)
Noguchi, T.; Yabuta, H.; Itoh, S.; Sakamoto, N.; Mitsunari, T.; Okubo, A.; Okazaki, R.; Nakamura, T.; Tachibana, S.; Terada, K.; Ebihara, M.; Imae, N.; Kimura, M.; Nagahara, H.
2017-07-01
Micrometeorites (MMs) recovered from surface snow near the Dome Fuji Station, Antarctica are almost free from terrestrial weathering and contain very primitive materials, and are suitable for investigation of the evolution and interaction of inorganic and organic materials in the early solar system. We carried out a comprehensive study on seven porous and fluffy MMs [four Chondritic porous (CP) MMs and three fluffy fine-grained (Fluffy Fg) MMs] and one fine-grained type 1 (Fg C1) MM for comparison with scanning electron microscope, transmission electron microscope, X-ray absorption near-edge structure analysis, and secondary ion mass spectrometer. They show a variety of early aqueous activities. Four out of the seven CP MMs contain glass with embedded metal and sulfide (GEMS) and enstatite whiskers/platelets and do not have hydrated minerals. Despite the same mineralogy, organic chemistry of the CP MMs shows diversity. Two of them contain considerable amounts of organic materials with high carboxyl functionality, and one of them contains nitrile (Ctbnd N) and/or nitrogen heterocyclic groups with D and 15N enrichments, suggesting formation in the molecular cloud or a very low temperature region of the outer solar system. Another two CP MMs are poorer in organic materials than the above-mentioned MMs. Organic material in one of them is richer in aromatic C than the CP MMs mentioned above, being indistinguishable from those of hydrated carbonaceous chondrites. In addition, bulk chemical compositions of GEMS in the latter organic poor CP MMs are more homogeneous and have higher Fe/(Si + Mg + Fe) ratios than those of GEMS in the former organic-rich CP MMs. Functional group of the organic materials and amorphous silicate in GEMS in the organic-poor CP MMs may have transformed in the earliest stage of aqueous alteration, which did not form hydrated minerals. Three Fluffy Fg MMs contain abundant phyllosilicates, showing a clear evidence of aqueous alteration. Phyllosilicates in thee MMs are richer in Fe than those in hydrated IDPs, typical fine-grained hydrated (Fg C1) MMs, and hydrated carbonaceous chondrites. One of the Fluffy Fg MMs contains amorphous silicate, which is richer in Fe than GEMS and contains little or no nanophase Fe metal but contains Fe sulfide. Because the chemical compositions of the amorphous silicate are within the compositional field of GEMS in CP IDPs, the amorphous silicate may be alteration products of GEMS. The entire compositional field of GEMS in the CP MMs and the amorphous silicate in the Fluffy Fg MM matches that of the previously reported total compositional range of GEMS in IDPs. One Fluffy Fg MM contains Mg-rich phyllosilicate along with Fe-rich phyllosilicate and Mg-Fe carbonate. Mg-rich phyllosilicate and Mg-Fe carbonate may have been formed through the reaction of Fe-rich phyllosilicate, Mg-rich olivine and pyroxene, and water with C-bearing chemical species. These data indicate that CP MMs and Fluffy Fg MMs recovered from Antarctic surface snow contain materials that throw a light on the earliest stages of aqueous alteration on very primitive solar system bodies. Because mineralogy and isotopic and structural features of organic materials in D10IB009 are comparable with isotopically primitive IDPs, its parent body could be comets or icy asteroids showing mass ejection (active asteroids). By contrast, organic-poor CP MMs may have experienced the earliest stage of aqueous alteration and Fluffy Fg MMs experienced weak aqueous alteration. The precursor materials of the parent bodies of Fluffy Fg MMs probably contained abundant GEMS or GEMS-like materials like CP IDPs, which is common to fine-grained matrices of very primitive carbonaceous chondrites such as CR3s. However, highly porous nature of organic-poor CP MMs and Fluffy Fg MMs suggests that parent bodies of these MMs must have been much more porous than the parent bodies of primitive carbonaceous chondrites. Given no phyllosilicate among the returned samples of 81P/Wild 2 comet, the MMs may have been derived from porous icy asteroids such as active asteroids as well as P- and D-type asteroids rather than comets.
David, Stephanie; Passirani, Catherine; Carmoy, Nathalie; Morille, Marie; Mevel, Mathieu; Chatin, Benoit; Benoit, Jean-Pierre; Montier, Tristan; Pitard, Bruno
2013-01-01
We hereby present different DNA nanocarriers consisting of new multimodular systems (MMS), containing the cationic lipid dioleylaminesuccinylparomomycin (DNA MMS DOSP), or bis (guanidinium)-tren-cholesterol (DNA MMS BGTC), and DNA lipid nanocapsules (DNA LNCs). Active targeting of the asialoglycoprotein receptor (ASGP-R) using galactose as a ligand for DNA MMS (GAL DNA MMS) and passive targeting using a polyethylene glycol coating for DNA LNCs (PEG DNA LNCs) should improve the properties of these DNA nanocarriers. All systems were characterized via physicochemical methods and the DNA payload of DNA LNCs was quantified for the first time. Afterwards, their biodistribution in healthy mice was analyzed after encapsulation of a fluorescent dye via in vivo biofluorescence imaging (BFI), revealing various distribution profiles depending on the cationic lipid used and their surface characteristics. Furthermore, the two vectors with the best prolonged circulation profile were administered twice in healthy mice revealing that the new DNA MMS DOSP vectors showed no toxicity and the same distribution profile for both injections, contrary to PEG DNA LNCs which showed a rapid clearance after the second injection, certainly due to the accelerated blood clearance phenomenon. PMID:23299832
Magnetospheric Multiscale (MMS)
2014-05-09
MMS Stacked – View of the fully stacked MMS prior to being bagged for vibration tests. Learn more about MMS at www.nasa.gov/mms Credit NASA/Chris Gunn The Magnetospheric Multiscale, or MMS, will study how the sun and the Earth's magnetic fields connect and disconnect, an explosive process that can accelerate particles through space to nearly the speed of light. This process is called magnetic reconnection and can occur throughout all space. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
The Magnetospheric Multiscale Mission
NASA Astrophysics Data System (ADS)
Burch, James
Magnetospheric Multiscale (MMS), a NASA four-spacecraft mission scheduled for launch in November 2014, will investigate magnetic reconnection in the boundary regions of the Earth’s magnetosphere, particularly along its dayside boundary with the solar wind and the neutral sheet in the magnetic tail. Among the important questions about reconnection that will be addressed are the following: Under what conditions can magnetic-field energy be converted to plasma energy by the annihilation of magnetic field through reconnection? How does reconnection vary with time, and what factors influence its temporal behavior? What microscale processes are responsible for reconnection? What determines the rate of reconnection? In order to accomplish its goals the MMS spacecraft must probe both those regions in which the magnetic fields are very nearly antiparallel and regions where a significant guide field exists. From previous missions we know the approximate speeds with which reconnection layers move through space to be from tens to hundreds of km/s. For electron skin depths of 5 to 10 km, the full 3D electron population (10 eV to above 20 keV) has to be sampled at rates greater than 10/s. The MMS Fast-Plasma Instrument (FPI) will sample electrons at greater than 30/s. Because the ion skin depth is larger, FPI will make full ion measurements at rates of greater than 6/s. 3D E-field measurements will be made by MMS once every ms. MMS will use an Active Spacecraft Potential Control device (ASPOC), which emits indium ions to neutralize the photoelectron current and keep the spacecraft from charging to more than +4 V. Because ion dynamics in Hall reconnection depend sensitively on ion mass, MMS includes a new-generation Hot Plasma Composition Analyzer (HPCA) that corrects problems with high proton fluxes that have prevented accurate ion-composition measurements near the dayside magnetospheric boundary. Finally, Energetic Particle Detector (EPD) measurements of electrons and composition-resolved ions at energies up to 500 keV are included, both as remote sensors of boundary regions and as diagnostics of the particle acceleration processes that are produced in reconnection. MMS will also be able to answer questions about the possible role of turbulence in increasing the reconnection rate. With a 1-ms time resolution for DC magnetic and electric fields, vector magnetic wave measurements up to 6 kHz, and 3-axis electric field measurements to 100 kHz, MMS will be able to measure the level of turbulence within the diffusion region. MMS includes a theory and modeling team that has provided the inputs required for an optimum experiment. A major issue is that MMS will make very high rate measurements that will exceed by far the available downlink capacity. For this reason, theory and modeling have been used to design a system that is able to evaluate data quality in near real time and select the most promising intervals for full downlink. This system will be implemented by a large, on-board computer memory and the capability to select intervals for downlink based on both the software’s sampling of the highest-rate data and the evaluation of lower-rate data by scientists on the ground.
Servicers system demonstration plan and capability development
NASA Technical Reports Server (NTRS)
Bulboaca, M. A.; Cuseo, J. A.; Derocher, W. L., Jr.; Maples, R. W.; Reynolds, P. C.; Sterrett, R. A.
1985-01-01
A plan for the demonstration of the exchange of Multi-Mission Modular Spacecraft (MMS) modules using the servicer mechanism Engineering Test Unit (ETU) was prepared and executed. The plan included: establishment of requirements, conceptual design, selection of MMS spacecraft mockup configuration, selection of MMS module mockup configuration, evaluation of adequacy of ETU load capability, and selection of a stowage rack arrangement. The MMS module exchange demonstration mockup equipment was designed, fabricated, checked out, shipped, installed, and demonstrated.
NASA Astrophysics Data System (ADS)
Reiff, P. H.; Sazykin, S. Y.; Bala, R.; Coffey, V. N.; Chandler, M. O.; Minow, J. I.; Anderson, B. J.; Wolf, R.; Huba, J.; Baker, D. N.; Mauk, B.; Russell, C. T.
2015-12-01
The magnetic storm that commenced on June 22, 2015 was one of the largest storms in the current solar cycle. Availability of in situ observations from Magnetospheric Multiscale (MMS), the Van Allen Probes (VAP), and THEMIS in the magnetosphere, field-aligned currents from AMPERE, as well as the ionospheric data from the Floating Potential Measurement Unit (FPMU) instrument suite on board the International Space Station (ISS) represents an exciting opportunity to analyze storm-related dynamics. Our real-time space weather alert system sent out a "red alert" warning users of the event 2 hours in advance, correctly predicting Kp indices greater than 8. During this event, the MMS observatories were taking measurements in the magnetotail, VAP were in the inner magnetosphere, THEMIS was on the dayside, and the ISS was orbiting at 400 km every 90 minutes. Among the initial findings are the crossing of the dayside magnetopause into the region earthward of 8 RE, strong dipolarizations in the MMS magnetometer data, and dropouts in the particle fluxes seen by the MMS FPI instrument suite. At ionospheric altitudes, the FMPU measurements of the ion densities show dramatic post-sunset depletions at equatorial latitudes that are correlated with the particle flux dropouts measured by the MMS FPI. AMPERE data show highly variable currents varying from intervals of intense high latitude currents to currents at maximum polar cap expansion to 50 deg MLAT and exceeding 20 MA. In this paper, we use numerical simulations with global magnetohydrodynamic (MHD) models and the Rice Convection Model (RCM) of the inner magnetosphere in an attempt to place the observations in the context of storm-time global electrodynamics and cross-check the simulation global Birkeland currents with AMPERE distributions. Specifically, we will look at model-predicted effects of dipolarizations and the global convection on the inner magnetosphere via data-model comparison.
NASA Astrophysics Data System (ADS)
Pankratz, C. K.; Kokkonen, K.; Larsen, K. W.; Panneton, R. S.; Putnam, B.; Schafer, C.; Baker, D. N.; Burch, J. L.
2016-12-01
On September 1, 2015 the Magnetospheric MultiScale (MMS) constellation of four satellites completed their six-month commissioning period and began routine science data collection. Science operations for the mission is conducted at the Science Operations Center (SOC) at the Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder, Colorado, USA. The MMS Science Data Center (SDC) is a component of the SOC responsible for the data production, management, dissemination, archiving, and visualization of the data from the extensive suite of 100 instruments onboard the four spacecraft. As of March 2016, MMS science data are openly available to the entire science community via the SDC. This includes hundreds of science parameters, and 50 gigabytes of data per day distributed across thousands of data files. Products are produced using integrated software systems developed and maintained by teams at other institutions using their own institutional software management procedures and made available via a centralized public web site and web services. To accomplish the data management, data processing, and system integration challenges present on this space mission, the MMS SDC incorporates a number of evolutionary techniques and technologies. This presentation will provide an informatics-oriented view of the MMS SDC, summarizing its technical aspects, novel technologies and data management practices that are employed, experiences with its design and development, and lessons learned. Also presented is the MMS "Scientist-in-the-Loop" (SITL) system, which is used to leverage human insight and expertise to optimize the data selected for transmission to the ground. This smoothly operating system entails the seamless interoperability of multiple mission facilities and data systems that ultimately translate scientist insight into uplink commands that triggers optimal data downlink to the ground.
NASA Astrophysics Data System (ADS)
Pankratz, Christopher; Kokkonen, Kim; Larsen, Kristopher; Panneton, Russell; Putnam, Brian; Schafer, Corey; Baker, Daniel; Burch, James
2016-04-01
On September 1, 2015 the Magnetospheric MultiScale (MMS) constellation of four satellites completed their six-month commissioning period and began routine science data collection. Science operations for the mission is conducted at the Science Operations Center (SOC) at the Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder, Colorado, USA. The MMS Science Data Center (SDC) is a component of the SOC responsible for the data production, management, dissemination, archiving, and visualization of the data from the extensive suite of 100 instruments onboard the four spacecraft. As of March 2016, MMS science data are openly available to the entire science community via the SDC. This includes hundreds of science parameters, and 50 gigabytes of data per day distributed across thousands of data files. Products are produced using integrated software systems developed and maintained by teams at other institutions using their own institutional software management procedures and made available via a centralized public web site and web services. To accomplish the data management, data processing, and system integration challenges present on this space mission, the MMS SDC incorporates a number of evolutionary techniques and technologies. This presentation will provide an informatics-oriented view of the MMS SDC, summarizing its technical aspects, novel technologies and data management practices that are employed, experiences with its design and development, and lessons learned. Also presented is the MMS "Scientist-in-the-Loop" (SITL) system, which is used to leverage human insight and expertise to optimize the data selected for transmission to the ground. This smoothly operating system entails the seamless interoperability of multiple mission facilities and data systems that ultimately translate scientist insight into uplink commands that triggers optimal data downlink to the ground.
Magnetospheric MultiScale (MMS) System Manager
NASA Technical Reports Server (NTRS)
Schiff, Conrad; Maher, Francis Alfred; Henely, Sean Philip; Rand, David
2014-01-01
The Magnetospheric MultiScale (MMS) mission is an ambitious NASA space science mission in which 4 spacecraft are flown in tight formation about a highly elliptical orbit. Each spacecraft has multiple instruments that measure particle and field compositions in the Earths magnetosphere. By controlling the members relative motion, MMS can distinguish temporal and spatial fluctuations in a way that a single spacecraft cannot.To achieve this control, 2 sets of four maneuvers, distributed evenly across the spacecraft must be performed approximately every 14 days. Performing a single maneuver on an individual spacecraft is usually labor intensive and the complexity becomes clearly increases with four. As a result, the MMS flight dynamics team turned to the System Manager to put the routine or error-prone under machine control freeing the analysts for activities that require human judgment.The System Manager is an expert system that is capable of handling operations activities associated with performing MMS maneuvers. As an expert system, it can work off a known schedule, launching jobs based on a one-time occurrence or on a set reoccurring schedule. It is also able to detect situational changes and use event-driven programming to change schedules, adapt activities, or call for help.
NASA Technical Reports Server (NTRS)
Winternitz, Luke B.; Bamford, William A.; Price, Samuel R.
2017-01-01
As reported in a companion work, in its first phase, NASA's 2015 highly elliptic Magnetospheric Multiscale (MMS) mission set a record for the highest altitude operational use of on-board GPS-based navigation, returning state estimates at 12 Earth radii. In early 2017 MMS transitioned to its second phase which doubled the apogee distance to 25 Earth radii, approaching halfway to the Moon. This paper will present results for GPS observability and navigation performance achieved in MMS Phase 2. Additionally, it will provide simulation results predicting the performance of the MMS navigation system applied to a pair of concept missions at Lunar distances. These studies will demonstrate how high-sensitivity GPS (or GNSS) receivers paired with onboard navigation software, as in MMS-Navigation system, can extend the envelope of autonomous onboard GPS navigation far from the Earth.
2014-08-04
NASA Administrator Charles Bolden listens to Magnetospheric Multiscale (MMS) Mission Project Manager Craig Tooley talk about the MMS mission outside of a Naval Research Laboratory cleanroom where one of four Magnetospheric Multiscale (MMS) spacecraft is currently undergoing testing, Monday, August 4, 2014, in Washington. The Magnetospheric Multiscale, or MMS, mission will study the mystery of how magnetic fields around Earth connect and disconnect, explosively releasing energy via a process known as magnetic reconnection. The four identical spacecraft are scheduled to launch in 2015 from Cape Canaveral and will orbit around Earth in varying formations through the dynamic magnetic system surrounding our planet to provide the first three-dimensional views of the magnetic reconnection process. The goal of the STP Program is to understand the fundamental physical processes of the space environment from the sun to Earth, other planets, and the extremes of the solar system boundary. Photo Credit: (NASA/Bill Ingalls)
Magnetospheric Multiscale (MMS)
2017-12-08
MMS Four Separate – View of all four spacecraft in the MMS Cleanroom getting prepared for stacking operations. Learn more about MMS at www.nasa.gov/mms Credit NASA/Chris Gunn The Magnetospheric Multiscale, or MMS, will study how the sun and the Earth's magnetic fields connect and disconnect, an explosive process that can accelerate particles through space to nearly the speed of light. This process is called magnetic reconnection and can occur throughout all space. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
30 CFR 250.1303 - How do I apply for voluntary unitization?
Code of Federal Regulations, 2010 CFR
2010-07-01
... plan of operation; (3) Supporting geological, geophysical, and engineering data; and (4) Other... model unit agreement for you to follow. If MMS revises the model, MMS will publish the revised model in the Federal Register. If you vary your unit agreement from the model agreement, you must obtain the...
GPS Navigation Above 76,000 km for the MMS Mission
NASA Technical Reports Server (NTRS)
Winternitz, Luke; Bamford, Bill; Price, Samuel; Long, Anne; Farahmand, Mitra; Carpenter, Russell
2016-01-01
NASA's MMS mission, launched in March of 2015,consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12and 25 Earth radii in the first and second phases of the mission. Navigation for MMS is achieved independently onboard each spacecraft by processing GPS observables using NASA GSFC's Navigator GPS receiver and the Goddard Enhanced Onboard Navigation System (GEONS) extended Kalman filter software. To our knowledge, MMS constitutes, by far, the highest-altitude operational use of GPS to date and represents the culmination of over a decade of high-altitude GPS navigation research and development at NASA GSFC. In this paper we will briefly describe past and ongoing high-altitude GPS research efforts at NASA GSFC and elsewhere, provide details on the design of the MMS GPS navigation system, and present on-orbit performance data. We extrapolate these results to predict performance in the Phase 2b mission orbit, and conclude with a discussion of the implications of the MMS results for future high-altitude GPS navigation, which we believe to be broad and far-reaching.
Hing, James T; Brooks, Ari D; Desai, Jaydev P
2007-02-01
A methodology for modeling the needle and soft-tissue interaction during needle insertion is presented. The approach consists of the measurement of needle and tissue motion using a dual C-arm fluoroscopy system. Our dual C-arm fluoroscopy setup allows real time 3-D extraction of the displacement of implanted fiducials in the soft tissue during needle insertion to obtain the necessary parameters for accurate modeling of needle and soft-tissue interactions. The needle and implanted markers in the tissue are tracked during the insertion and withdrawal of the needle at speeds of 1.016 mm/s, 12.7 mm/s and 25.4 mm/s. Both image and force data are utilized to determine important parameters such as the approximate cutting force, puncture force, the local effective modulus (LEM) during puncture, and the relaxation of tissue. We have also validated the LEM computed from our finite element model with arbitrary needle puncture tasks. Based on these measurements, we developed a model for needle insertion and withdrawal that can be used to generate a 1-DOF force versus position profile that can be experienced by a user operating a haptic device. This profile was implemented on a 7-DOf haptic device designed in our laboratory.
Magnetospheric Multiscale Instrument Suite Operations and Data System
NASA Technical Reports Server (NTRS)
Baker, D. N.; Riesberg, L.; Pankratz, C. K.; Panneton, R. S.; Giles, B. L.; Wilder, F. D.; Ergun, R. E.
2015-01-01
The four Magnetospheric Multiscale (MMS) spacecraft will collect a combined volume of approximately 100 gigabits per day of particle and field data. On average, only 4 gigabits of that volume can be transmitted to the ground. To maximize the scientific value of each transmitted data segment, MMS has developed the Science Operations Center (SOC) to manage science operations, instrument operations, and selection, downlink, distribution, and archiving of MMS science data sets. The SOC is managed by the Laboratory for Atmospheric and Space Physics (LASP) in Boulder, Colorado and serves as the primary point of contact for community participation in the mission. MMS instrument teams conduct their operations through the SOC, and utilize the SOC's Science Data Center (SOC) for data management and distribution. The SOC provides a single mission data archive for the housekeeping and science data, calibration data, ephemerides, attitude and other ancillary data needed to support the scientific use and interpretation. All levels of data products will reside at and be publicly disseminated from the SDC. Documentation and metadata describing data products, algorithms, instrument calibrations, validation, and data quality will be provided. Arguably, the most important innovation developed by the SOC is the MMS burst data management and selection system. With nested automation and 'Scientist-in-the-Loop' (SITL) processes, these systems are designed to maximize the value of the burst data by prioritizing the data segments selected for transmission to the ground. This paper describes the MMS science operations approach, processes and data systems, including the burst system and the SITL concept.
Magnetospheric Multiscale Instrument Suite Operations and Data System
NASA Astrophysics Data System (ADS)
Baker, D. N.; Riesberg, L.; Pankratz, C. K.; Panneton, R. S.; Giles, B. L.; Wilder, F. D.; Ergun, R. E.
2016-03-01
The four Magnetospheric Multiscale (MMS) spacecraft will collect a combined volume of ˜100 gigabits per day of particle and field data. On average, only 4 gigabits of that volume can be transmitted to the ground. To maximize the scientific value of each transmitted data segment, MMS has developed the Science Operations Center (SOC) to manage science operations, instrument operations, and selection, downlink, distribution, and archiving of MMS science data sets. The SOC is managed by the Laboratory for Atmospheric and Space Physics (LASP) in Boulder, Colorado and serves as the primary point of contact for community participation in the mission. MMS instrument teams conduct their operations through the SOC, and utilize the SOC's Science Data Center (SDC) for data management and distribution. The SOC provides a single mission data archive for the housekeeping and science data, calibration data, ephemerides, attitude and other ancillary data needed to support the scientific use and interpretation. All levels of data products will reside at and be publicly disseminated from the SDC. Documentation and metadata describing data products, algorithms, instrument calibrations, validation, and data quality will be provided. Arguably, the most important innovation developed by the SOC is the MMS burst data management and selection system. With nested automation and "Scientist-in-the-Loop" (SITL) processes, these systems are designed to maximize the value of the burst data by prioritizing the data segments selected for transmission to the ground. This paper describes the MMS science operations approach, processes and data systems, including the burst system and the SITL concept.
David, Stephanie; Passirani, Catherine; Carmoy, Nathalie; Morille, Marie; Mevel, Mathieu; Chatin, Benoit; Benoit, Jean-Pierre; Montier, Tristan; Pitard, Bruno
2013-01-08
We hereby present different DNA nanocarriers consisting of new multimodular systems (MMS), containing the cationic lipid dioleylaminesuccinylparomomycin (DNA MMS DOSP), or bis (guanidinium)-tren-cholesterol (DNA MMS BGTC), and DNA lipid nanocapsules (DNA LNCs). Active targeting of the asialoglycoprotein receptor (ASGP-R) using galactose as a ligand for DNA MMS (GAL DNA MMS) and passive targeting using a polyethylene glycol coating for DNA LNCs (PEG DNA LNCs) should improve the properties of these DNA nanocarriers. All systems were characterized via physicochemical methods and the DNA payload of DNA LNCs was quantified for the first time. Afterwards, their biodistribution in healthy mice was analyzed after encapsulation of a fluorescent dye via in vivo biofluorescence imaging (BFI), revealing various distribution profiles depending on the cationic lipid used and their surface characteristics. Furthermore, the two vectors with the best prolonged circulation profile were administered twice in healthy mice revealing that the new DNA MMS DOSP vectors showed no toxicity and the same distribution profile for both injections, contrary to PEG DNA LNCs which showed a rapid clearance after the second injection, certainly due to the accelerated blood clearance phenomenon.Molecular Therapy - Nucleic Acids (2013) 2, e64; doi:10.1038/mtna.2012.56; published online 8 January 2013.
Verification of low-Mach number combustion codes using the method of manufactured solutions
NASA Astrophysics Data System (ADS)
Shunn, Lee; Ham, Frank; Knupp, Patrick; Moin, Parviz
2007-11-01
Many computational combustion models rely on tabulated constitutive relations to close the system of equations. As these reactive state-equations are typically multi-dimensional and highly non-linear, their implications on the convergence and accuracy of simulation codes are not well understood. In this presentation, the effects of tabulated state-relationships on the computational performance of low-Mach number combustion codes are explored using the method of manufactured solutions (MMS). Several MMS examples are developed and applied, progressing from simple one-dimensional configurations to problems involving higher dimensionality and solution-complexity. The manufactured solutions are implemented in two multi-physics hydrodynamics codes: CDP developed at Stanford University and FUEGO developed at Sandia National Laboratories. In addition to verifying the order-of-accuracy of the codes, the MMS problems help highlight certain robustness issues in existing variable-density flow-solvers. Strategies to overcome these issues are briefly discussed.
Magnetospheric Multiscale Mission Micrometeoroid/Orbital Debris Impacts
NASA Technical Reports Server (NTRS)
Williams, Trevor; Sedlak, Joseph; Shulman, Seth
2017-01-01
The MMS spacecraft are highly instrumented (accelerometers, star cameras, Sun sensors, science experiments for plasmas etc.). This presentation will discuss how data from these systems has allowed two micrometeoroid/orbital debris events to be studied: the Feb. 2, 2016 impact with an MMS4 shunt resistor, and the June 12, 2016 impact with an MMS4 wire boom.
The Distribution of Interplanetary Dust Near 1-AU: An MMS Perspective
NASA Astrophysics Data System (ADS)
Adrian, M. L.; St Cyr, O. C.; Wilson, L. B., III; Schiff, C.; Sacks, L. W.; Chai, D. J.; Queen, S. Z.; Sedlak, J. E.
2017-12-01
The distribution of dust in the ecliptic plane in the vicinity of 1-AU has been inferred from impacts on the four Magnetospheric Multiscale (MMS) mission spacecraft as detected by the Acceleration Measurement System (AMS) during periods when no other spacecraft activities are in progress. Consisting of four identically instrumented spacecraft, with an inter-spacecraft separation ranging from 10-km to 400-km, the MMS constellation forms a dust "detector" with approximately four-times the collection area of any previous dust monitoring framework. Here we introduce the MMS-AMS and the inferred dust impact observations, provide a preliminary comparison of the MMS distribution of dust impacts to previously reported interplanetary dust distributions — namely those of the STEREO mission — and report on our initial comparison of the MMS distribution of dust impacts with known meteor showers.
57Fe CEMS study on dilute metal ions codoped SnO2 thin films prepared by spray pyrolysis
NASA Astrophysics Data System (ADS)
Nomura, Kiyoshi; Koike, Yuya; Nakanishi, Akio
2017-11-01
Dilute Mn-Fe, Co-Fe and V-Fe codoped tin oxide films prepared by spray pyrolysis were characterized by 57Fe conversion electron Mössbauer spectrometry (CEMS) at room temperature (RT) and at 20 K. Two kinds of paramagnetic Fe3+ species were detected at RT; one doublet 1 (D1) with IS = 0.36-0.37 mm/s, QS = 0.69-0.75 mm/s and LW = 0.32-0.40 mm/s, and another doublet 2 (D2) with IS = 0.31-0.35 mm/s QS = 1.16-1.25 mm/s and LW = 0.46-0.52 mm/s. CEMS at 20 K provided more distinguished doublets than at RT. It is found that especially D2 with relatively small IS and large QS values are influenced by other metal ions codoped in SnO2 matrix, whereas D1 with relatively large IS and small QS has the parameters close to the models of Fe-VO1 and Fe-2VO1-Fe models (Nomura et al. Phys. Rev. B 75, 184411 2007; Mudarra Navarro et al. J. Phys. Chem. C 119, 5596-5603 2015).
Global Positioning System Navigation Above 76,000 km for NASA's Magnetospheric Multiscale Mission
NASA Technical Reports Server (NTRS)
Winternitz, Luke B.; Bamford, William A.; Price, Samuel R.; Carpenter, J. Russell; Long, Anne C.; Farahmand, Mitra
2016-01-01
NASA's Magnetospheric Multiscale (MMS) mission, launched in March of 2015, consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12 and 25 Earth radii (RE) in the first and second phases of the mission. Navigation for MMS is achieved independently on-board each spacecraft by processing Global Positioning System (GPS) observables using NASA Goddard Space Flight Center (GSFC)'s Navigator GPS receiver and the Goddard Enhanced Onboard Navigation System (GEONS) extended Kalman filter software. To our knowledge, MMS constitutes, by far, the highest-altitude operational use of GPS to date and represents a high point of over a decade of high-altitude GPS navigation research and development at GSFC. In this paper we will briefly describe past and ongoing high-altitude GPS research efforts at NASA GSFC and elsewhere, provide details on the design of the MMS GPS navigation system, and present on-orbit performance data from the first phase. We extrapolate these results to predict performance in the second phase orbit, and conclude with a discussion of the implications of the MMS results for future high-altitude GPS navigation, which we believe to be broad and far-reaching.
Prust, Margaret L; Banda, Clement K; Nyirenda, Rose; Chimbwandira, Frank; Kalua, Thokozani; Jahn, Andreas; Eliya, Michael; Callahan, Katie; Ehrenkranz, Peter; Prescott, Marta R; McCarthy, Elizabeth A; Tagar, Elya; Gunda, Andrews
2017-07-21
In order to facilitate scale-up of antiretroviral therapy (ART) in Malawi, innovative and pragmatic models have been developed to optimize the efficiency of HIV service delivery. In particular, three models of differentiated care have emerged for stable patients: adjusted appointment spacing through multi-month scripting (MMS); fast-track drug refills (FTRs) on alternating visits; and community ART groups (CAGs) where group members rotate in collecting medications at the facility for all members. This study aimed to assess the extent to which ART patients in Malawi are differentiated based on clinical stability and describe the characteristics and costs associated with the models of differentiated care offered. A mixed methods process evaluation was conducted from 30 purposefully selected ART facilities. Cross-sectional data for this evaluation was collected between February and May 2016. The following forms of data collection are reported here: structured surveys with 136 health care workers; reviews of 75,364 patient clinical records; 714 observations of visit time and flow; and 30 questionnaires on facility characteristics. Among ART patients, 77.5% (95% confidence interval [CI] 74.1-80.6) were eligible for differentiated models of care based on criteria for clinical stability from national guidelines. Across all facilities, 69% of patients were receiving MMS. In facilities offering FTRs and CAGs, 67% and 6% of patients were enrolled in the models, respectively. However, eligibility criteria were used inconsistently: 72.9% (95% CI 66.3-78.6) of eligible patients and 42.3% (95% CI 33.1-52.0) ineligible patients received MMS. Results indicated that patient travel and time costs were reduced by 67%, and the unit costs of ART service delivery through the MMS, FTR and CAG models were similar, representing a reduction of approximately 10% in the annual unit cost of providing care to stable patients that receive no model. MMS is being implemented nationally and has already generated cost savings and efficiencies in Malawi for patients and the health system, but could be improved by more accurate patient differentiation. While expanding FTRs and CAGs may not offer significant further cost savings in Malawi, future studies should investigate if such alternative models lead to improvements in patient satisfaction or clinical outcomes that might justify their implementation.
NASA Astrophysics Data System (ADS)
Boyer, Frédéric; Porez, Mathieu; Morsli, Ferhat; Morel, Yannick
2017-08-01
In animal locomotion, either in fish or flying insects, the use of flexible terminal organs or appendages greatly improves the performance of locomotion (thrust and lift). In this article, we propose a general unified framework for modeling and simulating the (bio-inspired) locomotion of robots using soft organs. The proposed approach is based on the model of Mobile Multibody Systems (MMS). The distributed flexibilities are modeled according to two major approaches: the Floating Frame Approach (FFA) and the Geometrically Exact Approach (GEA). Encompassing these two approaches in the Newton-Euler modeling formalism of robotics, this article proposes a unique modeling framework suited to the fast numerical integration of the dynamics of a MMS in both the FFA and the GEA. This general framework is applied on two illustrative examples drawn from bio-inspired locomotion: the passive swimming in von Karman Vortex Street, and the hovering flight with flexible flapping wings.
30 CFR 260.111 - What conditions apply to the bidding systems that MMS uses?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What conditions apply to the bidding systems... INTERIOR OFFSHORE OUTER CONTINENTAL SHELF OIL AND GAS LEASING Bidding Systems General Provisions § 260.111 What conditions apply to the bidding systems that MMS uses? (a) For each of the bidding systems in...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What criteria does MMS use for selecting bidding systems and bidding system components? 260.130 Section 260.130 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OUTER CONTINENTAL SHELF OIL AND GAS LEASING Bidding Systems Bidding System Selection Criteria §...
Video-based Mobile Mapping System Using Smartphones
NASA Astrophysics Data System (ADS)
Al-Hamad, A.; Moussa, A.; El-Sheimy, N.
2014-11-01
The last two decades have witnessed a huge growth in the demand for geo-spatial data. This demand has encouraged researchers around the world to develop new algorithms and design new mapping systems in order to obtain reliable sources for geo-spatial data. Mobile Mapping Systems (MMS) are one of the main sources for mapping and Geographic Information Systems (GIS) data. MMS integrate various remote sensing sensors, such as cameras and LiDAR, along with navigation sensors to provide the 3D coordinates of points of interest from moving platform (e.g. cars, air planes, etc.). Although MMS can provide accurate mapping solution for different GIS applications, the cost of these systems is not affordable for many users and only large scale companies and institutions can benefits from MMS systems. The main objective of this paper is to propose a new low cost MMS with reasonable accuracy using the available sensors in smartphones and its video camera. Using the smartphone video camera, instead of capturing individual images, makes the system easier to be used by non-professional users since the system will automatically extract the highly overlapping frames out of the video without the user intervention. Results of the proposed system are presented which demonstrate the effect of the number of the used images in mapping solution. In addition, the accuracy of the mapping results obtained from capturing a video is compared to the same results obtained from using separate captured images instead of video.
NASA Astrophysics Data System (ADS)
Kuznetsova, M. M.; Liu, Y. H.; Rastaetter, L.; Pembroke, A. D.; Chen, L. J.; Hesse, M.; Glocer, A.; Komar, C. M.; Dorelli, J.; Roytershteyn, V.
2016-12-01
The presentation will provide overview of new tools, services and models implemented at the Community Coordinated Modeling Center (CCMC) to facilitate MMS dayside results analysis. We will provide updates on implementation of Particle-in-Cell (PIC) simulations at the CCMC and opportunities for on-line visualization and analysis of results of PIC simulations of asymmetric magnetic reconnection for different guide fields and boundary conditions. Fields, plasma parameters, particle distribution moments as well as particle distribution functions calculated in selected regions of the vicinity of reconnection sites can be analyzed through the web-based interactive visualization system. In addition there are options to request distribution functions in user selected regions of interest and to fly through simulated magnetic reconnection configurations and a map of distributions to facilitate comparisons with observations. A broad collection of global magnetosphere models hosted at the CCMC provide opportunity to put MMS observations and local PIC simulations into global context. We recently implemented the RECON-X post processing tool (Glocer et al, 2016) which allows users to determine the location of separator surface around closed field lines and between open field lines and solar wind field lines. The tool also finds the separatrix line where the two surfaces touch and positions of magnetic nulls. The surfaces and the separatrix line can be visualized relative to satellite positions in the dayside magnetosphere using an interactive HTML-5 visualization for each time step processed. To validate global magnetosphere models' capability to simulate locations of dayside magnetosphere boundaries we will analyze the proximity of MMS to simulated separatrix locations for a set of MMS diffusion region crossing events.
NASA Technical Reports Server (NTRS)
Estes, Lyndon D.; Beukes, Hein; Bradley, Bethany A.; Debats, Stephanie R.; Oppenheimer, Michael; Ruane, Alex C.; Schulze, Roland; Tadross, Mark
2013-01-01
Crop model-specific biases are a key uncertainty affecting our understanding of climate change impacts to agriculture. There is increasing research focus on intermodel variation, but comparisons between mechanistic (MMs) and empirical models (EMs) are rare despite both being used widely in this field. We combined MMs and EMs to project future (2055) changes in the potential distribution (suitability) and productivity of maize and spring wheat in South Africa under 18 downscaled climate scenarios (9 models run under 2 emissions scenarios). EMs projected larger yield losses or smaller gains than MMs. The EMs' median-projected maize and wheat yield changes were 3.6% and 6.2%, respectively, compared to 6.5% and 15.2% for the MM. The EM projected a 10% reduction in the potential maize growing area, where the MM projected a 9% gain. Both models showed increases in the potential spring wheat production region (EM = 48%, MM = 20%), but these results were more equivocal because both models (particularly the EM) substantially overestimated the extent of current suitability. The substantial water-use efficiency gains simulated by the MMs under elevated CO2 accounted for much of the EMMM difference, but EMs may have more accurately represented crop temperature sensitivities. Our results align with earlier studies showing that EMs may show larger climate change losses than MMs. Crop forecasting efforts should expand to include EMMM comparisons to provide a fuller picture of crop-climate response uncertainties.
Data Processing and Quality Evaluation of a Boat-Based Mobile Laser Scanning System
Vaaja, Matti; Kukko, Antero; Kaartinen, Harri; Kurkela, Matti; Kasvi, Elina; Flener, Claude; Hyyppä, Hannu; Hyyppä, Juha; Järvelä, Juha; Alho, Petteri
2013-01-01
Mobile mapping systems (MMSs) are used for mapping topographic and urban features which are difficult and time consuming to measure with other instruments. The benefits of MMSs include efficient data collection and versatile usability. This paper investigates the data processing steps and quality of a boat-based mobile mapping system (BoMMS) data for generating terrain and vegetation points in a river environment. Our aim in data processing was to filter noise points, detect shorelines as well as points below water surface and conduct ground point classification. Previous studies of BoMMS have investigated elevation accuracies and usability in detection of fluvial erosion and deposition areas. The new findings concerning BoMMS data are that the improved data processing approach allows for identification of multipath reflections and shoreline delineation. We demonstrate the possibility to measure bathymetry data in shallow (0–1 m) and clear water. Furthermore, we evaluate for the first time the accuracy of the BoMMS ground points classification compared to manually classified data. We also demonstrate the spatial variations of the ground point density and assess elevation and vertical accuracies of the BoMMS data. PMID:24048340
Data processing and quality evaluation of a boat-based mobile laser scanning system.
Vaaja, Matti; Kukko, Antero; Kaartinen, Harri; Kurkela, Matti; Kasvi, Elina; Flener, Claude; Hyyppä, Hannu; Hyyppä, Juha; Järvelä, Juha; Alho, Petteri
2013-09-17
Mobile mapping systems (MMSs) are used for mapping topographic and urban features which are difficult and time consuming to measure with other instruments. The benefits of MMSs include efficient data collection and versatile usability. This paper investigates the data processing steps and quality of a boat-based mobile mapping system (BoMMS) data for generating terrain and vegetation points in a river environment. Our aim in data processing was to filter noise points, detect shorelines as well as points below water surface and conduct ground point classification. Previous studies of BoMMS have investigated elevation accuracies and usability in detection of fluvial erosion and deposition areas. The new findings concerning BoMMS data are that the improved data processing approach allows for identification of multipath reflections and shoreline delineation. We demonstrate the possibility to measure bathymetry data in shallow (0-1 m) and clear water. Furthermore, we evaluate for the first time the accuracy of the BoMMS ground points classification compared to manually classified data. We also demonstrate the spatial variations of the ground point density and assess elevation and vertical accuracies of the BoMMS data.
NASA Astrophysics Data System (ADS)
Noguchi, Takaaki; Ohashi, Noriaki; Tsujimoto, Shinichi; Mitsunari, Takuya; Bradley, John P.; Nakamura, Tomoki; Toh, Shoichi; Stephan, Thomas; Iwata, Naoyoshi; Imae, Naoya
2015-01-01
Chondritic porous interplanetary dust particles (CP IDPs) collected in the stratosphere are regarded as possibly being cometary dust, and are therefore the most primitive solar system material that is currently available for analysis in laboratories. In this paper we report the discovery of more than 40 chondritic porous micrometeorites (CP MMs) in the surface snow and blue ice of Antarctica, which are indistinguishable from CP IDPs. The CP MMs are botryoidal aggregates, composed mainly of sub-micrometer-sized constituents. They contain two components that characterize them as CP IDPs: enstatite whiskers and GEMS (glass with embedded metal and sulfides). Enstatite whiskers appear as <2-μm-long acicular objects that are attached on, or protrude from the surface, and when included in the interior of the CP MMs are composed of a unit-cell scale mixture of clino- and ortho-enstatite, and elongated along the [100] direction. GEMS appear as 100-500 nm spheroidal objects containing <50 nm Fe-Ni metal and Fe sulfide. The CP MMs also contain low-iron-manganese-enriched (LIME) and low-iron-chromium-enriched (LICE) ferromagnesian silicates, kosmochlor (NaCrSi2O6)-rich high-Ca pyroxene, roedderite (K, Na)2Mg5Si12O30, and carbonaceous nanoglobules. These components have previously been discovered in primitive solar system materials such as the CP IDPs, matrices of primitive chondrites, phyllosilicate-rich MMs, ultracarbonaceous MMs, and cometary particles recovered from the 81P/Wild 2 comet. The most outstanding feature of these CP MMs is the presence of kosmochlor-rich high-Ca pyroxene and roedderite, which suggest that they have building blocks in common with CP IDPs and cometary dust particles and therefore suggest a possible cometary origin of both CP MMs and CP IDPs. It is therefore considered that CP MMs are CP IDPs that have fallen to Earth and have survived the terrestrial environment.
Sensitivity of Magnetospheric Multi-Scale (MMS) Mission Navigation Accuracy to Major Error Sources
NASA Technical Reports Server (NTRS)
Olson, Corwin; Long, Anne; Car[emter. Russell
2011-01-01
The Magnetospheric Multiscale (MMS) mission consists of four satellites flying in formation in highly elliptical orbits about the Earth, with a primary objective of studying magnetic reconnection. The baseline navigation concept is independent estimation of each spacecraft state using GPS pseudorange measurements referenced to an Ultra Stable Oscillator (USO) with accelerometer measurements included during maneuvers. MMS state estimation is performed onboard each spacecraft using the Goddard Enhanced Onboard Navigation System (GEONS), which is embedded in the Navigator GPS receiver. This paper describes the sensitivity of MMS navigation performance to two major error sources: USO clock errors and thrust acceleration knowledge errors.
Sensitivity of Magnetospheric Multi-Scale (MMS) Mission Naviation Accuracy to Major Error Sources
NASA Technical Reports Server (NTRS)
Olson, Corwin; Long, Anne; Carpenter, J. Russell
2011-01-01
The Magnetospheric Multiscale (MMS) mission consists of four satellites flying in formation in highly elliptical orbits about the Earth, with a primary objective of studying magnetic reconnection. The baseline navigation concept is independent estimation of each spacecraft state using GPS pseudorange measurements referenced to an Ultra Stable Oscillator (USO) with accelerometer measurements included during maneuvers. MMS state estimation is performed onboard each spacecraft using the Goddard Enhanced Onboard Navigation System (GEONS), which is embedded in the Navigator GPS receiver. This paper describes the sensitivity of MMS navigation performance to two major error sources: USO clock errors and thrust acceleration knowledge errors.
Magnetospheric Multiscale (MMS)
2014-05-09
Electrical technicians work diligently to build the connector harnessing for the Command and Data Handling (C&DH) unit, (black box with two red handles) that is installed on spacecraft Deck for MMS #4. Learn more about MMS at www.nasa.gov/mms Credit NASA/Goddard The Magnetospheric Multiscale, or MMS, will study how the sun and the Earth's magnetic fields connect and disconnect, an explosive process that can accelerate particles through space to nearly the speed of light. This process is called magnetic reconnection and can occur throughout all space. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Monopoles, cosmology, and astrophysics - Update 1985
NASA Technical Reports Server (NTRS)
Turner, Michael S.
1986-01-01
The characteristics of the superheavy magnetic monopoles (MMs) predicted by GUTs are reviewed, and recent developments in astrophysical MM search techniques are surveyed. Theoretical models of the birth, current distribution, and motion of MMs are examined; the observational implications of MM mass, magnetic charge, and ability to catalyze nucleon decay are considered; estimates of the average and local flux limits for MMs of 10 to the 25th eV are given (less than about 3 x 10 to the -15th and less than about 3 x 10 to the -11th/sq cm sr sec, respectively); and the possibility of detecting MMs in the sun (if they can escape annihilation there) is discussed.
NASA Technical Reports Server (NTRS)
Hesse, Michael; Birn, J.; Denton, Richard E.; Drake, J.; Gombosi, T.; Hoshino, M.; Matthaeus, B.; Sibeck, D.
2005-01-01
When targeting physical understanding of space plasmas, our focus is gradually shifting away from discovery-type investigations to missions and studies that address our basic understanding of processes we know to be important. For these studies, theory and models provide physical predictions that need to be verified or falsified by empirical evidence. Within this paradigm, a tight integration between theory, modeling, and space flight mission design and execution is essential. NASA's Magnetospheric MultiScale (MMS) mission is a pathfinder in this new era of space research. The prime objective of MMS is to understand magnetic reconnection, arguably the most fundamental of plasma processes. In particular, MMS targets the microphysical processes, which permit magnetic reconnection to operate in the collisionless plasmas that permeate space and astrophysical systems. More specifically, MMS will provide closure to such elemental questions as how particles become demagnetized in the reconnection diffusion region, which effects determine the reconnection rate, and how reconnection is coupled to environmental conditions such as magnetic shear angles. Solutions to these problems have remained elusive in past and present spacecraft missions primarily due to instrumental limitations - yet they are fundamental to the large-scale dynamics of collisionless plasmas. Owing to the lack of measurements, most of our present knowledge of these processes is based on results from modern theory and modeling studies of the reconnection process. Proper design and execution of a mission targeting magnetic reconnection should include this knowledge and have to ensure that all relevant scales and effects can be resolved by mission measurements. The SMART mission has responded to this need through a tight integration between instrument and theory and modeling teams. Input from theory and modeling is fed into all aspects of science mission design, and theory and modeling activities are tailored to SMART needs during mission development and science analysis. In this presentation, we will present an overview of SMART theory and modeling team activities. In particular, we will provide examples of science objectives derived from state-of-the art models, and of recent research results that continue to be utilized in SMART mission development.
Magnetospheric Multiscale (MMS) Mission Attitude Ground System Design
NASA Technical Reports Server (NTRS)
Sedlak, Joseph E.; Superfin, Emil; Raymond, Juan C.
2011-01-01
This paper presents an overview of the attitude ground system (AGS) currently under development for the Magnetospheric Multiscale (MMS) mission. The primary responsibilities for the MMS AGS are definitive attitude determination, validation of the onboard attitude filter, and computation of certain parameters needed to improve maneuver performance. For these purposes, the ground support utilities include attitude and rate estimation for validation of the onboard estimates, sensor calibration, inertia tensor calibration, accelerometer bias estimation, center of mass estimation, and production of a definitive attitude history for use by the science teams. Much of the AGS functionality already exists in utilities used at NASA's Goddard Space Flight Center with support heritage from many other missions, but new utilities are being created specifically for the MMS mission, such as for the inertia tensor, accelerometer bias, and center of mass estimation. Algorithms and test results for all the major AGS subsystems are presented here.
Conjunction Assessment Techniques and Operational Results from the Magnetospheric Multiscale Mission
NASA Technical Reports Server (NTRS)
Williams, Trevor; Carpenter, Russell; Farahmand, Mitra; Ottenstein, Neil; Demoret, Michael; Godine, Dominic
2017-01-01
This paper will describe the results that have been obtained to date during the MMS mission concerning conjunction assessment. MMS navigation makes use of a weak-signal GPS-based system: this allows signals to be received even when MMS is flying above the GPS orbits, producing a highly accurate determination of the four MMS orbits. This data is downlinked to the MMS Mission Operations Center (MOC) and used by the Flight Dynamics Operations Area (FDOA) for both maneuver design and conjunction assessment. The MMS fly in tetrahedron formations around apogee, in order to collect simultaneous particles and fields science data. The original plan was to fly tetrahedra between 10 and 160 km in size; however, after Phase 1a of the mission, the science team requested that smaller sizes be flown if feasible. After analysis (to be detailed in a companion paper), a new minimum size of 7 km was decided upon. Flying at this reduced scale size makes conjunction assessment between the MMS spacecraft even more important: the methods that are used by the MMS FDOA to address this problem will be described in the paper, and a summary given of the previous analyses that went into the development of these techniques. Details will also be given of operational experiences to date. Finally, two CA mitigation maneuver types that have been designed (but never yet required to actually be performed) will also be outlined.
Man-systems integration and the man-machine interface
NASA Technical Reports Server (NTRS)
Hale, Joseph P.
1990-01-01
Viewgraphs on man-systems integration and the man-machine interface are presented. Man-systems integration applies the systems' approach to the integration of the user and the machine to form an effective, symbiotic Man-Machine System (MMS). A MMS is a combination of one or more human beings and one or more physical components that are integrated through the common purpose of achieving some objective. The human operator interacts with the system through the Man-Machine Interface (MMI).
Delivering spacecraft control centers with embedded knowledge-based systems: The methodology issue
NASA Technical Reports Server (NTRS)
Ayache, S.; Haziza, M.; Cayrac, D.
1994-01-01
Matra Marconi Space (MMS) occupies a leading place in Europe in the domain of satellite and space data processing systems. The maturity of the knowledge-based systems (KBS) technology, the theoretical and practical experience acquired in the development of prototype, pre-operational and operational applications, make it possible today to consider the wide operational deployment of KBS's in space applications. In this perspective, MMS has to prepare the introduction of the new methods and support tools that will form the basis of the development of such systems. This paper introduces elements of the MMS methodology initiatives in the domain and the main rationale that motivated the approach. These initiatives develop along two main axes: knowledge engineering methods and tools, and a hybrid method approach for coexisting knowledge-based and conventional developments.
Magnetospheric Multiscale (MMS)
2014-05-09
Propulsion engineer measures the flight filters during the receiving inspection. Learn more about MMS at www.nasa.gov/mms Credit NASA/Goddard The Magnetospheric Multiscale, or MMS, will study how the sun and the Earth's magnetic fields connect and disconnect, an explosive process that can accelerate particles through space to nearly the speed of light. This process is called magnetic reconnection and can occur throughout all space. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NANOSPACE-1: the Impacts of the First Swedish Nanosatellite on Spacecraft Architecture and Design
NASA Astrophysics Data System (ADS)
Bruhn, F.; Köhler, J.; Stenmark, L.
2002-01-01
NanoSpace-1 (NS-1), due to be launched in late 2003 or early 2004 will test highly advanced Micro Systems Technology (MST) for space applications. These devices are highly miniaturized and optimized complete systems in the sense that all parts of the system are processed with MST and integrated as Multifunctional Microsystems (MMS). The very high level of miniaturization and multifunctionallity in the MMS, will enable easier access to space for nanosatellites to perform better scientific research. This new class of high performing small satellites will open areas for research that before only could be done with much larger and costly satellites. Many institutions, universities, and small countries will benefit greatly as that nanosatellites become more capable per mass unit and volume unit than other spacecraft. These new MMS/MST satellites will provide the ground for a better and less expensive exploration of space. NS-1 will be the first high-performing nanosatellite by using MST/MMS to many subsystems and modules. The whole spacecraft will be built around MMS and will include multifunctional 3D-Multi Chip Modules (3D-MCM), a 3D thin film solar sensor, thin film coating for passive thermal control, variable emittance panels, microwave MEMS patch antennas, micromechanical thermal switches, thin film solar cells with record high efficiency and finally silicon as multifunctional active structure elements. The complete spacecraft will weigh about 7 kg and have dimensions of 32x32x15 cm. The overall mission for NS-1 is to test the new technologies mentioned above, and to collect experiences in the field of MMS architecture. However, new technologies in itself will not take us to a new generation spacecraft. Deeply integrated within the structure of the NanoSpace program are new system designs and multifunctional systems thinking. Distributed and autonomous subsystems are very important when incorporating new technologies with high redundancy. Autonomous systems also reduce the complexity of the overall spacecraft design since many functions can be placed in multifunctional multichip modules. This implies an increase of the complexity at the spacecraft subsystem level. NanoSpace-1 will test several new autonomous, distributed, and miniaturized multifunctional systems, including large memories modules, house keeping modules, RF- MEMS, and power conditioning modules. The MMS concept comprises several features, for instance, all 3D-multi chip modules are part of the spacecraft structure itself. The use of 3D-MCM modules as a large part of the spacecraft hull is a direct application of MMS thinking; the modules are load taking structure elements, and also contain many subsystems of the spacecraft. The MMS thinking is illustrated by the RF-MEMS 3D-MCM module. All other modules will be further presented in the paper. The RF-MEMS module comprises micro strips, patch-antennas, solid state power amplifiers, thermal control, micromechanical switches, power conditioning, radiation shields, and command interfaces. The size of the RF-module is 68x68x5 mm and has a weight of less than 70g. The module is designed to handle different frequencies, only by changing the top wafers and the mixer chip. MST and MMS integrated modules pose at least two major challenges compared to conventional technology. First, the processes cannot be changed half way to the product. Any substantial change in the process will almost certainly require a complete redesign of the whole system. Secondly, qualification and product assurance becomes more important since the processes in MMS tend to be long and complicated. The Ångström Space Technology Centre (ÅSTC) is a center for development of Micro Systems Technologies (MST) for Space Applications at the department of Materials Science at Uppsala University in Sweden. The center is now taking the next step in the ongoing Nanosatellite program, called the NanoSpace program. Backed by funding from the Swedish National Space Board (SNSB), the European Space Agency (ESA), and the European Commission (EC), the ÅSTC will begin developing nanosatellites to demonstrate the next generation spacecraft. The Nanosatellite program is built around a launch every 2nd year to test, verify and qualify new MST technologies for space. The Nanosatellite effort is a solid and well founded program with a backbone of technology research and Multifunctional Microsystems (MMS) thinking.
Carron, P-N; Yersin, B; Fishman, D; Ribordy, V
2005-06-01
The occurrence of the 2003 G8 summit in Evian and the threat of major civil riots or even terrorist attacks in the Swiss neighbourhood forced us to imagine a new system of rescue and medical care in case of numerous victims. Previous occurrences of the G8 in Europe or America have demonstrated the need of flexible and mobile structures, able to respond quickly to crowd movements, unlike the usual static structure of rescue systems designed for major accidents. We developed a new concept of Mobile Medical Squadrons (MMS) consisting of several vehicles and medical care and rescue human resources. In our concept, each MMS consisted of 3 emergency doctors, 5 paramedics and 9 first-aid workers. They were designed to handle 15 patients, with a large autonomy in terms of rescue, medical care, evacuation and medical authority. The equipment included medical, resuscitation, simple decontamination, evacuation and communication materials. The MMS were dispatched four times during the G8 summit following civil riots. They took care of 12 injured patients. The concept of MMS as a reinforcement of the existing rescue and health care resources appears as a new flexible, a modular and useful concept for the medical management of collective prehospital emergency situations. Its use is suggested instead of the traditional static concept of rescue systems designed for major accidents.
Global Positioning System Navigation Above 76,000 km for NASA's Magnetospheric Multiscale Mission
NASA Technical Reports Server (NTRS)
Winternitz, Luke B.; Bamford, William A.; Price, Samuel R.; Carpenter, J. Russell; Long, Anne C.; Farahmand, Mitra
2016-01-01
NASA's Magnetospheric Multiscale (MMS) mission, launched in March of 2015, consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12 and 25 Earth radii (RE) in the first and second phases of the mission. Navigation for MMSis achieved independently on-board each spacecraft by processing Global Positioning System (GPS) observables using NASA Goddard Space Flight Center (GSFC)'s Navigator GPS receiver and the Goddard Enhanced Onboard Navigation System (GEONS) extended Kalman filter software. To our knowledge, MMS constitutes, by far, the highest-altitude operational use of GPS to date and represents a high point of over a decade of high-altitude GPS navigation research and development at GSFC. In this paper we will briefly describe past and ongoing high-altitude GPS research efforts at NASA GSFC and elsewhere, provide details on the design of the MMS GPS navigation system, and present on-orbit performance data from the first phase. We extrapolate these results to predict performance in the second phase orbit, and conclude with a discussion of the implications of the MMS results for future high-altitude GPS navigation, which we believe to be broad and far-reaching.
Calibration of the ER-2 meteorological measurement system
NASA Technical Reports Server (NTRS)
Bowen, Stuart W.; Chan, K. Roland; Bui, T. Paul
1991-01-01
The Meteorological Measurement System (MMS) on the high altitude ER-2 aircraft was developed specifically for atmospheric research. The MMS provides accurate measurements of pressure, temperature, wind vector, position (longitude, latitude, altitude), pitch, roll, heading, angle of attack, angle of sideslip, true airspeed, aircraft eastward velocity, northward velocity, vertical acceleration, and time, at a sample rate of 5/s. MMS data products are presented in the form of either 5 or 1 Hz time series. The 1 Hz data stream, generally used by ER-2 investigators, is obtained from the 5 Hz data stream by filtering and desampling. The method of measurement of the meteorological parameters is given and the results of their analyses are discussed.
HLA Amino Acid Polymorphisms and Kidney Allograft Survival
Kamoun, Malek; McCullough, Keith P.; Maiers, Martin; Fernandez Vina, Marcelo A.; Li, Hongzhe; Teal, Valerie; Leichtman, Alan B.; Merion, Robert M.
2017-01-01
Background The association of HLA mismatching with kidney allograft survival has been well established. We examined whether amino acid (AA) mismatches (MMs) at the antigen recognition site of HLA molecules represent independent and incremental risk factors for kidney graft failure (GF) beyond those MMs assessed at the antigenic (2-digit) specificity. Methods Data on 240 024 kidney transplants performed between 1987 and 2009 were obtained from the Scientific Registry of Transplant Recipients. We imputed HLA-A, -B, and -DRB1 alleles and corresponding AA polymorphisms from antigenic specificity through the application of statistical and population genetics inferences. GF risk was evaluated using Cox proportional-hazards regression models adjusted for covariates including patient and donor risk factors and HLA antigen MMs. Results We show that estimated AA MMs at particular positions in the peptide-binding pockets of HLA-DRB1 molecule account for a significant incremental risk that was independent of the well-known association of HLA antigen MMs with graft survival. A statistically significant linear relationship between the estimated number of AA MMs and risk of GF was observed for HLA-DRB1 in deceased donor and living donor transplants. This relationship was strongest during the first 12 months after transplantation (hazard ratio, 1.30 per 15 DRB1 AA MM; P < 0.0001). Conclusions This study shows that independent of the well-known association of HLA antigen (2-digit specificity) MMs with kidney graft survival, estimated AA MMs at peptide-binding sites of the HLA-DRB1 molecule account for an important incremental risk of GF. PMID:28221244
Verifiable metamodels for nitrate losses to drains and groundwater in the corn belt, USA
USDA-ARS?s Scientific Manuscript database
Metamodels (MMs) consisting of artificial neural networks were developed to simplify and upscale mechanistic fate and transport models for prediction of nitrate losses to drains and groundwater in the Corn Belt, USA. The two final MMs predicted nitrate concentration and flux, respectively, in the sh...
Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinoma
NASA Astrophysics Data System (ADS)
Larraona-Puy, Marta; Ghita, Adrian; Zoladek, Alina; Perkins, William; Varma, Sandeep; Leach, Iain H.; Koloydenko, Alexey A.; Williams, Hywel; Notingher, Ioan
2009-09-01
We investigate the potential of Raman microspectroscopy (RMS) for automated evaluation of excised skin tissue during Mohs micrographic surgery (MMS). The main aim is to develop an automated method for imaging and diagnosis of basal cell carcinoma (BCC) regions. Selected Raman bands responsible for the largest spectral differences between BCC and normal skin regions and linear discriminant analysis (LDA) are used to build a multivariate supervised classification model. The model is based on 329 Raman spectra measured on skin tissue obtained from 20 patients. BCC is discriminated from healthy tissue with 90+/-9% sensitivity and 85+/-9% specificity in a 70% to 30% split cross-validation algorithm. This multivariate model is then applied on tissue sections from new patients to image tumor regions. The RMS images show excellent correlation with the gold standard of histopathology sections, BCC being detected in all positive sections. We demonstrate the potential of RMS as an automated objective method for tumor evaluation during MMS. The replacement of current histopathology during MMS by a ``generalization'' of the proposed technique may improve the feasibility and efficacy of MMS, leading to a wider use according to clinical need.
NASA Astrophysics Data System (ADS)
Turner, D. L.; Fennell, J. F.; Blake, J. B.; Claudepierre, S. G.; Clemmons, J. H.; Jaynes, A. N.; Leonard, T.; Baker, D. N.; Cohen, I. J.; Gkioulidou, M.; Ukhorskiy, A. Y.; Mauk, B. H.; Gabrielse, C.; Angelopoulos, V.; Strangeway, R. J.; Kletzing, C. A.; Le Contel, O.; Spence, H. E.; Torbert, R. B.; Burch, J. L.; Reeves, G. D.
2017-11-01
This study examines multipoint observations during a conjunction between Magnetospheric Multiscale (MMS) and Van Allen Probes on 7 April 2016 in which a series of energetic particle injections occurred. With complementary data from Time History of Events and Macroscale Interactions during Substorms, Geotail, and Los Alamos National Laboratory spacecraft in geosynchronous orbit (16 spacecraft in total), we develop new insights on the nature of energetic particle injections associated with substorm activity. Despite this case involving only weak substorm activity (maximum AE <300 nT) during quiet geomagnetic conditions in steady, below-average solar wind, a complex series of at least six different electron injections was observed throughout the system. Intriguingly, only one corresponding ion injection was clearly observed. All ion and electron injections were observed at <600 keV only. MMS reveals detailed substructure within the largest electron injection. A relationship between injected electrons with energy <60 keV and enhanced whistler mode chorus wave activity is also established from Van Allen Probes and MMS. Drift mapping using a simplified magnetic field model provides estimates of the dispersionless injection boundary locations as a function of universal time, magnetic local time, and L shell. The analysis reveals that at least five electron injections, which were localized in magnetic local time, preceded a larger injection of both electrons and ions across nearly the entire nightside of the magnetosphere near geosynchronous orbit. The larger ion and electron injection did not penetrate to L < 6.6, but several of the smaller electron injections penetrated to L < 6.6. Due to the discrepancy between the number, penetration depth, and complexity of electron versus ion injections, this event presents challenges to the current conceptual models of energetic particle injections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, Drew L.; Fennell, J. F.; Blake, J. B.
Here, this study examines multipoint observations during a conjunction between Magnetospheric Multiscale (MMS) and Van Allen Probes on 7 April 2016 in which a series of energetic particle injections occurred. With complementary data from Time History of Events and Macroscale Interactions during Substorms, Geotail, and Los Alamos National Laboratory spacecraft in geosynchronous orbit (16 spacecraft in total), we develop new insights on the nature of energetic particle injections associated with substorm activity. Despite this case involving only weak substorm activity (maximum AE <300 nT) during quiet geomagnetic conditions in steady, below-average solar wind, a complex series of at least sixmore » different electron injections was observed throughout the system. Intriguingly, only one corresponding ion injection was clearly observed. All ion and electron injections were observed at <600 keV only. MMS reveals detailed substructure within the largest electron injection. A relationship between injected electrons with energy <60 keV and enhanced whistler mode chorus wave activity is also established from Van Allen Probes and MMS. Drift mapping using a simplified magnetic field model provides estimates of the dispersionless injection boundary locations as a function of universal time, magnetic local time, and L shell. The analysis reveals that at least five electron injections, which were localized in magnetic local time, preceded a larger injection of both electrons and ions across nearly the entire nightside of the magnetosphere near geosynchronous orbit. The larger ion and electron injection did not penetrate to L < 6.6, but several of the smaller electron injections penetrated to L < 6.6. Due to the discrepancy between the number, penetration depth, and complexity of electron versus ion injections, this event presents challenges to the current conceptual models of energetic particle injections.« less
Turner, Drew L.; Fennell, J. F.; Blake, J. B.; ...
2017-09-25
Here, this study examines multipoint observations during a conjunction between Magnetospheric Multiscale (MMS) and Van Allen Probes on 7 April 2016 in which a series of energetic particle injections occurred. With complementary data from Time History of Events and Macroscale Interactions during Substorms, Geotail, and Los Alamos National Laboratory spacecraft in geosynchronous orbit (16 spacecraft in total), we develop new insights on the nature of energetic particle injections associated with substorm activity. Despite this case involving only weak substorm activity (maximum AE <300 nT) during quiet geomagnetic conditions in steady, below-average solar wind, a complex series of at least sixmore » different electron injections was observed throughout the system. Intriguingly, only one corresponding ion injection was clearly observed. All ion and electron injections were observed at <600 keV only. MMS reveals detailed substructure within the largest electron injection. A relationship between injected electrons with energy <60 keV and enhanced whistler mode chorus wave activity is also established from Van Allen Probes and MMS. Drift mapping using a simplified magnetic field model provides estimates of the dispersionless injection boundary locations as a function of universal time, magnetic local time, and L shell. The analysis reveals that at least five electron injections, which were localized in magnetic local time, preceded a larger injection of both electrons and ions across nearly the entire nightside of the magnetosphere near geosynchronous orbit. The larger ion and electron injection did not penetrate to L < 6.6, but several of the smaller electron injections penetrated to L < 6.6. Due to the discrepancy between the number, penetration depth, and complexity of electron versus ion injections, this event presents challenges to the current conceptual models of energetic particle injections.« less
NASA Astrophysics Data System (ADS)
Lv, Qing-yuan; Li, Xian-yi; Shen, Bao-de; Dai, Ling; Xu, He; Shen, Cheng-ying; Yuan, Hai-long; Han, Jin
2014-06-01
The phospholipid-bile salts-mixed micelles (PL-BS-MMs) are potent carriers used for oral absorption of drugs that are poorly soluble in water; however, there are many limitations associated with liquid formulations. In the current study, the feasibility of preparing the fast dissolving oral films (FDOFs) containing PL-BS-MMs was examined. FDOFs incorporated with Cucurbitacin B (Cu B)-loaded PL-sodium deoxycholate (SDC)-MMs have been developed and characterized. To prepare the MMs and to serve as the micellar carrier, a weight ratio of 1:0.8 and total concentration of 54 mg/mL was selected for the PL/SDC based on the size, size distribution, zeta potential, encapsulation efficiency, and morphology. The concentration of Cu B was determined to be 5 mg/mL. Results showed that a narrow size distributed nanomicelles with a mean particle size of 86.21 ± 6.11 nm and a zeta potential of -31.21 ± 1.17 mV was obtained in our optimized Cu B-PL/SDC-MMs formulation. FDOFs were produced by solvent casting method and the formulation with 50 mg/mL of pullulan and 40 mg/mL of PEG 400 were deemed based on the physico-mechanical properties. The FDOFs containing Cu B-PL/SDC-MMs were easily reconstituted in a transparent and clear solution giving back a colloidal system with spherical micelles in the submicron range. In the in vitro dissolution test, the FDOFs containing Cu B-PL/SDC-MMs showed an increased dissolution velocity markedly. The pharmacokinetics study showed that the FDOFs containing PL-SDC-MMs not only kept the absorption properties as same as the PL-SDC-MMs, but also significantly increased the oral bioavailability of Cu B compared to the Cu B suspension ( p < 0.05). This study showed that the FDOFs containing Cu B-PL/SDC-MMs could represent a novel platform for the delivery of poorly water-soluble drugs via oral administration. Furthermore, the integration with the FDOFs could also provide a simple and cost-effective manner for the solidification of PL-SDC-MMs.
Duan, Yuwei; Zhang, Baomei; Chu, Lianjun; Tong, Henry Hy; Liu, Weidong; Zhai, Guangxi
2016-05-01
The aim of this work is to prepare and characterize curcumin-loaded methoxy poly(ethylene glycol)-poly(lactide) (mPEG-PLA)/D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) mixed micelles (CUR-MPP-TPGS-MMs), analyze the influence of formulation on enhancing the solubility of curcumin in water, and evaluate the improvement of intestinal absorption after oral administration. CUR-MPP-TPGS-MMs were prepared using the thin film diffusion method and optimized with the uniform design. The optimal CUR-MPP-TPGS-MMs were provided with high drug-loading (16.1%), small size (46.0 nm) and spherical shape. Low critical micelle concentration (CMC) and superior dilution stability showed that CUR-MPP-TPGS-MMs could keep integrity during the dilution of gastrointestinal fluid. In vitro drug release study indicated a sustained release of curcumin from CUR-MPP-TPGS-MMs in simulated gastrointestinal solution. The absorption mechanism of passive diffusion was obtained by measuring in situ intestinal absorption of CUR-MPP-TPGS-MMs in rats, and the best absorption segment was found to be the duodenum. The pharmacokinetics was evaluated in rats at the dose of 75 mg/kg by intragastric administration. The Cmax and mean retention time (MRT0-24) for CUR-MPP-TPGS-MMs were both increased, and the relative bioavailability of micelle formulation to curcumin suspension was 927.3%. These results suggested that mPEG-PLA/TPGS mixed micelle system (MPP-TPGS-MMs) showed great potential in improving oral bioavailability of curcumin. Copyright © 2016 Elsevier B.V. All rights reserved.
Rengarajan, A; Drapekin, J; Patel, A; Gyawali, C P
2016-12-01
High-resolution manometry (HRM) utilizes software tools to diagnose esophageal motor disorders. Performance of these software metrics could be affected by averaging and by software characteristics of different manufacturers. High-resolution manometry studies on 86 patients referred for antireflux surgery (61.6 ± 1.4 year, 70% F) and 20 healthy controls (27.9 ± 0.7 year, 45% F) were first subject to standard analysis (Medtronic, Duluth, GA, USA). Coordinates for each of 10 test swallows were exported and averaged to generate a composite swallow. The swallows and averaged composites were imported as ASCII file format into Manoview (Medtronic) and Medical Measurement Systems database reporter (MMS, Dover, NH, USA), and analyses repeated. Comparisons were made between standard and composite swallow interpretations. Correlation between the two systems was high for mean distal contractile integral (DCI, r 2 ≥ 0.9) but lower for integrated relaxation pressure (IRP, r 2 = 0.7). Excluding achalasia, six patients with outflow obstruction (mean IRP 23.2 ± 2.1 with 10-swallow average) were identified by both systems. An additional nine patients (10.5%) were identified as outflow obstruction (15 mmHg threshold) with MMS 10-swallow and four with MMS composite swallow evaluation; only one was confirmed. Ineffective esophageal motility was diagnosed by 10-swallow evaluation in 19 (22.1%) with Manoview, and 20 (23.3%) with MMS. On Manoview composite, 17 had DCI <450 mmHg/cm/s, and on MMS composite, 21, (p ≥ 0.85 for each comparison) but these did not impact diagnostic conclusions. Comparison of 10 swallow and composite swallows demonstrate variability in software metrics between manometry systems. Our data support use of manufacturer specific software metrics on 10-swallow sequences. © 2016 John Wiley & Sons Ltd.
Magnetospheric Multiscale (MMS)
2014-05-09
Observatory #1 is shown here on the Ransome table, tilted in a vertical position to provide better access for the engineers and technicians. Learn more about MMS at www.nasa.gov/mms Credit NASA/Goddard The Magnetospheric Multiscale, or MMS, will study how the sun and the Earth's magnetic fields connect and disconnect, an explosive process that can accelerate particles through space to nearly the speed of light. This process is called magnetic reconnection and can occur throughout all space. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
30 CFR 250.1203 - Gas measurement.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Security § 250.1203 Gas measurement. (a) To which meters do MMS requirements for gas measurement apply? MMS requirements for gas measurements apply to all OCS gas royalty and allocation meters. (b) What are the... throughout the system. (4) Equip the meter with a chart or electronic data recorder. If an electronic data...
2014-08-04
Engineers work on one of four Magnetospheric Multiscale (MMS) spacecraft in a cleanroom at the Naval Research Lab, Monday, August 4, 2014, in Washington. The Magnetospheric Multiscale, or MMS, mission will study the mystery of how magnetic fields around Earth connect and disconnect, explosively releasing energy via a process known as magnetic reconnection. The four identical spacecraft are scheduled to launch in 2015 from Cape Canaveral and will orbit around Earth in varying formations through the dynamic magnetic system surrounding our planet to provide the first three-dimensional views of the magnetic reconnection process. The goal of the STP Program is to understand the fundamental physical processes of the space environment from the sun to Earth, other planets, and the extremes of the solar system boundary. Photo Credit: (NASA/Bill Ingalls)
NASA Technical Reports Server (NTRS)
Esper, Jaime
2004-01-01
In order to execute the Vision for Space Exploration, we must find ways to reduce cost, system complexity, design, build, and test times, and at the same time increase flexibility to satisfy multiple functions. Modular, Adaptive, Reconfigurable System (MARS) technologies promise to set the stage for the delivery of system elements that form the building blocks of increasingly ambitious missions involving humans and robots. Today, space systems are largely specialized and built on a case-by-case basis. The notion of modularity however, is nothing new to NASA. The 1970's saw the development of the Multi-Mission Modular spacecraft (MMS). From 1980 to 1992 at least six satellites were built under this paradigm, and included such Goddard Space Flight Center missions as SSM, EUVE, UARS, and Landsat 4 and 5. Earlier versions consisted of standard subsystem "module" or "box" components that could be replaced within a structure based on predefined form factors. Although the primary motivation for MMS was faster/cheaper integration and test, standardization of interfaces, and ease of incorporating new subsystem technology, it lacked the technology maturity and programmatic "upgrade infrastructure" needed to satisfy varied mission requirements, and ultimately it lacked user buy-in. Consequently, it never evolved and was phased out. Such concepts as the Rapid Spacecraft Development Office (RSDO) with its regularly updated catalogue of prequalified busses became the preferred method for acquiring satellites. Notwithstanding, over the past 30 years since MMS inception, technology has advanced considerably and now modularity can be extended beyond the traditional MMS module or box to cover levels of integration, from the chip, card, box, subsystem, to the space system and to the system-of-systems. This paper will present the MARS architecture, cast within the historical context of MMS. Its application will be highlighted by comparing a state-of-the-art point design vs. a MARS-enabled lunar mission, as a representative robotic case design.
NASA Astrophysics Data System (ADS)
Esper, Jaime
2005-02-01
In order to execute the Vision for Space Exploration, we must find ways to reduce cost, system complexity, design, build, and test times, and at the same time increase flexibility to satisfy multiple functions. Modular, Adaptive, Reconfigurable System (MARS) technologies promise to set the stage for the delivery of system elements that form the building blocks of increasingly ambitious missions involving humans and robots. Today, space systems are largely specialized and built on a case-by-case basis. The notion of modularity however, is nothing new to NASA. The 1970's saw the development of the Multi-Mission Modular spacecraft (MMS). From 1980 to 1992 at least six satellites were built under this paradigm, and included such Goddard Space Flight Center missions as SSM, EUVE, UARS, and Landsat 4 and 5. Earlier versions consisted of standard subsystem ``module'' or ``box'' components that could be replaced within a structure based on predefined form factors. Although the primary motivation for MMS was faster/cheaper integration and test, standardization of interfaces, and ease of incorporating new subsystem technology, it lacked the technology maturity and programmatic ``upgrade infrastructure'' needed to satisfy varied mission requirements, and ultimately it lacked user buy-in. Consequently, it never evolved and was phased out. Such concepts as the Rapid Spacecraft Development Office (RSDO) with its regularly updated catalogue of pre-qualified busses became the preferred method for acquiring satellites. Notwithstanding, over the past 30 years since MMS inception, technology has advanced considerably and now modularity can be extended beyond the traditional MMS module or box to cover levels of integration, from the chip, card, box, subsystem, to the space system and to the system-of-systems. This paper will present the MARS architecture, cast within the historical context of MMS. Its application will be highlighted by comparing a state-of-the-art point design vs. a MARS-enabled lunar mission, as a representative robotic case design.
NASA Technical Reports Server (NTRS)
1980-01-01
The compatibility of the Multimission Modular Spacecraft (MMS) Ground Support Software System (GSSS), currently operational on a ModComp IV/35, with the VAX 11/780 system is discussed. The compatibility is examined in various key areas of the GSSS through the results of in depth testing performed on the VAX 11/780 and ModComp IV/35 systems. The compatibility of the GSSS with the ModComp CLASSIC is presented based upon projections from ModComp supplied literature.
Study of Multimission Modular Spacecraft (MMS) propulsion requirements
NASA Technical Reports Server (NTRS)
Fischer, N. H.; Tischer, A. E.
1977-01-01
The cost effectiveness of various propulsion technologies for shuttle-launched multimission modular spacecraft (MMS) missions was determined with special attention to the potential role of ion propulsion. The primary criterion chosen for comparison for the different types of propulsion technologies was the total propulsion related cost, including the Shuttle charges, propulsion module costs, upper stage costs, and propulsion module development. In addition to the cost comparison, other criteria such as reliability, risk, and STS compatibility are examined. Topics covered include MMS mission models, propulsion technology definition, trajectory/performance analysis, cost assessment, program evaluation, sensitivity analysis, and conclusions and recommendations.
Jiang, Ying; Shan, Shigang; Chi, Linfeng; Zhang, Guanglin; Gao, Xiangjing; Li, Hongjuan; Zhu, Xinqiang; Yang, Jun
2016-03-01
Methyl methanesulfonate (MMS) is an alkylating agent that can induce cell death through apoptosis and necroptosis. The molecular mechanisms underlying MMS-induced apoptosis have been studied extensively; however, little is known about the mechanism for MMS-induced necroptosis. Therefore, we first established MMS-induced necroptosis model using human lung carcinoma A549 cells. It was found that, within a 24-h period, although MMS at concentrations of 50, 100, 200, 400, and 800 μM can induce DNA damage, only at higher concentrations (400 and 800 μM) MMS treatment lead to necroptosis in A549 cells, as it could be inhibited by the specific necroptotic inhibitor necrostatin-1, but not the specific apoptotic inhibitor carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-fmk). MMS-induced necroptosis was further confirmed by the induction of the necroptosis biomarkers including the depletion of cellular NADH and ATP and leakage of LDH. This necroptotic cell death was also concurrent with the increased expression of p53, p53-induced gene 3 (PIG-3), high mobility group box-1 protein (HMGB1), and receptor interaction protein kinase (RIP) but not the apoptosis-associated caspase-3 and caspase-9 proteins. Elevated reactive oxygen species (ROS) level was also involved in this process as the specific ROS inhibitor (4-amino-2,4-pyrrolidine-dicarboxylic acid (APDC)) can inhibit the necroptotic cell death. Interestingly, knockdown of PIG-3 expression by small interfering RNA (siRNA) treatment can inhibit the generation of ROS. Taken together, these results suggest that MMS can induce necroptosis in A549 cells, probably through the PIG-3-ROS pathway.
Smartphones Based Mobile Mapping Systems
NASA Astrophysics Data System (ADS)
Al-Hamad, A.; El-Sheimy, N.
2014-06-01
The past 20 years have witnessed an explosive growth in the demand for geo-spatial data. This demand has numerous sources and takes many forms; however, the net effect is an ever-increasing thirst for data that is more accurate, has higher density, is produced more rapidly, and is acquired less expensively. For mapping and Geographic Information Systems (GIS) projects, this has been achieved through the major development of Mobile Mapping Systems (MMS). MMS integrate various navigation and remote sensing technologies which allow mapping from moving platforms (e.g. cars, airplanes, boats, etc.) to obtain the 3D coordinates of the points of interest. Such systems obtain accuracies that are suitable for all but the most demanding mapping and engineering applications. However, this accuracy doesn't come cheaply. As a consequence of the platform and navigation and mapping technologies used, even an "inexpensive" system costs well over 200 000 USD. Today's mobile phones are getting ever more sophisticated. Phone makers are determined to reduce the gap between computers and mobile phones. Smartphones, in addition to becoming status symbols, are increasingly being equipped with extended Global Positioning System (GPS) capabilities, Micro Electro Mechanical System (MEMS) inertial sensors, extremely powerful computing power and very high resolution cameras. Using all of these components, smartphones have the potential to replace the traditional land MMS and portable GPS/GIS equipment. This paper introduces an innovative application of smartphones as a very low cost portable MMS for mapping and GIS applications.
30 CFR 210.54 - Must I submit this royalty report electronically?
Code of Federal Regulations, 2010 CFR
2010-07-01
... with which either party may contract. (2) Web-based reporting—Reporters/payors may enter report data directly or upload files using the MMS electronic web form located at http://www.mrmreports.net. The... generated from a reporter's system application. (c) Refer to our electronic reporting guidelines in the MMS...
Access and Use of MMS Data through SPDF Services
NASA Astrophysics Data System (ADS)
McGuire, R. E.; Bilitza, D.; Boardsen, S. A.; Candey, R. M.; Chimiak, R.; Cooper, J. F.; Garcia, L. N.; Harris, B. T.; Johnson, R. C.; Kovalick, T. J.; Lal, N.; Leckner, H. A.; Liu, M. H.; Papitashvili, N. E.; Rao, U. R.; Roberts, D. A.; Yurow, R. E.
2016-12-01
In its role as a Heliophysics Active Final Archive and in close cooperation with the MMS project and its Science Data Center, the Space Physics Data Facility (SPDF) now serves a full set of public MMS data and QuickLook plots. All SPDF services for this data and all data are available via links from the SPDF home page (http://spdf.gsfc.nasa.gov). SPDF's CDAWeb features MMS Level-2 survey and burst mode data with graphics, listing and data superset/subset functions. These capabilities are available (1) through our html user interface, (2) through calls to our CDAS web services API, and (3) through other interfaces and libraries using the CDAS web services or that otherwise access our holdings including SPDF's Heliophysics Data Portal and several external systems. As context in use of the MMS data, CDAWeb also serves current data from many other current missions. These include the Van Allen Probes 1/2 and the five THEMIS/ARTEMIS spacecraft, as well as e.g. ACE, Cluster 1/2/3/4, DMSP 16/17/18, Geotail, GOES 13/14/15, NOAA/POES 15/16/18/19, MetOP POES 1/2, Stereo A/B, TWINS 1/2, Wind and >120 Ground-Based investigations). This full set of public MMS Level-2 science data and QuickLook plots, and all other public data held by SPDF, are also available for direct file download by HTTP or FTP links from the SPDF home page above. As a reminder, MMS Level-2 data are publicly available about 30 days after data is taken, and QuickLook survey plots are available about a day after data is taken). MMS orbits (current and predictive) are served through SPDF's SSCWeb service and our Java-based interactive 4D Orbit Viewer, also with orbits of many other current missions). Our presentation will discuss recent enhancements to CDAWeb and other services and our plans to support new MMS data products and upcoming heliophysics missions including ICON, GOLD and Solar Probe Plus.
Odagiri, Nao; Seki, Masayuki; Onoda, Fumitoshi; Yoshimura, Akari; Watanabe, Sei; Enomoto, Takemi
2003-03-01
MMS4 of Saccharomyces cerevisiae was originally identified as the gene responsible for one of the collection of methyl methanesulfonate (MMS)-sensitive mutants, mms4. Recently it was identified as a synthetic lethal gene with an SGS1 mutation. Epistatic analyses revealed that MMS4 is involved in a pathway leading to homologous recombination requiring Rad52 or in the recombination itself, in which SGS1 is also involved. MMS sensitivity of mms4 but not sgs1, was suppressed by introducing a bacterial Holliday junction (HJ) resolvase, RusA. The frequencies of spontaneously occurring unequal sister chromatid recombination (SCR) and loss of marker in the rDNA in haploid mms4 cells and interchromosomal recombination between heteroalleles in diploid mms4 cells were essentially the same as those of wild-type cells. Although UV- and MMS-induced interchromosomal recombination was defective in sgs1 diploid cells, hyper-induction of interchromosomal recombination was observed in diploid mms4 cells, indicating that the function of Mms4 is dispensable for this type of recombination.
Verifiable metamodels for nitrate losses to drains and groundwater in the Corn Belt, USA
Nolan, Bernard T.; Malone, Robert W.; Gronberg, Jo Ann M.; Thorp, K.R.; Ma, Liwang
2012-01-01
Nitrate leaching in the unsaturated zone poses a risk to groundwater, whereas nitrate in tile drainage is conveyed directly to streams. We developed metamodels (MMs) consisting of artificial neural networks to simplify and upscale mechanistic fate and transport models for prediction of nitrate losses by drains and leaching in the Corn Belt, USA. The two final MMs predicted nitrate concentration and flux, respectively, in the shallow subsurface. Because each MM considered both tile drainage and leaching, they represent an integrated approach to vulnerability assessment. The MMs used readily available data comprising farm fertilizer nitrogen (N), weather data, and soil properties as inputs; therefore, they were well suited for regional extrapolation. The MMs effectively related the outputs of the underlying mechanistic model (Root Zone Water Quality Model) to the inputs (R2 = 0.986 for the nitrate concentration MM). Predicted nitrate concentration was compared with measured nitrate in 38 samples of recently recharged groundwater, yielding a Pearson’s r of 0.466 (p = 0.003). Predicted nitrate generally was higher than that measured in groundwater, possibly as a result of the time-lag for modern recharge to reach well screens, denitrification in groundwater, or interception of recharge by tile drains. In a qualitative comparison, predicted nitrate concentration also compared favorably with results from a previous regression model that predicted total N in streams.
Sensor Integration in a Low Cost Land Mobile Mapping System
Madeira, Sergio; Gonçalves, José A.; Bastos, Luísa
2012-01-01
Mobile mapping is a multidisciplinary technique which requires several dedicated equipment, calibration procedures that must be as rigorous as possible, time synchronization of all acquired data and software for data processing and extraction of additional information. To decrease the cost and complexity of Mobile Mapping Systems (MMS), the use of less expensive sensors and the simplification of procedures for calibration and data acquisition are mandatory features. This article refers to the use of MMS technology, focusing on the main aspects that need to be addressed to guarantee proper data acquisition and describing the way those aspects were handled in a terrestrial MMS developed at the University of Porto. In this case the main aim was to implement a low cost system while maintaining good quality standards of the acquired georeferenced information. The results discussed here show that this goal has been achieved. PMID:22736985
Jacobs, Ian J; Menon, Usha; Ryan, Andy; Gentry-Maharaj, Aleksandra; Burnell, Matthew; Kalsi, Jatinderpal K; Amso, Nazar N; Apostolidou, Sophia; Benjamin, Elizabeth; Cruickshank, Derek; Crump, Danielle N; Davies, Susan K; Dawnay, Anne; Dobbs, Stephen; Fletcher, Gwendolen; Ford, Jeremy; Godfrey, Keith; Gunu, Richard; Habib, Mariam; Hallett, Rachel; Herod, Jonathan; Jenkins, Howard; Karpinskyj, Chloe; Leeson, Simon; Lewis, Sara J; Liston, William R; Lopes, Alberto; Mould, Tim; Murdoch, John; Oram, David; Rabideau, Dustin J; Reynolds, Karina; Scott, Ian; Seif, Mourad W; Sharma, Aarti; Singh, Naveena; Taylor, Julie; Warburton, Fiona; Widschwendter, Martin; Williamson, Karin; Woolas, Robert; Fallowfield, Lesley; McGuire, Alistair J; Campbell, Stuart; Parmar, Mahesh; Skates, Steven J
2016-01-01
Summary Background Ovarian cancer has a poor prognosis, with just 40% of patients surviving 5 years. We designed this trial to establish the effect of early detection by screening on ovarian cancer mortality. Methods In this randomised controlled trial, we recruited postmenopausal women aged 50–74 years from 13 centres in National Health Service Trusts in England, Wales, and Northern Ireland. Exclusion criteria were previous bilateral oophorectomy or ovarian malignancy, increased risk of familial ovarian cancer, and active non-ovarian malignancy. The trial management system confirmed eligibility and randomly allocated participants in blocks of 32 using computer-generated random numbers to annual multimodal screening (MMS) with serum CA125 interpreted with use of the risk of ovarian cancer algorithm, annual transvaginal ultrasound screening (USS), or no screening, in a 1:1:2 ratio. The primary outcome was death due to ovarian cancer by Dec 31, 2014, comparing MMS and USS separately with no screening, ascertained by an outcomes committee masked to randomisation group. All analyses were by modified intention to screen, excluding the small number of women we discovered after randomisation to have a bilateral oophorectomy, have ovarian cancer, or had exited the registry before recruitment. Investigators and participants were aware of screening type. This trial is registered with ClinicalTrials.gov, number NCT00058032. Findings Between June 1, 2001, and Oct 21, 2005, we randomly allocated 202 638 women: 50 640 (25·0%) to MMS, 50 639 (25·0%) to USS, and 101 359 (50·0%) to no screening. 202 546 (>99·9%) women were eligible for analysis: 50 624 (>99·9%) women in the MMS group, 50 623 (>99·9%) in the USS group, and 101 299 (>99·9%) in the no screening group. Screening ended on Dec 31, 2011, and included 345 570 MMS and 327 775 USS annual screening episodes. At a median follow-up of 11·1 years (IQR 10·0–12·0), we diagnosed ovarian cancer in 1282 (0·6%) women: 338 (0·7%) in the MMS group, 314 (0·6%) in the USS group, and 630 (0·6%) in the no screening group. Of these women, 148 (0·29%) women in the MMS group, 154 (0·30%) in the USS group, and 347 (0·34%) in the no screening group had died of ovarian cancer. The primary analysis using a Cox proportional hazards model gave a mortality reduction over years 0–14 of 15% (95% CI −3 to 30; p=0·10) with MMS and 11% (−7 to 27; p=0·21) with USS. The Royston-Parmar flexible parametric model showed that in the MMS group, this mortality effect was made up of 8% (−20 to 31) in years 0–7 and 23% (1–46) in years 7–14, and in the USS group, of 2% (−27 to 26) in years 0–7 and 21% (−2 to 42) in years 7–14. A prespecified analysis of death from ovarian cancer of MMS versus no screening with exclusion of prevalent cases showed significantly different death rates (p=0·021), with an overall average mortality reduction of 20% (−2 to 40) and a reduction of 8% (−27 to 43) in years 0–7 and 28% (−3 to 49) in years 7–14 in favour of MMS. Interpretation Although the mortality reduction was not significant in the primary analysis, we noted a significant mortality reduction with MMS when prevalent cases were excluded. We noted encouraging evidence of a mortality reduction in years 7–14, but further follow-up is needed before firm conclusions can be reached on the efficacy and cost-effectiveness of ovarian cancer screening. Funding Medical Research Council, Cancer Research UK, Department of Health, The Eve Appeal. PMID:26707054
2014-08-04
One of four Magnetospheric Multiscale (MMS) spacecraft, in the background, is seen in a cleanroom at the Naval Research Lab’s, Naval Center for Space Technology, Monday, August 4, 2014, in Washington. The Magnetospheric Multiscale, or MMS, mission will study the mystery of how magnetic fields around Earth connect and disconnect, explosively releasing energy via a process known as magnetic reconnection. The four identical spacecraft are scheduled to launch in 2015 from Cape Canaveral and will orbit around Earth in varying formations through the dynamic magnetic system surrounding our planet to provide the first three-dimensional views of the magnetic reconnection process. The goal of the STP Program is to understand the fundamental physical processes of the space environment from the sun to Earth, other planets, and the extremes of the solar system boundary. Photo Credit: (NASA/Bill Ingalls)
2015-04-30
MCM MP SSS SUW MP SSS ASW MP SSS Level 3: Mission Package Level MM MM MM MM MPAS 4a: Common MM 4b: MMs MM MM MM MM MPAS 4a: Common MM 4b: MMs MM...documented within the standard section of the System/Sub-System Specification ( SSS ) and flowed down to Sub-system Specification (SS) and other...typically contract to a prime developer and find it sufficient to decompose the CDD into a System/Sub-System Specification ( SSS ) or an A-Spec, which is then
2001-01-01
The Use of Military Force in Combating Urban Crime Using British Royal Marines in Northern Ireland as a Model .” MMS Thesis. Quantico, VA: USMC...to capture armaments and to destabilize command and control functions. Solid intelligence networks were required to operate efficiently in the urban ...Force in Combating Urban Crime Using British Royal Marines in Northern Ireland as a Model .” MMS Thesis. Quantico, VA: USMC Command and Staff College
The Magnetospheric Multiscale Constellation
NASA Technical Reports Server (NTRS)
Tooley, C. R.; Black, R. K.; Robertson, B. P.; Stone, J. M.; Pope, S. E.; Davis, G. T.
2015-01-01
The Magnetospheric Multiscale (MMS) mission is the fourth mission of the Solar Terrestrial Probe (STP) program of the National Aeronautics and Space Administration (NASA). The MMS mission was launched on March 12, 2015. The MMS mission consists of four identically instrumented spin-stabilized observatories which are flown in formation to perform the first definitive study of magnetic reconnection in space. The MMS mission was presented with numerous technical challenges, including the simultaneous construction and launch of four identical large spacecraft with 100 instruments total, stringent electromagnetic cleanliness requirements, closed-loop precision maneuvering and pointing of spinning flexible spacecraft, on-board GPS based orbit determination far above the GPS constellation, and a flight dynamics design that enables formation flying with separation distances as small as 10 km. This paper describes the overall mission design and presents an overview of the design, testing, and early on-orbit operation of the spacecraft systems and instrument suite.
Schoell, Regina; Binder, Claudia R
2009-02-01
Pesticide application is increasing and despite extensive educational programs farmers continue to take high health and environmental risks when applying pesticides. The structured mental model approach (SMMA) is a new method for risk perception analysis. It embeds farmers' risk perception into their livelihood system in the elaboration of a mental model (MM). Results from its first application are presented here. The study region is Vereda la Hoya (Colombia), an area characterized by subsistence farming, high use of pesticides, and a high incidence of health problems. Our hypothesis was that subsistence farmers were constrained by economic, environmental, and sociocultural factors, which consequently should influence their mental models. Thirteen experts and 10 farmers were interviewed and their MMs of the extended pesticide system elicited. The interviews were open-ended with the questions structured in three parts: (i) definition and ranking of types of capital with respect to their importance for the sustainability of farmers' livelihood; (ii) understanding the system and its dynamics; and (iii) importance of the agents in the farmers' agent network. Following this structure, each part of the interview was analyzed qualitatively and statistically. Our analyses showed that the mental models of farmers and experts differed significantly from each other. By applying the SMMA, we were also able to identify reasons for the divergence of experts' and farmers' MMs. Of major importance are the following factors: (i) culture and tradition; (ii) trust in the source of information; and (iii) feedback on knowledge.
Using manufacturing message specification for monitor and control at Venus
NASA Technical Reports Server (NTRS)
Heuser, W. Randy; Chen, Richard L.; Stockett, Michael H.
1993-01-01
The flexibility and robustness of a monitor and control (M&C) system are a direct result of the underlying interprocessor communications architecture. A new architecture for M&C at the Deep Space Communications Complexes (DSCC's) has been developed based on the Manufacturing Message Specification (MMS) process control standard of the Open System Interconnection (OSI) suite of protocols. This architecture has been tested both in a laboratory environment and under operational conditions at the Deep Space Network (DSN) experimental Venus station (DSS-13). The Venus experience in the application of OSI standards to support M&C has been extremely successful. MMS meets the functional needs of the station and provides a level of flexibility and responsiveness previously unknown in that environment. The architecture is robust enough to meet current operational needs and flexible enough to provide a migration path for new subsystems. This paper will describe the architecture of the Venus M&C system, discuss how MMS was used and the requirements this imposed on other parts of the system, and provide results from systems and operational testing at the Venus site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosard, D.D.; Steltz, W.G.
1986-10-01
Properly sized turbine and boiler bypass systems permit two-shift cycling operation of units, shorten start-up time, and reduce life expenditures of plant components. With bypasses installed, faster startups can reduce fuel costs by $100,000 per year for a typical 500-MW fossil-fired unit. This report discusses the technical characteristics of existing bypass systems and provides guidelines for sizing bypass systems to achieve economical and reliable two-shift operation. The collection and analysis of startup data from several generating units were used in conjunction with computer simulations to illustrate the effects of adding various arrangements and sizes of steam bypass systems. The report,more » which indicates that shutdown procedures have significant impact on subsequent startup and loading time, describes operating practices to optimize the effectiveness of bypass systems. To determine the effectiveness of large turbine bypass systems of less than 100% capacity in preventing boiler trips following load rejection, transient field data were compared to a load rejection simulation using the modular modeling system (MMS). The MMS was then used to predict system response to other levels of load rejection. 7 refs., 87 figs., 8 tabs.« less
Rössl, Anthony; Bentley-DeSousa, Amanda; Tseng, Yi-Chieh; Nwosu, Christine; Downey, Michael
2016-10-01
Nicotinamide is both a reaction product and an inhibitor of the conserved sirtuin family of deacetylases, which have been implicated in a broad range of cellular functions in eukaryotes from yeast to humans. Phenotypes observed following treatment with nicotinamide are most often assumed to stem from inhibition of one or more of these enzymes. Here, we used this small molecule to inhibit multiple sirtuins at once during treatment with DNA damaging agents in the Saccharomyces cerevisiae model system. Since sirtuins have been previously implicated in the DNA damage response, we were surprised to observe that nicotinamide actually increased the survival of yeast cells exposed to the DNA damage agent MMS. Remarkably, we found that enhanced resistance to MMS in the presence of nicotinamide was independent of all five yeast sirtuins. Enhanced resistance was also independent of the nicotinamide salvage pathway, which uses nicotinamide as a substrate to generate NAD+, and of a DNA damage-induced increase in the salvage enzyme Pnc1 Our data suggest a novel and unexpected function for nicotinamide that has broad implications for its use in the study of sirtuin biology across model systems. Copyright © 2016 by the Genetics Society of America.
Rössl, Anthony; Bentley-DeSousa, Amanda; Tseng, Yi-Chieh; Nwosu, Christine; Downey, Michael
2016-01-01
Nicotinamide is both a reaction product and an inhibitor of the conserved sirtuin family of deacetylases, which have been implicated in a broad range of cellular functions in eukaryotes from yeast to humans. Phenotypes observed following treatment with nicotinamide are most often assumed to stem from inhibition of one or more of these enzymes. Here, we used this small molecule to inhibit multiple sirtuins at once during treatment with DNA damaging agents in the Saccharomyces cerevisiae model system. Since sirtuins have been previously implicated in the DNA damage response, we were surprised to observe that nicotinamide actually increased the survival of yeast cells exposed to the DNA damage agent MMS. Remarkably, we found that enhanced resistance to MMS in the presence of nicotinamide was independent of all five yeast sirtuins. Enhanced resistance was also independent of the nicotinamide salvage pathway, which uses nicotinamide as a substrate to generate NAD+, and of a DNA damage-induced increase in the salvage enzyme Pnc1. Our data suggest a novel and unexpected function for nicotinamide that has broad implications for its use in the study of sirtuin biology across model systems. PMID:27527516
Benton, Michael G; Somasundaram, Swetha; Glasner, Jeremy D; Palecek, Sean P
2006-12-01
One of the most crucial tasks for a cell to ensure its long term survival is preserving the integrity of its genetic heritage via maintenance of DNA structure and sequence. While the DNA damage response in the yeast Saccharomyces cerevisiae, a model eukaryotic organism, has been extensively studied, much remains to be elucidated about how the organism senses and responds to different types and doses of DNA damage. We have measured the global transcriptional response of S. cerevisiae to multiple doses of two representative DNA damaging agents, methyl methanesulfonate (MMS) and gamma radiation. Hierarchical clustering of genes with a statistically significant change in transcription illustrated the differences in the cellular responses to MMS and gamma radiation. Overall, MMS produced a larger transcriptional response than gamma radiation, and many of the genes modulated in response to MMS are involved in protein and translational regulation. Several clusters of coregulated genes whose responses varied with DNA damaging agent dose were identified. Perhaps the most interesting cluster contained four genes exhibiting biphasic induction in response to MMS dose. All of the genes (DUN1, RNR2, RNR4, and HUG1) are involved in the Mec1p kinase pathway known to respond to MMS, presumably due to stalled DNA replication forks. The biphasic responses of these genes suggest that the pathway is induced at lower levels as MMS dose increases. The genes in this cluster with a threefold or greater transcriptional response to gamma radiation all showed an increased induction with increasing gamma radiation dosage. Analyzing genome-wide transcriptional changes to multiple doses of external stresses enabled the identification of cellular responses that are modulated by magnitude of the stress, providing insights into how a cell deals with genotoxicity.
NASA Astrophysics Data System (ADS)
Leonard, T. W.; Baker, D. N.; Blake, J. B.; Burch, J. L.; Cohen, I. J.; Ergun, R.; Fennell, J. F.; Gershman, D. J.; Giles, B. L.; Jaynes, A. N.; Le Contel, O.; Mauk, B.; Russell, C. T.; Strangeway, R. J.; Torbert, R. B.; Turner, D. L.; Wilder, F. D.
2017-12-01
The Magnetospheric Multiscale (MMS) Fly's Eye Energetic Particle Spectrometer (FEEPS) instrument has observed a multitude of particle injection events since its launch in 2014. These injections often lead to enhancements observed by the Van Allen Probes MagEIS instrument, as well as other elements of the modern-day Heliophysics System Observatory. The high spatial resolution and unprecedented time scales of the MMS observations provide a microscope view of the plasma physical properties in Earth's neighborhood while the combination with other missions in the Heliophysics System Observatory provides a telescope view of the larger Sun-Earth system. Past studies have found a relationship between substorm activity, which can be more powerful during high speed solar wind stream events, and enhancements of the outer radiation belt electrons. In this study, we examine several distinct particle injection events with dipolarization front characteristics observed by MMS and multiple complementary missions. In particular, cases involving multiple injection events are compared to singular injection events for their effectiveness of creating radiation belt enhancements.
Günther, German; Herlax, Vanesa; Lillo, M Pilar; Sandoval-Altamirano, Catalina; Belmar, Libnny N; Sánchez, Susana A
2018-01-01
The study of surfactant and bio membranes interaction is particularly complex due to the diversity in lipid composition and the presence of proteins in natural membranes. Even more difficult is the study of this interaction in vivo since cellular damage may complicate the interpretation of the results, therefore for most of the studies in this field either artificial or model systems are used. One of the model system most used to study biomembranes are erythrocytes due to their relatively simple structure (they lack nuclei and organelles having only the plasma membrane), their convenient experimental manipulation and availability. In this context, we used rabbit erythrocytes as a model membrane and Laurdan (6-lauroyl-2-dimethylaminonaphthalene) as the fluorescent probe to study changes promoted in the membrane by the interaction with the sucrose monoester of myristic acid, β-d-fructofuranosyl-6-O-myristoyl-α-d-glucopyranoside (MMS). Surfactant and erythrocytes interaction was studied by measuring hemoglobin release and the changes in water content in the membrane sensed by Laurdan. Using two-photon excitation, three types of measurements were performed: Generalized Polarization (analyzed as average GP values), Fluorescence Lifetime Imaging, FLIM (analyzed using phasor plots) and Spectral imaging (analyzed using spectral phasor). Our data indicate that at sublytical concentration of surfactant (20μM MMS), there is a decrease of about 35% in erythrocytes size, without changes in Laurdan lifetime or emission spectra. We also demonstrate that as hemolysis progress, Laurdan lifetime increased due to the decrease in hemoglobin (strong quencher of Laurdan emission) content inside the erythrocytes. Under these conditions, Laurdan spectral phasor analyses can extract the information on the water content in the membrane in the presence of hemoglobin. Our results indicate an increase in membrane fluidity in presence of MMS. Copyright © 2017 Elsevier B.V. All rights reserved.
a/alpha-specific effect on the mms3 mutation on ultraviolet mutagenesis in Saccharomyces cerevisiae.
Martin, P; Prakash, L; Prakash, S
1981-05-01
A new gene involved in error-prone repair of ultraviolet (UV) damage has been identified in Saccharomyces cerevisiae by the mms3-1 mutation. UV-induced reversion is reduced in diploids that are homozygous for mms3-1, only if they are also heterozygous (MATa/MAT alpha) at the mating type locus. The mms3-1 mutation has no effect on UV-induced reversion either in haploids or MATa/MATa or MAT alpha/MAT alpha diploids. The mutation confers sensitivity to UV and methyl methane sulfonate in both haploids and diploids. Even though mutation induction by UV is restored to wild-type levels in MATa/MATa mms3-1/mms3-1 or MAT alpha/MAT alpha mms3-1/mms3-1 diploids, such strains still retain sensitivity to the lethal effects of UV. Survival after UV irradiation in mms3-1 rad double mutant combinations indicates that mms3-1 is epistatic to rad6-1 whereas non-epistatic interactions are observed with rad3 and rad52 mutants. When present in the homozygous state in MATa/MAT alpha his1-1/his1-315 heteroallelic diploids, mms3-1 was found to lower UV-induced mitotic recombination.
2014-08-04
A photograph showing what all four Magnetospheric Multiscale (MMS) spacecraft look like when stacked is seen taped to the window of a Naval Research Laboratory cleanroom where one of the four spacecraft is undergoing testing, Monday, August 4, 2014, in Washington. The Magnetospheric Multiscale, or MMS, mission will study the mystery of how magnetic fields around Earth connect and disconnect, explosively releasing energy via a process known as magnetic reconnection. The four identical spacecraft are scheduled to launch in 2015 from Cape Canaveral and will orbit around Earth in varying formations through the dynamic magnetic system surrounding our planet to provide the first three-dimensional views of the magnetic reconnection process. The goal of the STP Program is to understand the fundamental physical processes of the space environment from the sun to Earth, other planets, and the extremes of the solar system boundary. Photo Credit: (NASA/Bill Ingalls)
30 CFR 243.100 - What standards must my MMS-specified surety instrument meet?
Code of Federal Regulations, 2010 CFR
2010-07-01
... instrument meet? 243.100 Section 243.100 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE... Bonding Requirements § 243.100 What standards must my MMS-specified surety instrument meet? (a) An MMS-specified surety instrument must be in a form specified in MMS instructions. MMS will give you written...
Chapman, K E; Thomas, A D; Wills, J W; Pfuhler, S; Doak, S H; Jenkins, G J S
2014-05-01
Recent restrictions on the testing of cosmetic ingredients in animals have resulted in the need to test the genotoxic potential of chemicals exclusively in vitro prior to licensing. However, as current in vitro tests produce some misleading positive results, sole reliance on such tests could prevent some chemicals with safe or beneficial exposure levels from being marketed. The 3D human reconstructed skin micronucleus (RSMN) assay is a promising new in vitro approach designed to assess genotoxicity of dermally applied compounds. The assay utilises a highly differentiated in vitro model of the human epidermis. For the first time, we have applied automated micronucleus detection to this assay using MetaSystems Metafer Slide Scanning Platform (Metafer), demonstrating concordance with manual scoring. The RSMN assay's fixation protocol was found to be compatible with the Metafer, providing a considerably shorter alternative to the recommended Metafer protocol. Lowest observed genotoxic effect levels (LOGELs) were observed for mitomycin-C at 4.8 µg/ml and methyl methanesulfonate (MMS) at 1750 µg/ml when applied topically to the skin surface. In-medium dosing with MMS produced a LOGEL of 20 µg/ml, which was very similar to the topical LOGEL when considering the total mass of MMS added. Comparisons between 3D medium and 2D LOGELs resulted in a 7-fold difference in total mass of MMS applied to each system, suggesting a protective function of the 3D microarchitecture. Interestingly, hydrogen peroxide (H2O2), a positive clastogen in 2D systems, tested negative in this assay. A non-genotoxic carcinogen, methyl carbamate, produced negative results, as expected. We also demonstrated expression of the DNA repair protein N-methylpurine-DNA glycosylase in EpiDerm™. Our preliminary validation here demonstrates that the RSMN assay may be a valuable follow-up to the current in vitro test battery, and together with its automation, could contribute to minimising unnecessary in vivo tests by reducing in vitro misleading positives.
Isolation and Characterization of Mms-Sensitive Mutants of SACCHAROMYCES CEREVISIAE
Prakash, Louise; Prakash, Satya
1977-01-01
We have isolated mutants sensitive to methyl methanesulfonate (MMS) in Saccharomyces cerevisiae. Alleles of rad1, rad4, rad6, rad52, rad55 and rad57 were found among these mms mutants. Twenty-nine of the mms mutants which complement the existing radiation-sensitive (rad and rev ) mutants belong to 22 new complementation groups. Mutants from five complementation groups are sensitive only to MMS. Mutants of 11 complementation groups are sensitive to UV or X rays in addition to MMS, mutants of six complementation groups are sensitive to all three agents. The cross-sensitivities of these mms mutants to UV and X rays are discussed in terms of their possible involvement in DNA repair. Sporulation is reduced or absent in homozygous diploids of mms mutants from nine complementation groups. PMID:195865
Gardner, James V.; Beaudoin, Jonathan D.; Hughes-Clarke, John E.; Dartnell, Peter
2002-01-01
Following the publication of high-resolution (5-meter spatial resolution) multibeam echosounder (MBES) images of the Flower Garden Banks National Marine Sanctuary area of the northwestern Gulf of Mexico (Gardner et al., 1998), the Flower Garden Banks National Marine Sanctuary (FGBNMS) and the Minerals Management Service (MMS) have been interested in additional MBES data in the area. A coalition of FGBNMS, MMS, and the U.S. Geological Survey (USGS) was formed to map additional areas of interest in the northwestern Gulf of Mexico (fig. 1) in 2002. FGBNMS chose the survey areas, and the USGS chose the MBES. MMS and FGBNMS funded the mapping, and the USGS organized the ship and multibeam systems through a cooperative agreement between the USGS and the University of New Brunswick. The objective of the cruise was to map 12 regions of interest to MMS and the FGBNMS, including Alderdice, Sonnier, Geyer, Bright, Rankin (1 and 2), Jakkula, McNeil, Bouma, McGrail, Rezak, and Sidner Banks.
NASA Administrator Visits Goddard, Discusses MMS
2014-05-12
NASA Administrator Charles Bolden got a firsthand look at work being done on the four Magnetospheric Multiscale (MMS) spacecraft during his visit to the agency's Goddard Space Flight Center in Greenbelt, Maryland, on May 12. Standing 20 feet high inside a Goddard clean room, the spacecraft were in their "four-stack" formation, similar to how they will be arranged inside their launch vehicle. The MMS spacecraft recently completed vibration testing. With MMS as a backdrop, Bolden and Goddard Center Director Chris Scolese discussed the mission, ground testing and preparations for launch with project personnel. Read more: go.nasa.gov/1jSza7E Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Administrator Visits Goddard, Discusses MMS
2014-05-12
NASA Administrator Charles Bolden got a firsthand look at work being done on the four Magnetospheric Multiscale (MMS) spacecraft during his visit to the agency's Goddard Space Flight Center in Greenbelt, Maryland, on May 12. Standing 20 feet high inside a Goddard clean room, the spacecraft were in their "four-stack" formation, similar to how they will be arranged inside their launch vehicle. The MMS spacecraft recently completed vibration testing. With MMS as a backdrop, Bolden and Goddard Center Director Chris Scolese discussed the mission, ground testing and preparations for launch with project personnel. Read more: go.nasa.gov/1jSza7E Credit: NASA/Goddard/Bill Hrybyk NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Administrator Visits Goddard, Discusses MMS
2017-12-08
NASA Administrator Charles Bolden got a firsthand look at work being done on the four Magnetospheric Multiscale (MMS) spacecraft during his visit to the agency's Goddard Space Flight Center in Greenbelt, Maryland, on May 12. Standing 20 feet high inside a Goddard clean room, the spacecraft were in their "four-stack" formation, similar to how they will be arranged inside their launch vehicle. The MMS spacecraft recently completed vibration testing. With MMS as a backdrop, Bolden and Goddard Center Director Chris Scolese discussed the mission, ground testing and preparations for launch with project personnel. Read more: go.nasa.gov/1jSza7E Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Administrator Visits Goddard, Discusses MMS
2017-12-08
NASA Administrator Charles Bolden got a firsthand look at work being done on the four Magnetospheric Multiscale (MMS) spacecraft during his visit to the agency's Goddard Space Flight Center in Greenbelt, Maryland, on May 12. Standing 20 feet high inside a Goddard clean room, the spacecraft were in their "four-stack" formation, similar to how they will be arranged inside their launch vehicle. The MMS spacecraft recently completed vibration testing. With MMS as a backdrop, Bolden and Goddard Center Director Chris Scolese discussed the mission, ground testing and preparations for launch with project personnel. Read more: go.nasa.gov/1jSza7E Credit: NASA/Goddard/Bill Hrybyk NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Liao, Chao; Zhao, Yong
2017-01-01
ABSTRACT This study developed RNA-based predictive models describing the survival of Vibrio parahaemolyticus in Eastern oysters (Crassostrea virginica) during storage at 0, 4, and 10°C. Postharvested oysters were inoculated with a cocktail of five V. parahaemolyticus strains and were then stored at 0, 4, and 10°C for 21 or 11 days. A real-time reverse transcription-PCR (RT-PCR) assay targeting expression of the tlh gene was used to evaluate the number of surviving V. parahaemolyticus cells, which was then used to establish primary molecular models (MMs). Before construction of the MMs, consistent expression levels of the tlh gene at 0, 4, and 10°C were confirmed, and this gene was used to monitor the survival of the total V. parahaemolyticus cells. In addition, the tdh and trh genes were used for monitoring the survival of virulent V. parahaemolyticus. Traditional models (TMs) were built based on data collected using a plate counting method. From the MMs, V. parahaemolyticus populations had decreased 0.493, 0.362, and 0.238 log10 CFU/g by the end of storage at 0, 4, and 10°C, respectively. Rates of reduction of V. parahaemolyticus shown in the TMs were 2.109, 1.579, and 0.894 log10 CFU/g for storage at 0, 4, and 10°C, respectively. Bacterial inactivation rates (IRs) estimated with the TMs (−0.245, −0.152, and −0.121 log10 CFU/day, respectively) were higher than those estimated with the MMs (−0.134, −0.0887, and −0.0732 log10 CFU/day, respectively) for storage at 0, 4, and 10°C. Higher viable V. parahaemolyticus numbers were predicted using the MMs than using the TMs. On the basis of this study, RNA-based predictive MMs are the more accurate and reliable models and can prevent false-negative results compared to TMs. IMPORTANCE One important method for validating postharvest techniques and for monitoring the behavior of V. parahaemolyticus is to establish predictive models. Unfortunately, previous predictive models established based on plate counting methods or on DNA-based PCR can underestimate or overestimate the number of surviving cells. This study developed and validated RNA-based molecular predictive models to describe the survival of V. parahaemolyticus in oysters during low-temperature storage (0, 4, and 10°C). The RNA-based predictive models show the advantage of being able to count all of the culturable, nonculturable, and stressed cells. By using primers targeting the tlh gene and pathogenesis-associated genes (tdh and trh), real-time RT-PCR can evaluate the total surviving V. parahaemolyticus population as well as differentiate the pathogenic ones from the total population. Reliable and accurate predictive models are very important for conducting risk assessment and management of pathogens in food. PMID:28087532
Liao, Chao; Zhao, Yong; Wang, Luxin
2017-03-15
This study developed RNA-based predictive models describing the survival of Vibrio parahaemolyticus in Eastern oysters ( Crassostrea virginica ) during storage at 0, 4, and 10°C. Postharvested oysters were inoculated with a cocktail of five V. parahaemolyticus strains and were then stored at 0, 4, and 10°C for 21 or 11 days. A real-time reverse transcription-PCR (RT-PCR) assay targeting expression of the tlh gene was used to evaluate the number of surviving V. parahaemolyticus cells, which was then used to establish primary molecular models (MMs). Before construction of the MMs, consistent expression levels of the tlh gene at 0, 4, and 10°C were confirmed, and this gene was used to monitor the survival of the total V. parahaemolyticus cells. In addition, the tdh and trh genes were used for monitoring the survival of virulent V. parahaemolyticus Traditional models (TMs) were built based on data collected using a plate counting method. From the MMs, V. parahaemolyticus populations had decreased 0.493, 0.362, and 0.238 log 10 CFU/g by the end of storage at 0, 4, and 10°C, respectively. Rates of reduction of V. parahaemolyticus shown in the TMs were 2.109, 1.579, and 0.894 log 10 CFU/g for storage at 0, 4, and 10°C, respectively. Bacterial inactivation rates (IRs) estimated with the TMs (-0.245, -0.152, and -0.121 log 10 CFU/day, respectively) were higher than those estimated with the MMs (-0.134, -0.0887, and -0.0732 log 10 CFU/day, respectively) for storage at 0, 4, and 10°C. Higher viable V. parahaemolyticus numbers were predicted using the MMs than using the TMs. On the basis of this study, RNA-based predictive MMs are the more accurate and reliable models and can prevent false-negative results compared to TMs. IMPORTANCE One important method for validating postharvest techniques and for monitoring the behavior of V. parahaemolyticus is to establish predictive models. Unfortunately, previous predictive models established based on plate counting methods or on DNA-based PCR can underestimate or overestimate the number of surviving cells. This study developed and validated RNA-based molecular predictive models to describe the survival of V. parahaemolyticus in oysters during low-temperature storage (0, 4, and 10°C). The RNA-based predictive models show the advantage of being able to count all of the culturable, nonculturable, and stressed cells. By using primers targeting the tlh gene and pathogenesis-associated genes ( tdh and trh ), real-time RT-PCR can evaluate the total surviving V. parahaemolyticus population as well as differentiate the pathogenic ones from the total population. Reliable and accurate predictive models are very important for conducting risk assessment and management of pathogens in food. Copyright © 2017 American Society for Microbiology.
30 CFR 1218.560 - How do I submit Form MMS-4444?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false How do I submit Form MMS-4444? 1218.560 Section... Service of Official Correspondence § 1218.560 How do I submit Form MMS-4444? A copy of Form MMS-4444 and..., signed form to the address designated on the Form MMS-4444 instructions. ...
Magnetospheric Multiscale Mission (MMS) Phase 2B Navigation Performance
NASA Technical Reports Server (NTRS)
Scaperoth, Paige Thomas; Long, Anne; Carpenter, Russell
2009-01-01
The Magnetospheric Multiscale (MMS) formation flying mission, which consists of four spacecraft flying in a tetrahedral formation, has challenging navigation requirements associated with determining and maintaining the relative separations required to meet the science requirements. The baseline navigation concept for MMS is for each spacecraft to independently estimate its position, velocity and clock states using GPS pseudorange data provided by the Goddard Space Flight Center-developed Navigator receiver and maneuver acceleration measurements provided by the spacecraft's attitude control subsystem. State estimation is performed onboard in real-time using the Goddard Enhanced Onboard Navigation System flight software, which is embedded in the Navigator receiver. The current concept of operations for formation maintenance consists of a sequence of two maintenance maneuvers that is performed every 2 weeks. Phase 2b of the MMS mission, in which the spacecraft are in 1.2 x 25 Earth radii orbits with nominal separations at apogee ranging from 30 km to 400 km, has the most challenging navigation requirements because, during this phase, GPS signal acquisition is restricted to less than one day of the 2.8-day orbit. This paper summarizes the results from high-fidelity simulations to determine if the MMS navigation requirements can be met between and immediately following the maintenance maneuver sequence in Phase 2b.
Attitude Ground System (AGS) for the Magnetospheric Multi-Scale (MMS) Mission
NASA Technical Reports Server (NTRS)
Raymond, Juan C.; Sedlak, Joseph E.; Vint, Babak
2015-01-01
MMS Overview Recall from Conrads presentation earlier today MMS launch: March 13, 2015 on an Atlas V from Space Launch Complex 40, Cape Canaveral, Florida MMS Observatory Separation: five minute intervals spinning at 3 rpm approximately 1.5 hours after launch MMS Science Goals: study magnetospheric plasma physics and understand the processes that cause power grids, communication disruptions and Aurora formation Mission: 4 identical spacecraft in tetrahedral formation with variable size1.2 x 12 RE in Phase 1, with apogee on dayside to observe bow shock1.2 x 25 RE in Phase 2, with apogee on night side to observe magneto tail Challenges Tight attitude control box, orbit and formation maintenance requirements Maneuvers on thrusters every two weeks Delta-H Spin axis direction and spin rate maintenance Delta-V Orbit and Formation maintenance Mission phase transitions AGS support Smart targeting prediction of Spin-Axis attitude in the presence of environmental torques to stay within the science attitude Determination of the spacecraft attitude and spin rate (sensitive to knowledge of inertia tensor)Calibrations to improve attitude determination results and improve orbit maneuvers Mass properties (Center of Mass, and inertia tensor for nutation and coning) Accelerometer bias (sensitive to the accuracy of the rate estimates) Sensor alignments.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-15
... ID No. BOEM-2011-0010] BOEMRE Information Collection Activity; 1010-0141, Subpart D, Oil and Gas... to oil and gas drilling operations, and related forms. DATES: Submit written comments by June 14..., Subpart D, Oil and Gas Drilling Operations. BOEMRE Form(s): MMS-123, MMS-123S, MMS-124, MMS-125, MMS-133...
NASA Astrophysics Data System (ADS)
Rykov, Alexandre I.; Li, Xuning; Wang, Junhu
2015-07-01
We report on the crystal structure refinements in the novel electron-transfer-active Prussian Blue analogs (PBA) KMn4II [Co1-xIII FexIII (CN)6 ]3 · nH2 O (n ≃ 12). The series of novel PBA with the end members of KMn4[ Co(CN)6]3 · 11.8H2 O and KMn4[ Fe(CN)6 ]3 · 10.5H2 O have been synthesized for the first time, all showing a number of extra-reflections incompatible with ordinary face-centered cell of the Fm-3m symmetry group. We have analyzed the Rietveld patterns for x = 0 , 0.53 , 1 and found that the extra-reflections could be well fitted using several primitive (P) cell symmetries. The best fitting quality was obtained using the noncentrosymmetric space group (S.G.) P 4 bar 3 m (Z=1) with the origin of coordinate system shifted into a zeolitic site. In this structure model, the Co-CN-Mn entities are bent owing to the charge introduced by the K+ insertion that induces also the electron transfer between Mn and Fe. Using Mössbauer spectroscopy the electron transfer activity is identified with the appearance of unsplit resonance at the isomer shift of typically -0.15 mm/s evidencing the low-spin state for Fe3+ and Fe2+ species. In the same P 4 bar 3 m phases doped with 2+57Fe into the Mn site, a sequence of discrete values of quadrupole splitting (0 mm/s, 0.9 mm/s, 1.8 mm/s) is observed and attributed to different conformations of the polyhedra, in which the ground states are orbital triplet, doublet and singlet, respectively.
Fee Comparisons of Treatments for Nonmelanoma Skin Cancer in a Private Practice Academic Setting
Wilson, Leslie S.; Pregenzer, Mark; Basu, Rituparna; Bertenthal, Daniel; Torres, Jeanette; Asgari, Maryam; Chren, Mary-Margaret
2013-01-01
OBJECTIVE To compare fees for biopsy, treatment procedure, repair, and 2-month follow-up for nonmelanoma skin cancer (NMSC) treatments: electrodesiccation and curettage (ED&C), excision, and Mohs micrographic surgery (MMS). METHODS A cost comparison of 936 primary NMSCs diagnosed in 1999/2000 at a University affiliated dermatology practice. Clinical data was from medical record review. 2007 Medicare Fee Schedule costs determined fees for surgical care. Pearson chi-square tests, t-tests and analysis of variance compared fee differences. Linear regression determined independent effects of tumor and treatment characteristics on fees. RESULTS Mean fees/lesion were $463 for ED&C, $1,222 for excision, and $2,085 for MMS (p < .001). For all treatments, primary procedure costs were highest (38%, 45%, and 41%). Total repair fees were higher with MMS ($735) vs excisions ($197). Fees were higher for head and neck tumors (p < .001), H-zone tumors (p < .001), and tumors smaller than 10 mm in diameter (p = .04). Regression models predicted that the treatment fees would be $2,109 for MMS and $1,252 for excision (p < .001). Tumor size greater than 10 mm in diameter (added $128), tumors on the head and neck (added $966), and MMS (added $857 vs excision) were independently related to higher fees (p < .001). CONCLUSION Even after adjusting for risk factors, MMS has higher fees than excision for primary NMSC. Repairs accounted for the majority of this difference. These fee comparisons provide a basis for comparative effectiveness studies of treatments for this common cancer. PMID:22145798
Kalman Filter for Mass Property and Thrust Identification (MMS)
NASA Technical Reports Server (NTRS)
Queen, Steven
2015-01-01
The Magnetospheric Multiscale (MMS) mission consists of four identically instrumented, spin-stabilized observatories, elliptically orbiting the Earth in a tetrahedron formation. For the operational success of the mission, on-board systems must be able to deliver high-precision orbital adjustment maneuvers. On MMS, this is accomplished using feedback from on-board star sensors in tandem with accelerometers whose measurements are dynamically corrected for errors associated with a spinning platform. In order to determine the required corrections to the measured acceleration, precise estimates of attitude, rate, and mass-properties is necessary. To this end, both an on-board and ground-based Multiplicative Extended Kalman Filter (MEKF) were formulated and implemented in order to estimate the dynamic and quasi-static properties of the spacecraft.
Laser ablation-miniature mass spectrometer for elemental and isotopic analysis of rocks.
Sinha, M P; Neidholdt, E L; Hurowitz, J; Sturhahn, W; Beard, B; Hecht, M H
2011-09-01
A laser ablation-miniature mass spectrometer (LA-MMS) for the chemical and isotopic measurement of rocks and minerals is described. In the LA-MMS method, neutral atoms ablated by a pulsed laser are led into an electron impact ionization source, where they are ionized by a 70 eV electron beam. This results in a secondary ion pulse typically 10-100 μs wide, compared to the original 5-10 ns laser pulse duration. Ions of different masses are then spatially dispersed along the focal plane of the magnetic sector of the miniature mass spectrometer (MMS) and measured in parallel by a modified CCD array detector capable of detecting ions directly. Compared to conventional scanning techniques, simultaneous measurement of the ion pulse along the focal plane effectively offers a 100% duty cycle over a wide mass range. LA-MMS offers a more quantitative assessment of elemental composition than techniques that detect ions directly generated by the ablation process because the latter can be strongly influenced by matrix effects that vary with the structure and geometry of the surface, the wavelength of the laser beam, and the not well characterized ionization efficiencies of the elements in the process. The above problems attendant to the direct ion analysis has been minimized in the LA-MMS by analyzing the ablated neutral species after their post-ionization by electron impaction. These neutral species are much more abundant than the directly ablated ions in the ablated vapor plume and are, therefore, expected to be characteristic of the chemical composition of the solid. Also, the electron impact ionization of elements is well studied and their ionization cross sections are known and easy to find in databases. Currently, the LA-MMS limit of detection is 0.4 wt.%. Here we describe LA-MMS elemental composition measurements of various minerals including microcline, lepidolite, anorthoclase, and USGS BCR-2G samples. The measurements of high precision isotopic ratios including (41)K/(39)K (0.077 ± 0.004) and (29)Si/(28)Si (0.052 ± 0.006) in these minerals by LA-MMS are also described. The LA-MMS has been developed as a prototype instrument system for space applications for geochemical and geochronological measurements on the surface of extraterrestrial bodies. © 2011 American Institute of Physics
Optimized merging of search coil and fluxgate data for MMS
NASA Astrophysics Data System (ADS)
Fischer, David; Magnes, Werner; Hagen, Christian; Dors, Ivan; Chutter, Mark W.; Needell, Jerry; Torbert, Roy B.; Le Contel, Olivier; Strangeway, Robert J.; Kubin, Gernot; Valavanoglou, Aris; Plaschke, Ferdinand; Nakamura, Rumi; Mirioni, Laurent; Russell, Christopher T.; Leinweber, Hannes K.; Bromund, Kenneth R.; Le, Guan; Kepko, Lawrence; Anderson, Brian J.; Slavin, James A.; Baumjohann, Wolfgang
2016-11-01
The Magnetospheric Multiscale mission (MMS) targets the characterization of fine-scale current structures in the Earth's tail and magnetopause. The high speed of these structures, when traversing one of the MMS spacecraft, creates magnetic field signatures that cross the sensitive frequency bands of both search coil and fluxgate magnetometers. Higher data quality for analysis of these events can be achieved by combining data from both instrument types and using the frequency bands with best sensitivity and signal-to-noise ratio from both sensors. This can be achieved by a model-based frequency compensation approach which requires the precise knowledge of instrument gain and phase properties. We discuss relevant aspects of the instrument design and the ground calibration activities, describe the model development and explain the application on in-flight data. Finally, we show the precision of this method by comparison of in-flight data. It confirms unity gain and a time difference of less than 100 µs between the different magnetometer instruments.
NASA Technical Reports Server (NTRS)
Schiff, Conrad; Dove, Edwin
2011-01-01
The MMS mission is an ambitious space physics mission that will fly 4 spacecraft in a tetrahedron formation in a series of highly elliptical orbits in order to study magnetic reconnection in the Earth's magnetosphere. The mission design is comprised of a combination of deterministic orbit adjust and random maintenance maneuvers distributed over the 2.5 year mission life. Formal verification of the requirements is achieved by analysis through the use of the End-to-End (ETE) code, which is a modular simulation of the maneuver operations over the entire mission duration. Error models for navigation accuracy (knowledge) and maneuver execution (control) are incorporated to realistically simulate the possible maneuver scenarios that might be realized These error models, coupled with the complex formation flying physics, lead to non-trivial effects that must be taken into account by the ETE automation. Using the ETE code, the MMS Flight Dynamics team was able to demonstrate that the current mission design satisfies the mission requirements.
A novel sandwich-type traveling wave piezoelectric tracked mobile system.
Wang, Liang; Shu, Chengyou; Zhang, Quan; Jin, Jiamei
2017-03-01
In this paper, a novel sandwich-type traveling wave piezoelectric tracked mobile system was proposed, designed, fabricated and experimentally investigated. The proposed system exhibits the advantages of simple structure, high mechanical integration, lack of electromagnetic interference, and lack of lubrication requirement, and hence shows potential application to robotic rovers for planetary exploration. The tracked mobile system is comprised of a sandwich actuating mechanism and a metal track. The actuating mechanism includes a sandwich piezoelectric transducer and two annular parts symmetrically placed at either end of the transducer, while the metal track is tensioned along the outer surfaces of the annular parts. Traveling waves with the same rotational direction are generated in the two annular parts, producing the microscopic elliptical motions of the surface particles on the annular parts. In this situation, if the pre-load is applied properly, the metal track can be driven by friction force to achieve bidirectional movement. At first, the finite element method was adopted to conduct the modal analysis and harmonic response analysis of the actuating mechanism, and the vibration characteristics were measured to confirm the operating principle. Then the optimal driving frequency of the system prototype, namely 35.1kHz, was measured by frequency sensitivity experiments. At last, the mechanical motion characteristics of the prototype were investigated experimentally. The results show that the average motion speeds of the prototype in dual directions were as 72mm/s and 61.5mm/s under the excitation voltage of 500V RMS , respectively. The optimal loading weights of the prototype in bi-directions were 0.32kg and 0.24kg with a maximum speed of 59.5mm/s and 61.67mm/s at the driving voltage of 300V RMS , respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
A generalized 3D framework for visualization of planetary data.
NASA Astrophysics Data System (ADS)
Larsen, K. W.; De Wolfe, A. W.; Putnam, B.; Lindholm, D. M.; Nguyen, D.
2016-12-01
As the volume and variety of data returned from planetary exploration missions continues to expand, new tools and technologies are needed to explore the data and answer questions about the formation and evolution of the solar system. We have developed a 3D visualization framework that enables the exploration of planetary data from multiple instruments on the MAVEN mission to Mars. This framework not only provides the opportunity for cross-instrument visualization, but is extended to include model data as well, helping to bridge the gap between theory and observation. This is made possible through the use of new web technologies, namely LATIS, a data server that can stream data and spacecraft ephemerides to a web browser, and Cesium, a Javascript library for 3D globes. The common visualization framework we have developed is flexible and modular so that it can easily be adapted for additional missions. In addition to demonstrating the combined data and modeling capabilities of the system for the MAVEN mission, we will display the first ever near real-time `QuickLook', interactive, 4D data visualization for the Magnetospheric Multiscale Mission (MMS). In this application, data from all four spacecraft can be manipulated and visualized as soon as the data is ingested into the MMS Science Data Center, less than one day after collection.
Kogot, Joshua M.; Zhang, Yanting; Moore, Stephen J.; Pagano, Paul; Stratis-Cullum, Dimitra N.; Chang-Yen, David; Turewicz, Marek; Pellegrino, Paul M.; de Fusco, Andre; Soh, H. Tom; Stagliano, Nancy E.
2011-01-01
Bacterial surface peptide display has gained popularity as a method of affinity reagent generation for a wide variety of applications ranging from drug discovery to pathogen detection. In order to isolate the bacterial clones that express peptides with high affinities to the target molecule, multiple rounds of manual magnetic activated cell sorting (MACS) followed by multiple rounds of fluorescence activated cell sorting (FACS) are conventionally used. Although such manual methods are effective, alternative means of library screening which improve the reproducibility, reduce the cost, reduce cross contamination, and minimize exposure to hazardous target materials are highly desired for practical application. Toward this end, we report the first semi-automated system demonstrating the potential for screening bacterially displayed peptides using disposable microfluidic cartridges. The Micro-Magnetic Separation platform (MMS) is capable of screening a bacterial library containing 3×1010 members in 15 minutes and requires minimal operator training. Using this system, we report the isolation of twenty-four distinct peptide ligands that bind to the protective antigen (PA) of Bacilus anthracis in three rounds of selection. A consensus motif WXCFTC was found using the MMS and was also found in one of the PA binders isolated by the conventional MACS/FACS approach. We compared MMS and MACS rare cell recovery over cell populations ranging from 0.1% to 0.0000001% and found that both magnetic sorting methods could recover cells down to 0.0000001% initial cell population, with the MMS having overall lower standard deviation of cell recovery. We believe the MMS system offers a compelling approach towards highly efficient, semi-automated screening of molecular libraries that is at least equal to manual magnetic sorting methods and produced, for the first time, 15-mer peptide binders to PA protein that exhibit better affinity and specificity than peptides isolated using conventional MACS/FACS. PMID:22140433
Code of Federal Regulations, 2010 CFR
2010-07-01
... same amount as Form MMS-2014 or bill document or to provide adequate information. 218.41 Section 218.41... Assessments for failure to submit payment of same amount as Form MMS-2014 or bill document or to provide... equivalent in amount to the total of individual line items on the associated Form MMS-2014, Form MMS-4430, or...
The meteorological monitoring system for the Kennedy Space Center/Cape Canaveral Air Station
NASA Technical Reports Server (NTRS)
Dianic, Allan V.
1994-01-01
The Kennedy Space Center (KSC) and Cape Canaveral Air Station (CCAS) are involved in many weather-sensitive operations. Manned and unmanned vehicle launches, which occur several times each year, are obvious example of operations whose success and safety are dependent upon favorable meteorological conditions. Other operations involving NASA, Air Force, and contractor personnel, including daily operations to maintain facilities, refurbish launch structures, prepare vehicles for launch, and handle hazardous materials, are less publicized but are no less weather-sensitive. The Meteorological Monitoring System (MMS) is a computer network which acquires, processes, disseminates, and monitors near real-time and forecast meteorological information to assist operational personnel and weather forecasters with the task of minimizing the risk to personnel, materials, and the surrounding population. CLIPS has been integrated into the MMS to provide quality control analysis and data monitoring. This paper describes aspects of the MMS relevant to CLIPS including requirements, actual implementation details, and results of performance testing.
van Wietmarschen, Niek; Moradian, Annie; Morin, Gregg B.; Lansdorp, Peter M.; Uringa, Evert-Jan
2012-01-01
Iron-sulfur (Fe-S) clusters are essential cofactors of proteins with a wide range of biological functions. A dedicated cytosolic Fe-S cluster assembly (CIA) system is required to assemble Fe-S clusters into cytosolic and nuclear proteins. Here, we show that the mammalian nucleotide excision repair protein homolog MMS19 can simultaneously bind probable cytosolic iron-sulfur protein assembly protein CIAO1 and Fe-S proteins, confirming that MMS19 is a central protein of the CIA machinery that brings Fe-S cluster donor proteins and the receiving apoproteins into proximity. In addition, we show that mitotic spindle-associated MMXD complex subunit MIP18 also interacts with both CIAO1 and Fe-S proteins. Specifically, it binds the Fe-S cluster coordinating regions in Fe-S proteins. Furthermore, we show that ADP/ATP translocase 2 (ANT2) interacts with Fe-S apoproteins and MMS19 in the CIA complex but not with the individual proteins. Together, these results elucidate the composition and interactions within the late CIA complex. PMID:23150669
Petrology and geochemistry of Antarctic micrometeorites
NASA Astrophysics Data System (ADS)
Kurat, Gero; Koeberl, Christian; Presper, Thomas; Brandstätter, Franz; Maurette, Michel
1994-09-01
The petrology and geochemistry of twentythree chondritic dust particles with masses of 1-47 μg (sizes 100-400 μm) were recovered from blue ice near Cap Prudhomme, Antarctica, and studied by INAA, ASEM, EMPA, and optical microscopy. Sample selection criteria were irregular shape and (for a subsample) black color, with the aim of studying as many unmelted micrometeorites (MMs) as possible. Of thirteen unmelted MMs, six were phyllosilicate-dominated MMs, and seven were coarsegrained crystalline MMs consisting mainly of olivine and pyroxene. The remaining ten particles were largely melted and consisted of a foamy melt with variable amounts of relic phases (scoriaceous MMs). Thus, of the black particles selected, an astonishing portion, 40% (by number), consisted of largely unmelted MMs. Although unmelted, most phyllosilicate MMs have been thermally metamorphosed to a degree that most of the phyllosilicates were destroyed, but not melted. The original preterrestrial mineralogy is occasionally preserved and consists of serpentine-like phyllosilicates with variable amounts of cronstedtite, tochilinite-like oxides, olivine, and pyroxene. The crystalline MMs consist of olivine, low-Ca pyroxene, tochilinite-like oxides, and occasional Ni-poor metal. Relics in scoriaceous MMs consist of the same phases. Mineral compositions and the coexistence of phyllosilicates with anhydrous phases are typical of CM and CR-type carbonaceous chondrites. However, the olivine/pyroxene ratio (~ 1) and the lack of carbonates, sulfates, and of very Fe-poor, refractory element-rich olivines and pyroxenes sets the MMs apart from CM and CR chondrites. The bulk chemistry of the phyllosilicate MMs is similar to that of CM chondrites. However, several elements are either depleted (Ca, Ni, S, less commonly Na, Mg, and Mn) or enriched (K, Fe, As, Br, Rb, Sb, and Au) in MMs as compared to CM chondrites. Similar depletions and enrichments are also found in the scoriaceous MMs. We suggest that the depletions are probably due to terrestrial leaching of sulfates and carbonates from unmelted MMs. The overabundance of some elements may also be due to processes acting during atmospheric passage such as the recondensation of meteoric vapors in the high atmosphere. Most MMs are coated by magnetite of platy or octahedral habit, which is rich in Mg, Al, Si, Mn, and Ni. We interpret the magnetites to be products of recondensation processes in the high (>90 km) atmosphere, which are, therefore, probably the first refractory aerominerals identified.
30 CFR 1210.106 - Where can I find more information on how to complete these production reports?
Code of Federal Regulations, 2011 CFR
2011-07-01
...://www.mrm.mms.gov/ReportingServices/Handbooks/Handbks.htm or from ONRR at P.O. Box 17110, Denver... Forms MMS-4054 and MMS-4058 on our Internet Web site at http://www.mrm.mms.gov/ReportingServices/Forms...
NASA Astrophysics Data System (ADS)
Nakamura, Rumi; Jeszenszky, Harald; Torkar, Klaus; Andriopoulou, Maria; Fremuth, Gerhard; Taijmar, Martin; Scharlemann, Carsten; Svenes, Knut; Escoubet, Philippe; Prattes, Gustav; Laky, Gunter; Giner, Franz; Hoelzl, Bernhard
2015-04-01
The NASA's Magnetospheric Multiscale (MMS) Mission is planned to be launched on March 12, 2015. The scientific objectives of the MMS mission are to explore and understand the fundamental plasma physics processes of magnetic reconnection, particle acceleration and turbulence in the Earth's magnetosphere. The region of scientific interest of MMS is in a tenuous plasma environment where the positive spacecraft potential reaches an equilibrium at several tens of Volts. An Active Spacecraft Potential Control (ASPOC) instrument neutralizes the spacecraft potential by releasing positive charge produced by indium ion emitters. ASPOC thereby reduces the potential in order to improve the electric field and low-energy particle measurement. The method has been successfully applied on other spacecraft such as Cluster and Double Star. Two ASPOC units are present on each of the MMS spacecraft. Each unit contains four ion emitters, whereby one emitter per instrument is operated at a time. ASPOC for MMS includes new developments in the design of the emitters and the electronics enabling lower spacecraft potentials, higher reliability, and a more uniform potential structure in the spacecraft's sheath compared to previous missions. Model calculations confirm the findings from previous applications that the plasma measurements will not be affected by the beam's space charge. A perfectly stable spacecraft potential precludes the utilization of the spacecraft as a plasma probe, which is a conventional technique used to estimate ambient plasma density from the spacecraft potential. The small residual variations of the potential controlled by ASPOC, however, still allow to determine ambient plasma density by comparing two closely separated spacecraft and thereby reconstructing the uncontrolled potential variation from the controlled potential. Regular intercalibration of controlled and uncontrolled potentials is expected to increase the reliability of this new method.
Casanova, Fernando; Carney, Paul R; Sarntinoranont, Malisa
2014-01-01
Flow back along a needle track (backflow) can be a problem during direct infusion, e.g. convection-enhanced delivery (CED), of drugs into soft tissues such as brain. In this study, the effect of needle insertion speed on local tissue injury and backflow was evaluated in vivo in the rat brain. Needles were introduced at three insertion speeds (0.2, 2, and 10 mm/s) followed by CED of Evans blue albumin (EBA) tracer. Holes left in tissue slices were used to reconstruct penetration damage. These measurements were also input into a hyperelastic model to estimate radial stress at the needle-tissue interface (pre-stress) before infusion. Fast insertion speeds were found to produce more tissue bleeding and disruption; average hole area at 10 mm/s was 1.87-fold the area at 0.2 mm/s. Hole measurements also differed at two fixation time points after needle retraction, 10 and 25 min, indicating that pre-stresses are influenced by time-dependent tissue swelling. Calculated pre-stresses were compressive (0 to 485 Pa) and varied along the length of the needle with smaller average values within white matter (116 Pa) than gray matter (301 Pa) regions. Average pre-stress at 0.2 mm/s (351.7 Pa) was calculated to be 1.46-fold the value at 10 mm/s. For CED backflow experiments (0.5, 1, and 2 µL/min), measured EBA backflow increased as much as 2.46-fold between 10 and 0.2 mm/s insertion speeds. Thus, insertion rate-dependent damage and changes in pre-stress were found to directly contribute to the extent of backflow, with slower insertion resulting in less damage and improved targeting.
30 CFR 206.113 - How will MMS identify market centers?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 206.113 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR MINERALS REVENUE MANAGEMENT PRODUCT VALUATION Federal Oil § 206.113 How will MMS identify market centers? MMS periodically will publish in the Federal Register a list of market centers. MMS will monitor market activity and, if...
30 CFR 250.1507 - How will MMS measure training results?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false How will MMS measure training results? 250.1507 Section 250.1507 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT... Control and Production Safety Training § 250.1507 How will MMS measure training results? MMS may...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-07
..., Oil Spill Financial Responsibility for Offshore Facilities. Forms: MMS-1016, MMS-1017, MMS-1018, MMS... 1996 (Pub. L. 104-324), provides at section 1016 that oil spill financial responsibility (OSFR) for... President. Section 1016 of OPA supersedes the offshore facility oil spill financial responsibility...
Ion propulsion cost effectivity
NASA Technical Reports Server (NTRS)
Zafran, S.; Biess, J. J.
1978-01-01
Ion propulsion modules employing 8-cm thrusters and 30-cm thrusters were studied for Multimission Modular Spacecraft (MMS) applications. Recurring and nonrecurring cost elements were generated for these modules. As a result, ion propulsion cost drivers were identified to be Shuttle charges, solar array, power processing, and thruster costs. Cost effective design approaches included short length module configurations, array power sharing, operation at reduced thruster input power, simplified power processing units, and power processor output switching. The MMS mission model employed indicated that nonrecurring costs have to be shared with other programs unless the mission model grows. Extended performance missions exhibited the greatest benefits when compared with monopropellant hydrazine propulsion.
Attitude Ground System (AGS) For The Magnetospheric Multi-Scale (MMS) Mission
NASA Technical Reports Server (NTRS)
Raymond, Juan C.; Sedlak, Joseph E.; Vint, Babak
2015-01-01
The Magnetospheric Multiscale (MMS) mission is a Solar-Terrestrial Probe mission consisting of four identically instrumented spin-stabilized spacecraft flying in an adjustable pyramid-like formation around the Earth. The formation of the MMS spacecraft allows for three-dimensional study of the phenomenon of magnetic reconnection, which is the primary objective of the mission. The MMS spacecraft were launched early on March 13, 2015 GMT. Due to the challenging and very constricted attitude and orbit requirements for performing the science, as well as the need to maintain the spacecraft formation, multiple ground functionalities were designed to support the mission. These functionalities were incorporated into a ground system known as the Attitude Ground System (AGS). Various AGS configurations have been used widely to support a variety of three-axis-stabilized and spin-stabilized spacecraft missions within the NASA Goddard Space Flight Center (GSFC). The original MMS operational concept required the AGS to perform highly accurate predictions of the effects of environmental disturbances on the spacecraft orientation and to plan the attitude maneuvers necessary to stay within the science attitude tolerance. The orbit adjustment requirements for formation control drove the need also to perform calibrations that have never been done before in support of NASA GSFC missions. The MMS mission required support analysts to provide fast and accurately calibrated values of the inertia tensor, center of mass, and accelerometer bias for each MMS spacecraft. During early design of the AGS functionalities, a Kalman filter for estimating the attitude, body rates, center of mass, and accelerometer bias, using only star tracker and accelerometer measurements, was heavily analyzed. A set of six distinct filters was evaluated and considered for estimating the spacecraft attitude and body rates using star tracker data only. Four of the six filters are closely related and were compared during support of the Time History of Events and Macroscale Interactions during Substorms (THEMIS) and Space Technology-5 (ST-5) missions. These analyses exposed high dependency and sensitivity on the knowledge of the spacecraft inertia tensor for both body rates and accelerometer bias estimation. The conclusion of the analysis led to the design of an inertia tensor calibration technique using only star tracker data. The second most important result of the analysis was the design of two separate Kalman filters to estimate the spacecraft attitude and body rates and the accelerometer bias instead of a single combined filter. In this paper, the calibration results of the mass properties, as well as the performance of the spacecraft attitude and body rates filters using flight data are presented and compared against the mission requirements.
Comparison of orchid and OCD modeling SO{sub x} release in the Gulf of Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferris, D.C.; Burns, D.S.; Steorts, W.L.
1996-10-01
Two atmospheric chemistry and transport models are used to investigate the atmospheric behavior of SO{sub x} in the Gulf of Mexico. SO{sub x} emissions from a location about 30 miles offshore in the Gulf of Mexico will be modeled with ENSCO`s Short-range Layered Atmospheric Model (SLAM) and the EPA and Material Management Service (MMS) sanctioned Offshore and Coastal Dispersion Model (OCD). The atmospheric chemistry associated with SLAM is modeled using ENSCO`s ORganic CHemistry Integrated Dispersion Model (ORCHID) and has been developed from the Carbon Bond Mechanism (CBM-IV) to characterize the behavior of SO{sub x} compounds in the environment. Model runsmore » from both ORCHID and OCD will be presented and compared. Predicted SO{sub x} concentrations will be compared with actual data gathered from the MMS`s SO{sub x} air quality study in 1993.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-26
.... Forms: MMS-1016, 1017, 1018, 1019, 1020, 1021, and 1022. OMB Control Number: 1010-0106. Abstract: This... provide clarification, description, or explanation of these regulations, and forms MMS-1016 through MMS... section 1016 of Oil Pollution Act. The information is necessary to confirm that applicants can pay for...
30 CFR 204.204 - What accounting and auditing relief will MMS not allow?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What accounting and auditing relief will MMS... INTERIOR MINERALS REVENUE MANAGEMENT ALTERNATIVES FOR MARGINAL PROPERTIES Accounting and Auditing Relief § 204.204 What accounting and auditing relief will MMS not allow? MMS will not approve your request for...
30 CFR 285.613 - How will MMS process my SAP?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How will MMS process my SAP? 285.613 Section 285.613 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE... Requirements Contents of the Site Assessment Plan § 285.613 How will MMS process my SAP? (a) The MMS will...
30 CFR 285.648 - How will MMS process my GAP?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How will MMS process my GAP? 285.648 Section 285.648 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE... Requirements Contents of the General Activities Plan § 285.648 How will MMS process my GAP? (a) The MMS will...
30 CFR 206.62 - Does MMS protect information I provide?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Does MMS protect information I provide? 206.62 Section 206.62 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR MINERALS REVENUE MANAGEMENT PRODUCT VALUATION Indian Oil § 206.62 Does MMS protect information I provide? The MMS will keep...
Photonic metamaterials: a new class of materials for manipulating light waves
Iwanaga, Masanobu
2012-01-01
A decade of research on metamaterials (MMs) has yielded great progress in artificial electromagnetic materials in a wide frequency range from microwave to optical frequencies. This review outlines the achievements in photonic MMs that can efficiently manipulate light waves from near-ultraviolet to near-infrared in subwavelength dimensions. One of the key concepts of MMs is effective refractive index, realizing values that have not been obtained in ordinary solid materials. In addition to the high and low refractive indices, negative refractive indices have been reported in some photonic MMs. In anisotropic photonic MMs of high-contrast refractive indices, the polarization and phase of plane light waves were efficiently transformed in a well-designed manner, enabling remarkable miniaturization of linear optical devices such as polarizers, wave plates and circular dichroic devices. Another feature of photonic MMs is the possibility of unusual light propagation, paving the way for a new subfield of transfer optics. MM lenses having super-resolution and cloaking effects were introduced by exploiting novel light-propagating modes. Here, we present a new approach to describing photonic MMs definitely by resolving the electromagnetic eigenmodes. Two representative photonic MMs are addressed: the so-called fishnet MM slabs, which are known to have effective negative refractive index, and a three-dimensional MM based on a multilayer of a metal and an insulator. In these photonic MMs, we elucidate the underlying eigenmodes that induce unusual light propagations. Based on the progress of photonic MMs, the future potential and direction are discussed. PMID:27877512
Tsujimoto; Shigeyama; Yoshii
2000-03-01
We suggest that if the astrophysical site for r-process nucleosynthesis in the early Galaxy is confined to a narrow mass range of Type II supernova (SN II) progenitors, with a lower mass limit of Mms=20 M middle dot in circle, a unique feature in the observed distribution of [Ba/Mg] versus [Mg/H] for extremely metal-poor stars can be adequately reproduced. We associate this feature, a bifurcation of the observed elemental ratios into two branches in the Mg abundance interval -3.7=&sqbl0;Mg&solm0;H&sqbr0;=-2.3, with two distinct processes. The first branch, which we call the y-branch, is associated with the production of Ba and Mg from individual massive supernovae. The derived mass of Ba synthesized in SNe II is 8.5x10-6 M middle dot in circle for Mms=20 M middle dot in circle and 4.5x10-8 M middle dot in circle for Mms=25 M middle dot in circle. We conclude that SNe II with Mms approximately 20 M middle dot in circle are the dominant source of r-process nucleosynthesis in the early Galaxy. An SN-induced chemical evolution model with this Mms-dependent Ba yield creates the y-branch, reflecting the different nucleosynthesis yields of [Ba/Mg] for each SN II with Mms greater, similar20 M middle dot in circle. The second branch, which we call the i-branch, is associated with the elemental abundance ratios of stars which were formed in the dense shells of the interstellar medium swept up by SNe II with Mms<20 M middle dot in circle that do not synthesize r-process elements, and it applies to stars with observed Mg abundances in the range &sqbl0;Mg&solm0;H&sqbr0;<-2.7. The Ba abundances in these stars reflect those of the interstellar gas at the (later) time of their formation. The existence of a [Ba/Mg] i-branch strongly suggests that SNe II that are associated with stars of progenitor mass Mms=20 M middle dot in circle are infertile sources for the production of r-process elements. We predict the existence of this i-branch for other r-process elements, such as europium (Eu), to the extent that their production site is in common with Ba.
Meyer, Carsten H; Klein, Adrian; Alten, Florian; Liu, Zengping; Stanzel, Boris V; Helb, Hans M; Brinkmann, Christian K
2012-01-01
Ozurdex, a novel dexamethasone (DEX) implant, is released by a drug delivery system into the vitreous cavity. We analyzed the mechanical release aperture of the novel applicator, obtained real-time recordings using a high-speed camera system and performed kinematic analysis of the DEX application. Experimental study. : The application of intravitreal DEX implants (6 mm length, 0.46 mm diameter; 700 μg DEX mass, 0.0012 g total implant mass) was recorded by a high-speed camera (500 frames per second) in water (Group A: n = 7) or vitreous (Group B: n = 7) filled tanks. Kinematic analysis calculated the initial muzzle velocity as well as the impact on the retinal surface at approximately 15 mm of the injected drug delivery system implant in both groups. A series of drug delivery system implant positions was obtained and graphically plotted over time. High-speed real-time recordings revealed that the entire movement of the DEX implant lasted between 28 milliseconds and 55 milliseconds in Group A and 1 millisecond and 7 milliseconds in Group B. The implants moved with a mean muzzle velocity of 820 ± 350 mm/s (±SD, range, 326-1,349 mm/s) in Group A and 817 ± 307 mm/s (±SD, range, 373-1,185 mm/s) in Group B. In both groups, the implant gradually decelerated because of drag force. With greater distances, the velocity of the DEX implant decreased exponentially to a complete stop at 13.9 mm to 24.7 mm in Group A and at 6.4 mm to 8.0 mm in Group B. Five DEX implants in Group A reached a total distance of more than 15 mm, and their calculated mean velocity at a retinal impact of 15 mm was 408 ± 145 mm/s (±SD, range, 322-667 mm/s), and the consecutive normalized energy was 0.55 ± 0.44 J/m (±SD). In Group B, none of the DEX implants reached a total distance of 6 mm or more. An accidental application at an angle of 30 grade and consecutively reduced distance of approximately 6 mm may result in a mean velocity of 844 and mean normalized energy of 0.15 J/m (SD ± 0.47) in a water-filled eye. The muzzle velocity of DEX implants is approximately 0.8 m/s and decreases exponentially over distance. The drag over time in vitreous is faster than in water. The calculated retinal impact energy does not reach reported damage levels for direct foreign bodies or other projectiles.
NASA Astrophysics Data System (ADS)
Webb, R. M.; Leavesley, G. H.; Shanley, J. B.; Peters, N. E.; Aulenbach, B. T.; Blum, A. E.; Campbell, D. H.; Clow, D. W.; Mast, M. A.; Stallard, R. F.; Larsen, M. C.; Troester, J. W.; Walker, J. F.; White, A. F.
2003-12-01
The Water, Energy, and Biogeochemical Model (WEBMOD) was developed as an aid to compare and contrast basic hydrologic and biogeochemical processes active in the diverse hydroclimatic regions represented by the five U.S. Geological Survey (USGS) Water, Energy, and Biogeochemical Budget (WEBB) sites: Loch Vale, Colorado; Trout Lake, Wisconsin; Sleepers River, Vermont; Panola Mountain, Georgia; and Luquillo Experimental Forest, Puerto Rico. WEBMOD simulates solute concentrations for vegetation canopy, snow pack, impermeable ground, leaf litter, unsaturated and saturated soil zones, riparian zones and streams using selected process modules coupled within the USGS Modular Modeling System (MMS). Source codes for the MMS hydrologic modules include the USGS Precipitation Runoff Modeling System, the National Weather Service Hydro-17 snow model, and TOPMODEL. The hydrologic modules distribute precipitation and temperature to predict evapotranspiration, snow accumulation, snow melt, and streamflow. Streamflow generation mechanisms include infiltration excess, saturated overland flow, preferential lateral flow, and base flow. Input precipitation chemistry, and fluxes and residence times predicted by the hydrologic modules are input into the geochemical module where solute concentrations are computed for a series of discrete well-mixed reservoirs using calls to the geochemical engine PHREEQC. WEBMOD was used to better understand variations in water quality observed at the WEBB sites from October 1991 through September 1997. Initial calibrations were completed by fitting the simulated hydrographs with those measured at the watershed outlets. Model performance was then refined by comparing the predicted export of conservative chemical tracers such as chloride, with those measured at the watershed outlets. The model succeeded in duplicating the temporal variability of net exports of major ions from the watersheds.
30 CFR 1218.580 - When do I submit Form MMS-4444?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false When do I submit Form MMS-4444? 1218.580... Service of Official Correspondence § 1218.580 When do I submit Form MMS-4444? Initially, you must submit Form MMS-4444 by November 29, 2006, and subsequently, within 2 weeks of any change of your address. ...
30 CFR 218.580 - When do I submit Form MMS-4444?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false When do I submit Form MMS-4444? 218.580 Section 218.580 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR MINERALS REVENUE... Correspondence § 218.580 When do I submit Form MMS-4444? Initially, you must submit MMS Form-4444 by November 29...
30 CFR 1218.580 - When do I submit Form MMS-4444?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false When do I submit Form MMS-4444? 1218.580... Service of Official Correspondence § 1218.580 When do I submit Form MMS-4444? Initially, you must submit Form MMS-4444 by November 29, 2006, and subsequently, within 2 weeks of any change of your address. ...
Tang, Yongsheng; Ren, Zhongdao
2017-01-01
The neutral axis position (NAP) is a key parameter of a flexural member for structure design and safety evaluation. The accuracy of NAP measurement based on traditional methods does not satisfy the demands of structural performance assessment especially under live traffic loads. In this paper, a new method to determine NAP is developed by using modal macro-strain (MMS). In the proposed method, macro-strain is first measured with long-gauge Fiber Bragg Grating (FBG) sensors; then the MMS is generated from the measured macro-strain with Fourier transform; and finally the neutral axis position coefficient (NAPC) is determined from the MMS and the neutral axis depth is calculated with NAPC. To verify the effectiveness of the proposed method, some experiments on FE models, steel beam and reinforced concrete (RC) beam were conducted. From the results, the plane section was first verified with MMS of the first bending mode. Then the results confirmed the high accuracy and stability for assessing NAP. The results also proved that the NAPC was a good indicator of local damage. In summary, with the proposed method, accurate assessment of flexural structures can be facilitated. PMID:28230747
Tang, Yongsheng; Ren, Zhongdao
2017-02-20
The neutral axis position (NAP) is a key parameter of a flexural member for structure design and safety evaluation. The accuracy of NAP measurement based on traditional methods does not satisfy the demands of structural performance assessment especially under live traffic loads. In this paper, a new method to determine NAP is developed by using modal macro-strain (MMS). In the proposed method, macro-strain is first measured with long-gauge Fiber Bragg Grating (FBG) sensors; then the MMS is generated from the measured macro-strain with Fourier transform; and finally the neutral axis position coefficient (NAPC) is determined from the MMS and the neutral axis depth is calculated with NAPC. To verify the effectiveness of the proposed method, some experiments on FE models, steel beam and reinforced concrete (RC) beam were conducted. From the results, the plane section was first verified with MMS of the first bending mode. Then the results confirmed the high accuracy and stability for assessing NAP. The results also proved that the NAPC was a good indicator of local damage. In summary, with the proposed method, accurate assessment of flexural structures can be facilitated.
NASA Astrophysics Data System (ADS)
Wilson, R. I.; Eble, M. C.
2013-12-01
The U.S. National Tsunami Hazard Mitigation Program (NTHMP) is comprised of representatives from coastal states and federal agencies who, under the guidance of NOAA, work together to develop protocols and products to help communities prepare for and mitigate tsunami hazards. Within the NTHMP are several subcommittees responsible for complimentary aspects of tsunami assessment, mitigation, education, warning, and response. The Mapping and Modeling Subcommittee (MMS) is comprised of state and federal scientists who specialize in tsunami source characterization, numerical tsunami modeling, inundation map production, and warning forecasting. Until September 2012, much of the work of the MMS was authorized through the Tsunami Warning and Education Act, an Act that has since expired but the spirit of which is being adhered to in parallel with reauthorization efforts. Over the past several years, the MMS has developed guidance and best practices for states and territories to produce accurate and consistent tsunami inundation maps for community level evacuation planning, and has conducted benchmarking of numerical inundation models. Recent tsunami events have highlighted the need for other types of tsunami hazard analyses and products for improving evacuation planning, vertical evacuation, maritime planning, land-use planning, building construction, and warning forecasts. As the program responsible for producing accurate and consistent tsunami products nationally, the NTHMP-MMS is initiating a multi-year plan to accomplish the following: 1) Create and build on existing demonstration projects that explore new tsunami hazard analysis techniques and products, such as maps identifying areas of strong currents and potential damage within harbors as well as probabilistic tsunami hazard analysis for land-use planning. 2) Develop benchmarks for validating new numerical modeling techniques related to current velocities and landslide sources. 3) Generate guidance and protocols for the production and use of new tsunami hazard analysis products. 4) Identify multistate collaborations and funding partners interested in these new products. Application of these new products will improve the overall safety and resilience of coastal communities exposed to tsunami hazards.
A Medical Manipulator System with Lasers in Photodynamic Therapy of Port Wine Stains
Wang, Xingtao; Tian, Chunlai; Duan, Xingguang; Gu, Ying; Huang, Naiyan
2014-01-01
Port wine stains (PWS) are a congenital malformation and dilation of the superficial dermal capillary. Photodynamic therapy (PDT) with lasers is an effective treatment of PWS with good results. However, because the laser density is uneven and nonuniform, the treatment is carried out manually by a doctor thus providing little accuracy. Additionally, since the treatment of a single lesion can take between 30 and 60 minutes, the doctor can become fatigued after only a few applications. To assist the medical staff with this treatment method, a medical manipulator system (MMS) was built to operate the lasers. The manipulator holds the laser fiber and, using a combination of active and passive joints, the fiber can be operated automatically. In addition to the control input from the doctor over a human-computer interface, information from a binocular vision system is used to guide and supervise the operation. Clinical results are compared in nonparametric values between treatments with and without the use of the MMS. The MMS, which can significantly reduce the workload of doctors and improve the uniformity of laser irradiation, was safely and helpfully applied in PDT treatment of PWS with good therapeutic results. PMID:25302297
Regression rate study of porous axial-injection, endburning hybrid fuel grains
NASA Astrophysics Data System (ADS)
Hitt, Matthew A.
This experimental and theoretical work examines the effects of gaseous oxidizer flow rates and pressure on the regression rates of porous fuels for hybrid rocket applications. Testing was conducted using polyethylene as the porous fuel and both gaseous oxygen and nitrous oxide as the oxidizer. Nominal test articles were tested using 200, 100, 50, and 15 micron fuel pore sizes. Pressures tested ranged from atmospheric to 1160 kPa for the gaseous oxygen tests and from 207 kPa to 1054 kPa for the nitrous oxide tests, and oxidizer injection velocities ranged from 35 m/s to 80 m/s for the gaseous oxygen tests and from 7.5 m/s to 16.8 m/s for the nitrous oxide tests. Regression rates were determined using pretest and posttest length measurements of the solid fuel. Experimental results demonstrated that the regression rate of the porous axial-injection, end-burning hybrid was a function of the chamber pressure, as opposed to the oxidizer mass flux typical in conventional hybrids. Regression rates ranged from approximately 0.75 mm/s at atmospheric pressure to 8.89 mm/s at 1160 kPa for the gaseous oxygen tests and 0.21 mm/s at 207 kPa to 1.44 mm/s at 1054 kPa for the nitrous oxide tests. The analytical model was developed based on a standard ablative model modified to include oxidizer flow through the grain. The heat transfer from the flame was primarily modeled using an empirically determined flame coefficient that included all heat transfer mechanisms in one term. An exploratory flame model based on the Granular Diffusion Flame model used for solid rocket motors was also adapted for comparison with the empirical flame coefficient. This model was then evaluated quantitatively using the experimental results of the gaseous oxygen tests as well as qualitatively using the experimental results of the nitrous oxide tests. The model showed agreement with the experimental results indicating it has potential for giving insight into the flame structure in this motor configuration. Results from the model suggested that both kinetic and diffusion processes could be relevant to the combustion depending on the chamber pressure.
30 CFR 285.615 - What other reports or notices must I submit to MMS under my approved SAP?
Code of Federal Regulations, 2010 CFR
2010-07-01
... MMS under my approved SAP? 285.615 Section 285.615 Mineral Resources MINERALS MANAGEMENT SERVICE... CONTINENTAL SHELF Plans and Information Requirements Activities Under An Approved Sap § 285.615 What other reports or notices must I submit to MMS under my approved SAP? (a) You must notify MMS in writing within...
Sampling and monitoring for closure
McLemore, V.T.; Russell, C.C.; Smith, K.S.
2004-01-01
The Metals Mining Sector of the Acid Drainage Technology Initiative (ADTI-MMS) addresses technical drainage-quality issues related to metal mining and related metallurgical operations, for future and active mines, as well as, for historical mines and mining districts. One of the first projects of ADTI-MMS is to develop a handbook describing the best sampling, monitoring, predicting, mitigating, and modeling of drainage from metal mines, pit lakes and related metallurgical facilities based upon current scientific and engineering practices. One of the important aspects of planning a new mine in today's regulatory environment is the philosophy of designing a new or existing mine or expansion of operations for ultimate closure. The holistic philosophy taken in the ADTI-MMS handbook maintains that sampling and monitoring programs should be designed to take into account all aspects of the mine-life cycle. Data required for the closure of the operation are obtained throughout the mine-life cycle, from exploration through post-closure.
NASA Astrophysics Data System (ADS)
Vijayakumar, Ganesh; Sprague, Michael
2017-11-01
Demonstrating expected convergence rates with spatial- and temporal-grid refinement is the ``gold standard'' of code and algorithm verification. However, the lack of analytical solutions and generating manufactured solutions presents challenges for verifying codes for complex systems. The application of the method of manufactured solutions (MMS) for verification for coupled multi-physics phenomena like fluid-structure interaction (FSI) has only seen recent investigation. While many FSI algorithms for aeroelastic phenomena have focused on boundary-resolved CFD simulations, the actuator-line representation of the structure is widely used for FSI simulations in wind-energy research. In this work, we demonstrate the verification of an FSI algorithm using MMS for actuator-line CFD simulations with a simplified structural model. We use a manufactured solution for the fluid velocity field and the displacement of the SMD system. We demonstrate the convergence of both the fluid and structural solver to second-order accuracy with grid and time-step refinement. This work was funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Wind Energy Technologies Office, under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory.
Performance measures from the explorer platform berthing experiment
NASA Technical Reports Server (NTRS)
Leake, Stephen
1993-01-01
The Explorer Platform is a Modular Mission Spacecraft: it has several subunits that are designed to be replaced on orbit. The Goddard Space Flight Center Robotics Lab undertook an experiment to evaluate various robotic approaches to replacing one of the units; a large (approximately 1 meter by 1 meter by 0.5 meter) power box. The hardware consists of a Robotics Research Corporation K-1607 (RRC) manipulator mounted on a large gantry robot, a Kraft handcontroller for teleoperation of RRC, a Lightweight Servicing Tool (LST) mounted on the RRC, and an Explorer Platform mockup (EP) with a removable box (MMS) that has fixtures that mate with the LST. Sensors include a wrist wrench sensor on the RRC and Capaciflectors mounted on the LST and the MMS. There are also several cameras, but no machine vision is used. The control system for the RRC is entirely written by Goddard; it consists of Ada code on three Multibus I 386/387 CPU boards doing the real-time robot control, and C on a 386 PC processing Capaciflector data. The gantry is not moved during this experiment. The task is the exchange of the MMS; it is removed and replaced. This involves four basic steps: mating the LST to the MMS, demating the MMS from the EP, mating the MMS to the EP, and demating the LST form the MMS. Each of the mating steps must be preceeded by an alignment to bring the mechanical fixtures within their capture range. Two basic approaches to alignment are explored: teleoperation with the operator viewing thru cameras, and Capaciflector based autonomy. To evaluate the two alignment approaches, several runs were run with each approach and the final pose was recorded. Comparing this to the ideal alignment pose gives accuracy and repeatability data. In addition the wrenches exerted during the mating tasks were recorded; this gives information on how the alignment step affects the mating step. There are also two approaches to mating; teleoperation, and impedance based autonomy. The wrench data taken during mating using these two approaches is used to evaluate them. Section 2 describes the alignment results, section 3 describes the mating results, and finally Section 4 gives some conclusions.
NASA Astrophysics Data System (ADS)
Garner, C. B.; Boyle, D. P.; Lamorey, G. W.; Bassett, S. D.
2007-12-01
The demand for water in the southwestern United States has increased in tandem with a rapid growth of population over the past 50 years. With ever increasing demands being placed on available water supplies, improving water management becomes crucial to the sustainability of the region's water resources. The National Science Foundation (NSF) Science and Technology Center (STC) for the Sustainability of semi-Arid Hydrology and Riparian Areas (SAHRA) is interested in the feasibility of water leasing as a method for more efficiently distributing water among competing users. Economists working on the project will run water leasing simulations in an auction-type environment to understand the pros and cons of water leasing in a free market system. To include hydrologic processes in the water leasing simulations, an MMS-PRMS hydrologic model was developed for a portion of the Middle Rio Grande Basin (MRGB) near Albuquerque, New Mexico. This portion of the MRGB contains a detailed network of diversions, canals, and drains that transport water through the system. In order to capture the complexity of the system, the model was developed using the highest resolution information available. In the model, each Hydrologic Response Unit (HRU) is represented as a trader. To achieve the 15 trader limit desired by economists, the model structure was simplified using two basic constraints; 1) HRUs having a common source and point of return to the river were lumped; and 2) HRUs with less than 20% agricultural land use were omitted from the auction simulations. A new Evapotranspiration (ET) module was implemented in the model to better estimate ET associated with different crops. Modules were also developed so that the end user has the flexibility to manipulate water deliveries based on crop type and land use. The MMS- PRMS model for the MRGB should help economists determine if the incentive to profit by selling or buying water can make more efficient use of the available water supply.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What information will MMS publish in the... information will MMS publish in the Proposed Sale Notice and Final Sale Notice? For each competitive lease sale, MMS will publish a Proposed Sale Notice and a Final Sale Notice in the Federal Register. In the...
30 CFR 206.361 - How will MMS determine whether my royalty or direct use fee payments are correct?
Code of Federal Regulations, 2010 CFR
2010-07-01
... electricity or the sale of a geothermal resource, in conducting reviews and audits MMS will examine whether... royalties or direct use fees that you report are subject to monitoring, review, and audit. The MMS may review and audit your data, and MMS will direct you to use a different measure of royalty value, gross...
30 CFR 1218.560 - How do I submit Form MMS-4444?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false How do I submit Form MMS-4444? 1218.560 Section... Service of Official Correspondence § 1218.560 How do I submit Form MMS-4444? You may obtain a copy of Form MMS-4444 and instructions from ONRR. This form is posted at http://www.onrr.gov/FM/Forms/default.htm...
Lammers, H B
2000-04-01
From an Elaboration Likelihood Model perspective, it was hypothesized that postexposure awareness of deceptive packaging claims would have a greater negative effect on scores for purchase intention by consumers lowly involved rather than highly involved with a product (n = 40). Undergraduates who were classified as either highly or lowly (ns = 20 and 20) involved with M&Ms examined either a deceptive or non-deceptive package design for M&Ms candy and were subsequently informed of the deception employed in the packaging before finally rating their intention to purchase. As anticipated, highly deceived subjects who were low in involvement rated intention to purchase lower than their highly involved peers. Overall, the results attest to the robustness of the model and suggest that the model has implications beyond advertising effects and into packaging effects.
Zhang, Jin-Liang; Wang, Hui-Yun; Yang, Qing; Lin, Shi-Yong; Luo, Guang-Yu; Zhang, Rong; Xu, Guo-Liang
2015-01-01
AIM: To investigate the clinical significance of methyl-methanesulfonate sensitivity 19 (MMS19) expression in esophageal squamous cell carcinoma (ESCC). METHODS: Between June 2008 and May 2013, specimens from 103 patients who underwent endoscopic biopsy for the diagnosis of ESCC at the endoscopy center of Sun Yat-Sen University Cancer Center were collected; 52 matched-normal esophageal squamous epithelium samples were biopsied as controls. MMS19 protein expression was measured by immunohistochemistry. Of the 103 cases of ESCC, 49 received radical surgery following neoadjuvant chemoradiotherapy consisting of concurrent radiation in a total dose of 40 Gy and two cycles of chemotherapy with vinorelbine and cisplatin. Relationships between MMS19 expression, clinicopathologic characteristics and chemoradiotherapy response were analyzed. RESULTS: The MMS19 protein could be detected in both the cytoplasm and nucleus of most specimens. High cytoplasmic expression of MMS19 was detected in 63.1% of ESCC samples, whereas high nuclear expression of MMS19 was found in 35.0%. High cytoplasmic MMS19 expression was associated with regional lymph node metastases (OR = 11.3, 95%CI: 2.3-54.7; P < 0.001) and distant metastases (OR = 13.1, 95%CI: 1.7-103.0; P = 0.002). Furthermore, high cytoplasmic MMS19 expression was associated with a response of ESCC to chemoradiotherapy (OR = 11.5, 95%CI: 3.0-44.5; P < 0.001), with a high cytoplasmic MMS19 expression rates in 79.3% and 25.0% of patients from the good chemoradiotherapy response group and poor response group, respectively. Nuclear MMS19 expression did not show any significant association with clinicopathologic characteristics or chemoradiotherapy response in ESCC. CONCLUSION: The results of our preliminary study suggest that MMS19 may be a potential new predictor of metastasis and chemoradiotherapy response in ESCC. PMID:25892874
Diffusion Region's Structure at the Subsolar Magnetopause with MMS Data
NASA Astrophysics Data System (ADS)
Cozzani, G.; Retino, A.; Califano, F.; Alexandrova, A.; Catapano, F.; Fu, H.; Le Contel, O.; Khotyaintsev, Y. V.; Vaivads, A.; Ahmadi, N.; Lindqvist, P. A.; Breuillard, H.; Mirioni, L.; Ergun, R.; Torbert, R. B.; Giles, B. L.; Russell, C. T.; Nakamura, R.; Moore, T. E.; Fuselier, S. A.; Mauk, B.; Burch, J.
2017-12-01
Magnetic reconnection occurs in the magnetosphere in thin current sheets, where a change in the magneticfield topology leads to rapid conversion of magnetic energy into ion and electron energy. To allow for magneticfield reconfiguration, both ions and electrons have to become demagnetized in the ion and electron diffusionregions, respectively. MMS spacecraft observations at inter-spacecraft separation ˜ 10 km (correspondingto ˜ 5 d_e at the magnetopause) allow, for the first time, to make multi-point studies of the structure of theelectron diffusion region (EDR). We present MMS observations on January,27th 2017 of one magnetopausecrossing close to the subsolar point showing several signatures consistent with an EDR encounter nearbya magnetic field minimum. The proximity to the reconnection site is further substantiated by the FirstOrder Taylor Expansion (FOTE) method applied to the magnetic field data. Observations suggest that allspacecraft passed through the EDR. Despite of the small inter-spacecraft separation (7 km), the observationsshow important differences among spacecraft. We focus on the comparison between MMS3 and MMS4 sincethey show the most striking differences. MMS3 measures a stronger parallel electron heating and highercurrent densities than MMS4. Both satellites observe crescent-shaped electron distribution functions on themagnetospheric side but MMS4 observes them over a longer time interval. These observations suggest thatMMS3 is passing closer to the reconnection site than MMS4. The differences between the observations by thetwo spacecraft indicate that the EDR is rather structured over scales of a few electron inertial lengths. Wealso evaluate the Generalized Ohm's law and find that the electric field is mainly balanced by the divergenceof the electron pressure tensor while the electron inertia term is negligible.
Fredriksson, Ingemar; Larsson, Marcus; Nyström, Fredrik H.; Länne, Toste; Östgren, Carl J.; Strömberg, Tomas
2010-01-01
OBJECTIVE To compare the microcirculatory velocity distribution in type 2 diabetic patients and nondiabetic control subjects at baseline and after local heating. RESEARCH DESIGN AND METHODS The skin blood flow response to local heating (44°C for 20 min) was assessed in 28 diabetic patients and 29 control subjects using a new velocity-resolved quantitative laser Doppler flowmetry technique (qLDF). The qLDF estimates erythrocyte (RBC) perfusion (velocity × concentration), in a physiologically relevant unit (grams RBC per 100 g tissue × millimeters per second) in a fixed output volume, separated into three velocity regions: v <1 mm/s, v 1–10 mm/s, and v >10 mm/s. RESULTS The increased blood flow occurs in vessels with a velocity >1 mm/s. A significantly lower response in qLDF total perfusion was found in diabetic patients than in control subjects after heat provocation because of less high-velocity blood flow (v >10 mm/s). The RBC concentration in diabetic patients increased sevenfold for v between 1 and 10 mm/s, and 15-fold for v >10 mm/s, whereas no significant increase was found for v <1 mm/s. The mean velocity increased from 0.94 to 7.3 mm/s in diabetic patients and from 0.83 to 9.7 mm/s in control subjects. CONCLUSIONS The perfusion increase occurs in larger shunting vessels and not as an increase in capillary flow. Baseline diabetic patient data indicated a redistribution of flow to higher velocity regions, associated with longer duration of diabetes. A lower perfusion was associated with a higher BMI and a lower toe-to-brachial systolic blood pressure ratio. PMID:20393143
Interaction of caffeine with the SOS response pathway in Escherichia coli.
Whitney, Alyssa K; Weir, Tiffany L
2015-01-01
Previous studies have highlighted the antimicrobial activity of caffeine, both individually and in combination with other compounds. A proposed mechanism for caffeine's antimicrobial effects is inhibition of bacterial DNA repair pathways. The current study examines the influence of sub-lethal caffeine levels on the growth and morphology of SOS response pathway mutants of Escherichia coli. Growth inhibition after treatment with caffeine and methyl methane sulfonate (MMS), a mutagenic agent, was determined for E. coli mutants lacking key genes in the SOS response pathway. The persistence of caffeine's effects was explored by examining growth and morphology of caffeine and MMS-treated bacterial isolates in the absence of selective pressure. Caffeine significantly reduced growth of E. coli recA- and uvrA-mutants treated with MMS. However, there was no significant difference in growth between umuC-isolates treated with MMS alone and MMS in combination with caffeine after 48 h of incubation. When recA-isolates from each treatment group were grown in untreated medium, bacterial isolates that had been exposed to MMS or MMS with caffeine showed increased growth relative to controls and caffeine-treated isolates. Morphologically, recA-isolates that had been treated with caffeine and both caffeine and MMS together had begun to display filamentous growth. Caffeine treatment further reduced growth of recA- and uvrA-mutants treated with MMS, despite a non-functional SOS response pathway. However, addition of caffeine had very little effect on MMS inhibition of umuC-mutants. Thus, growth inhibition of E. coli with caffeine treatment may be driven by caffeine interaction with UmuC, but also appears to induce damage by additional mechanisms as evidenced by the additive effects of caffeine in recA- and uvrA-mutants.
Characterization of a Novel MMS-Sensitive Allele of Schizosaccharomyces pombe mcm4+
Ranatunga, Nimna S.; Forsburg, Susan L.
2016-01-01
The minichromosome maintenance (MCM) complex is the conserved helicase motor of the eukaryotic replication fork. Mutations in the Mcm4 subunit are associated with replication stress and double strand breaks in multiple systems. In this work, we characterize a new temperature-sensitive allele of Schizosaccharomyces pombe mcm4+. Uniquely among known mcm4 alleles, this mutation causes sensitivity to the alkylation damaging agent methyl methanesulfonate (MMS). Even in the absence of treatment or temperature shift, mcm4-c106 cells show increased repair foci of RPA and Rad52, and require the damage checkpoint for viability, indicating genome stress. The mcm4-c106 mutant is synthetically lethal with mutations disrupting fork protection complex (FPC) proteins Swi1 and Swi3. Surprisingly, we found that the deletion of rif1+ suppressed the MMS-sensitive phenotype without affecting temperature sensitivity. Together, these data suggest that mcm4-c106 destabilizes replisome structure. PMID:27473316
Xu, Panglian; Yuan, Dongke; Liu, Ming; Li, Chunxin; Liu, Yiyang; Zhang, Shengchun; Yao, Nan; Yang, Chengwei
2013-04-01
Plants maintain stem cells in meristems to sustain lifelong growth; these stem cells must have effective DNA damage responses to prevent mutations that can propagate to large parts of the plant. However, the molecular links between stem cell functions and DNA damage responses remain largely unexplored. Here, we report that the small ubiquitin-related modifier E3 ligase AtMMS21 (for methyl methanesulfonate sensitivity gene21) acts to maintain the root stem cell niche by mediating DNA damage responses in Arabidopsis (Arabidopsis thaliana). Mutation of AtMMS21 causes defects in the root stem cell niche during embryogenesis and postembryonic stages. AtMMS21 is essential for the proper expression of stem cell niche-defining transcription factors. Moreover, mms21-1 mutants are hypersensitive to DNA-damaging agents, have a constitutively increased DNA damage response, and have more DNA double-strand breaks (DSBs) in the roots. Also, mms21-1 mutants exhibit spontaneous cell death within the root stem cell niche, and treatment with DSB-inducing agents increases this cell death, suggesting that AtMMS21 is required to prevent DSB-induced stem cell death. We further show that AtMMS21 functions as a subunit of the STRUCTURAL MAINTENANCE OF CHROMOSOMES5/6 complex, an evolutionarily conserved chromosomal ATPase required for DNA repair. These data reveal that AtMMS21 acts in DSB amelioration and stem cell niche maintenance during Arabidopsis root development.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false When may MMS or the Secretary extend or cancel... When may MMS or the Secretary extend or cancel a lease at the development and production stage? (a) MMS..., the Secretary will cancel the lease: (1) When the 5-year period in paragraph (a)(1) of this section...
2015-02-04
CAPE CANAVERAL, Fla. – The first stage of the United Launch Alliance Atlas V rocket for NASA's Magnetospheric Multiscale mission, or MMS, is lifted into the mobile service tower at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. MMS will study the mystery of how magnetic fields around Earth connect and disconnect, explosively releasing energy via a process known a magnetic reconnection. MMS consists of four identical spacecraft that work together to provide the first three-dimensional view of this fundamental process, which occurs throughout the universe. Launch is set for March 12. To learn more about MMS, visit http://www.nasa.gov/mms. Photo credit: NASA/Jim Grossmann
2015-02-04
CAPE CANAVERAL, Fla. – A crane lifts the first stage of the United Launch Alliance Atlas V rocket for NASA's Magnetospheric Multiscale mission, or MMS, into the mobile service tower at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. MMS will study the mystery of how magnetic fields around Earth connect and disconnect, explosively releasing energy via a process known a magnetic reconnection. MMS consists of four identical spacecraft that work together to provide the first three-dimensional view of this fundamental process, which occurs throughout the universe. Launch is set for March 12. To learn more about MMS, visit http://www.nasa.gov/mms. Photo credit: NASA/Jim Grossmann
2015-02-04
CAPE CANAVERAL, Fla. – Workers supervise the lift of the first stage of the United Launch Alliance Atlas V rocket for NASA's Magnetospheric Multiscale mission, or MMS, into the mobile service tower at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. MMS will study the mystery of how magnetic fields around Earth connect and disconnect, explosively releasing energy via a process known a magnetic reconnection. MMS consists of four identical spacecraft that work together to provide the first three-dimensional view of this fundamental process, which occurs throughout the universe. Launch is set for March 12. To learn more about MMS, visit http://www.nasa.gov/mms. Photo credit: NASA/Jim Grossmann
2015-02-04
CAPE CANAVERAL, Fla. – The first stage of the United Launch Alliance Atlas V rocket for NASA's Magnetospheric Multiscale mission, or MMS, is lifted into the mobile service tower at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. MMS will study the mystery of how magnetic fields around Earth connect and disconnect, explosively releasing energy via a process known a magnetic reconnection. MMS consists of four identical spacecraft that work together to provide the first three-dimensional view of this fundamental process, which occurs throughout the universe. Launch is set for March 12. To learn more about MMS, visit http://www.nasa.gov/mms. Photo credit: NASA/Jim Grossmann
2015-02-04
CAPE CANAVERAL, Fla. – The first stage of the United Launch Alliance Atlas V rocket for NASA's Magnetospheric Multiscale mission, or MMS, arrives at the mobile service tower at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. MMS will study the mystery of how magnetic fields around Earth connect and disconnect, explosively releasing energy via a process known a magnetic reconnection. MMS consists of four identical spacecraft that work together to provide the first three-dimensional view of this fundamental process, which occurs throughout the universe. Launch is set for March 12. To learn more about MMS, visit http://www.nasa.gov/mms. Photo credit: NASA/Jim Grossmann
Tao, Cuilian; Zhu, Yufang
2014-11-07
Magnetic mesoporous silica (MMS) nanoparticles with controllable magnetization have been synthesized by encapsulating Fe3O4 nanoparticles in a mesoporous silica matrix. The structure, magnetic heating capacity and drug delivery ability of MMS nanoparticles were evaluated. The results showed that MMS nanoparticles had an average particle size of 150 nm and showed low cytotoxicity and efficient cell uptake ability. MMS nanoparticles exhibited a sustained drug release in the medium of pH 5.0, but a very slow release in the medium of pH 7.4. On the other hand, MMS nanoparticles could controllably generate heat to reach the hyperthermia temperature within a short time upon exposure to an alternating magnetic field due to the superparamagnetic behavior and controllable magnetization. Therefore, MMS nanoparticles could provide a promising multifunctional platform for the combination of chemotherapy and hyperthermia for cancer therapy.
Duan, Yuwei; Wang, Juan; Yang, Xiaoye; Du, Hongliang; Xi, Yanwei; Zhai, Guangxi
2015-01-01
Although curcumin (CUR) can inhibit proliferation and induce apoptosis of tumors, the poor water solubility restricted its clinical application. The aim of this study was to improve the aqueous solubility of CUR and make more favorable changes to bioactivity by preparing curcumin-loaded phospholipid-sodium deoxycholate-mixed micelles (CUR-PC-SDC-MMs). CUR-PC-SDC-MMs were prepared by the thin-film dispersion method. Based on the results of single factor exploration, the preparation technology was optimized using the central composite design-response surface methodology with drug loading and entrapment efficiency (EE%) as indicators. The images of transmission electron microscopy showed that the optimized CUR-PC-SDC-MMs were spherical and well dispersed. The average size of the mixed micelles was 66.5 nm, the zeta potential was about -26.96 mV and critical micelle concentration was 0.0087 g/l. CUR was encapsulated in PC-SDC-MMs with loading capacity of 13.12%, EE% of 87.58%, and the solubility of CUR in water was 3.14 mg/ml. The release results in vitro showed that the mixed micelles presented sustained release behavior compared to the propylene glycol solution of CUR. The IC50 values of CUR-loaded micelles and free drug in human breast carcinoma cell lines were 4.10 μg/ml and 6.93 µg/ml, respectively. It could be concluded from the above results that the CUR-PC-SDC-MMs system might serve as a promising nanocarrier to improve the solubility and bioactivity of CUR.
NASA Technical Reports Server (NTRS)
Chai, Dean; Queen, Steve; Placanica, Sam
2015-01-01
NASA's Magnetospheric Multi-Scale (MMS) mission successfully launched on March 13, 2015 (UTC) consists of four identically instrumented spin-stabilized observatories that function as a constellation to study magnetic reconnection in space. The need to maintain sufficiently accurate spatial and temporal formation resolution of the observatories must be balanced against the logistical constraints of executing overly-frequent maneuvers on a small fleet of spacecraft. These two considerations make for an extremely challenging maneuver design problem. This paper focuses on the design elements of a 6-DOF spacecraft attitude control and maneuvering system capable of delivering the high-precision adjustments required by the constellation designers---specifically, the design, implementation, and on-orbit performance of the closed-loop formation-class maneuvers that include initialization, maintenance, and re-sizing. The maneuvering control system flown on MMS utilizes a micro-gravity resolution accelerometer sampled at a high rate in order to achieve closed-loop velocity tracking of an inertial target with arc-minute directional and millimeter-per-second magnitude accuracy. This paper summarizes the techniques used for correcting bias drift, sensor-head offsets, and centripetal aliasing in the acceleration measurements. It also discusses the on-board pre-maneuver calibration and compensation algorithms as well as the implementation of the post-maneuver attitude adjustments.
The Performance Analysis of AN Indoor Mobile Mapping System with Rgb-D Sensor
NASA Astrophysics Data System (ADS)
Tsai, G. J.; Chiang, K. W.; Chu, C. H.; Chen, Y. L.; El-Sheimy, N.; Habib, A.
2015-08-01
Over the years, Mobile Mapping Systems (MMSs) have been widely applied to urban mapping, path management and monitoring and cyber city, etc. The key concept of mobile mapping is based on positioning technology and photogrammetry. In order to achieve the integration, multi-sensor integrated mapping technology has clearly established. In recent years, the robotic technology has been rapidly developed. The other mapping technology that is on the basis of low-cost sensor has generally used in robotic system, it is known as the Simultaneous Localization and Mapping (SLAM). The objective of this study is developed a prototype of indoor MMS for mobile mapping applications, especially to reduce the costs and enhance the efficiency of data collection and validation of direct georeferenced (DG) performance. The proposed indoor MMS is composed of a tactical grade Inertial Measurement Unit (IMU), the Kinect RGB-D sensor and light detection, ranging (LIDAR) and robot. In summary, this paper designs the payload for indoor MMS to generate the floor plan. In first session, it concentrates on comparing the different positioning algorithms in the indoor environment. Next, the indoor plans are generated by two sensors, Kinect RGB-D sensor LIDAR on robot. Moreover, the generated floor plan will compare with the known plan for both validation and verification.
NASA Technical Reports Server (NTRS)
Gaines, Steven E.; Bowen, Stuart W.; Hipskind, R. S.; Bui, T. P.; Chan, K. R.
1992-01-01
Measurements of aircraft longitude, latitude, and velocity, and measurements of atmospheric pressure, temperature, and horizontal wind from the meteorological measurement system (MMS) on board the NASA ER-2 aircraft were compared with independent measurements of these quantities from radiosondes and radar tracking of both the ER-2 and radiosonde balloons. In general, the comparisons were good and within the expected measurement accuracy and natural variability of the meteorological parameters. Radar tracking of the ER-2 resolved the velocity and position drift of the inertial navigation system (INS). The rms errors in the horizontal velocity components of the ER-2, due to INS errors, were found to be 0.5 m/s. The magnitude of the drift in longitude and latitude depends on the sign and magnitude of the corresponding component velocity drift and can be a few hundredths of a degree. The radar altitudes of the ER-2 and radiosondes were used as the basis for comparing measurements of atmospheric pressure, temperature, and horizontal wind from these two platforms. The uncertainty in the MMS horizontal wind measurement is estimated to be +/- 2.5 m/s. The accuracy of the MMS pressure and temperature measurements were inferred to be +/- 0.3 hPa and +/- 0.3 K.
2015-02-04
CAPE CANAVERAL, Fla. – The first stage of the United Launch Alliance Atlas V rocket for NASA's Magnetospheric Multiscale mission, or MMS, begins the short journey from the Atlas Spaceflight Operations Center, or ASOC, on Cape Canaveral Air Force Station in Florida to Space Launch Complex 41. MMS will study the mystery of how magnetic fields around Earth connect and disconnect, explosively releasing energy via a process known a magnetic reconnection. MMS consists of four identical spacecraft that work together to provide the first three-dimensional view of this fundamental process, which occurs throughout the universe. Launch is set for March 12. To learn more about MMS, visit http://www.nasa.gov/mms. Photo credit: NASA/Jim Grossmann
2015-02-04
CAPE CANAVERAL, Fla. – Operations are underway at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida to lift the newly delivered first stage of a United Launch Alliance Atlas V rocket into the mobile service tower. The rocket will launch NASA's Magnetospheric Multiscale mission, or MMS. MMS will study the mystery of how magnetic fields around Earth connect and disconnect, explosively releasing energy via a process known a magnetic reconnection. MMS consists of four identical spacecraft that work together to provide the first three-dimensional view of this fundamental process, which occurs throughout the universe. Launch is set for March 12. To learn more about MMS, visit http://www.nasa.gov/mms. Photo credit: NASA/Jim Grossmann
2015-02-04
CAPE CANAVERAL, Fla. – Operations are underway at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida to lift the newly delivered first stage of a United Launch Alliance Atlas V rocket into the mobile service tower. The rocket will launch NASA's Magnetospheric Multiscale mission, or MMS. MMS will study the mystery of how magnetic fields around Earth connect and disconnect, explosively releasing energy via a process known a magnetic reconnection. MMS consists of four identical spacecraft that work together to provide the first three-dimensional view of this fundamental process, which occurs throughout the universe. Launch is set for March 12. To learn more about MMS, visit http://www.nasa.gov/mms. Photo credit: NASA/Jim Grossmann
2015-02-04
CAPE CANAVERAL, Fla. – The first stage of the United Launch Alliance Atlas V rocket for NASA's Magnetospheric Multiscale mission, or MMS, is in position on the launch platform in the mobile service tower at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. MMS will study the mystery of how magnetic fields around Earth connect and disconnect, explosively releasing energy via a process known a magnetic reconnection. MMS consists of four identical spacecraft that work together to provide the first three-dimensional view of this fundamental process, which occurs throughout the universe. Launch is set for March 12. To learn more about MMS, visit http://www.nasa.gov/mms. Photo credit: NASA/Jim Grossmann
2015-02-04
CAPE CANAVERAL, Fla. – The first stage of the United Launch Alliance Atlas V rocket for NASA's Magnetospheric Multiscale mission, or MMS, is positioned on the launch platform in the mobile service tower at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. MMS will study the mystery of how magnetic fields around Earth connect and disconnect, explosively releasing energy via a process known a magnetic reconnection. MMS consists of four identical spacecraft that work together to provide the first three-dimensional view of this fundamental process, which occurs throughout the universe. Launch is set for March 12. To learn more about MMS, visit http://www.nasa.gov/mms. Photo credit: NASA/Jim Grossmann
Vijeepallam, Kamini; Pandy, Vijayapandi; Kunasegaran, Thubasni; Murugan, Dharmani D.; Naidu, Murali
2016-01-01
In this study, we investigated the antipsychotic-like effect of methanolic extract of Mitragyna speciosa leaf (MMS) using in vivo and ex vivo studies. In vivo studies comprised of apomorphine-induced climbing behavior, haloperidol-induced catalepsy, and ketamine-induced social withdrawal tests in mice whereas the ex vivo study was conducted utilizing isolated rat vas deferens preparation. Acute oral administration of MMS (50–500 mg/kg) showed an inverted bell-shaped dose-response in apomorphine-induced cage climbing behavior in mice. The effective inhibitory doses of MMS (75 and 100 mg/kg, p.o.) obtained from the apomorphine study was further tested on haloperidol (subcataleptic dose; 0.1 mg/kg, i.p.)-induced catalepsy in the mouse bar test. MMS (75 and 100 mg/kg, p.o.) significantly potentiated the haloperidol-induced catalepsy in mice. Interestingly, MMS at the same effective doses (75 and 100 mg/kg, p.o.) significantly facilitated the social interaction in ketamine-induced social withdrawal mice. Furthermore, MMS inhibited the dopamine-induced contractile response dose-dependently in the isolated rat vas deferens preparations. In conclusion, this investigation provides first evidence that MMS exhibits antipsychotic-like activity with potential to alleviate positive as well as negative symptoms of psychosis in mice. This study also suggests the antidopaminergic activity of MMS that could be responsible for alleviating positive symptoms of psychosis. PMID:27999544
Melnik, Andre; Wilson-Zbinden, Caroline; Schellhaas, René; Kastner, Lisa; Piwko, Wojciech; Dees, Martina; Picotti, Paola; Maric, Marija; Labib, Karim; Luke, Brian; Peter, Matthias
2016-01-01
Faithful DNA replication and repair requires the activity of cullin 4-based E3 ubiquitin ligases (CRL4), but the underlying mechanisms remain poorly understood. The budding yeast Cul4 homologue, Rtt101, in complex with the linker Mms1 and the putative substrate adaptor Mms22 promotes progression of replication forks through damaged DNA. Here we characterized the interactome of Mms22 and found that the Rtt101Mms22 ligase associates with the replisome progression complex during S-phase via the amino-terminal WD40 domain of Ctf4. Moreover, genetic screening for suppressors of the genotoxic sensitivity of rtt101Δ cells identified a cluster of replication proteins, among them a component of the fork protection complex, Mrc1. In contrast to rtt101Δ and mms22Δ cells, mrc1Δ rtt101Δ and mrc1Δ mms22Δ double mutants complete DNA replication upon replication stress by facilitating the repair/restart of stalled replication forks using a Rad52-dependent mechanism. Our results suggest that the Rtt101Mms22 E3 ligase does not induce Mrc1 degradation, but specifically counteracts Mrc1’s replicative function, possibly by modulating its interaction with the CMG (Cdc45-MCM-GINS) complex at stalled forks. PMID:26849847
Small intestinal model for electrically propelled capsule endoscopy
2011-01-01
The aim of this research is to propose a small intestine model for electrically propelled capsule endoscopy. The electrical stimulus can cause contraction of the small intestine and propel the capsule along the lumen. The proposed model considered the drag and friction from the small intestine using a thin walled model and Stokes' drag equation. Further, contraction force from the small intestine was modeled by using regression analysis. From the proposed model, the acceleration and velocity of various exterior shapes of capsule were calculated, and two exterior shapes of capsules were proposed based on the internal volume of the capsules. The proposed capsules were fabricated and animal experiments were conducted. One of the proposed capsules showed an average (SD) velocity in forward direction of 2.91 ± 0.99 mm/s and 2.23 ± 0.78 mm/s in the backward direction, which was 5.2 times faster than that obtained in previous research. The proposed model can predict locomotion of the capsule based on various exterior shapes of the capsule. PMID:22177218
Maintenance Decision Support System, Phase III
DOT National Transportation Integrated Search
2017-09-01
The main goal of the project was to address barriers that limit NDOTs ability to implement MDSS and MMS systems. The four project tasks included: Task 1: Develop system for tracking sand and/or deicing material usage: A system that tracks where and w...
The Magnetospheric Multiscale Mission...Resolving Fundamental Processes in Space Plasmas
NASA Technical Reports Server (NTRS)
Curtis, S.
1999-01-01
The Magnetospheric Multiscale (MMS) mission is a multiple-spacecraft Solar-Terrestrial Probe designed to study the microphysics of magnetic reconnection, charged particle acceleration, and turbulence in key boundary regions of Earth's magnetosphere. These three processes, which control the flow of energy, mass, and momentum within and across plasma boundaries, occur throughout the universe and are fundamental to our understanding of astrophysical and solar system plasmas. Only in Earth's magnetosphere, however, are they readily accessible for sustained study through in-situ measurement. MMS will employ five co-orbiting spacecraft identically instrumented to measure electric and magnetic fields, plasmas, and energetic particles. The initial parameters of the individual spacecraft orbits will be designed so that the spacecraft formation will evolve into a three-dimensional configuration near apogee, allowing MMS to differentiate between spatial and temporal effects and to determine the three dimensional geometry of plasma, field, and current structures. In order to sample all of the magnetospheric boundary regions, MMS will employ a unique four-phase orbital strategy involving carefully sequenced changes in the local time and radial distance of apogee and, in the third phase, a change in orbit inclination from 10 degrees to 90 degrees. The nominal mission operational lifetime is two years. Launch is currently scheduled for 2006.
Tolkachjov, Stanislav N; Hocker, Thomas L; Hochwalt, Phillip C; Camilleri, Michael J; Arpey, Christopher J; Brewer, Jerry D; Otley, Clark C; Roenigk, Randall K; Baum, Christian L
2015-02-01
Hidradenocarcinoma (HAC) is a rare malignant adnexal neoplasm with reported metastatic potential and undefined optimal treatment. To review clinical characteristics and outcomes of patients with HAC treated with Mohs micrographic surgery (MMS). The authors performed a retrospective chart review of patients with HAC treated by MMS at Mayo Clinic from 1993 to 2013, recording patient demographics, tumor characteristics, MMS stages to clearance, follow-up, recurrence, metastasis, and mortality. Ten patients underwent MMS for HAC more than 20 years. The average age was 62.8 years, with 6 females and 4 males. Occipital scalp was the most common location (40%), followed by extremities (30%) and face (20%). In 5 of 7 cases (71%), "cyst" was the working clinical diagnosis. The average preoperative lesion area was 3.18 cm, with an average of 1.5 MMS stages required for clearance. Mean postoperative follow-up was 7 years (range, 5-205 months). No tumors treated with MMS recurred, metastasized, or led to disease-related mortality. Mohs micrographic surgery seems to be a useful treatment modality for HAC. This is the largest reported series of HAC treated with MMS with long-term follow-up.
30 CFR 210.157 - What reports must I submit to suspend an MMS order under appeal?
Code of Federal Regulations, 2010 CFR
2010-07-01
...) General. Reporters/payors or other recipients of MMS Minerals Revenue Management (MRM) orders who appeal...://www.mrm.mms.gov/Law_R_D/FRNotices/ICR0122.htm. (c) Reporting address. You may submit the required...
Orbital Manuvering System Design and Performance For the Magnetosperic Multiscale Constellation
NASA Technical Reports Server (NTRS)
Queen, Steven Z.; Chai, Dean J.; Placanica, Sam
2013-01-01
The Magnetospheric Multiscale (MMS) mission, launched on March 13, 2015, is the fourth mission of NASA's Solar Terrestrial Probe program. The MMS mission consists of four identically instrumented observatories that function as a constellation to provide the first definitive study of magnetic reconnection in space. Since it is frequently desirable to isolate electric and magnetic field sensors from stray effects caused by the spacecraft's core-body, the suite of instruments on MMS includes six radial and two axial instrument-booms with deployed lengths ranging from 5-60 meters (see Figure 1). The observatory is spin-stabilized about its positive z-axis with a nominal rate slightly above 3 rev/min (RPM). The spin is also used to maintain tension in the four radial wire-booms. Each observatory's Attitude Control System (ACS) consists of digital sun sensors, star cameras, accelerometers, and mono-propellant hydrazine thrusters-responsible for orbital adjustments, attitude control, and spin adjustments. The sections that follow describe performance requirements, the hardware and algorithms used for 6-DOF estimation, and then similarly for 6-DOF control. The paper concludes with maneuver performance based on both simulated and on-orbit telem.
Formalizing procedures for operations automation, operator training and spacecraft autonomy
NASA Technical Reports Server (NTRS)
Lecouat, Francois; Desaintvincent, Arnaud
1994-01-01
The generation and validation of operations procedures is a key task of mission preparation that is quite complex and costly. This has motivated the development of software applications providing support for procedures preparation. Several applications have been developed at MATRA MARCONI SPACE (MMS) over the last five years. They are presented in the first section of this paper. The main idea is that if procedures are represented in a formal language, they can be managed more easily with a computer tool and some automatic verifications can be performed. One difficulty is to define a formal language that is easy to use for operators and operations engineers. From the experience of the various procedures management tools developed in the last five years (including the POM, EOA, and CSS projects), MMS has derived OPSMAKER, a generic tool for procedure elaboration and validation. It has been applied to quite different types of missions, ranging from crew procedures (PREVISE system), ground control centers management procedures (PROCSU system), and - most relevant to the present paper - satellite operation procedures (PROCSAT developed for CNES, to support the preparation and verification of SPOT 4 operation procedures, and OPSAT for MMS telecom satellites operation procedures).
NASA Technical Reports Server (NTRS)
Gershman, Daniel J.; Gliese, Ulrik; Dorelli, John C.; Avanov, Levon A.; Barrie, Alexander C.; Chornay, Dennis J.; MacDonald, Elizabeth A.; Holland, Matthew P.; Pollock, Craig J.
2015-01-01
The most common instrument for low energy plasmas consists of a top-hat electrostatic analyzer geometry coupled with a microchannel-plate (MCP)-based detection system. While the electrostatic optics for such sensors are readily simulated and parameterized during the laboratory calibration process, the detection system is often less well characterized. Furthermore, due to finite resources, for large sensor suites such as the Fast Plasma Investigation (FPI) on NASA's Magnetospheric Multiscale (MMS) mission, calibration data are increasingly sparse. Measurements must be interpolated and extrapolated to understand instrument behavior for untestable operating modes and yet sensor inter-calibration is critical to mission success. To characterize instruments from a minimal set of parameters we have developed the first comprehensive mathematical description of both sensor electrostatic optics and particle detection systems. We include effects of MCP efficiency, gain, scattering, capacitive crosstalk, and charge cloud spreading at the detector output. Our parameterization enables the interpolation and extrapolation of instrument response to all relevant particle energies, detector high voltage settings, and polar angles from a small set of calibration data. We apply this model to the 32 sensor heads in the Dual Electron Sensor (DES) and 32 sensor heads in the Dual Ion Sensor (DIS) instruments on the 4 MMS observatories and use least squares fitting of calibration data to extract all key instrument parameters. Parameters that will evolve in flight, namely MCP gain, will be determined daily through application of this model to specifically tailored in-flight calibration activities, providing a robust characterization of sensor suite performance throughout mission lifetime. Beyond FPI, our model provides a valuable framework for the simulation and evaluation of future detection system designs and can be used to maximize instrument understanding with minimal calibration resources.
NASA Technical Reports Server (NTRS)
Mckim, Stephen A.
2016-01-01
This thesis describes the development and correlation of a thermal model that forms the foundation of a thermal capacitance spacecraft propellant load estimator. Specific details of creating the thermal model for the diaphragm propellant tank used on NASA's Magnetospheric Multiscale spacecraft using ANSYS and the correlation process implemented are presented. The thermal model was correlated to within plus or minus 3 degrees Celsius of the thermal vacuum test data, and was determined sufficient to make future propellant predictions on MMS. The model was also found to be relatively sensitive to uncertainties in applied heat flux and mass knowledge of the tank. More work is needed to improve temperature predictions in the upper hemisphere of the propellant tank where predictions were found to be 2 to 2.5 C lower than the test data. A road map for applying the model to predict propellant loads on the actual MMS spacecraft toward its end of life in 2017-2018 is also presented.
2015-02-04
CAPE CANAVERAL, Fla. – Preparations are underway in the mobile service tower at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida for the arrival of the first stage of a United Launch Alliance Atlas V rocket from the Atlas Spaceflight Operations Center, or ASOC. The rocket will launch NASA's Magnetospheric Multiscale mission, or MMS. MMS will study the mystery of how magnetic fields around Earth connect and disconnect, explosively releasing energy via a process known a magnetic reconnection. MMS consists of four identical spacecraft that work together to provide the first three-dimensional view of this fundamental process, which occurs throughout the universe. Launch is set for March 12. To learn more about MMS, visit http://www.nasa.gov/mms. Photo credit: NASA/Jim Grossmann
2014-11-14
CAPE CANAVERAL, Fla. – A plaque affixed to the side of a Magnetospheric Multiscale, or MMS, observatory dedicates the mission to George S. Moore, now deceased, an engineer who was a beloved colleague and friend to the MMS team. MMS, led by a team from NASA's Goddard Space Flight Center, is a Solar Terrestrial Probes mission consisting of four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Kim Shiflett
2014-11-14
CAPE CANAVERAL, Fla. – A plaque affixed to the side of a Magnetospheric Multiscale, or MMS, observatory dedicates the mission to Dr. John William Klein, now deceased, who served the MMS team as the standing review board chairman. MMS, led by a team from NASA's Goddard Space Flight Center, is a Solar Terrestrial Probes mission consisting of four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Kim Shiflett
2014-11-14
CAPE CANAVERAL, Fla. – A plaque affixed to the side of a Magnetospheric Multiscale, or MMS, observatory dedicates the mission to Richard “Richy” D’Antonio, now deceased, in grateful appreciation for his dedicated service to NASA’s MMS mission. MMS, led by a team from NASA's Goddard Space Flight Center, is a Solar Terrestrial Probes mission consisting of four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Trattner, K. J.; Burch, J. L.; Ergun, R.; Fuselier, S. A.; Gomez, R. G.; Grimes, E. W.; Lewis, W. S.; Mauk, B.; Petrinec, S. M.; Pollock, C. J.
2016-01-01
Reconnection at the Earth's magnetopause is the mechanism by which magnetic fields in different regions change topology to create open magnetic field lines that allow energy, mass, and momentum to flow into the magnetosphere. It is the primary science goal of the recently launched MMS mission to unlock the mechanism of magnetic reconnection with a novel suite of plasma and field instruments. This study investigates several magnetopause crossings in the vicinity of the X-line on 19 September 2015 and compares the observed X-line location with predictions from the Maximum Magnetic Shear model. Rotations of the interplanetary magnetic field OMF) during the magnetopause crossings together with the close proximity of the four MMS satellites are used to determine the response time of the reconnection X-line location to changes in the IMF. The reconnection location exhibits a continuous motion during slow changes in the IMF but a delayed response to sudden changes in the IMF.
30 CFR 210.201 - How do I submit Form MMS-4430, Solid Minerals Production and Royalty Report?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Form MMS-4430 are available on our Internet reporting web site or you may contact us toll free at 1-888... MMS-4430 electronically using our Internet reporting web site unless you meet the conditions in...
30 CFR 1210.201 - How do I submit Form MMS-4430, Solid Minerals Production and Royalty Report?
Code of Federal Regulations, 2012 CFR
2012-07-01
... submitting Form MMS-4430 are available on our Internet reporting web site or you may contact us toll free at... submit Form MMS-4430 electronically using our Internet reporting web site unless you meet the conditions...
Understanding the spreading patterns of mobile phone viruses
NASA Astrophysics Data System (ADS)
Wang, Pu; Gonzalez, Marta; Hidalgo, Cesar; Barabasi, Albert-Laszlo
2009-03-01
Mobile viruses are little more than a nuisance today, but given our increased reliance on wireless communication, in the near future they could pose more risk than their PC based counterparts. Despite of the more than three hundred mobile viruses known so far, little is known about their spreading pattern, partly due to a lack of data on the communication and travel patterns of mobile phone users. Starting from the traffic and the communication pattern of six million mobile phone users, we model the vulnerability of mobile communications against potential virus outbreaks. We show that viruses exploiting Bluetooth and multimedia messaging services (MMS) follow markedly different spreading patterns. The Bluetooth virus can reach all susceptible handsets, but spreads relatively slowly, as its spread is driven by human mobility. In contrast, an MMS virus can spread rapidly, but because the underlying social network is fragmented, it can reach only a small fraction of all susceptible users. This difference affects both their spreading rate, the number of infected users, as well as the defense measures one needs to take to protect the system against potential viral outbreak.
30 CFR 285.201 - How will MMS issue leases?
Code of Federal Regulations, 2010 CFR
2010-07-01
....201 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Issuance of OCS Renewable Energy Leases General Lease Information § 285.201 How will MMS issue leases? The MMS will issue leases on...
NASA Astrophysics Data System (ADS)
Chen, L.-J.; Wilson, L. B., III; Wang, S.; Bessho, N.; Viñas, A. F.-; Lai, H.; Russell, C. T.; Schwartz, S. J.; Hesse, M.; Moore, T. E.; Burch, J. L.; Gershman, D. J.; Giles, B. L.; Torbert, R. B.; Ergun, R. E.; Dorelli, J.; Strangeway, R. J.; Paterson, W. R.; Lavraud, B.; Khotyaintsev, Yu. V.
2017-12-01
Collisionless shocks often involve intense plasma heating in space and astrophysical systems. Despite decades of research, a number of key questions concerning electron and ion heating across collisionless shocks remain unanswered. We 'image' 20 supercritical quasi-perpendicular bow shocks encountered by the Magnetospheric Multiscale (MMS) spacecraft with electron and ion distribution functions to address how ions are thermalized and how electrons are heated. The continuous burst measurements of 3D plasma distribution functions from MMS reveal that the primary thermalization phase of ions occurs concurrently with the main temperature increase of electrons as well as large-amplitude wave fluctuations. Approaching the shock from upstream, the ion temperature (Ti) increases due to the reflected ions joining the incoming solar wind population, as recognized by prior studies, and the increase of Ti precedes that of the electrons. Thermalization in the form of merging between the decelerated solar wind ions and the reflected component often results in a decrease in Ti. In most cases, the Ti decrease is followed by a gradual increase further downstream. Anisotropic, energy-dependent, and/or nongyrotropic electron energization are observed in association with large electric field fluctuations in the main electron temperature (Te) gradient, motivating a renewed scrutiny of the effects from the electrostatic cross-shock potential and wave fluctuations on electron heating. Particle-in-cell (PIC) simulations are carried out to assist interpretations of the MMS observations. We assess the roles of instabilities and the cross-shock potential in thermalizing ions and heating electrons based on the MMS measurements and PIC simulation results. Challenges will be posted for future computational studies and laboratory experiments on collisionless shocks.
NASA Astrophysics Data System (ADS)
Chen, L. J.; Wilson, L. B., III; Wang, S.; Bessho, N.; Figueroa-Vinas, A.; Lai, H.; Russell, C. T.; Schwartz, S. J.; Hesse, M.; Moore, T. E.; Burch, J.; Gershman, D. J.; Giles, B. L.; Torbert, R. B.; Ergun, R.; Dorelli, J.; Strangeway, R. J.; Paterson, W. R.; Lavraud, B.; Khotyaintsev, Y. V.
2017-12-01
Collisionless shocks often involve intense plasma heating in space and astrophysical systems. Despite decades of research, a number of key questions concerning electron and ion heating across collisionless shocks remain unanswered. We `image' 20 supercritical quasi-perpendicular bow shocks encountered by the Magnetospheric Multiscale (MMS) spacecraft with electron and ion distribution functions to address how ions are thermalized and how electrons are heated. The continuous burst measurements of 3D plasma distribution functions from MMS reveal that the primary thermalization phase of ions occurs concurrently with the main temperature increase of electrons as well as large-amplitude wave fluctuations. Approaching the shock from upstream, the ion temperature (Ti) increases due to the reflected ions joining the incoming solar wind population, as recognized by prior studies, and the increase of Ti precedes that of the electrons. Thermalization in the form of merging between the decelerated solar wind ions and the reflected component often results in a decrease in Ti. In most cases, the Ti decrease is followed by a gradual increase further downstream. Anisotropic, energy-dependent, and/or nongyrotropic electron energization are observed in association with large electric field fluctuations in the main electron temperature (Te) gradient, motivating a renewed scrutiny of the effects from the electrostatic cross-shock potential and wave fluctuations on electron heating. Particle-in-cell (PIC) simulations are carried out to assist interpretations of the MMS observations. We assess the roles of instabilities and the cross-shock potential in thermalizing ions and heating electrons based on the MMS measurements and PIC simulation results. Challenges will be posted for future computational studies and laboratory experiments on collisionless shocks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magome, T; University of Tokyo Hospital, Tokyo; University of Minnesota, Minneapolis, MN
Purpose: Megavoltage computed tomography (MVCT) imaging has been widely used for daily patient setup with helical tomotherapy (HT). One drawback of MVCT is its very long imaging time, owing to slow couch speed. The purpose of this study was to develop an MVCT imaging method allowing faster couch speeds, and to assess its accuracy for image guidance for HT. Methods: Three cadavers (mimicking closest physiological and physical system of patients) were scanned four times with couch speeds of 1, 2, 3, and 4 mm/s. The resulting MVCT images were reconstructed using an iterative reconstruction (IR) algorithm. The MVCT images weremore » registered with kilovoltage CT images, and the registration errors were compared with the errors with conventional filtered back projection (FBP) algorithm. Moreover, the fast MVCT imaging was tested in three cases of total marrow irradiation as a clinical trial. Results: Three-dimensional registration errors of the MVCT images reconstructed with the IR algorithm were significantly smaller (p < 0.05) than the errors of images reconstructed with the FBP algorithm at fast couch speeds (3, 4 mm/s). The scan time and imaging dose at a speed of 4 mm/s were reduced to 30% of those from a conventional coarse mode scan. For the patient imaging, a limited number of conventional MVCT (1.2 mm/s) and fast MVCT (3 mm/s) reveals acceptable reduced imaging time and dose able to use for anatomical registration. Conclusion: Fast MVCT with IR algorithm maybe clinically feasible alternative for rapid 3D patient localization. This technique may also be useful for calculating daily dose distributions or organ motion analyses in HT treatment over a wide area.« less
Initial Satellite Formation Flight Results from the Magnetospheric Multiscale Mission
NASA Technical Reports Server (NTRS)
Williams, Trevor; Ottenstein, Neil; Palmer, Eric; Farahmand, Mitra
2016-01-01
This paper will describe the results that have been obtained to date concerning MMS formation flying. The MMS spacecraft spin at a rate of 3.1 RPM, with spin axis roughly aligned with Ecliptic North. Several booms are used to deploy instruments: two 5 m magnetometer booms in the spin plane, two rigid booms of length 12.5 m along the positive and negative spin axes, and four flexible wire booms of length 60 m in the spin plane. Minimizing flexible motion of the wire booms requires that reorientation of the spacecraft spin axis be kept to a minimum: this is limited to attitude maneuvers to counteract the effects of gravity-gradient and apparent solar motion. Orbital maneuvers must therefore be carried out in essentially the nominal science attitude. These burns make use of a set of monopropellant hydrazine thrusters: two (of thrust 4.5 N) along the spin axis in each direction, and eight (of thrust 18 N) in the spin plane; the latter are pulsed at the spin rate to produce a net delta-v. An on-board accelerometer-based controller is used to accurately generate a commanded delta-v. Navigation makes use of a weak-signal GPS-based system: this allows signals to be received even when MMS is flying above the GPS orbits, producing a highly accurate determination of the four MMS orbits. This data is downlinked to the MMS Mission Operations Center (MOC) and used by the MOC Flight Dynamics Operations Area (FDOA) for maneuver design. These commands are then uplinked to the spacecraft and executed autonomously using the controller, with the ground monitoring the burns in real time.
NASA Technical Reports Server (NTRS)
Baker, D. N.; Jaynes, A. N.; Turner, D. L.; Nakamura, R.; Schmid, D.; Mauk, B. H.; Cohen, I. J.; Fennell, J. F.; Blake, J. B.; Strangeway, R. J.;
2016-01-01
An active storm period in June 2015 showed that particle injection events seen sequentially by the four (MagnetosphericMultiscale) MMS spacecraft subsequently fed the enhancement of the outer radiation belt observed by Van Allen Probes mission sensors. Several episodes of significant southward interplanetary magnetic field along with a period of high solar wind speed (Vsw 500kms) on 22 June occurred following strong interplanetary shock wave impacts on the magnetosphere. Key events on 22 June 2015 show that the magnetosphere progressed through a sequence of energy-loading and stress-developing states until the entire system suddenly reconfigured at 19:32 UT. Energetic electrons, plasma, and magnetic fields measured by the four MMS spacecraft revealed clear dipolarization front characteristics. It was seen that magnetospheric substorm activity provided a seed electron population as observed by MMS particle sensors as multiple injections and related enhancements in electron flux.
NASA Technical Reports Server (NTRS)
Ott, U.; Baecker, B.; Folco, L.; Cordier, C.
2016-01-01
A variety of processes have been considered possibly contributing the volatiles including noble gases to the atmospheres of the terrestrial planets (e.g., [1-3]). Special consideration has been given to the concept of accretion of volatile-rich materials by the forming planets. This might include infalling planetesimals and dust, and could include material from the outer asteroid belt, as well as cometary material from the outer solar system. Currently, the dominant source of extraterrestrial material accreted by the Earth is represented by micrometeorites (MMs) with sizes mostly in the 100-300 micron range [3, 4]). Their role has been assessed by [3], who conclude that accretion of early micrometeorites played a major role in the formation of the terrestrial atmosphere and oceans. We have therefore set out to investigate in more detail the inventory of noble gases in MMs. Here we summarize some of our results obtained on MMs collected in micrometeorite traps of the Transantarctic Mountains [5].
30 CFR 218.560 - How do I submit Form MMS-4444?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 218.560 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR MINERALS REVENUE MANAGEMENT COLLECTION OF MONIES AND PROVISION FOR GEOTHERMAL CREDITS AND INCENTIVES Service of Official... from MMS. It will also be posted on the MMS Web site. Submit the completed, signed form to the address...
30 CFR 210.56 - Where can I find more information on how to complete the royalty report?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Reporter Handbook. The handbook is available on our Internet Web site at http://www.mrm.mms.gov/Reporting...://www.mrm.mms.gov/ReportingServices/Forms/AFSOil_Gas.htm, or you may request the form from MMS at P.O...
30 CFR 206.365 - Does MMS protect information I provide?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Does MMS protect information I provide? 206.365 Section 206.365 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR MINERALS REVENUE MANAGEMENT PRODUCT VALUATION Geothermal Resources § 206.365 Does MMS protect information I provide? Certain...
30 CFR 206.108 - Does MMS protect information I provide?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Does MMS protect information I provide? 206.108 Section 206.108 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR MINERALS REVENUE MANAGEMENT PRODUCT VALUATION Federal Oil § 206.108 Does MMS protect information I provide? Certain...
2014-10-29
CAPE CANAVERAL, Fla. – Two of the observatories, the lower stack, mini-stack number 1, for NASA's Magnetospheric Multiscale Observatory, or MMS, roll into the Building 1 airlock at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Dan Casper
2014-11-13
CAPE CANAVERAL, Fla. – All four of the Magnetospheric Multiscale, or MMS, spacecraft have arrived in the Building 1 high bay of the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The two MMS spacecraft comprising the upper deck arrived Nov. 12; the two MMS spacecraft comprising the lower stack arrived Oct. 29. The Magnetospheric Multiscale mission is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Kim Shiflett
NASA Astrophysics Data System (ADS)
Sturgeon, Gregory M.; Richards, Taylor W.; Samei, E.; Segars, W. P.
2017-03-01
To facilitate studies of measurement uncertainty in computed tomography angiography (CTA), we investigated the cardiac motion profile and resulting coronary artery motion utilizing innovative dynamic virtual and physical phantoms. The four-chamber cardiac finite element (FE) model developed in the Living Heart Project (LHP) served as the computational basis for our virtual cardiac phantom. This model provides deformation or strain information at high temporal and spatial resolution, exceeding that of speckle tracking echocardiography or tagged MRI. This model was extended by fitting its motion profile to left ventricular (LV) volume-time curves obtained from patient echocardiography data. By combining the dynamic patient variability from echo with the local strain information from the FE model, a series of virtual 4D cardiac phantoms were developed. Using the computational phantoms, we characterized the coronary motion and its effect on plaque imaging under a range of heart rates subject to variable diastolic function. The coronary artery motion was sampled at 248 spatial locations over 500 consecutive time frames. The coronary artery velocities were calculated as their average velocity during an acquisition window centered at each time frame, which minimized the discretization error. For the initial set of twelve patients, the diastatic coronary artery velocity ranged from 36.5 mm/s to 2.0 mm/s with a mean of 21.4 mm/s assuming an acquisition time of 75 ms. The developed phantoms have great potential in modeling cardiac imaging, providing a known truth and multiple realistic cardiac motion profiles to evaluate different image acquisition or reconstruction methods.
NASA Astrophysics Data System (ADS)
Buzulukova, N.; Dorelli, J.; Glocer, A.
2017-12-01
We present the results of global high resolution resistive magnetohydrodynamics (MHD BATS-R-US) simulations of Earth's magnetosphere. We extract location of magnetic separators with RECONX tool and compare the results with observations from the Magnetospheric Multiscale (MMS). A few cases are analysed including a southward IMF magnetopause crossing during October 16, 2015 that was previously identified as an electron diffusion region (EDR) event. The simulation predicts a complex time-dependent magnetic topology consisting of multiple separators and flux ropes. Despite the topological complexity, the predicted distance between MMS and the primary separator is less than 0.5 Earth radii. The simulation shows that the existence of IMF Bx results in a duskward shift of the location of the topological separator. The results are explained by a combined effect of solar wind draping and pile-up effect that modify the current density across the magnetopause and affect the location of the separator. The RECONX tool also is used to extract the separator location in the geomagnetic tail, and relate transient tail structures (bursty bulk flows) to the location of separator. These results suggest that global magnetic topology, rather than local magnetic geometry alone, determines the location of the separator reconnection both at the dayside magnetopause and in the tail. We show that the resistive MHD model helps to understand the global context of local MMS observations.
NASA Astrophysics Data System (ADS)
Chen, J. L.; Li, J.; Song, R.; Bai, L. L.; Shao, J. Z.; Qu, C. C.
2015-09-01
Laser cladding composite coatings were fabricated on the surface of the Ti6Al4V substrate by fiber laser cladding the NiCrBSi alloy powder. The influences of scanning speed on the dilution rate and microstructure of the coatings were investigated in detail by X-ray diffraction (XRD), optical microscopy (OM) and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). Combined with the analyses of microhardness and fracture toughness, the wear behaviors of the coatings obtained at different scanning speeds were revealed. Results indicated that the dilution rates of the coatings were similar (about 64.23%) with variations in scanning speed ranging from 5 mm/s to 15 mm/s. An abrupt decrease in dilution rate (37.06%) was observed at the scanning speed of 20 mm/s. Microstructural observation showed that the blocky TiB2 and the cellular dendrite TiC particles were uniformly dispersed in the TiNi-Ti2Ni dual-phase intermetallic compound matrix at scanning speeds of 5-15 mm/s. When the scanning speed was further increased to 20 mm/s, the stripe-shaped CrB, gray irregular-shaped Cr3C2 and black blocky TiC particles uniformly dispersed in the γ(Ni) matrix were synthesized in situ. The particles became finer with the increase in scanning speed. The average microhardness of the coating (1026.5 HV0.2) at the scanning speed of 20 mm/s was enhanced significantly compared with that of the other three coatings (about 886.4 HV0.2). The lowest average friction coefficient (about 0.371) was obtained at the scanning speed of 20 mm/s and was relatively stable with the change in sliding time. The lowest wear loss of the coating was also obtained at the scanning speed of 20 mm/s. Analyses of the worn surfaces showed that the coating prepared at the scanning speed of 20 mm/s was in good condition because of its excellent combination of resistance to micro-cutting and brittle debonding. Comparatively speaking, the coating produced at the scanning speed of 20 mm/s possessed excellent comprehensive mechanical properties.
2007-01-01
15 4.2.3. Users of Systems for Combating Biological Warfare ................................ 16 4.2.4...21 4.3.1. Existing Biosurveillance Systems .............................................................. 22 4.3.2. Automatic Integration...74 6.4.4. Multi-Agent System Management System (MMS).................................... 75 6.4.5. Agent Glossary
a Method for the Positioning and Orientation of Rail-Bound Vehicles in Gnss-Free Environments
NASA Astrophysics Data System (ADS)
Hung, R.; King, B. A.; Chen, W.
2016-06-01
Mobile Mapping System (MMS) are increasingly applied for spatial data collection to support different fields because of their efficiencies and the levels of detail they can provide. The Position and Orientation System (POS), which is conventionally employed for locating and orienting MMS, allows direct georeferencing of spatial data in real-time. Since the performance of a POS depends on both the Inertial Navigation System (INS) and the Global Navigation Satellite System (GNSS), poor GNSS conditions, such as in long tunnels and underground, introduce the necessity for post-processing. In above-ground railways, mobile mapping technology is employed with high performance sensors for finite usage, which has considerable potential for enhancing railway safety and management in real-time. In contrast, underground railways present a challenge for a conventional POS thus alternative configurations are necessary to maintain data accuracy and alleviate the need for post-processing. This paper introduces a method of rail-bound navigation to replace the role of GNSS for railway applications. The proposed method integrates INS and track alignment data for environment-independent navigation and reduces the demand of post-processing. The principle of rail-bound navigation is presented and its performance is verified by an experiment using a consumer-grade Inertial Measurement Unit (IMU) and a small-scale railway model. The method produced a substantial improvement in position and orientation for a poorly initialised system in centimetre positional accuracy. The potential improvements indicated by, and limitations of rail-bound navigation are also considered for further development in existing railway systems.
Maragh, Sherry L H; Brown, Marc D
2008-08-01
Antibiotics may be indiscriminately given to patients undergoing Mohs micrographic surgery (MMS) for the prevention of surgical site infections, despite a low risk of infection in these patients. We sought to evaluate the rate of wound infections among patients undergoing MMS without the use of prophylactic antibiotics. We prospectively evaluated 1000 consecutive patients undergoing MMS for nonmelanoma skin cancer or modified MMS/"slow Mohs" for lentigo maligna melanoma in situ. The overall wound infection rate among 1000 patients with 1115 tumors was 0.7% (8/1115 tumors). Five (62.5%) of 8 infections occurred on the nose with an overall 1.7% (5/302) nose infection rate. Seven (87.5%) of 8 infections occurred after flap reconstruction with an overall 2.4% (7/296) flap closure infection rate. Four (50%) of 8 infections occurred in patients requiring more than one Mohs stage for tumor clearance with a 0.8% (4/487) overall infection rate in cases requiring multiple Mohs stages. Two (25%) of 8 infections had cultures positive for oxacillin-resistant Staphylococcus aureus. No wound infections occurred in cases involving the lips or ears, skin-graft closures, or below-knee or modified MMS procedures. This was a prospective single institution uncontrolled study. Rates of infections among patients undergoing MMS or modified MMS are exceedingly low. Indiscriminate use of antibiotics increases patient risk to adverse drug reactions and antibiotic resistance. Administration of antibiotics to patients undergoing MMS should be on a case-by-case basis according to the known risk factors combined with clinical judgment.
NASA Technical Reports Server (NTRS)
Goldstein, Melvyn L.; Ashour-Abdalla, Maha; F. Vinas, Adolfo; Dorelli, John; Wendel, Deirdre; Klimas, Alex; Hwang, Kyoung-Joo; El-Alaoui, Mostafa; Walker, Raymond J.; Pan, Qingjiang;
2015-01-01
The MOST IDS team was tasked with focusing on two general areas: The first was to participate with the Fast Plasma Investigation (FPI) team in the development of virtual detectors that model the instrument responses of the MMS FPI sensors. The virtual instruments can be 'flown through' both simulation data (from magnetohydrodynamic, hybrid, and kinetic simulations) and Cluster and THEMIS spacecraft data. The goal is to determine signatures of magnetic reconnection expected during the MMS mission. Such signatures can serve as triggers for selection of burst mode downloads. The chapter contributed by the FPI team covers that effort in detail and, therefore, most of that work has not been included here. The second area of emphasis, and the one detailed in this chapter, was to build on past and present knowledge of magnetic reconnection and its physical signatures. Below we describe intensive analyses of Cluster and THEMIS data together with theoretical models and simulations that delineate the plasma signatures that surround sites of reconnection, including the effects of turbulence as well as the detailed kinetic signatures that indicate proximity to reconnection sites. In particular, we point out that particles are energized in several regions, not only at the actual site of reconnection.
30 CFR 285.534 - When may MMS cancel my bond?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false When may MMS cancel my bond? 285.534 Section 285.534 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE... Assurance Requirements Changes in Financial Assurance § 285.534 When may MMS cancel my bond? When your lease...
30 CFR 285.202 - What types of leases will MMS issue?
Code of Federal Regulations, 2010 CFR
2010-07-01
... RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Issuance of OCS Renewable Energy Leases General Lease Information § 285.202 What types of leases will MMS issue? The MMS may issue leases on the OCS for the assessment and production of renewable energy and may authorize a...
30 CFR 280.73 - Will MMS share data and information with coastal States?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Data Requirements Protections § 280.73 Will MMS share data and information with coastal States? (a) We... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Will MMS share data and information with coastal States? 280.73 Section 280.73 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE...
30 CFR 280.31 - Whom will MMS notify about environmental issues?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Whom will MMS notify about environmental issues... Obligations Under This Part Environmental Issues § 280.31 Whom will MMS notify about environmental issues? (a... submission for approval. (b) In cases where an environmental assessment is to be prepared, the Director will...
30 CFR 250.268 - How does MMS respond to recommendations?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How does MMS respond to recommendations? 250.268 Section 250.268 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE... Decision Process for the Dpp Or Docd § 250.268 How does MMS respond to recommendations? (a) Governor. The...
30 CFR 250.920 - What are the MMS requirements for assessment of fixed platforms?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What are the MMS requirements for assessment of fixed platforms? 250.920 Section 250.920 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF... Structures Inspection, Maintenance, and Assessment of Platforms § 250.920 What are the MMS requirements for...
30 CFR 285.628 - How will MMS process my COP?
Code of Federal Regulations, 2010 CFR
2010-07-01
... allow this to occur. (g) If MMS approves your project easement, MMS will issue an addendum to your lease specifying the terms of the project easement. A project easement may include off-lease areas that: (1... feet (61 meters) in width, unless safety and environmental factors during construction and maintenance...
30 CFR 243.202 - When will MMS monitor my financial solvency?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false When will MMS monitor my financial solvency? 243.202 Section 243.202 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR MINERALS REVENUE MANAGEMENT SUSPENSIONS PENDING APPEAL AND BONDING-MINERALS REVENUE MANAGEMENT Financial Solvency Requirements § 243.202 When will MMS...
30 CFR 227.102 - What royalty management functions will MMS not delegate?
Code of Federal Regulations, 2010 CFR
2010-07-01
... payments shown on royalty reports or other documents, such as bills, to reconcile payor accounts. MMS also... actions other than issuing demands, subpoenas and orders to perform restructured accounting. MMS or the appropriate Federal agency will issue notices of non-compliance and civil penalties, collect debts, write off...
30 CFR 250.119 - Will MMS approve subsurface gas storage?
Code of Federal Regulations, 2010 CFR
2010-07-01
... of gas on the OCS, on and off-lease, for later commercial benefit. To receive MMS approval you must... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Will MMS approve subsurface gas storage? 250... OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF General Performance Standards § 250...
25 CFR 211.6 - Authority and responsibility of the Minerals Management Service (MMS).
Code of Federal Regulations, 2012 CFR
2012-04-01
... 25 Indians 1 2012-04-01 2011-04-01 true Authority and responsibility of the Minerals Management... MINERALS LEASING OF TRIBAL LANDS FOR MINERAL DEVELOPMENT General § 211.6 Authority and responsibility of the Minerals Management Service (MMS). The functions of the MMS for reporting, accounting, and...
25 CFR 212.6 - Authority and responsibility of the Minerals Management Service (MMS).
Code of Federal Regulations, 2010 CFR
2010-04-01
... 25 Indians 1 2010-04-01 2010-04-01 false Authority and responsibility of the Minerals Management... MINERALS LEASING OF ALLOTTED LANDS FOR MINERAL DEVELOPMENT General § 212.6 Authority and responsibility of the Minerals Management Service (MMS). The functions of the MMS for reporting, accounting, and...
25 CFR 225.6 - Authority and responsibility of the Minerals Management Service (MMS).
Code of Federal Regulations, 2014 CFR
2014-04-01
... 25 Indians 1 2014-04-01 2014-04-01 false Authority and responsibility of the Minerals Management... MINERALS OIL AND GAS, GEOTHERMAL, AND SOLID MINERALS AGREEMENTS General § 225.6 Authority and responsibility of the Minerals Management Service (MMS). The functions of the MMS for reporting, accounting, and...
25 CFR 211.6 - Authority and responsibility of the Minerals Management Service (MMS).
Code of Federal Regulations, 2011 CFR
2011-04-01
... 25 Indians 1 2011-04-01 2011-04-01 false Authority and responsibility of the Minerals Management... MINERALS LEASING OF TRIBAL LANDS FOR MINERAL DEVELOPMENT General § 211.6 Authority and responsibility of the Minerals Management Service (MMS). The functions of the MMS for reporting, accounting, and...
25 CFR 225.6 - Authority and responsibility of the Minerals Management Service (MMS).
Code of Federal Regulations, 2012 CFR
2012-04-01
... 25 Indians 1 2012-04-01 2011-04-01 true Authority and responsibility of the Minerals Management... MINERALS OIL AND GAS, GEOTHERMAL, AND SOLID MINERALS AGREEMENTS General § 225.6 Authority and responsibility of the Minerals Management Service (MMS). The functions of the MMS for reporting, accounting, and...
25 CFR 212.6 - Authority and responsibility of the Minerals Management Service (MMS).
Code of Federal Regulations, 2012 CFR
2012-04-01
... 25 Indians 1 2012-04-01 2011-04-01 true Authority and responsibility of the Minerals Management... MINERALS LEASING OF ALLOTTED LANDS FOR MINERAL DEVELOPMENT General § 212.6 Authority and responsibility of the Minerals Management Service (MMS). The functions of the MMS for reporting, accounting, and...
25 CFR 211.6 - Authority and responsibility of the Minerals Management Service (MMS).
Code of Federal Regulations, 2010 CFR
2010-04-01
... 25 Indians 1 2010-04-01 2010-04-01 false Authority and responsibility of the Minerals Management... MINERALS LEASING OF TRIBAL LANDS FOR MINERAL DEVELOPMENT General § 211.6 Authority and responsibility of the Minerals Management Service (MMS). The functions of the MMS for reporting, accounting, and...
Smc5/6-Mms21 Prevents and Eliminates Inappropriate Recombination Intermediates in Meiosis
Xaver, Martin; Huang, Lingzhi; Chen, Doris; Klein, Franz
2013-01-01
Repairing broken chromosomes via joint molecule (JM) intermediates is hazardous and therefore strictly controlled in most organisms. Also in budding yeast meiosis, where production of enough crossovers via JMs is imperative, only a subset of DNA breaks are repaired via JMs, closely regulated by the ZMM pathway. The other breaks are repaired to non-crossovers, avoiding JM formation, through pathways that require the BLM/Sgs1 helicase. “Rogue” JMs that escape the ZMM pathway and BLM/Sgs1 are eliminated before metaphase by resolvases like Mus81-Mms4 to prevent chromosome nondisjunction. Here, we report the requirement of Smc5/6-Mms21 for antagonizing rogue JMs via two mechanisms; destabilizing early intermediates and resolving JMs. Elimination of the Mms21 SUMO E3-ligase domain leads to transient JM accumulation, depending on Mus81-Mms4 for resolution. Absence of Smc6 leads to persistent rogue JMs accumulation, preventing chromatin separation. We propose that the Smc5/6-Mms21 complex antagonizes toxic JMs by coordinating helicases and resolvases at D-Loops and HJs, respectively. PMID:24385936
2014-10-29
CAPE CANAVERAL, Fla. – A crane is lowered toward the lower stack, mini-stack number 1, two of the observatories for NASA's Magnetospheric Multiscale Observatory, or MMS, during uncrating operations in the Building 2 south encapsulation bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Dan Casper
2014-10-29
CAPE CANAVERAL, Fla. – Workers position two of the observatories, the lower stack, mini-stack number 1 for NASA's Magnetospheric Multiscale Observatory, or MMS, onto a payload dolly in the Building 2 south encapsulation bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Dan Casper
2014-10-29
CAPE CANAVERAL, Fla. – Workers prepare a payload dolly for the lower stack, mini-stack number 1, two of the observatories for NASA's Magnetospheric Multiscale Observatory, or MMS, during uncrating operations in the Building 2 south encapsulation bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Dan Casper
2014-10-30
CAPE CANAVERAL, Fla. – Technicians begin to remove the protective covering from the lower stack, mini-stack number 1, two of the observatories for NASA's Magnetospheric Multiscale Observatory, or MMS, in Building 1 D high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Dan Casper
2014-10-30
CAPE CANAVERAL, Fla. – Preparations are underway to remove the protective covering from the lower stack, mini-stack number 1, two of the observatories for NASA's Magnetospheric Multiscale Observatory, or MMS, in Building 1 D high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Dan Casper
2014-10-30
CAPE CANAVERAL, Fla. – Technicians have removed most of the protective covering from the lower stack, mini-stack number 1, two of the observatories for NASA's Magnetospheric Multiscale Observatory, or MMS, in Building 1 D high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Dan Casper
2014-11-13
CAPE CANAVERAL, Fla. – The Magnetospheric Multiscale, or MMS, spacecraft will undergo final processing for launch now that all four are in the Building 1 high bay of the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The two MMS spacecraft comprising the upper deck arrived Nov. 12; the two MMS spacecraft comprising the lower stack arrived Oct. 29. The Magnetospheric Multiscale mission is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Kim Shiflett
2014-10-29
CAPE CANAVERAL, Fla. – Two of the observatories, the lower stack, mini-stack number 1, for NASA's Magnetospheric Multiscale Observatory, or MMS, glides toward a payload dolly during uncrating operations in the Building 2 south encapsulation bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Dan Casper
2014-10-30
CAPE CANAVERAL, Fla. – Technicians prepare to remove the protective covering from the lower stack, mini-stack number 1, two of the observatories for NASA's Magnetospheric Multiscale Observatory, or MMS, in Building 1 D high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Dan Casper
2014-11-14
CAPE CANAVERAL, Fla. – Workers inspect the solar arrays on the Magnetospheric Multiscale, or MMS, observatories in the Building 1 D high bay of the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The two MMS spacecraft comprising the upper deck arrived Nov. 12; the two comprising the lower stack arrived Oct. 29. MMS, led by a team from NASA's Goddard Space Flight Center, is a Solar Terrestrial Probes mission consisting of four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Kim Shiflett
2014-11-14
CAPE CANAVERAL, Fla. – Workers inspect the solar arrays on the Magnetospheric Multiscale, or MMS, observatories in the Building 1 D high bay of the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The two MMS spacecraft comprising the upper deck arrived Nov. 12; the two comprising the lower stack arrived Oct. 29. MMS, led by a team from NASA's Goddard Space Flight Center, is a Solar Terrestrial Probes mission consisting of four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Kim Shiflett
2014-10-29
CAPE CANAVERAL, Fla. – Preparations are underway to remove the lower stack, mini-stack number 1, two of the observatories for NASA's Magnetospheric Multiscale Observatory, or MMS, from their protective shipping container in the Building 2 south encapsulation bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Dan Casper
2014-10-29
CAPE CANAVERAL, Fla. – The protective shipping container is lifted from the lower stack, mini-stack number 1, two of the observatories for NASA's Magnetospheric Multiscale Observatory, or MMS, in the Building 2 south encapsulation bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Dan Casper
2014-11-14
CAPE CANAVERAL, Fla. – Workers inspect the solar arrays on the Magnetospheric Multiscale, or MMS, observatories in the Building 1 D high bay of the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The two MMS spacecraft comprising the upper deck arrived Nov. 12; the two comprising the lower stack arrived Oct. 29. MMS, led by a team from NASA's Goddard Space Flight Center, is a Solar Terrestrial Probes mission consisting of four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Kim Shiflett
2014-10-30
CAPE CANAVERAL, Fla. – Most of the protective covering has been removed from the lower stack, mini-stack number 1, two of the observatories for NASA's Magnetospheric Multiscale Observatory, or MMS, inside Building 1 D high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Dan Casper
2014-10-30
CAPE CANAVERAL, Fla. – Technicians begin to remove the protective covering from the lower stack, mini-stack number 1, two of the observatories for NASA's Magnetospheric Multiscale Observatory, or MMS, in Building 1 D high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Dan Casper
2014-10-30
CAPE CANAVERAL, Fla. – A technician prepares to remove the protective covering from the lower stack, mini-stack number 1, two of the observatories for NASA's Magnetospheric Multiscale Observatory, or MMS, in Building 1 D high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Dan Casper
2014-10-30
CAPE CANAVERAL, Fla. – Technicians remove the protective covering from the lower stack, mini-stack number 1, two of the observatories for NASA's Magnetospheric Multiscale Observatory, or MMS, in Building 1 D high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Dan Casper
2014-11-14
CAPE CANAVERAL, Fla. – Workers inspect the solar arrays on the Magnetospheric Multiscale, or MMS, observatories in the Building 1 D high bay of the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The two MMS spacecraft comprising the upper deck arrived Nov. 12; the two comprising the lower stack arrived Oct. 29. MMS, led by a team from NASA's Goddard Space Flight Center, is a Solar Terrestrial Probes mission consisting of four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Kim Shiflett
2014-10-29
CAPE CANAVERAL, Fla. – Preparations are underway to tow two of the observatories, the lower stack, mini-stack number 1, for NASA's Magnetospheric Multiscale Observatory, or MMS, from the Building 2 south encapsulation bay to the Building 1 high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Dan Casper
2014-11-14
CAPE CANAVERAL, Fla. – Workers inspect the solar arrays on the Magnetospheric Multiscale, or MMS, observatories in the Building 1 D high bay of the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The two MMS spacecraft comprising the upper deck arrived Nov. 12; the two comprising the lower stack arrived Oct. 29. MMS, led by a team from NASA's Goddard Space Flight Center, is a Solar Terrestrial Probes mission consisting of four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Kim Shiflett
2014-10-30
CAPE CANAVERAL, Fla. – Most of the protective covering has been removed from the lower stack, mini-stack number 1, two of the observatories for NASA's Magnetospheric Multiscale Observatory, or MMS, inside Building 1 D high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Dan Casper
2014-10-30
CAPE CANAVERAL, Fla. – Technicians remove the protective covering from the lower stack, mini-stack number 1, two of the observatories for NASA's Magnetospheric Multiscale Observatory, or MMS, in Building 1 D high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Dan Casper
2014-11-14
CAPE CANAVERAL, Fla. – Workers inspect the solar arrays on the Magnetospheric Multiscale, or MMS, observatories in the Building 1 D high bay of the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The two MMS spacecraft comprising the upper deck arrived Nov. 12; the two comprising the lower stack arrived Oct. 29. MMS, led by a team from NASA's Goddard Space Flight Center, is a Solar Terrestrial Probes mission consisting of four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Kim Shiflett
2014-10-30
CAPE CANAVERAL, Fla. – Technicians remove the protective covering from the lower stack, mini-stack number 1, two of the observatories for NASA's Magnetospheric Multiscale Observatory, or MMS, in Building 1 D high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Dan Casper
2014-10-30
CAPE CANAVERAL, Fla. – A technician carefully removes the protective covering from the lower stack, mini-stack number 1, two of the observatories for NASA's Magnetospheric Multiscale Observatory, or MMS, in Building 1 D high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Dan Casper
2014-11-14
CAPE CANAVERAL, Fla. – Workers inspect the solar arrays on the Magnetospheric Multiscale, or MMS, observatories in the Building 1 D high bay of the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The two MMS spacecraft comprising the upper deck arrived Nov. 12; the two comprising the lower stack arrived Oct. 29. MMS, led by a team from NASA's Goddard Space Flight Center, is a Solar Terrestrial Probes mission consisting of four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Kim Shiflett
Sloothaak, D A M; van der Linden, R L A; van de Velde, C J H; Bemelman, W A; Lips, D J; van der Linden, J C; Doornewaard, H; Tanis, P J; Bosscha, K; van der Zaag, E S; Buskens, C J
2017-08-01
Occult nodal tumour cells should be categorised as micrometastasis (MMs) and isolated tumour cells (ITCs). A recent meta-analysis demonstrated that MMs, but not ITCs, are prognostic for disease recurrence in patients with stage I/II colon cancer. The objective of this retrospective multicenter study was to correlate MMs and ITCs to characteristics of the primary tumour, and to determine their prognostic value in patients with stage I/II colon cancer. One hundred ninety two patients were included in the study with a median follow up of 46 month (IQR 33-81 months). MMs were found in eight patients (4.2%), ITCs in 37 (19.3%) and occult tumour cells were absent in 147 patients (76.6%). Between these groups, tumour differentiation and venous or lymphatic invasion was equally distributed. Advanced stage (pT3/pT4) was found in 66.0% of patients without occult tumour cells (97/147), 72.9% of patients with ITCs (27/37), and 100% in patients with MMs (8/8), although this was a non-significant trend. Patients with MMs showed a significantly reduced 3 year-disease free survival compared to patients with ITCs or patients without occult tumour cells (75.0% versus 88.0% and 94.8%, respectively, p = 0.005). When adjusted for T-stage, MMs independently predicted recurrence of cancer (OR 7.6 95% CI 1.5-37.4, p = 0.012). In this study, the incidence of MMs and ITCs in patients with stage I/II colon cancer was 4.2% and 19.3%, respectively. MMs were associated with an reduced 3 year disease free survival rate, but ITCs were not. Copyright © 2017 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.
Open Source Web Tool for Tracking in a Lowcost Mobile Mapping System
NASA Astrophysics Data System (ADS)
Fissore, F.; Pirotti, F.; Vettore, A.
2017-11-01
During the last decade several Mobile Mapping Systems (MMSs), i.e. systems able to acquire efficiently three dimensional data using moving sensors (Guarnieri et al., 2008, Schwarz and El-Sheimy, 2004), have been developed. Research and commercial products have been implemented on terrestrial, aerial and marine platforms, and even on human-carried equipment, e.g. backpack (Lo et al., 2015, Nex and Remondino, 2014, Ellum and El-Sheimy, 2002, Leica Pegasus backpack, 2016, Masiero et al., 2017, Fissore et al., 2018). Such systems are composed of an integrated array of time-synchronised navigation sensors and imaging sensors mounted on a mobile platform (Puente et al., 2013, Tao and Li, 2007). Usually the MMS implies integration of different types of sensors, such as GNSS, IMU, video camera and/or laser scanners that allow accurate and quick mapping (Li, 1997, Petrie, 2010, Tao, 2000). The typical requirement of high-accuracy 3D georeferenced reconstruction often makes such systems quite expensive. Indeed, at time of writing most of the terrestrial MMSs on the market have a cost usually greater than 50000, which might be expensive for certain applications (Ellum and El-Sheimy, 2002, Piras et al., 2008). In order to allow best performance sensors have to be properly calibrated (Dong et al., 2007, Ellum and El-Sheimy, 2002). Sensors in MMSs are usually integrated and managed through a dedicated software, which is developed ad hoc for the devices mounted on the mobile platform and hence tailored for the specific used sensors. Despite the fact that commercial solutions are complete, very specific and particularly related to the typology of survey, their price is a factor that restricts the number of users and the possible interested sectors. This paper describes a (relatively low cost) terrestrial Mobile Mapping System developed at the University of Padua (TESAF, Department of Land Environment Agriculture and Forestry) by the research team in CIRGEO, in order to test an alternative solution to other more expensive MMSs. The first objective of this paper is to report on the development of a prototype of MMS for the collection of geospatial data based on the assembly of low cost sensors managed through a web interface developed using open source libraries. The main goal is to provide a system accessible by any type of user, and flexible to any type of upgrade or introduction of new models of sensors or versions thereof. After a presentation of the hardware components used in our system, a more detailed description of the software developed for the management of the MMS will be provided, which is the part of the innovation of the project. According to the worldwide request for having big data available through the web from everywhere in the world (Pirotti et al., 2011), the proposed solution allows to retrieve data from a web interface Figure 4. Actually, this is part of a project for the development of a new web infrastructure in the University of Padua (but it will be available for external users as well), in order to ease collaboration between researchers from different areas. Finally, strengths, weaknesses and future developments of the low cost MMS are discussed.
da Silva Vasconcelos, Eliton; de Lima, Vanderlei Aparecido; Goto, Leandro Seiji; Cruz-Hernández, Isara Lourdes; Hokka, Carlos Osamu
2013-01-01
Clavulanic acid (CA) is a powerful inhibitor of the beta-lactamases, enzymes produced by bacteria resistants to penicillin and cefalosporin. This molecule is produced industrially by strains of Streptomyces clavuligerus in complex media which carbon and nitrogen resources are supplied by inexpensive compounds still providing high productivity. The genetic production improvement using physical and chemical mutagenic agents is an important strategy in programs of industrial production development of bioactive metabolites. However, parental strains are susceptible to loss of their original productivity due genetic instability phenomenona. In this work, some S. clavuligerus mutant strains obtained by treatment with UV light and with MMS are compared with the wild type (Streptomyces clavuligerus ATCC 27064). The results indicated that the random mutations originated some strains with different phenotypes, most divergent demonstrated by the mutants strains named AC116, MMS 150 and MMS 54, that exhibited lack of pigmentation in their mature spores. Also, the strain MMS 150 presented a larger production of CA when cultivated in semi-synthetics media. Using other media, the wild type strain obtained a larger CA production. Besides, using the modifed complex media the MMS 150 strain showed changes in its lipolitic activity and a larger production of CA. The studies also allowed finding the best conditions for a lipase activity exhibited by wild type S. clavuligerus and the MMS150 mutant. PMID:24688492
30 CFR 206.178 - How do I determine a transportation allowance?
Code of Federal Regulations, 2010 CFR
2010-07-01
... the end of the 12-month period to which the allowance applies. However, MMS may approve a longer time... Poor's Bond Guide for the first month of the reporting period for which the allowance is applicable and... months of the date MMS receives your report which claims the allowance on the Form MMS-2014. (ii) When...
30 CFR 285.636 - What notices must I provide MMS following approval of my COP?
Code of Federal Regulations, 2010 CFR
2010-07-01
... approval of my COP? 285.636 Section 285.636 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF... SHELF Plans and Information Requirements Activities Under An Approved Cop § 285.636 What notices must I provide MMS following approval of my COP? You must notify MMS in writing of the following events, within...
30 CFR 285.636 - What notices must I provide MMS following approval of my COP?
Code of Federal Regulations, 2011 CFR
2011-07-01
... approval of my COP? 285.636 Section 285.636 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION... FACILITIES ON THE OUTER CONTINENTAL SHELF Plans and Information Requirements Activities Under An Approved Cop § 285.636 What notices must I provide MMS following approval of my COP? You must notify MMS in writing...
30 CFR 250.231 - After receiving the EP, what will MMS do?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false After receiving the EP, what will MMS do? 250.231 Section 250.231 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE... Decision Process for the Ep § 250.231 After receiving the EP, what will MMS do? (a) Determine whether...
30 CFR 227.109 - What if the MMS Director denies a State's delegation proposal?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What if the MMS Director denies a State's delegation proposal? 227.109 Section 227.109 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR MINERALS REVENUE MANAGEMENT DELEGATION TO STATES Delegation Process § 227.109 What if the MMS...
30 CFR 250.231 - After receiving the EP, what will MMS do?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false After receiving the EP, what will MMS do? 250.231 Section 250.231 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT... and Information Review and Decision Process for the Ep § 250.231 After receiving the EP, what will MMS...
30 CFR 227.108 - How will MMS notify a State of its decision?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How will MMS notify a State of its decision? 227.108 Section 227.108 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR MINERALS REVENUE MANAGEMENT DELEGATION TO STATES Delegation Process § 227.108 How will MMS notify a State...
Exploring Factors Influencing Mobile Users' Intention to Adopt Multimedia Messaging Service
ERIC Educational Resources Information Center
Chang, Shuchih Ernest; Pan, Ying-Hui Vera
2011-01-01
While short messaging service (SMS) is discussed often in recent literature, multimedia messaging service (MMS), a media rich successor of SMS, is seldom heard or understood by mobile users in Taiwan. The adoption rates of MMS are far from satisfactory, implying that there might be some factors keeping the potential users away from using MMS. This…
30 CFR 241.77 - How may MMS collect the penalty?
Code of Federal Regulations, 2010 CFR
2010-07-01
... MMS collect the penalty? (a) MMS may use all available means to collect the penalty including, but not... to compel your payment under 30 U.S.C. 1719(k). (b) If the Department uses judicial process, or if you seek judicial review under § 241.74 and the court upholds assessment of a penalty, the court shall...
30 CFR 227.101 - What royalty management functions may MMS delegate to a State?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What royalty management functions may MMS delegate to a State? 227.101 Section 227.101 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF... § 227.101 What royalty management functions may MMS delegate to a State? (a) If there are oil and gas...
30 CFR 227.104 - What will MMS do when it receives a State's delegation proposal?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What will MMS do when it receives a State's delegation proposal? 227.104 Section 227.104 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR MINERALS REVENUE MANAGEMENT DELEGATION TO STATES Delegation Proposals § 227.104 What will MMS do...
30 CFR 250.1508 - What must I do when MMS administers written or oral tests?
Code of Federal Regulations, 2010 CFR
2010-07-01
... oral tests? 250.1508 Section 250.1508 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Well Control and Production Safety Training § 250.1508 What must I do when MMS administers written or oral tests? MMS or its...
NASA Astrophysics Data System (ADS)
Chaudhuri, Anirban
Hybrid electro-hydraulic actuators using smart materials along with flow rectification have been widely reported in recent years. The basic operation of these actuators involves high frequency bidirectional operation of an active material that is converted into unidirectional fluid motion by a set of valves. While theoretically attractive, practical constraints limit the efficacy of the solid-fluid hybrid actuation approach. In particular, inertial loads, fluid viscosity and compressibility combine with loss mechanisms inherent in the active material to limit the effective bandwidth of the driving actuator and the total output power. A hybrid actuator was developed by using magnetostrictive TerFeNOL-D as the active driving element and hydraulic oil as the working fluid. Tests, both with and without an external load, were carried out to measure the unidirectional performance of the actuator at different pumping frequencies and operating conditions. The maximum no-load output velocity was 84 mm/s with a 51 mm long rod and 88 mm/s with a 102 mm long rod, both noted around 325 Hz pumping frequency, while the blocked force was close to 89 N. Dynamic tests were performed to analyze the axial vibration characteristics of the Terfenol-D rods and frequency responses of the magnetic circuits. A second prototype actuator employing the same actuation principle was then designed by using the electrostrictive material PMN-32%PT as the driving element. Tests were conducted to measure the actuator performance for varying electrical input conditions and fluid bias pressures. The peak output velocity obtained was 330 mm/s while the blocked force was 63 N. The maximum volume flow rate obtained with the PMN-based actuator was more than double that obtained from the Terfenol-D--based actuator. Theoretical modeling of the dynamics of the coupled structural-hydraulic system is extremely complex and several models have been proposed earlier. At high pumping frequencies, the fluid inertia dominates the viscous effects and the problem becomes unsteady in nature. Due to high pressures inside the actuator and the presence of entrained air, compressibility of the hydraulic fluid is important. A new mathematical model of the hydraulic hybrid actuator was formulated in time-domain to show the basic operational principle under varying operating conditions and to capture the phenomena affecting system performance. Linear induced strain behavior was assumed to model the active material. Governing equations for the moving parts were obtained from force equilibrium considerations, while the coupled inertiacompliance of the fluid passages was represented by a lumped parameter approach to the transmission line model, giving rise to strongly coupled ordinary differential equations. Compressibility of the working fluid was incorporated by using the bulk modulus. The model was then validated using the measured performance of both the magnetostrictive and electrostrictive-based hybrid actuators.
Beaudoin, Jonathan D.; Gardner, James V.; Clarke, John E. Hughes
2002-01-01
Following the publication of high-resolution multibeam echosounder (MBES) images and data of the Flower Gardens area of the northwest Gulf of Mexico outer continental shelf (Gardner et al., 1998), the Flower Gardens Banks National Marine Sanctuary (FGBNMS) and the Minerals Management Service (MMS) have been interested in additional MBES data in the area. A coalition of FGBNMS, MMS, and the US Geological Survey (USGS) was formed to map additional areas of interest in the northwestern Gulf of Mexico in 2002. The areas were chosen by personnel of the FGBNMS and the choice of MBES was made by the USGS. MMS and FGBNMS funded the mapping and the USGS organized the ship and multibeam systems through a Cooperative Agreement between the USGS and the University of New Brunswick. The University of New Brunswick (UNB) contracted the RV Ocean Surveyor and the EM1000 MBES system from C&C Technologies, Inc., Lafayette, LA. C&C personnel oversaw data collection whereas UNB personnel conducted the cruise and processed all the data. USGS personnel were responsible for the overall cruise including the final data processing and digital map products.
Effect of surface hydrophobicity on the function of the immobilized biomineralization protein Mms6
Liu, Xunpei; Zhang, Honghu; Nayak, Srikanth; ...
2015-08-13
Magnetotactic bacteria produce magnetic nanocrystals with uniform shapes and sizes in nature, which has inspired in vitro synthesis of uniformly sized magnetite nanocrystals under mild conditions. Mms6, a biomineralization protein from magnetotactic bacteria with a hydrophobic N-terminal domain and a hydrophilic C-terminal domain, can promote formation of magnetite nanocrystals in vitro with well-defined shape and size in gels under mild conditions. Here we investigate the role of surface hydrophobicity on the ability of Mms6 to template magnetite nanoparticle formation on surfaces. Our results confirmed that Mms6 can form a protein network structure on a monolayer of hydrophobic octadecanethiol (ODT)-coated goldmore » surfaces and facilitate magnetite nanocrystal formation with uniform sizes close to those seen in nature, in contrast to its behavior on more hydrophilic surfaces. We propose that this hydrophobicity effect might be due to the amphiphilic nature of the Mms6 protein and its tendency to incorporate the hydrophobic N-terminal domain into the hydrophobic lipid bilayer environment of the magnetosome membrane, exposing the hydrophilic C-terminal domain that promotes biomineralization. Supporting this hypothesis, the larger and well-formed magnetite nanoparticles were found to be preferentially located on ODT surfaces covered with Mms6 as compared to control samples, as characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy studies. A C-terminal domain mutant of this protein did not form the same network structure as wild-type Mms6, suggesting that the network structure is important for the magnetite nanocrystal formation. This article provides valuable insights into the role of surface hydrophilicity on the action of the biomineralization protein Mms6 to synthesize magnetic nanocrystals and provides a facile route to controlling bioinspired nanocrystal synthesis in vitro.« less
SPDF Data and Orbit Services Supporting Open Access, Use and Archiving of MMS Data
NASA Astrophysics Data System (ADS)
McGuire, R. E.; Bilitza, D.; Candey, R. M.; Chimiak, R.; Cooper, J. F.; Garcia, L. N.; Harris, B. T.; Johnson, R. C.; Kovalick, T. J.; Lal, N.; Leckner, H. A.; Liu, M. H.; Papitashvili, N. E.; Roberts, D. A.; Yurow, R. E.
2015-12-01
NASA's Space Physics Data Facility (SPDF) project is now serving MMS definitive and predictive interactive orbit plots, listings and conjunction calculations through our SSCWeb and 4D Orbit Viewer services. In March 2016 and in parallel with the MMS Science Data Center (SDC) at LASP, SPDF will begin publicly serving a complete set of MMS Level-2 and higher, survey and burst-mode science data products from all four spacecraft and all instruments. The initial Level-2 data available will be from September 2015 to early February 2016, with Level-2 products subsequently validated and publicly available with an approximate one month lag. All MMS Level-2 and higher data products are produced in standard CDF format with standard ISTP/SPDF metadata and will be served by SPDF through our CDAWeb data service, including our web services and associated APIs for IDL and Matlab users, and through direct FTP/HTTP directory browse and file downloads. SPDF's ingest, archival preservation and active serving of current MMS science data is part of our role as an active heliophysics final archive. SPDF's ingest of complete and current science data products from other active heliophysics missions with SPDF services will help enable coordinated and correlative MMS science analysis by the open international science community with current data from THEMIS, the Van Allen Probes and other missions including TWINS, Cluster, ACE, Wind, >120 ground magnetometer stations as well as instruments on the NOAA GOES and POES spacecraft. Please see the related Candey et.al. paper on "SPDF Ancillary Services and Technologies Supporting Open Access, Use and Archiving of MMS Data" for other aspects of what SPDF is doing. All SPDF data and services are available from the SPDF home page at http://spdf.gsfc.nasa.gov .
Jelezcova, Elena; Trivedi, Ram N.; Wang, Xiao-hong; Tang, Jiang-bo; Brown, Ashley R.; Goellner, Eva M.; Schamus, Sandy; Fornsaglio, Jamie L.; Sobol, Robert W.
2010-01-01
Alkylating agents induce cell death in wild-type (WT) mouse embryonic fibroblasts (MEFs) by multiple mechanisms, including apoptosis, autophagy and necrosis. DNA polymerase β (Pol β) knockout (KO) MEFs are hypersensitive to the cytotoxic effect of alkylating agents, as compared to WT MEFs. To test the hypothesis that Parp1 is preferentially activated by methyl methanesulfonate (MMS) exposure of Pol β KO MEFs, we have examined the relationship between Pol β expression, Parp1 activation and cell survival following MMS exposure in a series of WT and Pol β deficient MEF cell lines. Consistent with our hypothesis, we observed elevated Parp1 activation in Pol β KO MEFs as compared to matched WT MEFs. Both the MMS-induced activation of Parp1 and the MMS-induced cytoxicity of Pol β KO MEFs are attenuated by pre-treatment with the Parp1/Parp2 inhibitor PJ34. Further, elevated Parp1 activation is observed following knockdown (KD) of endogenous Pol β, as compared to WT cells. Pol β KD MEFs are hypersensitive to MMS and both the MMS-induced hypersensitivity and Parp1 activation is prevented by pre-treatment with PJ34. In addition, the MMS-induced cellular sensitivity of Pol β KO MEFs is reversed when Parp1 is also deleted (Pol β/Parp1 double KO MEFs) and we observe no MMS sensitivity differential between Pol β/Parp1 double KO MEFs and those that express recombinant mouse Pol β. These studies suggest that Parp1 may function as a sensor of BER to initiate cell death when BER is aborted or fails. Parp1 may therefore function in BER as a tumor suppressor by initiating cell death and preventing the accumulation of cells with chromosomal damage due to a BER defect. PMID:20096707
NASA Astrophysics Data System (ADS)
Myers, Rachel; Egedal, Jan; Olson, Joseph; Greess, Samuel; Millet-Ayala, Alexander; Clark, Michael; Nonn, Paul; Wallace, John; Forest, Cary
2017-10-01
The NASA Magnetospheric Multiscale (MMS) Mission seeks to measure heating and motion of charged particles from reconnection events in the magnetotail and dayside magnetopause. MMS is paralleled by the Terrestrial Reconnection Experiment (TREX) at the Wisconsin Plasma Astrophysics Laboratory (WiPAL) in its study of collisionless magnetic reconnection. In the regimes seen by TREX and MMS, electron pressure anisotropy should develop, driving large-scale current layer formation. MMS has witnessed anisotropy, but the spatial coverage of the data is too limited to determine how the pressure anisotropy affects jet and current layer creation. Measurements of pressure anisotropy on TREX will be presented, and implications for reconnecting current layer structure in the magnetosphere, as measured by MMS, will be discussed. This research was conducted with support from a UW-Madison University Fellowship as well as the NSF/DOE award DE-SC0013032.
2014-11-14
CAPE CANAVERAL, Fla. – The solar arrays on the Magnetospheric Multiscale, or MMS, observatories are uncovered for an inspection in the Building 1 D high bay of the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The two MMS spacecraft comprising the upper deck arrived Nov. 12; the two comprising the lower stack arrived Oct. 29. MMS, led by a team from NASA's Goddard Space Flight Center, is a Solar Terrestrial Probes mission consisting of four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Kim Shiflett
2014-10-29
CAPE CANAVERAL, Fla. – Workers attach a crane to the protective shipping container to prepare to uncover the lower stack, mini-stack number 1, two of the observatories for NASA's Magnetospheric Multiscale Observatory, or MMS. They were delivered to the Building 2 south encapsulation bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Dan Casper
Code of Federal Regulations, 2011 CFR
2011-07-01
... system or tract, or may present a conflict that we will have to resolve in the process of bidding system... bidding systems and bidding system components? 260.130 Section 260.130 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OUTER CONTINENTAL...
Kalash, Ronny; Epperly, Michael W; Goff, Julie; Dixon, Tracy; Sprachman, Melissa M; Zhang, Xichen; Shields, Donna; Cao, Shaonan; Franicola, Darcy; Wipf, Peter; Berhane, Hebist; Wang, Hong; Au, Jeremiah; Greenberger, Joel S
2013-11-01
A water-soluble ionizing radiation mitigator would have considerable advantages for the management of acute and chronic effects of ionizing radiation. We report that a novel oxetanyl sulfoxide (MMS350) is effective both as a protector and a mitigator of clonal mouse bone marrow stromal cell lines in vitro, and is an effective in vivo mitigator when administered 24 h after 9.5 Gy (LD100/30) total-body irradiation of C57BL/6NHsd mice, significantly improving survival (P = 0.0097). Furthermore, MMS350 (400 μM) added weekly to drinking water after 20 Gy thoracic irradiation significantly decreased: expression of pulmonary inflammatory and profibrotic gene transcripts and proteins; migration into the lungs of bone marrow origin luciferase+/GFP+ (luc+/GFP+) fibroblast progenitors (in both luc+ marrow chimeric and luc+ stromal cell line injected mouse models) and decreased radiation-induced pulmonary fibrosis (P < 0.0001). This nontoxic and orally administered small molecule may be an effective therapeutic in clinical radiotherapy and as a counter measure against the acute and chronic effects of ionizing radiation.
Kalash, Ronny; Epperly, Michael W.; Goff, Julie; Dixon, Tracy; Sprachman, Melissa M.; Zhang, Xichen; Shields, Donna; Cao, Shaonan; Franicola, Darcy; Wipf, Peter; Berhane, Hebist; Wang, Hong; Au, Jeremiah; Greenberger, Joel S.
2014-01-01
A water-soluble ionizing radiation mitigator would have considerable advantages for the management of acute and chronic effects of ionizing radiation. We report that a novel oxetanyl sulfoxide (MMS350) is effective both as a protector and a mitigator of clonal mouse bone marrow stromal cell lines in vitro, and is an effective in vivo mitigator when administered 24 h after 9.5 Gy (LD100/30) total-body irradiation of C57BL/6NHsd mice, significantly improving survival (P =0.0097). Furthermore, MMS350 (400 μM) added weekly to drinking water after 20 Gy thoracic irradiation significantly decreased: expression of pulmonary inflammatory and profibrotic gene transcripts and proteins; migration into the lungs of bone marrow origin luciferase+/GFP+ (luc+/GFP+) fibroblast progenitors (in both luc+ marrow chimeric and luc+ stromal cell line injected mouse models) and decreased radiation-induced pulmonary fibrosis (P < 0.0001). This nontoxic and orally administered small molecule may be an effective therapeutic in clinical radiotherapy and as a counter measure against the acute and chronic effects of ionizing radiation. PMID:24125487
The Yeast Copper Response Is Regulated by DNA Damage
Dong, Kangzhen; Addinall, Stephen G.; Lydall, David
2013-01-01
Copper is an essential but potentially toxic redox-active metal, so the levels and distribution of this metal are carefully regulated to ensure that it binds to the correct proteins. Previous studies of copper-dependent transcription in the yeast Saccharomyces cerevisiae have focused on the response of genes to changes in the exogenous levels of copper. We now report that yeast copper genes are regulated in response to the DNA-damaging agents methyl methanesulfonate (MMS) and hydroxyurea by a mechanism(s) that requires the copper-responsive transcription factors Mac1 and AceI, copper superoxide dismutase (Sod1) activity, and the Rad53 checkpoint kinase. Furthermore, in copper-starved yeast, the response of the Rad53 pathway to MMS is compromised due to a loss of Sod1 activity, consistent with the model that yeast imports copper to ensure Sod1 activity and Rad53 signaling. Crucially, the Mac1 transcription factor undergoes changes in its redox state in response to changing levels of copper or MMS. This study has therefore identified a novel regulatory relationship between cellular redox, copper homeostasis, and the DNA damage response in yeast. PMID:23959798
30 CFR 1210.201 - How do I submit Form MMS-4430, Solid Minerals Production and Royalty Report?
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Instructions for completing and submitting Form MMS-4430 are available on our Internet reporting web site or you may contact us toll free at 1-888-201-6416. (b) When to submit. (1) Unless your lease terms... month. (c) How to submit. (1) You must submit Form MMS-4430 electronically using our Internet reporting...
30 CFR 280.27 - When may MMS cancel my permit?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false When may MMS cancel my permit? 280.27 Section... Part Interrupted Activities § 280.27 When may MMS cancel my permit? The RD may cancel a permit at any time. (a) If we cancel your permit, the RD will advise you by certified or registered mail 30 days...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-01
... DEPARTMENT OF THE INTERIOR Minerals Management Service [Docket No. MMS-2008-MRM-0036] Notice Terminating the Exclusion of Indian Tribal Leases in the Uintah and Ouray Reservation From Valuation Under 30... the MMS Web site at http://www.mrm.mms.gov/TribServ/allzones.htm . The approved publications and index...
30 CFR 241.76 - Can MMS reduce my penalty once it is assessed?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Can MMS reduce my penalty once it is assessed? 241.76 Section 241.76 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR... Provisions § 241.76 Can MMS reduce my penalty once it is assessed? Under 30 U.S.C. 1719(g), the Director or...
30 CFR 250.124 - Will MMS approve gas injection into the cap rock containing a sulphur deposit?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Will MMS approve gas injection into the cap... SHELF General Performance Standards § 250.124 Will MMS approve gas injection into the cap rock containing a sulphur deposit? To receive the Regional Supervisor's approval to inject gas into the cap rock...
30 CFR 250.232 - What actions will MMS take after the EP is deemed submitted?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What actions will MMS take after the EP is deemed submitted? 250.232 Section 250.232 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF... Information Review and Decision Process for the Ep § 250.232 What actions will MMS take after the EP is deemed...
30 CFR 250.232 - What actions will MMS take after the EP is deemed submitted?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What actions will MMS take after the EP is deemed submitted? 250.232 Section 250.232 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION... CONTINENTAL SHELF Plans and Information Review and Decision Process for the Ep § 250.232 What actions will MMS...
30 CFR 250.266 - After receiving the DPP or DOCD, what will MMS do?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false After receiving the DPP or DOCD, what will MMS do? 250.266 Section 250.266 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR... Decision Process for the Dpp Or Docd § 250.266 After receiving the DPP or DOCD, what will MMS do? (a...
30 CFR 250.233 - What decisions will MMS make on the EP and within what timeframe?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What decisions will MMS make on the EP and within what timeframe? 250.233 Section 250.233 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT... Information Review and Decision Process for the Ep § 250.233 What decisions will MMS make on the EP and within...
30 CFR 250.267 - What actions will MMS take after the DPP or DOCD is deemed submitted?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What actions will MMS take after the DPP or DOCD is deemed submitted? 250.267 Section 250.267 Mineral Resources MINERALS MANAGEMENT SERVICE... and Information Review and Decision Process for the Dpp Or Docd § 250.267 What actions will MMS take...
MMS Partial Solar Array Inspection
2014-11-14
A plaque affixed to the side of a Magnetospheric Multiscale, or MMS, observatory dedicates the mission to Richard “Richy” D’Antonio, now deceased, in grateful appreciation for his dedicated service to NASA’s MMS mission. MMS, led by a team from NASA's Goddard Space Flight Center, is a Solar Terrestrial Probes mission consisting of four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015.
MMS Partial Solar Array Inspection
2014-11-14
A plaque affixed to the side of a Magnetospheric Multiscale, or MMS, observatory dedicates the mission to Dr. John William Klein, now deceased, who served the MMS team as the standing review board chairman. MMS, led by a team from NASA's Goddard Space Flight Center, is a Solar Terrestrial Probes mission consisting of four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015.
MMS Partial Solar Array Inspection
2014-11-14
A plaque affixed to the side of a Magnetospheric Multiscale, or MMS, observatory dedicates the mission to George S. Moore, now deceased, an engineer who was a beloved colleague and friend to the MMS team. MMS, led by a team from NASA's Goddard Space Flight Center, is a Solar Terrestrial Probes mission consisting of four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015.
Experimental Studies of Dynamic Fault Weakening Due to Thermal Pressurization of Pore Fluids
NASA Astrophysics Data System (ADS)
Goldsby, David; Tullis, Terry; Platt, John; Okazaki, Keishi
2016-04-01
High-velocity friction experiments and geophysical observations suggest that mature faults weaken dramatically during seismic slip. However, while many coseismic weakening mechanisms have been proposed, it is still unclear which mechanisms are most important or how the efficiency of weakening varies within the seismogenic zone. Thermal pressurization is one possible coseismic weakening mechanism driven by the thermal expansion of native pore fluids, which leads to elevated pore pressures and significant coseismic weakening. While thermal pressurization has been studied theoretically for many decades, and invoked in recent earthquake simulations, its activation in laboratory experiments has remained elusive. Several high-speed friction studies have yielded indirect evidence for thermal pressurization, yet none has directly linked with existing theoretical models or the relevant physical parameters, such as permeability, slip, and slip rate, that control the weakening rate. To fill this gap, we are conducting thermal pressurization experiments on fluid-saturated, low-permeability rocks (Frederick diabase) at slip rates up to ~5 mm/s, at constant confining pressures in the range 21-149 MPa and initial imposed pore pressures in the range 10-25 MPa. The impractically low permeability of the as-is diabase, ~10-23 m2, is increased prior to the test by thermal cracking, yielding measured permeabilities in the range 1.3*10-18 to 6.1*10-19 m2. These values of permeability are high enough to allow sample saturation over one to several days, but low enough to confine the elevated pore pressures generated by frictional heating during rapid sliding. Our experiments reveal a rapid decay of shear stress following a step-change in velocity from 10 μm/s to 4.8 mm/s. In one test, the decrease in shear stress of ~25% over the first 28 mm of slip at 4.8 mm/s agrees closely with the theoretical solution for slip on a plane (Rice [2006]), with an inferred slip-weakening distance of ~500 mm, which is in the range predicted by inserting laboratory-determined rock and fluid properties into the formula for L* from Rice [2006]. In another test, steps from 10 μm/s to three different velocities (1.2 mm/s, 2.4 mm/s, and 4.8 mm/s) all fit the Rice solution with values of L* that varied systematically with velocity as predicted by the theory. Deviations from the theoretical prediction occur at displacements larger than 28 mm, since the experimental sample is not a semi-infinite half space, as assumed in the models, and heat is lost to the high-conductivity steel of the sample assembly. To our knowledge, this is the best experimental validation of thermal pressurization to date.
30 CFR 203.66 - What happens if MMS does not act in the time allowed?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What happens if MMS does not act in the time... Relief for Pre-Act Deep Water Leases and for Development and Expansion Projects § 203.66 What happens if MMS does not act in the time allowed? If we do not act within the timeframes established under § 203...
Morphomic Malnutrition Score: A Standardized Screening Tool for Severe Malnutrition in Adults.
Lee, Christopher; Raymond, Erica; Derstine, Brian A; Glazer, Joshua M; Goulson, Rebecca; Rajasekaran, Avinash; Cherry-Bukowiec, Jill; Su, Grace L; Wang, Stewart C
2018-05-22
Granular diagnostic criteria for adult malnutrition are lacking. This study uses analytic morphomics to define the Morphomic Malnutrition Score (MMS), a robust screening tool for severe malnutrition. The study population (n = 643) consisted of 2 cohorts: 1) 124 emergency department patients diagnosed with severe malnutrition by a registered dietitian (RD) and an available computed tomography (CT) scan within 2 days of RD evaluation, and 2) 519 adult kidney donor candidates to represent a healthy cohort. Body composition markers of muscle area and abdominal adiposity were measured from patient CT scans using analytic morphomic assessment, and then converted to sex- and age-adjusted percentiles using the Reference Analytic Morphomics Population (RAMP). RAMP consists of 6000 patients chosen to be representative of the general population. The combined cohort was then randomly divided into training (n = 453) and validation (n = 190) sets. MMS was derived using logistic regression. The model coefficients were transformed into a score, normalized from 0 to 10 (10 = most severe). Severely malnourished patients had lower amounts of muscle and fat than kidney donors, specifically for dorsal muscle group area at the twelfth thoracic vertebral level (P < 0.001), psoas muscle area at the fourth lumbar vertebral level (P < 0.001), and subcutaneous fat area at the third lumbar vertebral level (P < 0.001)-all parameters in MMS. MMS for severely malnourished patients was higher than kidney donors (7.7 ± 2.2 vs 3.8 ± 2.0, respectively; P-value < 0.001). An MMS > 6.1 was accurate in determining nutrition diagnosis (82.1% sensitivity; 88.3% specificity; 85.2% balanced accuracy). MMS provides an evidence-based, granular assessment to distinguish severely malnourished adults from a healthy population. © 2018 American Society for Parenteral and Enteral Nutrition.
NASA Astrophysics Data System (ADS)
Valentini, F.; Perri, S.; Yordanova, E.; Paterson, W. R.; Gershman, D. J.; Giles, B. L.; Pollock, C. J.; Dorelli, J.; Avanov, L. A.; Lavraud, B.; Saito, Y.; Nakamura, R.; Fischer, D.; Baumjohann, W.; Plaschke, F.; Narita, Y.; Magnes, W.; Russell, C. T.; Strangeway, R. J.; Le Contel, O.
2017-12-01
The interplanetary space is permeated by a plasma where effects of collisions among particles can be considered negligible. In such a weekly collisional medium, in the range of scales where kinetic effects dominate the plasma dynamics, the particle velocity distribution functions (VDF) are observed to be far from the thermodynamic equilibrium. Moreover, recent numerical self-consistent and nonlinear models of plasma turbulence dynamics have shown the presence of significant non-Maxwellian features in the particle VDFs, caused by kinetic effects, which become dominant in the turbulent cascade at ion scales. In particular, a kinetic hybrid Vlasov-Maxwell (HVM) numerical code, which reproduces the turbulent energy cascade down to ion scales, has highlighted significant departures of the ion VDFs from Maxwellian and a local temperature anisotropy close to current sheets structures generated by the turbulent cascade and close to regions of high ion vorticity.In this work, we make use of the high resolution (150 ms) ion and electron VDFs from Fast Plasma Investigation (FPI) instrument on board MMS and the about 1kHz resolution magnetic field data to investigate the possible presence of non-Maxwellian features in the ion VDFs close to intermittent magnetic structures and regions of high current density and vorticity. The data are relevant to a period where the MMS spacecraft was immersed in the turbulent magnetosheath (see Yordanova et al., 2016). The aim is to compare the analysis made by Valentini et al., 2016 on proton and alpha particles in the HVM simulations with the analysis made on the MMS data, and to deeply characterize the ion dynamics in the near Earth plasma. It is worth mentioning that thanks to its very high resolution plasma data, MMS has given the opportunity to study in details kinetic effects in plasma turbulence, down to electron scales.
Wu, Shuang; Wang, Dehui; Xiang, Rong; Zhou, Junfeng; Ma, Yangcheng; Gui, Huaqiao; Liu, Jianguo; Wang, Huanqin; Lu, Liang; Yu, Benli
2016-07-27
In this paper, a novel velocimeter based on laser self-mixing Doppler technology has been developed for speed measurement. The laser employed in our experiment is a distributed feedback (DFB) fiber laser, which is an all-fiber structure using only one Fiber Bragg Grating to realize optical feedback and wavelength selection. Self-mixing interference for optical velocity sensing is experimentally investigated in this novel system, and the experimental results show that the Doppler frequency is linearly proportional to the velocity of a moving target, which agrees with the theoretical analysis commendably. In our experimental system, the velocity measurement can be achieved in the range of 3.58 mm/s-2216 mm/s with a relative error under one percent, demonstrating that our novel all-fiber configuration velocimeter can implement wide-range velocity measurements with high accuracy.
Accuracy of acoustic velocity metering systems for measurement of low velocity in open channels
Laenen, Antonius; Curtis, R. E.
1989-01-01
Acoustic velocity meter (AVM) accuracy depends on equipment limitations, the accuracy of acoustic-path length and angle determination, and the stability of the mean velocity to acoustic-path velocity relation. Equipment limitations depend on path length and angle, transducer frequency, timing oscillator frequency, and signal-detection scheme. Typically, the velocity error from this source is about +or-1 to +or-10 mms/sec. Error in acoustic-path angle or length will result in a proportional measurement bias. Typically, an angle error of one degree will result in a velocity error of 2%, and a path-length error of one meter in 100 meter will result in an error of 1%. Ray bending (signal refraction) depends on path length and density gradients present in the stream. Any deviation from a straight acoustic path between transducer will change the unique relation between path velocity and mean velocity. These deviations will then introduce error in the mean velocity computation. Typically, for a 200-meter path length, the resultant error is less than one percent, but for a 1,000 meter path length, the error can be greater than 10%. Recent laboratory and field tests have substantiated assumptions of equipment limitations. Tow-tank tests of an AVM system with a 4.69-meter path length yielded an average standard deviation error of 9.3 mms/sec, and the field tests of an AVM system with a 20.5-meter path length yielded an average standard deviation error of a 4 mms/sec. (USGS)
NASA Astrophysics Data System (ADS)
Contini, D.; Donateo, A.; Belosi, F.; Grasso, F. M.; Santachiara, G.; Prodi, F.
2010-08-01
This work reports an analysis of the concentration, size distribution, and deposition velocity of atmospheric particles over snow and iced surfaces on the Nansen Ice Sheet (Antarctica). Measurements were performed using the eddy-correlation method at a remote site during the XXII Italian expedition of the National Research Program in Antarctica (PNRA) in 2006. The measurement system was based on a condensation particle counter (CPC) able to measure particles down to 9 nm in diameter with a 50% efficiency and a Differential Mobility Particle Sizer for evaluating particle size distributions from 11 to 521 nm diameter in 39 channels. A method based on postprocessing with digital filters was developed to take into account the effect of the slow time response of the CPC. The average number concentration was 1338 cm-3 (median, 978 cm-3; interquartile range, 435-1854 cm-3). Higher concentrations were observed at low wind velocities. Results gave an average deposition velocity of 0.47 mm/s (median, 0.19 mm/s; interquartile range, -0.21 -0.88 mm/s). Deposition increased with the friction velocity and was on average 0.86 mm/s during katabatic wind characterized by velocities higher than 4 m/s. Observed size distributions generally presented two distinct modes, the first at approximately 15-20 nm and the second (representing on average 70% of the total particles) at 60-70 nm. Under strong-wind conditions, the second mode dominated the average size distribution.
NASA Astrophysics Data System (ADS)
Chandran, Salini Thaliyakkattil; Raj, Smitha Bal; Ravindran, Sajeev; Narayana, Sanjeevan Vellorkirakathil
2018-05-01
Upper layer circulation, hydrography, and biological response of Andaman waters during winter monsoon are assessed based on the observations carried out onboard FORV Sagar Sampada during January 2009 and November-December 2011. Cool and dry air carried by the moderate winds (6 m/s) from north and northeast indicates the influence of northeast monsoon (NEM) in the area during the observation time. The characteristics of physical parameters and the water mass indicate that the southeastern side is dominated by the less saline water from South China Sea intruded through the Malacca Strait, whereas the northeast is influenced by the freshwater from Ayeyarwady-Salween river system. The western side of the Andaman and Nicobar Islands exhibits similar properties of Bay of Bengal (BoB) water as evidenced in the T-S relation. Circulation pattern is uniform for the upper 88 m and is found to be more geostrophic rather than wind driven. Magnitude of the current velocity varies between 100 and 900 mm/s in November-December 2011 with strong current (900 mm/s) near Katchal and Nancowry islands and 100 and 1000 mm/s in January 2009 recording strong current (1000 mm/s) near the Little Nicobar Island. The Andaman waters are observed as less productive during the season based on the satellite-derived surface chl-a (0.1-0.4 mg/m3) and column-integrated primary productivity (PP) (100-275 mgC/m2/d).
A Novel Method for Precise Onboard Real-Time Orbit Determination with a Standalone GPS Receiver.
Wang, Fuhong; Gong, Xuewen; Sang, Jizhang; Zhang, Xiaohong
2015-12-04
Satellite remote sensing systems require accurate, autonomous and real-time orbit determinations (RTOD) for geo-referencing. Onboard Global Positioning System (GPS) has widely been used to undertake such tasks. In this paper, a novel RTOD method achieving decimeter precision using GPS carrier phases, required by China's HY2A and ZY3 missions, is presented. A key to the algorithm success is the introduction of a new parameter, termed pseudo-ambiguity. This parameter combines the phase ambiguity, the orbit, and clock offset errors of the GPS broadcast ephemeris together to absorb a large part of the combined error. Based on the analysis of the characteristics of the orbit and clock offset errors, the pseudo-ambiguity can be modeled as a random walk, and estimated in an extended Kalman filter. Experiments of processing real data from HY2A and ZY3, simulating onboard operational scenarios of these two missions, are performed using the developed software SATODS. Results have demonstrated that the position and velocity accuracy (3D RMS) of 0.2-0.4 m and 0.2-0.4 mm/s, respectively, are achieved using dual-frequency carrier phases for HY2A, and slightly worse results for ZY3. These results show it is feasible to obtain orbit accuracy at decimeter level of 3-5 dm for position and 0.3-0.5 mm/s for velocity with this RTOD method.
MMS Spacecraft Uncrated & Moved
2014-10-29
Two of the observatories, the lower stack, mini-stack number 1, for NASA's Magnetospheric Multiscale Observatory, or MMS, arrive in the Building 1 airlock at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015.
2014-10-30
Technicians remove the protective covering from the lower stack, mini-stack number 1, two of the observatories for NASA's Magnetospheric Multiscale Observatory, or MMS, in Building 1 D high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015.
MMS Spacecraft Uncrated & Moved
2014-10-29
Two of the observatories, the lower stack, mini-stack number 1, for NASA's Magnetospheric Multiscale Observatory, or MMS, roll into the Building 1 airlock at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015.
MMS Spacecraft Uncrated & Moved
2014-10-29
Workers position two of the observatories, the lower stack, mini-stack number 1 for NASA's Magnetospheric Multiscale Observatory, or MMS, onto a payload dolly in the Building 2 south encapsulation bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015.
Patenković, Aleksandra; Stamenković-Radak, Marina; Nikolić, Dragana; Marković, Tamara; Anđelković, Marko
2013-03-27
Gentiana lutea L., the yellow gentian, is herb known for its pharmacological properties, with a long tradition of use for the treatment of a variety of diseases including the use as a remedy for digestion, also in food products and in bitter beverages. The aim of the present study is to evaluate, for the first time, genotoxicity of gentian alone, and its antigenotoxicity against methyl methanesulfonate (MMS). The water infusion of the underground part of gentian were evaluated in vivo using the Drosophila wing spot test, at the dose commonly used in traditional medicine. For antigenotoxic study two types of treatment with gentian and MMS were performed: chronic co-treatment, as well as post-treatment with gentian after acute exposure with MMS. Water infusion of gentian alone did not exhibit genotoxicity. The results of co- and post-treatment experiments with gentian show that gentian enhanced the frequency of mutant clones over the values obtained with MMS alone, instead of reducing the genotoxicity of MMS, for 22.64% and 27.13% respectively. This result suggests a synergism of gentian with MMS, and indicates that water infusion of gentian used in traditional medicine may have particular effects with regard to genotoxicity indicating careful use. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Seroz, T; Winkler, G S; Auriol, J; Verhage, R A; Vermeulen, W; Smit, B; Brouwer, J; Eker, A P; Weeda, G; Egly, J M; Hoeijmakers, J H
2000-11-15
Nucleotide excision repair (NER) removes UV-induced photoproducts and numerous other DNA lesions in a highly conserved 'cut-and-paste' reaction that involves approximately 25 core components. In addition, several other proteins have been identified which are dispensable for NER in vitro but have an undefined role in vivo and may act at the interface of NER and other cellular processes. An intriguing example is the Saccharomyces cerevisiae Mms19 protein that has an unknown dual function in NER and RNA polymerase II transcription. Here we report the cloning and characterization of a human homolog, designated hMMS19, that encodes a 1030 amino acid protein with 26% identity and 51% similarity to S.cerevisiae Mms19p and with a strikingly similar size. The expression profile and nuclear location are consistent with a repair function. Co-immunoprecipitation experiments revealed that hMMS19 directly interacts with the XPB and XPD subunits of NER-transcription factor TFIIH. These findings extend the conservation of the NER apparatus and the link between NER and basal transcription and suggest that hMMS19 exerts its function in repair and transcription by interacting with the XPB and XPD helicases.
NASA Astrophysics Data System (ADS)
Madhotra, Ravi; Raouf, A.; Sturgess, R.; Krasner, Neville
1997-12-01
Re-establishment of the oesophageal lumen is the main focus of care in patients with inoperable oesophageal carcinomas. The self-expanding metal mesh stents (MMS) are increasingly being used. 51 patients aged 44 - 89 with inoperable oesophago-gastric carcinomas were intubated with MMS. 18 of these patients had endoscopic laser therapy (ELT) as primary palliation. 25 patients required follow-up endoscopy at variable intervals after stent insertion. 17 patients were found to have significant tumor growth (9), overgrowth (4) and both (4). All these patients were treated with Nd:YAG or diode laser for maintenance of satisfactory swallowing. 4 patients being treated with Nd:YAG laser developed deformity of MMS. This complication was not encountered with diode laser. The reblockage of MMS due to ingrowth or overgrowth of tumor is a not uncommon complication. The timing of the stent insertion should be carefully chosen since the longer the stent is in situ, the greater is the likelihood of tumor ingrowth or overgrowth. ELT can effectively deal with tumor ingrowth and overgrowth. Nd:YAG laser can cause melting of MMS. Overall the combination of ELT and MMS may offer the best palliation, particularly when patient survival of several months is anticipated.
Relative Navigation Strategies for the Magnetopheric Multiscale Mission
NASA Technical Reports Server (NTRS)
Gramling, Cheryl; Carpenter, Russell; Lee, Taesul; Long, Anne
2004-01-01
This paper evaluates several navigation approaches for the Magnetospheric Multiscale (MMS) mission, which consists of a tetrahedral formation of satellites flying in highly eccentric Earth orbits. For this investigation, inter-satellite separations of approximately 10 kilometers near apogee are used for the first two phases of the MMS mission. Navigation approaches were studied using ground station two-way Doppler measurements, Global Positioning System (GPS) pseudorange measurements, and cross-link range measurements between the members of the formation. An absolute position accuracy of 15 kilometers or better can be achieved with most of the approaches studied, and a relative position accuracy of 100 meters or better can be achieved at apogee in several cases.
30 CFR 285.429 - What criteria will MMS consider in deciding whether to renew a lease or grant?
Code of Federal Regulations, 2011 CFR
2011-07-01
... existing technology. (b) Availability and feasibility of new technology. (c) Environmental and safety... generation capacity and reliability within the regional electrical distribution and transmission system. ...
Yu, Chuan-Hang; Chen, Huang-Hsu; Liu, Chia-Ming; Jeng, Yung-Ming; Wang, Jeng-Tzung; Wang, Yi-Ping; Liu, Bu-Yuan; Sun, Andy; Chiang, Chun-Pin
2005-10-01
Primary mucosal melanomas (MMs) of the head and neck are a rare entity. Melanomas with characteristic melanin-pigmented tumor cells are easy to diagnose, but those without melanin-pigmented tumor cells, amelanotic melanomas, are difficult to identify and need immunohistochemistry (IHC) to confirm the final diagnosis. In this study, we examined the expression of three melanocytic differentiation markers, HMB-45, S-100, and Melan-A in primary oral and nasal MMs. We tried to evaluate whether HMB-45, S-100, and Melan-A were useful for diagnosis of primary oral and nasal MMs and to find out which marker was the best of the three. This study used IHC to examine the expression of HMB-45, S-100, and Melan-A in 17 formalin-fixed paraffin-embedded specimens of primary oral and nasal MMs. The staining intensities (SIs) and labeling indices (LIs) of HMB-45, S-100, and Melan-A in 17 MMs were calculated and compared between any two markers. Immunostaining results showed that the positive rate was 94% (16 of 17) for HMB-45, 88% (15 of 17) for S-100, and 71% (12 of 17) for Melan-A in 17 MMs. The SI of HMB-45 was significantly higher than that of S-100 (P = 0.0011) or of Melan-A (P = 0.0034). In addition, the mean LI of Melan-A (59 +/- 43%) was significantly lower than that of HMB-45 (83 +/- 28%, P = 0.0065) or of S-100 (79 +/- 33%, P = 0.0237). Our results indicate that both HMB-45 and S-100 show a high positive rate and LI in MMs and therefore may be good markers for immunohistochemical diagnosis of primary oral and nasal MMs. In addition, HMB-45 may be a more sensitive marker than S-100 because HMB-45 shows a significantly higher SI than S-100 in this study.
Neural network river forecasting through baseflow separation and binary-coded swarm optimization
NASA Astrophysics Data System (ADS)
Taormina, Riccardo; Chau, Kwok-Wing; Sivakumar, Bellie
2015-10-01
The inclusion of expert knowledge in data-driven streamflow modeling is expected to yield more accurate estimates of river quantities. Modular models (MMs) designed to work on different parts of the hydrograph are preferred ways to implement such approach. Previous studies have suggested that better predictions of total streamflow could be obtained via modular Artificial Neural Networks (ANNs) trained to perform an implicit baseflow separation. These MMs fit separately the baseflow and excess flow components as produced by a digital filter, and reconstruct the total flow by adding these two signals at the output. The optimization of the filter parameters and ANN architectures is carried out through global search techniques. Despite the favorable premises, the real effectiveness of such MMs has been tested only on a few case studies, and the quality of the baseflow separation they perform has never been thoroughly assessed. In this work, we compare the performance of MM against global models (GMs) for nine different gaging stations in the northern United States. Binary-coded swarm optimization is employed for the identification of filter parameters and model structure, while Extreme Learning Machines, instead of ANN, are used to drastically reduce the large computational times required to perform the experiments. The results show that there is no evidence that MM outperform global GM for predicting the total flow. In addition, the baseflow produced by the MM largely underestimates the actual baseflow component expected for most of the considered gages. This occurs because the values of the filter parameters maximizing overall accuracy do not reflect the geological characteristics of the river basins. The results indeed show that setting the filter parameters according to expert knowledge results in accurate baseflow separation but lower accuracy of total flow predictions, suggesting that these two objectives are intrinsically conflicting rather than compatible.
Measurements Verifying the Optics of the Electron Drift Instrument
NASA Astrophysics Data System (ADS)
Kooi, Vanessa; Kletzing, Craig; Bounds, Scott; Sigsbee, Kristine M.
2015-04-01
Magnetic reconnection is the process of breaking and reconnecting of opposing magnetic field lines, and is often associated with tremendous energy transfer. The energy transferred by reconnection directly affects people through its influence on geospace weather and technological systems - such as telecommunication networks, GPS, and power grids. However, the mechanisms that cause magnetic reconnection are not well understood. The Magnetospheric Multi-Scale Mission (MMS) will use four spacecraft in a pyramid formation to make three-dimensional measurements of the structures in magnetic reconnection occurring in the Earth's magnetosphere.The spacecraft will repeatedly sample these regions for a prolonged period of time to gather data in more detail than has been previously possible. MMS is scheduled to be launched in March of 2015. The Electron Drift Instrument (EDI) will be used on MMS to measure the electric fields associated with magnetic reconnection. The EDI is a device used on spacecraft to measure electric fields by emitting an electron beam and measuring the E x B drift of the returning electrons after one gyration. This paper concentrates on measurements of the EDI’s optics system. The testing process includes measuring the optics response to a uni-directional electron beam. These measurements are used to verify the response of the EDI's optics and to allow for the optimization of the desired optics state. The measurements agree well with simulations and we are confident in the performance of the EDI instrument.
2014-10-30
A technician carefully removes the protective covering from the lower stack, mini-stack number 1, two of the observatories for NASA's Magnetospheric Multiscale Observatory, or MMS, in Building 1 D high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015.
2014-10-30
Technicians begin to remove the protective covering from the lower stack, mini-stack number 1, two of the observatories for NASA's Magnetospheric Multiscale Observatory, or MMS, in Building 1 D high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015.
MMS Spacecraft Uncrated & Moved
2014-10-29
Two of the observatories for NASA's Magnetospheric Multiscale Observatory, or MMS, the lower stack, mini-stack number 1, begin the trip from the Building 2 south encapsulation bay to the Building 1 high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015.
2014-10-30
Technicians prepare to remove the protective covering from the lower stack, mini-stack number 1, two of the observatories for NASA's Magnetospheric Multiscale Observatory, or MMS, in Building 1 D high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015.
2014-10-30
Technicians have removed most of the protective covering from the lower stack, mini-stack number 1, two of the observatories for NASA's Magnetospheric Multiscale Observatory, or MMS, in Building 1 D high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015.
MMS Spacecraft Uncrated & Moved
2014-10-29
Workers prepare a payload dolly for the lower stack, mini-stack number 1, two of the observatories for NASA's Magnetospheric Multiscale Observatory, or MMS, during uncrating operations in the Building 2 south encapsulation bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015.
2014-10-30
Most of the protective covering has been removed from the lower stack, mini-stack number 1, two of the observatories for NASA's Magnetospheric Multiscale Observatory, or MMS, inside Building 1 D high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015.
MMS Spacecraft Uncrated & Moved
2014-10-29
Preparations are underway to remove the lower stack, mini-stack number 1, two of the observatories for NASA's Magnetospheric Multiscale Observatory, or MMS, from their protective shipping container in the Building 2 south encapsulation bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015.
MMS Spacecraft Uncrated & Moved
2014-10-29
Preparations are underway to tow two of the observatories, the lower stack, mini-stack number 1, for NASA's Magnetospheric Multiscale Observatory, or MMS, from the Building 2 south encapsulation bay to the Building 1 high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015.
2014-10-30
Preparations are underway to remove the protective covering from the lower stack, mini-stack number 1, two of the observatories for NASA's Magnetospheric Multiscale Observatory, or MMS, in Building 1 D high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015.
MMS Spacecraft Uncrated & Moved
2014-10-29
Two of the observatories, the lower stack, mini-stack number 1, for NASA's Magnetospheric Multiscale Observatory, or MMS, glides toward a payload dolly during uncrating operations in the Building 2 south encapsulation bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015.
MMS Spacecraft Uncrated & Moved
2014-10-29
Workers surround two of the observatories, the lower stack, mini-stack number 1, for NASA's Magnetospheric Multiscale Observatory, or MMS, on their trip from the Building 2 south encapsulation bay to the Building 1 high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015.
MMS Spacecraft Uncrated & Moved
2014-10-29
A crane is lowered toward the lower stack, mini-stack number 1, two of the observatories for NASA's Magnetospheric Multiscale Observatory, or MMS, during uncrating operations in the Building 2 south encapsulation bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015.
MMS Spacecraft Uncrated & Moved
2014-10-29
The protective shipping container is lifted from the lower stack, mini-stack number 1, two of the observatories for NASA's Magnetospheric Multiscale Observatory, or MMS, in the Building 2 south encapsulation bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015.
2014-11-13
CAPE CANAVERAL, Fla. – Two Magnetospheric Multiscale, or MMS, spacecraft comprising the mission’s upper stack are towed between Buildings 1 and 2 of the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The two MMS spacecraft comprising the lower stack arrived at Astrotech on Oct. 29. The Magnetospheric Multiscale mission is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Kim Shiflett
2014-10-30
A technician prepares to remove the protective covering from the lower stack, mini-stack number 1, two of the observatories for NASA's Magnetospheric Multiscale Observatory, or MMS, in Building 1 D high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015.
MMS observations and hybrid simulations of rippled and reforming quasi-parallel shocks
NASA Astrophysics Data System (ADS)
Gingell, I.; Schwartz, S. J.; Burgess, D.; Johlander, A.; Russell, C. T.; Burch, J. L.; Ergun, R.; Fuselier, S. A.; Gershman, D. J.; Giles, B. L.; Goodrich, K.; Khotyaintsev, Y. V.; Lavraud, B.; Lindqvist, P. A.; Strangeway, R. J.; Trattner, K. J.; Torbert, R. B.; Wilder, F. D.
2017-12-01
Surface ripples, i.e. deviations in the nominal local shock orientation, are expected to propagate in the ramp and overshoot of collisionless shocks. These ripples have typically been associated with observations and simulations of quasi-perpendicular shocks. We present observations of a crossing of Earth's marginally quasi-parallel (θBn ˜ 45°) bow shock by the MMS spacecraft on 2015-11-27 06:01:44 UTC, for which we identify signatures consistent with a propagating surface ripple. In order to demonstrate the differences between ripples at quasi-perpendicular and quasi-parallel shocks, we also present two-dimensional hybrid simulations over a range of shock normal angles θBn under the observed solar wind conditions. We show that in the quasi-parallel cases surface ripples are transient phenomena modulated by the cyclic reformation of the shock front. These ripples develop faster than an ion gyroperiod and only during the period of the reformation cycle when a newly developed shock ramp is unaffected by turbulence in the foot. We conclude that the change of properties of the surface ripple observed by MMS while crossing Earth's quasi-parallel bow shock are consistent with the influence of cyclic reformation on shock structure. Given that both surface ripples and cyclic reformation are expected to affect the acceleration of electrons within the shock, the interaction of these phenomena and any other sources of shock non-stationary are important for models of particle acceleration. We therefore discuss signatures of electron heating and acceleration in several rippled shocks observed by MMS.
Dynamic tumor tracking using the Elekta Agility MLC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fast, Martin F., E-mail: martin.fast@icr.ac.uk; Nill, Simeon, E-mail: simeon.nill@icr.ac.uk; Bedford, James L.
2014-11-01
Purpose: To evaluate the performance of the Elekta Agility multileaf collimator (MLC) for dynamic real-time tumor tracking. Methods: The authors have developed a new control software which interfaces to the Agility MLC to dynamically program the movement of individual leaves, the dynamic leaf guides (DLGs), and the Y collimators (“jaws”) based on the actual target trajectory. A motion platform was used to perform dynamic tracking experiments with sinusoidal trajectories. The actual target positions reported by the motion platform at 20, 30, or 40 Hz were used as shift vectors for the MLC in beams-eye-view. The system latency of the MLCmore » (i.e., the average latency comprising target device reporting latencies and MLC adjustment latency) and the geometric tracking accuracy were extracted from a sequence of MV portal images acquired during irradiation for the following treatment scenarios: leaf-only motion, jaw + leaf motion, and DLG + leaf motion. Results: The portal imager measurements indicated a clear dependence of the system latency on the target position reporting frequency. Deducting the effect of the target frequency, the leaf adjustment latency was measured to be 38 ± 3 ms for a maximum target speed v of 13 mm/s. The jaw + leaf adjustment latency was 53 ± 3 at a similar speed. The system latency at a target position frequency of 30 Hz was in the range of 56–61 ms for the leaves (v ≤ 31 mm/s), 71–78 ms for the jaw + leaf motion (v ≤ 25 mm/s), and 58–72 ms for the DLG + leaf motion (v ≤ 59 mm/s). The tracking accuracy showed a similar dependency on the target position frequency and the maximum target speed. For the leaves, the root-mean-squared error (RMSE) was between 0.6–1.5 mm depending on the maximum target speed. For the jaw + leaf (DLG + leaf) motion, the RMSE was between 0.7–1.5 mm (1.9–3.4 mm). Conclusions: The authors have measured the latency and geometric accuracy of the Agility MLC, facilitating its future use for clinical tracking applications.« less
Spacecraft servicing demonstration plan
NASA Technical Reports Server (NTRS)
Bergonz, F. H.; Bulboaca, M. A.; Derocher, W. L., Jr.
1984-01-01
A preliminary spacecraft servicing demonstration plan is prepared which leads to a fully verified operational on-orbit servicing system based on the module exchange, refueling, and resupply technologies. The resulting system can be applied at the space station, in low Earth orbit with an orbital maneuvering vehicle (OMV), or be carried with an OMV to geosynchronous orbit by an orbital transfer vehicle. The three phase plan includes ground demonstrations, cargo bay demonstrations, and free flight verifications. The plan emphasizes the exchange of multimission modular spacecraft (MMS) modules which involves space repairable satellites. Three servicer mechanism configurations are the engineering test unit, a protoflight quality unit, and two fully operational units that have been qualified and documented for use in free flight verification activity. The plan balances costs and risks by overlapping study phases, utilizing existing equipment for ground demonstrations, maximizing use of existing MMS equipment, and rental of a spacecraft bus.
NASA Technical Reports Server (NTRS)
Vo, Dinh Phuoc; Soler, Christian; Aussenac, N.; Macchion, D.
1993-01-01
The Assembly, Integration, Test, and Validation (AIT/AIV) of the Ariane4 Vehicle Equipment Bay was held at Matra Marconi Space (MMS) site of Toulouse for several years. For this activity, incident interpretation necessitates a great deal of different knowledge. When complex faults occur, particularly those appearing during overall control tests, experts of various domains (EGSE, software, on-board equipment) have to join for investigation sessions. Thus, an assistance tool for the identification of faulty equipment will improve the efficiency of diagnosis and the overall productivity of test activities. As a solution, the Aramiihs laboratory proposed considering the opportunity of a knowledge based system intended to assist the tester in diagnosis. This knowledge based system is, in fact, a short-term achievement of a long-term goal which is the capitalization of corporate memory in the Ariane4 test domain. Aramiihs is a research unit where engineers from MMS and researchers from the IRIT-CNRS cooperate on problems concerning new types of man-system interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
In 1982, Minerals Management Service (MMS) initiated a multi-year program under contract with Science Applications International Corp. (SAIC) to study the physical oceanography of the Gulf of Mexico as part of its outer continental shelf environmental-studies programs. This particular program, called the Gulf of Mexico Physical Oceanography Program (GOMPOP), has two primary goals: (1) develop a better understanding and description of conditions and processes governing Gulf circulation; and (2) establish a data base that could be used as initial and boundary conditions by a companion MMS-funded numerical circulation-modeling program. The report presents results from the first two of three yearsmore » of observations in the eastern Gulf.« less
Toosizadeh, Nima; Bunting, Matthew; Howe, Carol; Mohler, Jane; Sprinkle, Jonathan; Najafi, Bijan
2014-01-01
Background Motorized mobility scooters (MMS) have become the most acceptable powered assistive device for those with impaired mobility, who have sufficient upper body strength and dexterity, and postural stability. Although several benefits have been attributed to MMS usage, there are likewise risks of use, including injuries and even deaths. Objective The aim of the current review was to summarize results from clinical studies regarding the enhancement of MMS driver safety with a primary focus on improving driving skills/performance using clinical approaches. We addressed three main objectives: 1) to identify and summarize any available evidence (strong, moderate, or weak evidence based on the quality of studies) regarding improved driving skills/performance following training/intervention; 2) to identify types of driving skills/performance that might be improved by training/intervention; and 3) to identify the use of technology in improving MMS performance or training procedure. Methods Articles were searched for in the following medical and engineering electronic databases: PubMed, Cochrane Library, Web of Science, ClinicalTrials.gov, PsycINFO, CINAHL, ERIC, EI Compendix, IEEE Explore, and REHABDATA. Inclusion criteria included: aging adults or those with ambulatory problems; intervention or targeted training; and clinical trial. Outcomes included: MMS skills/performance. Results Six articles met the inclusion criteria and are analyzed in this review. Four of the six articles contained training approaches for MMS drivers including skill trainings using real MMS inside and outside (i.e., in community) and in a 3D virtual environment. The other two studies contain infrastructural assessments (i.e., the minimum space required for safe maneuverability of MMS users) and additional mobility assistance tools to improve maneuverability and to enhance driving performance. Conclusions Results from the current review showed improved driving skills/performance by training, infrastructural assessments, and incorporating mobility assistance tools. MMS driving skills that can be improved through driver training include: weaving, negotiating with and avoiding pedestrian interference, simultaneous reading of signs and obstacle avoidance in path, level driving, forward and reverse driving, figure 8s, turning in place, crossing left slope, maneuvering down a 2-inch curb, and driving up and down inclines. However, several limitations exist in the available literature regarding evidence of improved driving skills/performance following training/intervention, such as small sample sizes, lack of control groups and statistical analysis. PMID:24481257
On the origin of the crescent-shaped distributions observed by MMS at the magnetopause
NASA Astrophysics Data System (ADS)
Lapenta, G.; Berchem, J.; Zhou, M.; Walker, R. J.; El-Alaoui, M.; Goldstein, M. L.; Paterson, W. R.; Giles, B. L.; Pollock, C. J.; Russell, C. T.; Strangeway, R. J.; Ergun, R. E.; Khotyaintsev, Y. V.; Torbert, R. B.; Burch, J. L.
2017-02-01
MMS observations recently confirmed that crescent-shaped electron velocity distributions in the plane perpendicular to the magnetic field occur in the electron diffusion region near reconnection sites at Earth's magnetopause. In this paper, we reexamine the origin of the crescent-shaped distributions in the light of our new finding that ions and electrons are drifting in opposite directions when displayed in magnetopause boundary-normal coordinates. Therefore, E × B drifts cannot cause the crescent shapes. We performed a high-resolution multiscale simulation capturing subelectron skin-depth scales. The results suggest that the crescent-shaped distributions are caused by meandering orbits without necessarily requiring any additional processes found at the magnetopause such as the highly asymmetric magnetopause ambipolar electric field. We use an adiabatic Hamiltonian model of particle motion to confirm that conservation of canonical momentum in the presence of magnetic field gradients causes the formation of crescent shapes without invoking asymmetries or the presence of an E × B drift. An important consequence of this finding is that we expect crescent-shaped distributions also to be observed in the magnetotail, a prediction that MMS will soon be able to test.
Huang, Shuran; Gao, Lingyun; Chen, Yueqin; Guo, Xiang; Liu, Deguo; Wang, Jiehuan; Shi, Zhitao; Sun, Zhanguo; Jin, Feng; Chen, Weijian; Yang, Yunjun
2018-01-27
Vascular and hemodynamic changes were not consistent in symptomatic and non-symptomatic cerebral hemisphere in patients with symptomatic moyamoya syndrome (MMS). Thus, the purpose of this study is to evaluate the hemodynamic difference between symptomatic and non-symptomatic cerebral hemisphere in patients with symptomatic MMS. Patients who were diagnosed with symptomatic MMS were retrospectively collected. All cases underwent CTP examination. Regions of interest (ROIs) were chosen in the mirroring bilateral frontal lobes, temporal lobes, the basal ganglia, and the brainstem as control region. The relative perfusion parameter values of symptomatic side were compared with non-symptomatic side. Of the 40 patients, 33 patients were taken into assessment. In all cases (n = 33), rCBF, rMTT, and rTTP in all regions of interest (ROIs) of the symptomatic side were significantly different from those of contralateral side. In unilateral MMS patients (n = 7), rCBF values were not significantly different between two sides in the temporal lobe and basal ganglia area; rTTP values were significantly higher in the symptomatic side. rMTT values were significantly higher only in the temporal lobe of symptomatic side. In bilateral MMS patients (n = 26), rCBF and rMTT in all ROIs of the symptomatic side were significantly different from those of contralateral side. However, there were no significant differences between two sides in all ROIs on rTTP values. This study demonstrates that rCBF and rMTT were more sensitive than rTTP for evaluating hemodynamic changes in patients with symptomatic bilateral MMS. Furthermore, patients with unilateral MMS may have a preserved rCBF compared to those with bilateral disease.
Wasser, Solomon P
2017-01-01
More than 130 medicinal functions are thought to be produced by medicinal mushrooms (MMs) and fungi, including antitumor, immunomodulating, antioxidant, radical scavenging, cardiovascular, antihypercholesterolemic, antiviral, antibacterial, antiparasitic, antifungal, detoxification, hepatoprotective, antidiabetic, and other effects. Many, if not all, higher Basidiomycetes mushrooms contain biologically active compounds in fruit bodies, cultured mycelia, and cultured broth. Special attention has been paid to mushroom polysaccharides. Numerous bioactive polysaccharides or polysaccharide-protein complexes from MMs seem to enhance innate and cell-mediated immune responses, and they exhibit antitumor activities in animals and humans. While the mechanism of their antitumor actions is still not completely understood, stimulation and modulation of key host immune responses by these mushroom compounds seems to be central. Most important for modern medicine are polysaccharides and low-molecular weight secondary metabolites with antitumor and immunostimulating properties. More than 600 studies have been conducted worldwide, and numerous human clinical trials on MMs have been published. Several of the mushroom compounds have proceeded through phase I, II, and III clinical studies and are used extensively and successfully in Asia to treat various cancers and other diseases. The aim of this review is to provide an overview of and analyze the literature on clinical trials using MMs with human anticancer, oncoimmunological, and immunomodulatory activities. High-quality, long-term, randomized, double-blind, placebo-controlled clinical studies of MMs, including well-sized population studies are definitely needed in order to yield statistical power showing their efficacy and safety. Clinical trials must obtain sufficient data on the efficacy and safety of MM-derived drugs and preparations. Discussion of results based on clinical studies of the anticancer, oncoimmunological, and immunomodulating activity of MMs are highlighted. Epidemiological studies with MMs are also discussed.
Acevedo-Torres, Karina; Fonseca-Williams, Sharon; Ayala-Torres, Sylvette; Torres-Ramos, Carlos A.
2010-01-01
The Saccharomyces cerevisiae APN1 gene that participates in base excision repair has been localized both in the nucleus and the mitochondria. APN1 deficient cells (apn1Δ) show increased mutation frequencies in mitochondrial DNA (mtDNA) suggesting that APN1 is also important for mtDNA stability. To understand APN1-dependent mtDNA repair processes we studied the formation and repair of mtDNA lesions in cells exposed to methyl methanesulfonate (MMS). We show that MMS induces mtDNA damage in a dose-dependent fashion and that deletion of the APN1 gene enhances the susceptibility of mtDNA to MMS. Repair kinetic experiments demonstrate that in wild-type cells (WT) it takes 4 hr to repair the damage induced by 0.1% MMS, whereas in the apn1Δ strain there is a lag in mtDNA repair that results in significant differences in the repair capacity between the two yeast strains. Analysis of lesions in nuclear DNA (nDNA) after treatment with 0.1% MMS shows a significant difference in the amount of nDNA lesions between WT and apn1Δ cells. Interestingly, comparisons between nDNA and mtDNA damage show that nDNA is more sensitive to the effects of MMS treatment. However, both strains are able to repair the nDNA lesions, contrary to mtDNA repair, which is compromised in the apn1Δ mutant strain. Therefore, although nDNA is more sensitive than mtDNA to the effects of MMS, deletion of APN1 has a stronger phenotype in mtDNA repair than in nDNA. These results highlight the prominent role of APN1 in the repair of environmentally induced mtDNA damage. PMID:19197988
2015-01-12
Workers conduct a solar array illumination test on the upper stack of the Magnetospheric Multiscale spacecraft, or MMS, in the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. Illumination testing of the lower instrumentation payload stack was completed in December. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12. To learn more about MMS, visit http://www.nasa.gov/mms. Photo credit: NASA/Kim Shiflett
2015-01-12
Workers conduct a solar array illumination test on the upper stack of the Magnetospheric Multiscale spacecraft, or MMS, in the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. Illumination testing of the lower instrumentation payload stack was completed in December. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12. To learn more about MMS, visit http://www.nasa.gov/mms. Photo credit: NASA/Kim Shiflett
2015-01-12
A solar array illumination test is performed on the upper stack of the Magnetospheric Multiscale spacecraft, or MMS, in the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. Illumination testing of the lower instrumentation payload stack was completed in December. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12. To learn more about MMS, visit http://www.nasa.gov/mms. Photo credit: NASA/Kim Shiflett
2015-01-12
A solar array illumination test is performed on the upper stack of the Magnetospheric Multiscale spacecraft, or MMS, in the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. Illumination testing of the lower instrumentation payload stack was completed in December. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12. To learn more about MMS, visit http://www.nasa.gov/mms. Photo credit: NASA/Kim Shiflett
Light irradiation helps magnetotactic bacteria eliminate intracellular reactive oxygen species.
Li, Kefeng; Wang, Pingping; Chen, Chuanfang; Chen, Changyou; Li, Lulu; Song, Tao
2017-09-01
Magnetotactic bacteria (MTB) demonstrate photoresponse. However, little is known about the biological significance of this behaviour. Magnetosomes exhibit peroxidase-like activity and can scavenge reactive oxygen species (ROS). Magnetosomes extracted from the Magnetospirillum magneticum strain AMB-1 show enhanced peroxidase-like activity under illumination. The present study investigated the effects of light irradiation on nonmagnetic (without magnetosomes) and magnetic (with magnetosomes) AMB-1 cells. Results showed that light irradiation did not affect the growth of nonmagnetic and magnetic cells but significantly increased magnetosome synthesis and reduced intracellular ROS level in magnetic cells. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to analyse the expression level of magnetosome formation-associated genes (mamA, mms6, mms13 and mmsF) and stress-related genes (recA, oxyR, SOD, amb0664 and amb2684). Results showed that light irradiation upregulated the expression of mms6, mms13 and mmsF. Furthermore, light irradiation upregulated the expression of stress-related genes in nonmagnetic cells but downregulated them in magnetic cells. Additionally, magnetic cells exhibited stronger phototactic behaviour than nonmagnetic ones. These results suggested that light irradiation could heighten the ability of MTB to eliminate intracellular ROS and help them adapt to lighted environments. This phenomenon may be related to the enhanced peroxidase-like activity of magnetosomes under light irradiation. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Connolly, Karen L; Nehal, Kishwer S; Dusza, Stephen W; Rossi, Anthony M; Lee, Erica H
2016-09-01
Intraoperative pain during Mohs micrographic surgery (MMS) has not been characterized. However, many patients report postoperative pain on the day of MMS. We sought to determine if patients experience pain during their MMS visit. In phase I of this study, patients were asked to report intraoperative pain level using the verbal numerical rating scale (0-10) at discharge. In phase II, pain levels were assessed before each Mohs layer and at discharge, to determine whether pain was experienced throughout the day. Pain was reported at some point during the MMS day for 32.8% of patients (n = 98). The mean pain number reported was 3.7 (range 1-8) out of 10. Pain was more commonly reported by patients who spent a longer time in the office, had 3 or more Mohs layers, and had a flap or graft repair. Patients most frequently reported pain with surgical sites of the periorbital area and nose. Time between Mohs layers was not measured. There was nonstandardized use of intraoperative local anesthesia volume and oral pain medications. Some patients experience pain during MMS. However, the majority of patients report a low level of pain. Additional preventative measures could be considered in patients at higher risk. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.
Composite plasma polymerized sulfonated polystyrene membrane for PEMFC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nath, Bhabesh Kumar; Khan, Aziz; Chutia, Joyanti, E-mail: jchutiaiasst@gmail.com
2015-10-15
Highlights: • Methyl methane sulfonate (MMS) is used as the sulfonating agent. • The proton conductivity of the membrane is found to be 0.141 S cm{sup −1}. • Power density of fuel cell with styrene/MMS membrane is 0.5 W cm{sup −2}. • The membrane exhibits thermal stability up to 140 °C. - Abstract: This work presents the introduction of an organic compound methyl methane sulfonate (MMS) for the first time in fabrication of polystyrene based proton exchange membrane (PEM) by plasma polymerization process. The membrane is fabricated by co-polymerizing styrene and MMS in capacitively coupled continuous RF plasma. The chemicalmore » composition of the plasma polymerized polymer membrane is investigated using Fourier Transform Infrared Spectroscopy which reveals the formation of composite structure of styrene and MMS. The surface morphology studied using AFM and SEM depicts the effect of higher partial pressure of MMS on surface topography of the membrane. The proton transport property of the membrane studied using electrochemical impedance spectroscopy shows the achievement of maximum proton conductivity of 0.141 S cm{sup −1} which is comparable to Nafion 117 membrane. Fuel cell performance test of the synthesized membrane shows a maximum power density of 500 mW cm{sup −2} and current density of 0.62 A cm{sup −2} at 0.6 V.« less
Princz, Lissa N; Wild, Philipp; Bittmann, Julia; Aguado, F Javier; Blanco, Miguel G; Matos, Joao; Pfander, Boris
2017-03-01
DNA repair by homologous recombination is under stringent cell cycle control. This includes the last step of the reaction, disentanglement of DNA joint molecules (JMs). Previous work has established that JM resolving nucleases are activated specifically at the onset of mitosis. In case of budding yeast Mus81-Mms4, this cell cycle stage-specific activation is known to depend on phosphorylation by CDK and Cdc5 kinases. Here, we show that a third cell cycle kinase, Cdc7-Dbf4 (DDK), targets Mus81-Mms4 in conjunction with Cdc5-both kinases bind to as well as phosphorylate Mus81-Mms4 in an interdependent manner. Moreover, DDK-mediated phosphorylation of Mms4 is strictly required for Mus81 activation in mitosis, establishing DDK as a novel regulator of homologous recombination. The scaffold protein Rtt107, which binds the Mus81-Mms4 complex, interacts with Cdc7 and thereby targets DDK and Cdc5 to the complex enabling full Mus81 activation. Therefore, Mus81 activation in mitosis involves at least three cell cycle kinases, CDK, Cdc5 and DDK Furthermore, tethering of the kinases in a stable complex with Mus81 is critical for efficient JM resolution. © 2017 The Authors. Published under the terms of the CC BY NC ND 4.0 license.
NASA Astrophysics Data System (ADS)
Shahbazi, M.; Sattari, M.; Homayouni, S.; Saadatseresht, M.
2012-07-01
Recent advances in positioning techniques have made it possible to develop Mobile Mapping Systems (MMS) for detection and 3D localization of various objects from a moving platform. On the other hand, automatic traffic sign recognition from an equipped mobile platform has recently been a challenging issue for both intelligent transportation and municipal database collection. However, there are several inevitable problems coherent to all the recognition methods completely relying on passive chromatic or grayscale images. This paper presents the implementation and evaluation of an operational MMS. Being distinct from the others, the developed MMS comprises one range camera based on Photonic Mixer Device (PMD) technology and one standard 2D digital camera. The system benefits from certain algorithms to detect, recognize and localize the traffic signs by fusing the shape, color and object information from both range and intensity images. As the calibrating stage, a self-calibration method based on integrated bundle adjustment via joint setup with the digital camera is applied in this study for PMD camera calibration. As the result, an improvement of 83 % in RMS of range error and 72 % in RMS of coordinates residuals for PMD camera, over that achieved with basic calibration is realized in independent accuracy assessments. Furthermore, conventional photogrammetric techniques based on controlled network adjustment are utilized for platform calibration. Likewise, the well-known Extended Kalman Filtering (EKF) is applied to integrate the navigation sensors, namely GPS and INS. The overall acquisition system along with the proposed techniques leads to 90 % true positive recognition and the average of 12 centimetres 3D positioning accuracy.
NASA Astrophysics Data System (ADS)
Shahbazi, M.; Sattari, M.; Homayouni, S.; Saadatseresht, M.
2012-07-01
Recent advances in positioning techniques have made it possible to develop Mobile Mapping Systems (MMS) for detection and 3D localization of various objects from a moving platform. On the other hand, automatic traffic sign recognition from an equipped mobile platform has recently been a challenging issue for both intelligent transportation and municipal database collection. However, there are several inevitable problems coherent to all the recognition methods completely relying on passive chromatic or grayscale images. This paper presents the implementation and evaluation of an operational MMS. Being distinct from the others, the developed MMS comprises one range camera based on Photonic Mixer Device (PMD) technology and one standard 2D digital camera. The system benefits from certain algorithms to detect, recognize and localize the traffic signs by fusing the shape, color and object information from both range and intensity images. As the calibrating stage, a self-calibration method based on integrated bundle adjustment via joint setup with the digital camera is applied in this study for PMD camera calibration. As the result, an improvement of 83% in RMS of range error and 72% in RMS of coordinates residuals for PMD camera, over that achieved with basic calibration is realized in independent accuracy assessments. Furthermore, conventional photogrammetric techniques based on controlled network adjustment are utilized for platform calibration. Likewise, the well-known Extended Kalman Filtering (EKF) is applied to integrate the navigation sensors, namely GPS and INS. The overall acquisition system along with the proposed techniques leads to 90% true positive recognition and the average of 12 centimetres 3D positioning accuracy.
In-Flight Calibration Processes for the MMS Fluxgate Magnetometers
NASA Technical Reports Server (NTRS)
Bromund, K. R.; Leinweber, H. K.; Plaschke, F.; Strangeway, R. J.; Magnes, W.; Fischer, D.; Nakamura, R.; Anderson, B. J.; Russell, C. T.; Baumjohann, W.;
2015-01-01
The calibration effort for the Magnetospheric Multiscale Mission (MMS) Analog Fluxgate (AFG) and DigitalFluxgate (DFG) magnetometers is a coordinated effort between three primary institutions: University of California, LosAngeles (UCLA); Space Research Institute, Graz, Austria (IWF); and Goddard Space Flight Center (GSFC). Since thesuccessful deployment of all 8 magnetometers on 17 March 2015, the effort to confirm and update the groundcalibrations has been underway during the MMS commissioning phase. The in-flight calibration processes evaluatetwelve parameters that determine the alignment, orthogonalization, offsets, and gains for all 8 magnetometers usingalgorithms originally developed by UCLA and the Technical University of Braunschweig and tailored to MMS by IWF,UCLA, and GSFC. We focus on the processes run at GSFC to determine the eight parameters associated with spin tonesand harmonics. We will also discuss the processing flow and interchange of parameters between GSFC, IWF, and UCLA.IWF determines the low range spin axis offsets using the Electron Drift Instrument (EDI). UCLA determines the absolutegains and sensor azimuth orientation using Earth field comparisons. We evaluate the performance achieved for MMS andgive examples of the quality of the resulting calibrations.
Solar microwave millisecond spike at 2.84 GHz
NASA Technical Reports Server (NTRS)
Fu, Qi-Jun; Jin, Sheng-Zhen; Zhao, Ren-Yang; Zheng, Le-Ping; Liu, Yu-Ying; Li, Xiao-Cong; Wang, Shu-Lan; Chen, Zhi-Jun; Hu, Chu-Min
1986-01-01
Using the high time resolution of 1 ms, the data of solar microwave millisecond spike (MMS) event was recorded more than two hundred times at the frequency of 2.84 GHz at Beijing (Peking) Observatory since May 1981. A preliminary analysis was made. It can be seen from the data that the MMS-events have a variety of the fast activities such as the dispersed and isolated spikes, the clusters of the crowded spikes, the weak spikes superimposed on the noise background, and the phenomena of absorption. The marked differences from that observed with lower time resolution are presented. Using the data, a valuable statistical analysis was made. There are close correlations between MMS-events and hard X-ray bursts, and fast drifting bursts. The MMS events are highly dependent on the type of active regions and the magnetic field configuration. It seems to be crucial to find out the accurate positions on the active region where the MMS-events happen and to make co-operative observations at different bands during the special period when specific active regions appear on the solar disk.
SCC of Alloy 690 and its Weld Metals
NASA Astrophysics Data System (ADS)
Andresen, Peter L.; Morra, Martin M.; Ahluwalia, Kawaljit
Alloy 690 base metal, HAZ and weld metal were tested in representative PWR primary water at 290 to 360°C. Intergranular cracking was observed in all materials. Growth rates as high as 1.2 × 10-6 mm/s were observed in the S-L orientation with micro structural banded material after cold rolling or forging to align the planes of banding, rolling and cracking. However, not all banded material has exhibited such high growth rates. Growth rates on homogeneous Alloy 690, including extruded CRDM tubing, often showed growth rates in the range of 2 - 8 × 10-8 mm/s in cold worked condition and an S-L orientation. Crack growth rates in some Alloy 690 tests were in the range of 1 to 10 × 10-9 mm/s, primarily in orientations other than S-L. For cracks aligned along the HAZ, growth rates as high as 1.2 × 10-8 mm/s were observed. Alloy 152/52/52i weld metals always exhibited low growth rates, apart from a weld that was further cold worked by 20%, which grew at 7 × 10-9 mm/s.
Launch Window Analysis for the Magnetospheric Multiscale Mission
NASA Technical Reports Server (NTRS)
Williams, Trevor W.
2012-01-01
The NASA Magnetospheric Multiscale (MMS) mission will fly four spinning spacecraft in formation in highly elliptical orbits to study the magnetosphere of the Earth. This paper describes the development of an MMS launch window tool that uses the orbitaveraged Variation of Parameter equations as the basis for a semi-analytic quantification of the dominant oblateness and lunisolar perturbation effects on the MMS orbit. This approach, coupled with a geometric interpretation of all of the MMS science and engineering constraints, allows a scan of 180(sup 2) = 32,400 different (RAAN, AOP) pairs to be carried out for a specified launch day in less than 10 s on a typical modern laptop. The resulting plot indicates the regions in (RAAN, AOP) space where each constraint is satisfied or violated: their intersection gives, in an easily interpreted graphical manner, the final solution space for the day considered. This tool, SWM76, is now used to provide launch conditions to the full fidelity (but far slower) MMS simulation code: very good agreement has been observed between the two methods.
Theory and Simulations of Solar System Plasmas
NASA Technical Reports Server (NTRS)
Goldstein, Melvyn L.
2011-01-01
"Theory and simulations of solar system plasmas" aims to highlight results from microscopic to global scales, achieved by theoretical investigations and numerical simulations of the plasma dynamics in the solar system. The theoretical approach must allow evidencing the universality of the phenomena being considered, whatever the region is where their role is studied; at the Sun, in the solar corona, in the interplanetary space or in planetary magnetospheres. All possible theoretical issues concerning plasma dynamics are welcome, especially those using numerical models and simulations, since these tools are mandatory whenever analytical treatments fail, in particular when complex nonlinear phenomena are at work. Comparative studies for ongoing missions like Cassini, Cluster, Demeter, Stereo, Wind, SDO, Hinode, as well as those preparing future missions and proposals, like, e.g., MMS and Solar Orbiter, are especially encouraged.
Electrodynamic Context of Magnetopause Dynamics Observed by Magnetospheric Multiscale
NASA Technical Reports Server (NTRS)
Anderson, Brian J.; Russell, Christopher T.; Strangeway, Robert J.; Plaschke, Ferdinand; Magnes, Werner; Fischer, David; Korth, Haje; Merkin, Viacheslav G.; Barnes, Robin J.; Waters, Colin L.;
2016-01-01
Magnetopause observations by Magnetospheric Multiscale (MMS) and Birkeland currents observed by the Active Magnetosphere and Planetary Electrodynamics Response Experiment are used to relate magnetopause encounters to ionospheric electrodynamics. MMS magnetopause crossings on 15 August and 19 September 2015 occurred earthward of expectations due to solar wind ram pressure alone and coincided with equatorward expansion of the Birkeland currents. Magnetopause erosion, consistent with expansion of the polar cap, contributed to the magnetopause crossings. The ionospheric projections of MMS during the events and at times of the magnetopause crossings indicate that MMS observations are related to the main path of flux transport in one case but not in a second. The analysis provides a way to routinely relate in situ observations to the context of in situ convection and flux transport.
The Electron Drift Instrument for MMS
NASA Astrophysics Data System (ADS)
Torbert, R. B.; Vaith, H.; Granoff, M.; Widholm, M.; Gaidos, J. A.; Briggs, B. H.; Dors, I. G.; Chutter, M. W.; Macri, J.; Argall, M.; Bodet, D.; Needell, J.; Steller, M. B.; Baumjohann, W.; Nakamura, R.; Plaschke, F.; Ottacher, H.; Hasiba, J.; Hofmann, K.; Kletzing, C. A.; Bounds, S. R.; Dvorsky, R. T.; Sigsbee, K.; Kooi, V.
2016-03-01
The Electron Drift Instrument (EDI) on the Magnetospheric Multiscale (MMS) mission measures the in-situ electric and magnetic fields using the drift of a weak beam of test electrons that, when emitted in certain directions, return to the spacecraft after one or more gyrations. This drift is related to the electric field and, to a lesser extent, the gradient in the magnetic field. Although these two quantities can be determined separately by use of different electron energies, for MMS regions of interest the magnetic field gradient contribution is negligible. As a by-product of the drift determination, the magnetic field strength and constraints on its direction are also determined. The present paper describes the scientific objectives, the experimental method, and the technical realization of the various elements of the instrument on MMS.
2014-11-13
CAPE CANAVERAL, Fla. – Two Magnetospheric Multiscale, or MMS, spacecraft, comprising the mission's upper stack, come into view as the shipping container is removed in Building 2 of the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The two MMS spacecraft comprising the lower stack arrived at Astrotech on Oct. 29. The Magnetospheric Multiscale mission is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Kim Shiflett
2014-11-13
CAPE CANAVERAL, Fla. – Two Magnetospheric Multiscale, or MMS, spacecraft comprising the mission’s upper stack, at left, arrive in the Building 1 high bay of the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The two MMS spacecraft comprising the lower stack, at right, arrived at Astrotech on Oct. 29. The Magnetospheric Multiscale mission is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Kim Shiflett
2014-11-13
CAPE CANAVERAL, Fla. – Two Magnetospheric Multiscale, or MMS, spacecraft comprising the mission’s upper stack arrive in the Building 1 airlock of the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The two MMS spacecraft comprising the lower stack, in the high bay uat right, arrived at Astrotech on Oct. 29. The Magnetospheric Multiscale mission is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Kim Shiflett
2014-11-13
CAPE CANAVERAL, Fla. – Two Magnetospheric Multiscale, or MMS, spacecraft comprising the mission’s upper stack are transported to the airlock of Building 1 of the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The two MMS spacecraft comprising the lower stack arrived at Astrotech on Oct. 29. The Magnetospheric Multiscale mission is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Kim Shiflett
2014-11-13
CAPE CANAVERAL, Fla. – The protective shipping container is removed from around the upper stack of the Magnetospheric Multiscale, or MMS, spacecraft in Building 2 of the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The two MMS spacecraft comprising the lower stack arrived at Astrotech on Oct. 29. The Magnetospheric Multiscale mission is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Kim Shiflett
2014-11-13
CAPE CANAVERAL, Fla. – Two Magnetospheric Multiscale , or MMS, spacecraft comprising the mission’s upper stack are lowered onto a payload dolly in Building 2 of the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The two MMS spacecraft comprising the lower stack arrived at Astrotech on Oct. 29. The Magnetospheric Multiscale mission is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Kim Shiflett
MMS Spacecraft Uncrated & Moved
2014-10-29
Workers attach a crane to the protective shipping container to prepare to uncover the lower stack, mini-stack number 1, two of the observatories for NASA's Magnetospheric Multiscale Observatory, or MMS. They were delivered to the Building 2 south encapsulation bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The MMS upper stack, mini-stack number 2, is scheduled to arrive in about two weeks. MMS is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015.
2014-11-13
CAPE CANAVERAL, Fla. – Two Magnetospheric Multiscale, or MMS, spacecraft comprising the mission’s upper stack are lifted from the transporter in Building 2 of the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The two MMS spacecraft comprising the lower stack arrived at Astrotech on Oct. 29. The Magnetospheric Multiscale mission is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Kim Shiflett
2014-11-13
CAPE CANAVERAL, Fla. – Two Magnetospheric Multiscale, or MMS, spacecraft comprising the mission’s upper stack are towed from Building 2 to the Building 1 high bay of the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The two MMS spacecraft comprising the lower stack arrived at Astrotech on Oct. 29. The Magnetospheric Multiscale mission is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Kim Shiflett
2014-11-13
CAPE CANAVERAL, Fla. – The protective covering is removed from the two Magnetospheric Multiscale, or MMS, spacecraft comprising the mission’s upper stack in the Building 1 high bay of the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The two MMS spacecraft comprising the lower stack arrived at Astrotech on Oct. 29. The Magnetospheric Multiscale mission is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Kim Shiflett
30 CFR 285.221 - What bidding systems may MMS use for commercial leases and limited leases?
Code of Federal Regulations, 2010 CFR
2010-07-01
..., DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Issuance of OCS Renewable Energy Leases Competitive Lease Award Process § 285.221 What...
Results from Navigator GPS Flight Testing for the Magnetospheric MultiScale Mission
NASA Technical Reports Server (NTRS)
Lulich, Tyler D.; Bamford, William A.; Wintermitz, Luke M. B.; Price, Samuel R.
2012-01-01
The recent delivery of the first Goddard Space Flight Center (GSFC) Navigator Global Positioning System (GPS) receivers to the Magnetospheric MultiScale (MMS) mission spacecraft is a high water mark crowning a decade of research and development in high-altitude space-based GPS. Preceding MMS delivery, the engineering team had developed receivers to support multiple missions and mission studies, such as Low Earth Orbit (LEO) navigation for the Global Precipitation Mission (GPM), above the constellation navigation for the Geostationary Operational Environmental Satellite (GOES) proof-of-concept studies, cis-Lunar navigation with rapid re-acquisition during re-entry for the Orion Project and an orbital demonstration on the Space Shuttle during the Hubble Servicing Mission (HSM-4).
2015-02-07
A solid rocket motor for the United Launch Alliance Atlas V rocket slated to boost NASA's Magnetospheric Multiscale mission, or MMS, is lowered into position inside the mobile service tower at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. Four identical MMS spacecraft will study the mystery of how magnetic fields around Earth connect and disconnect, explosively releasing energy via a process known a magnetic reconnection. Launch is set for March 12. To learn more: http://www.nasa.gov/mms. Photo credit: NASA/ Kim Shiflett
2015-02-07
A solid rocket motor for the United Launch Alliance Atlas V rocket slated to boost NASA's Magnetospheric Multiscale mission, or MMS, is lowered into position inside the mobile service tower at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. Four identical MMS spacecraft will study the mystery of how magnetic fields around Earth connect and disconnect, explosively releasing energy via a process known a magnetic reconnection. Launch is set for March 12. To learn more: http://www.nasa.gov/mms. Photo credit: NASA/ Kim Shiflett
2015-02-07
A solid rocket motor for the United Launch Alliance Atlas V rocket slated to boost NASA's Magnetospheric Multiscale mission, or MMS, is lifted at the mobile service tower at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. Four identical MMS spacecraft will study the mystery of how magnetic fields around Earth connect and disconnect, explosively releasing energy via a process known a magnetic reconnection. Launch is set for March 12. To learn more: http://www.nasa.gov/mms. Photo credit: NASA/ Kim Shiflett
2015-02-07
A solid rocket motor for the United Launch Alliance Atlas V rocket slated to boost NASA's Magnetospheric Multiscale mission, or MMS, is lowered into position inside the mobile service tower at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. Four identical MMS spacecraft will study the mystery of how magnetic fields around Earth connect and disconnect, explosively releasing energy via a process known a magnetic reconnection. Launch is set for March 12. To learn more: http://www.nasa.gov/mms. Photo credit: NASA/ Kim Shiflett
2015-02-07
A solid rocket motor for the United Launch Alliance Atlas V rocket slated to boost NASA's Magnetospheric Multiscale mission, or MMS, arrives at the mobile service tower at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. Four identical MMS spacecraft will study the mystery of how magnetic fields around Earth connect and disconnect, explosively releasing energy via a process known a magnetic reconnection. Launch is set for March 12. To learn more: http://www.nasa.gov/mms. Photo credit: NASA/ Kim Shiflett
2015-02-07
A solid rocket motor for the United Launch Alliance Atlas V rocket slated to boost NASA's Magnetospheric Multiscale mission, or MMS, is lowered into position inside the mobile service tower at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. Four identical MMS spacecraft will study the mystery of how magnetic fields around Earth connect and disconnect, explosively releasing energy via a process known a magnetic reconnection. Launch is set for March 12. To learn more: http://www.nasa.gov/mms. Photo credit: NASA/ Kim Shiflett
2015-02-07
A solid rocket motor for the United Launch Alliance Atlas V rocket slated to boost NASA's Magnetospheric Multiscale mission, or MMS, is lifted at the mobile service tower at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. Four identical MMS spacecraft will study the mystery of how magnetic fields around Earth connect and disconnect, explosively releasing energy via a process known a magnetic reconnection. Launch is set for March 12. To learn more: http://www.nasa.gov/mms. Photo credit: NASA/ Kim Shiflett
2015-02-07
A solid rocket motor for the United Launch Alliance Atlas V rocket slated to boost NASA's Magnetospheric Multiscale mission, or MMS, is lifted at the mobile service tower at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. Four identical MMS spacecraft will study the mystery of how magnetic fields around Earth connect and disconnect, explosively releasing energy via a process known a magnetic reconnection. Launch is set for March 12. To learn more: http://www.nasa.gov/mms. Photo credit: NASA/ Kim Shiflett
2015-02-07
A solid rocket motor for the United Launch Alliance Atlas V rocket slated to boost NASA's Magnetospheric Multiscale mission, or MMS, arrives at the mobile service tower at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. Four identical MMS spacecraft will study the mystery of how magnetic fields around Earth connect and disconnect, explosively releasing energy via a process known a magnetic reconnection. Launch is set for March 12. To learn more: http://www.nasa.gov/mms. Photo credit: NASA/ Kim Shiflett
2015-02-07
A solid rocket motor for the United Launch Alliance Atlas V rocket slated to boost NASA's Magnetospheric Multiscale mission, or MMS, arrives at the mobile service tower at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. Four identical MMS spacecraft will study the mystery of how magnetic fields around Earth connect and disconnect, explosively releasing energy via a process known a magnetic reconnection. Launch is set for March 12. To learn more: http://www.nasa.gov/mms. Photo credit: NASA/ Kim Shiflett
2015-02-07
A solid rocket motor for the United Launch Alliance Atlas V rocket slated to boost NASA's Magnetospheric Multiscale mission, or MMS, is lowered into position inside the mobile service tower at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. Four identical MMS spacecraft will study the mystery of how magnetic fields around Earth connect and disconnect, explosively releasing energy via a process known a magnetic reconnection. Launch is set for March 12. To learn more: http://www.nasa.gov/mms. Photo credit: NASA/ Kim Shiflett
2015-02-07
A solid rocket motor for the United Launch Alliance Atlas V rocket slated to boost NASA's Magnetospheric Multiscale mission, or MMS, is lifted at the mobile service tower at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. Four identical MMS spacecraft will study the mystery of how magnetic fields around Earth connect and disconnect, explosively releasing energy via a process known a magnetic reconnection. Launch is set for March 12. To learn more: http://www.nasa.gov/mms. Photo credit: NASA/ Kim Shiflett
2015-02-07
A solid rocket motor for the United Launch Alliance Atlas V rocket slated to boost NASA's Magnetospheric Multiscale mission, or MMS, is lifted at the mobile service tower at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. Four identical MMS spacecraft will study the mystery of how magnetic fields around Earth connect and disconnect, explosively releasing energy via a process known a magnetic reconnection. Launch is set for March 12. To learn more: http://www.nasa.gov/mms. Photo credit: NASA/ Kim Shiflett
2015-01-12
Preparations are underway for illumination testing of the solar panels on the upper stack of the Magnetospheric Multiscale spacecraft, or MMS, in the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. Illumination testing of the lower instrumentation payload stack was completed in December. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12. To learn more about MMS, visit http://www.nasa.gov/mms. Photo credit: NASA/Kim Shiflett
Magnetospheric Multiscale (MMS) Mission Attitude Ground System Design
NASA Technical Reports Server (NTRS)
Sedlak, Joseph E.; Superfin, Emil; Raymond, Juan C.
2010-01-01
This paper describes the attitude ground system (AGS) design to be used for support of the Magnetospheric MultiScale (MMS) mission. The AGS exists as one component of the mission operations control center. It has responsibility for validating the onboard attitude and accelerometer bias estimates, calibrating the attitude sensors and the spacecraft inertia tensor, and generating a definitive attitude history for use by the science teams. NASA's Goddard Space Flight Center (GSFC) in Greenbelt, Maryland is responsible for developing the MMS spacecraft, for the overall management of the MMS mission, and for mission operations. MMS is scheduled for launch in 2014 for a planned two-year mission. The MMS mission consists of four identical spacecraft flying in a tetrahedral formation in an eccentric Earth orbit. The relatively tight formation, ranging from 10 to 400 km, will provide coordinated observations giving insight into small-scale magnetic field reconnection processes. By varying the size of the tetrahedron and the orbital semi-major axis and eccentricity, and making use of the changing solar phase, this geometry allows for the study of both bow shock and magnetotail plasma physics, including acceleration, reconnection, and turbulence. The mission divides into two phases for science; these phases will have orbit dimensions of 1.2 x 12 Earth radii in the first phase and 1.2x25 Earth radii in the second in order to study the dayside magnetopause and the nightside magnetotail, respectively. The orbital periods are roughly one day and three days for the two mission phases. Each of the four MMS spacecraft will be spin stabilized at 3 revolutions per minute (rpm), with the spin axis oriented near the ecliptic north pole but tipped approximately 2.5 deg towards the Sun line. The main body of each spacecraft will be an eight-sided platform with diameter of 3.4 m and height of 1.2 m. Several booms are attached to this central core: two axial booms of 14.9 m length, two radial magnetometer booms of 5 m length, and four radial wire booms of 60 m length. Attitude and orbit control will use a set of axial and radial thrusters. A four-head star tracker and a slit-type digital Sun sensor (DSS) provide input for attitude determination. In addition, an accelerometer will be used for closed-loop orbit maneuver control. The primary AGS product will be a daily definitive attitude history. Due to power limitations, the star tracker and accelerometer data will not be available at all times. However, tracker data from at least 10 percent of each orbit and continuous DSS data will be provided. An extended Kalman filter (EKF) will be used to estimate the three-axis attitude (i.e., spin axis orientation and spin phase) and rotation rate for all times when the tracker data is valid. For other times, the attitude is generated by assuming a constant angular momentum vector in the inertial frame. The DSS sun pulse will provide a timing signal to maintain an accurate spin phase. There will be times when the Sun is occulted and DSS data is not available. If this occurs at the start or end of a definitive attitude product, then the spin phase will be extrapolated using the mean rate determined by the EKF.
Magnetospheric Multiscale (MMS) Mission Attitude Ground System Design
NASA Technical Reports Server (NTRS)
Sedlak, Joseph E.; Superfin, Emil; Raymond, Juan C.
2011-01-01
This paper describes the attitude ground system (AGS) design to be used for support of the Magnetospheric MultiScale (MMS) mission. The AGS exists as one component of the mission operations control center. It has responsibility for validating the onboard attitude and accelerometer bias estimates, calibrating the attitude sensors and the spacecraft inertia tensor, and generating a definitive attitude history for use by the science teams. NASA's Goddard Space Flight Center (GSFC) in Greenbelt, Maryland is responsible for developing the MMS spacecraft, for the overall management of the MMS mission, and for mission operations. MMS is scheduled for launch in 2014 for a planned two-year mission. The MMS mission consists of four identical spacecraft flying in a tetrahedral formation in an eccentric Earth orbit. The relatively tight formation, ranging from 10 to 400 km, will provide coordinated observations giving insight into small-scale magnetic field reconnection processes. By varying the size of the tetrahedron and the orbital semi-major axis and eccentricity, and making use of the changing solar phase, this geometry allows for the study of both bow shock and magnetotail plasma physics, including acceleration, reconnection, and turbulence. The mission divides into two phases for science; these phases will have orbit dimensions of l.2xl2 Earth radii in the first phase and l.2x25 Earth radii in the second in order to study the dayside magnetopause and the nightside magnetotail, respectively. The orbital periods are roughly one day and three days for the two mission phases. Each of the four MMS spacecraft will be spin stabilized at 3 revolutions per minute (rpm), with the spin axis oriented near the ecliptic north pole but tipped approximately 2.5 deg towards the Sun line. The main body of each spacecraft will be an eight-sided platform with diameter of 3.4 m and height of 1.2 m. Several booms are attached to this central core: two axial booms of 14.9 m length, two radial magnetometer booms of 5 m length, and four radial -wire booms of 60 m length. Attitude and orbit control will use a set of axial and radial thrusters. A four-head star tracker and a slit-type digital Sun sensor (DSS) provide input for attitude determination. In addition, an accelerometer will be· used for closed-loop orbit maneuver control. The primary AGS product will be a daily definitive attitude history. Due to power limitations; the star tracker and accelerometer data will not be available at all times. However, tracker data from at least 10 percent of each orbit and continuous DSS data will be provided. An extended Kalman filter (EKF) will be used to estimate the three-axis attitude (i.e., spin axis orientation and spin phase) and rotation rate for all times when the tracker data is valid. For other times, the attitude is generated by assuming a constant angular momentum vector in the inertial frame. The DSS sun pulse will provide a timing signal to maintain an accurate spin phase. There will be times when the Sun is occulted and DSS data is not available. If this occurs at the start or end of a definitive attitude product, then the spin phase will be extrapolated using the mean rate determined by the EKF.
NASA Astrophysics Data System (ADS)
Müller, C. S.; Auerbach, H.; Stegmaier, K.; Wolny, J. A.; Schünemann, V.; Pierik, A. J.
2017-11-01
The Thermus thermophilus Rieske protein ( TtRP) contains a 2Fe-2S cluster with one iron (Fe-Cys) coordinated by four sulfur atoms (2xS2- and 2xCys) and one iron (Fe-His) by two sulfur and two nitrogen atoms (2xS2-, His134 and His154). Here, the protein is investigated at three pH values (6.0, 8.5 and 10.5) in order to elucidate the protonation states of the His-ligands. Examination of the effect of protonation on the electronic structure of the cluster via Mössbauer spectroscopy gives a deeper understanding of the coupling of electron transfer to the protonation state of the His-ligands. Two components (1 referring to Fe-Cys and 2 to Fe-His) with parameters typical for a diamagnetic [2Fe-2S]2+ cluster are detected. The Mössbauer parameters and the protonation state clearly correlate: while δ remains almost pH-independent with δ 1 (pH6.0) = 0.23 (± 0.01) mms- 1 and δ 1 (pH10.5) = 0.24 (± 0.01) mms- 1 for Fe-Cys, it decreases for Fe-His from δ 2 (pH6.0) = 0.34 (± 0.01) mms- 1 to δ 2 (pH10.5) = 0.28 (± 0.01) mms- 1. Δ E Q changes from Δ E Q1 (pH6.0) = 0.57 (± 0.01) mms- 1 to Δ E Q1 (pH10.5) = 0.45 (± 0.01) mms- 1 and from Δ E Q2 (pH6.0) = 1.05 (± 0.01) mms- 1 to Δ E Q2 (pH10.5) = 0.71 (± 0.01) mms- 1. Density functional theory (DFT)-calculations based on the crystal structure (pdb 1NYK) (Hunsicker-Wang et al. Biochemistry 42, 7303, 2003) have been performed for the Rieske-cluster with different His-ligand protonation states, reproducing the experimentally observed trend.
Growth rate and malignant potential of small gallbladder polyps--systematic review of evidence.
Wiles, Rebecca; Varadpande, Mandar; Muly, Sudha; Webb, Jolanta
2014-08-01
The overall aim of this systematic review was to determine whether ultrasound (US) follow up for gallbladder polyps (GBPs) measuring less than 10 mms is necessary. A search was performed in MEDLINE and EMBASE between January 1976 and January 2012 using keywords: gallbladder, polyps, neoplasm, cancer, tumour, carcinoma, malignant, adenoma. Included were studies involving adult patients, examined with transabdominal US at least twice. The outcomes of included studies were gallbladder polyp growth as demonstrated on US over time, followed where available by histological examination of cholecystectomy specimens. Ten studies met the inclusion criteria for the review. Altogether 1958 subjects with mean age between 41.5 and 59 years were followed up with US. The percentage of GBPs which showed growth over the follow up period ranged from 1% to 23%. 43 neoplastic polyps were found in total irrespective of size, 20 of which were malignant and at least 7 of those were >10 mms. At least 7 malignancies were present in polyps <10 mms but it was unknown if they had undergone growth on follow up. Level II-2 and below evidence on rate of growth of small GBPs <10 mms exists in the literature. It indicates that growth does occur in a significant minority of small GBPs, but it is slow. Due to deficient reporting and small numbers of cases, the correlation between growth of GBP and development of malignancy cannot be established using currently available evidence. Malignancy can be present in polyps <10 mms although it is significantly more frequent in polyps >10 mms. Cholecystectomy for symptomatic GBPs irrespective of their size, alongside the current practice for removal of gall bladders containing asymptomatic polyps >10 mms, is proposed. No evidence based US follow up schedule can be recommended at present for asymptomatic polyps <10 mms, and in its absence an intuitive follow up with US is likely to continue. Copyright © 2014 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.
Multimedia Messaging Service teleradiology in the provision of emergency neurosurgery services.
Ng, Wai Hoe; Wang, Ernest; Ng, Ivan
2007-04-01
Neurosurgical emergencies constitute a significant proportion of workload of a tertiary neurosurgical service. Prompt diagnosis and emergent institution of definitive treatment are critical to reduce neurological mortality and morbidity. Diagnosis is highly dependent on accurate interpretation of scans by experienced clinicians. This expertise may not be readily available especially after office hours because many neurosurgical units are manned by middle-level neurosurgical staff with varying levels of experience in scan interpretation. Multimedia Messaging Service mobile phone technology offers a simple, cheap, quick, and effective solution to the problem of scan interpretation. An MMS takes only a few minutes to send and receive and allows senior doctors to view important images and make important clinical decisions to enhance patient management in an emergency situation. A mobile phone (with VGA camera and MMS capabilities) was provided to the neurosurgery registrar on call. The on-call mobile phone is passed on to the corresponding registrar on-call the next day. All consultants had personal mobile phones that are MMS-enabled. Relevant representative CT/MRI images can be taken directly from the mobile phone from the PACS off the computer screen. When only hard copies are available, the images can be taken off the light box. After a 12-month trial period, a questionnaire was given to all staff involved in the project to ascertain the usefulness of the MMS teleradiology service. The survey on the use of the MMS service in a tertiary neurosurgical service demonstrated that the technology significantly improved the level of confidence of the senior-level staff in emergent clinical decision making. Significantly, the MMS images were of sufficient quality and resolution to obviate the need to view the actual scans. The impact of MMS is less pronounced in the middle-level staff, but there was a trend that most of the junior staff found the service more useful. The MMS technology is demonstrated to be a useful media for the transmission of high-quality images to assist in the diagnostic process and implementation of emergent clinical therapy. It is already in widespread use and can be seamlessly and rapidly implemented in the clinical arena to improve the quality of patient care.
Energy conversion and dissipation at dipolarization fronts: Theory, modeling and MMS observations
NASA Astrophysics Data System (ADS)
Sitnov, M. I.; Motoba, T.; Merkin, V. G.; Ohtani, S.; Cohen, I. J.; Mauk, B.; Vines, S. K.; Anderson, B. J.; Moore, T. E.; Torbert, R. B.; Giles, B. L.; Burch, J. L.
2017-12-01
Magnetic reconnection is one of the most important energy conversion mechanisms in space plasmas. In the classical picture it converts the energy of antiparallel magnetic fields into the kinetic and thermal energy of accelerated plasma particles in reconnection exhausts. It also involves energy dissipation near the X-line. This classical picture may be substantially modified in real space plasma configurations, such as the dayside magnetopause and the magnetotail. In particular, in the magnetotail the flows of accelerated particles may be strongly asymmetric along the tail with the domination of earthward flows. At the same time, strong energy conversion and even dissipation may occur away from the X-line, in particular, at dipolarization fronts. Here we present a theoretical picture of spontaneous magnetotail reconnection based on 3-D PIC simulations with the focus on plasma bulk flows, energy conversion and dissipation. This picture is compared with some observations from the MMS tail season. An important finding from these observations is that dipolarizations fronts may not only be regions of the total energy conversion with jE>0, but they may also be the sites of energy dissipation, both positive (jE'>0, E' is the electric field E in the system moving with one of the plasma species) and negative (jE'<0). Observations are further compared with theory and modeling that predict the specific location and sign of the energy dissipation at fronts depending on their evolution phase (e.g., formation, propagation, braking).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monaco, M.E.; Battista, T.A.; Gill, T.A.
1997-06-01
NOAA`s National Ocean Service (NOS) is developing a suite of desktop geographic information system (GIS) tools to define, assess, and solve coastal resource management issues. This paper describes one component of the emerging NOS Coastal and Ocean Assessment GIS: Environmental Sensitivity Index (ESI) data with emphasis on living marine resource information. This work is underway through a unique federal, state, and private-sector partnership. The desktop GIS is a versatile, user-friendly system designed to provide coastal managers with mapping and analysis capabilities. These functions are under development using the recently generated North Carolina ESI data, with emphasis on accessing, analyzing, andmore » mapping estuarine species distributions. Example system features include: a user-friendly front end, generation of ESI maps and tables, and custom spatial and temporal analyses. Partners in the development of the desktop system include: NOAA`s Office of Ocean Resources Conservation and Assessment (ORCA) and Coastal Services Center, the Minerals Management Service (MMS), Florida Marine Research Institute, Environmental Systems Research Institute, Inc., and Research Planning, Inc. This work complements and supports MMS`s Gulf-wide Information System designed to support oil-spill contingency planning.« less
A Novel Method for Precise Onboard Real-Time Orbit Determination with a Standalone GPS Receiver
Wang, Fuhong; Gong, Xuewen; Sang, Jizhang; Zhang, Xiaohong
2015-01-01
Satellite remote sensing systems require accurate, autonomous and real-time orbit determinations (RTOD) for geo-referencing. Onboard Global Positioning System (GPS) has widely been used to undertake such tasks. In this paper, a novel RTOD method achieving decimeter precision using GPS carrier phases, required by China’s HY2A and ZY3 missions, is presented. A key to the algorithm success is the introduction of a new parameter, termed pseudo-ambiguity. This parameter combines the phase ambiguity, the orbit, and clock offset errors of the GPS broadcast ephemeris together to absorb a large part of the combined error. Based on the analysis of the characteristics of the orbit and clock offset errors, the pseudo-ambiguity can be modeled as a random walk, and estimated in an extended Kalman filter. Experiments of processing real data from HY2A and ZY3, simulating onboard operational scenarios of these two missions, are performed using the developed software SATODS. Results have demonstrated that the position and velocity accuracy (3D RMS) of 0.2–0.4 m and 0.2–0.4 mm/s, respectively, are achieved using dual-frequency carrier phases for HY2A, and slightly worse results for ZY3. These results show it is feasible to obtain orbit accuracy at decimeter level of 3–5 dm for position and 0.3–0.5 mm/s for velocity with this RTOD method. PMID:26690149
Microseed matrix screening for optimization in protein crystallization: what have we learned?
D'Arcy, Allan; Bergfors, Terese; Cowan-Jacob, Sandra W; Marsh, May
2014-09-01
Protein crystals obtained in initial screens typically require optimization before they are of X-ray diffraction quality. Seeding is one such optimization method. In classical seeding experiments, the seed crystals are put into new, albeit similar, conditions. The past decade has seen the emergence of an alternative seeding strategy: microseed matrix screening (MMS). In this strategy, the seed crystals are transferred into conditions unrelated to the seed source. Examples of MMS applications from in-house projects and the literature include the generation of multiple crystal forms and different space groups, better diffracting crystals and crystallization of previously uncrystallizable targets. MMS can be implemented robotically, making it a viable option for drug-discovery programs. In conclusion, MMS is a simple, time- and cost-efficient optimization method that is applicable to many recalcitrant crystallization problems.
Microseed matrix screening for optimization in protein crystallization: what have we learned?
D’Arcy, Allan; Bergfors, Terese; Cowan-Jacob, Sandra W.; Marsh, May
2014-01-01
Protein crystals obtained in initial screens typically require optimization before they are of X-ray diffraction quality. Seeding is one such optimization method. In classical seeding experiments, the seed crystals are put into new, albeit similar, conditions. The past decade has seen the emergence of an alternative seeding strategy: microseed matrix screening (MMS). In this strategy, the seed crystals are transferred into conditions unrelated to the seed source. Examples of MMS applications from in-house projects and the literature include the generation of multiple crystal forms and different space groups, better diffracting crystals and crystallization of previously uncrystallizable targets. MMS can be implemented robotically, making it a viable option for drug-discovery programs. In conclusion, MMS is a simple, time- and cost-efficient optimization method that is applicable to many recalcitrant crystallization problems. PMID:25195878
Scala, Marcello; Fiaschi, Pietro; Capra, Valeria; Garrè, Maria Luisa; Tortora, Domenico; Ravegnani, Marcello; Pavanello, Marco
2018-07-01
Moyamoya disease (MMD) is a cerebrovascular disorder characterized by the progressive occlusion of the supraclinoid internal carotid artery (ICA), resulting in the formation of an abnormal cerebral vascular network. When MMD occurs in association with an underlying medical condition, including some distinctive genetic disorders, it is named moyamoya syndrome (MMS). The discrimination between MMD and MMS has been validated by recent genetic researches and international reviews. Similarly to patients suffering from MMD, patients with MMS generally become symptomatic because of ischemic complications, which lead to hemiparesis, transient ischemic events, seizures, and sensory symptoms. RASopathies are a group of neurodevelopmental disorders that can be associated with MMS. We retrospectively reviewed 18 RASopathy patients with MMS treated at our institution from 2000 to 2015 (16 neurofibromatosis type 1, 1 Costello syndrome, and 1 Schimmelpenning syndrome). Here, we report clinical data, performed surgical procedures, and clinic-radiological outcome of these patients. Most of them received both indirect revascularization and medical therapy. At the moment, there are no univocal recommendations on which of these two treatment strategies is the treatment of choice in patients with RASopathies and MMS. We suggest that patients with a good overall prognosis (primarily depending on the distinctive underlying genetic disorder) and initial cerebrovascular disease could benefit from a prophylactic surgical revascularization, in order to prevent the cognitive impairment due to the progression of the vasculopathy.
Zhao, Jinlei
2014-01-01
Monosaccharides available in the extracellular milieu of Agrobacterium tumefaciens can be transported into the cytoplasm, or via the periplasmic sugar binding protein, ChvE, play a critical role in controlling virulence gene expression. The ChvE-MmsAB ABC transporter is involved in the utilization of a wide range of monosaccharide substrates but redundant transporters are likely given the ability of a chvE-mmsAB deletion strain to grow, albeit more slowly, in the presence of particular monosaccharides. In this study, a putative ABC transporter encoded by the gxySBA operon is identified and shown to be involved in the utilization of glucose, xylose, fucose, and arabinose, which are also substrates for the ChvE-MmsAB ABC transporter. Significantly, GxySBA is also shown to be the first characterized glucosamine ABC transporter. The divergently transcribed gene gxyR encodes a repressor of the gxySBA operon, the function of which can be relieved by a subset of the transported sugars, including glucose, xylose, and glucosamine, and this substrate-induced expression can be repressed by glycerol. Furthermore, deletion of the transporter can increase the sensitivity of the virulence gene expression system to certain sugars that regulate it. Collectively, the results reveal a remarkably diverse set of substrates for the GxySBA transporter and its contribution to the repression of sugar sensitivity by the virulence-controlling system, thereby facilitating the capacity of the bacterium to distinguish between the soil and plant environments. PMID:24957625
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haefeli, U.O.; Sweeney, S.M.; Beresford, B.A.
1994-08-01
High energy [beta]-emitting radioisotopes like Yttrium-90 have a radiotoxic range of about one centimeter. For cancer treatment they must be brought near the tumor cells and kept there for as long as they are radioactive. The authors developed as carriers for the ionic form of [sup 90]Y a matrix-type polymeric drug delivery system, poly(lactic acid) (PLA) microspheres. This radiopharmaceutical could be selectively delivered to the target site after incorporating 10% Fe[sub 3]O[sub 4] which made the magnetic microspheres (MMS) responsive to an external magnetic field. Furthermore, MMS are biodegradable and slowly hydrolyze into physiologic lactic acid after the radioactivity ismore » completely decayed. Previously prepared 10--40 [mu]m MMS were radiochemically loaded to high specific activity with [sup 90]Y at a pH of 5.7. Stability studies showed that approximately 95% of added [sup 90]Y is retained within the PLA matrix after 28 days (> 10 half-lives) at 37 C in serum, and electron microscopy showed that the microspheres retained their characteristic morphologic appearance for the same time period. Cytotoxicity studies with SK-N-SH neuroblastoma cells growing in monolayer showed that the radiocytotoxicity of the microspheres could be directed magnetically to either kill or spare specific cell populations, thus making them of great interest for targeted intracavitary tumor therapy. The authors are currently optimizing this system for use in the treatment of neoplastic meningitis.« less
Papademetriou, V; Gottdiener, J S; Fletcher, R D; Freis, E D
1985-09-15
Systemic hypertension is a common cause of congestive heart failure. However, left ventricular (LV) systolic function remains normal for many years in patients with mild or moderate hypertension. In this study, high-quality M-mode echocardiograms were recorded in 7 patients with borderline hypertension, 14 patients with mild hypertension and 15 normal persons. Measures of systolic and diastolic LV function and the degree of LV hypertrophy were studied with the assistance of a tablet digitizer and dedicated microcomputer. Average blood pressure was 125 +/- 10/77 +/- 7 mm Hg in normal subjects, 146 +/- 18/92 +/- 2 mm Hg in patients with borderline hypertension and 150 +/- 11/102 +/- 4 in patients with mild hypertension. Indexes of systolic LV function were similar in all 3 groups. The peak rate of early relaxation of the LV posterior wall was significantly decreased in the group of patients with mild hypertension (4.7 vs 6.6 sec-1, p less than 0.01). The mitral valve closure rate was 150 +/- 32 mm/s in normal subjects, 119 +/- 35 mm/s in patients with borderline hypertension and 106 +/- 26 mm/s (p less than 0.001) in patients with mild hypertension. Mild LV hypertrophy was present in 6 of 7 patients with borderline and 13 of 14 patients with mild hypertension. The degree of hypertrophy and the level of blood pressure correlated poorly.(ABSTRACT TRUNCATED AT 250 WORDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, T. K. M.; Eriksson, S.; Hasegawa, H.
When the interplanetary magnetic field (IMF) is strongly northward, a boundary layer that contains a considerable amount of plasma of magnetosheath origin is often observed along and earthward of the low-latitude magnetopause. Such a pre-existing boundary layer, with a higher density than observed in the adjacent magnetosphere, reduces the local Alfvén speed and allows the Kelvin-Helmholtz instability (KHI) to grow more strongly. We employ a three-dimensional fully kinetic simulation to model an event observed by the Magnetospheric Multiscale (MMS) mission in which the spacecraft detected substantial KH waves between a pre-existing boundary layer and the magnetosheath during strong northward IMF.more » Initial results of this simulation [Nakamura et al., 2017] have successfully demonstrated ion-scale signatures of magnetic reconnection induced by the non-linearly developed KH vortex, which are quantitatively consistent with MMS observations. Furthermore, we quantify the simulated mass and energy transfer processes driven by this vortex-induced reconnection (VIR) and show that during this particular MMS event (i) mass enters a new mixing layer formed by the VIR more efficiently from the pre-existing boundary layer side than from the magnetosheath side, (ii) mixed plasmas within the new mixing layer convect tailward along the magnetopause at more than half the magnetosheath flow speed, and (iii) energy dissipation in localized VIR dissipation regions results in a strong parallel electron heating within the mixing layer. Finally, the quantitative agreements between the simulation and MMS observations allow new predictions that elucidate how the mass and energy transfer processes occur near the magnetopause during strong northward IMF.« less
Flohil, S C; van Dorst, A M J M; Nijsten, T; Martino Neumann, H A; Munte, K
2013-10-01
In the Netherlands basal cell carcinomas (BCC) are eligible for Mohs microscopic surgery (MMS) if certain criteria are fulfilled. To study the MMS indication criteria practised at the department of dermatology of the Erasmus University Medical Center, Rotterdam and to identify predictive factors for extensive subclinical tumour spread among BCCs eligible for MMS. Pre-operative patient and tumour characteristics were derived retrospectively between January 2nd 2006 and December 28th 2009 from 1174 patient records, accounting for 1464 BCCs. Multivariate logistic regression models were used to calculate crude and adjusted odds ratios (OR) with 95% confidence intervals (CI) for one vs. two or more stages and for narrow (≤ 2 stages) vs. extensive subclinical spread (≥ 3 stages). H-zone location [adjusted OR 1.51 (95% CI 1.16-1.96)], recurrent tumour [adjusted OR 1.50 (95% CI 1.11-2.02)], aggressive subtype [adjusted OR 1.25 (95% CI 1.01-1.56)] and tumour size ≥ 11 mm [adjusted OR 1.53 (95% CI 1.20-1.96)] were significantly associated with two or more stages. Predictive factors for extensive subclinical spread were recurrent tumour [adjusted OR 2.26 (95% CI 1.61-3.17)], tumour size ≥ 21 mm [adjusted OR 1.69 (95% CI 1.13-2.51)] and location in the H-zone [adjusted OR 1.68 (95% CI 1.15-2.46)]. 'Rotterdam' indication criteria used for MMS are appropriate. Predictors for extensive subclinical spread are important for patients' and surgeons' expectations prior to the operation about time span, defect size, reconstruction and possible associated morbidity. © 2012 The Authors. Journal of the European Academy of Dermatology and Venereology © 2012 European Academy of Dermatology and Venereology.
Nakamura, T. K. M.; Eriksson, S.; Hasegawa, H.; ...
2017-10-23
When the interplanetary magnetic field (IMF) is strongly northward, a boundary layer that contains a considerable amount of plasma of magnetosheath origin is often observed along and earthward of the low-latitude magnetopause. Such a pre-existing boundary layer, with a higher density than observed in the adjacent magnetosphere, reduces the local Alfvén speed and allows the Kelvin-Helmholtz instability (KHI) to grow more strongly. We employ a three-dimensional fully kinetic simulation to model an event observed by the Magnetospheric Multiscale (MMS) mission in which the spacecraft detected substantial KH waves between a pre-existing boundary layer and the magnetosheath during strong northward IMF.more » Initial results of this simulation [Nakamura et al., 2017] have successfully demonstrated ion-scale signatures of magnetic reconnection induced by the non-linearly developed KH vortex, which are quantitatively consistent with MMS observations. Furthermore, we quantify the simulated mass and energy transfer processes driven by this vortex-induced reconnection (VIR) and show that during this particular MMS event (i) mass enters a new mixing layer formed by the VIR more efficiently from the pre-existing boundary layer side than from the magnetosheath side, (ii) mixed plasmas within the new mixing layer convect tailward along the magnetopause at more than half the magnetosheath flow speed, and (iii) energy dissipation in localized VIR dissipation regions results in a strong parallel electron heating within the mixing layer. Finally, the quantitative agreements between the simulation and MMS observations allow new predictions that elucidate how the mass and energy transfer processes occur near the magnetopause during strong northward IMF.« less
NASA Astrophysics Data System (ADS)
Tsutsumi, A.; Kameda, J.; Ujiie, K.
2012-12-01
Here we report experimental results on the frictional properties of the cover sediments on the Cocos plate incoming into the erosive Costa Rica subduction zone. Mechanical properties of the incoming sediments to subduction plate boundaries are essential to constrain subduction-related faulting processes. However, knowledge of the frictional properties of sediments composed of abundant biogenic component, such as spicules, diatoms, and radiolarians are limited. Experimental samples were silicic to calcareous ooze collected at a reference site (Site U1381) off shore Osa Peninsula during IODP Expedition 334 (Vannucchi et al., 2012). To be used in the experiments, the discrete samples was disaggregated, oven dried at 60 degrees centigrade for 24 hours. The experimental fault is composed of a 24.9 mm diameter cylinder of gabbro cut perpendicularly to the cylinder axis in two halves that are ground to obtain rough wall surfaces, and re-assembled with an intervening thin layer (~1.0 mm) disaggregated sample. Frictional experiments have been performed using a rotary-shear friction testing machine, at normal stresses up to 5 MPa, over a range of slip velocities from 0.0026 mm/s to 1.3 m/s, with more than ~150 mm of displacements for water saturated condition. Experimental results reveal that friction values at slow slip velocities (v < ~30 mm/s) are about ~0.7, of which level is comparable to the typically reported friction values for rocks. The experimental faults exhibited velocity-weakening at v < 0.3 mm/s and neutral to velocity-strengthening at 0.3 < v < ~3 mm/s. At higher velocities (v > ~30 mm/s), steady state friction decreases dramatically. For example, at a velocity of 260 mm/s, the friction coefficient for samples U1381A-9R and -10R show a gradual decrease with a large weakening displacement toward the establishment of a nearly constant level of friction at ~0.1. The velocity weakening behavior at slow velocities could provide a condition to initiate unstable fault motion at shallow depths along the subduction channel if the input sediments are incorporated into faulting. On the contrary, neutral to velocity strengthening behavior observed for intermediate velocities could stabilize the propagation process of earthquake nuclei that emerges in the velocity weakening portion along the fault. It is important to note also that a dramatic slip weakening at velocities of v > ~30 mm/s characterizes the frictional behavior of the examined input sediments to the Costa Rica subduction zone. The relatively slower velocity condition for the onset of high-velocity weakening and the extremely low friction values (~0.1) observed at high velocities are comparable to the frictional properties reported for silicic fault (e.g., Goldsby and Tullis, 2002, GRL; Hayashi and Tsutsumi, 2010,GRL). Presented frictional properties of the incoming sediments may offer an important constraint for improving models of subduction-related faulting processes within the Costa Rica subduction channel.
Verification of BOUT++ by the method of manufactured solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudson, B. D., E-mail: benjamin.dudson@york.ac.uk; Hill, P.; Madsen, J.
2016-06-15
BOUT++ is a software package designed for solving plasma fluid models. It has been used to simulate a wide range of plasma phenomena ranging from linear stability analysis to 3D plasma turbulence and is capable of simulating a wide range of drift-reduced plasma fluid and gyro-fluid models. A verification exercise has been performed as part of a EUROfusion Enabling Research project, to rigorously test the correctness of the algorithms implemented in BOUT++, by testing order-of-accuracy convergence rates using the Method of Manufactured Solutions (MMS). We present tests of individual components including time-integration and advection schemes, non-orthogonal toroidal field-aligned coordinate systemsmore » and the shifted metric procedure which is used to handle highly sheared grids. The flux coordinate independent approach to differencing along magnetic field-lines has been implemented in BOUT++ and is here verified using the MMS in a sheared slab configuration. Finally, we show tests of three complete models: 2-field Hasegawa-Wakatani in 2D slab, 3-field reduced magnetohydrodynamics (MHD) in 3D field-aligned toroidal coordinates, and 5-field reduced MHD in slab geometry.« less
NASA Technical Reports Server (NTRS)
Solimani, Jason A.; Rosanova, Santino
2015-01-01
Thermocouples require two thin wires to be routed out of the spacecraft to connect to the ground support equipment used to monitor and record the temperature data. This large number of wires that exit the observatory complicates integration and creates an undesirable heat path during testing. These wires exiting the spacecraft need to be characterized as a thermal short that will not exist during flight. To minimize complexity and reduce thermal variables from these ground support equipment (GSE) wires, MMS pursued a hybrid path for temperature monitoring, utilizing thermocouples and digital 1-wire temperature sensors. Digital 1-wire sensors can greatly reduce harness mass, length and complexity as they can be spliced together. For MMS, 350 digital 1-wire sensors were installed on the spacecraft with only 18 wires exiting as opposed to a potential 700 thermocouple wires. Digital 1-wire sensors had not been used in such a large scale at NASAGSFC prior to the MMS mission. During the MMS thermal vacuum testing a lessons learned matrix was formulated that will assist future integration of 1-wires into thermal testing and one day into flight.
In-Flight Calibration Processes for the MMS Fluxgate Magnetometers
NASA Astrophysics Data System (ADS)
Bromund, K. R.; Leinweber, H. K.; Plaschke, F.; Strangeway, R. J.; Magnes, W.; Fischer, D.; Nakamura, R.; Anderson, B. J.; Russell, C. T.; Baumjohann, W.; Chutter, M.; Torbert, R. B.; Le, G.; Slavin, J. A.; Kepko, L.
2015-12-01
The calibration effort for the Magnetospheric Multiscale Mission (MMS) Analog Fluxgate (AFG) and Digital Fluxgate (DFG) magnetometers is a coordinated effort between three primary institutions: University of California, Los Angeles (UCLA); Space Research Institute, Graz, Austria (IWF); and Goddard Space Flight Center (GSFC). Since the successful deployment of all 8 magnetometers on 17 March 2015, the effort to confirm and update the ground calibrations has been underway during the MMS commissioning phase. The in-flight calibration processes evaluate twelve parameters that determine the alignment, orthogonalization, offsets, and gains for all 8 magnetometers using algorithms originally developed by UCLA and the Technical University of Braunschweig and tailored to MMS by IWF, UCLA, and GSFC. We focus on the processes run at GSFC to determine the eight parameters associated with spin tones and harmonics. We will also discuss the processing flow and interchange of parameters between GSFC, IWF, and UCLA. IWF determines the low range spin axis offsets using the Electron Drift Instrument (EDI). UCLA determines the absolute gains and sensor azimuth orientation using Earth field comparisons. We evaluate the performance achieved for MMS and give examples of the quality of the resulting calibrations.
Cowan, Natasha; Goldenberg, Alina; Basu, Pallavi; Eilers, Robert; Hau, Jennifer; I Brian Jiang, Shang
2018-05-01
Clinically large cutaneous tumors and those with aggressive subclinical extension (ASE) often require wider margins and increased operative time during Mohs micrographic surgery (MMS). Our goal is to improve dermatologic surgeons' counseling information on complication risks for aggressive tumors. To examine the incidence of postoperative complications in MMS patients, with a focus on differences between aggressive and non-aggressive tumors. We performed a retrospective cross-sectional chart review of 4151 MMS cases at the University of California, San Diego. A postoperative complication was defined as an adverse event directly related to MMS reported within 6 weeks of the procedure. Clinically, large tumors had 50 times the odds of postoperative complication as compared to all other tumors (P less than 0.001). ASE was not found to be significantly associated with higher rates of postoperative complications when controlled for other factors. Clinically, large tumors may be at higher risk for complications following MMS due to their increased size and need for repair with methods other than linear closures. Tumors with ASE were not found to be at higher risk for postoperative complications. J Drugs Dermatol. 2018;17(5):511-515.
Koslosky, Cynthia Lynn; El Tal, Abdel Kader; Workman, Benjamin; Tamim, Hani; Durance, Michelle Christine; Mehregan, David Ali
2014-09-01
Skin biopsy reports of basal cell carcinoma and squamous cell carcinoma are often accompanied by comments on the margins. A physician's management can be influenced by such reports, particularly when the margins are reported as clear and no further interventions are pursued. To retrospectively review pathology margins on Mohs micrographic surgery (MMS) cases performed at a University Center and to compare biopsy margins with the Mohs margins found on the first stage. Data collection of 1,000 cases of Mohs surgery was obtained regarding margins on skin biopsy and compared with margins on the first stage of MMS. Overall, of the biopsies that showed only deep margin involvement, a lateral margin was seen on 32% of the first stages of MMS. Conversely, of the biopsies that showed only lateral margin involvement, a deep margin was seen on 14% of the first stages of MMS. Of the biopsies that showed clear margins, a margin was seen in 30% of the cases on the first stage of MMS. Skin biopsies processed through the "bread-loafing" technique are not reliable in detecting accurate margins, and therefore, a biopsy report should not include margin involvement within it.
Analysis and design of the Multimission Modular Spacecraft hydrazine propulsion module
NASA Technical Reports Server (NTRS)
Etheridge, F. G.; Woodruff, W. L.
1978-01-01
The translational velocity increment, stabilization and control requirements, vehicle weight, and geometric considerations of the Multimission Modular Spacecraft (MMS) provided the basic data on which to initiate the analysis and design of the hydrazine propulsion modules. The Landsat D was used as the mission model. Tradeoff studies were conducted on thrust level, thruster location, and clustering arrangement together with tankage volume and location. The impact of the use of single and dual seat thruster valves on plumbing configuration, reliability, and overall system cost was studied in detail. Conceptual designs of a recommended propulsion module configuration for both the Delta 3910 and Shuttle were prepared.
NASA Astrophysics Data System (ADS)
Sun, Wenjie; Liu, Fan; Ma, Ziqi; Li, Chenghai; Zhou, Jinxiong
2017-01-01
Combining synergistically the muscle-like actuation of soft materials and load-carrying and locomotive capability of hard mechanical components results in hybrid soft machines that can exhibit specific functions. Here, we describe the design, fabrication, modeling and experiment of a hybrid soft machine enabled by marrying unidirectionally actuated dielectric elastomer (DE) membrane-spring system and ratchet wheels. Subjected to an applied voltage 8.2 kV at ramping velocity 820 V/s, the hybrid machine prototype exhibits monotonic uniaxial locomotion with an averaged velocity 0.5mm/s. The underlying physics and working mechanisms of the soft machine are verified and elucidated by finite element simulation.
30 CFR 227.301 - What are a State's responsibilities if it performs audits?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Audit Strategy, which MMS will develop in consultation with States having delegated audit authority; (c) Agree to undertake special audit initiatives MMS identifies targeting specific royalty issues, such as...
Turbulence in Three Dimensional Simulations of Magnetopause Reconnection
NASA Astrophysics Data System (ADS)
Drake, J. F.; Price, L.; Swisdak, M.; Burch, J. L.; Cassak, P.; Dahlin, J. T.; Ergun, R.
2017-12-01
We present two- and three-dimensional particle-in-cell simulations of the 16 October 2015 MMS magnetopause reconnection event. While the two-dimensional simulation is laminar, turbulence develops at both the x-line and along the magnetic separatrices in the three-dimensional simulation. This turbulence is electromagnetic in nature, is characterized by a wavevector k given by kρ e ˜(m_e/m_i)0.25 with ρ e the electron Larmor radius, and appears to have the ion pressure gradient as its source of free energy. Taken together, these results suggest the instability is a variant of the lower-hybrid drift instability. The turbulence produces electric field fluctuations in the out-of-plane direction (the direction of the reconnection electric field) with an amplitude of around ± 10 mV/m, which is much greater than the reconnection electric field of around 0.1 mV/m. Such large values of the out-of-plane electric field have been identified in the MMS data. The turbulence in the simulation controls the scale lengths of the density profile and current layers in asymmetric reconnection, driving them closer to √ {ρ eρ_i } than the ρ e or de scalings seen in 2D reconnection simulations, where de is the electron inertial length. The turbulence is strong enough to make the magnetic field around the reconnection island chaotic and produces both anomalous resistivity and anomalous viscosity. Each contribute significantly to breaking the frozen-in condition in the electron diffusion region. The crescent-shaped features in velocity space seen both in MMS observations and in two-dimensional simulations survive, even in the turbulent environment of the three-dimensional system. We compare and contrast these results to a three-dimensional simulation of the 8 December 2015 MMS magnetopause reconnection event in which the reconnecting and out-of-plane guide fields are comparable. LHDI is still present in this event, although its appearance is modified by the presence of the guide field. The crescents also survive although, as is also observed by MMS, their intensity decreases. Nevertheless, the turbulence that develops remains strong.
Photoelastic analysis to compare implant-retained and conventional obturator dentures
NASA Astrophysics Data System (ADS)
Goiato, Marcelo Coelho; Prado Ribeiro, Paula do; Pellizzer, Eduardo Piza; Pesqueira, Aldiéris Alves; Haddad, Marcela Filiè; dos Santos, Daniela Micheline; Moreno, Amália
2012-06-01
The use of photoelastic analysis contributes to the rehabilitation of patients with oral-sinus-nasal sequelae, which in turn affect important functions such as chewing, swallowing, and speech. The prosthetic rehabilitation with implant-retained dentures is a suitable treatment option. The purpose of this study was to verify, by using a photoelastic analysis, the stress distribution in implant-retained palatal obturator dentures (relined or not) associated with different attachment systems (O-ring, bar-clip, and bar-clip associated with distally placed O-rings). Two photoelastic models were obtained from an experimental maxillary cast presenting an oral-nasal communication. One model had two 13-mm length implants placed on the left region. A total of eight colorless maxillary obturators were fabricated and subsequently four of them were relined with soft silicone soft, and three had attachment systems associated. The assembly (model/attachment system/prosthesis) was positioned in a circular polariscope and a 100-N load was applied at 10 mm/s. The results showed that the denture relining influenced the distribution and amount of stress on the models. The O-ring group displayed the lowest stress levels, followed by bar-clip system associated with distally placed O-rings and bar-clip groups.
Tropospheric- Stratospheric Measurement Studies Summary
NASA Technical Reports Server (NTRS)
Browen, Stuart W.
1998-01-01
The two high altitude aircraft, ER-2 NASA #706 and 709 and the DC-8 NASA #717 are in active use in several programs of upper atmospheric research to study polar ozone changes, stratospheric-tropospheric exchange processes and atmospheric effects of aviation aircraft. The ER-2 has participated in seven major missions which mainly concentrated on vortex dynamics and the large losses of Ozone in the Polar regions (Ozone hole) observed in the spring. One mission verified the complex dynamical chemical and physical processes that occur during sunrise and sunset. Stratospheric Tracers of Atmospheric Transport (STRAT) obtained background measurements using the full ER-2 suite of instruments. Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS) in 1997 assisted in understanding the mid-latitude and Arctic Ozone losses during the Northern Summer. The DC-8 with the Meteorological Measurement System (MMS) has participated in the Subsonic Aircraft: Cloud and Contrail Effects Special Study (SUCCESS), in 1996 and the Subsonic assessment Ozone and Nitrogen oxide experiment (SONEX) in 1997 missions. The MMS with its sophisticated software accurately measures ground speed and attitude, in-situ static and dynamic pressure total temperature, which are used to calculate the three dimensional wind fields, static pressure, temperature and turbulence values to meteorological accuracy. The meteorological data is not only of interest for its own sake in atmospheric dynamical processes such as mountain waves and flux measurements; but is also required by other ER-2 experiments that simultaneously measure water vapor, O3, aerosols, NO, HCl, CH4, N2O, ClO, BrO, CO2, NOy, HOx and temperature gradients. MMS products are extensively used to assist in the interpretation of their results in understanding the importance of convective effects relative to in-situ chemical changes, as may be noted by examining the list of references attached. The MMS consists of three subsystems: (a) aircraft instrumentation, inertial navigation system (INS), static and dynamic pressure taps, (b) additional dedicated instrumentation measuring angle of attack, yaw, total temperature, and a GPS which on the DC-8 measures position, velocity and attitude (c) an on board data, storage and computing acquisition system. This instrumentation and the associated software requires both an on-going laboratory ground calibration procedure for the total air temperature, static and total pressure inputs, verification of the INS dynamic response and also extensive air measurements and intercomparisons which ultimately verify and calibrate the complete system and its software. More than the usual accuracy is required because of the near cancellation occurring in the difference between the ground speed and true airspeed vectors used to give the wind vector. In the past year we have redesigned, recalibrated and used the MMS system on the NASA DC-8 that was previously used in the SUCCESS mission for the SONEX mission. Two papers were co-authored based on SUCCESS flights. Several reports and handouts were written for SONEX. Calibrations of the DC-8 pressure transducer temperature measuring thermistors was completed and an extensive analysis spanning several years of data files of the DC-8 Rosemount pressure transducer calibrations was done.
MMS Encounters with Reconnection Diffusion Regions in the Earth's Magnetotail
NASA Astrophysics Data System (ADS)
Torbert, R. B.; Burch, J. L.; Argall, M. R.; Farrugia, C. J.; Alm, L.; Dors, I.; Payne, D.; Rogers, A. J.; Strangeway, R. J.; Phan, T.; Ergun, R.; Goodrich, K.; Lindqvist, P. A.; Khotyaintsev, Y. V.; Giles, B. L.; Rager, A. C.; Gershman, D. J.; Kletzing, C.
2017-12-01
The Magnetospheric Multiscale (MMS) fleet of four spacecraft traversed the Earth's magnetotail in May through August of 2017 with an apogee of 25 Re, and encountered diffusion regions characteristic of symmetric reconnection. This presentation will describe in-situ measurements of large electric fields, strong electron cross-tail and Hall currents, and electron velocity distributions (frequently crescent-shaped) that are commonly observed in these regions. Positive electromagnetic energy conversion is also typical. The characteristics of symmetric reconnection observations will be contrasted with those of asymmetric reconnection that MMS observed previously at the dayside magnetopause.
Bilateral medial medullary syndrome secondary to Takayasu arteritis.
Deshpande, Anirudda; Chandran, Vijay; Pai, Aparna; Rao, Suryanarayana; Shetty, Ranjan
2013-08-13
Medial medullary syndrome (MMS) is a rare type of stroke which results due to occlusion of the anterior spinal artery or vertebral artery or its branches. In this case report we present a patient who developed MMS secondary to Takayasu arteritis (TA). TA is a chronic inflammatory arteritis primarily involving the arch of aorta and its branches, which in our patient resulted in occlusion of subclavian arteries as well as infarction of the medial medulla bilaterally. To our knowledge this is the first time that MMS has been found to occur secondary to TA.
2015-01-12
The protective covers are removed from around the solar panels on the upper stack of the Magnetospheric Multiscale spacecraft, or MMS, in the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. Preparations are underway for illumination testing of the spacecraft's upper stack. Illumination testing of the lower instrumentation payload stack was completed in December. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12. To learn more about MMS, visit http://www.nasa.gov/mms. Photo credit: NASA/Kim Shiflett
2015-01-12
The protective covers are removed from around the solar panels on the upper stack of the Magnetospheric Multiscale spacecraft, or MMS, in the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. Preparations are underway for illumination testing of the spacecraft's upper stack. Illumination testing of the lower instrumentation payload stack was completed in December. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12. To learn more about MMS, visit http://www.nasa.gov/mms. Photo credit: NASA/Kim Shiflett
30 CFR 203.76 - When might MMS withdraw or reduce the approved size of my relief?
Code of Federal Regulations, 2010 CFR
2010-07-01
... your post-production development report (§ 203.70). Development costs are those expenditures defined in... application (e.g., change from a fixed platform to floating production system, or from an independent development and production system to one with subsea wells tied back to a host production facility, etc.). (b...
The Reliability and Validity of the Computerized Double Inclinometer in Measuring Lumbar Mobility
MacDermid, Joy Christine; Arumugam, Vanitha; Vincent, Joshua Israel; Carroll, Krista L
2014-01-01
Study Design : Repeated measures reliability/validity study. Objectives : To determine the concurrent validity, test-retest, inter-rater and intra-rater reliability of lumbar flexion and extension measurements using the Tracker M.E. computerized dual inclinometer (CDI) in comparison to the modified-modified Schober (MMS) Summary of Background : Numerous studies have evaluated the reliability and validity of the various methods of measuring spinal motion, but the results are inconsistent. Differences in equipment and techniques make it difficult to correlate results. Methods : Twenty subjects with back pain and twenty without back pain were selected through convenience sampling. Two examiners measured sagittal plane lumbar range of motion for each subject. Two separate tests with the CDI and one test with the MMS were conducted. Each test consisted of three trials. Instrument and examiner order was randomly assigned. Intra-class correlations (ICCs 2, 2 and 2, 2) and Pearson correlation coefficients (r) were used to calculate reliability and concurrent validity respectively. Results : Intra-trial reliability was high to very high for both the CDI (ICCs 0.85 - 0.96) and MMS (ICCs 0.84 - 0.98). However, the reliability was poor to moderate, when the CDI unit had to be repositioned either by the same rate (ICCs 0.16 - 0.59) or a different rater (ICCs 0.45 - 0.52). Inter-rater reliability for the MMS was moderate to high (ICCs 0.75 - 0.82) which bettered the moderate correlation obtained for the CDI (ICCs 0.45 - 0.52). Correlations between the CDI and MMS were poor for flexion (0.32; p<0.05) and poor to moderate (-0.42 - -0.51; p<0.05) for extension measurements. Conclusion : When using the CDI, an average of subsequent tests is required to obtain moderate reliability. The MMS was highly reliable than the CDI. The MMS and the CDI measure lumbar movement on a different metric that are not highly related to each other. PMID:25352928
NASA Technical Reports Server (NTRS)
Wood, Paul; Gramling, Cheryl; Stone, John; Smith, Patrick; Reiter, Jenifer
2016-01-01
This paper discusses commissioning of NASAs Magnetospheric MultiScale (MMS) Mission. The mission includes four identical spacecraft with a large, complex set of instrumentation. The planning for and execution of commissioning for this mission is described. The paper concludes by discussing lessons learned.
30 CFR 285.224 - What happens if MMS accepts my bid?
Code of Federal Regulations, 2010 CFR
2010-07-01
... RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Issuance of OCS Renewable Energy Leases Competitive Lease Award Process § 285.224 What happens if MMS accepts my bid? If we...
30 CFR 285.822 - What must I do when MMS conducts an inspection?
Code of Federal Regulations, 2010 CFR
2010-07-01
... OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF... (including your project easement) or grant; and (2) Make the following available for MMS to inspect: (i) The...
Moiseeva, Tatiana; Gamper, Armin M.; Hood, Brian; Conrads, Thomas P.; Bakkenist, Christopher J.
2016-01-01
We describe a dynamic phosphorylation on serine-1940 of the catalytic subunit of human Pol ε, POLE1, following DNA damage. We also describe novel interactions between POLE1 and the iron-sulfur cluster assembly complex CIA proteins CIAO1 and MMS19. We show that serine-1940 is essential for the interaction between POLE1 and MMS19, but not POLE1 and CIAO1. No defect in either proliferation or survival was identified when POLE1 serine-1940 was mutated to alanine in human cells, even following treatment with DNA damaging agents. We conclude that serine-1940 phosphorylation and the interaction between serine-1940 and MMS19 are not essential functions in the C terminal domain of the catalytic subunit of DNA polymerase ε. PMID:27235625
Tissue dissection using a 1470-nm diode laser and laparoscopic prototype
NASA Astrophysics Data System (ADS)
Chang, Chun-Hung; Hammerland, John; Nau, William H.; Fried, Nathaniel M.
2017-02-01
A continuous-wave, 40 Watt, 1470 nm laser was explored for rapid and precise dissection of porcine mesentery fascia and liver tissues, ex vivo. Laser energy was delivered through a 550-μm-core optical fiber inside a 5-mm-OD, laparoscopic probe, with detachable, 2 mm, sapphire ball rolling tip. Fascia tissue was cleanly dissected with scanning rates from 2.0 - 4.5 mm/s using 16 - 31W. Fascia collateral thermal damage measured as low as 180 +/- 50 μm at 4.5 mm/s scan speed. Porcine liver ablation crater depth measured up to 1010 +/- 220 μm with 30 W at 2.0 mm/s or as shallow as 80 +/- 30 μm with 10 W at 10 mm/s. Peak temperatures reached 130 °C at ball tip and 75 °C on metal jaws. The 1470-nm laser and probe show promise for laparoscopic tissue cutting and coagulation.
Cobalt ferrite nanocrystals: out-performing magnetotactic bacteria.
Prozorov, Tanya; Palo, Pierre; Wang, Lijun; Nilsen-Hamilton, Marit; Jones, DeAnna; Orr, Daniel; Mallapragada, Surya K; Narasimhan, Balaji; Canfield, Paul C; Prozorov, Ruslan
2007-10-01
Magnetotactic bacteria produce exquisitely ordered chains of uniform magnetite (Fe(3)O(4)) nanocrystals, and the use of the bacterial mms6 protein allows for the shape-selective synthesis of Fe(3)O(4) nanocrystals. Cobalt ferrite (CoFe(2)O(4)) nanoparticles, on the other hand, are not known to occur in living organisms. Here we report on the use of the recombinant mms6 protein in a templated synthesis of CoFe(2)O(4) nanocrystals in vitro. We have covalently attached the full-length mms6 protein and a synthetic C-terminal domain of mms6 protein to self-assembling polymers in order to template hierarchical CoFe(2)O(4) nanostructures. This new synthesis pathway enables facile room-temperature shape-specific synthesis of complex magnetic crystalline nanomaterials with particle sizes in the range of 40-100 nm that are difficult to produce using conventional techniques.
NASA Technical Reports Server (NTRS)
Queen, Steven Z.
2015-01-01
The Magnetospheric Multiscale (MMS) mission consists of four identically instrumented, spin-stabilized observatories, elliptically orbiting the Earth in a tetrahedron formation. For the operational success of the mission, on-board systems must be able to deliver high-precision orbital adjustment maneuvers. On MMS, this is accomplished using feedback from on-board star sensors in tandem with accelerometers whose measurements are dynamically corrected for errors associated with a spinning platform. In order to determine the required corrections to the measured acceleration, precise estimates of attitude, rate, and mass-properties are necessary. To this end, both an on-board and ground-based Multiplicative Extended Kalman Filter (MEKF) were formulated and implemented in order to estimate the dynamic and quasi-static properties of the spacecraft.
Galveston Symposium: Physical Oceanography of the Louisiana/Texas Continental Shelf
NASA Astrophysics Data System (ADS)
Mitchell, Thomas M.; Brown, Murray
The Minerals Management Service (MMS), Gulf of Mexico Outer Continental Shelf (OCS) Region sponsored a symposium on the Physical Oceanography of the Louisiana/Texas (LA/TX) Shelf in Galveston, Texas, on May 24-26, 1988. The symposium brought together a number of physical oceanographers, meteorologists, and ecologists to discuss the state of knowledge and to begin the planning process for a long-term study of shelf circulation covering the region from the mouth of the Mississippi River to approximately 24° latitude along the Mexican coast and from the shore out to a depth of approximately 500 m. The proposed study, to be a component of the ongoing MMS Environmental Studies Program, is expected to take place during the period 1989-1991. It is anticipated that the work will be done principally through contracts after a competitive procurement process. Specific charges to the participants were as follows:to assess the current state of knowledge concerning the circulation on the LA/TX shelfto identify significant gaps in that knowledgeto recommend a field measurement program to address these gapsto recommend a circulation modeling program for the LA/TX shelf that will improve MMS' oil spill risk assessmentsto identify and initiate coordination mechanisms and data-sharing arrangements with other proposed research efforts
Christoni, Larissa S. A.; Justo, Graça; Soeiro, Maria N. C.
2018-01-01
Statins are 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, and this class of drugs has been studied as protective agents against DNA damages. Alkylating agents (AAs) are able to induce alkylation in macromolecules, causing DNA damage, as DNA methylation. Our objective was to evaluate atorvastatin (AVA) antimutagenic, cytoprotective, and antigenotoxic potentials against DNA lesions caused by AA. AVA chemopreventive ability was evaluated using antimutagenicity assays (Salmonella/microsome assay), cytotoxicity, cell cycle, and genotoxicity assays in HepG2 cells. The cells were cotreated with AVA and the AA methyl methanesulfonate (MMS) or cyclophosphamide (CPA). Our datum showed that AVA reduces the alkylation-mediated DNA damage in different in vitro experimental models. Cytoprotection of AVA at low doses (0.1–1.0 μM) was observed after 24 h of cotreatment with MMS or CPA at their LC50, causing an increase in HepG2 survival rates. After all, AVA at 10 μM and 25 μM had decreased effect in micronucleus formation in HepG2 cells and restored cell cycle alterations induced by MMS and CPA. This study supports the hypothesis that statins can be chemopreventive agents, acting as antimutagenic, antigenotoxic, and cytoprotective components, specifically against alkylating agents of DNA. PMID:29849914
Strömberg, Tomas; Sjöberg, Folke; Bergstrand, Sara
2017-09-01
Forearm skin hyperemia during release after brachial occlusion has been proposed for evaluating peripheral arterial disease and endothelial dysfunction. We used a novel fiberoptic system integrating Laser Doppler Flowmetry and Diffuse Reflectance Spectroscopy for a comprehensive pointwise model based microcirculation characterization. The aim was to evaluate and compare the temporal and the spatiotemporal variabilities in forearm skin microcirculation parameters (speed resolved perfusion; low speed <1mm/s, Perf SR, <1 ; mid-speed 1-10mm/s, high speed >10mm/s, and total perfusion (Perf SR, tot ); the concentration and oxygenation of red blood cells, C RBC and S O2 ). Ten healthy subjects underwent arterial and venous forearm occlusions (AO, VO), repeated within one week. The repeatability was calculated as the coefficient of variation (CV) and the agreement as the intra-class correlation coefficient (ICC). The temporal CVs for conventional perfusion, Perf conv , Perf SR, tot , C RBC and S O2 were 14%, 12%, 9% and 9%, respectively, while the ICC were >0.75 (excellent). The perfusion measures generally had a higher spatiotemporal than temporal variability, which was not the case for S O2 and C RBC . The corresponding spatiotemporal CVs were 33%, 32%, 18% and 15%, respectively. During VO, C RBC had a CV<35% and ICC>0.40 (fair-good), and after release this was the case for C RBC (AO and VO), S O2 (VO) and Perf SR, <1 (VO). In conclusion, the skin microcirculation parameters showed excellent temporal repeatability, while the spatiotemporal repeatability especially for perfusion was poorer. The parameters with acceptable repeatability and fair-good agreement were: C RBC during and after release of VO, the Perf SR, <1 after release of VO, the S O2 and the C RBC after release of AO. However, the value of these parameters in discriminating endothelial function remains to be studied. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Notaro, V.; Armstrong, J. W.; Asmar, S.; Di Ruscio, A.; Iess, L.; Mariani, M., Jr.
2017-12-01
Precise measurements of spacecraft range rate, enabled by two-way microwave links, are used in radio science experiments for planetary geodesy including the determination of planetary gravitational fields for the purpose of modeling the interior structure. The final accuracies in the estimated gravity harmonic coefficients depend almost linearly on the Doppler noise in the link. We ran simulations to evaluate the accuracy improvement attainable in the estimation of the gravity harmonic coefficients of Venus (with a representative orbiter) and Mercury (with the BepiColombo spacecraft), using our proposed innovative noise-cancellation technique. We showed how the use of an additional, smaller and stiffer, receiving-only antenna could reduce the leading noise sources in a Ka-band two-way link such as tropospheric and antenna mechanical noises. This is achieved through a suitable linear combination (LC) of Doppler observables collected at the two antennas at different times. In our simulations, we considered a two-way link either from NASA's DSS 25 antenna in California or from ESA's DSA-3 antenna in Malargüe (Argentina). Moreover, we selected the 12-m Atacama Pathfinder EXperiment (APEX) in Chile as the three-way antenna and developed its tropospheric noise model using available atmospheric data and mechanical stability specifications. For an 8-hour Venus orbiter tracking pass in Chajnantor's winter/night conditions, the accuracy of the simulated LC Doppler observable at 10-s integration time is 6 mm/s, to be compared to 23 mm/s for the two-way link. For BepiColombo, we obtained 16.5 mm/s and 35 mm/s, respectively for the LC and two-way links. The benefits are even larger at longer time scales. Numerical simulations indicate that such noise reduction would provide significant improvements in the determination of Venus's and Mercury's gravity field coefficients. If implemented, this noise-reducing technique will be valuable for planetary geodesy missions, where the accuracy in the estimation of high-order gravity harmonic coefficients is limited by tropospheric and antenna mechanical noises that are difficult to reduce at short integration times. Benefits are however expected in all precision radio science experiments with deep space probes.
The General Mission Analysis Tool (GMAT): Current Features And Adding Custom Functionality
NASA Technical Reports Server (NTRS)
Conway, Darrel J.; Hughes, Steven P.
2010-01-01
The General Mission Analysis Tool (GMAT) is a software system for trajectory optimization, mission analysis, trajectory estimation, and prediction developed by NASA, the Air Force Research Lab, and private industry. GMAT's design and implementation are based on four basic principles: open source visibility for both the source code and design documentation; platform independence; modular design; and user extensibility. The system, released under the NASA Open Source Agreement, runs on Windows, Mac and Linux. User extensions, loaded at run time, have been built for optimization, trajectory visualization, force model extension, and estimation, by parties outside of GMAT's development group. The system has been used to optimize maneuvers for the Lunar Crater Observation and Sensing Satellite (LCROSS) and ARTEMIS missions and is being used for formation design and analysis for the Magnetospheric Multiscale Mission (MMS).
Functions of Fun30 Chromatin Remodeler in Regulating Cellular Resistance to Genotoxic Stress
Bi, Xin; Yu, Qun; Siler, Jasmine; Li, Chong; Khan, Ali
2015-01-01
The Saccharomyces cerevisiae Fun30 chromatin remodeler has recently been shown to facilitate long-range resection of DNA double strand break (DSB) ends, which proceeds homologous recombination (HR). This is believed to underlie the role of Fun30 in promoting cellular resistance to DSB inducing agent camptothecin. We show here that Fun30 also contributes to cellular resistance to genotoxins methyl methanesulfonate (MMS) and hydroxyurea (HU) that can stall the progression of DNA replication. We present evidence implicating DNA end resection in Fun30-dependent MMS-resistance. On the other hand, we show that Fun30 deletion suppresses the MMS- and HU-sensitivity of cells lacking the Rad5/Mms2/Ubc13-dependent error-free DNA damage tolerance mechanism. This suppression is not the result of a reduction in DNA end resection, and is dependent on the key HR component Rad51. We further show that Fun30 negatively regulates the recovery of rad5Δ mutant from MMS induced G2/M arrest. Therefore, Fun30 has two functions in DNA damage repair: one is the promotion of cellular resistance to genotoxic stress by aiding in DNA end resection, and the other is the negative regulation of a Rad51-dependent, DNA end resection-independent mechanism for countering replicative stress. The latter becomes manifest when Rad5 dependent DNA damage tolerance is impaired. In addition, we find that the putative ubiquitin-binding CUE domain of Fun30 serves to restrict the ability of Fun30 to hinder MMS- and HU-tolerance in the absence of Rad5. PMID:25806814
Hu, Changmin; Liu, Shen; Zhang, Yang; Li, Bin; Yang, Huilin; Fan, Cunyi; Cui, Wenguo
2013-07-01
Physical barriers such as electrospun fibrous membranes are potentially useful in preventing peritendinous adhesions after surgery. However, inflammatory responses caused by degradation of barrier materials remain a major challenge. This study aimed to fabricate electrospun composite fibrous membranes based on drug-loaded modified mesoporous silica (MMS) and poly (l-lactic acid) (PLLA). Using a co-solvent-based electrospinning method ibuprofen (IBU)-loaded MMS was successfully and uniformly encapsulated in the PLLA fibers. The electrospun PLLA-MMS-IBU composite fibrous membranes showed significantly lower initial burst release (6% release in the first 12h) compared with that of electrospun PLLA-IBU fibrous membranes (46% release in the first 12h) in in vitro release tests. Moreover, the release from PLLA-MMS-IBU was also for significantly longer than that from PLLA-IBU (100 vs. 20days). In animal studies both PLLA-IBU and PLLA-MMS-IBU showed improved anti-adhesion properties and anti-inflammatory effects compared with PLLA fibrous membrane alone 4weeks after implantation. Further, animals implanted with PLLA-MMS-IBU for 8weeks showed the lowest inflammation and best recovery compared with those implanted with PLLA-IBU and PLLA, most likely as a result of its long-term IBU release profile. Therefore, this study provides a platform technique for fabricating fibrous membranes with long-term sustained drug release characteristics which may function as a novel carrier for long-term anti-inflammation and anti-adhesion to prevent peritendinous adhesions. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lill, R.; Sereno, N.; Yang, B.
The Advanced Photon Source (APS) is currently in the preliminary design phase for the multi-bend achromat (MBA) lattice upgrade. Beam stability is critical for the MBA and will require long term drift defined as beam mo-tion over a seven-day timescale to be no more than 1 mi-cron at the insertion device locations and beam angle change no more than 0.25 micro-radian. Mechanical stabil-ity of beam position monitor (BPM) pickup electrodes mounted on insertion device vacuum chambers place a fun-damental limitation on long-term beam stability for inser-tion device beamlines. We present the design and imple-mentation of prototype mechanical motion system (MMS)more » instrumentation for quantifying this type of motion specif-ically in the APS accelerator tunnel and experiment hall floor under normal operating conditions. The MMS pres-ently provides critical position information on the vacuum chamber and BPM support systems. Initial results of the R&D prototype systems have demonstrated that the cham-ber movements far exceed the long-term drift tolerance specified for the APS Upgrade MBA storage ring.« less
30 CFR 285.215 - What areas will MMS offer in a lease sale?
Code of Federal Regulations, 2010 CFR
2010-07-01
... RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Issuance of OCS Renewable Energy Leases Competitive Lease Process § 285.215 What areas will MMS offer in a lease sale? The...
30 CFR 203.82 - What is MMS's authority to collect this information?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Oil, Gas, and Sulfur General Required Reports § 203.82 What is MMS's authority to collect this...) Applicants (respondents) are Federal OCS oil and gas lessees. Applications are required to obtain or retain a...
30 CFR 204.205 - How do I obtain accounting and auditing relief?
Code of Federal Regulations, 2010 CFR
2010-07-01
..., address, phone number, and contact name; and (ii) The specific MMS lease number and agreement number, if... contain: (i) Your company name, MMS-assigned payor code, address, phone number, and contact name; (ii) The...
Publications - GMC 203 | Alaska Division of Geological & Geophysical
DGGS GMC 203 Publication Details Title: A summary of the data resulting from the 1991 MMS geologic Turner, Ron, and Core Laboratories, 1992, A summary of the data resulting from the 1991 MMS geologic
30 CFR 210.53 - When are my royalty reports and payments due?
Code of Federal Regulations, 2010 CFR
2010-07-01
... When are my royalty reports and payments due? (a) Completed Forms MMS-2014 for royalty payments and the...) Completed Forms MMS-2014 for rental payments, where applicable, and the associated payments are due as...
30 CFR 285.436 - Can MMS require lease or grant contraction?
Code of Federal Regulations, 2011 CFR
2011-07-01
... manage activities in a manner that is consistent with the provisions of this part. The MMS will notify... present orally or in writing information demonstrating that you need the area in question to manage lease...
Mobile messaging services-based personal electrocardiogram monitoring system.
Tahat, Ashraf A
2009-01-01
A mobile monitoring system utilizing Bluetooth and mobile messaging services (MMS/SMSs) with low-cost hardware equipment is proposed. A proof of concept prototype has been developed and implemented to enable transmission of an Electrocardiogram (ECG) signal and body temperature of a patient, which can be expanded to include other vital signs. Communication between a mobile smart-phone and the ECG and temperature acquisition apparatus is implemented using the popular personal area network standard specification Bluetooth. When utilizing MMS for transmission, the mobile phone plots the received ECG signal and displays the temperature using special application software running on the client mobile phone itself, where the plot can be captured and saved as an image before transmission. Alternatively, SMS can be selected as a transmission means, where in this scenario, dedicated application software is required at the receiving device. The experimental setup can be operated for monitoring from anywhere in the globe covered by a cellular network that offers data services.
Mobile Messaging Services-Based Personal Electrocardiogram Monitoring System
Tahat, Ashraf A.
2009-01-01
A mobile monitoring system utilizing Bluetooth and mobile messaging services (MMS/SMSs) with low-cost hardware equipment is proposed. A proof of concept prototype has been developed and implemented to enable transmission of an Electrocardiogram (ECG) signal and body temperature of a patient, which can be expanded to include other vital signs. Communication between a mobile smart-phone and the ECG and temperature acquisition apparatus is implemented using the popular personal area network standard specification Bluetooth. When utilizing MMS for transmission, the mobile phone plots the received ECG signal and displays the temperature using special application software running on the client mobile phone itself, where the plot can be captured and saved as an image before transmission. Alternatively, SMS can be selected as a transmission means, where in this scenario, dedicated application software is required at the receiving device. The experimental setup can be operated for monitoring from anywhere in the globe covered by a cellular network that offers data services. PMID:19707531
MMS Observatory TV Results Contamination Summary
NASA Technical Reports Server (NTRS)
Rosecrans, Glenn; Brieda, Lubos; Errigo, Therese
2014-01-01
The Magnetospheric Multiscale (MMS) mission is a constellation of 4 observatories designed to investigate the fundamental plasma physics of reconnection in the Earth's magnetosphere. The various instrument suites measure electric and magnetic fields, energetic particles, and plasma composition. Each spacecraft has undergone extensive environmental testing to prepare it for its minimum 2 year mission. In this paper, we report on the extensive thermal vacuum testing campaign. The testing was performed at the Naval Research Laboratory utilizing the "Big Blue" vacuum chamber. A total of ten thermal vacuum tests were performed, including two chamber certifications, three dry runs, and five tests of the individual MMS observatories. During the test, the observatories were enclosed in a thermal enclosure known as the "hamster cage". The enclosure allowed for a detailed thermal control of various observatory zone, but at the same time, imposed additional contamination and system performance requirements. The environment inside the enclosure and the vacuum chamber was actively monitored by several QCMs, RGA, and up to 18 ion gauges. Each spacecraft underwent a bakeout phase, which was followed by 4 thermal cycles. Unique aspects of the TV campaign included slow pump downs with a partial represses, thruster firings, Helium identification, and monitoring pressure spikes with ion gauges. Selected data from these TV tests is presented along with lessons learned.
CAPILLARY CONDENSATION IN MMS AND PORE STRUCTURE CHARACTERIZATION. (R825959)
Phenomena of capillary condensation and desorption in siliceous mesoporous molecular sieves (MMS) with cylindrical channels are studied by means of the non-local density functional theory (NLDFT). The results are compared with macroscopic thermodynamic approaches based on Kelv...
Commissioning MMS: Challenges and Lessons Learned
NASA Technical Reports Server (NTRS)
Wood, Paul; Gramling, Cheryl; Reiter, Jennifer; Smith, Patrick; Stone, John
2016-01-01
This paper discusses commissioning of NASA's Magnetospheric MultiScale (MMS) Mission. The mission includes four identical spacecraft with a large, complex set of instrumentation. The planning for and execution of commissioning for this mission is described. The paper concludes by discussing lessons learned.
30 CFR 291.108 - How do I pay the processing fee?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Web site may be accessed through links on the MMS Offshore Web site at: http://www.mms.gov/offshore/homepage (on drop-down topic list) or directly through Pay.Gov at: https://www.pay.gov/paygov/. (b) You...
NASA Technical Reports Server (NTRS)
Adams, Mitzi
2014-01-01
Two Dual Ion Spectrometer flight units of the Fast Plasma Instrument Suite (FPI) for the Magnetospheric Multiscale Mission (MMS) have returned to MSFC for flight testing. Anticipated to begin on June 30, tests will ensue in the Low Energy Electron and Ion Facility of the Heliophysics and Planetary Science Office (ZP13), managed by Dr. Victoria Coffey of the Natural Environments Branch of the Engineering Directorate (EV44). The MMS mission consists of four identical spacecraft, whose purpose is to study magnetic reconnection in the boundary regions of Earth's magnetosphere.
Bedogni, Giorgio; Biasini, Beatrice; Zavaroni, Ivana; Ventura, Marco; Galli, Daniela; Mirandola, Prisco; Vitale, Marco; Bonadonna, Riccardo C.; Passeri, Giovanni
2018-01-01
Adequate visual function has a strong impact on the quality of life of people. Several foods and food components have been hypothesized to play a role in the maintenance of normal visual function and in the prevention of eye diseases. Some of these foods/food components have been the object of a request of authorization for use of health claims under Articles 13(5) or 14 of the Regulation (EC) 1924/2006. Most of these requests have received a negative opinion from the European Food Safety Authority (EFSA) due to the choice of inappropriate outcome variables (OVs) and/or methods of measurement (MMs) applied in the studies used to substantiate the claims. This manuscript refers to the collection, collation and critical analysis of OVs and MMs related to vision. Guidance document and requests for authorization of health claims were used to collect OVs and MMs related to vision. A literature review was performed to critically analyse OVs and MMs, with the aim of defining their appropriateness in the context of a specific claimed effect related to vision. The results highlight the importance of adequate choices of OVs and MMs for an effective substantiation of claims related to visual function. PMID:29443929
Hawkins, Spencer D; Koch, Sarah B; Williford, Phillip M; Feldman, Steven R; Pearce, Daniel J
2018-07-01
Consent and wound care (WC) videos are used for education in Mohs micrographic surgery (MMS). Postoperative text messaging is poorly studied. Develop and evaluate perioperative resources for MMS patients-video modules (DermPatientEd.com) and postoperative text messaging (DermTexts.com). A study was conducted on 90 MMS patients. Patients were randomized 1:1:1:1 to videos with text messages, videos-only, text messages-only, or control. Primary outcomes included preoperative anxiety and knowledge of MMS and postoperative care. The secondary outcome included helpfulness/preference of interventions. Patients experienced a 19% reduction in anxiety as measured by a visual analog scale after the MMS video (p = .00062). There was no difference in knowledge after the WC video (p = .21498). Patients were more likely to report the WC video "very helpful" when compared with the pamphlet in understanding postoperative WC (p = .0016). Patients in text messaging groups were not more likely to report the service as "very helpful" when compared with the pamphlet (p = .3566), but preferred to receive WC instructions by text message for future visits (p = .0001). These resources proved helpful and effective in reducing preoperative anxiety. Patients prefer text message-based WC instructions over pamphlets after experiencing the service, but do not find them more helpful.
Cortelazzi, Chiara; Zavaroni, Ivana; Bedogni, Giorgio; Musci, Marilena; Pruneti, Carlo; Passeri, Giovanni; Ventura, Marco; Galli, Daniela; Vitale, Marco; Bonadonna, Riccardo C.; Di Nuzzo, Sergio; De Felici, Maria Beatrice
2017-01-01
Evidence suggests a protective role for several nutrients and foods in the maintenance of skin function. Nevertheless, all the requests for authorization to use health claims under Article 13(5) in the framework of maintenance of skin function presented to the European Food Safety Authority (EFSA) have received a negative opinion. Reasons for such failures are mainly due to an insufficient substantiation of the claimed effects, including the choice of inappropriate outcome variables (OVs) and methods of measurement (MMs). The present paper reports the results of an investigation aimed at collecting, collating and critically analyzing the information with relation to claimed effects (CEs), OVs and MMs related to skin health compliance with Regulation 1924/2006. CEs, OVs and MMs were collected from both the EFSA Guidance document and from the authorization requests of health claims under Article 13(5). The critical analysis of OVs and MMs was based on a literature review, and was aimed at defining their appropriateness (alone or in combination with others) in the context of a specific CE. The results highlight the importance of an adequate choice of OVs and MMs for an effective substantiation of the claims. PMID:29271939
He, Dawei; Dong, Wei; Tang, Songchao; Wei, Jie; Liu, Zhenghui; Gu, Xiaojiang; Li, Ming; Guo, Han; Niu, Yunfei
2014-06-01
Mesoporous magnesium silicate (m-MS) and poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL) composite scaffolds were fabricated by solvent-casting and particulate leaching method. The results suggested that the incorporation of m-MS into PCL-PEG-PCL could significantly improve the water adsorption of the m-MS/PCL-PEG-PCL composite (m-MPC) scaffolds. The in vitro degradation behavior of m-MPC scaffolds were determined by testing weight loss of the scaffolds after soaking into phosphate buffered saline (PBS), and the result showed that the degradation of m-MPC scaffolds was obviously enhanced by addition of m-MS into PCL-PEG-PCL after soaking for 10 weeks. Proliferation of MG63 cells on m-MPC was significantly higher than MPC scaffolds at 4 and 7 days. ALP activity on the m-MPC was obviously higher than MPC scaffolds at 7 days, revealing that m-MPC could promote cell differentiation. Histological evaluation showed that the introduction of m-MS into PCL-PEG-PCL enhanced the efficiency of new bone formation when the m-MPC scaffolds implanted into bone defect of rabbits. The results suggested that the inorganic/organic composite of m-MS and PCL-PEG-PCL scaffolds exhibited good biocompatibility, degradability and osteogenesis.
Serra-Guillén, C; Llombart, B; Nagore, E; Guillén, C; Requena, C; Traves, V; Kindem, S; Alcalá, R; Rivas, N; Sanmartín, O
2015-01-01
Dermatofibrosarcoma protuberans (DFSP) is an uncommon skin tumour with aggressive local growth. Whether DFSP should be treated with conventional surgery (CS) or Mohs micrographic surgery (MMS) has long been a topic of debate. To calculate, in a large series of DFSP treated by MMS, the minimum margin that would have been needed to achieve complete clearance by CS. Secondly, to calculate the percentage of healthy tissue that was preserved by MMS rather than CS with 2- and 3-cm margins. The minimum margin was calculated by measuring the largest distance from the visible edge of the tumour to the edge of the definitive surgical defect. Tumour and surgical defect areas for hypothetical CS with 2- and 3-cm margins were calculated using AutoCAD for Windows. A mean minimum margin of 1·34 cm was required to achieve complete clearance for the 74 tumours analysed. The mean percentages of skin spared using MMS rather than CS with 2- and 3-cm margins were 49·4% and 67·9%, respectively. MMS can achieve tumour clearance with smaller margins and greater preservation of healthy tissue than CS. © 2014 British Association of Dermatologists.
Zhang, Honghu; Liu, Xunpei; Feng, Shuren; ...
2015-02-10
In this study, magnetotactic bacteria that produce magnetic nanocrystals of uniform size and well-defined morphologies have inspired the use of biomineralization protein Mms6 to promote formation of uniform magnetic nanocrystals in vitro. Small angle X-ray scattering (SAXS) studies in physiological solutions reveal that Mms6 forms compact globular three-dimensional (3D) micelles (approximately 10 nm in diameter) that are, to a large extent, independent of concentration. In the presence of iron ions in the solutions, the general micellar morphology is preserved, however, with associations among micelles that are induced by iron ions. Compared with Mms6, the m2Mms6 mutant (with the sequence ofmore » hydroxyl/carboxyl containing residues in the C-terminal domain shuffled) exhibits subtle morphological changes in the presence of iron ions in solutions. The analysis of the SAXS data is consistent with a hierarchical core–corona micellar structure similar to that found in amphiphilic polymers. The addition of ferric and ferrous iron ions to the protein solution induces morphological changes in the micellar structure by transforming the 3D micelles into objects of reduced dimensionality of 2, with fractal-like characteristics (including Gaussian-chain-like) or, alternatively, platelet-like structures.« less
Characteristics of Energetic Particle Acceleration in Hot Flow Anomalies Observed by MMS
NASA Astrophysics Data System (ADS)
Turner, D. L.; Schwartz, S. J.; Wilson, L. B., III; Liu, T. Z.; Osmane, A.; Fennell, J. F.; Blake, J. B.; Jaynes, A. N.; Goodrich, K.; Mauk, B.; Gershman, D. J.; Avanov, L. A.; Strangeway, R. J.; Torbert, R. B.; Burch, J. L.; Leonard, T. W.
2017-12-01
During its orbital transits with apogees on Earth's dayside, NASA's Magnetospheric Multiscale (MMS) mission captured high resolution observations from several transient ion foreshock phenomena, including multiple hot flow anomalies (HFAs). With MMS' four identically instrumented spacecraft, those events offer unprecedented multipoint observations and resolution of plasma, energetic particles, and electric and magnetic fields and waves within and around HFAs. In this presentation, we compare and contrast the geometries and characteristics of fully-developed HFAs observed by MMS in the interest of determining which HFAs are most efficient at accelerating energetic particles (i.e. >1 to 100s of keV electrons, protons, and heavy ions) and how those HFAs may do so. In particular, we focus on: 1) the orientation of the fast magnetosonic shocks and wave activity that form at the upstream edge of HFAs and 2) how the unique structures and activity characteristic of HFAs may result in enhanced acceleration of energetic particles via shock acceleration processes and shock-shock interactions between the HFA shock and Earth's bow shock. The results of this study are of interest to previous studies of foreshock transients from missions such as THEMIS and Cluster, are relevant to the dayside science objectives of the MMS extended mission, and may have implications for energetic particle acceleration at other astrophysical shocks throughout the Universe.
Martini, Daniela; Angelino, Donato; Cortelazzi, Chiara; Zavaroni, Ivana; Bedogni, Giorgio; Musci, Marilena; Pruneti, Carlo; Passeri, Giovanni; Ventura, Marco; Galli, Daniela; Mirandola, Prisco; Vitale, Marco; Dei Cas, Alessandra; Bonadonna, Riccardo C; Di Nuzzo, Sergio; De Felici, Maria Beatrice; Del Rio, Daniele
2017-12-22
Evidence suggests a protective role for several nutrients and foods in the maintenance of skin function. Nevertheless, all the requests for authorization to use health claims under Article 13(5) in the framework of maintenance of skin function presented to the European Food Safety Authority (EFSA) have received a negative opinion. Reasons for such failures are mainly due to an insufficient substantiation of the claimed effects, including the choice of inappropriate outcome variables (OVs) and methods of measurement (MMs). The present paper reports the results of an investigation aimed at collecting, collating and critically analyzing the information with relation to claimed effects (CEs), OVs and MMs related to skin health compliance with Regulation 1924/2006. CEs, OVs and MMs were collected from both the EFSA Guidance document and from the authorization requests of health claims under Article 13(5). The critical analysis of OVs and MMs was based on a literature review, and was aimed at defining their appropriateness (alone or in combination with others) in the context of a specific CE. The results highlight the importance of an adequate choice of OVs and MMs for an effective substantiation of the claims.
Martini, Daniela; Innocenti, Augusto; Cosentino, Chiara; Bedogni, Giorgio; Angelino, Donato; Biasini, Beatrice; Zavaroni, Ivana; Ventura, Marco; Galli, Daniela; Mirandola, Prisco; Vitale, Marco; Dei Cas, Alessandra; Bonadonna, Riccardo C; Passeri, Giovanni; Pruneti, Carlo; Del Rio, Daniele
2018-02-14
Adequate visual function has a strong impact on the quality of life of people. Several foods and food components have been hypothesized to play a role in the maintenance of normal visual function and in the prevention of eye diseases. Some of these foods/food components have been the object of a request of authorization for use of health claims under Articles 13(5) or 14 of the Regulation (EC) 1924/2006. Most of these requests have received a negative opinion from the European Food Safety Authority (EFSA) due to the choice of inappropriate outcome variables (OVs) and/or methods of measurement (MMs) applied in the studies used to substantiate the claims. This manuscript refers to the collection, collation and critical analysis of OVs and MMs related to vision. Guidance document and requests for authorization of health claims were used to collect OVs and MMs related to vision. A literature review was performed to critically analyse OVs and MMs, with the aim of defining their appropriateness in the context of a specific claimed effect related to vision. The results highlight the importance of adequate choices of OVs and MMs for an effective substantiation of claims related to visual function.
Simulating the probability of grain sorghum maturity before the first frost in northeastern Colorado
USDA-ARS?s Scientific Manuscript database
Expanding grain sorghum [Sorghum bicolor (L.) Moench] production northward from southeastern Colorado is thought to be limited by shorter growing seasons due to lower temperatures and earlier frost dates. This study used a simulation model for predicting crop phenology (PhenologyMMS) to predict the ...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-05
... all requirements of NEPA, the Coastal Zone Management Act, Outer Continental Shelf Lands Act, and... consistent with each affected state's federally approved Coastal Zone Management program. Finally, the MMS...-circulation modeling, ecological effects of oil and gas activities, and hurricane impacts on coastal...
Utilization of a Terrestrial Laser Scanner for the Calibration of Mobile Mapping Systems
Hong, Seunghwan; Park, Ilsuk; Lee, Jisang; Lim, Kwangyong; Choi, Yoonjo; Sohn, Hong-Gyoo
2017-01-01
This paper proposes a practical calibration solution for estimating the boresight and lever-arm parameters of the sensors mounted on a Mobile Mapping System (MMS). On our MMS devised for conducting the calibration experiment, three network video cameras, one mobile laser scanner, and one Global Navigation Satellite System (GNSS)/Inertial Navigation System (INS) were mounted. The geometric relationships between three sensors were solved by the proposed calibration, considering the GNSS/INS as one unit sensor. Our solution basically uses the point cloud generated by a 3-dimensional (3D) terrestrial laser scanner rather than using conventionally obtained 3D ground control features. With the terrestrial laser scanner, accurate and precise reference data could be produced and the plane features corresponding with the sparse mobile laser scanning data could be determined with high precision. Furthermore, corresponding point features could be extracted from the dense terrestrial laser scanning data and the images captured by the video cameras. The parameters of the boresight and the lever-arm were calculated based on the least squares approach and the precision of the boresight and lever-arm could be achieved by 0.1 degrees and 10 mm, respectively. PMID:28264457
Field and Numerical Study of the Columbia River Mouth
2013-09-30
system pole-mounted to the USGS survey vessel R/V Parke Snavely. Positioning and orientation of the transducers were measured using an Applanix ...POS MV 320 and afterwards post-processed using Applanix POSPac MMS software. Continuous speed of sound measurements were collected using an Applied
ERIC Educational Resources Information Center
Haim, O.; Strauss, S.; Ravid, D.
2004-01-01
We studied the relations between English as a foreign language teachers' grammar knowledge and their in-action mental models (MMs) of children's minds and learning. The grammar knowledge we examined was English wh-constructions. A total of 74 teachers completed an assessment task and were classified to have deep, intermediate or shallow knowledge.…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-05
... offshore drilling and development. MMS-152--Relinquishment of Federal OCS Oil and Gas Lease Form Once a...) 208-7744. Dated: January 19, 2010. William S. Hauser, Acting Chief, Office of Offshore Regulatory...
Magnetospheric MultiScale Mission (MMS) Overview
NASA Technical Reports Server (NTRS)
Schiff, Conrad
2015-01-01
The MMS mission was launched on March 13, 2015 aboard an Atlas V rocket from Space Launch Complex 40, Cape Canaveral, Florida Each of the four observatories were successfully released at five minute intervals spinning at 3 rpm approximately 1.5 hours after launch.
30 CFR 285.223 - What does MMS do if there is a tie for the highest bid?
Code of Federal Regulations, 2010 CFR
2010-07-01
... INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Issuance of OCS Renewable Energy Leases Competitive Lease Award Process § 285.223 What does MMS do if there...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-22
... report 2 on plans for re- entry to complete or permanently abandon the well and inspection report. 1722(h... entry titled ``Enter Keyword or ID,'' enter docket ID MMS-2010-OMM-0011 then click search. Follow the...
30 CFR 1210.155 - What reports must I submit for Federal onshore stripper oil properties?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Federal onshore stripper oil properties? (a) General. Operators who have been granted a reduced royalty... MMS-4377 on our Internet Web site at http://www.mrm.mms.gov/ReportingServices/Forms/AFSOil_Gas.htm or...
30 CFR 206.117 - What reporting adjustments must I make for transportation allowances?
Code of Federal Regulations, 2010 CFR
2010-07-01
... allowance is less than the amount you claimed on Form MMS-2014 for each month during the allowance reporting... greater than the amount you claimed on Form MMS-2014 for any month during the allowance form reporting...
Choi, Wonjae; Lee, GyuChang; Lee, Seungwon
2015-08-01
To investigate the effect of a cognitive-motor dual-task using auditory cues on the balance of patients with chronic stroke. Randomized controlled trial. Inpatient rehabilitation center. Thirty-seven individuals with chronic stroke. The participants were randomly allocated to the dual-task group (n=19) and the single-task group (n=18). The dual-task group performed a cognitive-motor dual-task in which they carried a circular ring from side to side according to a random auditory cue during treadmill walking. The single-task group walked on a treadmill only. All subjects completed 15 min per session, three times per week, for four weeks with conventional rehabilitation five times per week over the four weeks. Before and after intervention, both static and dynamic balance were measured with a force platform and using the Timed Up and Go (TUG) test. The dual-task group showed significant improvement in all variables compared to the single-task group, except for anteroposterior (AP) sway velocity with eyes open and TUG at follow-up: mediolateral (ML) sway velocity with eye open (dual-task group vs. single-task group: 2.11 mm/s vs. 0.38 mm/s), ML sway velocity with eye close (2.91 mm/s vs. 1.35 mm/s), AP sway velocity with eye close (4.84 mm/s vs. 3.12 mm/s). After intervention, all variables showed significant improvement in the dual-task group compared to baseline. The study results suggest that the performance of a cognitive-motor dual-task using auditory cues may influence balance improvements in chronic stroke patients. © The Author(s) 2014.
Macular microcirculation in patients with epiretinal membrane before and after surgery.
Yagi, Tomoko; Sakata, Kumi; Funatsu, Hideharu; Noma, Hidetaka; Yamamoto, Kaori; Hori, Sadao
2012-06-01
To investigate blood flow velocity (BFV) in the perifoveal capillaries before and after vitreous surgery for patients with epiretinal membrane (ERM). Twenty-one eyes in patients with ERM and 16 eyes in healthy subjects were involved in this study. Fluorescein angiography was performed using a scanning laser ophthalmoscope and BFV was analyzed by the tracing method. Foveal thickness (FT) was measured by optical coherence tomography. BFV was significantly slower in the ERM patients (1.04 ± 0.10 mm/s) than in the healthy subjects (1.49 ± 0.11 mm/s ) (p = 0.0010). BFV in the ERM patients 6 months after vitreous surgery (6 M) (1.21 ± 0.02 mm/s) significantly increased compared with BFV before surgery (0 M) (1.04 ± 0.10 mm/s) (p = 0.0061). BFV 1 year after vitreous surgery (1 Y) significantly increased (1.38 ± 0.02 mm/s) compared with BFV(6 M) (1.21 ± 0.02 mm/s) (p = 0.0235). FT was significantly greater in the ERM patients (351.7 ± 87.1 μm) than in the healthy subjects (158.9 ± 16.9 μm) (p = 0.0011). FT (6 M) significantly decreased (285.3 ± 36.9 μm) compared with FT before surgery (0 M) (351.7 ± 87.1 μm) (p = 0.0212). FT did not show significant differences between (6 M) and (1 Y). No significant correlation was found between BFV and FT before surgery. Perifoveal capillary BFV in patients with ERM was slower than that in the healthy subjects, and significantly improved after vitreous surgery as time progressed. It can be said that perifoveal capillary BFV is related to the development and improvement of ERM in the long term.
Rogers, Heather D; Desciak, Edward B; Marcus, Rebecca P; Wang, Shuang; MacKay-Wiggan, Julian; Eliezri, Yehuda D
2010-11-01
Mohs micrographic surgery (MMS) has a low rate of surgical site infection (SSI) without the use of prophylactic antibiotics. In the studies to date, there has been variation in the steps taken by each surgeon to prevent SSIs but in all cases sterile technique was used during wound reconstruction. We sought to evaluate the rate of SSIs among patients undergoing MMS with the use of clean surgical technique for all steps of MMS including wound reconstruction in the absence of prophylactic antibiotics. We prospectively evaluated 1000 patients undergoing MMS using clean surgical technique for SSIs. Clean surgical technique includes the use of clean surgical gloves and towels and a single pack of sterile instruments for all steps including wound reconstruction. There were 11 SSIs among 1000 patients with 1204 tumors, with an overall rate of infection of 0.91% (95% confidence interval 0.38%-1.45%). Three of the 11 infections were complications of hematomas. Four of the 11 infections occurred in flap closures, which had the highest rate of SSIs of 2.67% (4/150). The study was a prospective, single-institution uncontrolled study. To our knowledge, this is the first study to examine the rate of SSIs with the use of clean surgical technique, in the absence of antibiotic prophylaxis, for all steps of MMS including wound reconstruction. Our rate of SSIs of 0.91% is exceedingly low, underscoring the overall safety of MMS and its performance in the outpatient setting without the use of antibiotic prophylaxis or sterile technique. Copyright © 2010 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.
Favourable results of Mohs micrographic surgery for basal cell carcinoma.
Gniadecki, Robert; Glud, Martin; Mortensen, Kia; Bang, Bo; Biskup, Edyta; Omland, Silje Haukali
2015-12-01
Basal cell carcinoma (BCC) is the most common malignant neoplasm with an annual incidence approaching 200/100,000 person-years. Mohs micrographic surgery (MMS) is widely used in North America and in Europe for treatment of BCC. This technique ensures radical tumour removal, sparing of the surrounding healthy skin, and it also offers higher cure rates than standard tumour excision with a predefined margin of healthy skin. The superiority of MMS relies on the fact that the entire (100%) margin of the excised tissue is examined microscopically for residual tumour in contrast to the traditional histopathological examination, in which 2% of the margin is examined. In Denmark, MMS was first introduced by us in 2012. In the present study, we retrospectively included all patients who underwent MMS from May 2012 to June 2015. A total of 231 patients with 263 BCC were included. The mean age was 66.1 years. The most common localisations were the forehead (31.3%), the nose (31.0%) and the cheek (14.7%). Primary BCC comprised 54.0%; the remaining cases were relapses, most frequently after curettage (36.9%), radiotherapy (18.9%) and photodynamic therapy (11.7%). MMS leads to 40% smaller skin defects than standard excisions with 4 or 6 mm margins. Closure of skin defects was achieved by side-to-side closure in 49% and by local flaps in 40%. There were no relapses during the observation time. The safety, cosmetic and functional outcome were excellent. We recommend that MMS be included in the Danish BCC treatment guidelines, especially for high-risk BCC in the face, in line with standard practice in Europe and the United States. none. not relevant.