Translation from UML to Markov Model: A Performance Modeling Framework
NASA Astrophysics Data System (ADS)
Khan, Razib Hayat; Heegaard, Poul E.
Performance engineering focuses on the quantitative investigation of the behavior of a system during the early phase of the system development life cycle. Bearing this on mind, we delineate a performance modeling framework of the application for communication system that proposes a translation process from high level UML notation to Continuous Time Markov Chain model (CTMC) and solves the model for relevant performance metrics. The framework utilizes UML collaborations, activity diagrams and deployment diagrams to be used for generating performance model for a communication system. The system dynamics will be captured by UML collaboration and activity diagram as reusable specification building blocks, while deployment diagram highlights the components of the system. The collaboration and activity show how reusable building blocks in the form of collaboration can compose together the service components through input and output pin by highlighting the behavior of the components and later a mapping between collaboration and system component identified by deployment diagram will be delineated. Moreover the UML models are annotated to associate performance related quality of service (QoS) information which is necessary for solving the performance model for relevant performance metrics through our proposed framework. The applicability of our proposed performance modeling framework in performance evaluation is delineated in the context of modeling a communication system.
Photovoltaic performance models - A report card
NASA Technical Reports Server (NTRS)
Smith, J. H.; Reiter, L. R.
1985-01-01
Models for the analysis of photovoltaic (PV) systems' designs, implementation policies, and economic performance, have proliferated while keeping pace with rapid changes in basic PV technology and extensive empirical data compiled for such systems' performance. Attention is presently given to the results of a comparative assessment of ten well documented and widely used models, which range in complexity from first-order approximations of PV system performance to in-depth, circuit-level characterizations. The comparisons were made on the basis of the performance of their subsystem, as well as system, elements. The models fall into three categories in light of their degree of aggregation into subsystems: (1) simplified models for first-order calculation of system performance, with easily met input requirements but limited capability to address more than a small variety of design considerations; (2) models simulating PV systems in greater detail, encompassing types primarily intended for either concentrator-incorporating or flat plate collector PV systems; and (3) models not specifically designed for PV system performance modeling, but applicable to aspects of electrical system design. Models ignoring subsystem failure or degradation are noted to exclude operating and maintenance characteristics as well.
The Five Key Questions of Human Performance Modeling.
Wu, Changxu
2018-01-01
Via building computational (typically mathematical and computer simulation) models, human performance modeling (HPM) quantifies, predicts, and maximizes human performance, human-machine system productivity and safety. This paper describes and summarizes the five key questions of human performance modeling: 1) Why we build models of human performance; 2) What the expectations of a good human performance model are; 3) What the procedures and requirements in building and verifying a human performance model are; 4) How we integrate a human performance model with system design; and 5) What the possible future directions of human performance modeling research are. Recent and classic HPM findings are addressed in the five questions to provide new thinking in HPM's motivations, expectations, procedures, system integration and future directions.
Telerobotic system performance measurement - Motivation and methods
NASA Technical Reports Server (NTRS)
Kondraske, George V.; Khoury, George J.
1992-01-01
A systems performance-based strategy for modeling and conducting experiments relevant to the design and performance characterization of telerobotic systems is described. A developmental testbed consisting of a distributed telerobotics network and initial efforts to implement the strategy described is presented. Consideration is given to the general systems performance theory (GSPT) to tackle human performance problems as a basis for: measurement of overall telerobotic system (TRS) performance; task decomposition; development of a generic TRS model; and the characterization of performance of subsystems comprising the generic model. GSPT employs a resource construct to model performance and resource economic principles to govern the interface of systems to tasks. It provides a comprehensive modeling/measurement strategy applicable to complex systems including both human and artificial components. Application is presented within the framework of a distributed telerobotics network as a testbed. Insight into the design of test protocols which elicit application-independent data is described.
Integrated Main Propulsion System Performance Reconstruction Process/Models
NASA Technical Reports Server (NTRS)
Lopez, Eduardo; Elliott, Katie; Snell, Steven; Evans, Michael
2013-01-01
The Integrated Main Propulsion System (MPS) Performance Reconstruction process provides the MPS post-flight data files needed for postflight reporting to the project integration management and key customers to verify flight performance. This process/model was used as the baseline for the currently ongoing Space Launch System (SLS) work. The process utilizes several methodologies, including multiple software programs, to model integrated propulsion system performance through space shuttle ascent. It is used to evaluate integrated propulsion systems, including propellant tanks, feed systems, rocket engine, and pressurization systems performance throughout ascent based on flight pressure and temperature data. The latest revision incorporates new methods based on main engine power balance model updates to model higher mixture ratio operation at lower engine power levels.
Integrating Reliability Analysis with a Performance Tool
NASA Technical Reports Server (NTRS)
Nicol, David M.; Palumbo, Daniel L.; Ulrey, Michael
1995-01-01
A large number of commercial simulation tools support performance oriented studies of complex computer and communication systems. Reliability of these systems, when desired, must be obtained by remodeling the system in a different tool. This has obvious drawbacks: (1) substantial extra effort is required to create the reliability model; (2) through modeling error the reliability model may not reflect precisely the same system as the performance model; (3) as the performance model evolves one must continuously reevaluate the validity of assumptions made in that model. In this paper we describe an approach, and a tool that implements this approach, for integrating a reliability analysis engine into a production quality simulation based performance modeling tool, and for modeling within such an integrated tool. The integrated tool allows one to use the same modeling formalisms to conduct both performance and reliability studies. We describe how the reliability analysis engine is integrated into the performance tool, describe the extensions made to the performance tool to support the reliability analysis, and consider the tool's performance.
Electric Propulsion System Modeling for the Proposed Prometheus 1 Mission
NASA Technical Reports Server (NTRS)
Fiehler, Douglas; Dougherty, Ryan; Manzella, David
2005-01-01
The proposed Prometheus 1 spacecraft would utilize nuclear electric propulsion to propel the spacecraft to its ultimate destination where it would perform its primary mission. As part of the Prometheus 1 Phase A studies, system models were developed for each of the spacecraft subsystems that were integrated into one overarching system model. The Electric Propulsion System (EPS) model was developed using data from the Prometheus 1 electric propulsion technology development efforts. This EPS model was then used to provide both performance and mass information to the Prometheus 1 system model for total system trades. Development of the EPS model is described, detailing both the performance calculations as well as its evolution over the course of Phase A through three technical baselines. Model outputs are also presented, detailing the performance of the model and its direct relationship to the Prometheus 1 technology development efforts. These EP system model outputs are also analyzed chronologically showing the response of the model development to the four technical baselines during Prometheus 1 Phase A.
Models for evaluating the performability of degradable computing systems
NASA Technical Reports Server (NTRS)
Wu, L. T.
1982-01-01
Recent advances in multiprocessor technology established the need for unified methods to evaluate computing systems performance and reliability. In response to this modeling need, a general modeling framework that permits the modeling, analysis and evaluation of degradable computing systems is considered. Within this framework, several user oriented performance variables are identified and shown to be proper generalizations of the traditional notions of system performance and reliability. Furthermore, a time varying version of the model is developed to generalize the traditional fault tree reliability evaluation methods of phased missions.
Integrated performance and reliability specification for digital avionics systems
NASA Technical Reports Server (NTRS)
Brehm, Eric W.; Goettge, Robert T.
1995-01-01
This paper describes an automated tool for performance and reliability assessment of digital avionics systems, called the Automated Design Tool Set (ADTS). ADTS is based on an integrated approach to design assessment that unifies traditional performance and reliability views of system designs, and that addresses interdependencies between performance and reliability behavior via exchange of parameters and result between mathematical models of each type. A multi-layer tool set architecture has been developed for ADTS that separates the concerns of system specification, model generation, and model solution. Performance and reliability models are generated automatically as a function of candidate system designs, and model results are expressed within the system specification. The layered approach helps deal with the inherent complexity of the design assessment process, and preserves long-term flexibility to accommodate a wide range of models and solution techniques within the tool set structure. ADTS research and development to date has focused on development of a language for specification of system designs as a basis for performance and reliability evaluation. A model generation and solution framework has also been developed for ADTS, that will ultimately encompass an integrated set of analytic and simulated based techniques for performance, reliability, and combined design assessment.
New model performance index for engineering design of control systems
NASA Technical Reports Server (NTRS)
1970-01-01
Performance index includes a model representing linear control-system design specifications. Based on a geometric criterion for approximation of the model by the actual system, the index can be interpreted directly in terms of the desired system response model without actually having the model's time response.
Measuring the Performance and Intelligence of Systems: Proceedings of the 2002 PerMIS Workshop
NASA Technical Reports Server (NTRS)
Messina, E. R.; Meystel, A. M.
2002-01-01
Contents include the following: Performance Metrics; Performance of Multiple Agents; Performance of Mobility Systems; Performance of Planning Systems; General Discussion Panel 1; Uncertainty of Representation I; Performance of Robots in Hazardous Domains; Modeling Intelligence; Modeling of Mind; Measuring Intelligence; Grouping: A Core Procedure of Intelligence; Uncertainty in Representation II; Towards Universal Planning/Control Systems.
Development of task network models of human performance in microgravity
NASA Technical Reports Server (NTRS)
Diaz, Manuel F.; Adam, Susan
1992-01-01
This paper discusses the utility of task-network modeling for quantifying human performance variability in microgravity. The data are gathered for: (1) improving current methodologies for assessing human performance and workload in the operational space environment; (2) developing tools for assessing alternative system designs; and (3) developing an integrated set of methodologies for the evaluation of performance degradation during extended duration spaceflight. The evaluation entailed an analysis of the Remote Manipulator System payload-grapple task performed on many shuttle missions. Task-network modeling can be used as a tool for assessing and enhancing human performance in man-machine systems, particularly for modeling long-duration manned spaceflight. Task-network modeling can be directed toward improving system efficiency by increasing the understanding of basic capabilities of the human component in the system and the factors that influence these capabilities.
Formal implementation of a performance evaluation model for the face recognition system.
Shin, Yong-Nyuo; Kim, Jason; Lee, Yong-Jun; Shin, Woochang; Choi, Jin-Young
2008-01-01
Due to usability features, practical applications, and its lack of intrusiveness, face recognition technology, based on information, derived from individuals' facial features, has been attracting considerable attention recently. Reported recognition rates of commercialized face recognition systems cannot be admitted as official recognition rates, as they are based on assumptions that are beneficial to the specific system and face database. Therefore, performance evaluation methods and tools are necessary to objectively measure the accuracy and performance of any face recognition system. In this paper, we propose and formalize a performance evaluation model for the biometric recognition system, implementing an evaluation tool for face recognition systems based on the proposed model. Furthermore, we performed evaluations objectively by providing guidelines for the design and implementation of a performance evaluation system, formalizing the performance test process.
Evaluating Models of Human Performance: Safety-Critical Systems Applications
NASA Technical Reports Server (NTRS)
Feary, Michael S.
2012-01-01
This presentation is part of panel discussion on Evaluating Models of Human Performance. The purpose of this panel is to discuss the increasing use of models in the world today and specifically focus on how to describe and evaluate models of human performance. My presentation will focus on discussions of generating distributions of performance, and the evaluation of different strategies for humans performing tasks with mixed initiative (Human-Automation) systems. I will also discuss issues with how to provide Human Performance modeling data to support decisions on acceptability and tradeoffs in the design of safety critical systems. I will conclude with challenges for the future.
Active imaging system performance model for target acquisition
NASA Astrophysics Data System (ADS)
Espinola, Richard L.; Teaney, Brian; Nguyen, Quang; Jacobs, Eddie L.; Halford, Carl E.; Tofsted, David H.
2007-04-01
The U.S. Army RDECOM CERDEC Night Vision & Electronic Sensors Directorate has developed a laser-range-gated imaging system performance model for the detection, recognition, and identification of vehicle targets. The model is based on the established US Army RDECOM CERDEC NVESD sensor performance models of the human system response through an imaging system. The Java-based model, called NVLRG, accounts for the effect of active illumination, atmospheric attenuation, and turbulence effects relevant to LRG imagers, such as speckle and scintillation, and for the critical sensor and display components. This model can be used to assess the performance of recently proposed active SWIR systems through various trade studies. This paper will describe the NVLRG model in detail, discuss the validation of recent model components, present initial trade study results, and outline plans to validate and calibrate the end-to-end model with field data through human perception testing.
Human performance modeling for system of systems analytics :soldier fatigue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawton, Craig R.; Campbell, James E.; Miller, Dwight Peter
2005-10-01
The military has identified Human Performance Modeling (HPM) as a significant requirement and challenge of future systems modeling and analysis initiatives as can be seen in the Department of Defense's (DoD) Defense Modeling and Simulation Office's (DMSO) Master Plan (DoD 5000.59-P 1995). To this goal, the military is currently spending millions of dollars on programs devoted to HPM in various military contexts. Examples include the Human Performance Modeling Integration (HPMI) program within the Air Force Research Laboratory, which focuses on integrating HPMs with constructive models of systems (e.g. cockpit simulations) and the Navy's Human Performance Center (HPC) established in Septembermore » 2003. Nearly all of these initiatives focus on the interface between humans and a single system. This is insufficient in the era of highly complex network centric SoS. This report presents research and development in the area of HPM in a system-of-systems (SoS). Specifically, this report addresses modeling soldier fatigue and the potential impacts soldier fatigue can have on SoS performance.« less
Modeling the Performance of Direct-Detection Doppler Lidar Systems in Real Atmospheres
NASA Technical Reports Server (NTRS)
McGill, Matthew J.; Hart, William D.; McKay, Jack A.; Spinhirne, James D.
1999-01-01
Previous modeling of the performance of spaceborne direct-detection Doppler lidar systems has assumed extremely idealized atmospheric models. Here we develop a technique for modeling the performance of these systems in a more realistic atmosphere, based on actual airborne lidar observations. The resulting atmospheric model contains cloud and aerosol variability that is absent in other simulations of spaceborne Doppler lidar instruments. To produce a realistic simulation of daytime performance, we include solar radiance values that are based on actual measurements and are allowed to vary as the viewing scene changes. Simulations are performed for two types of direct-detection Doppler lidar systems: the double-edge and the multi-channel techniques. Both systems were optimized to measure winds from Rayleigh backscatter at 355 nm. Simulations show that the measurement uncertainty during daytime is degraded by only about 10-20% compared to nighttime performance, provided a proper solar filter is included in the instrument design.
McGill, M J; Hart, W D; McKay, J A; Spinhirne, J D
1999-10-20
Previous modeling of the performance of spaceborne direct-detection Doppler lidar systems assumed extremely idealized atmospheric models. Here we develop a technique for modeling the performance of these systems in a more realistic atmosphere, based on actual airborne lidar observations. The resulting atmospheric model contains cloud and aerosol variability that is absent in other simulations of spaceborne Doppler lidar instruments. To produce a realistic simulation of daytime performance, we include solar radiance values that are based on actual measurements and are allowed to vary as the viewing scene changes. Simulations are performed for two types of direct-detection Doppler lidar system: the double-edge and the multichannel techniques. Both systems were optimized to measure winds from Rayleigh backscatter at 355 nm. Simulations show that the measurement uncertainty during daytime is degraded by only approximately 10-20% compared with nighttime performance, provided that a proper solar filter is included in the instrument design.
NASA Technical Reports Server (NTRS)
Foyle, David C.
1993-01-01
Based on existing integration models in the psychological literature, an evaluation framework is developed to assess sensor fusion displays as might be implemented in an enhanced/synthetic vision system. The proposed evaluation framework for evaluating the operator's ability to use such systems is a normative approach: The pilot's performance with the sensor fusion image is compared to models' predictions based on the pilot's performance when viewing the original component sensor images prior to fusion. This allows for the determination as to when a sensor fusion system leads to: poorer performance than one of the original sensor displays, clearly an undesirable system in which the fused sensor system causes some distortion or interference; better performance than with either single sensor system alone, but at a sub-optimal level compared to model predictions; optimal performance compared to model predictions; or, super-optimal performance, which may occur if the operator were able to use some highly diagnostic 'emergent features' in the sensor fusion display, which were unavailable in the original sensor displays.
Performance modeling of automated manufacturing systems
NASA Astrophysics Data System (ADS)
Viswanadham, N.; Narahari, Y.
A unified and systematic treatment is presented of modeling methodologies and analysis techniques for performance evaluation of automated manufacturing systems. The book is the first treatment of the mathematical modeling of manufacturing systems. Automated manufacturing systems are surveyed and three principal analytical modeling paradigms are discussed: Markov chains, queues and queueing networks, and Petri nets.
Sebok, Angelia; Wickens, Christopher D
2017-03-01
The objectives were to (a) implement theoretical perspectives regarding human-automation interaction (HAI) into model-based tools to assist designers in developing systems that support effective performance and (b) conduct validations to assess the ability of the models to predict operator performance. Two key concepts in HAI, the lumberjack analogy and black swan events, have been studied extensively. The lumberjack analogy describes the effects of imperfect automation on operator performance. In routine operations, an increased degree of automation supports performance, but in failure conditions, increased automation results in more significantly impaired performance. Black swans are the rare and unexpected failures of imperfect automation. The lumberjack analogy and black swan concepts have been implemented into three model-based tools that predict operator performance in different systems. These tools include a flight management system, a remotely controlled robotic arm, and an environmental process control system. Each modeling effort included a corresponding validation. In one validation, the software tool was used to compare three flight management system designs, which were ranked in the same order as predicted by subject matter experts. The second validation compared model-predicted operator complacency with empirical performance in the same conditions. The third validation compared model-predicted and empirically determined time to detect and repair faults in four automation conditions. The three model-based tools offer useful ways to predict operator performance in complex systems. The three tools offer ways to predict the effects of different automation designs on operator performance.
MacAlpine, Sara; Deline, Chris; Dobos, Aron
2017-03-16
Shade obstructions can significantly impact the performance of photovoltaic (PV) systems. Although there are many models for partially shaded PV arrays, there is a lack of information available regarding their accuracy and uncertainty when compared with actual field performance. This work assesses the recorded performance of 46 residential PV systems, equipped with either string-level or module-level inverters, under a variety of shading conditions. We compare their energy production data to annual PV performance predictions, with a focus on the practical models developed here for National Renewable Energy Laboratory's system advisor model software. This includes assessment of shade extent on eachmore » PV system by using traditional onsite surveys and newer 3D obstruction modelling. The electrical impact of shade is modelled by either a nonlinear performance model or assumption of linear impact with shade extent, depending on the inverter type. When applied to the fleet of residential PV systems, performance is predicted with median annual bias errors of 2.5% or less, for systems with up to 20% estimated shading loss. The partial shade models are not found to add appreciable uncertainty to annual predictions of energy production for this fleet of systems but do introduce a monthly root-mean-square error of approximately 4%-9% due to seasonal effects. Here the use of a detailed 3D model results in similar or improved accuracy over site survey methods, indicating that, with proper description of shade obstructions, modelling of partially shaded PV arrays can be done completely remotely, potentially saving time and cost.« less
2011-09-01
a quality evaluation with limited data, a model -based assessment must be...that affect system performance, a multistage approach to system validation, a modeling and experimental methodology for efficiently addressing a ...affect system performance, a multistage approach to system validation, a modeling and experimental methodology for efficiently addressing a wide range
DOT National Transportation Integrated Search
1973-02-01
The volume presents the models used to analyze basic features of the system, establish feasibility of techniques, and evaluate system performance. The models use analytical expressions and computer simulations to represent the relationship between sy...
Development and Integration of Control System Models
NASA Technical Reports Server (NTRS)
Kim, Young K.
1998-01-01
The computer simulation tool, TREETOPS, has been upgraded and used at NASA/MSFC to model various complicated mechanical systems and to perform their dynamics and control analysis with pointing control systems. A TREETOPS model of Advanced X-ray Astrophysics Facility - Imaging (AXAF-1) dynamics and control system was developed to evaluate the AXAF-I pointing performance for Normal Pointing Mode. An optical model of Shooting Star Experiment (SSE) was also developed and its optical performance analysis was done using the MACOS software.
Research and development on performance models of thermal imaging systems
NASA Astrophysics Data System (ADS)
Wang, Ji-hui; Jin, Wei-qi; Wang, Xia; Cheng, Yi-nan
2009-07-01
Traditional ACQUIRE models perform the discrimination tasks of detection (target orientation, recognition and identification) for military target based upon minimum resolvable temperature difference (MRTD) and Johnson criteria for thermal imaging systems (TIS). Johnson criteria is generally pessimistic for performance predict of sampled imager with the development of focal plane array (FPA) detectors and digital image process technology. Triangle orientation discrimination threshold (TOD) model, minimum temperature difference perceived (MTDP)/ thermal range model (TRM3) Model and target task performance (TTP) metric have been developed to predict the performance of sampled imager, especially TTP metric can provides better accuracy than the Johnson criteria. In this paper, the performance models above are described; channel width metrics have been presented to describe the synthesis performance including modulate translate function (MTF) channel width for high signal noise to ration (SNR) optoelectronic imaging systems and MRTD channel width for low SNR TIS; the under resolvable questions for performance assessment of TIS are indicated; last, the development direction of performance models for TIS are discussed.
Satellite broadcasting system study
NASA Technical Reports Server (NTRS)
1972-01-01
The study to develop a system model and computer program representative of broadcasting satellite systems employing community-type receiving terminals is reported. The program provides a user-oriented tool for evaluating performance/cost tradeoffs, synthesizing minimum cost systems for a given set of system requirements, and performing sensitivity analyses to identify critical parameters and technology. The performance/ costing philosophy and what is meant by a minimum cost system is shown graphically. Topics discussed include: main line control program, ground segment model, space segment model, cost models and launch vehicle selection. Several examples of minimum cost systems resulting from the computer program are presented. A listing of the computer program is also included.
Minimum resolvable power contrast model
NASA Astrophysics Data System (ADS)
Qian, Shuai; Wang, Xia; Zhou, Jingjing
2018-01-01
Signal-to-noise ratio and MTF are important indexs to evaluate the performance of optical systems. However,whether they are used alone or joint assessment cannot intuitively describe the overall performance of the system. Therefore, an index is proposed to reflect the comprehensive system performance-Minimum Resolvable Radiation Performance Contrast (MRP) model. MRP is an evaluation model without human eyes. It starts from the radiance of the target and the background, transforms the target and background into the equivalent strips,and considers attenuation of the atmosphere, the optical imaging system, and the detector. Combining with the signal-to-noise ratio and the MTF, the Minimum Resolvable Radiation Performance Contrast is obtained. Finally the detection probability model of MRP is given.
Post2 End-to-End Descent and Landing Simulation for ALHAT Design Analysis Cycle 2
NASA Technical Reports Server (NTRS)
Davis, Jody L.; Striepe, Scott A.; Maddock, Robert W.; Johnson, Andrew E.; Paschall, Stephen C., II
2010-01-01
The ALHAT project is an agency-level program involving NASA centers, academia, and industry, with a primary goal to develop a safe, autonomous, precision-landing system for robotic and crew-piloted lunar and planetary descent vehicles. POST2 is used as the 6DOF descent and landing trajectory simulation for determining integrated system performance of ALHAT landing-system models and lunar environment models. This paper presents updates in the development of the ALHAT POST2 simulation, as well as preliminary system performance analysis for ALDAC-2 used for the testing and assessment of ALHAT system models. The ALDAC-2 POST2 Monte Carlo simulation results have been generated and focus on HRN model performance with the fully integrated system, as well performance improvements of AGNC and TSAR model since the previous design analysis cycle
Theory of constraints for publicly funded health systems.
Sadat, Somayeh; Carter, Michael W; Golden, Brian
2013-03-01
Originally developed in the context of publicly traded for-profit companies, theory of constraints (TOC) improves system performance through leveraging the constraint(s). While the theory seems to be a natural fit for resource-constrained publicly funded health systems, there is a lack of literature addressing the modifications required to adopt TOC and define the goal and performance measures. This paper develops a system dynamics representation of the classical TOC's system-wide goal and performance measures for publicly traded for-profit companies, which forms the basis for developing a similar model for publicly funded health systems. The model is then expanded to include some of the factors that affect system performance, providing a framework to apply TOC's process of ongoing improvement in publicly funded health systems. Future research is required to more accurately define the factors affecting system performance and populate the model with evidence-based estimates for various parameters in order to use the model to guide TOC's process of ongoing improvement.
NASA Astrophysics Data System (ADS)
Darius, D.; Misaran, M. S.; Rahman, Md. M.; Ismail, M. A.; Amaludin, A.
2017-07-01
The study on the effect of the working parameters such as pipe material, pipe length, pipe diameter, depth of burial of the pipe, air flow rate and different types of soils on the thermal performance of earth-air heat exchanger (EAHE) systems is very crucial to ensure that thermal comfort can be achieved. In the past decade, researchers have performed studies to develop numerical models for analysis of EAHE systems. Until recently, two-dimensional models replaced the numerical models in the 1990s and in recent times, more advanced analysis using three-dimensional models, specifically the Computational Fluid Dynamics (CFD) simulation in the analysis of EAHE system. This paper reviews previous models used to analyse the EAHE system and working parameters that affects the earth-air heat exchanger (EAHE) thermal performance as of February 2017. Recent findings on the parameters affecting EAHE performance are also presented and discussed. As a conclusion, with the advent of CFD methods, investigational work have geared up to modelling and simulation work as it saves time and cost. Comprehension of the EAHE working parameters and its effect on system performance is largely established. However, the study on type of soil and its characteristics on the performance of EAHEs systems are surprisingly barren. Therefore, future studies should focus on the effect of soil characteristics such as moisture content, density of soil, and type of soil on the thermal performance of EAHEs system.
Gering, Kevin L
2013-08-27
A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware periodically samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics of the electrochemical cell. The computing system also develops a mechanistic level model of the electrochemical cell to determine performance fade characteristics of the electrochemical cell and analyzing the mechanistic level model to estimate performance fade characteristics over aging of a similar electrochemical cell. The mechanistic level model uses first constant-current pulses applied to the electrochemical cell at a first aging period and at three or more current values bracketing a first exchange current density. The mechanistic level model also is based on second constant-current pulses applied to the electrochemical cell at a second aging period and at three or more current values bracketing the second exchange current density.
47 CFR 73.151 - Field strength measurements to establish performance of directional antennas.
Code of Federal Regulations, 2010 CFR
2010-10-01
... verified either by field strength measurement or by computer modeling and sampling system verification. (a... specifically identified by the Commission. (c) Computer modeling and sample system verification of modeled... performance verified by computer modeling and sample system verification. (1) A matrix of impedance...
Choi, Wona; Rho, Mi Jung; Park, Jiyun; Kim, Kwang-Jum; Kwon, Young Dae; Choi, In Young
2013-06-01
Intensified competitiveness in the healthcare industry has increased the number of healthcare centers and propelled the introduction of customer relationship management (CRM) systems to meet diverse customer demands. This study aimed to develop the information system success model of the CRM system by investigating previously proposed indicators within the model. THE EVALUATION AREAS OF THE CRM SYSTEM INCLUDES THREE AREAS: the system characteristics area (system quality, information quality, and service quality), the user area (perceived usefulness and user satisfaction), and the performance area (personal performance and organizational performance). Detailed evaluation criteria of the three areas were developed, and its validity was verified by a survey administered to CRM system users in 13 nationwide health promotion centers. The survey data were analyzed by the structural equation modeling method, and the results confirmed that the model is feasible. Information quality and service quality showed a statistically significant relationship with perceived usefulness and user satisfaction. Consequently, the perceived usefulness and user satisfaction had significant influence on individual performance as well as an indirect influence on organizational performance. This study extends the research area on information success from general information systems to CRM systems in health promotion centers applying a previous information success model. This lays a foundation for evaluating health promotion center systems and provides a useful guide for successful implementation of hospital CRM systems.
Choi, Wona; Rho, Mi Jung; Park, Jiyun; Kim, Kwang-Jum; Kwon, Young Dae
2013-01-01
Objectives Intensified competitiveness in the healthcare industry has increased the number of healthcare centers and propelled the introduction of customer relationship management (CRM) systems to meet diverse customer demands. This study aimed to develop the information system success model of the CRM system by investigating previously proposed indicators within the model. Methods The evaluation areas of the CRM system includes three areas: the system characteristics area (system quality, information quality, and service quality), the user area (perceived usefulness and user satisfaction), and the performance area (personal performance and organizational performance). Detailed evaluation criteria of the three areas were developed, and its validity was verified by a survey administered to CRM system users in 13 nationwide health promotion centers. The survey data were analyzed by the structural equation modeling method, and the results confirmed that the model is feasible. Results Information quality and service quality showed a statistically significant relationship with perceived usefulness and user satisfaction. Consequently, the perceived usefulness and user satisfaction had significant influence on individual performance as well as an indirect influence on organizational performance. Conclusions This study extends the research area on information success from general information systems to CRM systems in health promotion centers applying a previous information success model. This lays a foundation for evaluating health promotion center systems and provides a useful guide for successful implementation of hospital CRM systems. PMID:23882416
Performance model for grid-connected photovoltaic inverters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyson, William Earl; Galbraith, Gary M.; King, David L.
2007-09-01
This document provides an empirically based performance model for grid-connected photovoltaic inverters used for system performance (energy) modeling and for continuous monitoring of inverter performance during system operation. The versatility and accuracy of the model were validated for a variety of both residential and commercial size inverters. Default parameters for the model can be obtained from manufacturers specification sheets, and the accuracy of the model can be further refined using measurements from either well-instrumented field measurements in operational systems or using detailed measurements from a recognized testing laboratory. An initial database of inverter performance parameters was developed based on measurementsmore » conducted at Sandia National Laboratories and at laboratories supporting the solar programs of the California Energy Commission.« less
Case Studies Comparing System Advisor Model (SAM) Results to Real Performance Data: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blair, N.; Dobos, A.; Sather, N.
2012-06-01
NREL has completed a series of detailed case studies comparing the simulations of the System Advisor Model (SAM) and measured performance data or published performance expectations. These case studies compare PV measured performance data with simulated performance data using appropriate weather data. The measured data sets were primarily taken from NREL onsite PV systems and weather monitoring stations.
Monte Carlo simulation of Ray-Scan 64 PET system and performance evaluation using GATE toolkit
NASA Astrophysics Data System (ADS)
Li, Suying; Zhang, Qiushi; Vuletic, Ivan; Xie, Zhaoheng; Yang, Kun; Ren, Qiushi
2017-02-01
In this study, we aimed to develop a GATE model for the simulation of Ray-Scan 64 PET scanner and model its performance characteristics. A detailed implementation of system geometry and physical process were included in the simulation model. Then we modeled the performance characteristics of Ray-Scan 64 PET system for the first time, based on National Electrical Manufacturers Association (NEMA) NU-2 2007 protocols and validated the model against experimental measurement, including spatial resolution, sensitivity, counting rates and noise equivalent count rate (NECR). Moreover, an accurate dead time module was investigated to simulate the counting rate performance. Overall results showed reasonable agreement between simulation and experimental data. The validation results showed the reliability and feasibility of the GATE model to evaluate major performance of Ray-Scan 64 PET system. It provided a useful tool for a wide range of research applications.
A model for evaluating the social performance of construction waste management.
Yuan, Hongping
2012-06-01
It has been determined by existing literature that a lot of research efforts have been made to the economic performance of construction waste management (CWM), but less attention is paid to investigation of the social performance of CWM. This study therefore attempts to develop a model for quantitatively evaluating the social performance of CWM by using a system dynamics (SD) approach. Firstly, major variables affecting the social performance of CWM are identified and a holistic system for assessing the social performance of CWM is formulated in line with feedback relationships underlying these variables. The developed system is then converted into a SD model through the software iThink. An empirical case study is finally conducted to demonstrate application of the model. Results of model validation indicate that the model is robust and reasonable to reflect the situation of the real system under study. Findings of the case study offer helpful insights into effectively promoting the social performance of CWM of the project investigated. Furthermore, the model exhibits great potential to function as an experimental platform for dynamically evaluating effects of management measures on improving the social performance of CWM of construction projects. Copyright © 2012 Elsevier Ltd. All rights reserved.
Development of a Solid-Oxide Fuel Cell/Gas Turbine Hybrid System Model for Aerospace Applications
NASA Technical Reports Server (NTRS)
Freeh, Joshua E.; Pratt, Joseph W.; Brouwer, Jacob
2004-01-01
Recent interest in fuel cell-gas turbine hybrid applications for the aerospace industry has led to the need for accurate computer simulation models to aid in system design and performance evaluation. To meet this requirement, solid oxide fuel cell (SOFC) and fuel processor models have been developed and incorporated into the Numerical Propulsion Systems Simulation (NPSS) software package. The SOFC and reformer models solve systems of equations governing steady-state performance using common theoretical and semi-empirical terms. An example hybrid configuration is presented that demonstrates the new capability as well as the interaction with pre-existing gas turbine and heat exchanger models. Finally, a comparison of calculated SOFC performance with experimental data is presented to demonstrate model validity. Keywords: Solid Oxide Fuel Cell, Reformer, System Model, Aerospace, Hybrid System, NPSS
A model for evaluating the social performance of construction waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan Hongping, E-mail: hpyuan2005@gmail.com
Highlights: Black-Right-Pointing-Pointer Scant attention is paid to social performance of construction waste management (CWM). Black-Right-Pointing-Pointer We develop a model for assessing the social performance of CWM. Black-Right-Pointing-Pointer With the model, the social performance of CWM can be quantitatively simulated. - Abstract: It has been determined by existing literature that a lot of research efforts have been made to the economic performance of construction waste management (CWM), but less attention is paid to investigation of the social performance of CWM. This study therefore attempts to develop a model for quantitatively evaluating the social performance of CWM by using a system dynamicsmore » (SD) approach. Firstly, major variables affecting the social performance of CWM are identified and a holistic system for assessing the social performance of CWM is formulated in line with feedback relationships underlying these variables. The developed system is then converted into a SD model through the software iThink. An empirical case study is finally conducted to demonstrate application of the model. Results of model validation indicate that the model is robust and reasonable to reflect the situation of the real system under study. Findings of the case study offer helpful insights into effectively promoting the social performance of CWM of the project investigated. Furthermore, the model exhibits great potential to function as an experimental platform for dynamically evaluating effects of management measures on improving the social performance of CWM of construction projects.« less
Performance-based maintenance of gas turbines for reliable control of degraded power systems
NASA Astrophysics Data System (ADS)
Mo, Huadong; Sansavini, Giovanni; Xie, Min
2018-03-01
Maintenance actions are necessary for ensuring proper operations of control systems under component degradation. However, current condition-based maintenance (CBM) models based on component health indices are not suitable for degraded control systems. Indeed, failures of control systems are only determined by the controller outputs, and the feedback mechanism compensates the control performance loss caused by the component deterioration. Thus, control systems may still operate normally even if the component health indices exceed failure thresholds. This work investigates the CBM model of control systems and employs the reduced control performance as a direct degradation measure for deciding maintenance activities. The reduced control performance depends on the underlying component degradation modelled as a Wiener process and the feedback mechanism. To this aim, the controller features are quantified by developing a dynamic and stochastic control block diagram-based simulation model, consisting of the degraded components and the control mechanism. At each inspection, the system receives a maintenance action if the control performance deterioration exceeds its preventive-maintenance or failure thresholds. Inspired by realistic cases, the component degradation model considers random start time and unit-to-unit variability. The cost analysis of maintenance model is conducted via Monte Carlo simulation. Optimal maintenance strategies are investigated to minimize the expected maintenance costs, which is a direct consequence of the control performance. The proposed framework is able to design preventive maintenance actions on a gas power plant, to ensuring required load frequency control performance against a sudden load increase. The optimization results identify the trade-off between system downtime and maintenance costs as a function of preventive maintenance thresholds and inspection frequency. Finally, the control performance-based maintenance model can reduce maintenance costs as compared to CBM and pre-scheduled maintenance.
Waterhammer Transient Simulation and Model Anchoring for the Robotic Lunar Lander Propulsion System
NASA Technical Reports Server (NTRS)
Stein, William B.; Trinh, Huu P.; Reynolds, Michael E.; Sharp, David J.
2011-01-01
Waterhammer transients have the potential to adversely impact propulsion system design if not properly addressed. Waterhammer can potentially lead to system plumbing, and component damage. Multi-thruster propulsion systems also develop constructive/destructive wave interference which becomes difficult to predict without detailed models. Therefore, it is important to sufficiently characterize propulsion system waterhammer in order to develop a robust design with minimal impact to other systems. A risk reduction activity was performed at Marshall Space Flight Center to develop a tool for estimating waterhammer through the use of anchored simulation for the Robotic Lunar Lander (RLL) propulsion system design. Testing was performed to simulate waterhammer surges due to rapid valve closure and consisted of twenty-two series of waterhammer tests, resulting in more than 300 valve actuations. These tests were performed using different valve actuation schemes and three system pressures. Data from the valve characterization tests were used to anchor the models that employed MSCSoftware.EASY5 v.2010 to model transient fluid phenomena by using transient forms of mass and energy conservation. The anchoring process was performed by comparing initial model results to experimental data and then iterating the model input to match the simulation results with the experimental data. The models provide good correlation with experimental results, supporting the use of EASY5 as a tool to model fluid transients and provide a baseline for future RLL system modeling. This paper addresses tasks performed during the waterhammer risk reduction activity for the RLL propulsion system. The problem of waterhammer simulation anchoring as applied to the RLL system is discussed with results from the corresponding experimental valve tests. Important factors for waterhammer mitigation are discussed along with potential design impacts to the RLL propulsion system.
CPMIP: measurements of real computational performance of Earth system models in CMIP6
NASA Astrophysics Data System (ADS)
Balaji, Venkatramani; Maisonnave, Eric; Zadeh, Niki; Lawrence, Bryan N.; Biercamp, Joachim; Fladrich, Uwe; Aloisio, Giovanni; Benson, Rusty; Caubel, Arnaud; Durachta, Jeffrey; Foujols, Marie-Alice; Lister, Grenville; Mocavero, Silvia; Underwood, Seth; Wright, Garrett
2017-01-01
A climate model represents a multitude of processes on a variety of timescales and space scales: a canonical example of multi-physics multi-scale modeling. The underlying climate system is physically characterized by sensitive dependence on initial conditions, and natural stochastic variability, so very long integrations are needed to extract signals of climate change. Algorithms generally possess weak scaling and can be I/O and/or memory-bound. Such weak-scaling, I/O, and memory-bound multi-physics codes present particular challenges to computational performance. Traditional metrics of computational efficiency such as performance counters and scaling curves do not tell us enough about real sustained performance from climate models on different machines. They also do not provide a satisfactory basis for comparative information across models. codes present particular challenges to computational performance. We introduce a set of metrics that can be used for the study of computational performance of climate (and Earth system) models. These measures do not require specialized software or specific hardware counters, and should be accessible to anyone. They are independent of platform and underlying parallel programming models. We show how these metrics can be used to measure actually attained performance of Earth system models on different machines, and identify the most fruitful areas of research and development for performance engineering. codes present particular challenges to computational performance. We present results for these measures for a diverse suite of models from several modeling centers, and propose to use these measures as a basis for a CPMIP, a computational performance model intercomparison project (MIP).
Cost and Performance Model for Photovoltaic Systems
NASA Technical Reports Server (NTRS)
Borden, C. S.; Smith, J. H.; Davisson, M. C.; Reiter, L. J.
1986-01-01
Lifetime cost and performance (LCP) model assists in assessment of design options for photovoltaic systems. LCP is simulation of performance, cost, and revenue streams associated with photovoltaic power systems connected to electric-utility grid. LCP provides user with substantial flexibility in specifying technical and economic environment of application.
Closed-form solutions of performability. [modeling of a degradable buffer/multiprocessor system
NASA Technical Reports Server (NTRS)
Meyer, J. F.
1981-01-01
Methods which yield closed form performability solutions for continuous valued variables are developed. The models are similar to those employed in performance modeling (i.e., Markovian queueing models) but are extended so as to account for variations in structure due to faults. In particular, the modeling of a degradable buffer/multiprocessor system is considered whose performance Y is the (normalized) average throughput rate realized during a bounded interval of time. To avoid known difficulties associated with exact transient solutions, an approximate decomposition of the model is employed permitting certain submodels to be solved in equilibrium. These solutions are then incorporated in a model with fewer transient states and by solving the latter, a closed form solution of the system's performability is obtained. In conclusion, some applications of this solution are discussed and illustrated, including an example of design optimization.
NASA Technical Reports Server (NTRS)
Campbell, B. H.
1974-01-01
A methodology which was developed for balanced designing of spacecraft subsystems and interrelates cost, performance, safety, and schedule considerations was refined. The methodology consists of a two-step process: the first step is one of selecting all hardware designs which satisfy the given performance and safety requirements, the second step is one of estimating the cost and schedule required to design, build, and operate each spacecraft design. Using this methodology to develop a systems cost/performance model allows the user of such a model to establish specific designs and the related costs and schedule. The user is able to determine the sensitivity of design, costs, and schedules to changes in requirements. The resulting systems cost performance model is described and implemented as a digital computer program.
Predicting Document Retrieval System Performance: An Expected Precision Measure.
ERIC Educational Resources Information Center
Losee, Robert M., Jr.
1987-01-01
Describes an expected precision (EP) measure designed to predict document retrieval performance. Highlights include decision theoretic models; precision and recall as measures of system performance; EP graphs; relevance feedback; and computing the retrieval status value of a document for two models, the Binary Independent Model and the Two Poisson…
Stochastic availability analysis of operational data systems in the Deep Space Network
NASA Technical Reports Server (NTRS)
Issa, T. N.
1991-01-01
Existing availability models of standby redundant systems consider only an operator's performance and its interaction with the hardware performance. In the case of operational data systems in the Deep Space Network (DSN), in addition to an operator system interface, a controller reconfigures the system and links a standby unit into the network data path upon failure of the operating unit. A stochastic (Markovian) process technique is used to model and analyze the availability performance and occurrence of degradation due to partial failures are quantitatively incorporated into the model. Exact expressions of the steady state availability and proportion degraded performance measures are derived for the systems under study. The interaction among the hardware, operator, and controller performance parameters and that interaction's effect on data availability are evaluated and illustrated for an operational data processing system.
Closed-form solutions of performability. [in computer systems
NASA Technical Reports Server (NTRS)
Meyer, J. F.
1982-01-01
It is noted that if computing system performance is degradable then system evaluation must deal simultaneously with aspects of both performance and reliability. One approach is the evaluation of a system's performability which, relative to a specified performance variable Y, generally requires solution of the probability distribution function of Y. The feasibility of closed-form solutions of performability when Y is continuous are examined. In particular, the modeling of a degradable buffer/multiprocessor system is considered whose performance Y is the (normalized) average throughput rate realized during a bounded interval of time. Employing an approximate decomposition of the model, it is shown that a closed-form solution can indeed be obtained.
Building a generalized distributed system model
NASA Technical Reports Server (NTRS)
Mukkamala, Ravi; Foudriat, E. C.
1991-01-01
A modeling tool for both analysis and design of distributed systems is discussed. Since many research institutions have access to networks of workstations, the researchers decided to build a tool running on top of the workstations to function as a prototype as well as a distributed simulator for a computing system. The effects of system modeling on performance prediction in distributed systems and the effect of static locking and deadlocks on the performance predictions of distributed transactions are also discussed. While the probability of deadlock is considerably small, its effects on performance could be significant.
Reliability and performance evaluation of systems containing embedded rule-based expert systems
NASA Technical Reports Server (NTRS)
Beaton, Robert M.; Adams, Milton B.; Harrison, James V. A.
1989-01-01
A method for evaluating the reliability of real-time systems containing embedded rule-based expert systems is proposed and investigated. It is a three stage technique that addresses the impact of knowledge-base uncertainties on the performance of expert systems. In the first stage, a Markov reliability model of the system is developed which identifies the key performance parameters of the expert system. In the second stage, the evaluation method is used to determine the values of the expert system's key performance parameters. The performance parameters can be evaluated directly by using a probabilistic model of uncertainties in the knowledge-base or by using sensitivity analyses. In the third and final state, the performance parameters of the expert system are combined with performance parameters for other system components and subsystems to evaluate the reliability and performance of the complete system. The evaluation method is demonstrated in the context of a simple expert system used to supervise the performances of an FDI algorithm associated with an aircraft longitudinal flight-control system.
NASA Technical Reports Server (NTRS)
Miller, Robert H. (Inventor); Ribbens, William B. (Inventor)
2003-01-01
A method and system for detecting a failure or performance degradation in a dynamic system having sensors for measuring state variables and providing corresponding output signals in response to one or more system input signals are provided. The method includes calculating estimated gains of a filter and selecting an appropriate linear model for processing the output signals based on the input signals. The step of calculating utilizes one or more models of the dynamic system to obtain estimated signals. The method further includes calculating output error residuals based on the output signals and the estimated signals. The method also includes detecting one or more hypothesized failures or performance degradations of a component or subsystem of the dynamic system based on the error residuals. The step of calculating the estimated values is performed optimally with respect to one or more of: noise, uncertainty of parameters of the models and un-modeled dynamics of the dynamic system which may be a flight vehicle or financial market or modeled financial system.
Practical Techniques for Modeling Gas Turbine Engine Performance
NASA Technical Reports Server (NTRS)
Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.
2016-01-01
The cost and risk associated with the design and operation of gas turbine engine systems has led to an increasing dependence on mathematical models. In this paper, the fundamentals of engine simulation will be reviewed, an example performance analysis will be performed, and relationships useful for engine control system development will be highlighted. The focus will be on thermodynamic modeling utilizing techniques common in industry, such as: the Brayton cycle, component performance maps, map scaling, and design point criteria generation. In general, these topics will be viewed from the standpoint of an example turbojet engine model; however, demonstrated concepts may be adapted to other gas turbine systems, such as gas generators, marine engines, or high bypass aircraft engines. The purpose of this paper is to provide an example of gas turbine model generation and system performance analysis for educational uses, such as curriculum creation or student reference.
Sootblowing optimization for improved boiler performance
James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J.
2012-12-25
A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.
Sootblowing optimization for improved boiler performance
James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J
2013-07-30
A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.
Technical Manual for the SAM Physical Trough Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, M. J.; Gilman, P.
2011-06-01
NREL, in conjunction with Sandia National Lab and the U.S Department of Energy, developed the System Advisor Model (SAM) analysis tool for renewable energy system performance and economic analysis. This paper documents the technical background and engineering formulation for one of SAM's two parabolic trough system models in SAM. The Physical Trough model calculates performance relationships based on physical first principles where possible, allowing the modeler to predict electricity production for a wider range of component geometries than is possible in the Empirical Trough model. This document describes the major parabolic trough plant subsystems in detail including the solar field,more » power block, thermal storage, piping, auxiliary heating, and control systems. This model makes use of both existing subsystem performance modeling approaches, and new approaches developed specifically for SAM.« less
Effects of thermal blooming on systems comprised of tiled subapertures
NASA Astrophysics Data System (ADS)
Leakeas, Charles L.; Bartell, Richard J.; Krizo, Matthew J.; Fiorino, Steven T.; Cusumano, Salvatore J.; Whiteley, Matthew R.
2010-04-01
Laser weapon systems comprise of tiled subapertures are rapidly emerging in the directed energy community. The Air Force Institute of Technology Center for Directed Energy (AFIT/CDE), under sponsorship of the HEL Joint Technology Office has developed performance models of such laser weapon system configurations consisting of tiled arrays of both slab and fiber subapertures. These performance models are based on results of detailed waveoptics analyses conducted using WaveTrain. Previous performance model versions developed in this effort represent system characteristics such as subaperture shape, aperture fill factor, subaperture intensity profile, subaperture placement in the primary aperture, subaperture mutual coherence (piston), subaperture differential jitter (tilt), and beam quality wave-front error associated with each subaperture. The current work is a prerequisite for the development of robust performance models for turbulence and thermal blooming effects for tiled systems. Emphasis is placed on low altitude tactical scenarios. The enhanced performance model developed will be added to AFIT/CDE's HELEEOS parametric one-on-one engagement level model via the Scaling for High Energy Laser and Relay Engagement (SHaRE) toolbox.
A model for plant lighting system selection.
Ciolkosz, D E; Albright, L D; Sager, J C; Langhans, R W
2002-01-01
A decision model is presented that compares lighting systems for a plant growth scenario and chooses the most appropriate system from a given set of possible choices. The model utilizes a Multiple Attribute Utility Theory approach, and incorporates expert input and performance simulations to calculate a utility value for each lighting system being considered. The system with the highest utility is deemed the most appropriate system. The model was applied to a greenhouse scenario, and analyses were conducted to test the model's output for validity. Parameter variation indicates that the model performed as expected. Analysis of model output indicates that differences in utility among the candidate lighting systems were sufficiently large to give confidence that the model's order of selection was valid.
Patterson, Olga V; Forbush, Tyler B; Saini, Sameer D; Moser, Stephanie E; DuVall, Scott L
2015-01-01
In order to measure the level of utilization of colonoscopy procedures, identifying the primary indication for the procedure is required. Colonoscopies may be utilized not only for screening, but also for diagnostic or therapeutic purposes. To determine whether a colonoscopy was performed for screening, we created a natural language processing system to identify colonoscopy reports in the electronic medical record system and extract indications for the procedure. A rule-based model and three machine-learning models were created using 2,000 manually annotated clinical notes of patients cared for in the Department of Veterans Affairs. Performance of the models was measured and compared. Analysis of the models on a test set of 1,000 documents indicates that the rule-based system performance stays fairly constant as evaluated on training and testing sets. However, the machine learning model without feature selection showed significant decrease in performance. Therefore, rule-based classification system appears to be more robust than a machine-learning system in cases when no feature selection is performed.
A Systemic Cause Analysis Model for Human Performance Technicians
ERIC Educational Resources Information Center
Sostrin, Jesse
2011-01-01
This article presents a systemic, research-based cause analysis model for use in the field of human performance technology (HPT). The model organizes the most prominent barriers to workplace learning and performance into a conceptual framework that explains and illuminates the architecture of these barriers that exist within the fabric of everyday…
NASA Astrophysics Data System (ADS)
Boakye-Boateng, Nasir Abdulai
The growing demand for wind power integration into the generation mix prompts the need to subject these systems to stringent performance requirements. This study sought to identify the required tools and procedures needed to perform real-time simulation studies of Doubly-Fed Induction Generator (DFIG) based wind generation systems as basis for performing more practical tests of reliability and performance for both grid-connected and islanded wind generation systems. The author focused on developing a platform for wind generation studies and in addition, the author tested the performance of two DFIG models on the platform real-time simulation model; an average SimpowerSystemsRTM DFIG wind turbine, and a detailed DFIG based wind turbine using ARTEMiSRTM components. The platform model implemented here consists of a high voltage transmission system with four integrated wind farm models consisting in total of 65 DFIG based wind turbines and it was developed and tested on OPAL-RT's eMEGASimRTM Real-Time Digital Simulator.
NASA Technical Reports Server (NTRS)
Briggs, Hugh C.
2008-01-01
An error budget is a commonly used tool in design of complex aerospace systems. It represents system performance requirements in terms of allowable errors and flows these down through a hierarchical structure to lower assemblies and components. The requirements may simply be 'allocated' based upon heuristics or experience, or they may be designed through use of physics-based models. This paper presents a basis for developing an error budget for models of the system, as opposed to the system itself. The need for model error budgets arises when system models are a principle design agent as is increasingly more common for poorly testable high performance space systems.
Zhang, Xu; Jin, Weiqi; Li, Jiakun; Wang, Xia; Li, Shuo
2017-04-01
Thermal imaging technology is an effective means of detecting hazardous gas leaks. Much attention has been paid to evaluation of the performance of gas leak infrared imaging detection systems due to several potential applications. The minimum resolvable temperature difference (MRTD) and the minimum detectable temperature difference (MDTD) are commonly used as the main indicators of thermal imaging system performance. This paper establishes a minimum detectable gas concentration (MDGC) performance evaluation model based on the definition and derivation of MDTD. We proposed the direct calculation and equivalent calculation method of MDGC based on the MDTD measurement system. We build an experimental MDGC measurement system, which indicates the MDGC model can describe the detection performance of a thermal imaging system to typical gases. The direct calculation, equivalent calculation, and direct measurement results are consistent. The MDGC and the minimum resolvable gas concentration (MRGC) model can effectively describe the performance of "detection" and "spatial detail resolution" of thermal imaging systems to gas leak, respectively, and constitute the main performance indicators of gas leak detection systems.
Research study on IPS digital controller design
NASA Technical Reports Server (NTRS)
Kuo, B. C.; Folkerts, C.
1976-01-01
The performance is investigated of the simplified continuous-data model of the Instrument Pointing System (IPS). Although the ultimate objective is to study the digital model of the system, knowledge on the performance of the continuous-data model is important in the sense that the characteristics of the digital system should approach those of the continuous-data system as the sampling period approaches zero.
The use of algorithmic behavioural transfer functions in parametric EO system performance models
NASA Astrophysics Data System (ADS)
Hickman, Duncan L.; Smith, Moira I.
2015-10-01
The use of mathematical models to predict the overall performance of an electro-optic (EO) system is well-established as a methodology and is used widely to support requirements definition, system design, and produce performance predictions. Traditionally these models have been based upon cascades of transfer functions based on established physical theory, such as the calculation of signal levels from radiometry equations, as well as the use of statistical models. However, the performance of an EO system is increasing being dominated by the on-board processing of the image data and this automated interpretation of image content is complex in nature and presents significant modelling challenges. Models and simulations of EO systems tend to either involve processing of image data as part of a performance simulation (image-flow) or else a series of mathematical functions that attempt to define the overall system characteristics (parametric). The former approach is generally more accurate but statistically and theoretically weak in terms of specific operational scenarios, and is also time consuming. The latter approach is generally faster but is unable to provide accurate predictions of a system's performance under operational conditions. An alternative and novel architecture is presented in this paper which combines the processing speed attributes of parametric models with the accuracy of image-flow representations in a statistically valid framework. An additional dimension needed to create an effective simulation is a robust software design whose architecture reflects the structure of the EO System and its interfaces. As such, the design of the simulator can be viewed as a software prototype of a new EO System or an abstraction of an existing design. This new approach has been used successfully to model a number of complex military systems and has been shown to combine improved performance estimation with speed of computation. Within the paper details of the approach and architecture are described in detail, and example results based on a practical application are then given which illustrate the performance benefits. Finally, conclusions are drawn and comments given regarding the benefits and uses of the new approach.
A holistic approach to movement education in sport and fitness: a systems based model.
Polsgrove, Myles Jay
2012-01-01
The typical model used by movement professionals to enhance performance relies on the notion that a linear increase in load results in steady and progressive gains, whereby, the greater the effort, the greater the gains in performance. Traditional approaches to movement progression typically rely on the proper sequencing of extrinsically based activities to facilitate the individual in reaching performance objectives. However, physical rehabilitation or physical performance rarely progresses in such a linear fashion; instead they tend to evolve non-linearly and rather unpredictably. A dynamic system can be described as an entity that self-organizes into increasingly complex forms. Applying this view to the human body, practitioners could facilitate non-linear performance gains through a systems based programming approach. Utilizing a dynamic systems view, the Holistic Approach to Movement Education (HADME) is a model designed to optimize performance by accounting for non-linear and self-organizing traits associated with human movement. In this model, gains in performance occur through advancing individual perspectives and through optimizing sub-system performance. This inward shift of the focus of performance creates a sharper self-awareness and may lead to more optimal movements. Copyright © 2011 Elsevier Ltd. All rights reserved.
Analysis of Aurora's Performance Simulation Engine for Three Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, Janine; Simon, Joseph
2015-07-07
Aurora Solar Inc. is building a cloud-based optimization platform to automate the design, engineering, and permit generation process of solar photovoltaic (PV) installations. They requested that the National Renewable Energy Laboratory (NREL) validate the performance of the PV system performance simulation engine of Aurora Solar’s solar design platform, Aurora. In previous work, NREL performed a validation of multiple other PV modeling tools 1, so this study builds upon that work by examining all of the same fixed-tilt systems with available module datasheets that NREL selected and used in the aforementioned study. Aurora Solar set up these three operating PV systemsmore » in their modeling platform using NREL-provided system specifications and concurrent weather data. NREL then verified the setup of these systems, ran the simulations, and compared the Aurora-predicted performance data to measured performance data for those three systems, as well as to performance data predicted by other PV modeling tools.« less
Verification of an analytic modeler for capillary pump loop thermal control systems
NASA Technical Reports Server (NTRS)
Schweickart, R. B.; Neiswanger, L.; Ku, J.
1987-01-01
A number of computer programs have been written to model two-phase heat transfer systems for space use. These programs support the design of thermal control systems and provide a method of predicting their performance in the wide range of thermal environments of space. Predicting the performance of one such system known as the capillary pump loop (CPL) is the intent of the CPL Modeler. By modeling two developed CPL systems and comparing the results with actual test data, the CPL Modeler has proven useful in simulating CPL operation. Results of the modeling effort are discussed, together with plans for refinements to the modeler.
NASA Astrophysics Data System (ADS)
Kong, Changduk; Lim, Semyeong; Kim, Keunwoo
2013-03-01
The Neural Networks is mostly used to engine fault diagnostic system due to its good learning performance, but it has a drawback due to low accuracy and long learning time to build learning data base. This work builds inversely a base performance model of a turboprop engine to be used for a high altitude operation UAV using measuring performance data, and proposes a fault diagnostic system using the base performance model and artificial intelligent methods such as Fuzzy and Neural Networks. Each real engine performance model, which is named as the base performance model that can simulate a new engine performance, is inversely made using its performance test data. Therefore the condition monitoring of each engine can be more precisely carried out through comparison with measuring performance data. The proposed diagnostic system identifies firstly the faulted components using Fuzzy Logic, and then quantifies faults of the identified components using Neural Networks leaned by fault learning data base obtained from the developed base performance model. In leaning the measuring performance data of the faulted components, the FFBP (Feed Forward Back Propagation) is used. In order to user's friendly purpose, the proposed diagnostic program is coded by the GUI type using MATLAB.
A measurement-based performability model for a multiprocessor system
NASA Technical Reports Server (NTRS)
Ilsueh, M. C.; Iyer, Ravi K.; Trivedi, K. S.
1987-01-01
A measurement-based performability model based on real error-data collected on a multiprocessor system is described. Model development from the raw errror-data to the estimation of cumulative reward is described. Both normal and failure behavior of the system are characterized. The measured data show that the holding times in key operational and failure states are not simple exponential and that semi-Markov process is necessary to model the system behavior. A reward function, based on the service rate and the error rate in each state, is then defined in order to estimate the performability of the system and to depict the cost of different failure types and recovery procedures.
Models and techniques for evaluating the effectiveness of aircraft computing systems
NASA Technical Reports Server (NTRS)
Meyer, J. F.
1978-01-01
Progress in the development of system models and techniques for the formulation and evaluation of aircraft computer system effectiveness is reported. Topics covered include: analysis of functional dependence: a prototype software package, METAPHOR, developed to aid the evaluation of performability; and a comprehensive performability modeling and evaluation exercise involving the SIFT computer.
Summary of photovoltaic system performance models
NASA Technical Reports Server (NTRS)
Smith, J. H.; Reiter, L. J.
1984-01-01
A detailed overview of photovoltaics (PV) performance modeling capabilities developed for analyzing PV system and component design and policy issues is provided. A set of 10 performance models are selected which span a representative range of capabilities from generalized first order calculations to highly specialized electrical network simulations. A set of performance modeling topics and characteristics is defined and used to examine some of the major issues associated with photovoltaic performance modeling. Each of the models is described in the context of these topics and characteristics to assess its purpose, approach, and level of detail. The issues are discussed in terms of the range of model capabilities available and summarized in tabular form for quick reference. The models are grouped into categories to illustrate their purposes and perspectives.
Park, Sung Hwan; Lee, Ji Min; Kim, Jong Shik
2013-01-01
An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software.
NASA Technical Reports Server (NTRS)
Scheper, C.; Baker, R.; Frank, G.; Yalamanchili, S.; Gray, G.
1992-01-01
Systems for Space Defense Initiative (SDI) space applications typically require both high performance and very high reliability. These requirements present the systems engineer evaluating such systems with the extremely difficult problem of conducting performance and reliability trade-offs over large design spaces. A controlled development process supported by appropriate automated tools must be used to assure that the system will meet design objectives. This report describes an investigation of methods, tools, and techniques necessary to support performance and reliability modeling for SDI systems development. Models of the JPL Hypercubes, the Encore Multimax, and the C.S. Draper Lab Fault-Tolerant Parallel Processor (FTPP) parallel-computing architectures using candidate SDI weapons-to-target assignment algorithms as workloads were built and analyzed as a means of identifying the necessary system models, how the models interact, and what experiments and analyses should be performed. As a result of this effort, weaknesses in the existing methods and tools were revealed and capabilities that will be required for both individual tools and an integrated toolset were identified.
NASA Technical Reports Server (NTRS)
Zaychik, Kirill; Cardullo, Frank; George, Gary; Kelly, Lon C.
2009-01-01
In order to use the Hess Structural Model to predict the need for certain cueing systems, George and Cardullo significantly expanded it by adding motion feedback to the model and incorporating models of the motion system dynamics, motion cueing algorithm and a vestibular system. This paper proposes a methodology to evaluate effectiveness of these innovations by performing a comparison analysis of the model performance with and without the expanded motion feedback. The proposed methodology is composed of two stages. The first stage involves fine-tuning parameters of the original Hess structural model in order to match the actual control behavior recorded during the experiments at NASA Visual Motion Simulator (VMS) facility. The parameter tuning procedure utilizes a new automated parameter identification technique, which was developed at the Man-Machine Systems Lab at SUNY Binghamton. In the second stage of the proposed methodology, an expanded motion feedback is added to the structural model. The resulting performance of the model is then compared to that of the original one. As proposed by Hess, metrics to evaluate the performance of the models include comparison against the crossover models standards imposed on the crossover frequency and phase margin of the overall man-machine system. Preliminary results indicate the advantage of having the model of the motion system and motion cueing incorporated into the model of the human operator. It is also demonstrated that the crossover frequency and the phase margin of the expanded model are well within the limits imposed by the crossover model.
NASA Astrophysics Data System (ADS)
Azougagh, Yassine; Benhida, Khalid; Elfezazi, Said
2016-02-01
In this paper, the focus is on studying the performance of complex systems in a supply chain context by developing a structured modelling approach based on the methodology ASDI (Analysis, Specification, Design and Implementation) by combining the modelling by Petri nets and simulation using ARENA. The linear approach typically followed in conducting of this kind of problems has to cope with a difficulty of modelling due to the complexity and the number of parameters of concern. Therefore, the approach used in this work is able to structure modelling a way to cover all aspects of the performance study. The modelling structured approach is first introduced before being applied to the case of an industrial system in the field of phosphate. Results of the performance indicators obtained from the models developed, permitted to test the behaviour and fluctuations of this system and to develop improved models of the current situation. In addition, in this paper, it was shown how Arena software can be adopted to simulate complex systems effectively. The method in this research can be applied to investigate various improvements scenarios and their consequences before implementing them in reality.
NASA Technical Reports Server (NTRS)
Whorton, M. S.
1998-01-01
Many spacecraft systems have ambitious objectives that place stringent requirements on control systems. Achievable performance is often limited because of difficulty of obtaining accurate models for flexible space structures. To achieve sufficiently high performance to accomplish mission objectives may require the ability to refine the control design model based on closed-loop test data and tune the controller based on the refined model. A control system design procedure is developed based on mixed H2/H(infinity) optimization to synthesize a set of controllers explicitly trading between nominal performance and robust stability. A homotopy algorithm is presented which generates a trajectory of gains that may be implemented to determine maximum achievable performance for a given model error bound. Examples show that a better balance between robustness and performance is obtained using the mixed H2/H(infinity) design method than either H2 or mu-synthesis control design. A second contribution is a new procedure for closed-loop system identification which refines parameters of a control design model in a canonical realization. Examples demonstrate convergence of the parameter estimation and improved performance realized by using the refined model for controller redesign. These developments result in an effective mechanism for achieving high-performance control of flexible space structures.
Models and techniques for evaluating the effectiveness of aircraft computing systems
NASA Technical Reports Server (NTRS)
Meyer, J. F.
1977-01-01
Models, measures and techniques were developed for evaluating the effectiveness of aircraft computing systems. The concept of effectiveness involves aspects of system performance, reliability and worth. Specifically done was a detailed development of model hierarchy at mission, functional task, and computational task levels. An appropriate class of stochastic models was investigated which served as bottom level models in the hierarchial scheme. A unified measure of effectiveness called 'performability' was defined and formulated.
NASA Astrophysics Data System (ADS)
Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun
2013-01-01
The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail.
NASA Astrophysics Data System (ADS)
Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun
2012-08-01
The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail.
NASA Technical Reports Server (NTRS)
Evers, Ken H.; Bachert, Robert F.
1987-01-01
The IDEAL (Integrated Design and Engineering Analysis Languages) modeling methodology has been formulated and applied over a five-year period. It has proven to be a unique, integrated approach utilizing a top-down, structured technique to define and document the system of interest; a knowledge engineering technique to collect and organize system descriptive information; a rapid prototyping technique to perform preliminary system performance analysis; and a sophisticated simulation technique to perform in-depth system performance analysis.
Reference Manual for the System Advisor Model's Wind Power Performance Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, J.; Jorgenson, J.; Gilman, P.
2014-08-01
This manual describes the National Renewable Energy Laboratory's System Advisor Model (SAM) wind power performance model. The model calculates the hourly electrical output of a single wind turbine or of a wind farm. The wind power performance model requires information about the wind resource, wind turbine specifications, wind farm layout (if applicable), and costs. In SAM, the performance model can be coupled to one of the financial models to calculate economic metrics for residential, commercial, or utility-scale wind projects. This manual describes the algorithms used by the wind power performance model, which is available in the SAM user interface andmore » as part of the SAM Simulation Core (SSC) library, and is intended to supplement the user documentation that comes with the software.« less
Modelling and experimental performance analysis of solar-assisted ground source heat pump system
NASA Astrophysics Data System (ADS)
Esen, Hikmet; Esen, Mehmet; Ozsolak, Onur
2017-01-01
In this study, slinky (the slinky-loop configuration is also known as the coiled loop or spiral loop of flexible plastic pipe)type ground heat exchanger (GHE) was established for a solar-assisted ground source heat pump system. System modelling is performed with the data obtained from the experiment. Artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) are used in modelling. The slinky pipes have been laid horizontally and vertically in a ditch. The system coefficient of performance (COPsys) and the heat pump coefficient of performance (COPhp) have been calculated as 2.88 and 3.55, respectively, at horizontal slinky-type GHE, while COPsys and COPhp were calculated as 2.34 and 2.91, respectively, at vertical slinky-type GHE. The obtained results showed that the ANFIS is more successful than that of ANN for forecasting performance of a solar ground source heat pump system.
The development of performance prediction models for Virginia's interstate highway system.
DOT National Transportation Integrated Search
1995-01-01
Performance prediction models are a key component of any well-designed pavement management system. In this study, data compiled from the condition surveys conducted annually on Virginia's pavement network were used to develop prediction models for mo...
NASA Astrophysics Data System (ADS)
Leakeas, Charles L.; Capehart, Shay R.; Bartell, Richard J.; Cusumano, Salvatore J.; Whiteley, Matthew R.
2011-06-01
Laser weapon systems comprised of tiled subapertures are rapidly emerging in importance in the directed energy community. Performance models of these laser weapon systems have been developed from numerical simulations of a high fidelity wave-optics code called WaveTrain which is developed by MZA Associates. System characteristics such as mutual coherence, differential jitter, and beam quality rms wavefront error are defined for a focused beam on the target. Engagement scenarios are defined for various platform and target altitudes, speeds, headings, and slant ranges along with the natural wind speed and heading. Inputs to the performance model include platform and target height and velocities, Fried coherence length, Rytov number, isoplanatic angle, thermal blooming distortion number, Greenwood and Tyler frequencies, and atmospheric transmission. The performance model fit is based on power-in-the-bucket (PIB) values against the PIB from the simulation results for the vacuum diffraction-limited spot size as the bucket. The goal is to develop robust performance models for aperture phase error, turbulence, and thermal blooming effects in tiled subaperture systems.
Performability modeling based on real data: A case study
NASA Technical Reports Server (NTRS)
Hsueh, M. C.; Iyer, R. K.; Trivedi, K. S.
1988-01-01
Described is a measurement-based performability model based on error and resource usage data collected on a multiprocessor system. A method for identifying the model structure is introduced and the resulting model is validated against real data. Model development from the collection of raw data to the estimation of the expected reward is described. Both normal and error behavior of the system are characterized. The measured data show that the holding times in key operational and error states are not simple exponentials and that a semi-Markov process is necessary to model system behavior. A reward function, based on the service rate and the error rate in each state, is then defined in order to estimate the performability of the system and to depict the cost of apparent types of errors.
Performability modeling based on real data: A casestudy
NASA Technical Reports Server (NTRS)
Hsueh, M. C.; Iyer, R. K.; Trivedi, K. S.
1987-01-01
Described is a measurement-based performability model based on error and resource usage data collected on a multiprocessor system. A method for identifying the model structure is introduced and the resulting model is validated against real data. Model development from the collection of raw data to the estimation of the expected reward is described. Both normal and error behavior of the system are characterized. The measured data show that the holding times in key operational and error states are not simple exponentials and that a semi-Markov process is necessary to model the system behavior. A reward function, based on the service rate and the error rate in each state, is then defined in order to estimate the performability of the system and to depict the cost of different types of errors.
NASA Astrophysics Data System (ADS)
Arabi, Ehsan; Gruenwald, Benjamin C.; Yucelen, Tansel; Nguyen, Nhan T.
2018-05-01
Research in adaptive control algorithms for safety-critical applications is primarily motivated by the fact that these algorithms have the capability to suppress the effects of adverse conditions resulting from exogenous disturbances, imperfect dynamical system modelling, degraded modes of operation, and changes in system dynamics. Although government and industry agree on the potential of these algorithms in providing safety and reducing vehicle development costs, a major issue is the inability to achieve a-priori, user-defined performance guarantees with adaptive control algorithms. In this paper, a new model reference adaptive control architecture for uncertain dynamical systems is presented to address disturbance rejection and uncertainty suppression. The proposed framework is predicated on a set-theoretic adaptive controller construction using generalised restricted potential functions.The key feature of this framework allows the system error bound between the state of an uncertain dynamical system and the state of a reference model, which captures a desired closed-loop system performance, to be less than a-priori, user-defined worst-case performance bound, and hence, it has the capability to enforce strict performance guarantees. Examples are provided to demonstrate the efficacy of the proposed set-theoretic model reference adaptive control architecture.
Business School's Performance Management System Standards Design
ERIC Educational Resources Information Center
Azis, Anton Mulyono; Simatupang, Togar M.; Wibisono, Dermawan; Basri, Mursyid Hasan
2014-01-01
This paper aims to compare various Performance Management Systems (PMS) for business school in order to find the strengths of each standard as inputs to design new model of PMS. There are many critical aspects and gaps notified for new model to improve performance and even recognized that self evaluation performance management is not well…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horiike, S.; Okazaki, Y.
This paper describes a performance estimation tool developed for modeling and simulation of open distributed energy management systems to support their design. The approach of discrete event simulation with detailed models is considered for efficient performance estimation. The tool includes basic models constituting a platform, e.g., Ethernet, communication protocol, operating system, etc. Application softwares are modeled by specifying CPU time, disk access size, communication data size, etc. Different types of system configurations for various system activities can be easily studied. Simulation examples show how the tool is utilized for the efficient design of open distributed energy management systems.
Mean Line Pump Flow Model in Rocket Engine System Simulation
NASA Technical Reports Server (NTRS)
Veres, Joseph P.; Lavelle, Thomas M.
2000-01-01
A mean line pump flow modeling method has been developed to provide a fast capability for modeling turbopumps of rocket engines. Based on this method, a mean line pump flow code PUMPA has been written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The pump code can model axial flow inducers, mixed-flow and centrifugal pumps. The code can model multistage pumps in series. The code features rapid input setup and computer run time, and is an effective analysis and conceptual design tool. The map generation capability of the code provides the map information needed for interfacing with a rocket engine system modeling code. The off-design and multistage modeling capabilities of the code permit parametric design space exploration of candidate pump configurations and provide pump performance data for engine system evaluation. The PUMPA code has been integrated with the Numerical Propulsion System Simulation (NPSS) code and an expander rocket engine system has been simulated. The mean line pump flow code runs as an integral part of the NPSS rocket engine system simulation and provides key pump performance information directly to the system model at all operating conditions.
NASA Astrophysics Data System (ADS)
Kong, Changduk; Lim, Semyeong
2011-12-01
Recently, the health monitoring system of major gas path components of gas turbine uses mostly the model based method like the Gas Path Analysis (GPA). This method is to find quantity changes of component performance characteristic parameters such as isentropic efficiency and mass flow parameter by comparing between measured engine performance parameters such as temperatures, pressures, rotational speeds, fuel consumption, etc. and clean engine performance parameters without any engine faults which are calculated by the base engine performance model. Currently, the expert engine diagnostic systems using the artificial intelligent methods such as Neural Networks (NNs), Fuzzy Logic and Genetic Algorithms (GAs) have been studied to improve the model based method. Among them the NNs are mostly used to the engine fault diagnostic system due to its good learning performance, but it has a drawback due to low accuracy and long learning time to build learning data base if there are large amount of learning data. In addition, it has a very complex structure for finding effectively single type faults or multiple type faults of gas path components. This work builds inversely a base performance model of a turboprop engine to be used for a high altitude operation UAV using measured performance data, and proposes a fault diagnostic system using the base engine performance model and the artificial intelligent methods such as Fuzzy logic and Neural Network. The proposed diagnostic system isolates firstly the faulted components using Fuzzy Logic, then quantifies faults of the identified components using the NN leaned by fault learning data base, which are obtained from the developed base performance model. In leaning the NN, the Feed Forward Back Propagation (FFBP) method is used. Finally, it is verified through several test examples that the component faults implanted arbitrarily in the engine are well isolated and quantified by the proposed diagnostic system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rainer, Leo I.; Hoeschele, Marc A.; Apte, Michael G.
This report addresses the results of detailed monitoring completed under Program Element 6 of Lawrence Berkeley National Laboratory's High Performance Commercial Building Systems (HPCBS) PIER program. The purpose of the Energy Simulations and Projected State-Wide Energy Savings project is to develop reasonable energy performance and cost models for high performance relocatable classrooms (RCs) across California climates. A key objective of the energy monitoring was to validate DOE2 simulations for comparison to initial DOE2 performance projections. The validated DOE2 model was then used to develop statewide savings projections by modeling base case and high performance RC operation in the 16 Californiamore » climate zones. The primary objective of this phase of work was to utilize detailed field monitoring data to modify DOE2 inputs and generate performance projections based on a validated simulation model. Additional objectives include the following: (1) Obtain comparative performance data on base case and high performance HVAC systems to determine how they are operated, how they perform, and how the occupants respond to the advanced systems. This was accomplished by installing both HVAC systems side-by-side (i.e., one per module of a standard two module, 24 ft by 40 ft RC) on the study RCs and switching HVAC operating modes on a weekly basis. (2) Develop projected statewide energy and demand impacts based on the validated DOE2 model. (3) Develop cost effectiveness projections for the high performance HVAC system in the 16 California climate zones.« less
A performability solution method for degradable nonrepairable systems
NASA Technical Reports Server (NTRS)
Furchtgott, D. G.; Meyer, J. F.
1984-01-01
The present performability model-solving algorithm identifies performance with 'reward', representing the state behavior of a system S by a finite-state stochastic process and determining reward by means of reward rates that are associated with the states of the base model. A general method is obtained for determining the probability distribution function of the performance (reward) variable, and therefore the performability, of the corresponding system. This is done for bounded utilization periods, and the result is an integral expression which is either analytically or numerically solvable.
Analysis of high vacuum systems using SINDA'85
NASA Technical Reports Server (NTRS)
Spivey, R. A.; Clanton, S. E.; Moore, J. D.
1993-01-01
The theory, algorithms, and test data correlation analysis of a math model developed to predict performance of the Space Station Freedom Vacuum Exhaust System are presented. The theory used to predict the flow characteristics of viscous, transition, and molecular flow is presented in detail. Development of user subroutines which predict the flow characteristics in conjunction with the SINDA'85/FLUINT analysis software are discussed. The resistance-capacitance network approach with application to vacuum system analysis is demonstrated and results from the model are correlated with test data. The model was developed to predict the performance of the Space Station Freedom Vacuum Exhaust System. However, the unique use of the user subroutines developed in this model and written into the SINDA'85/FLUINT thermal analysis model provides a powerful tool that can be used to predict the transient performance of vacuum systems and gas flow in tubes of virtually any geometry. This can be accomplished using a resistance-capacitance (R-C) method very similar to the methods used to perform thermal analyses.
Modeling and performance assessment in QinetiQ of EO and IR airborne reconnaissance systems
NASA Astrophysics Data System (ADS)
Williams, John W.; Potter, Gary E.
2002-11-01
QinetiQ are the technical authority responsible for specifying the performance requirements for the procurement of airborne reconnaissance systems, on behalf of the UK MoD. They are also responsible for acceptance of delivered systems, overseeing and verifying the installed system performance as predicted and then assessed by the contractor. Measures of functional capability are central to these activities. The conduct of these activities utilises the broad technical insight and wide range of analysis tools and models available within QinetiQ. This paper focuses on the tools, methods and models that are applicable to systems based on EO and IR sensors. The tools, methods and models are described, and representative output for systems that QinetiQ has been responsible for is presented. The principle capability applicable to EO and IR airborne reconnaissance systems is the STAR (Simulation Tools for Airborne Reconnaissance) suite of models. STAR generates predictions of performance measures such as GRD (Ground Resolved Distance) and GIQE (General Image Quality) NIIRS (National Imagery Interpretation Rating Scales). It also generates images representing sensor output, using the scene generation software CAMEO-SIM and the imaging sensor model EMERALD. The simulated image 'quality' is fully correlated with the predicted non-imaging performance measures. STAR also generates image and table data that is compliant with STANAG 7023, which may be used to test ground station functionality.
A semi-analytical refrigeration cycle modelling approach for a heat pump hot water heater
NASA Astrophysics Data System (ADS)
Panaras, G.; Mathioulakis, E.; Belessiotis, V.
2018-04-01
The use of heat pump systems in applications like the production of hot water or space heating makes important the modelling of the processes for the evaluation of the performance of existing systems, as well as for design purposes. The proposed semi-analytical model offers the opportunity to estimate the performance of a heat pump system producing hot water, without using detailed geometrical or any performance data. This is important, as for many commercial systems the type and characteristics of the involved subcomponents can hardly be detected, thus not allowing the implementation of more analytical approaches or the exploitation of the manufacturers' catalogue performance data. The analysis copes with the issues related with the development of the models of the subcomponents involved in the studied system. Issues not discussed thoroughly in the existing literature, as the refrigerant mass inventory in the case an accumulator is present, are examined effectively.
Box truss analysis and technology development. Task 1: Mesh analysis and control
NASA Technical Reports Server (NTRS)
Bachtell, E. E.; Bettadapur, S. S.; Coyner, J. V.
1985-01-01
An analytical tool was developed to model, analyze and predict RF performance of box truss antennas with reflective mesh surfaces. The analysis system is unique in that it integrates custom written programs for cord tied mesh surfaces, thereby drastically reducing the cost of analysis. The analysis system is capable of determining the RF performance of antennas under any type of manufacturing or operating environment by integrating together the various disciplines of design, finite element analysis, surface best fit analysis and RF analysis. The Integrated Mesh Analysis System consists of six separate programs: The Mesh Tie System Model Generator, The Loadcase Generator, The Model Optimizer, The Model Solver, The Surface Topography Solver and The RF Performance Solver. Additionally, a study using the mesh analysis system was performed to determine the effect of on orbit calibration, i.e., surface adjustment, on a typical box truss antenna.
Physics-based model for predicting the performance of a miniature wind turbine
NASA Astrophysics Data System (ADS)
Xu, F. J.; Hu, J. Z.; Qiu, Y. P.; Yuan, F. G.
2011-04-01
A comprehensive physics-based model for predicting the performance of the miniature wind turbine (MWT) for power wireless sensor systems was proposed in this paper. An approximation of the power coefficient of the turbine rotor was made after the turbine rotor performance was measured. Incorporation of the approximation with the equivalent circuit model which was proposed according to the principles of the MWT, the overall system performance of the MWT was predicted. To demonstrate the prediction, the MWT system comprised of a 7.6 cm thorgren plastic propeller as turbine rotor and a DC motor as generator was designed and its performance was tested experimentally. The predicted output voltage, power and system efficiency are matched well with the tested results, which imply that this study holds promise in estimating and optimizing the performance of the MWT.
NASA Astrophysics Data System (ADS)
Moore, Robert J.; Wells, Steven C.; Cole, Steven J.
2016-04-01
It has been common for flood forecasting systems to be commissioned at a catchment or regional level in response to local priorities and hydrological conditions, leading to variety in system design and model choice. As systems mature and efficiencies of national management are sought, there can be a drive towards system rationalisation, gaining an overview of model performance and consideration of simplification through model-type convergence. Flood forecasting model assessments, whilst overseen at a national level, may be commissioned and managed at a catchment and regional level, take a variety of forms and be large in number. This presents a challenge when an integrated national assessment is required to guide operational use of flood forecasts and plan future investment in flood forecasting models and supporting hydrometric monitoring. This contribution reports on how a nationally consistent framework for flood forecasting model performance has been developed to embrace many past, ongoing and future assessments for local river systems by engineering consultants across England & Wales. The outcome is a Performance Summary for every site model assessed which, on a single page, contains relevant catchment information for context, a selection of overlain forecast and observed hydrographs and a set of performance statistics with associated displays of novel condensed form. One display provides performance comparison with other models that may exist for the site. The performance statistics include skill scores for forecasting events (flow/level threshold crossings) of differing severity/rarity, indicating their probability and likely timing, which have real value in an operational setting. The local models assessed can be of any type and span rainfall-runoff (conceptual and transfer function) and flow routing (hydrological and hydrodynamic) forms. Also accommodated by the framework is the national G2G (Grid-to-Grid) distributed hydrological model, providing area-wide coverage across the fluvial rivers of England and Wales, which can be assessed at gauged sites. Thus the performance of the national G2G model forecasts can be directly compared with that from the local models. The Performance Summary for each site model is complemented by a national spatial analysis of model performance stratified by model-type, geographical region and forecast lead-time. The map displays provide an extensive evidence-base that can be interrogated, through a Flood Forecasting Model Performance web portal, to reveal fresh insights into comparative performance across locations, lead-times and models. This work was commissioned by the Environment Agency in partnership with Natural Resources Wales and the Flood Forecasting Centre for England and Wales.
NASA Technical Reports Server (NTRS)
Lefebvre, D. R.; Sanderson, A. C.
1994-01-01
Robot coordination and control systems for remote teleoperation applications are by necessity implemented on distributed computers. Modeling and performance analysis of these distributed robotic systems is difficult, but important for economic system design. Performance analysis methods originally developed for conventional distributed computer systems are often unsatisfactory for evaluating real-time systems. The paper introduces a formal model of distributed robotic control systems; and a performance analysis method, based on scheduling theory, which can handle concurrent hard-real-time response specifications. Use of the method is illustrated by a case of remote teleoperation which assesses the effect of communication delays and the allocation of robot control functions on control system hardware requirements.
NASA Astrophysics Data System (ADS)
Tian, Lizhi; Xiong, Zhenhua; Wu, Jianhua; Ding, Han
2017-05-01
Feedforward-feedback control is widely used in motion control of piezoactuator systems. Due to the phase lag caused by incomplete dynamics compensation, the performance of the composite controller is greatly limited at high frequency. This paper proposes a new rate-dependent model to improve the high-frequency tracking performance by reducing dynamics compensation error. The rate-dependent model is designed as a function of the input and input variation rate to describe the input-output relationship of the residual system dynamics which mainly performs as phase lag in a wide frequency band. Then the direct inversion of the proposed rate-dependent model is used to compensate the residual system dynamics. Using the proposed rate-dependent model as feedforward term, the open loop performance can be improved significantly at medium-high frequency. Then, combining the with feedback controller, the composite controller can provide enhanced close loop performance from low frequency to high frequency. At the frequency of 1 Hz, the proposed controller presents the same performance as previous methods. However, at the frequency of 900 Hz, the tracking error is reduced to be 30.7% of the decoupled approach.
Model predictive control based on reduced order models applied to belt conveyor system.
Chen, Wei; Li, Xin
2016-11-01
In the paper, a model predictive controller based on reduced order model is proposed to control belt conveyor system, which is an electro-mechanics complex system with long visco-elastic body. Firstly, in order to design low-degree controller, the balanced truncation method is used for belt conveyor model reduction. Secondly, MPC algorithm based on reduced order model for belt conveyor system is presented. Because of the error bound between the full-order model and reduced order model, two Kalman state estimators are applied in the control scheme to achieve better system performance. Finally, the simulation experiments are shown that balanced truncation method can significantly reduce the model order with high-accuracy and model predictive control based on reduced-model performs well in controlling the belt conveyor system. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Proposed evaluation framework for assessing operator performance with multisensor displays
NASA Technical Reports Server (NTRS)
Foyle, David C.
1992-01-01
Despite aggressive work on the development of sensor fusion algorithms and techniques, no formal evaluation procedures have been proposed. Based on existing integration models in the literature, an evaluation framework is developed to assess an operator's ability to use multisensor, or sensor fusion, displays. The proposed evaluation framework for evaluating the operator's ability to use such systems is a normative approach: The operator's performance with the sensor fusion display can be compared to the models' predictions based on the operator's performance when viewing the original sensor displays prior to fusion. This allows for the determination as to when a sensor fusion system leads to: 1) poorer performance than one of the original sensor displays (clearly an undesirable system in which the fused sensor system causes some distortion or interference); 2) better performance than with either single sensor system alone, but at a sub-optimal (compared to the model predictions) level; 3) optimal performance (compared to model predictions); or, 4) super-optimal performance, which may occur if the operator were able to use some highly diagnostic 'emergent features' in the sensor fusion display, which were unavailable in the original sensor displays. An experiment demonstrating the usefulness of the proposed evaluation framework is discussed.
2012-01-01
Background We introduce the linguistic annotation of a corpus of 97 full-text biomedical publications, known as the Colorado Richly Annotated Full Text (CRAFT) corpus. We further assess the performance of existing tools for performing sentence splitting, tokenization, syntactic parsing, and named entity recognition on this corpus. Results Many biomedical natural language processing systems demonstrated large differences between their previously published results and their performance on the CRAFT corpus when tested with the publicly available models or rule sets. Trainable systems differed widely with respect to their ability to build high-performing models based on this data. Conclusions The finding that some systems were able to train high-performing models based on this corpus is additional evidence, beyond high inter-annotator agreement, that the quality of the CRAFT corpus is high. The overall poor performance of various systems indicates that considerable work needs to be done to enable natural language processing systems to work well when the input is full-text journal articles. The CRAFT corpus provides a valuable resource to the biomedical natural language processing community for evaluation and training of new models for biomedical full text publications. PMID:22901054
The MSFC UNIVAC 1108 EXEC 8 simulation model
NASA Technical Reports Server (NTRS)
Williams, T. G.; Richards, F. M.; Weatherbee, J. E.; Paul, L. K.
1972-01-01
A model is presented which simulates the MSFC Univac 1108 multiprocessor system. The hardware/operating system is described to enable a good statistical measurement of the system behavior. The performance of the 1108 is evaluated by performing twenty-four different experiments designed to locate system bottlenecks and also to test the sensitivity of system throughput with respect to perturbation of the various Exec 8 scheduling algorithms. The model is implemented in the general purpose system simulation language and the techniques described can be used to assist in the design, development, and evaluation of multiprocessor systems.
Evaluation methodologies for an advanced information processing system
NASA Technical Reports Server (NTRS)
Schabowsky, R. S., Jr.; Gai, E.; Walker, B. K.; Lala, J. H.; Motyka, P.
1984-01-01
The system concept and requirements for an Advanced Information Processing System (AIPS) are briefly described, but the emphasis of this paper is on the evaluation methodologies being developed and utilized in the AIPS program. The evaluation tasks include hardware reliability, maintainability and availability, software reliability, performance, and performability. Hardware RMA and software reliability are addressed with Markov modeling techniques. The performance analysis for AIPS is based on queueing theory. Performability is a measure of merit which combines system reliability and performance measures. The probability laws of the performance measures are obtained from the Markov reliability models. Scalar functions of this law such as the mean and variance provide measures of merit in the AIPS performability evaluations.
NASA Technical Reports Server (NTRS)
Kubat, Gregory
2016-01-01
This report provides a description and performance characterization of the large-scale, Relay architecture, UAS communications simulation capability developed for the NASA GRC, UAS in the NAS Project. The system uses a validated model of the GRC Gen5 CNPC, Flight-Test Radio model. Contained in the report is a description of the simulation system and its model components, recent changes made to the system to improve performance, descriptions and objectives of sample simulations used for test and verification, and a sampling and observations of results and performance data.
NASA Technical Reports Server (NTRS)
Orme, John S.; Schkolnik, Gerard S.
1995-01-01
Performance Seeking Control (PSC), an onboard, adaptive, real-time optimization algorithm, relies upon an onboard propulsion system model. Flight results illustrated propulsion system performance improvements as calculated by the model. These improvements were subject to uncertainty arising from modeling error. Thus to quantify uncertainty in the PSC performance improvements, modeling accuracy must be assessed. A flight test approach to verify PSC-predicted increases in thrust (FNP) and absolute levels of fan stall margin is developed and applied to flight test data. Application of the excess thrust technique shows that increases of FNP agree to within 3 percent of full-scale measurements for most conditions. Accuracy to these levels is significant because uncertainty bands may now be applied to the performance improvements provided by PSC. Assessment of PSC fan stall margin modeling accuracy was completed with analysis of in-flight stall tests. Results indicate that the model overestimates the stall margin by between 5 to 10 percent. Because PSC achieves performance gains by using available stall margin, this overestimation may represent performance improvements to be recovered with increased modeling accuracy. Assessment of thrust and stall margin modeling accuracy provides a critical piece for a comprehensive understanding of PSC's capabilities and limitations.
Damage modeling and statistical analysis of optics damage performance in MJ-class laser systems.
Liao, Zhi M; Raymond, B; Gaylord, J; Fallejo, R; Bude, J; Wegner, P
2014-11-17
Modeling the lifetime of a fused silica optic is described for a multiple beam, MJ-class laser system. This entails combining optic processing data along with laser shot data to account for complete history of optic processing and shot exposure. Integrating with online inspection data allows for the construction of a performance metric to describe how an optic performs with respect to the model. This methodology helps to validate the damage model as well as allows strategic planning and identifying potential hidden parameters that are affecting the optic's performance.
ERIC Educational Resources Information Center
Louzada, Alexandre Neves; Elia, Marcos da Fonseca; Sampaio, Fábio Ferrentini; Vidal, Andre Luiz Pestana
2014-01-01
The aim of this work is to adapt and test, in a Brazilian public school, the ACE model proposed by Borkulo for evaluating student performance as a teaching-learning process based on computational modeling systems. The ACE model is based on different types of reasoning involving three dimensions. In addition to adapting the model and introducing…
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, D.L.
1995-11-01
The objective of this work was to develop improved performance model for modules and systems for for all operating conditions for use in module specifications, system and BOS component design, and system rating or monitoring. The approach taken was to identify and quantify the influence of dominant factors of solar irradiance, cell temperature, angle-of-incidence; and solar spectrum; use outdoor test procedures to separate the effects of electrical, thermal, and optical performance; use fundamental cell characteristics to improve analysis; and combine factors in simple model using the common variables.
An Overview of the Human Systems Integration Division
NASA Technical Reports Server (NTRS)
Gore, Brian F.
2015-01-01
This presentation will provide an overview of the Human Systems Integration Division, and will highlight some of the human performance modeling efforts undertaken in previously presented MIDAS human performance modeling efforts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, Alasdair; Thomsen, Edwin; Reed, David
2016-04-20
A chemistry agnostic cost performance model is described for a nonaqueous flow battery. The model predicts flow battery performance by estimating the active reaction zone thickness at each electrode as a function of current density, state of charge, and flow rate using measured data for electrode kinetics, electrolyte conductivity, and electrode-specific surface area. Validation of the model is conducted using a 4kW stack data at various current densities and flow rates. This model is used to estimate the performance of a nonaqueous flow battery with electrode and electrolyte properties used from the literature. The optimized cost for this system ismore » estimated for various power and energy levels using component costs provided by vendors. The model allows optimization of design parameters such as electrode thickness, area, flow path design, and operating parameters such as power density, flow rate, and operating SOC range for various application duty cycles. A parametric analysis is done to identify components and electrode/electrolyte properties with the highest impact on system cost for various application durations. A pathway to 100$kWh -1 for the storage system is identified.« less
Development of Flight-Test Performance Estimation Techniques for Small Unmanned Aerial Systems
NASA Astrophysics Data System (ADS)
McCrink, Matthew Henry
This dissertation provides a flight-testing framework for assessing the performance of fixed-wing, small-scale unmanned aerial systems (sUAS) by leveraging sub-system models of components unique to these vehicles. The development of the sub-system models, and their links to broader impacts on sUAS performance, is the key contribution of this work. The sub-system modeling and analysis focuses on the vehicle's propulsion, navigation and guidance, and airframe components. Quantification of the uncertainty in the vehicle's power available and control states is essential for assessing the validity of both the methods and results obtained from flight-tests. Therefore, detailed propulsion and navigation system analyses are presented to validate the flight testing methodology. Propulsion system analysis required the development of an analytic model of the propeller in order to predict the power available over a range of flight conditions. The model is based on the blade element momentum (BEM) method. Additional corrections are added to the basic model in order to capture the Reynolds-dependent scale effects unique to sUAS. The model was experimentally validated using a ground based testing apparatus. The BEM predictions and experimental analysis allow for a parameterized model relating the electrical power, measurable during flight, to the power available required for vehicle performance analysis. Navigation system details are presented with a specific focus on the sensors used for state estimation, and the resulting uncertainty in vehicle state. Uncertainty quantification is provided by detailed calibration techniques validated using quasi-static and hardware-in-the-loop (HIL) ground based testing. The HIL methods introduced use a soft real-time flight simulator to provide inertial quality data for assessing overall system performance. Using this tool, the uncertainty in vehicle state estimation based on a range of sensors, and vehicle operational environments is presented. The propulsion and navigation system models are used to evaluate flight-testing methods for evaluating fixed-wing sUAS performance. A brief airframe analysis is presented to provide a foundation for assessing the efficacy of the flight-test methods. The flight-testing presented in this work is focused on validating the aircraft drag polar, zero-lift drag coefficient, and span efficiency factor. Three methods are detailed and evaluated for estimating these design parameters. Specific focus is placed on the influence of propulsion and navigation system uncertainty on the resulting performance data. Performance estimates are used in conjunction with the propulsion model to estimate the impact sensor and measurement uncertainty on the endurance and range of a fixed-wing sUAS. Endurance and range results for a simplistic power available model are compared to the Reynolds-dependent model presented in this work. Additional parameter sensitivity analysis related to state estimation uncertainties encountered in flight-testing are presented. Results from these analyses indicate that the sub-system models introduced in this work are of first-order importance, on the order of 5-10% change in range and endurance, in assessing the performance of a fixed-wing sUAS.
POPEYE: A production rule-based model of multitask supervisory control (POPCORN)
NASA Technical Reports Server (NTRS)
Townsend, James T.; Kadlec, Helena; Kantowitz, Barry H.
1988-01-01
Recent studies of relationships between subjective ratings of mental workload, performance, and human operator and task characteristics have indicated that these relationships are quite complex. In order to study the various relationships and place subjective mental workload within a theoretical framework, we developed a production system model for the performance component of the complex supervisory task called POPCORN. The production system model is represented by a hierarchial structure of goals and subgoals, and the information flow is controlled by a set of condition-action rules. The implementation of this production system, called POPEYE, generates computer simulated data under different task difficulty conditions which are comparable to those of human operators performing the task. This model is the performance aspect of an overall dynamic psychological model which we are developing to examine and quantify relationships between performance and psychological aspects in a complex environment.
Neural network submodel as an abstraction tool: relating network performance to combat outcome
NASA Astrophysics Data System (ADS)
Jablunovsky, Greg; Dorman, Clark; Yaworsky, Paul S.
2000-06-01
Simulation of Command and Control (C2) networks has historically emphasized individual system performance with little architectural context or credible linkage to `bottom- line' measures of combat outcomes. Renewed interest in modeling C2 effects and relationships stems from emerging network intensive operational concepts. This demands improved methods to span the analytical hierarchy between C2 system performance models and theater-level models. Neural network technology offers a modeling approach that can abstract the essential behavior of higher resolution C2 models within a campaign simulation. The proposed methodology uses off-line learning of the relationships between network state and campaign-impacting performance of a complex C2 architecture and then approximation of that performance as a time-varying parameter in an aggregated simulation. Ultimately, this abstraction tool offers an increased fidelity of C2 system simulation that captures dynamic network dependencies within a campaign context.
NASA Astrophysics Data System (ADS)
Lin, Tsungpo
Performance engineers face the major challenge in modeling and simulation for the after-market power system due to system degradation and measurement errors. Currently, the majority in power generation industries utilizes the deterministic data matching method to calibrate the model and cascade system degradation, which causes significant calibration uncertainty and also the risk of providing performance guarantees. In this research work, a maximum-likelihood based simultaneous data reconciliation and model calibration (SDRMC) is used for power system modeling and simulation. By replacing the current deterministic data matching with SDRMC one can reduce the calibration uncertainty and mitigate the error propagation to the performance simulation. A modeling and simulation environment for a complex power system with certain degradation has been developed. In this environment multiple data sets are imported when carrying out simultaneous data reconciliation and model calibration. Calibration uncertainties are estimated through error analyses and populated to performance simulation by using principle of error propagation. System degradation is then quantified by performance comparison between the calibrated model and its expected new & clean status. To mitigate smearing effects caused by gross errors, gross error detection (GED) is carried out in two stages. The first stage is a screening stage, in which serious gross errors are eliminated in advance. The GED techniques used in the screening stage are based on multivariate data analysis (MDA), including multivariate data visualization and principal component analysis (PCA). Subtle gross errors are treated at the second stage, in which the serial bias compensation or robust M-estimator is engaged. To achieve a better efficiency in the combined scheme of the least squares based data reconciliation and the GED technique based on hypotheses testing, the Levenberg-Marquardt (LM) algorithm is utilized as the optimizer. To reduce the computation time and stabilize the problem solving for a complex power system such as a combined cycle power plant, meta-modeling using the response surface equation (RSE) and system/process decomposition are incorporated with the simultaneous scheme of SDRMC. The goal of this research work is to reduce the calibration uncertainties and, thus, the risks of providing performance guarantees arisen from uncertainties in performance simulation.
Cooperating Expert Systems For Space Station Power Distribution Management
NASA Astrophysics Data System (ADS)
Nguyen, T. A.; Chiou, W. C.
1987-02-01
In a complex system such as the manned Space Station, it is deem necessary that many expert systems must perform tasks in a concurrent and cooperative manner. An important question arise is: what cooperative-task-performing models are appropriate for multiple expert systems to jointly perform tasks. The solution to this question will provide a crucial automation design criteria for the Space Station complex systems architecture. Based on a client/server model for performing tasks, we have developed a system that acts as a front-end to support loosely-coupled communications between expert systems running on multiple Symbolics machines. As an example, we use two ART*-based expert systems to demonstrate the concept of parallel symbolic manipulation for power distribution management and dynamic load planner/scheduler in the simulated Space Station environment. This on-going work will also explore other cooperative-task-performing models as alternatives which can evaluate inter and intra expert system communication mechanisms. It will be served as a testbed and a bench-marking tool for other Space Station expert subsystem communication and information exchange.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, C.H.; Ready, A.B.; Rea, J.
1995-06-01
Versions of the computer program PROATES (PROcess Analysis for Thermal Energy Systems) have been used since 1979 to analyse plant performance improvement proposals relating to existing plant and also to evaluate new plant designs. Several plant modifications have been made to improve performance based on the model predictions and the predicted performance has been realised in practice. The program was born out of a need to model the overall steady state performance of complex plant to enable proposals to change plant component items or operating strategy to be evaluated. To do this with confidence it is necessary to model themore » multiple thermodynamic interactions between the plant components. The modelling system is modular in concept allowing the configuration of individual plant components to represent any particular power plant design. A library exists of physics based modules which have been extensively validated and which provide representations of a wide range of boiler, turbine and CW system components. Changes to model data and construction is achieved via a user friendly graphical model editing/analysis front-end with results being presented via the computer screen or hard copy. The paper describes briefly the modelling system but concentrates mainly on the application of the modelling system to assess design re-optimisation, firing with different fuels and the re-powering of an existing plant.« less
Performance modeling for large database systems
NASA Astrophysics Data System (ADS)
Schaar, Stephen; Hum, Frank; Romano, Joe
1997-02-01
One of the unique approaches Science Applications International Corporation took to meet performance requirements was to start the modeling effort during the proposal phase of the Interstate Identification Index/Federal Bureau of Investigations (III/FBI) project. The III/FBI Performance Model uses analytical modeling techniques to represent the III/FBI system. Inputs to the model include workloads for each transaction type, record size for each record type, number of records for each file, hardware envelope characteristics, engineering margins and estimates for software instructions, memory, and I/O for each transaction type. The model uses queuing theory to calculate the average transaction queue length. The model calculates a response time and the resources needed for each transaction type. Outputs of the model include the total resources needed for the system, a hardware configuration, and projected inherent and operational availability. The III/FBI Performance Model is used to evaluate what-if scenarios and allows a rapid response to engineering change proposals and technical enhancements.
Park, Sung Hwan; Lee, Ji Min; Kim, Jong Shik
2013-01-01
An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software. PMID:24282389
Dynamism in Electronic Performance Support Systems.
ERIC Educational Resources Information Center
Laffey, James
1995-01-01
Describes a model for dynamic electronic performance support systems based on NNAble, a system developed by the training group at Apple Computer. Principles for designing dynamic performance support are discussed, including a systems approach, performer-centered design, awareness of situated cognition, organizational memory, and technology use.…
Developing Information Power Grid Based Algorithms and Software
NASA Technical Reports Server (NTRS)
Dongarra, Jack
1998-01-01
This exploratory study initiated our effort to understand performance modeling on parallel systems. The basic goal of performance modeling is to understand and predict the performance of a computer program or set of programs on a computer system. Performance modeling has numerous applications, including evaluation of algorithms, optimization of code implementations, parallel library development, comparison of system architectures, parallel system design, and procurement of new systems. Our work lays the basis for the construction of parallel libraries that allow for the reconstruction of application codes on several distinct architectures so as to assure performance portability. Following our strategy, once the requirements of applications are well understood, one can then construct a library in a layered fashion. The top level of this library will consist of architecture-independent geometric, numerical, and symbolic algorithms that are needed by the sample of applications. These routines should be written in a language that is portable across the targeted architectures.
Public Health Analysis Transport Optimization Model v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beyeler, Walt; Finley, Patrick; Walser, Alex
PHANTOM models logistic functions of national public health systems. The system enables public health officials to visualize and coordinate options for public health surveillance, diagnosis, response and administration in an integrated analytical environment. Users may simulate and analyze system performance applying scenarios that represent current conditions or future contingencies what-if analyses of potential systemic improvements. Public health networks are visualized as interactive maps, with graphical displays of relevant system performance metrics as calculated by the simulation modeling components.
An evaluative model of system performance in manned teleoperational systems
NASA Technical Reports Server (NTRS)
Haines, Richard F.
1989-01-01
Manned teleoperational systems are used in aerospace operations in which humans must interact with machines remotely. Manual guidance of remotely piloted vehicles, controling a wind tunnel, carrying out a scientific procedure remotely are examples of teleoperations. A four input parameter throughput (Tp) model is presented which can be used to evaluate complex, manned, teleoperations-based systems and make critical comparisons among candidate control systems. The first two parameters of this model deal with nominal (A) and off-nominal (B) predicted events while the last two focus on measured events of two types, human performance (C) and system performance (D). Digital simulations showed that the expression A(1-B)/C+D) produced the greatest homogeneity of variance and distribution symmetry. Results from a recently completed manned life science telescience experiment will be used to further validate the model. Complex, interacting teleoperational systems may be systematically evaluated using this expression much like a computer benchmark is used.
Queuing Models of Tertiary Storage
NASA Technical Reports Server (NTRS)
Johnson, Theodore
1996-01-01
Large scale scientific projects generate and use large amounts of data. For example, the NASA Earth Observation System Data and Information System (EOSDIS) project is expected to archive one petabyte per year of raw satellite data. This data is made automatically available for processing into higher level data products and for dissemination to the scientific community. Such large volumes of data can only be stored in robotic storage libraries (RSL's) for near-line access. A characteristic of RSL's is the use of a robot arm that transfers media between a storage rack and the read/write drives, thus multiplying the capacity of the system. The performance of the RSL's can be a critical limiting factor for the performance of the archive system. However, the many interacting components of an RSL make a performance analysis difficult. In addition, different RSL components can have widely varying performance characteristics. This paper describes our work to develop performance models of an RSL in isolation. Next we show how the RSL model can be incorporated into a queuing network model. We use the models to make some example performance studies of archive systems. The models described in this paper, developed for the NASA EODIS project, are implemented in C with a well defined interface. The source code, accompanying documentation, and also sample JAVA applets are available at: http://www.cis.ufl.edu/ted/
Calibration of PMIS pavement performance prediction models.
DOT National Transportation Integrated Search
2012-02-01
Improve the accuracy of TxDOTs existing pavement performance prediction models through calibrating these models using actual field data obtained from the Pavement Management Information System (PMIS). : Ensure logical performance superiority patte...
Systems Engineering | Wind | NREL
platform to leverage its research capabilities toward integrating wind energy engineering and cost models achieve a better understanding of how to improve system-level performance and achieve system-level cost research capabilities to: Integrate wind plant engineering performance and cost software modeling to enable
Simulation of car movement along circular path
NASA Astrophysics Data System (ADS)
Fedotov, A. I.; Tikhov-Tinnikov, D. A.; Ovchinnikova, N. I.; Lysenko, A. V.
2017-10-01
Under operating conditions, suspension system performance changes which negatively affects vehicle stability and handling. The paper aims to simulate the impact of changes in suspension system performance on vehicle stability and handling. Methods. The paper describes monitoring of suspension system performance, testing of vehicle stability and handling, analyzes methods of suspension system performance monitoring under operating conditions. The mathematical model of a car movement along a circular path was developed. Mathematical tools describing a circular movement of a vehicle along a horizontal road were developed. Turning car movements were simulated. Calculation and experiment results were compared. Simulation proves the applicability of a mathematical model for assessment of the impact of suspension system performance on vehicle stability and handling.
NASA Technical Reports Server (NTRS)
Al-Jaar, Robert Y.; Desrochers, Alan A.
1989-01-01
The main objective of this research is to develop a generic modeling methodology with a flexible and modular framework to aid in the design and performance evaluation of integrated manufacturing systems using a unified model. After a thorough examination of the available modeling methods, the Petri Net approach was adopted. The concurrent and asynchronous nature of manufacturing systems are easily captured by Petri Net models. Three basic modules were developed: machine, buffer, and Decision Making Unit. The machine and buffer modules are used for modeling transfer lines and production networks. The Decision Making Unit models the functions of a computer node in a complex Decision Making Unit Architecture. The underlying model is a Generalized Stochastic Petri Net (GSPN) that can be used for performance evaluation and structural analysis. GSPN's were chosen because they help manage the complexity of modeling large manufacturing systems. There is no need to enumerate all the possible states of the Markov Chain since they are automatically generated from the GSPN model.
NEXT Single String Integration Test Results
NASA Technical Reports Server (NTRS)
Soulas, George C.; Patterson, Michael J.; Pinero, Luis; Herman, Daniel A.; Snyder, Steven John
2010-01-01
As a critical part of NASA's Evolutionary Xenon Thruster (NEXT) test validation process, a single string integration test was performed on the NEXT ion propulsion system. The objectives of this test were to verify that an integrated system of major NEXT ion propulsion system elements meets project requirements, to demonstrate that the integrated system is functional across the entire power processor and xenon propellant management system input ranges, and to demonstrate to potential users that the NEXT propulsion system is ready for transition to flight. Propulsion system elements included in this system integration test were an engineering model ion thruster, an engineering model propellant management system, an engineering model power processor unit, and a digital control interface unit simulator that acted as a test console. Project requirements that were verified during this system integration test included individual element requirements ; integrated system requirements, and fault handling. This paper will present the results of these tests, which include: integrated ion propulsion system demonstrations of performance, functionality and fault handling; a thruster re-performance acceptance test to establish baseline performance: a risk-reduction PMS-thruster integration test: and propellant management system calibration checks.
An Introduction to Markov Modeling: Concepts and Uses
NASA Technical Reports Server (NTRS)
Boyd, Mark A.; Lau, Sonie (Technical Monitor)
1998-01-01
Kharkov modeling is a modeling technique that is widely useful for dependability analysis of complex fault tolerant systems. It is very flexible in the type of systems and system behavior it can model. It is not, however, the most appropriate modeling technique for every modeling situation. The first task in obtaining a reliability or availability estimate for a system is selecting which modeling technique is most appropriate to the situation at hand. A person performing a dependability analysis must confront the question: is Kharkov modeling most appropriate to the system under consideration, or should another technique be used instead? The need to answer this gives rise to other more basic questions regarding Kharkov modeling: what are the capabilities and limitations of Kharkov modeling as a modeling technique? How does it relate to other modeling techniques? What kind of system behavior can it model? What kinds of software tools are available for performing dependability analyses with Kharkov modeling techniques? These questions and others will be addressed in this tutorial.
Business Performer-Centered Design of User Interfaces
NASA Astrophysics Data System (ADS)
Sousa, Kênia; Vanderdonckt, Jean
Business Performer-Centered Design of User Interfaces is a new design methodology that adopts business process (BP) definition and a business performer perspective for managing the life cycle of user interfaces of enterprise systems. In this methodology, when the organization has a business process culture, the business processes of an organization are firstly defined according to a traditional methodology for this kind of artifact. These business processes are then transformed into a series of task models that represent the interactive parts of the business processes that will ultimately lead to interactive systems. When the organization has its enterprise systems, but not yet its business processes modeled, the user interfaces of the systems help derive tasks models, which are then used to derive the business processes. The double linking between a business process and a task model, and between a task model and a user interface model makes it possible to ensure traceability of the artifacts in multiple paths and enables a more active participation of business performers in analyzing the resulting user interfaces. In this paper, we outline how a human-perspective is used tied to a model-driven perspective.
Zhang, Jian-Hua; Xia, Jia-Jun; Garibaldi, Jonathan M; Groumpos, Petros P; Wang, Ru-Bin
2017-06-01
In human-machine (HM) hybrid control systems, human operator and machine cooperate to achieve the control objectives. To enhance the overall HM system performance, the discrete manual control task-load by the operator must be dynamically allocated in accordance with continuous-time fluctuation of psychophysiological functional status of the operator, so-called operator functional state (OFS). The behavior of the HM system is hybrid in nature due to the co-existence of discrete task-load (control) variable and continuous operator performance (system output) variable. Petri net is an effective tool for modeling discrete event systems, but for hybrid system involving discrete dynamics, generally Petri net model has to be extended. Instead of using different tools to represent continuous and discrete components of a hybrid system, this paper proposed a method of fuzzy inference Petri nets (FIPN) to represent the HM hybrid system comprising a Mamdani-type fuzzy model of OFS and a logical switching controller in a unified framework, in which the task-load level is dynamically reallocated between the operator and machine based on the model-predicted OFS. Furthermore, this paper used a multi-model approach to predict the operator performance based on three electroencephalographic (EEG) input variables (features) via the Wang-Mendel (WM) fuzzy modeling method. The membership function parameters of fuzzy OFS model for each experimental participant were optimized using artificial bee colony (ABC) evolutionary algorithm. Three performance indices, RMSE, MRE, and EPR, were computed to evaluate the overall modeling accuracy. Experiment data from six participants are analyzed. The results show that the proposed method (FIPN with adaptive task allocation) yields lower breakdown rate (from 14.8% to 3.27%) and higher human performance (from 90.30% to 91.99%). The simulation results of the FIPN-based adaptive HM (AHM) system on six experimental participants demonstrate that the FIPN framework provides an effective way to model and regulate/optimize the OFS in HM hybrid systems composed of continuous-time OFS model and discrete-event switching controller. Copyright © 2017 Elsevier B.V. All rights reserved.
Gering, Kevin L.
2013-01-01
A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics. The computing system also analyzes the cell information of the electrochemical cell with a Butler-Volmer (BV) expression modified to determine exchange current density of the electrochemical cell by including kinetic performance information related to pulse-time dependence, electrode surface availability, or a combination thereof. A set of sigmoid-based expressions may be included with the modified-BV expression to determine kinetic performance as a function of pulse time. The determined exchange current density may be used with the modified-BV expression, with or without the sigmoid expressions, to analyze other characteristics of the electrochemical cell. Model parameters can be defined in terms of cell aging, making the overall kinetics model amenable to predictive estimates of cell kinetic performance along the aging timeline.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melin, Alexander M.; Zhang, Yichen; Djouadi, Seddik
In this paper, a model reference control based inertia emulation strategy is proposed. Desired inertia can be precisely emulated through this control strategy so that guaranteed performance is ensured. A typical frequency response model with parametrical inertia is set to be the reference model. A measurement at a specific location delivers the information of disturbance acting on the diesel-wind system to the referencemodel. The objective is for the speed of the diesel-wind system to track the reference model. Since active power variation is dominantly governed by mechanical dynamics and modes, only mechanical dynamics and states, i.e., a swing-engine-governor system plusmore » a reduced-order wind turbine generator, are involved in the feedback control design. The controller is implemented in a three-phase diesel-wind system feed microgrid. The results show exact synthetic inertia is emulated, leading to guaranteed performance and safety bounds.« less
A Performance Prediction Model for a Fault-Tolerant Computer During Recovery and Restoration
NASA Technical Reports Server (NTRS)
Obando, Rodrigo A.; Stoughton, John W.
1995-01-01
The modeling and design of a fault-tolerant multiprocessor system is addressed. Of interest is the behavior of the system during recovery and restoration after a fault has occurred. The multiprocessor systems are based on the Algorithm to Architecture Mapping Model (ATAMM) and the fault considered is the death of a processor. The developed model is useful in the determination of performance bounds of the system during recovery and restoration. The performance bounds include time to recover from the fault, time to restore the system, and determination of any permanent delay in the input to output latency after the system has regained steady state. Implementation of an ATAMM based computer was developed for a four-processor generic VHSIC spaceborne computer (GVSC) as the target system. A simulation of the GVSC was also written on the code used in the ATAMM Multicomputer Operating System (AMOS). The simulation is used to verify the new model for tracking the propagation of the delay through the system and predicting the behavior of the transient state of recovery and restoration. The model is shown to accurately predict the transient behavior of an ATAMM based multicomputer during recovery and restoration.
Multiple system modelling of waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eriksson, Ola, E-mail: ola.eriksson@hig.se; Department of Building, Energy and Environmental Engineering, University of Gaevle, SE 801 76 Gaevle; Bisaillon, Mattias, E-mail: mattias.bisaillon@profu.se
2011-12-15
Highlights: > Linking of models will provide a more complete, correct and credible picture of the systems. > The linking procedure is easy to perform and also leads to activation of project partners. > The simulation procedure is a bit more complicated and calls for the ability to run both models. - Abstract: Due to increased environmental awareness, planning and performance of waste management has become more and more complex. Therefore waste management has early been subject to different types of modelling. Another field with long experience of modelling and systems perspective is energy systems. The two modelling traditions havemore » developed side by side, but so far there are very few attempts to combine them. Waste management systems can be linked together with energy systems through incineration plants. The models for waste management can be modelled on a quite detailed level whereas surrounding systems are modelled in a more simplistic way. This is a problem, as previous studies have shown that assumptions on the surrounding system often tend to be important for the conclusions. In this paper it is shown how two models, one for the district heating system (MARTES) and another one for the waste management system (ORWARE), can be linked together. The strengths and weaknesses with model linking are discussed when compared to simplistic assumptions on effects in the energy and waste management systems. It is concluded that the linking of models will provide a more complete, correct and credible picture of the consequences of different simultaneous changes in the systems. The linking procedure is easy to perform and also leads to activation of project partners. However, the simulation procedure is a bit more complicated and calls for the ability to run both models.« less
NASA Technical Reports Server (NTRS)
Hall, Laverne
1995-01-01
Modeling of the Multi-mission Image Processing System (MIPS) will be described as an example of the use of a modeling tool to design a distributed system that supports multiple application scenarios. This paper examines: (a) modeling tool selection, capabilities, and operation (namely NETWORK 2.5 by CACl), (b) pointers for building or constructing a model and how the MIPS model was developed, (c) the importance of benchmarking or testing the performance of equipment/subsystems being considered for incorporation the design/architecture, (d) the essential step of model validation and/or calibration using the benchmark results, (e) sample simulation results from the MIPS model, and (f) how modeling and simulation analysis affected the MIPS design process by having a supportive and informative impact.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, Janine; Freestate, David; Riley, Cameron
2016-11-01
Measured plane-of-array (POA) irradiance may provide a lower-cost alternative to standard irradiance component data for photovoltaic (PV) system performance modeling without loss of accuracy. Previous work has shown that transposition models typically used by PV models to calculate POA irradiance from horizontal data introduce error into the POA irradiance estimates, and that measured POA data can correlate better to measured performance data. However, popular PV modeling tools historically have not directly used input POA data. This paper introduces a new capability in NREL's System Advisor Model (SAM) to directly use POA data in PV modeling, and compares SAM results frommore » both POA irradiance and irradiance components inputs against measured performance data for eight operating PV systems.« less
Using Measured Plane-of-Array Data Directly in Photovoltaic Modeling: Methodology and Validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, Janine; Freestate, David; Hobbs, William
2016-11-21
Measured plane-of-array (POA) irradiance may provide a lower-cost alternative to standard irradiance component data for photovoltaic (PV) system performance modeling without loss of accuracy. Previous work has shown that transposition models typically used by PV models to calculate POA irradiance from horizontal data introduce error into the POA irradiance estimates, and that measured POA data can correlate better to measured performance data. However, popular PV modeling tools historically have not directly used input POA data. This paper introduces a new capability in NREL's System Advisor Model (SAM) to directly use POA data in PV modeling, and compares SAM results frommore » both POA irradiance and irradiance components inputs against measured performance data for eight operating PV systems.« less
Using Measured Plane-of-Array Data Directly in Photovoltaic Modeling: Methodology and Validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, Janine; Freestate, David; Hobbs, William
2016-06-05
Measured plane-of-array (POA) irradiance may provide a lower-cost alternative to standard irradiance component data for photovoltaic (PV) system performance modeling without loss of accuracy. Previous work has shown that transposition models typically used by PV models to calculate POA irradiance from horizontal data introduce error into the POA irradiance estimates, and that measured POA data can correlate better to measured performance data. However, popular PV modeling tools historically have not directly used input POA data. This paper introduces a new capability in NREL's System Advisor Model (SAM) to directly use POA data in PV modeling, and compares SAM results frommore » both POA irradiance and irradiance components inputs against measured performance data for eight operating PV systems.« less
NASA Astrophysics Data System (ADS)
Feng, Jianfeng; Zhao, Xiaohui
2017-11-01
For an FSO communication system with imprecise channel model, we investigate its system performance based on outage probability, average BEP and ergodic capacity. The exact FSO links are modeled as Gamma-Gamma fading channel in consideration of both atmospheric turbulence and pointing errors, and the imprecise channel model is treated as the superposition of exact channel gain and a Gaussian random variable. After we derive the PDF, CDF and nth moment of the imprecise channel gain, and based on these statistics the expressions for the outage probability, the average BEP and the ergodic capacity in terms of the Meijer's G functions are obtained. Both numerical and analytical results are presented. The simulation results show that the communication performance deteriorates in the imprecise channel model, and approaches to the exact performance curves as the channel model becomes accurate.
Metallic Rotor Sizing and Performance Model for Flywheel Systems
NASA Technical Reports Server (NTRS)
Moore, Camille J.; Kraft, Thomas G.
2012-01-01
The NASA Glenn Research Center (GRC) is developing flywheel system requirements and designs for terrestrial and spacecraft applications. Several generations of flywheels have been designed and tested at GRC using in-house expertise in motors, magnetic bearings, controls, materials and power electronics. The maturation of a flywheel system from the concept phase to the preliminary design phase is accompanied by maturation of the Integrated Systems Performance model, where estimating relationships are replaced by physics based analytical techniques. The modeling can incorporate results from engineering model testing and emerging detail from the design process.
NASA Astrophysics Data System (ADS)
Donnelly, William J., III
2012-06-01
PURPOSE: To present a commercially available optical modeling software tool to assist the development of optical instrumentation and systems that utilize and/or integrate with the human eye. METHODS: A commercially available flexible eye modeling system is presented, the Advanced Human Eye Model (AHEM). AHEM is a module that the engineer can use to perform rapid development and test scenarios on systems that integrate with the eye. Methods include merging modeled systems initially developed outside of AHEM and performing a series of wizard-type operations that relieve the user from requiring an optometric or ophthalmic background to produce a complete eye inclusive system. Scenarios consist of retinal imaging of targets and sources through integrated systems. Uses include, but are not limited to, optimization, telescopes, microscopes, spectacles, contact and intraocular lenses, ocular aberrations, cataract simulation and scattering, and twin eye model (binocular) systems. RESULTS: Metrics, graphical data, and exportable CAD geometry are generated from the various modeling scenarios.
A model for calculating expected performance of the Apollo unified S-band (USB) communication system
NASA Technical Reports Server (NTRS)
Schroeder, N. W.
1971-01-01
A model for calculating the expected performance of the Apollo unified S-band (USB) communication system is presented. The general organization of the Apollo USB is described. The mathematical model is reviewed and the computer program for implementation of the calculations is included.
We present an application of the online coupled WRF-CMAQ modeling system to two annual simulations over North America performed under Phase 2 of the Air Quality Model Evaluation International Initiative (AQMEII). Operational evaluation shows that model performance is comparable t...
Benchmarking Model Variants in Development of a Hardware-in-the-Loop Simulation System
NASA Technical Reports Server (NTRS)
Aretskin-Hariton, Eliot D.; Zinnecker, Alicia M.; Kratz, Jonathan L.; Culley, Dennis E.; Thomas, George L.
2016-01-01
Distributed engine control architecture presents a significant increase in complexity over traditional implementations when viewed from the perspective of system simulation and hardware design and test. Even if the overall function of the control scheme remains the same, the hardware implementation can have a significant effect on the overall system performance due to differences in the creation and flow of data between control elements. A Hardware-in-the-Loop (HIL) simulation system is under development at NASA Glenn Research Center that enables the exploration of these hardware dependent issues. The system is based on, but not limited to, the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k). This paper describes the step-by-step conversion from the self-contained baseline model to the hardware in the loop model, and the validation of each step. As the control model hardware fidelity was improved during HIL system development, benchmarking simulations were performed to verify that engine system performance characteristics remained the same. The results demonstrate the goal of the effort; the new HIL configurations have similar functionality and performance compared to the baseline C-MAPSS40k system.
Switching performance of OBS network model under prefetched real traffic
NASA Astrophysics Data System (ADS)
Huang, Zhenhua; Xu, Du; Lei, Wen
2005-11-01
Optical Burst Switching (OBS) [1] is now widely considered as an efficient switching technique in building the next generation optical Internet .So it's very important to precisely evaluate the performance of the OBS network model. The performance of the OBS network model is variable in different condition, but the most important thing is that how it works under real traffic load. In the traditional simulation models, uniform traffics are usually generated by simulation software to imitate the data source of the edge node in the OBS network model, and through which the performance of the OBS network is evaluated. Unfortunately, without being simulated by real traffic, the traditional simulation models have several problems and their results are doubtable. To deal with this problem, we present a new simulation model for analysis and performance evaluation of the OBS network, which uses prefetched IP traffic to be data source of the OBS network model. The prefetched IP traffic can be considered as real IP source of the OBS edge node and the OBS network model has the same clock rate with a real OBS system. So it's easy to conclude that this model is closer to the real OBS system than the traditional ones. The simulation results also indicate that this model is more accurate to evaluate the performance of the OBS network system and the results of this model are closer to the actual situation.
A Perspective on Computational Human Performance Models as Design Tools
NASA Technical Reports Server (NTRS)
Jones, Patricia M.
2010-01-01
The design of interactive systems, including levels of automation, displays, and controls, is usually based on design guidelines and iterative empirical prototyping. A complementary approach is to use computational human performance models to evaluate designs. An integrated strategy of model-based and empirical test and evaluation activities is particularly attractive as a methodology for verification and validation of human-rated systems for commercial space. This talk will review several computational human performance modeling approaches and their applicability to design of display and control requirements.
Understanding Lymphatic Valve Function via Computational Modeling
NASA Astrophysics Data System (ADS)
Wolf, Ki; Nepiyushchikh, Zhanna; Razavi, Mohammad; Dixon, Brandon; Alexeev, Alexander
2017-11-01
The lymphatic system is a crucial part to the circulatory system with many important functions, such as transport of interstitial fluid, fatty acid, and immune cells. Lymphatic vessels' contractile walls and valves allow lymph flow against adverse pressure gradients and prevent back flow. Yet, the effect of lymphatic valves' geometric and mechanical properties to pumping performance and lymphatic dysfunctions like lymphedema is not well understood. Our coupled fluid-solid computational model based on lattice Boltzmann model and lattice spring model investigates the dynamics and effectiveness of lymphatic valves in resistance minimization, backflow prevention, and viscoelastic response under different geometric and mechanical properties, suggesting the range of lymphatic valve parameters with effective pumping performance. Our model also provides more physiologically relevant relations of the valve response under varied conditions to a lumped parameter model of the lymphatic system giving an integrative insight into lymphatic system performance, including its failure due to diseases. NSF CMMI-1635133.
Information Extraction for System-Software Safety Analysis: Calendar Year 2007 Year-End Report
NASA Technical Reports Server (NTRS)
Malin, Jane T.
2008-01-01
This annual report describes work to integrate a set of tools to support early model-based analysis of failures and hazards due to system-software interactions. The tools perform and assist analysts in the following tasks: 1) extract model parts from text for architecture and safety/hazard models; 2) combine the parts with library information to develop the models for visualization and analysis; 3) perform graph analysis on the models to identify possible paths from hazard sources to vulnerable entities and functions, in nominal and anomalous system-software configurations; 4) perform discrete-time-based simulation on the models to investigate scenarios where these paths may play a role in failures and mishaps; and 5) identify resulting candidate scenarios for software integration testing. This paper describes new challenges in a NASA abort system case, and enhancements made to develop the integrated tool set.
Method and system for SCR optimization
Lefebvre, Wesley Curt [Boston, MA; Kohn, Daniel W [Cambridge, MA
2009-03-10
Methods and systems are provided for controlling SCR performance in a boiler. The boiler includes one or more generally cross sectional areas. Each cross sectional area can be characterized by one or more profiles of one or more conditions affecting SCR performance and be associated with one or more adjustable desired profiles of the one or more conditions during the operation of the boiler. The performance of the boiler can be characterized by boiler performance parameters. A system in accordance with one or more embodiments of the invention can include a controller input for receiving a performance goal for the boiler corresponding to at least one of the boiler performance parameters and for receiving data values corresponding to boiler control variables and to the boiler performance parameters. The boiler control variables include one or more current profiles of the one or more conditions. The system also includes a system model that relates one or more profiles of the one or more conditions in the boiler to the boiler performance parameters. The system also includes an indirect controller that determines one or more desired profiles of the one or more conditions to satisfy the performance goal for the boiler. The indirect controller uses the system model, the received data values and the received performance goal to determine the one or more desired profiles of the one or more conditions. The system model also includes a controller output that outputs the one or more desired profiles of the one or more conditions.
Simulator for concurrent processing data flow architectures
NASA Technical Reports Server (NTRS)
Malekpour, Mahyar R.; Stoughton, John W.; Mielke, Roland R.
1992-01-01
A software simulator capability of simulating execution of an algorithm graph on a given system under the Algorithm to Architecture Mapping Model (ATAMM) rules is presented. ATAMM is capable of modeling the execution of large-grained algorithms on distributed data flow architectures. Investigating the behavior and determining the performance of an ATAMM based system requires the aid of software tools. The ATAMM Simulator presented is capable of determining the performance of a system without having to build a hardware prototype. Case studies are performed on four algorithms to demonstrate the capabilities of the ATAMM Simulator. Simulated results are shown to be comparable to the experimental results of the Advanced Development Model System.
Systems Engineering and Application of System Performance Modeling in SIM Lite Mission
NASA Technical Reports Server (NTRS)
Moshir, Mehrdad; Murphy, David W.; Milman, Mark H.; Meier, David L.
2010-01-01
The SIM Lite Astrometric Observatory will be the first space-based Michelson interferometer operating in the visible wavelength, with the ability to perform ultra-high precision astrometric measurements on distant celestial objects. SIM Lite data will address in a fundamental way questions such as characterization of Earth-mass planets around nearby stars. To accomplish these goals it is necessary to rely on a model-based systems engineering approach - much more so than most other space missions. This paper will describe in further detail the components of this end-to-end performance model, called "SIM-sim", and show how it has helped the systems engineering process.
Modeling and Performance Considerations for Automated Fault Isolation in Complex Systems
NASA Technical Reports Server (NTRS)
Ferrell, Bob; Oostdyk, Rebecca
2010-01-01
The purpose of this paper is to document the modeling considerations and performance metrics that were examined in the development of a large-scale Fault Detection, Isolation and Recovery (FDIR) system. The FDIR system is envisioned to perform health management functions for both a launch vehicle and the ground systems that support the vehicle during checkout and launch countdown by using suite of complimentary software tools that alert operators to anomalies and failures in real-time. The FDIR team members developed a set of operational requirements for the models that would be used for fault isolation and worked closely with the vendor of the software tools selected for fault isolation to ensure that the software was able to meet the requirements. Once the requirements were established, example models of sufficient complexity were used to test the performance of the software. The results of the performance testing demonstrated the need for enhancements to the software in order to meet the demands of the full-scale ground and vehicle FDIR system. The paper highlights the importance of the development of operational requirements and preliminary performance testing as a strategy for identifying deficiencies in highly scalable systems and rectifying those deficiencies before they imperil the success of the project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deline, C.
Computer modeling is able to predict the performance of distributed power electronics (microinverters, power optimizers) in PV systems. However, details about partial shade and other mismatch must be known in order to give the model accurate information to go on. This talk will describe recent updates in NREL’s System Advisor Model program to model partial shading losses with and without distributed power electronics, along with experimental validation results. Computer modeling is able to predict the performance of distributed power electronics (microinverters, power optimizers) in PV systems. However, details about partial shade and other mismatch must be known in order tomore » give the model accurate information to go on. This talk will describe recent updates in NREL’s System Advisor Model program to model partial shading losses.« less
An integrated radar model solution for mission level performance and cost trades
NASA Astrophysics Data System (ADS)
Hodge, John; Duncan, Kerron; Zimmerman, Madeline; Drupp, Rob; Manno, Mike; Barrett, Donald; Smith, Amelia
2017-05-01
A fully integrated Mission-Level Radar model is in development as part of a multi-year effort under the Northrop Grumman Mission Systems (NGMS) sector's Model Based Engineering (MBE) initiative to digitally interconnect and unify previously separate performance and cost models. In 2016, an NGMS internal research and development (IR and D) funded multidisciplinary team integrated radio frequency (RF), power, control, size, weight, thermal, and cost models together using a commercial-off-the-shelf software, ModelCenter, for an Active Electronically Scanned Array (AESA) radar system. Each represented model was digitally connected with standard interfaces and unified to allow end-to-end mission system optimization and trade studies. The radar model was then linked to the Air Force's own mission modeling framework (AFSIM). The team first had to identify the necessary models, and with the aid of subject matter experts (SMEs) understand and document the inputs, outputs, and behaviors of the component models. This agile development process and collaboration enabled rapid integration of disparate models and the validation of their combined system performance. This MBE framework will allow NGMS to design systems more efficiently and affordably, optimize architectures, and provide increased value to the customer. The model integrates detailed component models that validate cost and performance at the physics level with high-level models that provide visualization of a platform mission. This connectivity of component to mission models allows hardware and software design solutions to be better optimized to meet mission needs, creating cost-optimal solutions for the customer, while reducing design cycle time through risk mitigation and early validation of design decisions.
Closed Loop System Identification with Genetic Algorithms
NASA Technical Reports Server (NTRS)
Whorton, Mark S.
2004-01-01
High performance control design for a flexible space structure is challenging since high fidelity plant models are di.cult to obtain a priori. Uncertainty in the control design models typically require a very robust, low performance control design which must be tuned on-orbit to achieve the required performance. Closed loop system identi.cation is often required to obtain a multivariable open loop plant model based on closed-loop response data. In order to provide an accurate initial plant model to guarantee convergence for standard local optimization methods, this paper presents a global parameter optimization method using genetic algorithms. A minimal representation of the state space dynamics is employed to mitigate the non-uniqueness and over-parameterization of general state space realizations. This control-relevant system identi.cation procedure stresses the joint nature of the system identi.cation and control design problem by seeking to obtain a model that minimizes the di.erence between the predicted and actual closed-loop performance.
NASA Technical Reports Server (NTRS)
Trachta, G.
1976-01-01
A model of Univac 1108 work flow has been developed to assist in performance evaluation studies and configuration planning. Workload profiles and system configurations are parameterized for ease of experimental modification. Outputs include capacity estimates and performance evaluation functions. The U1108 system is conceptualized as a service network; classical queueing theory is used to evaluate network dynamics.
NASA Astrophysics Data System (ADS)
Li, Hanyu; Syed, Mubashir; Yao, Yu-Dong; Kamakaris, Theodoros
2009-12-01
This paper investigates spectrum sharing issues in the unlicensed industrial, scientific, and medical (ISM) bands. It presents a radio frequency measurement setup and measurement results in 2.4 GHz. It then develops an analytical model to characterize the coexistence interference in the ISM bands, based on radio frequency measurement results in the 2.4 GHz. Outage performance using the interference model is examined for a hybrid direct-sequence frequency-hopping spread spectrum system. The utilization of beamforming techniques in the system is also investigated, and a simplified beamforming model is proposed to analyze the system performance using beamforming. Numerical results show that beamforming significantly improves the system outage performance. The work presented in this paper provides a quantitative evaluation of signal outages in a spectrum sharing environment. It can be used as a tool in the development process for future dynamic spectrum access models as well as engineering designs for applications in unlicensed bands.
Engineered Barrier System: Physical and Chemical Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. Dixon
2004-04-26
The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming bymore » deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.« less
Gallium arsenide (GaAs) solar cell modeling studies
NASA Technical Reports Server (NTRS)
Heinbockel, J. H.
1980-01-01
Various models were constructed which will allow for the variation of system components. Computer studies were then performed using the models constructed in order to study the effects of various system changes. In particular, GaAs and Si flat plate solar power arrays were studied and compared. Series and shunt resistance models were constructed. Models for the chemical kinetics of the annealing process were prepared. For all models constructed, various parametric studies were performed.
Intercomparison of the community multiscale air quality model and CALGRID using process analysis.
O'Neill, Susan M; Lamb, Brian K
2005-08-01
This study was designed to examine the similarities and differences between two advanced photochemical air quality modeling systems: EPA Models-3/CMAQ and CALGRID/CALMET. Both modeling systems were applied to an ozone episode that occurred along the I-5 urban corridor in western Washington and Oregon during July 11-14, 1996. Both models employed the same modeling domain and used the same detailed gridded emission inventory. The CMAQ model was run using both the CB-IV and RADM2 chemical mechanisms, while CALGRID was used with the SAPRC-97 chemical mechanism. Outputfrom the Mesoscale Meteorological Model (MM5) employed with observational nudging was used in both models. The two modeling systems, representing three chemical mechanisms and two sets of meteorological inputs, were evaluated in terms of statistical performance measures for both 1- and 8-h average observed ozone concentrations. The results showed that the different versions of the systems were more similar than different, and all versions performed well in the Portland region and downwind of Seattle but performed poorly in the more rural region north of Seattle. Improving the meteorological input into the CALGRID/CALMET system with planetary boundary layer (PBL) parameters from the Models-3/CMAQ meteorology preprocessor (MCIP) improved the performance of the CALGRID/CALMET system. The 8-h ensemble case was often the best performer of all the cases indicating that the models perform better over longer analysis periods. The 1-h ensemble case, derived from all runs, was not necessarily an improvement over the five individual cases, but the standard deviation about the mean provided a measure of overall modeling uncertainty. Process analysis was applied to examine the contribution of the individual processes to the species conservation equation. The process analysis results indicated that the two modeling systems arrive at similar solutions by very different means. Transport rates are faster and exhibit greater fluctuations in the CMAQ cases than in the CALGRID cases, which lead to different placement of the urban ozone plumes. The CALGRID cases, which rely on the SAPRC97 chemical mechanism, exhibited a greater diurnal production/loss cycle of ozone concentrations per hour compared to either the RADM2 or CBIV chemical mechanisms in the CMAQ cases. These results demonstrate the need for specialized process field measurements to confirm whether we are modeling ozone with valid processes.
Mohd Salleh, Mohd Idzwan; Zakaria, Nasriah; Abdullah, Rosni
The Ministry of Health Malaysia initiated the total hospital information system (THIS) as the first national electronic health record system for use in selected public hospitals across the country. Since its implementation 15 years ago, there has been the critical requirement for a systematic evaluation to assess its effectiveness in coping with the current system, task complexity, and rapid technological changes. The study aims to assess system quality factors to predict the performance of electronic health in a single public hospital in Malaysia. Non-probability sampling was employed for data collection among selected providers in a single hospital for two months. Data cleaning and bias checking were performed before final analysis in partial least squares-structural equation modeling. Convergent and discriminant validity assessments were satisfied the required criterions in the reflective measurement model. The structural model output revealed that the proposed adequate infrastructure, system interoperability, security control, and system compatibility were the significant predictors, where system compatibility became the most critical characteristic to influence an individual health care provider's performance. The previous DeLone and McLean information system success models should be extended to incorporate these technological factors in the medical system research domain to examine the effectiveness of modern electronic health record systems. In this study, care providers' performance was expected when the system usage fits with patients' needs that eventually increased their productivity. Copyright © 2016 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
van Daal-Rombouts, Petra; Sun, Siao; Langeveld, Jeroen; Bertrand-Krajewski, Jean-Luc; Clemens, François
2016-07-01
Optimisation or real time control (RTC) studies in wastewater systems increasingly require rapid simulations of sewer systems in extensive catchments. To reduce the simulation time calibrated simplified models are applied, with the performance generally based on the goodness of fit of the calibration. In this research the performance of three simplified and a full hydrodynamic (FH) model for two catchments are compared based on the correct determination of CSO event occurrences and of the total discharged volumes to the surface water. Simplified model M1 consists of a rainfall runoff outflow (RRO) model only. M2 combines the RRO model with a static reservoir model for the sewer behaviour. M3 comprises the RRO model and a dynamic reservoir model. The dynamic reservoir characteristics were derived from FH model simulations. It was found that M2 and M3 are able to describe the sewer behaviour of the catchments, contrary to M1. The preferred model structure depends on the quality of the information (geometrical database and monitoring data) available for the design and calibration of the model. Finally, calibrated simplified models are shown to be preferable to uncalibrated FH models when performing optimisation or RTC studies.
Performance of concatenated Reed-Solomon/Viterbi channel coding
NASA Technical Reports Server (NTRS)
Divsalar, D.; Yuen, J. H.
1982-01-01
The concatenated Reed-Solomon (RS)/Viterbi coding system is reviewed. The performance of the system is analyzed and results are derived with a new simple approach. A functional model for the input RS symbol error probability is presented. Based on this new functional model, we compute the performance of a concatenated system in terms of RS word error probability, output RS symbol error probability, bit error probability due to decoding failure, and bit error probability due to decoding error. Finally we analyze the effects of the noisy carrier reference and the slow fading on the system performance.
Space station electrical power system availability study
NASA Technical Reports Server (NTRS)
Turnquist, Scott R.; Twombly, Mark A.
1988-01-01
ARINC Research Corporation performed a preliminary reliability, and maintainability (RAM) anlaysis of the NASA space station Electric Power Station (EPS). The analysis was performed using the ARINC Research developed UNIRAM RAM assessment methodology and software program. The analysis was performed in two phases: EPS modeling and EPS RAM assessment. The EPS was modeled in four parts: the insolar power generation system, the eclipse power generation system, the power management and distribution system (both ring and radial power distribution control unit (PDCU) architectures), and the power distribution to the inner keel PDCUs. The EPS RAM assessment was conducted in five steps: the use of UNIRAM to perform baseline EPS model analyses and to determine the orbital replacement unit (ORU) criticalities; the determination of EPS sensitivity to on-orbit spared of ORUs and the provision of an indication of which ORUs may need to be spared on-orbit; the determination of EPS sensitivity to changes in ORU reliability; the determination of the expected annual number of ORU failures; and the integration of the power generator system model results with the distribution system model results to assess the full EPS. Conclusions were drawn and recommendations were made.
Validation of Multiple Tools for Flat Plate Photovoltaic Modeling Against Measured Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, J.; Whitmore, J.; Blair, N.
2014-08-01
This report expands upon a previous work by the same authors, published in the 40th IEEE Photovoltaic Specialists conference. In this validation study, comprehensive analysis is performed on nine photovoltaic systems for which NREL could obtain detailed performance data and specifications, including three utility-scale systems and six commercial scale systems. Multiple photovoltaic performance modeling tools were used to model these nine systems, and the error of each tool was analyzed compared to quality-controlled measured performance data. This study shows that, excluding identified outliers, all tools achieve annual errors within +/-8% and hourly root mean squared errors less than 7% formore » all systems. It is further shown using SAM that module model and irradiance input choices can change the annual error with respect to measured data by as much as 6.6% for these nine systems, although all combinations examined still fall within an annual error range of +/-8.5%. Additionally, a seasonal variation in monthly error is shown for all tools. Finally, the effects of irradiance data uncertainty and the use of default loss assumptions on annual error are explored, and two approaches to reduce the error inherent in photovoltaic modeling are proposed.« less
Mostafa, Salama A; Mustapha, Aida; Mohammed, Mazin Abed; Ahmad, Mohd Sharifuddin; Mahmoud, Moamin A
2018-04-01
Autonomous agents are being widely used in many systems, such as ambient assisted-living systems, to perform tasks on behalf of humans. However, these systems usually operate in complex environments that entail uncertain, highly dynamic, or irregular workload. In such environments, autonomous agents tend to make decisions that lead to undesirable outcomes. In this paper, we propose a fuzzy-logic-based adjustable autonomy (FLAA) model to manage the autonomy of multi-agent systems that are operating in complex environments. This model aims to facilitate the autonomy management of agents and help them make competent autonomous decisions. The FLAA model employs fuzzy logic to quantitatively measure and distribute autonomy among several agents based on their performance. We implement and test this model in the Automated Elderly Movements Monitoring (AEMM-Care) system, which uses agents to monitor the daily movement activities of elderly users and perform fall detection and prevention tasks in a complex environment. The test results show that the FLAA model improves the accuracy and performance of these agents in detecting and preventing falls. Copyright © 2018 Elsevier B.V. All rights reserved.
QCGAT mixer compound exhaust system design and static big model test report
NASA Technical Reports Server (NTRS)
Blackmore, W. L.; Thompson, C. E.
1978-01-01
A mixer exhaust system was designed to meet the proposed performance and exhaust jet noise goals for the AiResearch QCGAT engine. Some 0.35 scale models of the various nozzles were fabricated and aerodynamically and acoustically tested. Preliminary optimization, engine cycle matching, model test data and analysis are presented. A final mixer exhaust system is selected for optimum performance for the overall flight regime.
NASA Astrophysics Data System (ADS)
Olson, Craig; Theisen, Michael; Pace, Teresa; Halford, Carl; Driggers, Ronald
2016-05-01
The mission of an Infrared Search and Track (IRST) system is to detect and locate (sometimes called find and fix) enemy aircraft at significant ranges. Two extreme opposite examples of IRST applications are 1) long range offensive aircraft detection when electronic warfare equipment is jammed, compromised, or intentionally turned off, and 2) distributed aperture systems where enemy aircraft may be in the proximity of the host aircraft. Past IRST systems have been primarily long range offensive systems that were based on the LWIR second generation thermal imager. The new IRST systems are primarily based on staring infrared focal planes and sensors. In the same manner that FLIR92 did not work well in the design of staring infrared cameras (NVTherm was developed to address staring infrared sensor performance), current modeling techniques do not adequately describe the performance of a staring IRST sensor. There are no standard military IRST models (per AFRL and NAVAIR), and each program appears to perform their own modeling. For this reason, L-3 has decided to develop a corporate model, working with AFRL and NAVAIR, for the analysis, design, and evaluation of IRST concepts, programs, and solutions. This paper provides some of the first analyses in the L-3 IRST model development program for the optimization of staring IRST sensors.
A system performance throughput model applicable to advanced manned telescience systems
NASA Technical Reports Server (NTRS)
Haines, Richard F.
1990-01-01
As automated space systems become more complex, autonomous, and opaque to the flight crew, it becomes increasingly difficult to determine whether the total system is performing as it should. Some of the complex and interrelated human performance measurement issues are addressed that are related to total system validation. An evaluative throughput model is presented which can be used to generate a human operator-related benchmark or figure of merit for a given system which involves humans at the input and output ends as well as other automated intelligent agents. The concept of sustained and accurate command/control data information transfer is introduced. The first two input parameters of the model involve nominal and off-nominal predicted events. The first of these calls for a detailed task analysis while the second is for a contingency event assessment. The last two required input parameters involving actual (measured) events, namely human performance and continuous semi-automated system performance. An expression combining these four parameters was found using digital simulations and identical, representative, random data to yield the smallest variance.
Integrated Model for Performance Analysis of All-Optical Multihop Packet Switches
NASA Astrophysics Data System (ADS)
Jeong, Han-You; Seo, Seung-Woo
2000-09-01
The overall performance of an all-optical packet switching system is usually determined by two criteria, i.e., switching latency and packet loss rate. In some real-time applications, however, in which packets arriving later than a timeout period are discarded as loss, the packet loss rate becomes the most dominant criterion for system performance. Here we focus on evaluating the performance of all-optical packet switches in terms of the packet loss rate, which normally arises from the insufficient hardware or the degradation of an optical signal. Considering both aspects, we propose what we believe is a new analysis model for the packet loss rate that reflects the complicated interactions between physical impairments and system-level parameters. On the basis of the estimation model for signal quality degradation in a multihop path we construct an equivalent analysis model of a switching network for evaluating an average bit error rate. With the model constructed we then propose an integrated model for estimating the packet loss rate in three architectural examples of multihop packet switches, each of which is based on a different switching concept. We also derive the bounds on the packet loss rate induced by bit errors. Finally, it is verified through simulation studies that our analysis model accurately predicts system performance.
Quantum Accelerators for High-performance Computing Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humble, Travis S.; Britt, Keith A.; Mohiyaddin, Fahd A.
We define some of the programming and system-level challenges facing the application of quantum processing to high-performance computing. Alongside barriers to physical integration, prominent differences in the execution of quantum and conventional programs challenges the intersection of these computational models. Following a brief overview of the state of the art, we discuss recent advances in programming and execution models for hybrid quantum-classical computing. We discuss a novel quantum-accelerator framework that uses specialized kernels to offload select workloads while integrating with existing computing infrastructure. We elaborate on the role of the host operating system to manage these unique accelerator resources, themore » prospects for deploying quantum modules, and the requirements placed on the language hierarchy connecting these different system components. We draw on recent advances in the modeling and simulation of quantum computing systems with the development of architectures for hybrid high-performance computing systems and the realization of software stacks for controlling quantum devices. Finally, we present simulation results that describe the expected system-level behavior of high-performance computing systems composed from compute nodes with quantum processing units. We describe performance for these hybrid systems in terms of time-to-solution, accuracy, and energy consumption, and we use simple application examples to estimate the performance advantage of quantum acceleration.« less
NASA Astrophysics Data System (ADS)
Ma, K.; Thomassey, S.; Zeng, X.
2017-10-01
In this paper we proposed a central order processing system under resource sharing strategy for demand-driven garment supply chains to increase supply chain performances. We examined this system by using simulation technology. Simulation results showed that significant improvement in various performance indicators was obtained in new collaborative model with proposed system.
Modeling Human Steering Behavior During Path Following in Teleoperation of Unmanned Ground Vehicles.
Mirinejad, Hossein; Jayakumar, Paramsothy; Ersal, Tulga
2018-04-01
This paper presents a behavioral model representing the human steering performance in teleoperated unmanned ground vehicles (UGVs). Human steering performance in teleoperation is considerably different from the performance in regular onboard driving situations due to significant communication delays in teleoperation systems and limited information human teleoperators receive from the vehicle sensory system. Mathematical models capturing the teleoperation performance are a key to making the development and evaluation of teleoperated UGV technologies fully simulation based and thus more rapid and cost-effective. However, driver models developed for the typical onboard driving case do not readily address this need. To fill the gap, this paper adopts a cognitive model that was originally developed for a typical highway driving scenario and develops a tuning strategy that adjusts the model parameters in the absence of human data to reflect the effect of various latencies and UGV speeds on driver performance in a teleoperated path-following task. Based on data collected from a human subject test study, it is shown that the tuned model can predict both the trend of changes in driver performance for different driving conditions and the best steering performance of human subjects in all driving conditions considered. The proposed model with the tuning strategy has a satisfactory performance in predicting human steering behavior in the task of teleoperated path following of UGVs. The established model is a suited candidate to be used in place of human drivers for simulation-based studies of UGV mobility in teleoperation systems.
A Cost and Performance System (CAPS) in a Federal agency
NASA Technical Reports Server (NTRS)
Huseonia, W. F.; Penton, P. G.
1994-01-01
Cost and Performance System (CAPS) is an automated system used from the planning phase through implementation to analysis and documentation. Data is retrievable or available for analysis of cost versus performance anomalies. CAPS provides a uniform system across intra- and international elements. A common system is recommended throughout an entire cost or profit center. Data can be easily accumulated and aggregated into higher levels of tracking and reporting of cost and performance.The level and quality of performance or productivity is indicated in the CAPS model and its process. The CAPS model provides the necessary decision information and insight to the principal investigator/project engineer for a successful project management experience. CAPS provides all levels of management with the appropriate detailed level of data.
The simulation study on optical target laser active detection performance
NASA Astrophysics Data System (ADS)
Li, Ying-chun; Hou, Zhao-fei; Fan, Youchen
2014-12-01
According to the working principle of laser active detection system, the paper establishes the optical target laser active detection simulation system, carry out the simulation study on the detection process and detection performance of the system. For instance, the performance model such as the laser emitting, the laser propagation in the atmosphere, the reflection of optical target, the receiver detection system, the signal processing and recognition. We focus on the analysis and modeling the relationship between the laser emitting angle and defocus amount and "cat eye" effect echo laser in the reflection of optical target. Further, in the paper some performance index such as operating range, SNR and the probability of the system have been simulated. The parameters including laser emitting parameters, the reflection of the optical target and the laser propagation in the atmosphere which make a great influence on the performance of the optical target laser active detection system. Finally, using the object-oriented software design methods, the laser active detection system with the opening type, complete function and operating platform, realizes the process simulation that the detection system detect and recognize the optical target, complete the performance simulation of each subsystem, and generate the data report and the graph. It can make the laser active detection system performance models more intuitive because of the visible simulation process. The simulation data obtained from the system provide a reference to adjust the structure of the system parameters. And it provides theoretical and technical support for the top level design of the optical target laser active detection system and performance index optimization.
NASA Astrophysics Data System (ADS)
Francois, Baptiste; Hingray, Benoit; Creutin, Jean-Dominique; Hendrickx, Frederic
2015-04-01
The performance of water systems used worldwide for the management of water resources is expected to be influenced by future changes in regional climates and water uses. Anticipating possible performance changes of a given system requires a modeling chain simulating its management. Operational management is usually not trivial especially when several conflicting objectives have to be accounted for. Management models are therefore often a crude representation of the real system and they only approximate its performance. Estimated performance changes are expected to depend on the management model used, but this is often not assessed. This communication analyzes the influence of the management strategy representation on the performance of an Alpine reservoir (Serre-Ponçon, South-East of France) for which irrigation supply, hydropower generation and recreational activities are the main objectives. We consider three ways to construct the strategy named as clear-, short- and far-sighted management. They are based on different forecastability degrees of seasonal inflows into the reservoir. The strategies are optimized using a Dynamic Programming algorithm (deterministic for clear-sighted and implicit stochastic for short- and far-sighted). System performance is estimated for an ensemble of future hydro-meteorological projections obtained in the RIWER2030 research project (http://www.lthe.fr/RIWER2030/) from a suite of climate experiments from the EU - ENSEMBLES research project. Our results show that changes in system performance is much more influenced by changes in hydro-meteorological variables than by the choice of strategy modeling. They also show that a simple strategy representation (i.e. clear-sighted management) leads to similar estimates of performance modifications than those obtained with a representation supposedly closer to real world (i.e. the far-sighted management). The Short-Sighted management approach lead to significantly different results, especially when inter-annual inflow variability is high. Key words: Climate change, water resource, impact, management strategy modelling
Human performance modeling for system of systems analytics: combat performance-shaping factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawton, Craig R.; Miller, Dwight Peter
The US military has identified Human Performance Modeling (HPM) as a significant requirement and challenge of future systems modeling and analysis initiatives. To support this goal, Sandia National Laboratories (SNL) has undertaken a program of HPM as an integral augmentation to its system-of-system (SoS) analytics capabilities. The previous effort, reported in SAND2005-6569, evaluated the effects of soldier cognitive fatigue on SoS performance. The current effort began with a very broad survey of any performance-shaping factors (PSFs) that also might affect soldiers performance in combat situations. The work included consideration of three different approaches to cognition modeling and how appropriate theymore » would be for application to SoS analytics. This bulk of this report categorizes 47 PSFs into three groups (internal, external, and task-related) and provides brief descriptions of how each affects combat performance, according to the literature. The PSFs were then assembled into a matrix with 22 representative military tasks and assigned one of four levels of estimated negative impact on task performance, based on the literature. Blank versions of the matrix were then sent to two ex-military subject-matter experts to be filled out based on their personal experiences. Data analysis was performed to identify the consensus most influential PSFs. Results indicate that combat-related injury, cognitive fatigue, inadequate training, physical fatigue, thirst, stress, poor perceptual processing, and presence of chemical agents are among the PSFs with the most negative impact on combat performance.« less
Performance Evaluation Model for Application Layer Firewalls.
Xuan, Shichang; Yang, Wu; Dong, Hui; Zhang, Jiangchuan
2016-01-01
Application layer firewalls protect the trusted area network against information security risks. However, firewall performance may affect user experience. Therefore, performance analysis plays a significant role in the evaluation of application layer firewalls. This paper presents an analytic model of the application layer firewall, based on a system analysis to evaluate the capability of the firewall. In order to enable users to improve the performance of the application layer firewall with limited resources, resource allocation was evaluated to obtain the optimal resource allocation scheme in terms of throughput, delay, and packet loss rate. The proposed model employs the Erlangian queuing model to analyze the performance parameters of the system with regard to the three layers (network, transport, and application layers). Then, the analysis results of all the layers are combined to obtain the overall system performance indicators. A discrete event simulation method was used to evaluate the proposed model. Finally, limited service desk resources were allocated to obtain the values of the performance indicators under different resource allocation scenarios in order to determine the optimal allocation scheme. Under limited resource allocation, this scheme enables users to maximize the performance of the application layer firewall.
Travtek Evaluation Modeling Study
DOT National Transportation Integrated Search
1996-03-01
THE FOLLOWING REPORT DESCRIBES A MODELING STUDY THAT WAS PERFORMED TO EXTRAPOLATE, FROM THE TRAVTEK OPERATIONAL TEST DATA, A SET OF SYSTEM WIDE BENEFITS AND PERFORMANCE VALUES FOR A WIDER-SCALE DEPLOYMENT OF A TRAVTEK-LIKE SYSTEM. IN THE FIRST PART O...
Capacity utilization study for aviation security cargo inspection queuing system
NASA Astrophysics Data System (ADS)
Allgood, Glenn O.; Olama, Mohammed M.; Lake, Joe E.; Brumback, Daryl
2010-04-01
In this paper, we conduct performance evaluation study for an aviation security cargo inspection queuing system for material flow and accountability. The queuing model employed in our study is based on discrete-event simulation and processes various types of cargo simultaneously. Onsite measurements are collected in an airport facility to validate the queuing model. The overall performance of the aviation security cargo inspection system is computed, analyzed, and optimized for the different system dynamics. Various performance measures are considered such as system capacity, residual capacity, throughput, capacity utilization, subscribed capacity utilization, resources capacity utilization, subscribed resources capacity utilization, and number of cargo pieces (or pallets) in the different queues. These metrics are performance indicators of the system's ability to service current needs and response capacity to additional requests. We studied and analyzed different scenarios by changing various model parameters such as number of pieces per pallet, number of TSA inspectors and ATS personnel, number of forklifts, number of explosives trace detection (ETD) and explosives detection system (EDS) inspection machines, inspection modality distribution, alarm rate, and cargo closeout time. The increased physical understanding resulting from execution of the queuing model utilizing these vetted performance measures should reduce the overall cost and shipping delays associated with new inspection requirements.
Capacity Utilization Study for Aviation Security Cargo Inspection Queuing System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allgood, Glenn O; Olama, Mohammed M; Lake, Joe E
In this paper, we conduct performance evaluation study for an aviation security cargo inspection queuing system for material flow and accountability. The queuing model employed in our study is based on discrete-event simulation and processes various types of cargo simultaneously. Onsite measurements are collected in an airport facility to validate the queuing model. The overall performance of the aviation security cargo inspection system is computed, analyzed, and optimized for the different system dynamics. Various performance measures are considered such as system capacity, residual capacity, throughput, capacity utilization, subscribed capacity utilization, resources capacity utilization, subscribed resources capacity utilization, and number ofmore » cargo pieces (or pallets) in the different queues. These metrics are performance indicators of the system s ability to service current needs and response capacity to additional requests. We studied and analyzed different scenarios by changing various model parameters such as number of pieces per pallet, number of TSA inspectors and ATS personnel, number of forklifts, number of explosives trace detection (ETD) and explosives detection system (EDS) inspection machines, inspection modality distribution, alarm rate, and cargo closeout time. The increased physical understanding resulting from execution of the queuing model utilizing these vetted performance measures should reduce the overall cost and shipping delays associated with new inspection requirements.« less
Earth observing system instrument pointing control modeling for polar orbiting platforms
NASA Technical Reports Server (NTRS)
Briggs, H. C.; Kia, T.; Mccabe, S. A.; Bell, C. E.
1987-01-01
An approach to instrument pointing control performance assessment for large multi-instrument platforms is described. First, instrument pointing requirements and reference platform control systems for the Eos Polar Platforms are reviewed. Performance modeling tools including NASTRAN models of two large platforms, a modal selection procedure utilizing a balanced realization method, and reduced order platform models with core and instrument pointing control loops added are then described. Time history simulations of instrument pointing and stability performance in response to commanded slewing of adjacent instruments demonstrates the limits of tolerable slew activity. Simplified models of rigid body responses are also developed for comparison. Instrument pointing control methods required in addition to the core platform control system to meet instrument pointing requirements are considered.
pyBSM: A Python package for modeling imaging systems
NASA Astrophysics Data System (ADS)
LeMaster, Daniel A.; Eismann, Michael T.
2017-05-01
There are components that are common to all electro-optical and infrared imaging system performance models. The purpose of the Python Based Sensor Model (pyBSM) is to provide open source access to these functions for other researchers to build upon. Specifically, pyBSM implements much of the capability found in the ERIM Image Based Sensor Model (IBSM) V2.0 along with some improvements. The paper also includes two use-case examples. First, performance of an airborne imaging system is modeled using the General Image Quality Equation (GIQE). The results are then decomposed into factors affecting noise and resolution. Second, pyBSM is paired with openCV to evaluate performance of an algorithm used to detect objects in an image.
Evaluation of computing systems using functionals of a Stochastic process
NASA Technical Reports Server (NTRS)
Meyer, J. F.; Wu, L. T.
1980-01-01
An intermediate model was used to represent the probabilistic nature of a total system at a level which is higher than the base model and thus closer to the performance variable. A class of intermediate models, which are generally referred to as functionals of a Markov process, were considered. A closed form solution of performability for the case where performance is identified with the minimum value of a functional was developed.
Performance related issues in distributed database systems
NASA Technical Reports Server (NTRS)
Mukkamala, Ravi
1991-01-01
The key elements of research performed during the year long effort of this project are: Investigate the effects of heterogeneity in distributed real time systems; Study the requirements to TRAC towards building a heterogeneous database system; Study the effects of performance modeling on distributed database performance; and Experiment with an ORACLE based heterogeneous system.
Performability evaluation of the SIFT computer
NASA Technical Reports Server (NTRS)
Meyer, J. F.; Furchtgott, D. G.; Wu, L. T.
1979-01-01
Performability modeling and evaluation techniques are applied to the SIFT computer as it might operate in the computational evironment of an air transport mission. User-visible performance of the total system (SIFT plus its environment) is modeled as a random variable taking values in a set of levels of accomplishment. These levels are defined in terms of four attributes of total system behavior: safety, no change in mission profile, no operational penalties, and no economic process whose states describe the internal structure of SIFT as well as relavant conditions of the environment. Base model state trajectories are related to accomplishment levels via a capability function which is formulated in terms of a 3-level model hierarchy. Performability evaluation algorithms are then applied to determine the performability of the total system for various choices of computer and environment parameter values. Numerical results of those evaluations are presented and, in conclusion, some implications of this effort are discussed.
Pope, Bernard J; Fitch, Blake G; Pitman, Michael C; Rice, John J; Reumann, Matthias
2011-01-01
Future multiscale and multiphysics models must use the power of high performance computing (HPC) systems to enable research into human disease, translational medical science, and treatment. Previously we showed that computationally efficient multiscale models will require the use of sophisticated hybrid programming models, mixing distributed message passing processes (e.g. the message passing interface (MPI)) with multithreading (e.g. OpenMP, POSIX pthreads). The objective of this work is to compare the performance of such hybrid programming models when applied to the simulation of a lightweight multiscale cardiac model. Our results show that the hybrid models do not perform favourably when compared to an implementation using only MPI which is in contrast to our results using complex physiological models. Thus, with regards to lightweight multiscale cardiac models, the user may not need to increase programming complexity by using a hybrid programming approach. However, considering that model complexity will increase as well as the HPC system size in both node count and number of cores per node, it is still foreseeable that we will achieve faster than real time multiscale cardiac simulations on these systems using hybrid programming models.
MODELING AND PERFORMANCE EVALUATION FOR AVIATION SECURITY CARGO INSPECTION QUEUING SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allgood, Glenn O; Olama, Mohammed M; Rose, Terri A
Beginning in 2010, the U.S. will require that all cargo loaded in passenger aircraft be inspected. This will require more efficient processing of cargo and will have a significant impact on the inspection protocols and business practices of government agencies and the airlines. In this paper, we conduct performance evaluation study for an aviation security cargo inspection queuing system for material flow and accountability. The overall performance of the aviation security cargo inspection system is computed, analyzed, and optimized for the different system dynamics. Various performance measures are considered such as system capacity, residual capacity, and throughput. These metrics aremore » performance indicators of the system s ability to service current needs and response capacity to additional requests. The increased physical understanding resulting from execution of the queuing model utilizing these vetted performance measures will reduce the overall cost and shipping delays associated with the new inspection requirements.« less
Reliability model of a monopropellant auxiliary propulsion system
NASA Technical Reports Server (NTRS)
Greenberg, J. S.
1971-01-01
A mathematical model and associated computer code has been developed which computes the reliability of a monopropellant blowdown hydrazine spacecraft auxiliary propulsion system as a function of time. The propulsion system is used to adjust or modify the spacecraft orbit over an extended period of time. The multiple orbit corrections are the multiple objectives which the auxiliary propulsion system is designed to achieve. Thus the reliability model computes the probability of successfully accomplishing each of the desired orbit corrections. To accomplish this, the reliability model interfaces with a computer code that models the performance of a blowdown (unregulated) monopropellant auxiliary propulsion system. The computer code acts as a performance model and as such gives an accurate time history of the system operating parameters. The basic timing and status information is passed on to and utilized by the reliability model which establishes the probability of successfully accomplishing the orbit corrections.
Measurement-based reliability/performability models
NASA Technical Reports Server (NTRS)
Hsueh, Mei-Chen
1987-01-01
Measurement-based models based on real error-data collected on a multiprocessor system are described. Model development from the raw error-data to the estimation of cumulative reward is also described. A workload/reliability model is developed based on low-level error and resource usage data collected on an IBM 3081 system during its normal operation in order to evaluate the resource usage/error/recovery process in a large mainframe system. Thus, both normal and erroneous behavior of the system are modeled. The results provide an understanding of the different types of errors and recovery processes. The measured data show that the holding times in key operational and error states are not simple exponentials and that a semi-Markov process is necessary to model the system behavior. A sensitivity analysis is performed to investigate the significance of using a semi-Markov process, as opposed to a Markov process, to model the measured system.
NASA Astrophysics Data System (ADS)
Ladner, S. D.; Arnone, R.; Casey, B.; Weidemann, A.; Gray, D.; Shulman, I.; Mahoney, K.; Giddings, T.; Shirron, J.
2009-05-01
Current United States Navy Mine-Counter-Measure (MCM) operations primarily use electro-optical identification (EOID) sensors to identify underwater targets after detection via acoustic sensors. These EOID sensors which are based on laser underwater imaging by design work best in "clear" waters and are limited in coastal waters especially with strong optical layers. Optical properties and in particular scattering and absorption play an important role on systems performance. Surface optical properties alone from satellite are not adequate to determine how well a system will perform at depth due to the existence of optical layers. The spatial and temporal characteristics of the 3d optical variability of the coastal waters along with strength and location of subsurface optical layers maximize chances of identifying underwater targets by exploiting optimum sensor deployment. Advanced methods have been developed to fuse the optical measurements from gliders, optical properties from "surface" satellite snapshot and 3-D ocean circulation models to extend the two-dimensional (2-D) surface satellite optical image into a three-dimensional (3-D) optical volume with subsurface optical layers. Modifications were made to an EOID performance model to integrate a 3-D optical volume covering an entire region of interest as input and derive system performance field. These enhancements extend present capability based on glider optics and EOID sensor models to estimate the system's "image quality". This only yields system performance information for a single glider profile location in a very large operational region. Finally, we define the uncertainty of the system performance by coupling the EOID performance model with the 3-D optical volume uncertainties. Knowing the ensemble spread of EOID performance field provides a new and unique capability for tactical decision makers and Navy Operations.
The Proposed Change Strategy to Embed Energy Stewardship into the Army’s Culture
2012-06-02
36 APPENDIX A: BURKE- LITWIN ORGANIZATION PERFORMANCE AND CHANGE MODEL...analysis, senior leaders take a systemic approach and use a model (e.g., Burke- Litwin Organization Performance and Change Model) as a guide to...identify what needs to change in the organization and how the change is likely to impact the institution’s systems (see Appendix A: Burke- Litwin Model
Performance evaluation of the croissant production line with reparable machines
NASA Astrophysics Data System (ADS)
Tsarouhas, Panagiotis H.
2015-03-01
In this study, the analytical probability models for an automated serial production system, bufferless that consists of n-machines in series with common transfer mechanism and control system was developed. Both time to failure and time to repair a failure are assumed to follow exponential distribution. Applying those models, the effect of system parameters on system performance in actual croissant production line was studied. The production line consists of six workstations with different numbers of reparable machines in series. Mathematical models of the croissant production line have been developed using Markov process. The strength of this study is in the classification of the whole system in states, representing failures of different machines. Failure and repair data from the actual production environment have been used to estimate reliability and maintainability for each machine, workstation, and the entire line is based on analytical models. The analysis provides a useful insight into the system's behaviour, helps to find design inherent faults and suggests optimal modifications to upgrade the system and improve its performance.
NASA Technical Reports Server (NTRS)
Parker, K. C.; Torian, J. G.
1980-01-01
A sample environmental control and life support model performance analysis using the environmental analysis routines library is presented. An example of a complete model set up and execution is provided. The particular model was synthesized to utilize all of the component performance routines and most of the program options.
The Development and Use of a Flight Optimization System Model of a C-130E Transport Aircraft
NASA Technical Reports Server (NTRS)
Desch, Jeremy D.
1995-01-01
The Systems Analysis Branch at NASA Langley Research Center conducts a variety of aircraft design and analyses studies. These studies include the prediction of characteristics of a particular conceptual design, analyses of designs that already exist, and assessments of the impact of technology on current and future aircraft. The FLight OPtimization System (FLOPS) is a tool used for aircraft systems analysis and design. A baseline input model of a Lockheed C-130E was generated for the Flight Optimization System. This FLOPS model can be used to conduct design-trade studies and technology impact assessments. The input model was generated using standard input data such as basic geometries and mission specifications. All of the other data needed to determine the airplane performance is computed internally by FLOPS. The model was then calibrated to reproduce the actual airplane performance from flight test data. This allows a systems analyzer to change a specific item of geometry or mission definition in the FLOPS input file and evaluate the resulting change in performance from the output file. The baseline model of the C-130E was used to analyze the effects of implementing upper wing surface blowing on the airplane. This involved removing the turboprop engines that were on the C-130E and replacing them with turbofan engines. An investigation of the improvements in airplane performance with the new engines could be conducted within the Flight Optimization System. Although a thorough analysis was not completed, the impact of this change on basic mission performance was investigated.
Quality of protection evaluation of security mechanisms.
Ksiezopolski, Bogdan; Zurek, Tomasz; Mokkas, Michail
2014-01-01
Recent research indicates that during the design of teleinformatic system the tradeoff between the systems performance and the system protection should be made. The traditional approach assumes that the best way is to apply the strongest possible security measures. Unfortunately, the overestimation of security measures can lead to the unreasonable increase of system load. This is especially important in multimedia systems where the performance has critical character. In many cases determination of the required level of protection and adjustment of some security measures to these requirements increase system efficiency. Such an approach is achieved by means of the quality of protection models where the security measures are evaluated according to their influence on the system security. In the paper, we propose a model for QoP evaluation of security mechanisms. Owing to this model, one can quantify the influence of particular security mechanisms on ensuring security attributes. The methodology of our model preparation is described and based on it the case study analysis is presented. We support our method by the tool where the models can be defined and QoP evaluation can be performed. Finally, we have modelled TLS cryptographic protocol and presented the QoP security mechanisms evaluation for the selected versions of this protocol.
Cognitive performance modeling based on general systems performance theory.
Kondraske, George V
2010-01-01
General Systems Performance Theory (GSPT) was initially motivated by problems associated with quantifying different aspects of human performance. It has proved to be invaluable for measurement development and understanding quantitative relationships between human subsystem capacities and performance in complex tasks. It is now desired to bring focus to the application of GSPT to modeling of cognitive system performance. Previous studies involving two complex tasks (i.e., driving and performing laparoscopic surgery) and incorporating measures that are clearly related to cognitive performance (information processing speed and short-term memory capacity) were revisited. A GSPT-derived method of task analysis and performance prediction termed Nonlinear Causal Resource Analysis (NCRA) was employed to determine the demand on basic cognitive performance resources required to support different levels of complex task performance. This approach is presented as a means to determine a cognitive workload profile and the subsequent computation of a single number measure of cognitive workload (CW). Computation of CW may be a viable alternative to measuring it. Various possible "more basic" performance resources that contribute to cognitive system performance are discussed. It is concluded from this preliminary exploration that a GSPT-based approach can contribute to defining cognitive performance models that are useful for both individual subjects and specific groups (e.g., military pilots).
High Performance Programming Using Explicit Shared Memory Model on Cray T3D1
NASA Technical Reports Server (NTRS)
Simon, Horst D.; Saini, Subhash; Grassi, Charles
1994-01-01
The Cray T3D system is the first-phase system in Cray Research, Inc.'s (CRI) three-phase massively parallel processing (MPP) program. This system features a heterogeneous architecture that closely couples DEC's Alpha microprocessors and CRI's parallel-vector technology, i.e., the Cray Y-MP and Cray C90. An overview of the Cray T3D hardware and available programming models is presented. Under Cray Research adaptive Fortran (CRAFT) model four programming methods (data parallel, work sharing, message-passing using PVM, and explicit shared memory model) are available to the users. However, at this time data parallel and work sharing programming models are not available to the user community. The differences between standard PVM and CRI's PVM are highlighted with performance measurements such as latencies and communication bandwidths. We have found that the performance of neither standard PVM nor CRI s PVM exploits the hardware capabilities of the T3D. The reasons for the bad performance of PVM as a native message-passing library are presented. This is illustrated by the performance of NAS Parallel Benchmarks (NPB) programmed in explicit shared memory model on Cray T3D. In general, the performance of standard PVM is about 4 to 5 times less than obtained by using explicit shared memory model. This degradation in performance is also seen on CM-5 where the performance of applications using native message-passing library CMMD on CM-5 is also about 4 to 5 times less than using data parallel methods. The issues involved (such as barriers, synchronization, invalidating data cache, aligning data cache etc.) while programming in explicit shared memory model are discussed. Comparative performance of NPB using explicit shared memory programming model on the Cray T3D and other highly parallel systems such as the TMC CM-5, Intel Paragon, Cray C90, IBM-SP1, etc. is presented.
Use of model calibration to achieve high accuracy in analysis of computer networks
Frogner, Bjorn; Guarro, Sergio; Scharf, Guy
2004-05-11
A system and method are provided for creating a network performance prediction model, and calibrating the prediction model, through application of network load statistical analyses. The method includes characterizing the measured load on the network, which may include background load data obtained over time, and may further include directed load data representative of a transaction-level event. Probabilistic representations of load data are derived to characterize the statistical persistence of the network performance variability and to determine delays throughout the network. The probabilistic representations are applied to the network performance prediction model to adapt the model for accurate prediction of network performance. Certain embodiments of the method and system may be used for analysis of the performance of a distributed application characterized as data packet streams.
Why Bother to Calibrate? Model Consistency and the Value of Prior Information
NASA Astrophysics Data System (ADS)
Hrachowitz, Markus; Fovet, Ophelie; Ruiz, Laurent; Euser, Tanja; Gharari, Shervan; Nijzink, Remko; Savenije, Hubert; Gascuel-Odoux, Chantal
2015-04-01
Hydrological models frequently suffer from limited predictive power despite adequate calibration performances. This can indicate insufficient representations of the underlying processes. Thus ways are sought to increase model consistency while satisfying the contrasting priorities of increased model complexity and limited equifinality. In this study the value of a systematic use of hydrological signatures and expert knowledge for increasing model consistency was tested. It was found that a simple conceptual model, constrained by 4 calibration objective functions, was able to adequately reproduce the hydrograph in the calibration period. The model, however, could not reproduce 20 hydrological signatures, indicating a lack of model consistency. Subsequently, testing 11 models, model complexity was increased in a stepwise way and counter-balanced by using prior information about the system to impose "prior constraints", inferred from expert knowledge and to ensure a model which behaves well with respect to the modeller's perception of the system. We showed that, in spite of unchanged calibration performance, the most complex model set-up exhibited increased performance in the independent test period and skill to reproduce all 20 signatures, indicating a better system representation. The results suggest that a model may be inadequate despite good performance with respect to multiple calibration objectives and that increasing model complexity, if efficiently counter-balanced by available prior constraints, can increase predictive performance of a model and its skill to reproduce hydrological signatures. The results strongly illustrate the need to balance automated model calibration with a more expert-knowledge driven strategy of constraining models.
Why Bother and Calibrate? Model Consistency and the Value of Prior Information.
NASA Astrophysics Data System (ADS)
Hrachowitz, M.; Fovet, O.; Ruiz, L.; Euser, T.; Gharari, S.; Nijzink, R.; Freer, J. E.; Savenije, H.; Gascuel-Odoux, C.
2014-12-01
Hydrological models frequently suffer from limited predictive power despite adequate calibration performances. This can indicate insufficient representations of the underlying processes. Thus ways are sought to increase model consistency while satisfying the contrasting priorities of increased model complexity and limited equifinality. In this study the value of a systematic use of hydrological signatures and expert knowledge for increasing model consistency was tested. It was found that a simple conceptual model, constrained by 4 calibration objective functions, was able to adequately reproduce the hydrograph in the calibration period. The model, however, could not reproduce 20 hydrological signatures, indicating a lack of model consistency. Subsequently, testing 11 models, model complexity was increased in a stepwise way and counter-balanced by using prior information about the system to impose "prior constraints", inferred from expert knowledge and to ensure a model which behaves well with respect to the modeller's perception of the system. We showed that, in spite of unchanged calibration performance, the most complex model set-up exhibited increased performance in the independent test period and skill to reproduce all 20 signatures, indicating a better system representation. The results suggest that a model may be inadequate despite good performance with respect to multiple calibration objectives and that increasing model complexity, if efficiently counter-balanced by available prior constraints, can increase predictive performance of a model and its skill to reproduce hydrological signatures. The results strongly illustrate the need to balance automated model calibration with a more expert-knowledge driven strategy of constraining models.
NASA Astrophysics Data System (ADS)
Hrachowitz, M.; Fovet, O.; Ruiz, L.; Euser, T.; Gharari, S.; Nijzink, R.; Freer, J.; Savenije, H. H. G.; Gascuel-Odoux, C.
2014-09-01
Hydrological models frequently suffer from limited predictive power despite adequate calibration performances. This can indicate insufficient representations of the underlying processes. Thus, ways are sought to increase model consistency while satisfying the contrasting priorities of increased model complexity and limited equifinality. In this study, the value of a systematic use of hydrological signatures and expert knowledge for increasing model consistency was tested. It was found that a simple conceptual model, constrained by four calibration objective functions, was able to adequately reproduce the hydrograph in the calibration period. The model, however, could not reproduce a suite of hydrological signatures, indicating a lack of model consistency. Subsequently, testing 11 models, model complexity was increased in a stepwise way and counter-balanced by "prior constraints," inferred from expert knowledge to ensure a model which behaves well with respect to the modeler's perception of the system. We showed that, in spite of unchanged calibration performance, the most complex model setup exhibited increased performance in the independent test period and skill to better reproduce all tested signatures, indicating a better system representation. The results suggest that a model may be inadequate despite good performance with respect to multiple calibration objectives and that increasing model complexity, if counter-balanced by prior constraints, can significantly increase predictive performance of a model and its skill to reproduce hydrological signatures. The results strongly illustrate the need to balance automated model calibration with a more expert-knowledge-driven strategy of constraining models.
Session 6: Dynamic Modeling and Systems Analysis
NASA Technical Reports Server (NTRS)
Csank, Jeffrey; Chapman, Jeffryes; May, Ryan
2013-01-01
These presentations cover some of the ongoing work in dynamic modeling and dynamic systems analysis. The first presentation discusses dynamic systems analysis and how to integrate dynamic performance information into the systems analysis. The ability to evaluate the dynamic performance of an engine design may allow tradeoffs between the dynamic performance and operability of a design resulting in a more efficient engine design. The second presentation discusses the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS). T-MATS is a Simulation system with a library containing the basic building blocks that can be used to create dynamic Thermodynamic Systems. Some of the key features include Turbo machinery components, such as turbines, compressors, etc., and basic control system blocks. T-MAT is written in the Matlab-Simulink environment and is open source software. The third presentation focuses on getting additional performance from the engine by allowing the limit regulators only to be active when a limit is danger of being violated. Typical aircraft engine control architecture is based on MINMAX scheme, which is designed to keep engine operating within prescribed mechanical/operational safety limits. Using a conditionally active min-max limit regulator scheme, additional performance can be gained by disabling non-relevant limit regulators
Validation of International Space Station Electrical Performance Model via On-orbit Telemetry
NASA Technical Reports Server (NTRS)
Jannette, Anthony G.; Hojnicki, Jeffrey S.; McKissock, David B.; Fincannon, James; Kerslake, Thomas W.; Rodriguez, Carlos D.
2002-01-01
The first U.S. power module on International Space Station (ISS) was activated in December 2000. Comprised of solar arrays, nickel-hydrogen (NiH2) batteries, and a direct current power management and distribution (PMAD) system, the electric power system (EPS) supplies power to housekeeping and user electrical loads. Modeling EPS performance is needed for several reasons, but primarily to assess near-term planned and off-nominal operations and because the EPS configuration changes over the life of the ISS. The System Power Analysis for Capability Evaluation (SPACE) computer code is used to assess the ISS EPS performance. This paper describes the process of validating the SPACE EPS model via ISS on-orbit telemetry. To accomplish this goal, telemetry was first used to correct assumptions and component models in SPACE. Then on-orbit data was directly input to SPACE to facilitate comparing model predictions to telemetry. It will be shown that SPACE accurately predicts on-orbit component and system performance. For example, battery state-of-charge was predicted to within 0.6 percentage points over a 0 to 100 percent scale and solar array current was predicted to within a root mean square (RMS) error of 5.1 Amps out of a typical maximum of 220 Amps. First, SPACE model predictions are compared to telemetry for the ISS EPS components: solar arrays, NiH2 batteries, and the PMAD system. Second, SPACE predictions for the overall performance of the ISS EPS are compared to telemetry and again demonstrate model accuracy.
Detection of no-model input-output pairs in closed-loop systems.
Potts, Alain Segundo; Alvarado, Christiam Segundo Morales; Garcia, Claudio
2017-11-01
The detection of no-model input-output (IO) pairs is important because it can speed up the multivariable system identification process, since all the pairs with null transfer functions are previously discarded and it can also improve the identified model quality, thus improving the performance of model based controllers. In the available literature, the methods focus just on the open-loop case, since in this case there is not the effect of the controller forcing the main diagonal in the transfer matrix to one and all the other terms to zero. In this paper, a modification of a previous method able to detect no-model IO pairs in open-loop systems is presented, but adapted to perform this duty in closed-loop systems. Tests are performed by using the traditional methods and the proposed one to show its effectiveness. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Liquid Oxygen/Liquid Methane Integrated Propulsion System Test Bed
NASA Technical Reports Server (NTRS)
Flynn, Howard; Lusby, Brian; Villemarette, Mark
2011-01-01
In support of NASA?s Propulsion and Cryogenic Advanced Development (PCAD) project, a liquid oxygen (LO2)/liquid methane (LCH4) Integrated Propulsion System Test Bed (IPSTB) was designed and advanced to the Critical Design Review (CDR) stage at the Johnson Space Center. The IPSTB?s primary objectives are to study LO2/LCH4 propulsion system steady state and transient performance, operational characteristics and to validate fluid and thermal models of a LO2/LCH4 propulsion system for use in future flight design work. Two phase thermal and dynamic fluid flow models of the IPSTB were built to predict the system performance characteristics under a variety of operating modes and to aid in the overall system design work. While at ambient temperature and simulated altitude conditions at the White Sands Test Facility, the IPSTB and its approximately 600 channels of system instrumentation would be operated to perform a variety of integrated main engine and reaction control engine hot fire tests. The pressure, temperature, and flow rate data collected during this testing would then be used to validate the analytical models of the IPSTB?s thermal and dynamic fluid flow performance. An overview of the IPSTB design and analytical model development will be presented.
A Geant4 model of backscatter security imaging systems
NASA Astrophysics Data System (ADS)
Leboffe, Eric Matthew
The operating characteristics of x ray security scanner systems that utilize backscatter signal in order to distinguish person borne threats have never been made fully available to the general public. By designing a model using Geant4, studies can be performed which will shed light on systems such as security scanners and allow for analysis of the performance and safety of the system without access to any system data. Despite the fact that the systems are no longer in use at airports in the United States, the ability to design and validate detector models and phenomena is an important capability that can be applied to many current real world applications. The model presented provides estimates for absorbed dose, effective dose and dose depth distribution that are comparable to previously published work and explores imaging capabilities for the system embodiment modeled.
A Hybrid Actuation System Demonstrating Significantly Enhanced Electromechanical Performance
NASA Technical Reports Server (NTRS)
Su, Ji; Xu, Tian-Bing; Zhang, Shujun; Shrout, Thomas R.; Zhang, Qiming
2004-01-01
A hybrid actuation system (HYBAS) utilizing advantages of a combination of electromechanical responses of an electroactive polymer (EAP), an electrostrictive copolymer, and an electroactive ceramic single crystal, PZN-PT single crystal, has been developed. The system employs the contribution of the actuation elements cooperatively and exhibits a significantly enhanced electromechanical performance compared to the performances of the device made of each constituting material, the electroactive polymer or the ceramic single crystal, individually. The theoretical modeling of the performances of the HYBAS is in good agreement with experimental observation. The consistence between the theoretical modeling and experimental test make the design concept an effective route for the development of high performance actuating devices for many applications. The theoretical modeling, fabrication of the HYBAS and the initial experimental results will be presented and discussed.
NASA Astrophysics Data System (ADS)
Li, Hanshan
2016-04-01
To enhance the stability and reliability of multi-screens testing system, this paper studies multi-screens target optical information transmission link properties and performance in long-distance, sets up the discrete multi-tone modulation transmission model based on geometric model of laser multi-screens testing system and visible light information communication principle; analyzes the electro-optic and photoelectric conversion function of sender and receiver in target optical information communication system; researches target information transmission performance and transfer function of the generalized visible-light communication channel; found optical information communication transmission link light intensity space distribution model and distribution function; derives the SNR model of information transmission communication system. Through the calculation and experiment analysis, the results show that the transmission error rate increases with the increment of transmission rate in a certain channel modulation depth; when selecting the appropriate transmission rate, the bit error rate reach 0.01.
Performance enhancement for audio-visual speaker identification using dynamic facial muscle model.
Asadpour, Vahid; Towhidkhah, Farzad; Homayounpour, Mohammad Mehdi
2006-10-01
Science of human identification using physiological characteristics or biometry has been of great concern in security systems. However, robust multimodal identification systems based on audio-visual information has not been thoroughly investigated yet. Therefore, the aim of this work to propose a model-based feature extraction method which employs physiological characteristics of facial muscles producing lip movements. This approach adopts the intrinsic properties of muscles such as viscosity, elasticity, and mass which are extracted from the dynamic lip model. These parameters are exclusively dependent on the neuro-muscular properties of speaker; consequently, imitation of valid speakers could be reduced to a large extent. These parameters are applied to a hidden Markov model (HMM) audio-visual identification system. In this work, a combination of audio and video features has been employed by adopting a multistream pseudo-synchronized HMM training method. Noise robust audio features such as Mel-frequency cepstral coefficients (MFCC), spectral subtraction (SS), and relative spectra perceptual linear prediction (J-RASTA-PLP) have been used to evaluate the performance of the multimodal system once efficient audio feature extraction methods have been utilized. The superior performance of the proposed system is demonstrated on a large multispeaker database of continuously spoken digits, along with a sentence that is phonetically rich. To evaluate the robustness of algorithms, some experiments were performed on genetically identical twins. Furthermore, changes in speaker voice were simulated with drug inhalation tests. In 3 dB signal to noise ratio (SNR), the dynamic muscle model improved the identification rate of the audio-visual system from 91 to 98%. Results on identical twins revealed that there was an apparent improvement on the performance for the dynamic muscle model-based system, in which the identification rate of the audio-visual system was enhanced from 87 to 96%.
Modeling and control of non-square MIMO system using relay feedback.
Kalpana, D; Thyagarajan, T; Gokulraj, N
2015-11-01
This paper proposes a systematic approach for the modeling and control of non-square MIMO systems in time domain using relay feedback. Conventionally, modeling, selection of the control configuration and controller design of non-square MIMO systems are performed using input/output information of direct loop, while the output of undesired responses that bears valuable information on interaction among the loops are not considered. However, in this paper, the undesired response obtained from relay feedback test is also taken into consideration to extract the information about the interaction between the loops. The studies are performed on an Air Path Scheme of Turbocharged Diesel Engine (APSTDE) model, which is a typical non-square MIMO system, with input and output variables being 3 and 2 respectively. From the relay test response, the generalized analytical expressions are derived and these analytical expressions are used to estimate unknown system parameters and also to evaluate interaction measures. The interaction is analyzed by using Block Relative Gain (BRG) method. The model thus identified is later used to design appropriate controller to carry out closed loop studies. Closed loop simulation studies were performed for both servo and regulatory operations. Integral of Squared Error (ISE) performance criterion is employed to quantitatively evaluate performance of the proposed scheme. The usefulness of the proposed method is demonstrated on a lab-scale Two-Tank Cylindrical Interacting System (TTCIS), which is configured as a non-square system. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Powers, Jeffrey J.
2011-12-01
This study focused on creating a new tristructural isotropic (TRISO) coated particle fuel performance model and demonstrating the integration of this model into an existing system of neutronics and heat transfer codes, creating a user-friendly option for including fuel performance analysis within system design optimization and system-level trade-off studies. The end product enables both a deeper understanding and better overall system performance of nuclear energy systems limited or greatly impacted by TRISO fuel performance. A thorium-fueled hybrid fusion-fission Laser Inertial Fusion Energy (LIFE) blanket design was used for illustrating the application of this new capability and demonstrated both the importance of integrating fuel performance calculations into mainstream design studies and the impact that this new integrated analysis had on system-level design decisions. A new TRISO fuel performance model named TRIUNE was developed and verified and validated during this work with a novel methodology established for simulating the actual lifetime of a TRISO particle during repeated passes through a pebble bed. In addition, integrated self-consistent calculations were performed for neutronics depletion analysis, heat transfer calculations, and then fuel performance modeling for a full parametric study that encompassed over 80 different design options that went through all three phases of analysis. Lastly, side studies were performed that included a comparison of thorium and depleted uranium (DU) LIFE blankets as well as some uncertainty quantification work to help guide future experimental work by assessing what material properties in TRISO fuel performance modeling are most in need of improvement. A recommended thorium-fueled hybrid LIFE engine design was identified with an initial fuel load of 20MT of thorium, 15% TRISO packing within the graphite fuel pebbles, and a 20cm neutron multiplier layer with beryllium pebbles in flibe molten salt coolant. It operated at a system power level of 2000 MWth, took about 3.5 years to reach full plateau power, and was capable of an End of Plateau burnup of 38.7 %FIMA if considering just the neutronic constraints in the system design; however, fuel performance constraints led to a maximum credible burnup of 12.1 %FIMA due to a combination of internal gas pressure and irradiation effects on the TRISO materials (especially PyC) leading to SiC pressure vessel failures. The optimal neutron spectrum for the thorium-fueled blanket options evaluated seemed to favor a hard spectrum (low but non-zero neutron multiplier thicknesses and high TRISO packing fractions) in terms of neutronic performance but the fuel performance constraints demonstrated that a significantly softer spectrum would be needed to decrease the rate of accumulation of fast neutron fluence in order to improve the maximum credible burnup the system could achieve.
A side-by-side comparison of CPV module and system performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muller, Matthew; Marion, Bill; Kurtz, Sarah
A side-by-side comparison is made between concentrator photovoltaic module and system direct current aperture efficiency data with a focus on quantifying system performance losses. The individual losses measured/calculated, when combined, are in good agreement with the total loss seen between the module and the system. Results indicate that for the given test period, the largest individual loss of 3.7% relative is due to the baseline performance difference between the individual module and the average for the 200 modules in the system. A basic empirical model is derived based on module spectral performance data and the tabulated losses between the modulemore » and the system. The model predicts instantaneous system direct current aperture efficiency with a root mean square error of 2.3% relative.« less
Marine atmospheric effects on electro-optical systems performance
NASA Astrophysics Data System (ADS)
Richter, Juergen H.; Hughes, Herbert G.
1990-09-01
For the past twelve years, a coordinated tri-service effort has been underway in the United States Department of Defense to provide an atmospheric effects assessment capability for existing and planned electro-optical (E0) systems. This paper reviews the exploratory development effort in the US Navy. A key responsibility for the Navy was the development of marine aerosol models. An initial model, the Navy Aerosol Model (NAN), was developed, tested, and transitioned into LOWTRAN 6. A more comprehensive model, the Navy Oceanic Vertical Aerosol Model (NOVAM), has been formulated and is presently undergoing comprehensive evaluation and testing. Marine aerosols and their extinction properties are only one important factor in EO systems performance assessment. For many EO systems applications, an accurate knowledge of marine background radiances is required in addition to considering the effects of the intervening atmosphere. Accordingly, a capability was developed to estimate the apparent sea surface radiance for different sea states and meteorological conditions. Also, an empirical relationship was developed which directly relates apparent mean sea temperature to calculated mean sky temperature. In situ measurements of relevant environmental parameters are essential for real-time EO systems performance assessment. Direct measurement of slant path extinction would be most desirable. This motivated a careful investigation of lidar (light detection and ranging) techniques including improvements to single-ended lidar profile inversion algorithms and development of new lidar techniques such as double-ended and dual-angle configurations. It was concluded that single-ended, single frequency lidars can not be used to infer slant path extinction with an accuracy necessary to make meaningful performance assessments. Other lidar configurations may find limited application in model validation and research efforts. No technique has emerged yet which could be considered ready for shipboard implementation. A shipboard real-time performance assessment system was developed and named PREOS (Performance and Range for EO Systems). PREOS has been incorporated into the Navy's Tactical Environmental Support System (TESS). The present version of PREOS is a first step in accomplishing the complex task of real-time systems performance assessment. Improved target and background models are under development and will be incorporated into TESS when tested and validated. A reliable assessment capability can be used to develop Tactical Decision Aids (TDAs). TDAs permit optimum selection or combination of sensors and estimation of a ship's own vulnerability against hostile systems.
Optics Program Simplifies Analysis and Design
NASA Technical Reports Server (NTRS)
2007-01-01
Engineers at Goddard Space Flight Center partnered with software experts at Mide Technology Corporation, of Medford, Massachusetts, through a Small Business Innovation Research (SBIR) contract to design the Disturbance-Optics-Controls-Structures (DOCS) Toolbox, a software suite for performing integrated modeling for multidisciplinary analysis and design. The DOCS Toolbox integrates various discipline models into a coupled process math model that can then predict system performance as a function of subsystem design parameters. The system can be optimized for performance; design parameters can be traded; parameter uncertainties can be propagated through the math model to develop error bounds on system predictions; and the model can be updated, based on component, subsystem, or system level data. The Toolbox also allows the definition of process parameters as explicit functions of the coupled model and includes a number of functions that analyze the coupled system model and provide for redesign. The product is being sold commercially by Nightsky Systems Inc., of Raleigh, North Carolina, a spinoff company that was formed by Mide specifically to market the DOCS Toolbox. Commercial applications include use by any contractors developing large space-based optical systems, including Lockheed Martin Corporation, The Boeing Company, and Northrup Grumman Corporation, as well as companies providing technical audit services, like General Dynamics Corporation
Final Technical Report: Increasing Prediction Accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, Bruce Hardison; Hansen, Clifford; Stein, Joshua
2015-12-01
PV performance models are used to quantify the value of PV plants in a given location. They combine the performance characteristics of the system, the measured or predicted irradiance and weather at a site, and the system configuration and design into a prediction of the amount of energy that will be produced by a PV system. These predictions must be as accurate as possible in order for finance charges to be minimized. Higher accuracy equals lower project risk. The Increasing Prediction Accuracy project at Sandia focuses on quantifying and reducing uncertainties in PV system performance models.
Digital Troposcatter Performance Model
1983-12-01
Dist Speia DIIBUTON STATEMR AO Approved tot public relemg ** - DistributionUnlimited __________ Communications. Control and Information Systems ...for digital troposcatter communication system design is described. Propagation and modem performance *are modeled. These include Path Loss and RSL...designing digital troposcatter systems . A User’s Manual Report discusses the use of the computer program TROPO. The description of the structure and logical
PVWatts Version 1 Technical Reference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobos, A. P.
2013-10-01
The NREL PVWatts(TM) calculator is a web application developed by the National Renewable Energy Laboratory (NREL) that estimates the electricity production of a grid-connected photovoltaic system based on a few simple inputs. PVWatts combines a number of sub-models to predict overall system performance, and makes several hidden assumptions about performance parameters. This technical reference details the individual sub-models, documents assumptions and hidden parameters, and explains the sequence of calculations that yield the final system performance estimation.
Performance Models for Split-execution Computing Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humble, Travis S; McCaskey, Alex; Schrock, Jonathan
Split-execution computing leverages the capabilities of multiple computational models to solve problems, but splitting program execution across different computational models incurs costs associated with the translation between domains. We analyze the performance of a split-execution computing system developed from conventional and quantum processing units (QPUs) by using behavioral models that track resource usage. We focus on asymmetric processing models built using conventional CPUs and a family of special-purpose QPUs that employ quantum computing principles. Our performance models account for the translation of a classical optimization problem into the physical representation required by the quantum processor while also accounting for hardwaremore » limitations and conventional processor speed and memory. We conclude that the bottleneck in this split-execution computing system lies at the quantum-classical interface and that the primary time cost is independent of quantum processor behavior.« less
Modeling and performance analysis of QoS data
NASA Astrophysics Data System (ADS)
Strzeciwilk, Dariusz; Zuberek, Włodzimierz M.
2016-09-01
The article presents the results of modeling and analysis of data transmission performance on systems that support quality of service. Models are designed and tested, taking into account multiservice network architecture, i.e. supporting the transmission of data related to different classes of traffic. Studied were mechanisms of traffic shaping systems, which are based on the Priority Queuing with an integrated source of data and the various sources of data that is generated. Discussed were the basic problems of the architecture supporting QoS and queuing systems. Designed and built were models based on Petri nets, supported by temporal logics. The use of simulation tools was to verify the mechanisms of shaping traffic with the applied queuing algorithms. It is shown that temporal models of Petri nets can be effectively used in the modeling and analysis of the performance of computer networks.
NASA Astrophysics Data System (ADS)
Everson, Jeffrey H.; Kopala, Edward W.; Lazofson, Laurence E.; Choe, Howard C.; Pomerleau, Dean A.
1995-01-01
Optical sensors are used for several ITS applications, including lateral control of vehicles, traffic sign recognition, car following, autonomous vehicle navigation, and obstacle detection. This paper treats the performance assessment of a sensor/image processor used as part of an on-board countermeasure system to prevent single vehicle roadway departure crashes. Sufficient image contrast between objects of interest and backgrounds is an essential factor influencing overall system performance. Contrast is determined by material properties affecting reflected/radiated intensities, as well as weather and visibility conditions. This paper discusses the modeling of these parameters and characterizes the contrast performance effects due to reduced visibility. The analysis process first involves generation of inherent road/off- road contrasts, followed by weather effects as a contrast modification. The sensor is modeled as a charge coupled device (CCD), with variable parameters. The results of the sensor/weather modeling are used to predict the performance on an in-vehicle warning system under various levels of adverse weather. Software employed in this effort was previously developed for the U.S. Air Force Wright Laboratory to determine target/background detection and recognition ranges for different sensor systems operating under various mission scenarios.
Analysis of GaAs and Si solar energy hybrid systems
NASA Technical Reports Server (NTRS)
Heinbockel, J. H.; Roberts, A. S., Jr.
1977-01-01
Various silicon hybrid systems are modeled and compared with a gallium arsenide hybrid system. The hybrid systems modeled produce electric power and also thermal power which can be used for heating or air conditioning. Various performance indices are defined and used to compare the system performance: capital cost per electric power out; capital cost per total power out; capital cost per electric power plus mechanical power; annual cost per annual electric energy; and annual cost per annual electric energy plus annual mechanical work. These performance indices indicate that concentrator hybrid systems can be cost effective when compared with present day energy costs.
Wind Energy Conversion System Analysis Model (WECSAM) computer program documentation
NASA Astrophysics Data System (ADS)
Downey, W. T.; Hendrick, P. L.
1982-07-01
Described is a computer-based wind energy conversion system analysis model (WECSAM) developed to predict the technical and economic performance of wind energy conversion systems (WECS). The model is written in CDC FORTRAN V. The version described accesses a data base containing wind resource data, application loads, WECS performance characteristics, utility rates, state taxes, and state subsidies for a six state region (Minnesota, Michigan, Wisconsin, Illinois, Ohio, and Indiana). The model is designed for analysis at the county level. The computer model includes a technical performance module and an economic evaluation module. The modules can be run separately or together. The model can be run for any single user-selected county within the region or looped automatically through all counties within the region. In addition, the model has a restart capability that allows the user to modify any data-base value written to a scratch file prior to the technical or economic evaluation.
DOT National Transportation Integrated Search
1977-10-01
This report describes an operational, though preliminary, version of the Railroad Performance Model, which is a computer simulation model of the nation's railroad system. The ultimate purpose of this model is to predict the effect of changes in gover...
Marion, Bill; Smith, Benjamin
2017-03-27
Using performance data from some of the millions of installed photovoltaic (PV) modules with micro-inverters may afford the opportunity to provide ground-based solar resource data critical for developing PV projects. Here, a method was developed to back-solve for the direct normal irradiance (DNI) and the diffuse horizontal irradiance (DHI) from the measured ac power of south-facing PV module/micro-inverter systems. The method was validated using one year of irradiance and PV performance measurements for five PV systems, each with a different tilt/azimuth orientation, and located in Golden, Colorado. Compared to using a measured global horizontal irradiance for PV performance model input,more » using the back-solved values of DNI and DHI only increased the range of mean bias deviations from measured values by 0.6% for the modeled annual averages of the global tilt irradiance and ac power for the five PV systems. Correcting for angle-of-incidence effects is an important feature of the method to prevent underestimating the solar resource and for modeling the performance of PV systems with more dissimilar PV module orientations. The results for the method were also shown more favorable than the results when using an existing power projection method for estimating the ac power.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marion, Bill; Smith, Benjamin
Using performance data from some of the millions of installed photovoltaic (PV) modules with micro-inverters may afford the opportunity to provide ground-based solar resource data critical for developing PV projects. Here, a method was developed to back-solve for the direct normal irradiance (DNI) and the diffuse horizontal irradiance (DHI) from the measured ac power of south-facing PV module/micro-inverter systems. The method was validated using one year of irradiance and PV performance measurements for five PV systems, each with a different tilt/azimuth orientation, and located in Golden, Colorado. Compared to using a measured global horizontal irradiance for PV performance model input,more » using the back-solved values of DNI and DHI only increased the range of mean bias deviations from measured values by 0.6% for the modeled annual averages of the global tilt irradiance and ac power for the five PV systems. Correcting for angle-of-incidence effects is an important feature of the method to prevent underestimating the solar resource and for modeling the performance of PV systems with more dissimilar PV module orientations. The results for the method were also shown more favorable than the results when using an existing power projection method for estimating the ac power.« less
Pope, Bernard J; Fitch, Blake G; Pitman, Michael C; Rice, John J; Reumann, Matthias
2011-10-01
Future multiscale and multiphysics models that support research into human disease, translational medical science, and treatment can utilize the power of high-performance computing (HPC) systems. We anticipate that computationally efficient multiscale models will require the use of sophisticated hybrid programming models, mixing distributed message-passing processes [e.g., the message-passing interface (MPI)] with multithreading (e.g., OpenMP, Pthreads). The objective of this study is to compare the performance of such hybrid programming models when applied to the simulation of a realistic physiological multiscale model of the heart. Our results show that the hybrid models perform favorably when compared to an implementation using only the MPI and, furthermore, that OpenMP in combination with the MPI provides a satisfactory compromise between performance and code complexity. Having the ability to use threads within MPI processes enables the sophisticated use of all processor cores for both computation and communication phases. Considering that HPC systems in 2012 will have two orders of magnitude more cores than what was used in this study, we believe that faster than real-time multiscale cardiac simulations can be achieved on these systems.
[Financing, organization, costs and services performance of the Argentinean health sub-systems.
Yavich, Natalia; Báscolo, Ernesto Pablo; Haggerty, Jeannie
2016-01-01
To analyze the relationship between health system financing and services organization models with costs and health services performance in each of Rosario's health sub-systems. The financing and organization models were characterized using secondary data. Costs were calculated using the WHO/SHA methodology. Healthcare quality was measured by a household survey (n=822). Public subsystem:Vertically integrated funding and primary healthcare as a leading strategy to provide services produced low costs and individual-oriented healthcare but with weak accessibility conditions and comprehensiveness. Private subsystem: Contractual integration and weak regulatory and coordination mechanisms produced effects opposed to those of the public sub-system. Social security: Contractual integration and strong regulatory and coordination mechanisms contributed to intermediate costs and overall high performance. Each subsystem financing and services organization model had a strong and heterogeneous influence on costs and health services performance.
NASA Technical Reports Server (NTRS)
Wickens, Christopher; Sebok, Angelia; Keller, John; Peters, Steve; Small, Ronald; Hutchins, Shaun; Algarin, Liana; Gore, Brian Francis; Hooey, Becky Lee; Foyle, David C.
2013-01-01
NextGen operations are associated with a variety of changes to the national airspace system (NAS) including changes to the allocation of roles and responsibilities among operators and automation, the use of new technologies and automation, additional information presented on the flight deck, and the entire concept of operations (ConOps). In the transition to NextGen airspace, aviation and air operations designers need to consider the implications of design or system changes on human performance and the potential for error. To ensure continued safety of the NAS, it will be necessary for researchers to evaluate design concepts and potential NextGen scenarios well before implementation. One approach for such evaluations is through human performance modeling. Human performance models (HPMs) provide effective tools for predicting and evaluating operator performance in systems. HPMs offer significant advantages over empirical, human-in-the-loop testing in that (1) they allow detailed analyses of systems that have not yet been built, (2) they offer great flexibility for extensive data collection, (3) they do not require experimental participants, and thus can offer cost and time savings. HPMs differ in their ability to predict performance and safety with NextGen procedures, equipment and ConOps. Models also vary in terms of how they approach human performance (e.g., some focus on cognitive processing, others focus on discrete tasks performed by a human, while others consider perceptual processes), and in terms of their associated validation efforts. The objectives of this research effort were to support the Federal Aviation Administration (FAA) in identifying HPMs that are appropriate for predicting pilot performance in NextGen operations, to provide guidance on how to evaluate the quality of different models, and to identify gaps in pilot performance modeling research, that could guide future research opportunities. This research effort is intended to help the FAA evaluate pilot modeling efforts and select the appropriate tools for future modeling efforts to predict pilot performance in NextGen operations.
NASA Technical Reports Server (NTRS)
Waheed, Abdul; Yan, Jerry
1998-01-01
This paper presents a model to evaluate the performance and overhead of parallelizing sequential code using compiler directives for multiprocessing on distributed shared memory (DSM) systems. With increasing popularity of shared address space architectures, it is essential to understand their performance impact on programs that benefit from shared memory multiprocessing. We present a simple model to characterize the performance of programs that are parallelized using compiler directives for shared memory multiprocessing. We parallelized the sequential implementation of NAS benchmarks using native Fortran77 compiler directives for an Origin2000, which is a DSM system based on a cache-coherent Non Uniform Memory Access (ccNUMA) architecture. We report measurement based performance of these parallelized benchmarks from four perspectives: efficacy of parallelization process; scalability; parallelization overhead; and comparison with hand-parallelized and -optimized version of the same benchmarks. Our results indicate that sequential programs can conveniently be parallelized for DSM systems using compiler directives but realizing performance gains as predicted by the performance model depends primarily on minimizing architecture-specific data locality overhead.
Pumping Optimization Model for Pump and Treat Systems - 15091
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, S.; Ivarson, Kristine A.; Karanovic, M.
2015-01-15
Pump and Treat systems are being utilized to remediate contaminated groundwater in the Hanford 100 Areas adjacent to the Columbia River in Eastern Washington. Design of the systems was supported by a three-dimensional (3D) fate and transport model. This model provided sophisticated simulation capabilities but requires many hours to calculate results for each simulation considered. Many simulations are required to optimize system performance, so a two-dimensional (2D) model was created to reduce run time. The 2D model was developed as a equivalent-property version of the 3D model that derives boundary conditions and aquifer properties from the 3D model. It producesmore » predictions that are very close to the 3D model predictions, allowing it to be used for comparative remedy analyses. Any potential system modifications identified by using the 2D version are verified for use by running the 3D model to confirm performance. The 2D model was incorporated into a comprehensive analysis system (the Pumping Optimization Model, POM) to simplify analysis of multiple simulations. It allows rapid turnaround by utilizing a graphical user interface that: 1 allows operators to create hypothetical scenarios for system operation, 2 feeds the input to the 2D fate and transport model, and 3 displays the scenario results to evaluate performance improvement. All of the above is accomplished within the user interface. Complex analyses can be completed within a few hours and multiple simulations can be compared side-by-side. The POM utilizes standard office computing equipment and established groundwater modeling software.« less
When more of the same is better
NASA Astrophysics Data System (ADS)
Fontanari, José F.
2016-01-01
Problem solving (e.g., drug design, traffic engineering, software development) by task forces represents a substantial portion of the economy of developed countries. Here we use an agent-based model of cooperative problem-solving systems to study the influence of diversity on the performance of a task force. We assume that agents cooperate by exchanging information on their partial success and use that information to imitate the more successful agent in the system —the model. The agents differ only in their propensities to copy the model. We find that, for easy tasks, the optimal organization is a homogeneous system composed of agents with the highest possible copy propensities. For difficult tasks, we find that diversity can prevent the system from being trapped in sub-optimal solutions. However, when the system size is adjusted to maximize the performance the homogeneous systems outperform the heterogeneous systems, i.e., for optimal performance, sameness should be preferred to diversity.
Modelling parallel programs and multiprocessor architectures with AXE
NASA Technical Reports Server (NTRS)
Yan, Jerry C.; Fineman, Charles E.
1991-01-01
AXE, An Experimental Environment for Parallel Systems, was designed to model and simulate for parallel systems at the process level. It provides an integrated environment for specifying computation models, multiprocessor architectures, data collection, and performance visualization. AXE is being used at NASA-Ames for developing resource management strategies, parallel problem formulation, multiprocessor architectures, and operating system issues related to the High Performance Computing and Communications Program. AXE's simple, structured user-interface enables the user to model parallel programs and machines precisely and efficiently. Its quick turn-around time keeps the user interested and productive. AXE models multicomputers. The user may easily modify various architectural parameters including the number of sites, connection topologies, and overhead for operating system activities. Parallel computations in AXE are represented as collections of autonomous computing objects known as players. Their use and behavior is described. Performance data of the multiprocessor model can be observed on a color screen. These include CPU and message routing bottlenecks, and the dynamic status of the software.
Development of automation and robotics for space via computer graphic simulation methods
NASA Technical Reports Server (NTRS)
Fernandez, Ken
1988-01-01
A robot simulation system, has been developed to perform automation and robotics system design studies. The system uses a procedure-oriented solid modeling language to produce a model of the robotic mechanism. The simulator generates the kinematics, inverse kinematics, dynamics, control, and real-time graphic simulations needed to evaluate the performance of the model. Simulation examples are presented, including simulation of the Space Station and the design of telerobotics for the Orbital Maneuvering Vehicle.
ERIC Educational Resources Information Center
Darabi, A. Aubteen
2005-01-01
This article reports a case study describing how the principles of a cognitive apprenticeship (CA) model developed by Collins, Brown, and Holum (1991) were applied to a graduate course on performance systems analysis (PSA), and the differences this application made in student performance and evaluation of the course compared to the previous…
NASA Technical Reports Server (NTRS)
Miller, David W.; Uebelhart, Scott A.; Blaurock, Carl
2004-01-01
This report summarizes work performed by the Space Systems Laboratory (SSL) for NASA Langley Research Center in the field of performance optimization for systems subject to uncertainty. The objective of the research is to develop design methods and tools to the aerospace vehicle design process which take into account lifecycle uncertainties. It recognizes that uncertainty between the predictions of integrated models and data collected from the system in its operational environment is unavoidable. Given the presence of uncertainty, the goal of this work is to develop means of identifying critical sources of uncertainty, and to combine these with the analytical tools used with integrated modeling. In this manner, system uncertainty analysis becomes part of the design process, and can motivate redesign. The specific program objectives were: 1. To incorporate uncertainty modeling, propagation and analysis into the integrated (controls, structures, payloads, disturbances, etc.) design process to derive the error bars associated with performance predictions. 2. To apply modern optimization tools to guide in the expenditure of funds in a way that most cost-effectively improves the lifecycle productivity of the system by enhancing the subsystem reliability and redundancy. The results from the second program objective are described. This report describes the work and results for the first objective: uncertainty modeling, propagation, and synthesis with integrated modeling.
Analytical simulation of SPS system performance, volume 3, phase 3
NASA Technical Reports Server (NTRS)
Kantak, A. V.; Lindsey, W. C.
1980-01-01
The simulation model for the Solar Power Satellite spaceantenna and the associated system imperfections are described. Overall power transfer efficiency, the key performance issue, is discussed as a function of the system imperfections. Other system performance measures discussed include average power pattern, mean beam gain reduction, and pointing error.
NASA Technical Reports Server (NTRS)
Campbell, B. H.
1974-01-01
A study is described which was initiated to identify and quantify the interrelationships between and within the performance, safety, cost, and schedule parameters for unmanned, automated payload programs. The result of the investigation was a systems cost/performance model which was implemented as a digital computer program and could be used to perform initial program planning, cost/performance tradeoffs, and sensitivity analyses for mission model and advanced payload studies. Program objectives and results are described briefly.
An empirical analysis of thermal protective performance of fabrics used in protective clothing.
Mandal, Sumit; Song, Guowen
2014-10-01
Fabric-based protective clothing is widely used for occupational safety of firefighters/industrial workers. The aim of this paper is to study thermal protective performance provided by fabric systems and to propose an effective model for predicting the thermal protective performance under various thermal exposures. Different fabric systems that are commonly used to manufacture thermal protective clothing were selected. Laboratory simulations of the various thermal exposures were created to evaluate the protective performance of the selected fabric systems in terms of time required to generate second-degree burns. Through the characterization of selected fabric systems in a particular thermal exposure, various factors affecting the performances were statistically analyzed. The key factors for a particular thermal exposure were recognized based on the t-test analysis. Using these key factors, the performance predictive multiple linear regression and artificial neural network (ANN) models were developed and compared. The identified best-fit ANN models provide a basic tool to study thermal protective performance of a fabric. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Video display engineering and optimization system
NASA Technical Reports Server (NTRS)
Larimer, James (Inventor)
1997-01-01
A video display engineering and optimization CAD simulation system for designing a LCD display integrates models of a display device circuit, electro-optics, surface geometry, and physiological optics to model the system performance of a display. This CAD system permits system performance and design trade-offs to be evaluated without constructing a physical prototype of the device. The systems includes a series of modules which permit analysis of design trade-offs in terms of their visual impact on a viewer looking at a display.
System analysis through bond graph modeling
NASA Astrophysics Data System (ADS)
McBride, Robert Thomas
2005-07-01
Modeling and simulation form an integral role in the engineering design process. An accurate mathematical description of a system provides the design engineer the flexibility to perform trade studies quickly and accurately to expedite the design process. Most often, the mathematical model of the system contains components of different engineering disciplines. A modeling methodology that can handle these types of systems might be used in an indirect fashion to extract added information from the model. This research examines the ability of a modeling methodology to provide added insight into system analysis and design. The modeling methodology used is bond graph modeling. An investigation into the creation of a bond graph model using the Lagrangian of the system is provided. Upon creation of the bond graph, system analysis is performed. To aid in the system analysis, an object-oriented approach to bond graph modeling is introduced. A framework is provided to simulate the bond graph directly. Through object-oriented simulation of a bond graph, the information contained within the bond graph can be exploited to create a measurement of system efficiency. A definition of system efficiency is given. This measurement of efficiency is used in the design of different controllers of varying architectures. Optimal control of a missile autopilot is discussed within the framework of the calculated system efficiency.
Submillimetre wave imaging and security: imaging performance and prediction
NASA Astrophysics Data System (ADS)
Appleby, R.; Ferguson, S.
2016-10-01
Within the European Commission Seventh Framework Programme (FP7), CONSORTIS (Concealed Object Stand-Off Real-Time Imaging for Security) has designed and is fabricating a stand-off system operating at sub-millimetre wave frequencies for the detection of objects concealed on people. This system scans people as they walk by the sensor. This paper presents the top level system design which brings together both passive and active sensors to provide good performance. The passive system operates in two bands between 100 and 600GHz and is based on a cryogen free cooled focal plane array sensor whilst the active system is a solid-state 340GHz radar. A modified version of OpenFX was used for modelling the passive system. This model was recently modified to include realistic location-specific skin temperature and to accept animated characters wearing up to three layers of clothing that move dynamically, such as those typically found in cinematography. Targets under clothing have been modelled and the performance simulated. The strengths and weaknesses of this modelling approach are discussed.
Modeling the Delivery Physiology of Distributed Learning Systems.
ERIC Educational Resources Information Center
Paquette, Gilbert; Rosca, Ioan
2003-01-01
Discusses instructional delivery models and their physiology in distributed learning systems. Highlights include building delivery models; types of delivery models, including distributed classroom, self-training on the Web, online training, communities of practice, and performance support systems; and actors (users) involved, including experts,…
Urbina, Angel; Mahadevan, Sankaran; Paez, Thomas L.
2012-03-01
Here, performance assessment of complex systems is ideally accomplished through system-level testing, but because they are expensive, such tests are seldom performed. On the other hand, for economic reasons, data from tests on individual components that are parts of complex systems are more readily available. The lack of system-level data leads to a need to build computational models of systems and use them for performance prediction in lieu of experiments. Because their complexity, models are sometimes built in a hierarchical manner, starting with simple components, progressing to collections of components, and finally, to the full system. Quantification of uncertainty inmore » the predicted response of a system model is required in order to establish confidence in the representation of actual system behavior. This paper proposes a framework for the complex, but very practical problem of quantification of uncertainty in system-level model predictions. It is based on Bayes networks and uses the available data at multiple levels of complexity (i.e., components, subsystem, etc.). Because epistemic sources of uncertainty were shown to be secondary, in this application, aleatoric only uncertainty is included in the present uncertainty quantification. An example showing application of the techniques to uncertainty quantification of measures of response of a real, complex aerospace system is included.« less
Nested Interrupt Analysis of Low Cost and High Performance Embedded Systems Using GSPN Framework
NASA Astrophysics Data System (ADS)
Lin, Cheng-Min
Interrupt service routines are a key technology for embedded systems. In this paper, we introduce the standard approach for using Generalized Stochastic Petri Nets (GSPNs) as a high-level model for generating CTMC Continuous-Time Markov Chains (CTMCs) and then use Markov Reward Models (MRMs) to compute the performance for embedded systems. This framework is employed to analyze two embedded controllers with low cost and high performance, ARM7 and Cortex-M3. Cortex-M3 is designed with a tail-chaining mechanism to improve the performance of ARM7 when a nested interrupt occurs on an embedded controller. The Platform Independent Petri net Editor 2 (PIPE2) tool is used to model and evaluate the controllers in terms of power consumption and interrupt overhead performance. Using numerical results, in spite of the power consumption or interrupt overhead, Cortex-M3 performs better than ARM7.
NASA Astrophysics Data System (ADS)
Murrill, Steven R.; Franck, Charmaine C.; Espinola, Richard L.; Petkie, Douglas T.; De Lucia, Frank C.; Jacobs, Eddie L.
2011-11-01
The U.S. Army Research Laboratory (ARL) and the U.S. Army Night Vision and Electronic Sensors Directorate (NVESD) have developed a terahertz-band imaging system performance model/tool for detection and identification of concealed weaponry. The details of the MATLAB-based model which accounts for the effects of all critical sensor and display components, and for the effects of atmospheric attenuation, concealment material attenuation, and active illumination, were reported on at the 2005 SPIE Europe Security & Defence Symposium (Brugge). An advanced version of the base model that accounts for both the dramatic impact that target and background orientation can have on target observability as related to specular and Lambertian reflections captured by an active-illumination-based imaging system, and for the impact of target and background thermal emission, was reported on at the 2007 SPIE Defense and Security Symposium (Orlando). This paper will provide a comprehensive review of an enhanced, user-friendly, Windows-executable, terahertz-band imaging system performance analysis and design tool that now includes additional features such as a MODTRAN-based atmospheric attenuation calculator and advanced system architecture configuration inputs that allow for straightforward performance analysis of active or passive systems based on scanning (single- or line-array detector element(s)) or staring (focal-plane-array detector elements) imaging architectures. This newly enhanced THz imaging system design tool is an extension of the advanced THz imaging system performance model that was developed under the Defense Advanced Research Project Agency's (DARPA) Terahertz Imaging Focal-Plane Technology (TIFT) program. This paper will also provide example system component (active-illumination source and detector) trade-study analyses using the new features of this user-friendly THz imaging system performance analysis and design tool.
Brayton Power Conversion System Parametric Design Modelling for Nuclear Electric Propulsion
NASA Technical Reports Server (NTRS)
Ashe, Thomas L.; Otting, William D.
1993-01-01
The parametrically based closed Brayton cycle (CBC) computer design model was developed for inclusion into the NASA LeRC overall Nuclear Electric Propulsion (NEP) end-to-end systems model. The code is intended to provide greater depth to the NEP system modeling which is required to more accurately predict the impact of specific technology on system performance. The CBC model is parametrically based to allow for conducting detailed optimization studies and to provide for easy integration into an overall optimizer driver routine. The power conversion model includes the modeling of the turbines, alternators, compressors, ducting, and heat exchangers (hot-side heat exchanger and recuperator). The code predicts performance to significant detail. The system characteristics determined include estimates of mass, efficiency, and the characteristic dimensions of the major power conversion system components. These characteristics are parametrically modeled as a function of input parameters such as the aerodynamic configuration (axial or radial), turbine inlet temperature, cycle temperature ratio, power level, lifetime, materials, and redundancy.
Performance Modeling of Network-Attached Storage Device Based Hierarchical Mass Storage Systems
NASA Technical Reports Server (NTRS)
Menasce, Daniel A.; Pentakalos, Odysseas I.
1995-01-01
Network attached storage devices improve I/O performance by separating control and data paths and eliminating host intervention during the data transfer phase. Devices are attached to both a high speed network for data transfer and to a slower network for control messages. Hierarchical mass storage systems use disks to cache the most recently used files and a combination of robotic and manually mounted tapes to store the bulk of the files in the file system. This paper shows how queuing network models can be used to assess the performance of hierarchical mass storage systems that use network attached storage devices as opposed to host attached storage devices. Simulation was used to validate the model. The analytic model presented here can be used, among other things, to evaluate the protocols involved in 1/0 over network attached devices.
Performance of chromatographic systems to model soil-water sorption.
Hidalgo-Rodríguez, Marta; Fuguet, Elisabet; Ràfols, Clara; Rosés, Martí
2012-08-24
A systematic approach for evaluating the goodness of chromatographic systems to model the sorption of neutral organic compounds by soil from water is presented in this work. It is based on the examination of the three sources of error that determine the overall variance obtained when soil-water partition coefficients are correlated against chromatographic retention factors: the variance of the soil-water sorption data, the variance of the chromatographic data, and the variance attributed to the dissimilarity between the two systems. These contributions of variance are easily predicted through the characterization of the systems by the solvation parameter model. According to this method, several chromatographic systems besides the reference octanol-water partition system have been selected to test their performance in the emulation of soil-water sorption. The results from the experimental correlations agree with the predicted variances. The high-performance liquid chromatography system based on an immobilized artificial membrane and the micellar electrokinetic chromatography systems of sodium dodecylsulfate and sodium taurocholate provide the most precise correlation models. They have shown to predict well soil-water sorption coefficients of several tested herbicides. Octanol-water partitions and high-performance liquid chromatography measurements using C18 columns are less suited for the estimation of soil-water partition coefficients. Copyright © 2012 Elsevier B.V. All rights reserved.
System cost/performance analysis (study 2.3). Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Kazangey, T.
1973-01-01
The relationships between performance, safety, cost, and schedule parameters were identified and quantified in support of an overall effort to generate program models and methodology that provide insight into a total space vehicle program. A specific space vehicle system, the attitude control system (ACS), was used, and a modeling methodology was selected that develops a consistent set of quantitative relationships among performance, safety, cost, and schedule, based on the characteristics of the components utilized in candidate mechanisms. These descriptive equations were developed for a three-axis, earth-pointing, mass expulsion ACS. A data base describing typical candidate ACS components was implemented, along with a computer program to perform sample calculations. This approach, implemented on a computer, is capable of determining the effect of a change in functional requirements to the ACS mechanization and the resulting cost and schedule. By a simple extension of this modeling methodology to the other systems in a space vehicle, a complete space vehicle model can be developed. Study results and recommendations are presented.
Performability modeling with continuous accomplishment sets
NASA Technical Reports Server (NTRS)
Meyer, J. F.
1979-01-01
A general modeling framework that permits the definition, formulation, and evaluation of performability is described. It is shown that performability relates directly to system effectiveness, and is a proper generalization of both performance and reliability. A hierarchical modeling scheme is used to formulate the capability function used to evaluate performability. The case in which performance variables take values in a continuous accomplishment set is treated explicitly.
Phase Two Feasibility Study for Software Safety Requirements Analysis Using Model Checking
NASA Technical Reports Server (NTRS)
Turgeon, Gregory; Price, Petra
2010-01-01
A feasibility study was performed on a representative aerospace system to determine the following: (1) the benefits and limitations to using SCADE , a commercially available tool for model checking, in comparison to using a proprietary tool that was studied previously [1] and (2) metrics for performing the model checking and for assessing the findings. This study was performed independently of the development task by a group unfamiliar with the system, providing a fresh, external perspective free from development bias.
Redundancy management of electrohydraulic servoactuators by mathematical model referencing
NASA Technical Reports Server (NTRS)
Campbell, R. A.
1971-01-01
A description of a mathematical model reference system is presented which provides redundancy management for an electrohydraulic servoactuator. The mathematical model includes a compensation network that calculates reference parameter perturbations induced by external disturbance forces. This is accomplished by using the measured pressure differential data taken from the physical system. This technique was experimentally verified by tests performed using the H-1 engine thrust vector control system for Saturn IB. The results of these tests are included in this report. It was concluded that this technique improves the tracking accuracy of the model reference system to the extent that redundancy management of electrohydraulic servosystems may be performed using this method.
Effects of distributed database modeling on evaluation of transaction rollbacks
NASA Technical Reports Server (NTRS)
Mukkamala, Ravi
1991-01-01
Data distribution, degree of data replication, and transaction access patterns are key factors in determining the performance of distributed database systems. In order to simplify the evaluation of performance measures, database designers and researchers tend to make simplistic assumptions about the system. The effect is studied of modeling assumptions on the evaluation of one such measure, the number of transaction rollbacks, in a partitioned distributed database system. Six probabilistic models and expressions are developed for the numbers of rollbacks under each of these models. Essentially, the models differ in terms of the available system information. The analytical results so obtained are compared to results from simulation. From here, it is concluded that most of the probabilistic models yield overly conservative estimates of the number of rollbacks. The effect of transaction commutativity on system throughout is also grossly undermined when such models are employed.
Effects of distributed database modeling on evaluation of transaction rollbacks
NASA Technical Reports Server (NTRS)
Mukkamala, Ravi
1991-01-01
Data distribution, degree of data replication, and transaction access patterns are key factors in determining the performance of distributed database systems. In order to simplify the evaluation of performance measures, database designers and researchers tend to make simplistic assumptions about the system. Here, researchers investigate the effect of modeling assumptions on the evaluation of one such measure, the number of transaction rollbacks in a partitioned distributed database system. The researchers developed six probabilistic models and expressions for the number of rollbacks under each of these models. Essentially, the models differ in terms of the available system information. The analytical results obtained are compared to results from simulation. It was concluded that most of the probabilistic models yield overly conservative estimates of the number of rollbacks. The effect of transaction commutativity on system throughput is also grossly undermined when such models are employed.
NASA Astrophysics Data System (ADS)
Dirnbeck, Matthew R.
Biological systems pose a challenge both for learners and teachers because they are complex systems mediated by feedback loops; networks of cause-effect relationships; and non-linear, hierarchical, and emergent properties. Teachers and scientists routinely use models to communicate ideas about complex systems. Model-based pedagogies engage students in model construction as a means of practicing higher-order reasoning skills. One such modeling paradigm describes systems in terms of their structures, behaviors, and functions (SBF). The SBF framework is a simple modeling language that has been used to teach about complex biological systems. Here, we used student-generated SBF models to assess students' causal reasoning in the context of a novel biological problem on an exam. We compared students' performance on the modeling problem, their performance on a set of knowledge/comprehension questions, and their performance on a set of scientific reasoning questions. We found that students who performed well on knowledge and understanding questions also constructed more networked, higher quality models. Previous studies have shown that learners' mental maps increase in complexity with increased expertise. We wanted to investigate if biology students with varying levels of training in biology showed a similar pattern when constructing system models. In a pilot study, we administered the same modeling problem to two additional groups of students: 1) an animal physiology course for students pursuing a major in biology (n=37) and 2) an exercise physiology course for non-majors (n=27). We found that there was no significant difference in model organization across the three student populations, but there was a significant difference in the ability to represent function between the three populations. Between the three groups the non-majors had the lowest function scores, the introductory majors had the middle function scores, and the upper division majors had the highest function scores.
Naimoli, Joseph F; Frymus, Diana E; Wuliji, Tana; Franco, Lynne M; Newsome, Martha H
2014-10-02
There has been a resurgence of interest in national Community Health Worker (CHW) programs in low- and middle-income countries (LMICs). A lack of strong research evidence persists, however, about the most efficient and effective strategies to ensure optimal, sustained performance of CHWs at scale. To facilitate learning and research to address this knowledge gap, the authors developed a generic CHW logic model that proposes a theoretical causal pathway to improved performance. The logic model draws upon available research and expert knowledge on CHWs in LMICs. Construction of the model entailed a multi-stage, inductive, two-year process. It began with the planning and implementation of a structured review of the existing research on community and health system support for enhanced CHW performance. It continued with a facilitated discussion of review findings with experts during a two-day consultation. The process culminated with the authors' review of consultation-generated documentation, additional analysis, and production of multiple iterations of the model. The generic CHW logic model posits that optimal CHW performance is a function of high quality CHW programming, which is reinforced, sustained, and brought to scale by robust, high-performing health and community systems, both of which mobilize inputs and put in place processes needed to fully achieve performance objectives. Multiple contextual factors can influence CHW programming, system functioning, and CHW performance. The model is a novel contribution to current thinking about CHWs. It places CHW performance at the center of the discussion about CHW programming, recognizes the strengths and limitations of discrete, targeted programs, and is comprehensive, reflecting the current state of both scientific and tacit knowledge about support for improving CHW performance. The model is also a practical tool that offers guidance for continuous learning about what works. Despite the model's limitations and several challenges in translating the potential for learning into tangible learning, the CHW generic logic model provides a solid basis for exploring and testing a causal pathway to improved performance.
Human performance cognitive-behavioral modeling: a benefit for occupational safety.
Gore, Brian F
2002-01-01
Human Performance Modeling (HPM) is a computer-aided job analysis software methodology used to generate predictions of complex human-automation integration and system flow patterns with the goal of improving operator and system safety. The use of HPM tools has recently been increasing due to reductions in computational cost, augmentations in the tools' fidelity, and usefulness in the generated output. An examination of an Air Man-machine Integration Design and Analysis System (Air MIDAS) model evaluating complex human-automation integration currently underway at NASA Ames Research Center will highlight the importance to occupational safety of considering both cognitive and physical aspects of performance when researching human error.
Human performance cognitive-behavioral modeling: a benefit for occupational safety
NASA Technical Reports Server (NTRS)
Gore, Brian F.
2002-01-01
Human Performance Modeling (HPM) is a computer-aided job analysis software methodology used to generate predictions of complex human-automation integration and system flow patterns with the goal of improving operator and system safety. The use of HPM tools has recently been increasing due to reductions in computational cost, augmentations in the tools' fidelity, and usefulness in the generated output. An examination of an Air Man-machine Integration Design and Analysis System (Air MIDAS) model evaluating complex human-automation integration currently underway at NASA Ames Research Center will highlight the importance to occupational safety of considering both cognitive and physical aspects of performance when researching human error.
Propulsion System Models for Rotorcraft Conceptual Design
NASA Technical Reports Server (NTRS)
Johnson, Wayne
2014-01-01
The conceptual design code NDARC (NASA Design and Analysis of Rotorcraft) was initially implemented to model conventional rotorcraft propulsion systems, consisting of turboshaft engines burning jet fuel, connected to one or more rotors through a mechanical transmission. The NDARC propulsion system representation has been extended to cover additional propulsion concepts, including electric motors and generators, rotor reaction drive, turbojet and turbofan engines, fuel cells and solar cells, batteries, and fuel (energy) used without weight change. The paper describes these propulsion system components, the architecture of their implementation in NDARC, and the form of the models for performance and weight. Requirements are defined for improved performance and weight models of the new propulsion system components. With these new propulsion models, NDARC can be used to develop environmentally-friendly rotorcraft designs.
DOT National Transportation Integrated Search
2010-02-26
In anticipation of developing pavement performance models as part of a proposed pavement management : system, the Pennsylvania Department of Transportation (PennDOT) initiated a study in 2009 to investigate : performance modeling activities and condi...
Self-reconfigurable ship fluid-network modeling for simulation-based design
NASA Astrophysics Data System (ADS)
Moon, Kyungjin
Our world is filled with large-scale engineering systems, which provide various services and conveniences in our daily life. A distinctive trend in the development of today's large-scale engineering systems is the extensive and aggressive adoption of automation and autonomy that enable the significant improvement of systems' robustness, efficiency, and performance, with considerably reduced manning and maintenance costs, and the U.S. Navy's DD(X), the next-generation destroyer program, is considered as an extreme example of such a trend. This thesis pursues a modeling solution for performing simulation-based analysis in the conceptual or preliminary design stage of an intelligent, self-reconfigurable ship fluid system, which is one of the concepts of DD(X) engineering plant development. Through the investigations on the Navy's approach for designing a more survivable ship system, it is found that the current naval simulation-based analysis environment is limited by the capability gaps in damage modeling, dynamic model reconfiguration, and simulation speed of the domain specific models, especially fluid network models. As enablers of filling these gaps, two essential elements were identified in the formulation of the modeling method. The first one is the graph-based topological modeling method, which will be employed for rapid model reconstruction and damage modeling, and the second one is the recurrent neural network-based, component-level surrogate modeling method, which will be used to improve the affordability and efficiency of the modeling and simulation (M&S) computations. The integration of the two methods can deliver computationally efficient, flexible, and automation-friendly M&S which will create an environment for more rigorous damage analysis and exploration of design alternatives. As a demonstration for evaluating the developed method, a simulation model of a notional ship fluid system was created, and a damage analysis was performed. Next, the models representing different design configurations of the fluid system were created, and damage analyses were performed with them in order to find an optimal design configuration for system survivability. Finally, the benefits and drawbacks of the developed method were discussed based on the result of the demonstration.
3D environment modeling and location tracking using off-the-shelf components
NASA Astrophysics Data System (ADS)
Luke, Robert H.
2016-05-01
The remarkable popularity of smartphones over the past decade has led to a technological race for dominance in market share. This has resulted in a flood of new processors and sensors that are inexpensive, low power and high performance. These sensors include accelerometers, gyroscope, barometers and most importantly cameras. This sensor suite, coupled with multicore processors, allows a new community of researchers to build small, high performance platforms for low cost. This paper describes a system using off-the-shelf components to perform position tracking as well as environment modeling. The system relies on tracking using stereo vision and inertial navigation to determine movement of the system as well as create a model of the environment sensed by the system.
Kim, Dongsu; Cox, Sam J.; Cho, Heejin; ...
2017-05-22
Variable refrigerant flow (VRF) systems are known for their high energy performance and thus can improve energy efficiency both in residential and commercial buildings. The energy savings potential of this system has been demonstrated in several studies by comparing the system performance with conventional HVAC systems such as rooftop variable air volume systems (RTU-VAV) and central chiller and boiler systems. This paper evaluates the performance of VRF and RTU-VAV systems in a simulation environment using widely-accepted whole building energy modeling software, EnergyPlus. A medium office prototype building model, developed by the U.S. Department of Energy (DOE), is used to assessmore » the performance of VRF and RTU-VAV systems. Each system is placed in 16 different locations, representing all U.S. climate zones, to evaluate the performance variations. Both models are compliant with the minimum energy code requirements prescribed in ASHRAE standard 90.1-2010 — energy standard for buildings except low-rise residential buildings. Finally, a comparison study between the simulation results of VRF and RTU-VAV models is made to demonstrate energy savings potential of VRF systems. The simulation results show that the VRF systems would save around 15–42% and 18–33% for HVAC site and source energy uses compared to the RTU-VAV systems. In addition, calculated results for annual HVAC cost savings point out that hot and mild climates show higher percentage cost savings for the VRF systems than cold climates mainly due to the differences in electricity and gas use for heating sources.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dongsu; Cox, Sam J.; Cho, Heejin
Variable refrigerant flow (VRF) systems are known for their high energy performance and thus can improve energy efficiency both in residential and commercial buildings. The energy savings potential of this system has been demonstrated in several studies by comparing the system performance with conventional HVAC systems such as rooftop variable air volume systems (RTU-VAV) and central chiller and boiler systems. This paper evaluates the performance of VRF and RTU-VAV systems in a simulation environment using widely-accepted whole building energy modeling software, EnergyPlus. A medium office prototype building model, developed by the U.S. Department of Energy (DOE), is used to assessmore » the performance of VRF and RTU-VAV systems. Each system is placed in 16 different locations, representing all U.S. climate zones, to evaluate the performance variations. Both models are compliant with the minimum energy code requirements prescribed in ASHRAE standard 90.1-2010 — energy standard for buildings except low-rise residential buildings. Finally, a comparison study between the simulation results of VRF and RTU-VAV models is made to demonstrate energy savings potential of VRF systems. The simulation results show that the VRF systems would save around 15–42% and 18–33% for HVAC site and source energy uses compared to the RTU-VAV systems. In addition, calculated results for annual HVAC cost savings point out that hot and mild climates show higher percentage cost savings for the VRF systems than cold climates mainly due to the differences in electricity and gas use for heating sources.« less
Performance evaluation of image-intensifier-TV fluoroscopy systems
NASA Astrophysics Data System (ADS)
van der Putten, Wilhelm J.; Bouley, Shawn
1995-05-01
Through use of a computer model and an aluminum low contrast phantom developed in-house, a method has been developed which is able to grade the imaging performance of fluoroscopy systems through use of a variable, K. This parameter was derived from Rose's model of image perception and is here used as a figure of merit to grade fluoroscopy systems. From Rose's model for an ideal system, a typical value of K for the perception of low contrast details should be between 3 and 7, assuming threshold vision by human observers. Thus, various fluoroscopy systems are graded with different values of K, with a lower value of K indicating better imaging performance of the system. A series of fluoroscopy systems have been graded where the best system produces a value in the low teens, while the poorest systems produce a value in the low twenties. Correlation with conventional image quality measurements is good and the method has the potential for automated assessment of image quality.
DOT National Transportation Integrated Search
2012-10-01
This project conducted a thorough review of the existing Pavement Management Information System (PMIS) database, : performance models, needs estimates, utility curves, and scores calculations, as well as a review of District practices : concerning th...
Mutual coupling, channel model, and BER for curvilinear antenna arrays
NASA Astrophysics Data System (ADS)
Huang, Zhiyong
This dissertation introduces a wireless communications system with an adaptive beam-former and investigates its performance with different antenna arrays. Mutual coupling, real antenna elements and channel models are included to examine the system performance. In a beamforming system, mutual coupling (MC) among the elements can significantly degrade the system performance. However, MC effects can be compensated if an accurate model of mutual coupling is available. A mutual coupling matrix model is utilized to compensate mutual coupling in the beamforming of a uniform circular array (UCA). Its performance is compared with other models in uplink and downlink beamforming scenarios. In addition, the predictions are compared with measurements and verified with results from full-wave simulations. In order to accurately investigate the minimum mean-square-error (MSE) of an adaptive array in MC, two different noise models, the environmental and the receiver noise, are modeled. The minimum MSEs with and without data domain MC compensation are analytically compared. The influence of mutual coupling on the convergence is also examined. In addition, the weight compensation method is proposed to attain the desired array pattern. Adaptive arrays with different geometries are implemented with the minimum MSE algorithm in the wireless communications system to combat interference at the same frequency. The bit-error-rate (BER) of systems with UCA, uniform rectangular array (URA) and UCA with center element are investigated in additive white Gaussian noise plus well-separated signals or random direction signals scenarios. The output SINR of an adaptive array with multiple interferers is analytically examined. The influence of the adaptive algorithm convergence on the BER is investigated. The UCA is then investigated in a narrowband Rician fading channel. The channel model is built and the space correlations are examined. The influence of the number of signal paths, number of the interferers, Doppler spread and convergence are investigated. The tracking mode is introduced to the adaptive array system, and it further improves the BER. The benefit of using faster data rate (wider bandwidth) is discussed. In order to have better performance in a 3D space, the geometries of uniform spherical array (USAs) are presented and different configurations of USAs are discussed. The LMS algorithm based on temporal a priori information is applied to UCAs and USAs to beamform the patterns. Their performances are compared based on simulation results. Based on the analytical and simulation results, it can be concluded that mutual coupling slightly influences the performance of the adaptive array in communication systems. In addition, arrays with curvilinear geometries perform well in AWGN and fading channels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klise, Geoffrey T.; Hill, Roger; Walker, Andy
The use of the term 'availability' to describe a photovoltaic (PV) system and power plant has been fraught with confusion for many years. A term that is meant to describe equipment operational status is often omitted, misapplied or inaccurately combined with PV performance metrics due to attempts to measure performance and reliability through the lens of traditional power plant language. This paper discusses three areas where current research in standards, contract language and performance modeling is improving the way availability is used with regards to photovoltaic systems and power plants.
The work here complements the overview analysis of the modelling systems participating in the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3) by focusing on the performance for hourly surface ozone by two modelling systems, Chimere for Europe an...
On predicting monitoring system effectiveness
NASA Astrophysics Data System (ADS)
Cappello, Carlo; Sigurdardottir, Dorotea; Glisic, Branko; Zonta, Daniele; Pozzi, Matteo
2015-03-01
While the objective of structural design is to achieve stability with an appropriate level of reliability, the design of systems for structural health monitoring is performed to identify a configuration that enables acquisition of data with an appropriate level of accuracy in order to understand the performance of a structure or its condition state. However, a rational standardized approach for monitoring system design is not fully available. Hence, when engineers design a monitoring system, their approach is often heuristic with performance evaluation based on experience, rather than on quantitative analysis. In this contribution, we propose a probabilistic model for the estimation of monitoring system effectiveness based on information available in prior condition, i.e. before acquiring empirical data. The presented model is developed considering the analogy between structural design and monitoring system design. We assume that the effectiveness can be evaluated based on the prediction of the posterior variance or covariance matrix of the state parameters, which we assume to be defined in a continuous space. Since the empirical measurements are not available in prior condition, the estimation of the posterior variance or covariance matrix is performed considering the measurements as a stochastic variable. Moreover, the model takes into account the effects of nuisance parameters, which are stochastic parameters that affect the observations but cannot be estimated using monitoring data. Finally, we present an application of the proposed model to a real structure. The results show how the model enables engineers to predict whether a sensor configuration satisfies the required performance.
A flexible tool for hydraulic and water quality performance analysis of green infrastructure
NASA Astrophysics Data System (ADS)
Massoudieh, A.; Alikhani, J.
2017-12-01
Models that allow for design considerations of green infrastructure (GI) practices to control stormwater runoff and associated contaminants have received considerable attention in recent years. To be used to evaluate the effect design configurations on the long-term performance of GIs, models should be able to consider processes within GIs with good fidelity. In this presentation, a sophisticated, yet flexible tool for hydraulic and water quality assessment of GIs will be introduced. The tool can be used by design engineers and researchers to capture and explore the effect of design factors and properties of the media employed in the performance of GI systems at a relatively small scale. We deemed it essential to have a flexible GI modeling tool that is capable of simulating GI system components and specific biogeochemical processes affecting contaminants such as evapotranspiration, plant uptake, reactions, and particle-associated transport accurately while maintaining a high degree of flexibility to account for the myriad of GI alternatives. The mathematical framework for a stand-alone GI performance assessment tool has been developed and will be demonstrated. The process-based model framework developed here can be used to model a diverse range of GI practices such as stormwater ponds, green roofs, retention ponds, bioretention systems, infiltration trench, permeable pavement and other custom-designed combinatory systems. An example of the application of the system to evaluate the performance of a rain-garden system will be demonstrated.
NASA Technical Reports Server (NTRS)
Phillips, M. A.
1973-01-01
Results are presented of an analysis which compares the performance predictions of a thermal model of a multi-panel modular radiator system with thermal vacuum test data. Comparisons between measured and predicted individual panel outlet temperatures and pressure drops and system outlet temperatures have been made over the full range of heat loads, environments and plumbing arrangements expected for the shuttle radiators. Both two sided and one sided radiation have been included. The model predictions show excellent agreement with the test data for the maximum design conditions of high load and hot environment. Predictions under minimum design conditions of low load-cold environments indicate good agreement with the measured data, but evaluation of low load predictions should consider the possibility of parallel flow instabilities due to main system freezing. Performance predictions under intermediate conditions in which the majority of the flow is not in either the main or prime system are adequate although model improvements in this area may be desired. The primary modeling objective of providing an analytical technique for performance predictions of a multi-panel radiator system under the design conditions has been met.
Coordination control of flexible manufacturing systems
NASA Astrophysics Data System (ADS)
Menon, Satheesh R.
One of the first attempts was made to develop a model driven system for coordination control of Flexible Manufacturing Systems (FMS). The structure and activities of the FMS are modeled using a colored Petri Net based system. This approach has the advantage of being able to model the concurrency inherent in the system. It provides a method for encoding the system state, state transitions and the feasible transitions at any given state. Further structural analysis (for detecting conflicting actions, deadlocks which might occur during operation, etc.) can be performed. The problem is also addressed of implementing and testing the behavior of existing dynamic scheduling approaches in simulations of realistic situations. A simulation architecture was proposed and performance evaluation was carried out for establishing the correctness of the model, stability of the system from a structural (deadlocks) and temporal (boundedness of backlogs) points of view, and for collection of statistics for performance measures such as machine and robot utilizations, average wait times and idle times of resources. A real-time implementation architecture for the coordination controller was also developed and implemented in a software simulated environment. Given the current technology of FMS control, the model-driven colored Petri net-based approach promises to develop a very flexible control environment.
Ghany, Ahmad; Vassanji, Karim; Kuziemsky, Craig; Keshavjee, Karim
2013-01-01
Electronic prescribing (e-prescribing) is expected to bring many benefits to Canadian healthcare, such as a reduction in errors and adverse drug reactions. As there currently is no functioning e-prescribing system in Canada that is completely electronic, we are unable to evaluate the performance of a live system. An alternative approach is to use simulation modeling for evaluation. We developed two discrete-event simulation models, one of the current handwritten prescribing system and one of a proposed e-prescribing system, to compare the performance of these two systems. We were able to compare the number of processes in each model, workflow efficiency, and the distribution of patients or prescriptions. Although we were able to compare these models to each other, using discrete-event simulation software was challenging. We were limited in the number of variables we could measure. We discovered non-linear processes and feedback loops in both models that could not be adequately represented using discrete-event simulation software. Finally, interactions between entities in both models could not be modeled using this type of software. We have come to the conclusion that a more appropriate approach to modeling both the handwritten and electronic prescribing systems would be to use a complex adaptive systems approach using agent-based modeling or systems-based modeling.
NASA Technical Reports Server (NTRS)
Smith, Philip J.; Giffin, Walter C.; Rockwell, Thomas H.; Thomas, Mark
1986-01-01
Twenty pilots with instrument flight ratings were asked to perform a fault-diagnosis task for which they had relevant domain knowledge. The pilots were asked to think out loud as they requested and interpreted information. Performances were then modeled as the activation and use of a frame system. Cognitive biases, memory distortions and losses, and failures to correctly diagnose the problem were studied in the context of this frame system model.
Queueing Network Models for Parallel Processing of Task Systems: an Operational Approach
NASA Technical Reports Server (NTRS)
Mak, Victor W. K.
1986-01-01
Computer performance modeling of possibly complex computations running on highly concurrent systems is considered. Earlier works in this area either dealt with a very simple program structure or resulted in methods with exponential complexity. An efficient procedure is developed to compute the performance measures for series-parallel-reducible task systems using queueing network models. The procedure is based on the concept of hierarchical decomposition and a new operational approach. Numerical results for three test cases are presented and compared to those of simulations.
Quality of Protection Evaluation of Security Mechanisms
Ksiezopolski, Bogdan; Zurek, Tomasz; Mokkas, Michail
2014-01-01
Recent research indicates that during the design of teleinformatic system the tradeoff between the systems performance and the system protection should be made. The traditional approach assumes that the best way is to apply the strongest possible security measures. Unfortunately, the overestimation of security measures can lead to the unreasonable increase of system load. This is especially important in multimedia systems where the performance has critical character. In many cases determination of the required level of protection and adjustment of some security measures to these requirements increase system efficiency. Such an approach is achieved by means of the quality of protection models where the security measures are evaluated according to their influence on the system security. In the paper, we propose a model for QoP evaluation of security mechanisms. Owing to this model, one can quantify the influence of particular security mechanisms on ensuring security attributes. The methodology of our model preparation is described and based on it the case study analysis is presented. We support our method by the tool where the models can be defined and QoP evaluation can be performed. Finally, we have modelled TLS cryptographic protocol and presented the QoP security mechanisms evaluation for the selected versions of this protocol. PMID:25136683
MPD Thruster Performance Analytic Models
NASA Technical Reports Server (NTRS)
Gilland, James; Johnston, Geoffrey
2003-01-01
Magnetoplasmadynamic (MPD) thrusters are capable of accelerating quasi-neutral plasmas to high exhaust velocities using Megawatts (MW) of electric power. These characteristics make such devices worthy of consideration for demanding, far-term missions such as the human exploration of Mars or beyond. Assessment of MPD thrusters at the system and mission level is often difficult due to their status as ongoing experimental research topics rather than developed thrusters. However, in order to assess MPD thrusters utility in later missions, some adequate characterization of performance, or more exactly, projected performance, and system level definition are required for use in analyses. The most recent physical models of self-field MPD thrusters have been examined, assessed, and reconfigured for use by systems and mission analysts. The physical models allow for rational projections of thruster performance based on physical parameters that can be measured in the laboratory. The models and their implications for the design of future MPD thrusters are presented.
MPD Thruster Performance Analytic Models
NASA Technical Reports Server (NTRS)
Gilland, James; Johnston, Geoffrey
2007-01-01
Magnetoplasmadynamic (MPD) thrusters are capable of accelerating quasi-neutral plasmas to high exhaust velocities using Megawatts (MW) of electric power. These characteristics make such devices worthy of consideration for demanding, far-term missions such as the human exploration of Mars or beyond. Assessment of MPD thrusters at the system and mission level is often difficult due to their status as ongoing experimental research topics rather than developed thrusters. However, in order to assess MPD thrusters utility in later missions, some adequate characterization of performance, or more exactly, projected performance, and system level definition are required for use in analyses. The most recent physical models of self-field MPD thrusters have been examined, assessed, and reconfigured for use by systems and mission analysts. The physical models allow for rational projections of thruster performance based on physical parameters that can be measured in the laboratory. The models and their implications for the design of future MPD thrusters are presented.
Design of an integrated airframe/propulsion control system architecture
NASA Technical Reports Server (NTRS)
Cohen, Gerald C.; Lee, C. William; Strickland, Michael J.
1990-01-01
The design of an integrated airframe/propulsion control system architecture is described. The design is based on a prevalidation methodology that used both reliability and performance tools. An account is given of the motivation for the final design and problems associated with both reliability and performance modeling. The appendices contain a listing of the code for both the reliability and performance model used in the design.
A resistive mesh phantom for assessing the performance of EIT systems.
Gagnon, Hervé; Cousineau, Martin; Adler, Andy; Hartinger, Alzbeta E
2010-09-01
Assessing the performance of electrical impedance tomography (EIT) systems usually requires a phantom for validation, calibration, or comparison purposes. This paper describes a resistive mesh phantom to assess the performance of EIT systems while taking into account cabling stray effects similar to in vivo conditions. This phantom is built with 340 precision resistors on a printed circuit board representing a 2-D circular homogeneous medium. It also integrates equivalent electrical models of the Ag/AgCl electrode impedances. The parameters of the electrode models were fitted from impedance curves measured with an impedance analyzer. The technique used to build the phantom is general and applicable to phantoms of arbitrary shape and conductivity distribution. We describe three performance indicators that can be measured with our phantom for every measurement of an EIT data frame: SNR, accuracy, and modeling accuracy. These performance indicators were evaluated on our EIT system under different frame rates and applied current intensities. The performance indicators are dependent on frame rate, operating frequency, applied current intensity, measurement strategy, and intermodulation distortion when performing simultaneous measurements at several frequencies. These parameter values should, therefore, always be specified when reporting performance indicators to better appreciate their significance.
NASA Technical Reports Server (NTRS)
Karmali, M. S.; Phatak, A. V.
1982-01-01
Results of a study to investigate, by means of a computer simulation, the performance sensitivity of helicopter IMC DSAL operations as a function of navigation system parameters are presented. A mathematical model representing generically a navigation system is formulated. The scenario simulated consists of a straight in helicopter approach to landing along a 6 deg glideslope. The deceleration magnitude chosen is 03g. The navigation model parameters are varied and the statistics of the total system errors (TSE) computed. These statistics are used to determine the critical navigation system parameters that affect the performance of the closed-loop navigation, guidance and control system of a UH-1H helicopter.
Economics of human performance and systems total ownership cost.
Onkham, Wilawan; Karwowski, Waldemar; Ahram, Tareq Z
2012-01-01
Financial costs of investing in people is associated with training, acquisition, recruiting, and resolving human errors have a significant impact on increased total ownership costs. These costs can also affect the exaggerate budgets and delayed schedules. The study of human performance economical assessment in the system acquisition process enhances the visibility of hidden cost drivers which support program management informed decisions. This paper presents the literature review of human total ownership cost (HTOC) and cost impacts on overall system performance. Economic value assessment models such as cost benefit analysis, risk-cost tradeoff analysis, expected value of utility function analysis (EV), growth readiness matrix, multi-attribute utility technique, and multi-regressions model were introduced to reflect the HTOC and human performance-technology tradeoffs in terms of the dollar value. The human total ownership regression model introduces to address the influencing human performance cost component measurement. Results from this study will increase understanding of relevant cost drivers in the system acquisition process over the long term.
Model-Based IN SITU Parameter Estimation of Ultrasonic Guided Waves in AN Isotropic Plate
NASA Astrophysics Data System (ADS)
Hall, James S.; Michaels, Jennifer E.
2010-02-01
Most ultrasonic systems employing guided waves for flaw detection require information such as dispersion curves, transducer locations, and expected propagation loss. Degraded system performance may result if assumed parameter values do not accurately reflect the actual environment. By characterizing the propagating environment in situ at the time of test, potentially erroneous a priori estimates are avoided and performance of ultrasonic guided wave systems can be improved. A four-part model-based algorithm is described in the context of previous work that estimates model parameters whereby an assumed propagation model is used to describe the received signals. This approach builds upon previous work by demonstrating the ability to estimate parameters for the case of single mode propagation. Performance is demonstrated on signals obtained from theoretical dispersion curves, finite element modeling, and experimental data.
NASA Astrophysics Data System (ADS)
Zhang, Jiankun; Li, Ziyang; Dang, Anhong
2018-06-01
It has been recntly shown that polarization state of propagation beam would suffer from polarization fluctuations due to the detrimental effects of atmospheric turbulence. This paper studies the performance of wireless optical communication (WOC) systems in the presence of polarization effect of atmosphere. We categorize the atmospheric polarization effect into polarization rotation, polarization-dependent power loss, and phase shift effect, with each effect described and modeled with the help of polarization-coherence theory and the extended Huygens-Fresnelprinciple. The channel matrices are derived to measure the cross-polarization interference of the system. Signal-to-noise ratio and bit error rate for polarization multiplexing system and polarization modulation system are obtained to assess the viability using the approach of M turbulence model. Monte Carlo simulation results show the performance of polarization based WOC systems to be degraded by atmospheric polarization effect, which could be evaluated precisely using the proposed model with given turbulent strengths.
NASA Technical Reports Server (NTRS)
VanNoord, Jonathan L.; Soulas, George C.; Sovey, James S.
2010-01-01
The results of the NEXT wear test are presented. This test was conducted with a 36-cm ion engine (designated PM1R) and an engineering model propellant management system. The thruster operated with beam extraction for a total of 1680 hr and processed 30.5 kg of xenon during the wear test, which included performance testing and some operation with an engineering model power processing unit. A total of 1312 hr was accumulated at full power, 277 hr at low power, and the remainder was at intermediate throttle levels. Overall ion engine performance, which includes thrust, thruster input power, specific impulse, and thrust efficiency, was steady with no indications of performance degradation. The propellant management system performed without incident during the wear test. The ion engine and propellant management system were also inspected following the test with no indication of anomalous hardware degradation from operation.
Nonlinear analysis and performance evaluation of the Annular Suspension and Pointing System (ASPS)
NASA Technical Reports Server (NTRS)
Joshi, S. M.
1978-01-01
The Annular Suspension and Pointing System (ASPS) can provide high accurate fine pointing for a variety of solar-, stellar-, and Earth-viewing scientific instruments during space shuttle orbital missions. In this report, a detailed nonlinear mathematical model is developed for the ASPS/Space Shuttle system. The equations are augmented with nonlinear models of components such as magnetic actuators and gimbal torquers. Control systems and payload attitude state estimators are designed in order to obtain satisfactory pointing performance, and statistical pointing performance is predicted in the presence of measurement noise and disturbances.
Analyses of ACPL thermal/fluid conditioning system
NASA Technical Reports Server (NTRS)
Stephen, L. A.; Usher, L. H.
1976-01-01
Results of engineering analyses are reported. Initial computations were made using a modified control transfer function where the systems performance was characterized parametrically using an analytical model. The analytical model was revised to represent the latest expansion chamber fluid manifold design, and systems performance predictions were made. Parameters which were independently varied in these computations are listed. Systems predictions which were used to characterize performance are primarily transient computer plots comparing the deviation between average chamber temperature and the chamber temperature requirement. Additional computer plots were prepared. Results of parametric computations with the latest fluid manifold design are included.
Using Agent Base Models to Optimize Large Scale Network for Large System Inventories
NASA Technical Reports Server (NTRS)
Shameldin, Ramez Ahmed; Bowling, Shannon R.
2010-01-01
The aim of this paper is to use Agent Base Models (ABM) to optimize large scale network handling capabilities for large system inventories and to implement strategies for the purpose of reducing capital expenses. The models used in this paper either use computational algorithms or procedure implementations developed by Matlab to simulate agent based models in a principal programming language and mathematical theory using clusters, these clusters work as a high performance computational performance to run the program in parallel computational. In both cases, a model is defined as compilation of a set of structures and processes assumed to underlie the behavior of a network system.
A Novel Approach to Develop the Lower Order Model of Multi-Input Multi-Output System
NASA Astrophysics Data System (ADS)
Rajalakshmy, P.; Dharmalingam, S.; Jayakumar, J.
2017-10-01
A mathematical model is a virtual entity that uses mathematical language to describe the behavior of a system. Mathematical models are used particularly in the natural sciences and engineering disciplines like physics, biology, and electrical engineering as well as in the social sciences like economics, sociology and political science. Physicists, Engineers, Computer scientists, and Economists use mathematical models most extensively. With the advent of high performance processors and advanced mathematical computations, it is possible to develop high performing simulators for complicated Multi Input Multi Ouptut (MIMO) systems like Quadruple tank systems, Aircrafts, Boilers etc. This paper presents the development of the mathematical model of a 500 MW utility boiler which is a highly complex system. A synergistic combination of operational experience, system identification and lower order modeling philosophy has been effectively used to develop a simplified but accurate model of a circulation system of a utility boiler which is a MIMO system. The results obtained are found to be in good agreement with the physics of the process and with the results obtained through design procedure. The model obtained can be directly used for control system studies and to realize hardware simulators for boiler testing and operator training.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gering, Kevin L.
A method, system, and computer-readable medium are described for characterizing performance loss of an object undergoing an arbitrary aging condition. Baseline aging data may be collected from the object for at least one known baseline aging condition over time, determining baseline multiple sigmoid model parameters from the baseline data, and performance loss of the object may be determined over time through multiple sigmoid model parameters associated with the object undergoing the arbitrary aging condition using a differential deviation-from-baseline approach from the baseline multiple sigmoid model parameters. The system may include an object, monitoring hardware configured to sample performance characteristics ofmore » the object, and a processor coupled to the monitoring hardware. The processor is configured to determine performance loss for the arbitrary aging condition from a comparison of the performance characteristics of the object deviating from baseline performance characteristics associated with a baseline aging condition.« less
Conceptual Models, Choices, and Benchmarks for Building Quality Work Cultures.
ERIC Educational Resources Information Center
Acker-Hocevar, Michele
1996-01-01
The two models in Florida's Educational Quality Benchmark System represent a new way of thinking about developing schools' work culture. The Quality Performance System Model identifies nine dimensions of work within a quality system. The Change Process Model provides a theoretical framework for changing existing beliefs, attitudes, and behaviors…
Building a generalized distributed system model
NASA Technical Reports Server (NTRS)
Mukkamala, Ravi
1991-01-01
A number of topics related to building a generalized distributed system model are discussed. The effects of distributed database modeling on evaluation of transaction rollbacks, the measurement of effects of distributed database models on transaction availability measures, and a performance analysis of static locking in replicated distributed database systems are covered.
Ward, Marie; McDonald, Nick; Morrison, Rabea; Gaynor, Des; Nugent, Tony
2010-02-01
Aircraft maintenance is a highly regulated, safety critical, complex and competitive industry. There is a need to develop innovative solutions to address process efficiency without compromising safety and quality. This paper presents the case that in order to improve a highly complex system such as aircraft maintenance, it is necessary to develop a comprehensive and ecologically valid model of the operational system, which represents not just what is meant to happen, but what normally happens. This model then provides the backdrop against which to change or improve the system. A performance report, the Blocker Report, specific to aircraft maintenance and related to the model was developed gathering data on anything that 'blocks' task or check performance. A Blocker Resolution Process was designed to resolve blockers and improve the current check system. Significant results were obtained for the company in the first trial and implications for safety management systems and hazard identification are discussed. Statement of Relevance: Aircraft maintenance is a safety critical, complex, competitive industry with a need to develop innovative solutions to address process and safety efficiency. This research addresses this through the development of a comprehensive and ecologically valid model of the system linked with a performance reporting and resolution system.
Nitrogen dynamics in flooded soil systems: an overview on concepts and performance of models
Nurulhuda, Khairudin; Gaydon, Donald S; Jing, Qi; Zakaria, Mohamad P; Struik, Paul C
2017-01-01
Abstract Extensive modelling studies on nitrogen (N) dynamics in flooded soil systems have been published. Consequently, many N dynamics models are available for users to select from. With the current research trend, inclined towards multidisciplinary research, and with substantial progress in understanding of N dynamics in flooded soil systems, the objective of this paper is to provide an overview of the modelling concepts and performance of 14 models developed to simulate N dynamics in flooded soil systems. This overview provides breadth of knowledge on the models, and, therefore, is valuable as a first step in the selection of an appropriate model for a specific application. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:28940491
Nonlinearity analysis of measurement model for vision-based optical navigation system
NASA Astrophysics Data System (ADS)
Li, Jianguo; Cui, Hutao; Tian, Yang
2015-02-01
In the autonomous optical navigation system based on line-of-sight vector observation, nonlinearity of measurement model is highly correlated with the navigation performance. By quantitatively calculating the degree of nonlinearity of the focal plane model and the unit vector model, this paper focuses on determining which optical measurement model performs better. Firstly, measurement equations and measurement noise statistics of these two line-of-sight measurement models are established based on perspective projection co-linearity equation. Then the nonlinear effects of measurement model on the filter performance are analyzed within the framework of the Extended Kalman filter, also the degrees of nonlinearity of two measurement models are compared using the curvature measure theory from differential geometry. Finally, a simulation of star-tracker-based attitude determination is presented to confirm the superiority of the unit vector measurement model. Simulation results show that the magnitude of curvature nonlinearity measurement is consistent with the filter performance, and the unit vector measurement model yields higher estimation precision and faster convergence properties.
Data management system performance modeling
NASA Technical Reports Server (NTRS)
Kiser, Larry M.
1993-01-01
This paper discusses analytical techniques that have been used to gain a better understanding of the Space Station Freedom's (SSF's) Data Management System (DMS). The DMS is a complex, distributed, real-time computer system that has been redesigned numerous times. The implications of these redesigns have not been fully analyzed. This paper discusses the advantages and disadvantages for static analytical techniques such as Rate Monotonic Analysis (RMA) and also provides a rationale for dynamic modeling. Factors such as system architecture, processor utilization, bus architecture, queuing, etc. are well suited for analysis with a dynamic model. The significance of performance measures for a real-time system are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powers, Jeffrey James
2011-11-30
This study focused on creating a new tristructural isotropic (TRISO) coated particle fuel performance model and demonstrating the integration of this model into an existing system of neutronics and heat transfer codes, creating a user-friendly option for including fuel performance analysis within system design optimization and system-level trade-off studies. The end product enables both a deeper understanding and better overall system performance of nuclear energy systems limited or greatly impacted by TRISO fuel performance. A thorium-fueled hybrid fusion-fission Laser Inertial Fusion Energy (LIFE) blanket design was used for illustrating the application of this new capability and demonstrated both the importancemore » of integrating fuel performance calculations into mainstream design studies and the impact that this new integrated analysis had on system-level design decisions. A new TRISO fuel performance model named TRIUNE was developed and verified and validated during this work with a novel methodology established for simulating the actual lifetime of a TRISO particle during repeated passes through a pebble bed. In addition, integrated self-consistent calculations were performed for neutronics depletion analysis, heat transfer calculations, and then fuel performance modeling for a full parametric study that encompassed over 80 different design options that went through all three phases of analysis. Lastly, side studies were performed that included a comparison of thorium and depleted uranium (DU) LIFE blankets as well as some uncertainty quantification work to help guide future experimental work by assessing what material properties in TRISO fuel performance modeling are most in need of improvement. A recommended thorium-fueled hybrid LIFE engine design was identified with an initial fuel load of 20MT of thorium, 15% TRISO packing within the graphite fuel pebbles, and a 20cm neutron multiplier layer with beryllium pebbles in flibe molten salt coolant. It operated at a system power level of 2000 MW th, took about 3.5 years to reach full plateau power, and was capable of an End of Plateau burnup of 38.7 %FIMA if considering just the neutronic constraints in the system design; however, fuel performance constraints led to a maximum credible burnup of 12.1 %FIMA due to a combination of internal gas pressure and irradiation effects on the TRISO materials (especially PyC) leading to SiC pressure vessel failures. The optimal neutron spectrum for the thorium-fueled blanket options evaluated seemed to favor a hard spectrum (low but non-zero neutron multiplier thicknesses and high TRISO packing fractions) in terms of neutronic performance but the fuel performance constraints demonstrated that a significantly softer spectrum would be needed to decrease the rate of accumulation of fast neutron fluence in order to improve the maximum credible burnup the system could achieve.« less
Flight model performances of HISUI hyperspectral sensor onboard ISS (International Space Station)
NASA Astrophysics Data System (ADS)
Tanii, Jun; Kashimura, Osamu; Ito, Yoshiyuki; Iwasaki, Akira
2016-10-01
Hyperspectral Imager Suite (HISUI) is a next-generation Japanese sensor that will be mounted on Japanese Experiment Module (JEM) of ISS (International Space Station) in 2019 as timeframe. HISUI hyperspectral sensor obtains spectral images of 185 bands with the ground sampling distance of 20x31 meter from the visible to shortwave-infrared region. The sensor system is the follow-on mission of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) in the visible to shortwave infrared region. The critical design review of the instrument was accomplished in 2014. Integration and tests of an flight model of HISUI hyperspectral sensor is being carried out. Simultaneously, the development of JEM-External Facility (EF) Payload system for the instrument started. The system includes the structure, the thermal control system, the electrical system and the pointing mechanism. The development status and the performances including some of the tests results of Instrument flight model, such as optical performance, optical distortion and radiometric performance are reported.
Control system design for flexible structures using data models
NASA Technical Reports Server (NTRS)
Irwin, R. Dennis; Frazier, W. Garth; Mitchell, Jerrel R.; Medina, Enrique A.; Bukley, Angelia P.
1993-01-01
The dynamics and control of flexible aerospace structures exercises many of the engineering disciplines. In recent years there has been considerable research in the developing and tailoring of control system design techniques for these structures. This problem involves designing a control system for a multi-input, multi-output (MIMO) system that satisfies various performance criteria, such as vibration suppression, disturbance and noise rejection, attitude control and slewing control. Considerable progress has been made and demonstrated in control system design techniques for these structures. The key to designing control systems for these structures that meet stringent performance requirements is an accurate model. It has become apparent that theoretically and finite-element generated models do not provide the needed accuracy; almost all successful demonstrations of control system design techniques have involved using test results for fine-tuning a model or for extracting a model using system ID techniques. This paper describes past and ongoing efforts at Ohio University and NASA MSFC to design controllers using 'data models.' The basic philosophy of this approach is to start with a stabilizing controller and frequency response data that describes the plant; then, iteratively vary the free parameters of the controller so that performance measures become closer to satisfying design specifications. The frequency response data can be either experimentally derived or analytically derived. One 'design-with-data' algorithm presented in this paper is called the Compensator Improvement Program (CIP). The current CIP designs controllers for MIMO systems so that classical gain, phase, and attenuation margins are achieved. The center-piece of the CIP algorithm is the constraint improvement technique which is used to calculate a parameter change vector that guarantees an improvement in all unsatisfied, feasible performance metrics from iteration to iteration. The paper also presents a recently demonstrated CIP-type algorithm, called the Model and Data Oriented Computer-Aided Design System (MADCADS), developed for achieving H(sub infinity) type design specifications using data models. Control system design for the NASA/MSFC Single Structure Control Facility are demonstrated for both CIP and MADCADS. Advantages of design-with-data algorithms over techniques that require analytical plant models are also presented.
Performance Prediction of a MongoDB-Based Traceability System in Smart Factory Supply Chains
Kang, Yong-Shin; Park, Il-Ha; Youm, Sekyoung
2016-01-01
In the future, with the advent of the smart factory era, manufacturing and logistics processes will become more complex, and the complexity and criticality of traceability will further increase. This research aims at developing a performance assessment method to verify scalability when implementing traceability systems based on key technologies for smart factories, such as Internet of Things (IoT) and BigData. To this end, based on existing research, we analyzed traceability requirements and an event schema for storing traceability data in MongoDB, a document-based Not Only SQL (NoSQL) database. Next, we analyzed the algorithm of the most representative traceability query and defined a query-level performance model, which is composed of response times for the components of the traceability query algorithm. Next, this performance model was solidified as a linear regression model because the response times increase linearly by a benchmark test. Finally, for a case analysis, we applied the performance model to a virtual automobile parts logistics. As a result of the case study, we verified the scalability of a MongoDB-based traceability system and predicted the point when data node servers should be expanded in this case. The traceability system performance assessment method proposed in this research can be used as a decision-making tool for hardware capacity planning during the initial stage of construction of traceability systems and during their operational phase. PMID:27983654
Performance Prediction of a MongoDB-Based Traceability System in Smart Factory Supply Chains.
Kang, Yong-Shin; Park, Il-Ha; Youm, Sekyoung
2016-12-14
In the future, with the advent of the smart factory era, manufacturing and logistics processes will become more complex, and the complexity and criticality of traceability will further increase. This research aims at developing a performance assessment method to verify scalability when implementing traceability systems based on key technologies for smart factories, such as Internet of Things (IoT) and BigData. To this end, based on existing research, we analyzed traceability requirements and an event schema for storing traceability data in MongoDB, a document-based Not Only SQL (NoSQL) database. Next, we analyzed the algorithm of the most representative traceability query and defined a query-level performance model, which is composed of response times for the components of the traceability query algorithm. Next, this performance model was solidified as a linear regression model because the response times increase linearly by a benchmark test. Finally, for a case analysis, we applied the performance model to a virtual automobile parts logistics. As a result of the case study, we verified the scalability of a MongoDB-based traceability system and predicted the point when data node servers should be expanded in this case. The traceability system performance assessment method proposed in this research can be used as a decision-making tool for hardware capacity planning during the initial stage of construction of traceability systems and during their operational phase.
Islam, Naz Niamul; Hannan, M A; Shareef, Hussain; Mohamed, Azah; Salam, M A
2014-01-01
Power oscillation damping controller is designed in linearized model with heuristic optimization techniques. Selection of the objective function is very crucial for damping controller design by optimization algorithms. In this research, comparative analysis has been carried out to evaluate the effectiveness of popular objective functions used in power system oscillation damping. Two-stage lead-lag damping controller by means of power system stabilizers is optimized using differential search algorithm for different objective functions. Linearized model simulations are performed to compare the dominant mode's performance and then the nonlinear model is continued to evaluate the damping performance over power system oscillations. All the simulations are conducted in two-area four-machine power system to bring a detailed analysis. Investigated results proved that multiobjective D-shaped function is an effective objective function in terms of moving unstable and lightly damped electromechanical modes into stable region. Thus, D-shape function ultimately improves overall system damping and concurrently enhances power system reliability.
Engine System Model Development for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Nelson, Karl W.; Simpson, Steven P.
2006-01-01
In order to design, analyze, and evaluate conceptual Nuclear Thermal Propulsion (NTP) engine systems, an improved NTP design and analysis tool has been developed. The NTP tool utilizes the Rocket Engine Transient Simulation (ROCETS) system tool and many of the routines from the Enabler reactor model found in Nuclear Engine System Simulation (NESS). Improved non-nuclear component models and an external shield model were added to the tool. With the addition of a nearly complete system reliability model, the tool will provide performance, sizing, and reliability data for NERVA-Derived NTP engine systems. A new detailed reactor model is also being developed and will replace Enabler. The new model will allow more flexibility in reactor geometry and include detailed thermal hydraulics and neutronics models. A description of the reactor, component, and reliability models is provided. Another key feature of the modeling process is the use of comprehensive spreadsheets for each engine case. The spreadsheets include individual worksheets for each subsystem with data, plots, and scaled figures, making the output very useful to each engineering discipline. Sample performance and sizing results with the Enabler reactor model are provided including sensitivities. Before selecting an engine design, all figures of merit must be considered including the overall impacts on the vehicle and mission. Evaluations based on key figures of merit of these results and results with the new reactor model will be performed. The impacts of clustering and external shielding will also be addressed. Over time, the reactor model will be upgraded to design and analyze other NTP concepts with CERMET and carbide fuel cores.
Evaluation of NASA's end-to-end data systems using DSDS+
NASA Technical Reports Server (NTRS)
Rouff, Christopher; Davenport, William; Message, Philip
1994-01-01
The Data Systems Dynamic Simulator (DSDS+) is a software tool being developed by the authors to evaluate candidate architectures for NASA's end-to-end data systems. Via modeling and simulation, we are able to quickly predict the performance characteristics of each architecture, to evaluate 'what-if' scenarios, and to perform sensitivity analyses. As such, we are using modeling and simulation to help NASA select the optimal system configuration, and to quantify the performance characteristics of this system prior to its delivery. This paper is divided into the following six sections: (1) The role of modeling and simulation in the systems engineering process. In this section, we briefly describe the different types of results obtained by modeling each phase of the systems engineering life cycle, from concept definition through operations and maintenance; (2) Recent applications of DSDS+. In this section, we describe ongoing applications of DSDS+ in support of the Earth Observing System (EOS), and we present some of the simulation results generated of candidate system designs. So far, we have modeled individual EOS subsystems (e.g. the Solid State Recorders used onboard the spacecraft), and we have also developed an integrated model of the EOS end-to-end data processing and data communications systems (from the payloads onboard to the principle investigator facilities on the ground); (3) Overview of DSDS+. In this section we define what a discrete-event model is, and how it works. The discussion is presented relative to the DSDS+ simulation tool that we have developed, including it's run-time optimization algorithms that enables DSDS+ to execute substantially faster than comparable discrete-event simulation tools; (4) Summary. In this section, we summarize our findings and 'lessons learned' during the development and application of DSDS+ to model NASA's data systems; (5) Further Information; and (6) Acknowledgements.
NASA Technical Reports Server (NTRS)
Leake, Stephen; Green, Tom; Cofer, Sue; Sauerwein, Tim
1989-01-01
HARPS is a telerobot control system that can perform some simple but useful tasks. This capability is demonstrated by performing the ORU exchange demonstration. HARPS is based on NASREM (NASA Standard Reference Model). All software is developed in Ada, and the project incorporates a number of different CASE (computer-aided software engineering) tools. NASREM was found to be a valid and useful model for building a telerobot control system. Its hierarchical and distributed structure creates a natural and logical flow for implementing large complex robust control systems. The ability of Ada to create and enforce abstraction enhanced the implementation of such control systems.
A general computer model for predicting the performance of gas sorption refrigerators
NASA Technical Reports Server (NTRS)
Sigurdson, K. B.
1983-01-01
Projected performance requirements for cryogenic spacecraft sensor cooling systems which demand higher reliability and longer lifetimes are outlined. The gas/solid sorption refrigerator is viewed as a potential solution to cryogenic cooling needs. A software model of an entire gas sorption refrigerator system was developed. The numerical model, evaluates almost any combination and order of refrigerator components and any sorbent-sorbate pair or which the sorption isotherm data are available. Parametric curves for predicting system performance were generated for two types of refrigerators, a LaNi5-H2 absorption cooler and a Charcoal-N2 adsorption cooler. It is found that precooling temperature and heat exchanger effectiveness affect the refrigerator performance. It is indicated that gas sorption refrigerators are feasible for a number of space applications.
RAM simulation model for SPH/RSV systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schryver, J.C.; Primm, A.H.; Nelson, S.C.
1995-12-31
The US Army`s Project Manager, Crusader is sponsoring the development of technologies that apply to the Self-Propelled Howitzer (SPH), formerly the Advanced Field Artillery System (AFAS), and Resupply Vehicle (RSV), formerly the Future Armored Resupply Vehicle (FARV), weapon system. Oak Ridge National Laboratory (ORNL) is currently performing developmental work in support of the SPH/PSV Crusader system. Supportive analyses of reliability, availability, and maintainability (RAM) aspects were also performed for the SPH/RSV effort. During FY 1994 and FY 1995 OPNL conducted a feasibility study to demonstrate the application of simulation modeling for RAM analysis of the Crusader system. Following completion ofmore » the feasibility study, a full-scale RAM simulation model of the Crusader system was developed for both the SPH and PSV. This report provides documentation for the simulation model as well as instructions in the proper execution and utilization of the model for the conduct of RAM analyses.« less
Design and Analysis of Precise Pointing Systems
NASA Technical Reports Server (NTRS)
Kim, Young K.
2000-01-01
The mathematical models of Glovebox Integrated Microgravity Isolation Technology (g- LIMIT) dynamics/control system, which include six degrees of freedom (DOF) equations of motion, mathematical models of position sensors, accelerometers and actuators, and acceleration and position controller, were developed using MATLAB and TREETOPS simulations. Optimal control parameters of G-LIMIT control system were determined through sensitivity studies and its performance were evaluated with the TREETOPS model of G-LIMIT dynamics and control system. The functional operation and performance of the Tektronix DTM920 digital thermometer were studied and the inputs to the crew procedures and training of the DTM920 were documented.
Automated Decomposition of Model-based Learning Problems
NASA Technical Reports Server (NTRS)
Williams, Brian C.; Millar, Bill
1996-01-01
A new generation of sensor rich, massively distributed autonomous systems is being developed that has the potential for unprecedented performance, such as smart buildings, reconfigurable factories, adaptive traffic systems and remote earth ecosystem monitoring. To achieve high performance these massive systems will need to accurately model themselves and their environment from sensor information. Accomplishing this on a grand scale requires automating the art of large-scale modeling. This paper presents a formalization of [\\em decompositional model-based learning (DML)], a method developed by observing a modeler's expertise at decomposing large scale model estimation tasks. The method exploits a striking analogy between learning and consistency-based diagnosis. Moriarty, an implementation of DML, has been applied to thermal modeling of a smart building, demonstrating a significant improvement in learning rate.
Assessing the performance of regional landslide early warning models: the EDuMaP method
NASA Astrophysics Data System (ADS)
Calvello, M.; Piciullo, L.
2016-01-01
A schematic of the components of regional early warning systems for rainfall-induced landslides is herein proposed, based on a clear distinction between warning models and warning systems. According to this framework an early warning system comprises a warning model as well as a monitoring and warning strategy, a communication strategy and an emergency plan. The paper proposes the evaluation of regional landslide warning models by means of an original approach, called the "event, duration matrix, performance" (EDuMaP) method, comprising three successive steps: identification and analysis of the events, i.e., landslide events and warning events derived from available landslides and warnings databases; definition and computation of a duration matrix, whose elements report the time associated with the occurrence of landslide events in relation to the occurrence of warning events, in their respective classes; evaluation of the early warning model performance by means of performance criteria and indicators applied to the duration matrix. During the first step the analyst identifies and classifies the landslide and warning events, according to their spatial and temporal characteristics, by means of a number of model parameters. In the second step, the analyst computes a time-based duration matrix with a number of rows and columns equal to the number of classes defined for the warning and landslide events, respectively. In the third step, the analyst computes a series of model performance indicators derived from a set of performance criteria, which need to be defined by considering, once again, the features of the warning model. The applicability, potentialities and limitations of the EDuMaP method are tested and discussed using real landslides and warning data from the municipal early warning system operating in Rio de Janeiro (Brazil).
Peng, Hai-Qin; Liu, Yan; Wang, Hong-Wu; Ma, Lu-Ming
2015-10-01
In recent years, due to global climate change and rapid urbanization, extreme weather events occur to the city at an increasing frequency. Waterlogging is common because of heavy rains. In this case, the urban drainage system can no longer meet the original design requirements, resulting in traffic jams and even paralysis and post a threat to urban safety. Therefore, it provides a necessary foundation for urban drainage planning and design to accurately assess the capacity of the drainage system and correctly simulate the transport effect of drainage network and the carrying capacity of drainage facilities. This study adopts InfoWorks Integrated Catchment Management (ICM) to present the two combined sewer drainage systems in Yangpu District, Shanghai (China). The model can assist the design of the drainage system. Model calibration is performed based on the historical rainfall events. The calibrated model is used for the assessment of the outlet drainage and pipe loads for the storm scenario currently existing or possibly occurring in the future. The study found that the simulation and analysis results of the drainage system model were reliable. They could fully reflect the service performance of the drainage system in the study area and provide decision-making support for regional flood control and transformation of pipeline network.
Low GWP Refrigerants Modelling Study for a Room Air Conditioner Having Microchannel Heat Exchangers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Bo; Bhandari, Mahabir S
Microchannel heat exchangers (MHX) have found great successes in residential and commercial air conditioning applications, being compact heat exchangers, to reduce refrigerant charge and material cost. This investigation aims to extend the application of MHXs in split, room air conditioners (RAC), per fundamental heat exchanger and system modelling. For this paper, microchannel condenser and evaporator models were developed, using a segment-to-segment modelling approach. The microchannel heat exchanger models were integrated to a system design model. The system model is able to predict the performance indices, such as cooling capacity, efficiency, sensible heat ratio, etc. Using the calibrated system and heatmore » exchanger models, we evaluated numerous low GWP (global warming potential) refrigerants. The predicted system performance indices, e.g. cooling efficiency, compressor discharge temperature, and required compressor displacement volume etc., are compared. Suitable replacements for R22 and R-410A for the room air conditioner application are recommended.« less
Evaluation of Contamination Inspection and Analysis Methods through Modeling System Performance
NASA Technical Reports Server (NTRS)
Seasly, Elaine; Dever, Jason; Stuban, Steven M. F.
2016-01-01
Contamination is usually identified as a risk on the risk register for sensitive space systems hardware. Despite detailed, time-consuming, and costly contamination control efforts during assembly, integration, and test of space systems, contaminants are still found during visual inspections of hardware. Improved methods are needed to gather information during systems integration to catch potential contamination issues earlier and manage contamination risks better. This research explores evaluation of contamination inspection and analysis methods to determine optical system sensitivity to minimum detectable molecular contamination levels based on IEST-STD-CC1246E non-volatile residue (NVR) cleanliness levels. Potential future degradation of the system is modeled given chosen modules representative of optical elements in an optical system, minimum detectable molecular contamination levels for a chosen inspection and analysis method, and determining the effect of contamination on the system. By modeling system performance based on when molecular contamination is detected during systems integration and at what cleanliness level, the decision maker can perform trades amongst different inspection and analysis methods and determine if a planned method is adequate to meet system requirements and manage contamination risk.
NASA Technical Reports Server (NTRS)
White, R. J.
1974-01-01
The present work discusses a model of the cardiovascular system and related subsystems capable of long-term simulations of the type desired for in-space hypogravic human physiological performance prediction. The discussion centers around the model of Guyton and modifications of it. In order to draw attention to the fluid handling capabilities of the model, one of several transfusion simulations performed is presented, namely, the isotonic saline transfusion simulation.
What’s in a game? A systems approach to enhancing performance analysis in football
2017-01-01
Purpose Performance analysis (PA) in football is considered to be an integral component of understanding the requirements for optimal performance. Despite vast amounts of research in this area key gaps remain, including what comprises PA in football, and methods to minimise research-practitioner gaps. The aim of this study was to develop a model of the football match system in order to better describe and understand the components of football performance. Such a model could inform the design of new PA methods. Method Eight elite level football Subject Method Experts (SME’s) participated in two workshops to develop a systems model of the football match system. The model was developed using a first-of-its-kind application of Cognitive Work Analysis (CWA) in football. CWA has been used in many other non-sporting domains to analyse and understand complex systems. Result Using CWA, a model of the football match ‘system’ was developed. The model enabled identification of several PA measures not currently utilised, including communication between team members, adaptability of teams, playing at the appropriate tempo, as well as attacking and defending related measures. Conclusion The results indicate that football is characteristic of a complex sociotechnical system, and revealed potential new and unique PA measures regarded as important by SME’s, yet not currently measured. Importantly, these results have identified a gap between the current PA research and the information that is meaningful to football coaches and practitioners. PMID:28212392
Modeling the target acquisition performance of active imaging systems
NASA Astrophysics Data System (ADS)
Espinola, Richard L.; Jacobs, Eddie L.; Halford, Carl E.; Vollmerhausen, Richard; Tofsted, David H.
2007-04-01
Recent development of active imaging system technology in the defense and security community have driven the need for a theoretical understanding of its operation and performance in military applications such as target acquisition. In this paper, the modeling of active imaging systems, developed at the U.S. Army RDECOM CERDEC Night Vision & Electronic Sensors Directorate, is presented with particular emphasis on the impact of coherent effects such as speckle and atmospheric scintillation. Experimental results from human perception tests are in good agreement with the model results, validating the modeling of coherent effects as additional noise sources. Example trade studies on the design of a conceptual active imaging system to mitigate deleterious coherent effects are shown.
Modeling the target acquisition performance of active imaging systems.
Espinola, Richard L; Jacobs, Eddie L; Halford, Carl E; Vollmerhausen, Richard; Tofsted, David H
2007-04-02
Recent development of active imaging system technology in the defense and security community have driven the need for a theoretical understanding of its operation and performance in military applications such as target acquisition. In this paper, the modeling of active imaging systems, developed at the U.S. Army RDECOM CERDEC Night Vision & Electronic Sensors Directorate, is presented with particular emphasis on the impact of coherent effects such as speckle and atmospheric scintillation. Experimental results from human perception tests are in good agreement with the model results, validating the modeling of coherent effects as additional noise sources. Example trade studies on the design of a conceptual active imaging system to mitigate deleterious coherent effects are shown.
NREL and Panasonic | Energy Systems Integration Facility | NREL
with distribution system modeling for the first time. The tool combines NREL's building energy system distribution system models, and Panasonic will perform cost-benefit analyses. Along with the creation of the
NASA Astrophysics Data System (ADS)
McCray, Wilmon Wil L., Jr.
The research was prompted by a need to conduct a study that assesses process improvement, quality management and analytical techniques taught to students in U.S. colleges and universities undergraduate and graduate systems engineering and the computing science discipline (e.g., software engineering, computer science, and information technology) degree programs during their academic training that can be applied to quantitatively manage processes for performance. Everyone involved in executing repeatable processes in the software and systems development lifecycle processes needs to become familiar with the concepts of quantitative management, statistical thinking, process improvement methods and how they relate to process-performance. Organizations are starting to embrace the de facto Software Engineering Institute (SEI) Capability Maturity Model Integration (CMMI RTM) Models as process improvement frameworks to improve business processes performance. High maturity process areas in the CMMI model imply the use of analytical, statistical, quantitative management techniques, and process performance modeling to identify and eliminate sources of variation, continually improve process-performance; reduce cost and predict future outcomes. The research study identifies and provides a detail discussion of the gap analysis findings of process improvement and quantitative analysis techniques taught in U.S. universities systems engineering and computing science degree programs, gaps that exist in the literature, and a comparison analysis which identifies the gaps that exist between the SEI's "healthy ingredients " of a process performance model and courses taught in U.S. universities degree program. The research also heightens awareness that academicians have conducted little research on applicable statistics and quantitative techniques that can be used to demonstrate high maturity as implied in the CMMI models. The research also includes a Monte Carlo simulation optimization model and dashboard that demonstrates the use of statistical methods, statistical process control, sensitivity analysis, quantitative and optimization techniques to establish a baseline and predict future customer satisfaction index scores (outcomes). The American Customer Satisfaction Index (ACSI) model and industry benchmarks were used as a framework for the simulation model.
Sutton, J P; DeJong, G; Song, H; Wilkerson, D
1997-12-01
To operationalize research findings about a medical rehabilitation classification and payment model by building a prototype of a prospective payment system, and to determine whether this prototype model promotes payment equity. This latter objective is accomplished by identifying whether any facility or payment model characteristics are systematically associated with financial performance. This study was conducted in two phases. In Phase 1 the components of a diagnosis-related group (DRG)-like payment system, including a base rate, function-related group (FRG) weights, and adjusters, were identified and estimated using hospital cost functions. Phase 2 consisted of a simulation analysis in which each facility's financial performance was modeled, based on its 1990-1991 case mix. A multivariate regression equation was conducted to assess the extent to which characteristics of 42 rehabilitation facilities contribute toward determining financial performance under the present Medicare payment system as well as under the hypothetical model developed. Phase 1 (model development) included 61 rehabilitation hospitals. Approximately 59% were rehabilitation units within a general hospital and 48% were teaching facilities. The number of rehabilitation beds averaged 52. Phase 2 of the stimulation analysis included 42 rehabilitation facilities, subscribers to UDS in 1990-1991. Of these, 69% were rehabilitation units and 52% were teaching facilities. The number of rehabilitation beds averaged 48. Financial performance, as measured by the ratio of reimbursement to average costs. Case-mix index is the primary determinant of financial performance under the present Medicare payment system. None of the facility characteristics included in this analysis were associated with financial performance under the hypothetical FRG payment model. The most notable impact of an FRG-based payment model would be to create a stronger link between resource intensity and level of reimbursement, resulting in greater equity in the reimbursement of inpatient medical rehabilitation hospitals.
System Behavior Models: A Survey of Approaches
2016-06-01
MODELS: A SURVEY OF APPROACHES by Scott R. Ruppel June 2016 Thesis Advisor: Kristin Giammarco Second Reader: John M. Green THIS PAGE...Thesis 4. TITLE AND SUBTITLE SYSTEM BEHAVIOR MODELS: A SURVEY OF APPROACHES 5. FUNDING NUMBERS 6. AUTHOR(S) Scott R. Ruppel 7. PERFORMING...Monterey Phoenix, Petri nets, behavior modeling, model-based systems engineering, modeling approaches, modeling survey 15. NUMBER OF PAGES 85 16
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piotr A. Domanski; W. Vance Payne
2002-10-31
The main goal of this project was to investigate and compare the performance of an R410A air conditioner to that of an R22 air conditioner, with specific interest in performance at high ambient temperatures at which the condenser of the R410A system may be operating above the refrigerant's critical point. Part 1 of this project consisted of conducting comprehensive measurements of thermophysical for refrigerant R125 and refrigerant blends R410A and R507A and developing new equation of state formulations and mixture models for predicting thermophysical properties of HFC refrigerant blends. Part 2 of this project conducted performance measurements of split-system, 3-tonmore » R22 and R410A residential air conditioners in the 80 to 135 F (27.8 to 57.2 C) outdoor temperature range and development of a system performance model. The performance data was used in preparing a beta version of EVAP-COND, a windows-based simulation package for predicting performance of finned-tube evaporators and condensers. The modeling portion of this project also included the formulation of a model for an air-conditioner equipped with a thermal expansion valve (TXV). Capacity and energy efficiency ratio (EER) were measured and compared. The R22 system's performance was measured over the outdoor ambient temperature range of 80 to 135 F (27.8 to 57.2 C). The same test range was planned for the R410A system. However, the compressor's safety system cut off the compressor at the 135.0 F (57.2 C) test temperature. The highest measurement on this system was at 130.0 F (54.4 C). Subsequently, a custom-manufactured R410A compressor with a disabled safety system and a more powerful motor was installed and performance was measured at outdoor temperatures up to 155.0 F (68.3 C). Both systems had similar capacity and EER performance at 82.0 F (27.8 C). The capacity and EER degradation of both systems were nearly linearly dependent with rising ambient outdoor ambient test temperatures. The performance degradation of R410A at higher temperatures was greater than R22. However, the R22 and R410A systems both operated normally during all tests. Visual observations of the R410A system provided no indication of vibrations or TXV hunting at high ambient outdoor test conditions with the compressor operating in the transcritical regime.« less
The Large Synoptic Survey Telescope OCS and TCS models
NASA Astrophysics Data System (ADS)
Schumacher, German; Delgado, Francisco
2010-07-01
The Large Synoptic Survey Telescope (LSST) is a project envisioned as a system of systems with demanding science, technical, and operational requirements, that must perform as a fully integrated unit. The design and implementation of such a system poses big engineering challenges when performing requirements analysis, detailed interface definitions, operational modes and control strategy studies. The OMG System Modeling Language (SysML) has been selected as the framework for the systems engineering analysis and documentation for the LSST. Models for the overall system architecture and different observatory subsystems have been built describing requirements, structure, interfaces and behavior. In this paper we show the models for the Observatory Control System (OCS) and the Telescope Control System (TCS), and how this methodology has helped in the clarification of the design and requirements. In one common language, the relationships of the OCS, TCS, Camera and Data management subsystems are captured with models of the structure, behavior, requirements and the traceability between them.
Propulsion IVHM Technology Experiment
NASA Technical Reports Server (NTRS)
Chicatelli, Amy K.; Maul, William A.; Fulton, Christopher E.
2006-01-01
The Propulsion IVHM Technology Experiment (PITEX) successfully demonstrated real-time fault detection and isolation of a virtual reusable launch vehicle (RLV) main propulsion system (MPS). Specifically, the PITEX research project developed and applied a model-based diagnostic system for the MPS of the X-34 RLV, a space-launch technology demonstrator. The demonstration was simulation-based using detailed models of the propulsion subsystem to generate nominal and failure scenarios during captive carry, which is the most safety-critical portion of the X-34 flight. Since no system-level testing of the X-34 Main Propulsion System (MPS) was performed, these simulated data were used to verify and validate the software system. Advanced diagnostic and signal processing algorithms were developed and tested in real time on flight-like hardware. In an attempt to expose potential performance problems, the PITEX diagnostic system was subjected to numerous realistic effects in the simulated data including noise, sensor resolution, command/valve talkback information, and nominal build variations. In all cases, the PITEX system performed as required. The research demonstrated potential benefits of model-based diagnostics, defined performance metrics required to evaluate the diagnostic system, and studied the impact of real-world challenges encountered when monitoring propulsion subsystems.
Dynamic inverse models in human-cyber-physical systems
NASA Astrophysics Data System (ADS)
Robinson, Ryan M.; Scobee, Dexter R. R.; Burden, Samuel A.; Sastry, S. Shankar
2016-05-01
Human interaction with the physical world is increasingly mediated by automation. This interaction is characterized by dynamic coupling between robotic (i.e. cyber) and neuromechanical (i.e. human) decision-making agents. Guaranteeing performance of such human-cyber-physical systems will require predictive mathematical models of this dynamic coupling. Toward this end, we propose a rapprochement between robotics and neuromechanics premised on the existence of internal forward and inverse models in the human agent. We hypothesize that, in tele-robotic applications of interest, a human operator learns to invert automation dynamics, directly translating from desired task to required control input. By formulating the model inversion problem in the context of a tracking task for a nonlinear control system in control-a_ne form, we derive criteria for exponential tracking and show that the resulting dynamic inverse model generally renders a portion of the physical system state (i.e., the internal dynamics) unobservable from the human operator's perspective. Under stability conditions, we show that the human can achieve exponential tracking without formulating an estimate of the system's state so long as they possess an accurate model of the system's dynamics. These theoretical results are illustrated using a planar quadrotor example. We then demonstrate that the automation can intervene to improve performance of the tracking task by solving an optimal control problem. Performance is guaranteed to improve under the assumption that the human learns and inverts the dynamic model of the altered system. We conclude with a discussion of practical limitations that may hinder exact dynamic model inversion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masada, Glenn; Moon, Tess
2013-09-01
This project team analyzed supplemental heat rejection/recovery (SHR) devices or systems that could be used in hybrid ground source heat pump (HGHP) systems located in arid or semi-arid regions in southwestern U.S. Identification of effective SHR solutions would enhance the deployment of ground source heat pumps (GHP) in these regions. In a parallel effort, the team developed integrated GHP models that coupled the building load, heat pump, and ground loop subsystems and which could be applied to residential and commercial office buildings. Then GHP and HGHP performances could be compared in terms of operational performance and life-cycle costs. Several potentialmore » SHR devices were analyzed by applying two strategies: 1) to remove heat directly from the water in the ground loop before it enters the ground and 2) to remove heat in the refrigerant loop of the vapor compression cycle (VCC) of the heat pump so less heat is transferred to the water loop at the condenser of the VCC. Cooling towers, adsorption coolers, and thermoelectric liquid coolers were included in strategy 1, and expanded desuperheaters, thermosyphons, and an optimized VCC were included in strategy 2. Of all SHR devices analyzed, only the cooling tower provided a cost-effective performance enhancement. For the integrated GHP model, the project team selected the building load model HAMBASE and its powerful computational Simulink/MatLab platform, empirical performance map models of the heat pumps based upon manufacturers’ performance data, and a ground loop model developed by Oklahoma State University and rewritten for this project in Simulink/MatLab. The design process used GLHEPRO, also from Oklahoma State University, to size the borehole fields. The building load and ground loop models were compared with simulations from eQuest, ASHRAE 140-2008 standards, EnergyPlus, and GLHEPRO and were found to predict those subsystems’ performance well. The integrated GHP model was applied to a 195m 2 (2100ft 2) residential building and a 4,982m 2 (53,628ft 2) three-story commercial office building, and it ran 10-15 year simulations. The integrated GHP model and its Simulink platform provided residential data, ranging from seconds to years, and commercial office building data, ranging from minutes to years. A cooling tower model was coupled to the base case integrated GHP model for the residential building and the resulting HGHP system provided a cost-effective solution for the Austin, TX location. Simulations for both the residential and commercial building models were run with varying degrees of SHR (device/system not identified) and the results were found to significantly decrease installation costs, increase heat pump efficiency (lower entering water temperature), and prolong the lifetime of the borehole field. Lifetime cycle costs were estimated from the simulation results. Sensitivity studies on system operating performance and lifetime costs were performed on design parameters, such as construction materials, borehole length, borehole configuration and spacing, grout conductivity, and effects of SHR. While some of the results are intuitive, these studies provided quantitative estimates of improved performance and cost. One of the most important results of this sensitivity study is that overall system performance is very sensitive to these design parameters and that modeling and simulation are essential tools to design cost-effective systems.« less
Reliability issues in active control of large flexible space structures
NASA Technical Reports Server (NTRS)
Vandervelde, W. E.
1986-01-01
Efforts in this reporting period were centered on four research tasks: design of failure detection filters for robust performance in the presence of modeling errors, design of generalized parity relations for robust performance in the presence of modeling errors, design of failure sensitive observers using the geometric system theory of Wonham, and computational techniques for evaluation of the performance of control systems with fault tolerance and redundancy management
Modelling the influence of sensory dynamics on linear and nonlinear driver steering control
NASA Astrophysics Data System (ADS)
Nash, C. J.; Cole, D. J.
2018-05-01
A recent review of the literature has indicated that sensory dynamics play an important role in the driver-vehicle steering task, motivating the design of a new driver model incorporating human sensory systems. This paper presents a full derivation of the linear driver model developed in previous work, and extends the model to control a vehicle with nonlinear tyres. Various nonlinear controllers and state estimators are compared with different approximations of the true system dynamics. The model simulation time is found to increase significantly with the complexity of the controller and state estimator. In general the more complex controllers perform best, although with certain vehicle and tyre models linearised controllers perform as well as a full nonlinear optimisation. Various extended Kalman filters give similar results, although the driver's sensory dynamics reduce control performance compared with full state feedback. The new model could be used to design vehicle systems which interact more naturally and safely with a human driver.
Modeling of Electrocardiograph Telediagnosing System Based on Petri Net
NASA Astrophysics Data System (ADS)
Hu, Wensong; Li, Ming; Li, Lan
This paper analyzed the characteristics of the electrocardiograph telediagnosing system. Firstly, we introduce the system and Petri nets. Secondly, we built a topological diagram of this system. Then we use Petri nets to show the physical process of this system. Finally, we verified the model of the electrocardiograph telediagnosing system. With the help of model based on Petri nets, we analyzed the system performance and feasibility.
Integrated modeling tool for performance engineering of complex computer systems
NASA Technical Reports Server (NTRS)
Wright, Gary; Ball, Duane; Hoyt, Susan; Steele, Oscar
1989-01-01
This report summarizes Advanced System Technologies' accomplishments on the Phase 2 SBIR contract NAS7-995. The technical objectives of the report are: (1) to develop an evaluation version of a graphical, integrated modeling language according to the specification resulting from the Phase 2 research; and (2) to determine the degree to which the language meets its objectives by evaluating ease of use, utility of two sets of performance predictions, and the power of the language constructs. The technical approach followed to meet these objectives was to design, develop, and test an evaluation prototype of a graphical, performance prediction tool. The utility of the prototype was then evaluated by applying it to a variety of test cases found in the literature and in AST case histories. Numerous models were constructed and successfully tested. The major conclusion of this Phase 2 SBIR research and development effort is that complex, real-time computer systems can be specified in a non-procedural manner using combinations of icons, windows, menus, and dialogs. Such a specification technique provides an interface that system designers and architects find natural and easy to use. In addition, PEDESTAL's multiview approach provides system engineers with the capability to perform the trade-offs necessary to produce a design that meets timing performance requirements. Sample system designs analyzed during the development effort showed that models could be constructed in a fraction of the time required by non-visual system design capture tools.
Incorporation of RAM techniques into simulation modeling
NASA Astrophysics Data System (ADS)
Nelson, S. C., Jr.; Haire, M. J.; Schryver, J. C.
1995-01-01
This work concludes that reliability, availability, and maintainability (RAM) analytical techniques can be incorporated into computer network simulation modeling to yield an important new analytical tool. This paper describes the incorporation of failure and repair information into network simulation to build a stochastic computer model to represent the RAM Performance of two vehicles being developed for the US Army: The Advanced Field Artillery System (AFAS) and the Future Armored Resupply Vehicle (FARV). The AFAS is the US Army's next generation self-propelled cannon artillery system. The FARV is a resupply vehicle for the AFAS. Both vehicles utilize automation technologies to improve the operational performance of the vehicles and reduce manpower. The network simulation model used in this work is task based. The model programmed in this application requirements a typical battle mission and the failures and repairs that occur during that battle. Each task that the FARV performs--upload, travel to the AFAS, refuel, perform tactical/survivability moves, return to logistic resupply, etc.--is modeled. Such a model reproduces a model reproduces operational phenomena (e.g., failures and repairs) that are likely to occur in actual performance. Simulation tasks are modeled as discrete chronological steps; after the completion of each task decisions are programmed that determine the next path to be followed. The result is a complex logic diagram or network. The network simulation model is developed within a hierarchy of vehicle systems, subsystems, and equipment and includes failure management subnetworks. RAM information and other performance measures are collected which have impact on design requirements. Design changes are evaluated through 'what if' questions, sensitivity studies, and battle scenario changes.
Aparicio, Joaquín; Jiménez, Ana; Álvarez, Fernando J.; Ureña, Jesús; De Marziani, Carlos; Diego, Cristina
2011-01-01
The great variability usually found in underwater media makes modeling a challenging task, but helpful for better understanding or predicting the performance of future deployed systems. In this work, an underwater acoustic propagation model is presented. This model obtains the multipath structure by means of the ray tracing technique. Using this model, the behavior of a relative positioning system is presented. One of the main advantages of relative positioning systems is that only the distances between all the buoys are needed to obtain their positions. In order to obtain the distances, the propagation times of acoustic signals coded by Complementary Set of Sequences (CSS) are used. In this case, the arrival instants are obtained by means of correlation processes. The distances are then used to obtain the position of the buoys by means of the Multidimensional Scaling Technique (MDS). As an early example of an application using this relative positioning system, a tracking of the position of the buoys at different times is performed. With this tracking, the surface current of a particular region could be studied. The performance of the system is evaluated in terms of the distance from the real position to the estimated one. PMID:22247661
Understanding and Modeling Teams As Dynamical Systems
Gorman, Jamie C.; Dunbar, Terri A.; Grimm, David; Gipson, Christina L.
2017-01-01
By its very nature, much of teamwork is distributed across, and not stored within, interdependent people working toward a common goal. In this light, we advocate a systems perspective on teamwork that is based on general coordination principles that are not limited to cognitive, motor, and physiological levels of explanation within the individual. In this article, we present a framework for understanding and modeling teams as dynamical systems and review our empirical findings on teams as dynamical systems. We proceed by (a) considering the question of why study teams as dynamical systems, (b) considering the meaning of dynamical systems concepts (attractors; perturbation; synchronization; fractals) in the context of teams, (c) describe empirical studies of team coordination dynamics at the perceptual-motor, cognitive-behavioral, and cognitive-neurophysiological levels of analysis, and (d) consider the theoretical and practical implications of this approach, including new kinds of explanations of human performance and real-time analysis and performance modeling. Throughout our discussion of the topics we consider how to describe teamwork using equations and/or modeling techniques that describe the dynamics. Finally, we consider what dynamical equations and models do and do not tell us about human performance in teams and suggest future research directions in this area. PMID:28744231
NASA Astrophysics Data System (ADS)
Walker, Ernest; Chen, Xinjia; Cooper, Reginald L.
2010-04-01
An arbitrarily accurate approach is used to determine the bit-error rate (BER) performance for generalized asynchronous DS-CDMA systems, in Gaussian noise with Raleigh fading. In this paper, and the sequel, new theoretical work has been contributed which substantially enhances existing performance analysis formulations. Major contributions include: substantial computational complexity reduction, including a priori BER accuracy bounding; an analytical approach that facilitates performance evaluation for systems with arbitrary spectral spreading distributions, with non-uniform transmission delay distributions. Using prior results, augmented by these enhancements, a generalized DS-CDMA system model is constructed and used to evaluated the BER performance, in a variety of scenarios. In this paper, the generalized system modeling was used to evaluate the performance of both Walsh- Hadamard (WH) and Walsh-Hadamard-seeded zero-correlation-zone (WH-ZCZ) coding. The selection of these codes was informed by the observation that WH codes contain N spectral spreading values (0 to N - 1), one for each code sequence; while WH-ZCZ codes contain only two spectral spreading values (N/2 - 1,N/2); where N is the sequence length in chips. Since these codes span the spectral spreading range for DS-CDMA coding, by invoking an induction argument, the generalization of the system model is sufficiently supported. The results in this paper, and the sequel, support the claim that an arbitrary accurate performance analysis for DS-CDMA systems can be evaluated over the full range of binary coding, with minimal computational complexity.
Realyvásquez, Arturo; Maldonado-Macías, Aidé Aracely; García-Alcaraz, Jorge; Cortés-Robles, Guillermo; Blanco-Fernández, Julio
2016-01-05
This paper analyzes the effects of environmental elements on the psychological characteristics and performance of employees in manufacturing systems using structural equation modeling. Increasing the comprehension of these effects may help optimize manufacturing systems regarding their employees' psychological characteristics and performance from a macroergonomic perspective. As the method, a new macroergonomic compatibility questionnaire (MCQ) was developed and statistically validated, and 158 respondents at four manufacture companies were considered. Noise, lighting and temperature, humidity and air quality (THAQ) were used as independent variables and psychological characteristics and employees' performance as dependent variables. To propose and test the hypothetical causal model of significant relationships among the variables, a data analysis was deployed. Results found that the macroergonomic compatibility of environmental elements presents significant direct effects on employees' psychological characteristics and either direct or indirect effects on the employees' performance. THAQ had the highest direct and total effects on psychological characteristics. Regarding the direct and total effects on employees' performance, the psychological characteristics presented the highest effects, followed by THAQ conditions. These results may help measure and optimize manufacturing systems' performance by enhancing their macroergonomic compatibility and quality of life at work of the employees.
Simulation of process identification and controller tuning for flow control system
NASA Astrophysics Data System (ADS)
Chew, I. M.; Wong, F.; Bono, A.; Wong, K. I.
2017-06-01
PID controller is undeniably the most popular method used in controlling various industrial processes. The feature to tune the three elements in PID has allowed the controller to deal with specific needs of the industrial processes. This paper discusses the three elements of control actions and improving robustness of controllers through combination of these control actions in various forms. A plant model is simulated using the Process Control Simulator in order to evaluate the controller performance. At first, the open loop response of the plant is studied by applying a step input to the plant and collecting the output data from the plant. Then, FOPDT of physical model is formed by using both Matlab-Simulink and PRC method. Then, calculation of controller’s setting is performed to find the values of Kc and τi that will give satisfactory control in closed loop system. Then, the performance analysis of closed loop system is obtained by set point tracking analysis and disturbance rejection performance. To optimize the overall physical system performance, a refined tuning of PID or detuning is further conducted to ensure a consistent resultant output of closed loop system reaction to the set point changes and disturbances to the physical model. As a result, the PB = 100 (%) and τi = 2.0 (s) is preferably chosen for setpoint tracking while PB = 100 (%) and τi = 2.5 (s) is selected for rejecting the imposed disturbance to the model. In a nutshell, selecting correlation tuning values is likewise depended on the required control’s objective for the stability performance of overall physical model.
System analysis tools for an ELT at ESO
NASA Astrophysics Data System (ADS)
Mueller, Michael; Koch, Franz
2006-06-01
Engineering of complex, large scale systems like the ELT designs currently investigated and developed in Europe and Northern America require powerful and sophisticated tools within specific technical disciplines such as mechanics, optics and control engineering. However, even analyzing a certain component of the telescope like the telescope structure necessitates a system approach to evaluate the structural effects onto the optical performance. This paper shows several software tools developed by the European Southern Observatory (ESO) which focus onto the system approach in the analyses: Using modal results of a finite element analysis the SMI-toolbox allows an easy generation of structural models with different sizes and levels of accuracy for the control design and closed-loop simulations. The optical modeling code BeamWarrior was developed by ESO and Astrium GmbH, Germany) especially for integrated modeling and interfering with a structural model. Within BeamWarrior displacements and deformations can be applied in an arbitrary coordinate system, and hence also in the global coordinates of the FE model avoiding error prone transformations. In addition to this, a sparse state space model object was developed for Matlab to gain in computational efficiency and reduced memory requirements due to the sparsity pattern of both the structural models and the control architecture. As one result these tools allow building an integrated model in order to reliably simulate interactions, cross-coupling effects, system responses, and to evaluate global performance. In order to evaluate disturbance effects on the optical performance in openloop more efficiently, an optical evaluation toolbox was built in the FE software ANSYS which performs Zernike decomposition and best-fit computation of the deformations directly in the FE analysis.
IGMS: An Integrated ISO-to-Appliance Scale Grid Modeling System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmintier, Bryan; Hale, Elaine; Hansen, Timothy M.
This paper describes the Integrated Grid Modeling System (IGMS), a novel electric power system modeling platform for integrated transmission-distribution analysis that co-simulates off-the-shelf tools on high performance computing (HPC) platforms to offer unprecedented resolution from ISO markets down to appliances and other end uses. Specifically, the system simultaneously models hundreds or thousands of distribution systems in co-simulation with detailed Independent System Operator (ISO) markets and AGC-level reserve deployment. IGMS uses a new MPI-based hierarchical co-simulation framework to connect existing sub-domain models. Our initial efforts integrate opensource tools for wholesale markets (FESTIV), bulk AC power flow (MATPOWER), and full-featured distribution systemsmore » including physics-based end-use and distributed generation models (many instances of GridLAB-D[TM]). The modular IGMS framework enables tool substitution and additions for multi-domain analyses. This paper describes the IGMS tool, characterizes its performance, and demonstrates the impacts of the coupled simulations for analyzing high-penetration solar PV and price responsive load scenarios.« less
Validation of a Monte Carlo simulation of the Philips Allegro/GEMINI PET systems using GATE
NASA Astrophysics Data System (ADS)
Lamare, F.; Turzo, A.; Bizais, Y.; Cheze LeRest, C.; Visvikis, D.
2006-02-01
A newly developed simulation toolkit, GATE (Geant4 Application for Tomographic Emission), was used to develop a Monte Carlo simulation of a fully three-dimensional (3D) clinical PET scanner. The Philips Allegro/GEMINI PET systems were simulated in order to (a) allow a detailed study of the parameters affecting the system's performance under various imaging conditions, (b) study the optimization and quantitative accuracy of emission acquisition protocols for dynamic and static imaging, and (c) further validate the potential of GATE for the simulation of clinical PET systems. A model of the detection system and its geometry was developed. The accuracy of the developed detection model was tested through the comparison of simulated and measured results obtained with the Allegro/GEMINI systems for a number of NEMA NU2-2001 performance protocols including spatial resolution, sensitivity and scatter fraction. In addition, an approximate model of the system's dead time at the level of detected single events and coincidences was developed in an attempt to simulate the count rate related performance characteristics of the scanner. The developed dead-time model was assessed under different imaging conditions using the count rate loss and noise equivalent count rates performance protocols of standard and modified NEMA NU2-2001 (whole body imaging conditions) and NEMA NU2-1994 (brain imaging conditions) comparing simulated with experimental measurements obtained with the Allegro/GEMINI PET systems. Finally, a reconstructed image quality protocol was used to assess the overall performance of the developed model. An agreement of <3% was obtained in scatter fraction, with a difference between 4% and 10% in the true and random coincidence count rates respectively, throughout a range of activity concentrations and under various imaging conditions, resulting in <8% differences between simulated and measured noise equivalent count rates performance. Finally, the image quality validation study revealed a good agreement in signal-to-noise ratio and contrast recovery coefficients for a number of different volume spheres and two different (clinical level based) tumour-to-background ratios. In conclusion, these results support the accurate modelling of the Philips Allegro/GEMINI PET systems using GATE in combination with a dead-time model for the signal flow description, which leads to an agreement of <10% in coincidence count rates under different imaging conditions and clinically relevant activity concentration levels.
Preliminary Tests of a New Low-Cost Photogrammetric System
NASA Astrophysics Data System (ADS)
Santise, M.; Thoeni, K.; Roncella, R.; Sloan, S. W.; Giacomini, A.
2017-11-01
This paper presents preliminary tests of a new low-cost photogrammetric system for 4D modelling of large scale areas for civil engineering applications. The system consists of five stand-alone units. Each of the units is composed of a Raspberry Pi 2 Model B (RPi2B) single board computer connected to a PiCamera Module V2 (8 MP) and is powered by a 10 W solar panel. The acquisition of the images is performed automatically using Python scripts and the OpenCV library. Images are recorded at different times during the day and automatically uploaded onto a FTP server from where they can be accessed for processing. Preliminary tests and outcomes of the system are discussed in detail. The focus is on the performance assessment of the low-cost sensor and the quality evaluation of the digital surface models generated by the low-cost photogrammetric systems in the field under real test conditions. Two different test cases were set up in order to calibrate the low-cost photogrammetric system and to assess its performance. First comparisons with a TLS model show a good agreement.
NASA Technical Reports Server (NTRS)
Smith, R. M.
1991-01-01
Numerous applications in the area of computer system analysis can be effectively studied with Markov reward models. These models describe the behavior of the system with a continuous-time Markov chain, where a reward rate is associated with each state. In a reliability/availability model, upstates may have reward rate 1 and down states may have reward rate zero associated with them. In a queueing model, the number of jobs of certain type in a given state may be the reward rate attached to that state. In a combined model of performance and reliability, the reward rate of a state may be the computational capacity, or a related performance measure. Expected steady-state reward rate and expected instantaneous reward rate are clearly useful measures of the Markov reward model. More generally, the distribution of accumulated reward or time-averaged reward over a finite time interval may be determined from the solution of the Markov reward model. This information is of great practical significance in situations where the workload can be well characterized (deterministically, or by continuous functions e.g., distributions). The design process in the development of a computer system is an expensive and long term endeavor. For aerospace applications the reliability of the computer system is essential, as is the ability to complete critical workloads in a well defined real time interval. Consequently, effective modeling of such systems must take into account both performance and reliability. This fact motivates our use of Markov reward models to aid in the development and evaluation of fault tolerant computer systems.
Automatic translation of digraph to fault-tree models
NASA Technical Reports Server (NTRS)
Iverson, David L.
1992-01-01
The author presents a technique for converting digraph models, including those models containing cycles, to a fault-tree format. A computer program which automatically performs this translation using an object-oriented representation of the models has been developed. The fault-trees resulting from translations can be used for fault-tree analysis and diagnosis. Programs to calculate fault-tree and digraph cut sets and perform diagnosis with fault-tree models have also been developed. The digraph to fault-tree translation system has been successfully tested on several digraphs of varying size and complexity. Details of some representative translation problems are presented. Most of the computation performed by the program is dedicated to finding minimal cut sets for digraph nodes in order to break cycles in the digraph. Fault-trees produced by the translator have been successfully used with NASA's Fault-Tree Diagnosis System (FTDS) to produce automated diagnostic systems.
Loudspeakers: Modeling and control
NASA Astrophysics Data System (ADS)
Al-Ali, Khalid Mohammad
This thesis documented a comprehensive study of loudspeaker modeling and control. A lumped-parameter model for a voice-coil loudspeaker in a vented enclosure was presented that derived from a consideration of physical principles. In addition, a low-frequency (20 Hz to 100 Hz), feedback control method designed to improve the nonlinear performance of the loudspeaker and a suitable performance measure for use in design and evaluation were proposed. Data from experiments performed on a variety of actual loudspeakers confirmed the practicality of the theory developed in this work. The lumped-parameter loudspeaker model, although simple, captured much of the nonlinear behavior of the loudspeaker. In addition, the model formulation allowed a straightforward application of modern control system methods and lent itself well to modern parametric identification techniques. The nonlinear performance of the loudspeaker system was evaluated using a suitable distortion measure that was proposed and compared with other distortion measures currently used in practice. Furthermore, the linearizing effect of feedback using a linear controller (both static and dynamic) was studied on a class of nonlinear systems. The results illustrated that the distortion reduction was potentially significant and a useful upper bound on the closed-loop distortion was found based on the sensitivity function of the system's linearization. A feedback scheme based on robust control theory was chosen for application to the loudspeaker system. Using the pressure output of the loudspeaker system for feedback, the technique offered significant advantages over those previously attempted. Illustrative examples were presented that proved the applicability of the theory developed in this dissertation to a variety of loudspeaker systems. The examples included a vented loudspeaker model and actual loudspeakers enclosed in both vented and sealed configurations. In each example, predictable and measurable distortion reduction at the output of the closed-loop system was recorded.
Performance Analysis of Stirling Engine-Driven Vapor Compression Heat Pump System
NASA Astrophysics Data System (ADS)
Kagawa, Noboru
Stirling engine-driven vapor compression systems have many unique advantages including higher thermal efficiencies, preferable exhaust gas characteristics, multi-fuel usage, and low noise and vibration which can play an important role in alleviating environmental and energy problems. This paper introduces a design method for the systems based on reliable mathematical methods for Stirling and Rankin cycles using reliable thermophysical information for refrigerants. The model deals with a combination of a kinematic Stirling engine and a scroll compressor. Some experimental coefficients are used to formulate the model. The obtained results show the performance behavior in detail. The measured performance of the actual system coincides with the calculated results. Furthermore, the calculated results clarify the performance using alternative refrigerants for R-22.
Chang, Hsien-Yen; Weiner, Jonathan P
2010-01-18
Diagnosis-based risk adjustment is becoming an important issue globally as a result of its implications for payment, high-risk predictive modelling and provider performance assessment. The Taiwanese National Health Insurance (NHI) programme provides universal coverage and maintains a single national computerized claims database, which enables the application of diagnosis-based risk adjustment. However, research regarding risk adjustment is limited. This study aims to examine the performance of the Adjusted Clinical Group (ACG) case-mix system using claims-based diagnosis information from the Taiwanese NHI programme. A random sample of NHI enrollees was selected. Those continuously enrolled in 2002 were included for concurrent analyses (n = 173,234), while those in both 2002 and 2003 were included for prospective analyses (n = 164,562). Health status measures derived from 2002 diagnoses were used to explain the 2002 and 2003 health expenditure. A multivariate linear regression model was adopted after comparing the performance of seven different statistical models. Split-validation was performed in order to avoid overfitting. The performance measures were adjusted R2 and mean absolute prediction error of five types of expenditure at individual level, and predictive ratio of total expenditure at group level. The more comprehensive models performed better when used for explaining resource utilization. Adjusted R2 of total expenditure in concurrent/prospective analyses were 4.2%/4.4% in the demographic model, 15%/10% in the ACGs or ADGs (Aggregated Diagnosis Group) model, and 40%/22% in the models containing EDCs (Expanded Diagnosis Cluster). When predicting expenditure for groups based on expenditure quintiles, all models underpredicted the highest expenditure group and overpredicted the four other groups. For groups based on morbidity burden, the ACGs model had the best performance overall. Given the widespread availability of claims data and the superior explanatory power of claims-based risk adjustment models over demographics-only models, Taiwan's government should consider using claims-based models for policy-relevant applications. The performance of the ACG case-mix system in Taiwan was comparable to that found in other countries. This suggested that the ACG system could be applied to Taiwan's NHI even though it was originally developed in the USA. Many of the findings in this paper are likely to be relevant to other diagnosis-based risk adjustment methodologies.
Selecting cockpit functions for speech I/O technology
NASA Technical Reports Server (NTRS)
Simpson, C. A.
1985-01-01
A general methodology for the initial selection of functions for speech generation and speech recognition technology is discussed. The SCR (Stimulus/Central-Processing/Response) compatibility model of Wickens et al. (1983) is examined, and its application is demonstrated for a particular cockpit display problem. Some limits of the applicability of that model are illustrated in the context of predicting overall pilot-aircraft system performance. A program of system performance measurement is recommended for the evaluation of candidate systems. It is suggested that no one measure of system performance can necessarily be depended upon to the exclusion of others. Systems response time, system accuracy, and pilot ratings are all important measures. Finally, these measures must be collected in the context of the total flight task environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Chen; Gupta, Vipul; Huang, Shenyan
The goal of this project is to model long-term creep performance for nickel-base superalloy weldments in high temperature power generation systems. The project uses physics-based modeling methodologies and algorithms for predicting alloy properties in heterogeneous material structures. The modeling methodology will be demonstrated on a gas turbine combustor liner weldment of Haynes 282 precipitate-strengthened nickel-base superalloy. The major developments are: (1) microstructure-property relationships under creep conditions and microstructure characterization (2) modeling inhomogeneous microstructure in superalloy weld (3) modeling mesoscale plastic deformation in superalloy weld and (4) a constitutive creep model that accounts for weld and base metal microstructure and theirmore » long term evolution. The developed modeling technology is aimed to provide a more efficient and accurate assessment of a material’s long-term performance compared with current testing and extrapolation methods. This modeling technology will also accelerate development and qualification of new materials in advanced power generation systems. This document is a final technical report for the project, covering efforts conducted from October 2014 to December 2016.« less
A modular method for evaluating the performance of picture archiving and communication systems.
Sanders, W H; Kant, L A; Kudrimoti, A
1993-08-01
Modeling can be used to predict the performance of picture archiving and communication system (PACS) configurations under various load conditions at an early design stage. This is important because choices made early in the design of a system can have a significant impact on the performance of the resulting implementation. Because PACS consist of many types of components, it is important to do such evaluations in a modular manner, so that alternative configurations and designs can be easily investigated. Stochastic activity networks (SANs) and reduced base model construction methods can aid in doing this. SANs are a model type particularly suited to the evaluation of systems in which several activities may be in progress concurrently, and each activity may affect the others through the results of its completion. Together with SANs, reduced base model construction methods provide a means to build highly modular models, in which models of particular components can be easily reused. In this article, we investigate the use of SANs and reduced base model construction techniques in evaluating PACS. Construction and solution of the models is done using UltraSAN, a graphic-oriented software tool for model specification, analysis, and simulation. The method is illustrated via the evaluation of a realistically sized PACS for a typical United States hospital of 300 to 400 beds, and the derivation of system response times and component utilizations.
Multiscale Methods for Accurate, Efficient, and Scale-Aware Models of the Earth System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldhaber, Steve; Holland, Marika
The major goal of this project was to contribute improvements to the infrastructure of an Earth System Model in order to support research in the Multiscale Methods for Accurate, Efficient, and Scale-Aware models of the Earth System project. In support of this, the NCAR team accomplished two main tasks: improving input/output performance of the model and improving atmospheric model simulation quality. Improvement of the performance and scalability of data input and diagnostic output within the model required a new infrastructure which can efficiently handle the unstructured grids common in multiscale simulations. This allows for a more computationally efficient model, enablingmore » more years of Earth System simulation. The quality of the model simulations was improved by reducing grid-point noise in the spectral element version of the Community Atmosphere Model (CAM-SE). This was achieved by running the physics of the model using grid-cell data on a finite-volume grid.« less
NASA Technical Reports Server (NTRS)
Metscher, Jonathan F.; Lewandowski, Edward J.
2013-01-01
A simple model of the Advanced Stirling Convertors (ASC) linear alternator and an AC bus controller has been developed and combined with a previously developed thermodynamic model of the convertor for a more complete simulation and analysis of the system performance. The model was developed using Sage, a 1-D thermodynamic modeling program that now includes electro-magnetic components. The convertor, consisting of a free-piston Stirling engine combined with a linear alternator, has sufficiently sinusoidal steady-state behavior to allow for phasor analysis of the forces and voltages acting in the system. A MATLAB graphical user interface (GUI) has been developed to interface with the Sage software for simplified use of the ASC model, calculation of forces, and automated creation of phasor diagrams. The GUI allows the user to vary convertor parameters while fixing different input or output parameters and observe the effect on the phasor diagrams or system performance. The new ASC model and GUI help create a better understanding of the relationship between the electrical component voltages and mechanical forces. This allows better insight into the overall convertor dynamics and performance.
River Devices to Recover Energy with Advanced Materials (River DREAM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMahon, Daniel P.
2013-07-03
The purpose of this project is to develop a generator called a Galloping Hydroelectric Energy Extraction Device (GHEED). It uses a galloping prism to convert water flow into linear motion. This motion is converted into electricity via a dielectric elastomer generator (DEG). The galloping mechanism and the DEG are combined to create a system to effectively generate electricity. This project has three research objectives: 1. Oscillator development and design a. Characterize galloping behavior, evaluate control surface shape change on oscillator performance and demonstrate shape change with water flow change. 2. Dielectric Energy Generator (DEG) characterization and modeling a. Characterize andmore » model the performance of the DEG based on oscillator design 3. Galloping Hydroelectric Energy Extraction Device (GHEED) system modeling and integration a. Create numerical models for construction of a system performance model and define operating capabilities for this approach Accomplishing these three objectives will result in the creation of a model that can be used to fully define the operating parameters and performance capabilities of a generator based on the GHEED design. This information will be used in the next phase of product development, the creation of an integrated laboratory scale generator to confirm model predictions.« less
Similarity Metrics for Closed Loop Dynamic Systems
NASA Technical Reports Server (NTRS)
Whorton, Mark S.; Yang, Lee C.; Bedrossian, Naz; Hall, Robert A.
2008-01-01
To what extent and in what ways can two closed-loop dynamic systems be said to be "similar?" This question arises in a wide range of dynamic systems modeling and control system design applications. For example, bounds on error models are fundamental to the controller optimization with modern control design methods. Metrics such as the structured singular value are direct measures of the degree to which properties such as stability or performance are maintained in the presence of specified uncertainties or variations in the plant model. Similarly, controls-related areas such as system identification, model reduction, and experimental model validation employ measures of similarity between multiple realizations of a dynamic system. Each area has its tools and approaches, with each tool more or less suited for one application or the other. Similarity in the context of closed-loop model validation via flight test is subtly different from error measures in the typical controls oriented application. Whereas similarity in a robust control context relates to plant variation and the attendant affect on stability and performance, in this context similarity metrics are sought that assess the relevance of a dynamic system test for the purpose of validating the stability and performance of a "similar" dynamic system. Similarity in the context of system identification is much more relevant than are robust control analogies in that errors between one dynamic system (the test article) and another (the nominal "design" model) are sought for the purpose of bounding the validity of a model for control design and analysis. Yet system identification typically involves open-loop plant models which are independent of the control system (with the exception of limited developments in closed-loop system identification which is nonetheless focused on obtaining open-loop plant models from closed-loop data). Moreover the objectives of system identification are not the same as a flight test and hence system identification error metrics are not directly relevant. In applications such as launch vehicles where the open loop plant is unstable it is similarity of the closed-loop system dynamics of a flight test that are relevant.
Atmospheric cloud physics thermal systems analysis
NASA Technical Reports Server (NTRS)
1977-01-01
Engineering analyses performed on the Atmospheric Cloud Physics (ACPL) Science Simulator expansion chamber and associated thermal control/conditioning system are reported. Analyses were made to develop a verified thermal model and to perform parametric thermal investigations to evaluate systems performance characteristics. Thermal network representations of solid components and the complete fluid conditioning system were solved simultaneously using the Systems Improved Numerical Differencing Analyzer (SINDA) computer program.
Desktop chaotic systems: Intuition and visualization
NASA Technical Reports Server (NTRS)
Bright, Michelle M.; Melcher, Kevin J.; Qammar, Helen K.; Hartley, Tom T.
1993-01-01
This paper presents a dynamic study of the Wildwood Pendulum, a commercially available desktop system which exhibits a strange attractor. The purpose of studying this chaotic pendulum is twofold: to gain insight in the paradigmatic approach of modeling, simulating, and determining chaos in nonlinear systems; and to provide a desktop model of chaos as a visual tool. For this study, the nonlinear behavior of this chaotic pendulum is modeled, a computer simulation is performed, and an experimental performance is measured. An assessment of the pendulum in the phase plane shows the strange attractor. Through the use of a box-assisted correlation dimension methodology, the attractor dimension is determined for both the model and the experimental pendulum systems. Correlation dimension results indicate that the pendulum and the model are chaotic and their fractal dimensions are similar.
Fernandez de Canete, J; Luque, J; Barbancho, J; Munoz, V
2014-04-01
A mathematical model that provides an overall description of both the short- and long-term mechanisms of arterial pressure regulation is presented. Short-term control is exerted through the baroreceptor reflex while renal elimination plays a role in long-term control. Both mechanisms operate in an integrated way over the compartmental model of the cardiovascular system. The whole system was modelled in MODELICA, which uses a hierarchical object-oriented modelling strategy, under the DYMOLA simulation environment. The performance of the controlled system was analysed by simulation in light of the existing hypothesis and validation tests previously performed with physiological data, demonstrating the effectiveness of both regulation mechanisms under physiological and pathological conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Acceleration and Performance Modeling Workshop, Washington, DC, 14-17 May 79,
1979-12-01
disturbance of the muscular systems, perhaps changes in spindle fiber output, and changes in the perceived weight of the muscle because of the acceleration...at this point either. The output models which are determining performance are essentially tied to muscular systems, through manual control (hand and...feet), and through speech, another muscular output. In normal activities the pilot, who senses changes in the visual system, the acceleration vector
Bijleveld, Yuma A; de Haan, Timo R; van der Lee, Johanna H; Groenendaal, Floris; Dijk, Peter H; van Heijst, Arno; de Jonge, Rogier C J; Dijkman, Koen P; van Straaten, Henrica L M; Rijken, Monique; Zonnenberg, Inge A; Cools, Filip; Zecic, Alexandra; Nuytemans, Debbie H G M; van Kaam, Anton H; Mathôt, Ron A A
2018-04-01
The pharmacokinetic (PK) properties of intravenous (i.v.) benzylpenicillin in term neonates undergoing moderate hypothermia after perinatal asphyxia were evaluated, as they have been unknown until now. A system-specific modeling approach was applied, in which our recently developed covariate model describing developmental and temperature-induced changes in amoxicillin clearance (CL) in the same patient study population was incorporated into a population PK model of benzylpenicillin with a priori birthweight (BW)-based allometric scaling. Pediatric population covariate models describing the developmental changes in drug elimination may constitute system-specific information and may therefore be incorporated into PK models of drugs cleared through the same pathway. The performance of this system-specific model was compared to that of a reference model. Furthermore, Monte-Carlo simulations were performed to evaluate the optimal dose. The system-specific model performed as well as the reference model. Significant correlations were found between CL and postnatal age (PNA), gestational age (GA), body temperature (TEMP), urine output (UO; system-specific model), and multiorgan failure (reference model). For a typical patient with a GA of 40 weeks, BW of 3,000 g, PNA of 2 days (TEMP, 33.5°C), and normal UO (2 ml/kg/h), benzylpenicillin CL was 0.48 liter/h (interindividual variability [IIV] of 49%) and the volume of distribution of the central compartment was 0.62 liter/kg (IIV of 53%) in the system-specific model. Based on simulations, we advise a benzylpenicillin i.v. dose regimen of 75,000 IU/kg/day every 8 h (q8h), 150,000 IU/kg/day q8h, and 200,000 IU/kg/day q6h for patients with GAs of 36 to 37 weeks, 38 to 41 weeks, and ≥42 weeks, respectively. The system-specific model may be used for other drugs cleared through the same pathway accelerating model development. Copyright © 2018 American Society for Microbiology.
Control of large flexible structures - An experiment on the NASA Mini-Mast facility
NASA Technical Reports Server (NTRS)
Hsieh, Chen; Kim, Jae H.; Liu, Ketao; Zhu, Guoming; Skelton, Robert E.
1991-01-01
The output variance constraint controller design procedure is integrated with model reduction by modal cost analysis. A procedure is given for tuning MIMO controller designs to find the maximal rms performance of the actual system. Controller designs based on a finite-element model of the system are compared with controller designs based on an identified model (obtained using the Q-Markov Cover algorithm). The identified model and the finite-element model led to similar closed-loop performance, when tested in the Mini-Mast facility at NASA Langley.
Feasibility of Using Neural Network Models to Accelerate the Testing of Mechanical Systems
NASA Technical Reports Server (NTRS)
Fusaro, Robert L.
1998-01-01
Verification testing is an important aspect of the design process for mechanical mechanisms, and full-scale, full-length life testing is typically used to qualify any new component for use in space. However, as the required life specification is increased, full-length life tests become more costly and lengthen the development time. At the NASA Lewis Research Center, we theorized that neural network systems may be able to model the operation of a mechanical device. If so, the resulting neural network models could simulate long-term mechanical testing with data from a short-term test. This combination of computer modeling and short-term mechanical testing could then be used to verify the reliability of mechanical systems, thereby eliminating the costs associated with long-term testing. Neural network models could also enable designers to predict the performance of mechanisms at the conceptual design stage by entering the critical parameters as input and running the model to predict performance. The purpose of this study was to assess the potential of using neural networks to predict the performance and life of mechanical systems. To do this, we generated a neural network system to model wear obtained from three accelerated testing devices: 1) A pin-on-disk tribometer; 2) A line-contact rub-shoe tribometer; 3) A four-ball tribometer.
NASA Technical Reports Server (NTRS)
Koch, S. E.; Skillman, W. C.; Kocin, P. J.; Wetzel, P. J.; Brill, K. F.
1985-01-01
The synoptic scale performance characteristics of MASS 2.0 are determined by comparing filtered 12-24 hr model forecasts to same-case forecasts made by the National Meteorological Center's synoptic-scale Limited-area Fine Mesh model. Characteristics of the two systems are contrasted, and the analysis methodology used to determine statistical skill scores and systematic errors is described. The overall relative performance of the two models in the sample is documented, and important systematic errors uncovered are presented.
Application of structured analysis to a telerobotic system
NASA Technical Reports Server (NTRS)
Dashman, Eric; Mclin, David; Harrison, F. W.; Soloway, Donald; Young, Steven
1990-01-01
The analysis and evaluation of a multiple arm telerobotic research and demonstration system developed by the NASA Intelligent Systems Research Laboratory (ISRL) is described. Structured analysis techniques were used to develop a detailed requirements model of an existing telerobotic testbed. Performance models generated during this process were used to further evaluate the total system. A commercial CASE tool called Teamwork was used to carry out the structured analysis and development of the functional requirements model. A structured analysis and design process using the ISRL telerobotic system as a model is described. Evaluation of this system focused on the identification of bottlenecks in this implementation. The results demonstrate that the use of structured methods and analysis tools can give useful performance information early in a design cycle. This information can be used to ensure that the proposed system meets its design requirements before it is built.
NASA Astrophysics Data System (ADS)
Göll, S.; Samsun, R. C.; Peters, R.
Fuel-cell-based auxiliary power units can help to reduce fuel consumption and emissions in transportation. For this application, the combination of solid oxide fuel cells (SOFCs) with upstream fuel processing by autothermal reforming (ATR) is seen as a highly favorable configuration. Notwithstanding the necessity to improve each single component, an optimized architecture of the fuel cell system as a whole must be achieved. To enable model-based analyses, a system-level approach is proposed in which the fuel cell system is modeled as a multi-stage thermo-chemical process using the "flowsheeting" environment PRO/II™. Therein, the SOFC stack and the ATR are characterized entirely by corresponding thermodynamic processes together with global performance parameters. The developed model is then used to achieve an optimal system layout by comparing different system architectures. A system with anode and cathode off-gas recycling was identified to have the highest electric system efficiency. Taking this system as a basis, the potential for further performance enhancement was evaluated by varying four parameters characterizing different system components. Using methods from the design and analysis of experiments, the effects of these parameters and of their interactions were quantified, leading to an overall optimized system with encouraging performance data.
Simulator of Space Communication Networks
NASA Technical Reports Server (NTRS)
Clare, Loren; Jennings, Esther; Gao, Jay; Segui, John; Kwong, Winston
2005-01-01
Multimission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) is a suite of software tools that simulates the behaviors of communication networks to be used in space exploration, and predict the performance of established and emerging space communication protocols and services. MACHETE consists of four general software systems: (1) a system for kinematic modeling of planetary and spacecraft motions; (2) a system for characterizing the engineering impact on the bandwidth and reliability of deep-space and in-situ communication links; (3) a system for generating traffic loads and modeling of protocol behaviors and state machines; and (4) a system of user-interface for performance metric visualizations. The kinematic-modeling system makes it possible to characterize space link connectivity effects, including occultations and signal losses arising from dynamic slant-range changes and antenna radiation patterns. The link-engineering system also accounts for antenna radiation patterns and other phenomena, including modulations, data rates, coding, noise, and multipath fading. The protocol system utilizes information from the kinematic-modeling and link-engineering systems to simulate operational scenarios of space missions and evaluate overall network performance. In addition, a Communications Effect Server (CES) interface for MACHETE has been developed to facilitate hybrid simulation of space communication networks with actual flight/ground software/hardware embedded in the overall system.
DOT National Transportation Integrated Search
2011-11-01
This report summarizes the technical work performed developing and incorporating Metropolitan Planning : Organization sub-models into the existing Texas Revenue Estimator and Needs Determination System : (TRENDS) model. Additionally, this report expl...
Prognostics and health management of photovoltaic systems
Johnson, Jay; Riley, Daniel
2018-04-10
The various technologies presented herein relate to providing prognosis and health management (PHM) of a photovoltaic (PV) system. A PV PHM system can eliminate long-standing issues associated with detecting performance reduction in PV systems. The PV PHM system can utilize an ANN model with meteorological and power input data to facilitate alert generation in the event of a performance reduction without the need for information about the PV PHM system components and design. Comparisons between system data and the PHM model can provide scheduling of maintenance on an as-needed basis. The PHM can also provide an approach for monitoring system/component degradation over the lifetime of the PV system.
Selecting among competing models of electro-optic, infrared camera system range performance
Nichols, Jonathan M.; Hines, James E.; Nichols, James D.
2013-01-01
Range performance is often the key requirement around which electro-optical and infrared camera systems are designed. This work presents an objective framework for evaluating competing range performance models. Model selection based on the Akaike’s Information Criterion (AIC) is presented for the type of data collected during a typical human observer and target identification experiment. These methods are then demonstrated on observer responses to both visible and infrared imagery in which one of three maritime targets was placed at various ranges. We compare the performance of a number of different models, including those appearing previously in the literature. We conclude that our model-based approach offers substantial improvements over the traditional approach to inference, including increased precision and the ability to make predictions for some distances other than the specific set for which experimental trials were conducted.
NASA Technical Reports Server (NTRS)
Stoughton, John W.; Obando, Rodrigo A.
1993-01-01
The modeling and design of a fault-tolerant multiprocessor system is addressed. In particular, the behavior of the system during recovery and restoration after a fault has occurred is investigated. Given that a multicomputer system is designed using the Algorithm to Architecture to Mapping Model (ATAMM), and that a fault (death of a computing resource) occurs during its normal steady-state operation, a model is presented as a viable research tool for predicting the performance bounds of the system during its recovery and restoration phases. Furthermore, the bounds of the performance behavior of the system during this transient mode can be assessed. These bounds include: time to recover from the fault (t(sub rec)), time to restore the system (t(sub rec)) and whether there is a permanent delay in the system's Time Between Input and Output (TBIO) after the system has reached a steady state. An implementation of an ATAMM based computer was developed with the Generic VHSIC Spaceborne Computer (GVSC) as the target system. A simulation of the GVSC was also written based on the code used in ATAMM Multicomputer Operating System (AMOS). The simulation is in turn used to validate the new model in the usefulness and accuracy in tracking the propagation of the delay through the system and predicting the behavior in the transient state of recovery and restoration. The model is validated as an accurate method to predict the transient behavior of an ATAMM based multicomputer during recovery and restoration.
An integrated logit model for contamination event detection in water distribution systems.
Housh, Mashor; Ostfeld, Avi
2015-05-15
The problem of contamination event detection in water distribution systems has become one of the most challenging research topics in water distribution systems analysis. Current attempts for event detection utilize a variety of approaches including statistical, heuristics, machine learning, and optimization methods. Several existing event detection systems share a common feature in which alarms are obtained separately for each of the water quality indicators. Unifying those single alarms from different indicators is usually performed by means of simple heuristics. A salient feature of the current developed approach is using a statistically oriented model for discrete choice prediction which is estimated using the maximum likelihood method for integrating the single alarms. The discrete choice model is jointly calibrated with other components of the event detection system framework in a training data set using genetic algorithms. The fusing process of each indicator probabilities, which is left out of focus in many existing event detection system models, is confirmed to be a crucial part of the system which could be modelled by exploiting a discrete choice model for improving its performance. The developed methodology is tested on real water quality data, showing improved performances in decreasing the number of false positive alarms and in its ability to detect events with higher probabilities, compared to previous studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Assanis, D. N.; Ekchian, J. E.; Frank, R. M.; Heywood, J. B.
1985-01-01
A computer simulation of the turbocharged turbocompounded direct-injection diesel engine system was developed in order to study the performance characteristics of the total system as major design parameters and materials are varied. Quasi-steady flow models of the compressor, turbines, manifolds, intercooler, and ducting are coupled with a multicylinder reciprocator diesel model, where each cylinder undergoes the same thermodynamic cycle. The master cylinder model describes the reciprocator intake, compression, combustion and exhaust processes in sufficient detail to define the mass and energy transfers in each subsystem of the total engine system. Appropriate thermal loading models relate the heat flow through critical system components to material properties and design details. From this information, the simulation predicts the performance gains, and assesses the system design trade-offs which would result from the introduction of selected heat transfer reduction materials in key system components, over a range of operating conditions.
LCP- LIFETIME COST AND PERFORMANCE MODEL FOR DISTRIBUTED PHOTOVOLTAIC SYSTEMS
NASA Technical Reports Server (NTRS)
Borden, C. S.
1994-01-01
The Lifetime Cost and Performance (LCP) Model was developed to assist in the assessment of Photovoltaic (PV) system design options. LCP is a simulation of the performance, cost, and revenue streams associated with distributed PV power systems. LCP provides the user with substantial flexibility in specifying the technical and economic environment of the PV application. User-specified input parameters are available to describe PV system characteristics, site climatic conditions, utility purchase and sellback rate structures, discount and escalation rates, construction timing, and lifetime of the system. Such details as PV array orientation and tilt angle, PV module and balance-of-system performance attributes, and the mode of utility interconnection are user-specified. LCP assumes that the distributed PV system is utility grid interactive without dedicated electrical storage. In combination with a suitable economic model, LCP can provide an estimate of the expected net present worth of a PV system to the owner, as compared to electricity purchased from a utility grid. Similarly, LCP might be used to perform sensitivity analyses to identify those PV system parameters having significant impact on net worth. The user describes the PV system configuration to LCP via the basic electrical components. The module is the smallest entity in the PV system which is modeled. A PV module is defined in the simulation by its short circuit current, which varies over the system lifetime due to degradation and failure. Modules are wired in series to form a branch circuit. Bypass diodes are allowed between modules in the branch circuits. Branch circuits are then connected in parallel to form a bus. A collection of buses is connected in parallel to form an increment to capacity of the system. By choosing the appropriate series-parallel wiring design, the user can specify the current, voltage, and reliability characteristics of the system. LCP simulation of system performance is site-specific and follows a three-step procedure. First the hourly power produced by the PV system is computed using a selected year's insolation and temperature profile. For this step it is assumed that there are no module failures or degradation. Next, the monthly simulation is performed involving a month to month progression through the lifetime of the system. In this step, the effects of degradation, failure, dirt accumulation and operations/maintenance efforts on PV system performance over time are used to compute the monthly power capability fraction. The resulting monthly power capability fractions are applied to the hourly power matrix from the first step, giving the anticipated hourly energy output over the lifetime of the system. PV system energy output is compared with the PV system owner's electricity demand for each hour. The amount of energy to be purchased from or sold to the utility grid is then determined. Monthly expenditures on the PV system and the purchase of electricity from the utility grid are also calculated. LCP generates output reports pertaining to the performance of the PV system, and system costs and revenues. The LCP model, written in SIMSCRIPT 2.5 for batch execution on an IBM 370 series computer, was developed in 1981.
Evaluating synoptic systems in the CMIP5 climate models over the Australian region
NASA Astrophysics Data System (ADS)
Gibson, Peter B.; Uotila, Petteri; Perkins-Kirkpatrick, Sarah E.; Alexander, Lisa V.; Pitman, Andrew J.
2016-10-01
Climate models are our principal tool for generating the projections used to inform climate change policy. Our confidence in projections depends, in part, on how realistically they simulate present day climate and associated variability over a range of time scales. Traditionally, climate models are less commonly assessed at time scales relevant to daily weather systems. Here we explore the utility of a self-organizing maps (SOMs) procedure for evaluating the frequency, persistence and transitions of daily synoptic systems in the Australian region simulated by state-of-the-art global climate models. In terms of skill in simulating the climatological frequency of synoptic systems, large spread was observed between models. A positive association between all metrics was found, implying that relative skill in simulating the persistence and transitions of systems is related to skill in simulating the climatological frequency. Considering all models and metrics collectively, model performance was found to be related to model horizontal resolution but unrelated to vertical resolution or representation of the stratosphere. In terms of the SOM procedure, the timespan over which evaluation was performed had some influence on model performance skill measures, as did the number of circulation types examined. These findings have implications for selecting models most useful for future projections over the Australian region, particularly for projections related to synoptic scale processes and phenomena. More broadly, this study has demonstrated the utility of the SOMs procedure in providing a process-based evaluation of climate models.
The influence of enterprise resource planning (ERP) systems' performance on earnings management
NASA Astrophysics Data System (ADS)
Tsai, Wen-Hsien; Lee, Kuen-Chang; Liu, Jau-Yang; Lin, Sin-Jin; Chou, Yu-Wei
2012-11-01
We analyse whether there is a linkage between performance measures of enterprise resource planning (ERP) systems and earnings management. We find that earnings management decreases with the higher performance of ERP systems. The empirical result is as expected. We further analyse how the dimension of the DeLone and McLean model of information systems success affects earnings management. We find that the relationship between the performance of ERP systems and earnings management depends on System Quality after ERP implementation. The more System Quality improves, the more earnings management is reduced.
Digital control of the Kuiper Airborne Observatory telescope
NASA Technical Reports Server (NTRS)
Mccormack, Ann C.; Snyder, Philip K.
1989-01-01
The feasibility of using a digital controller to stabilize a telescope mounted in an airplane is investigated. The telescope is a 30 in. infrared telescope mounted aboard a NASA C-141 aircraft known as the Kuiper Airborne Observatory. Current efforts to refurbish the 14-year-old compensation system have led to considering a digital controller. A typical digital controller is modeled and added into the telescope system model. This model is simulated on a computer to generate the Bode plots and time responses which determine system stability and performance parameters. Important aspects of digital control system hardware are discussed. A summary of the findings shows that a digital control system would result in satisfactory telescope performance.
Analysis of the DFP/AFCS Systems for Compensating Gravity Distortions on the 70-Meter Antenna
NASA Technical Reports Server (NTRS)
Imbriale, William A.; Hoppe, Daniel J.; Rochblatt, David
2000-01-01
This paper presents the theoretical computations showing the expected performances for both systems. The basic analysis tool is a Physical Optics reflector analysis code that was ported to a parallel computer for faster execution times. There are several steps involved in computing the RF performance of the various systems. 1 . A model of the RF distortions of the main reflector is required. This model is based upon measured holography maps of the 70-meter antenna obtained at 3 elevation angles. The holography maps are then processed (using an appropriate gravity mechanical model of the dish) to provide surface distortion maps at all elevation angles. 2. From the surface distortion maps, ray optics is used to determine the theoretical shape of the DFP that will exactly phase compensate the distortions. 3. From the theoretical shape and a NASTRAN mechanical model of the plate, the actuator positions that generate a surface that provides the best RMS fit to the theoretical model are selected. Using the actuator positions and the NASTRAN model provides an accurate description of the actual mirror shape. 4. Starting from the mechanical drawings of the feed, a computed RF feed pattern is generated. This pattern is expanded into a set of spherical wave modes so that a complete near field analysis of the reflector system can be obtained. 5. For the array feed, the excitation coefficients that provide the maximum gain are computed using a phase conjugate technique. The basic experimental geometry consisted of a dual shaped 70-meter antenna system; a refocusing ellipse, a DFP and an array feed system. To provide physical insight to the systems performance, focal plane field plots are presented at several elevations. Curves of predicted performance are shown for the DFP system, monopulse tracking system, AFCS and combined DFP/AFCS system. The calculated results show that the combined DFP/AFCS system is capable of recovering the majority of the gain lost due to gravity distortion.
Large/Complex Antenna Performance Validation for Spaceborne Radar/Radiometeric Instruments
NASA Technical Reports Server (NTRS)
Focardi, Paolo; Harrell, Jefferson; Vacchione, Joseph
2013-01-01
Over the past decade, Earth observing missions which employ spaceborne combined radar & radiometric instruments have been developed and implemented. These instruments include the use of large and complex deployable antennas whose radiation characteristics need to be accurately determined over 4 pisteradians. Given the size and complexity of these antennas, the performance of the flight units cannot be readily measured. In addition, the radiation performance is impacted by the presence of the instrument's service platform which cannot easily be included in any measurement campaign. In order to meet the system performance knowledge requirements, a two pronged approach has been employed. The first is to use modeling tools to characterize the system and the second is to build a scale model of the system and use RF measurements to validate the results of the modeling tools. This paper demonstrates the resulting level of agreement between scale model and numerical modeling for two recent missions: (1) the earlier Aquarius instrument currently in Earth orbit and (2) the upcoming Soil Moisture Active Passive (SMAP) mission. The results from two modeling approaches, Ansoft's High Frequency Structure Simulator (HFSS) and TICRA's General RF Applications Software Package (GRASP), were compared with measurements of approximately 1/10th scale models of the Aquarius and SMAP systems. Generally good agreement was found between the three methods but each approach had its shortcomings as will be detailed in this paper.
2012-02-01
for Low Energy Building Ventilation and Space Conditioning Systems...Building Energy Models ................... 162 APPENDIX D: Reduced-Order Modeling and Control Design for Low Energy Building Systems .... 172 D.1...Design for Low Energy Building Ventilation and Space Conditioning Systems This section focuses on the modeling and control of airflow in buildings
Cho, Kyoung Won; Bae, Sung-Kwon; Ryu, Ji-Hye; Kim, Kyeong Na; An, Chang-Ho; Chae, Young Moon
2015-01-01
This study was to evaluate the performance of the newly developed information system (IS) implemented on July 1, 2014 at three public hospitals in Korea. User satisfaction scores of twelve key performance indicators of six IS success factors based on the DeLone and McLean IS Success Model were utilized to evaluate IS performance before and after the newly developed system was introduced. All scores increased after system introduction except for the completeness of medical records and impact on the clinical environment. The relationships among six IS factors were also analyzed to identify the important factors influencing three IS success factors (Intention to Use, User Satisfaction, and Net Benefits). All relationships were significant except for the relationships among Service Quality, Intention to Use, and Net Benefits. The results suggest that hospitals should not only focus on systems and information quality; rather, they should also continuously improve service quality to improve user satisfaction and eventually reach full the potential of IS performance.
Performance modeling of terahertz (THz) and millimeter waves (mmW) pupil plane imaging
NASA Astrophysics Data System (ADS)
Mohammadian, Nafiseh; Furxhi, Orges; Zhang, Lei; Offermans, Peter; Ghazi, Galia; Driggers, Ronald
2018-05-01
Terahertz- (THz) and millimeter-wave sensors are becoming more important in industrial, security, medical, and defense applications. A major problem in these sensing areas is the resolution, sensitivity, and visual acuity of the imaging systems. There are different fundamental parameters in designing a system that have significant effects on the imaging performance. The performance of THz systems can be discussed in terms of two characteristics: sensitivity and spatial resolution. New approaches for design and manufacturing of THz imagers are a vital basis for developing future applications. Photonics solutions have been at the technological forefront in THz band applications. A single scan antenna does not provide reasonable resolution, sensitivity, and speed. An effective approach to imaging is placing a high-performance antenna in a two-dimensional antenna array to achieve higher radiation efficiency and higher resolution in the imaging systems. Here, we present the performance modeling of a pupil plane imaging system to find the resolution and sensitivity efficiency of the imaging system.
Problem reporting management system performance simulation
NASA Technical Reports Server (NTRS)
Vannatta, David S.
1993-01-01
This paper proposes the Problem Reporting Management System (PRMS) model as an effective discrete simulation tool that determines the risks involved during the development phase of a Trouble Tracking Reporting Data Base replacement system. The model considers the type of equipment and networks which will be used in the replacement system as well as varying user loads, size of the database, and expected operational availability. The paper discusses the dynamics, stability, and application of the PRMS and addresses suggested concepts to enhance the service performance and enrich them.
Presentation on systems cluster research
NASA Technical Reports Server (NTRS)
Morgenthaler, George W.
1989-01-01
This viewgraph presentation presents an overview of systems cluster research performed by the Center for Space Construction. The goals of the research are to develop concepts, insights, and models for space construction and to develop systems engineering/analysis curricula for training future aerospace engineers. The following topics are covered: CSC systems analysis/systems engineering (SIMCON) model, CSC systems cluster schedule, system life-cycle, model optimization techniques, publications, cooperative efforts, and sponsored research.
ERIC Educational Resources Information Center
Wallace, Guy W.
2001-01-01
Explains lean instructional systems design/development (ISD) as it relates to curriculum architecture design, based on Japan's lean production system. Discusses performance-based systems; ISD models; processes for organizational training and development; curriculum architecture to support job performance; and modular curriculum development. (LRW)
NASA Technical Reports Server (NTRS)
Johnson, Paul K.
2007-01-01
NASA Glenn Research Center (GRC) contracted Barber-Nichols, Arvada, CO to construct a dual Brayton power conversion system for use as a hardware proof of concept and to validate results from a computational code known as the Closed Cycle System Simulation (CCSS). Initial checkout tests were performed at Barber- Nichols to ready the system for delivery to GRC. This presentation describes the system hardware components and lists the types of checkout tests performed along with a couple issues encountered while conducting the tests. A description of the CCSS model is also presented. The checkout tests did not focus on generating data, therefore, no test data or model analyses are presented.
Modeling, system identification, and control of ASTREX
NASA Technical Reports Server (NTRS)
Abhyankar, Nandu S.; Ramakrishnan, J.; Byun, K. W.; Das, A.; Cossey, Derek F.; Berg, J.
1993-01-01
The modeling, system identification and controller design aspects of the ASTREX precision space structure are presented in this work. Modeling of ASTREX is performed using NASTRAN, TREETOPS and I-DEAS. The models generated range from simple linear time-invariant models to nonlinear models used for large angle simulations. Identification in both the time and frequency domains are presented. The experimental set up and the results from the identification experiments are included. Finally, controller design for ASTREX is presented. Simulation results using this optimal controller demonstrate the controller performance. Finally the future directions and plans for the facility are addressed.
Design and development of a community carbon cycle benchmarking system for CMIP5 models
NASA Astrophysics Data System (ADS)
Mu, M.; Hoffman, F. M.; Lawrence, D. M.; Riley, W. J.; Keppel-Aleks, G.; Randerson, J. T.
2013-12-01
Benchmarking has been widely used to assess the ability of atmosphere, ocean, sea ice, and land surface models to capture the spatial and temporal variability of observations during the historical period. For the carbon cycle and terrestrial ecosystems, the design and development of an open-source community platform has been an important goal as part of the International Land Model Benchmarking (ILAMB) project. Here we designed and developed a software system that enables the user to specify the models, benchmarks, and scoring systems so that results can be tailored to specific model intercomparison projects. We used this system to evaluate the performance of CMIP5 Earth system models (ESMs). Our scoring system used information from four different aspects of climate, including the climatological mean spatial pattern of gridded surface variables, seasonal cycle dynamics, the amplitude of interannual variability, and long-term decadal trends. We used this system to evaluate burned area, global biomass stocks, net ecosystem exchange, gross primary production, and ecosystem respiration from CMIP5 historical simulations. Initial results indicated that the multi-model mean often performed better than many of the individual models for most of the observational constraints.
Modelling the protocol stack in NCS with deterministic and stochastic petri net
NASA Astrophysics Data System (ADS)
Hui, Chen; Chunjie, Zhou; Weifeng, Zhu
2011-06-01
Protocol stack is the basis of the networked control systems (NCS). Full or partial reconfiguration of protocol stack offers both optimised communication service and system performance. Nowadays, field testing is unrealistic to determine the performance of reconfigurable protocol stack; and the Petri net formal description technique offers the best combination of intuitive representation, tool support and analytical capabilities. Traditionally, separation between the different layers of the OSI model has been a common practice. Nevertheless, such a layered modelling analysis framework of protocol stack leads to the lack of global optimisation for protocol reconfiguration. In this article, we proposed a general modelling analysis framework for NCS based on the cross-layer concept, which is to establish an efficiency system scheduling model through abstracting the time constraint, the task interrelation, the processor and the bus sub-models from upper and lower layers (application, data link and physical layer). Cross-layer design can help to overcome the inadequacy of global optimisation based on information sharing between protocol layers. To illustrate the framework, we take controller area network (CAN) as a case study. The simulation results of deterministic and stochastic Petri-net (DSPN) model can help us adjust the message scheduling scheme and obtain better system performance.
Simulation of a Geiger-Mode Imaging LADAR System for Performance Assessment
Kim, Seongjoon; Lee, Impyeong; Kwon, Yong Joon
2013-01-01
As LADAR systems applications gradually become more diverse, new types of systems are being developed. When developing new systems, simulation studies are an essential prerequisite. A simulator enables performance predictions and optimal system parameters at the design level, as well as providing sample data for developing and validating application algorithms. The purpose of the study is to propose a method for simulating a Geiger-mode imaging LADAR system. We develop simulation software to assess system performance and generate sample data for the applications. The simulation is based on three aspects of modeling—the geometry, radiometry and detection. The geometric model computes the ranges to the reflection points of the laser pulses. The radiometric model generates the return signals, including the noises. The detection model determines the flight times of the laser pulses based on the nature of the Geiger-mode detector. We generated sample data using the simulator with the system parameters and analyzed the detection performance by comparing the simulated points to the reference points. The proportion of the outliers in the simulated points reached 25.53%, indicating the need for efficient outlier elimination algorithms. In addition, the false alarm rate and dropout rate of the designed system were computed as 1.76% and 1.06%, respectively. PMID:23823970
Control algorithms and applications of the wavefront sensorless adaptive optics
NASA Astrophysics Data System (ADS)
Ma, Liang; Wang, Bin; Zhou, Yuanshen; Yang, Huizhen
2017-10-01
Compared with the conventional adaptive optics (AO) system, the wavefront sensorless (WFSless) AO system need not to measure the wavefront and reconstruct it. It is simpler than the conventional AO in system architecture and can be applied to the complex conditions. Based on the analysis of principle and system model of the WFSless AO system, wavefront correction methods of the WFSless AO system were divided into two categories: model-free-based and model-based control algorithms. The WFSless AO system based on model-free-based control algorithms commonly considers the performance metric as a function of the control parameters and then uses certain control algorithm to improve the performance metric. The model-based control algorithms include modal control algorithms, nonlinear control algorithms and control algorithms based on geometrical optics. Based on the brief description of above typical control algorithms, hybrid methods combining the model-free-based control algorithm with the model-based control algorithm were generalized. Additionally, characteristics of various control algorithms were compared and analyzed. We also discussed the extensive applications of WFSless AO system in free space optical communication (FSO), retinal imaging in the human eye, confocal microscope, coherent beam combination (CBC) techniques and extended objects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Michael K.; Davidson, Megan
As part of Sandia’s nuclear deterrence mission, the B61-12 Life Extension Program (LEP) aims to modernize the aging weapon system. Modernization requires requalification and Sandia is using high performance computing to perform advanced computational simulations to better understand, evaluate, and verify weapon system performance in conjunction with limited physical testing. The Nose Bomb Subassembly (NBSA) of the B61-12 is responsible for producing a fuzing signal upon ground impact. The fuzing signal is dependent upon electromechanical impact sensors producing valid electrical fuzing signals at impact. Computer generated models were used to assess the timing between the impact sensor’s response to themore » deceleration of impact and damage to major components and system subassemblies. The modeling and simulation team worked alongside the physical test team to design a large-scale reverse ballistic test to not only assess system performance, but to also validate their computational models. The reverse ballistic test conducted at Sandia’s sled test facility sent a rocket sled with a representative target into a stationary B61-12 (NBSA) to characterize the nose crush and functional response of NBSA components. Data obtained from data recorders and high-speed photometrics were integrated with previously generated computer models in order to refine and validate the model’s ability to reliably simulate real-world effects. Large-scale tests are impractical to conduct for every single impact scenario. By creating reliable computer models, we can perform simulations that identify trends and produce estimates of outcomes over the entire range of required impact conditions. Sandia’s HPCs enable geometric resolution that was unachievable before, allowing for more fidelity and detail, and creating simulations that can provide insight to support evaluation of requirements and performance margins. As computing resources continue to improve, researchers at Sandia are hoping to improve these simulations so they provide increasingly credible analysis of the system response and performance over the full range of conditions.« less
Model-Based Fault Diagnosis: Performing Root Cause and Impact Analyses in Real Time
NASA Technical Reports Server (NTRS)
Figueroa, Jorge F.; Walker, Mark G.; Kapadia, Ravi; Morris, Jonathan
2012-01-01
Generic, object-oriented fault models, built according to causal-directed graph theory, have been integrated into an overall software architecture dedicated to monitoring and predicting the health of mission- critical systems. Processing over the generic fault models is triggered by event detection logic that is defined according to the specific functional requirements of the system and its components. Once triggered, the fault models provide an automated way for performing both upstream root cause analysis (RCA), and for predicting downstream effects or impact analysis. The methodology has been applied to integrated system health management (ISHM) implementations at NASA SSC's Rocket Engine Test Stands (RETS).
Modulation transfer function cascade model for a sampled IR imaging system.
de Luca, L; Cardone, G
1991-05-01
The performance of the infrared scanning radiometer (IRSR) is strongly stressed in convective heat transfer applications where high spatial frequencies in the signal that describes the thermal image are present. The need to characterize more deeply the system spatial resolution has led to the formulation of a cascade model for the evaluation of the actual modulation transfer function of a sampled IR imaging system. The model can yield both the aliasing band and the averaged modulation response for a general sampling subsystem. For a line scan imaging system, which is the case of a typical IRSR, a rule of thumb that states whether the combined sampling-imaging system is either imaging-dependent or sampling-dependent is proposed. The model is tested by comparing it with other noncascade models as well as by ad hoc measurements performed on a commercial digitized IRSR.
NASA Astrophysics Data System (ADS)
Peña, M.; Saha, S.; Wu, X.; Wang, J.; Tripp, P.; Moorthi, S.; Bhattacharjee, P.
2016-12-01
The next version of the operational Climate Forecast System (version 3, CFSv3) will be a fully coupled six-components system with diverse applications to earth system modeling, including weather and climate predictions. This system will couple the earth's atmosphere, land, ocean, sea-ice, waves and aerosols for both data assimilation and modeling. It will also use the NOAA Environmental Modeling System (NEMS) software super structure to couple these components. The CFSv3 is part of the next Unified Global Coupled System (UGCS), which will unify the global prediction systems that are now operational at NCEP. The UGCS is being developed through the efforts of dedicated research and engineering teams and through coordination across many CPO/MAPP and NGGPS groups. During this development phase, the UGCS is being tested for seasonal purposes and undergoes frequent revisions. Each new revision is evaluated to quickly discover, isolate and solve problems that negatively impact its performance. In the UGCS-seasonal model, components (e.g., ocean, sea-ice, atmosphere, etc.) are coupled through a NEMS-based "mediator". In this numerical infrastructure, model diagnostics and forecast validation are carried out, both component by component, and as a whole. The next stage, model optimization, will require enhanced performance diagnostics tools to help prioritize areas of numerical improvements. After the technical development of the UGCS-seasonal is completed, it will become the first realization of the CFSv3. All future development of this system will be carried out by the climate team at NCEP, in scientific collaboration with the groups that developed the individual components, as well as the climate community. A unique challenge to evaluate this unified weather-climate system is the large number of variables, which evolve over a wide range of temporal and spatial scales. A small set of performance measures and scorecard displays are been created, and collaboration and software contributions from research and operational centers are being incorporated. A status of the CFSv3/UGCS-seasonal development and examples of its performance and measuring tools will be presented.
Cockpit System Situational Awareness Modeling Tool
NASA Technical Reports Server (NTRS)
Keller, John; Lebiere, Christian; Shay, Rick; Latorella, Kara
2004-01-01
This project explored the possibility of predicting pilot situational awareness (SA) using human performance modeling techniques for the purpose of evaluating developing cockpit systems. The Improved Performance Research Integration Tool (IMPRINT) was combined with the Adaptive Control of Thought-Rational (ACT-R) cognitive modeling architecture to produce a tool that can model both the discrete tasks of pilots and the cognitive processes associated with SA. The techniques for using this tool to predict SA were demonstrated using the newly developed Aviation Weather Information (AWIN) system. By providing an SA prediction tool to cockpit system designers, cockpit concepts can be assessed early in the design process while providing a cost-effective complement to the traditional pilot-in-the-loop experiments and data collection techniques.
[Modeling and implementation method for the automatic biochemistry analyzer control system].
Wang, Dong; Ge, Wan-cheng; Song, Chun-lin; Wang, Yun-guang
2009-03-01
In this paper the system structure The automatic biochemistry analyzer is a necessary instrument for clinical diagnostics. First of is analyzed. The system problems description and the fundamental principles for dispatch are brought forward. Then this text puts emphasis on the modeling for the automatic biochemistry analyzer control system. The objects model and the communications model are put forward. Finally, the implementation method is designed. It indicates that the system based on the model has good performance.
NASA Astrophysics Data System (ADS)
Hadi, M. Z.; Djatna, T.; Sugiarto
2018-04-01
This paper develops a dynamic storage assignment model to solve storage assignment problem (SAP) for beverages order picking in a drive-in rack warehousing system to determine the appropriate storage location and space for each beverage products dynamically so that the performance of the system can be improved. This study constructs a graph model to represent drive-in rack storage position then combine association rules mining, class-based storage policies and an arrangement rule algorithm to determine an appropriate storage location and arrangement of the product according to dynamic orders from customers. The performance of the proposed model is measured as rule adjacency accuracy, travel distance (for picking process) and probability a product become expiry using Last Come First Serve (LCFS) queue approach. Finally, the proposed model is implemented through computer simulation and compare the performance for different storage assignment methods as well. The result indicates that the proposed model outperforms other storage assignment methods.
Alamaniotis, Miltiadis; Bargiotas, Dimitrios; Tsoukalas, Lefteri H
2016-01-01
Integration of energy systems with information technologies has facilitated the realization of smart energy systems that utilize information to optimize system operation. To that end, crucial in optimizing energy system operation is the accurate, ahead-of-time forecasting of load demand. In particular, load forecasting allows planning of system expansion, and decision making for enhancing system safety and reliability. In this paper, the application of two types of kernel machines for medium term load forecasting (MTLF) is presented and their performance is recorded based on a set of historical electricity load demand data. The two kernel machine models and more specifically Gaussian process regression (GPR) and relevance vector regression (RVR) are utilized for making predictions over future load demand. Both models, i.e., GPR and RVR, are equipped with a Gaussian kernel and are tested on daily predictions for a 30-day-ahead horizon taken from the New England Area. Furthermore, their performance is compared to the ARMA(2,2) model with respect to mean average percentage error and squared correlation coefficient. Results demonstrate the superiority of RVR over the other forecasting models in performing MTLF.
SIMWEST - A simulation model for wind energy storage systems
NASA Technical Reports Server (NTRS)
Edsinger, R. W.; Warren, A. W.; Gordon, L. H.; Chang, G. C.
1978-01-01
This paper describes a comprehensive and efficient computer program for the modeling of wind energy systems with storage. The level of detail of SIMWEST (SImulation Model for Wind Energy STorage) is consistent with evaluating the economic feasibility as well as the general performance of wind energy systems with energy storage options. The software package consists of two basic programs and a library of system, environmental, and control components. The first program is a precompiler which allows the library components to be put together in building block form. The second program performs the technoeconomic system analysis with the required input/output, and the integration of system dynamics. An example of the application of the SIMWEST program to a current 100 kW wind energy storage system is given.
Wang, Dongsheng; Feng, Decheng
2014-01-01
Adhesion between asphalt and aggregate plays an important role in the performance of asphalt mixtures. A low-frequency adhesion fatigue test was proposed in this paper to study the effect of environment on the asphalt-aggregate adhesion system. The stress-based fatigue model had been utilized to describe the fatigue behavior of thin-film asphalt and aggregate system. The factors influencing the adhesion fatigue performance were also investigated. Experiment results show that asphalt has more important effect on the adhesion performance comparing with aggregate. Basalt, which is regarded as hydrophobic aggregates with low silica content, has better adhesion performance to asphalt binder when compared with granite. The effects of aging on the adhesion fatigue performance are different for PG64-22 and rubber asphalt. Long-term aging is found to reduce the adhesion fatigue lives for rubber asphalt and aggregate system, while the effect of long-term aging for aggregate and PG64-22 binder system is positive. Generally the increased stress amplitude and test temperature could induce greater damage and lead to less fatigue lives for adhesion test system. PMID:25054187
Wang, Dongsheng; Yi, Junyan; Feng, Decheng
2014-01-01
Adhesion between asphalt and aggregate plays an important role in the performance of asphalt mixtures. A low-frequency adhesion fatigue test was proposed in this paper to study the effect of environment on the asphalt-aggregate adhesion system. The stress-based fatigue model had been utilized to describe the fatigue behavior of thin-film asphalt and aggregate system. The factors influencing the adhesion fatigue performance were also investigated. Experiment results show that asphalt has more important effect on the adhesion performance comparing with aggregate. Basalt, which is regarded as hydrophobic aggregates with low silica content, has better adhesion performance to asphalt binder when compared with granite. The effects of aging on the adhesion fatigue performance are different for PG64-22 and rubber asphalt. Long-term aging is found to reduce the adhesion fatigue lives for rubber asphalt and aggregate system, while the effect of long-term aging for aggregate and PG64-22 binder system is positive. Generally the increased stress amplitude and test temperature could induce greater damage and lead to less fatigue lives for adhesion test system.
Alvarellos-González, Alberto; Pazos, Alejandro; Porto-Pazos, Ana B.
2012-01-01
The importance of astrocytes, one part of the glial system, for information processing in the brain has recently been demonstrated. Regarding information processing in multilayer connectionist systems, it has been shown that systems which include artificial neurons and astrocytes (Artificial Neuron-Glia Networks) have well-known advantages over identical systems including only artificial neurons. Since the actual impact of astrocytes in neural network function is unknown, we have investigated, using computational models, different astrocyte-neuron interactions for information processing; different neuron-glia algorithms have been implemented for training and validation of multilayer Artificial Neuron-Glia Networks oriented toward classification problem resolution. The results of the tests performed suggest that all the algorithms modelling astrocyte-induced synaptic potentiation improved artificial neural network performance, but their efficacy depended on the complexity of the problem. PMID:22649480
Alvarellos-González, Alberto; Pazos, Alejandro; Porto-Pazos, Ana B
2012-01-01
The importance of astrocytes, one part of the glial system, for information processing in the brain has recently been demonstrated. Regarding information processing in multilayer connectionist systems, it has been shown that systems which include artificial neurons and astrocytes (Artificial Neuron-Glia Networks) have well-known advantages over identical systems including only artificial neurons. Since the actual impact of astrocytes in neural network function is unknown, we have investigated, using computational models, different astrocyte-neuron interactions for information processing; different neuron-glia algorithms have been implemented for training and validation of multilayer Artificial Neuron-Glia Networks oriented toward classification problem resolution. The results of the tests performed suggest that all the algorithms modelling astrocyte-induced synaptic potentiation improved artificial neural network performance, but their efficacy depended on the complexity of the problem.
The adaption and use of research codes for performance assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liebetrau, A.M.
1987-05-01
Models of real-world phenomena are developed for many reasons. The models are usually, if not always, implemented in the form of a computer code. The characteristics of a code are determined largely by its intended use. Realizations or implementations of detailed mathematical models of complex physical and/or chemical processes are often referred to as research or scientific (RS) codes. Research codes typically require large amounts of computing time. One example of an RS code is a finite-element code for solving complex systems of differential equations that describe mass transfer through some geologic medium. Considerable computing time is required because computationsmore » are done at many points in time and/or space. Codes used to evaluate the overall performance of real-world physical systems are called performance assessment (PA) codes. Performance assessment codes are used to conduct simulated experiments involving systems that cannot be directly observed. Thus, PA codes usually involve repeated simulations of system performance in situations that preclude the use of conventional experimental and statistical methods. 3 figs.« less
Modeling the Office of Science Ten Year FacilitiesPlan: The PERI Architecture Tiger Team
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Supinski, B R; Alam, S R; Bailey, D H
2009-05-27
The Performance Engineering Institute (PERI) originally proposed a tiger team activity as a mechanism to target significant effort to the optimization of key Office of Science applications, a model that was successfully realized with the assistance of two JOULE metric teams. However, the Office of Science requested a new focus beginning in 2008: assistance in forming its ten year facilities plan. To meet this request, PERI formed the Architecture Tiger Team, which is modeling the performance of key science applications on future architectures, with S3D, FLASH and GTC chosen as the first application targets. In this activity, we have measuredmore » the performance of these applications on current systems in order to understand their baseline performance and to ensure that our modeling activity focuses on the right versions and inputs of the applications. We have applied a variety of modeling techniques to anticipate the performance of these applications on a range of anticipated systems. While our initial findings predict that Office of Science applications will continue to perform well on future machines from major hardware vendors, we have also encountered several areas in which we must extend our modeling techniques in order to fulfill our mission accurately and completely. In addition, we anticipate that models of a wider range of applications will reveal critical differences between expected future systems, thus providing guidance for future Office of Science procurement decisions, and will enable DOE applications to exploit machines in future facilities fully.« less
Modeling the Office of Science Ten Year Facilities Plan: The PERI Architecture Tiger Team
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Supinski, Bronis R.; Alam, Sadaf; Bailey, David H.
2009-06-26
The Performance Engineering Institute (PERI) originally proposed a tiger team activity as a mechanism to target significant effort optimizing key Office of Science applications, a model that was successfully realized with the assistance of two JOULE metric teams. However, the Office of Science requested a new focus beginning in 2008: assistance in forming its ten year facilities plan. To meet this request, PERI formed the Architecture Tiger Team, which is modeling the performance of key science applications on future architectures, with S3D, FLASH and GTC chosen as the first application targets. In this activity, we have measured the performance ofmore » these applications on current systems in order to understand their baseline performance and to ensure that our modeling activity focuses on the right versions and inputs of the applications. We have applied a variety of modeling techniques to anticipate the performance of these applications on a range of anticipated systems. While our initial findings predict that Office of Science applications will continue to perform well on future machines from major hardware vendors, we have also encountered several areas in which we must extend our modeling techniques in order to fulfill our mission accurately and completely. In addition, we anticipate that models of a wider range of applications will reveal critical differences between expected future systems, thus providing guidance for future Office of Science procurement decisions, and will enable DOE applications to exploit machines in future facilities fully.« less
Modeling the Office of Science Ten Year Facilities Plan: The PERI Architecture Team
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Supinski, Bronis R.; Alam, Sadaf R; Bailey, David
2009-01-01
The Performance Engineering Institute (PERI) originally proposed a tiger team activity as a mechanism to target significant effort optimizing key Office of Science applications, a model that was successfully realized with the assistance of two JOULE metric teams. However, the Office of Science requested a new focus beginning in 2008: assistance in forming its ten year facilities plan. To meet this request, PERI formed the Architecture Tiger Team, which is modeling the performance of key science applications on future architectures, with S3D, FLASH and GTC chosen as the first application targets. In this activity, we have measured the performance ofmore » these applications on current systems in order to understand their baseline performance and to ensure that our modeling activity focuses on the right versions and inputs of the applications. We have applied a variety of modeling techniques to anticipate the performance of these applications on a range of anticipated systems. While our initial findings predict that Office of Science applications will continue to perform well on future machines from major hardware vendors, we have also encountered several areas in which we must extend our modeling techniques in order to fulfilll our mission accurately and completely. In addition, we anticipate that models of a wider range of applications will reveal critical differences between expected future systems, thus providing guidance for future Office of Science procurement decisions, and will enable DOE applications to exploit machines in future facilities fully.« less
R&D of high reliable refrigeration system for superconducting generators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosoya, T.; Shindo, S.; Yaguchi, H.
1996-12-31
Super-GM carries out R&D of 70 MW class superconducting generators (model machines), refrigeration system and superconducting wires to apply superconducting technology to electric power apparatuses. The helium refrigeration system for keeping field windings of superconducting generator (SCG) in cryogenic environment must meet the requirement of high reliability for uninterrupted long term operation of the SCG. In FY 1992, a high reliable conventional refrigeration system for the model machines was integrated by combining components such as compressor unit, higher temperature cold box and lower temperature cold box which were manufactured utilizing various fundamental technologies developed in early stage of the projectmore » since 1988. Since FY 1993, its performance tests have been carried out. It has been confirmed that its performance was fulfilled the development target of liquefaction capacity of 100 L/h and impurity removal in the helium gas to < 0.1 ppm. Furthermore, its operation method and performance were clarified to all different modes as how to control liquefaction rate and how to supply liquid helium from a dewar to the model machine. In addition, the authors have made performance tests and system performance analysis of oil free screw type and turbo type compressors which greatly improve reliability of conventional refrigeration systems. The operation performance and operational control method of the compressors has been clarified through the tests and analysis.« less
Statistical modelling of networked human-automation performance using working memory capacity.
Ahmed, Nisar; de Visser, Ewart; Shaw, Tyler; Mohamed-Ameen, Amira; Campbell, Mark; Parasuraman, Raja
2014-01-01
This study examines the challenging problem of modelling the interaction between individual attentional limitations and decision-making performance in networked human-automation system tasks. Analysis of real experimental data from a task involving networked supervision of multiple unmanned aerial vehicles by human participants shows that both task load and network message quality affect performance, but that these effects are modulated by individual differences in working memory (WM) capacity. These insights were used to assess three statistical approaches for modelling and making predictions with real experimental networked supervisory performance data: classical linear regression, non-parametric Gaussian processes and probabilistic Bayesian networks. It is shown that each of these approaches can help designers of networked human-automated systems cope with various uncertainties in order to accommodate future users by linking expected operating conditions and performance from real experimental data to observable cognitive traits like WM capacity. Practitioner Summary: Working memory (WM) capacity helps account for inter-individual variability in operator performance in networked unmanned aerial vehicle supervisory tasks. This is useful for reliable performance prediction near experimental conditions via linear models; robust statistical prediction beyond experimental conditions via Gaussian process models and probabilistic inference about unknown task conditions/WM capacities via Bayesian network models.
Benchmarking a Soil Moisture Data Assimilation System for Agricultural Drought Monitoring
NASA Technical Reports Server (NTRS)
Hun, Eunjin; Crow, Wade T.; Holmes, Thomas; Bolten, John
2014-01-01
Despite considerable interest in the application of land surface data assimilation systems (LDAS) for agricultural drought applications, relatively little is known about the large-scale performance of such systems and, thus, the optimal methodological approach for implementing them. To address this need, this paper evaluates an LDAS for agricultural drought monitoring by benchmarking individual components of the system (i.e., a satellite soil moisture retrieval algorithm, a soil water balance model and a sequential data assimilation filter) against a series of linear models which perform the same function (i.e., have the same basic inputoutput structure) as the full system component. Benchmarking is based on the calculation of the lagged rank cross-correlation between the normalized difference vegetation index (NDVI) and soil moisture estimates acquired for various components of the system. Lagged soil moistureNDVI correlations obtained using individual LDAS components versus their linear analogs reveal the degree to which non-linearities andor complexities contained within each component actually contribute to the performance of the LDAS system as a whole. Here, a particular system based on surface soil moisture retrievals from the Land Parameter Retrieval Model (LPRM), a two-layer Palmer soil water balance model and an Ensemble Kalman filter (EnKF) is benchmarked. Results suggest significant room for improvement in each component of the system.
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Hashemi, Kelley E.; Yucelen, Tansel; Arabi, Ehsan
2017-01-01
This paper presents a new adaptive control approach that involves a performance optimization objective. The problem is cast as a multi-objective optimal control. The control synthesis involves the design of a performance optimizing controller from a subset of control inputs. The effect of the performance optimizing controller is to introduce an uncertainty into the system that can degrade tracking of the reference model. An adaptive controller from the remaining control inputs is designed to reduce the effect of the uncertainty while maintaining a notion of performance optimization in the adaptive control system.
Expeditious illustration of layer-cake models on and above a tactile surface
NASA Astrophysics Data System (ADS)
Lopes, Daniel Simões; Mendes, Daniel; Sousa, Maurício; Jorge, Joaquim
2016-05-01
Too often illustrating and visualizing 3D geological concepts are performed by sketching in 2D mediums, which may limit drawing performance of initial concepts. Here, the potential of expeditious geological modeling brought by hand gestures is explored. A spatial interaction system was developed to enable rapid modeling, editing, and exploration of 3D layer-cake objects. User interactions are acquired with motion capture and touch screen technologies. Virtual immersion is guaranteed by using stereoscopic technology. The novelty consists of performing expeditious modeling of coarse geological features with only a limited set of hand gestures. Results from usability-studies show that the proposed system is more efficient when compared to a windows-icon-menu-pointer modeling application.
Waste Form and Indrift Colloids-Associated Radionuclide Concentrations: Abstraction and Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Aguilar
This Model Report describes the analysis and abstractions of the colloids process model for the waste form and engineered barrier system components of the total system performance assessment calculations to be performed with the Total System Performance Assessment-License Application model. Included in this report is a description of (1) the types and concentrations of colloids that could be generated in the waste package from degradation of waste forms and the corrosion of the waste package materials, (2) types and concentrations of colloids produced from the steel components of the repository and their potential role in radionuclide transport, and (3) typesmore » and concentrations of colloids present in natural waters in the vicinity of Yucca Mountain. Additionally, attachment/detachment characteristics and mechanisms of colloids anticipated in the repository are addressed and discussed. The abstraction of the process model is intended to capture the most important characteristics of radionuclide-colloid behavior for use in predicting the potential impact of colloid-facilitated radionuclide transport on repository performance.« less
Climate Science Performance, Data and Productivity on Titan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, Benjamin W; Worley, Patrick H; Gaddis, Abigail L
2015-01-01
Climate Science models are flagship codes for the largest of high performance computing (HPC) resources, both in visibility, with the newly launched Department of Energy (DOE) Accelerated Climate Model for Energy (ACME) effort, and in terms of significant fractions of system usage. The performance of the DOE ACME model is captured with application level timers and examined through a sizeable run archive. Performance and variability of compute, queue time and ancillary services are examined. As Climate Science advances in the use of HPC resources there has been an increase in the required human and data systems to achieve programs goals.more » A description of current workflow processes (hardware, software, human) and planned automation of the workflow, along with historical and projected data in motion and at rest data usage, are detailed. The combination of these two topics motivates a description of future systems requirements for DOE Climate Modeling efforts, focusing on the growth of data storage and network and disk bandwidth required to handle data at an acceptable rate.« less
Planning ATES systems under uncertainty
NASA Astrophysics Data System (ADS)
Jaxa-Rozen, Marc; Kwakkel, Jan; Bloemendal, Martin
2015-04-01
Aquifer Thermal Energy Storage (ATES) can contribute to significant reductions in energy use within the built environment, by providing seasonal energy storage in aquifers for the heating and cooling of buildings. ATES systems have experienced a rapid uptake over the last two decades; however, despite successful experiments at the individual level, the overall performance of ATES systems remains below expectations - largely due to suboptimal practices for the planning and operation of systems in urban areas. The interaction between ATES systems and underground aquifers can be interpreted as a common-pool resource problem, in which thermal imbalances or interference could eventually degrade the storage potential of the subsurface. Current planning approaches for ATES systems thus typically follow the precautionary principle. For instance, the permitting process in the Netherlands is intended to minimize thermal interference between ATES systems. However, as shown in recent studies (Sommer et al., 2015; Bakr et al., 2013), a controlled amount of interference may benefit the collective performance of ATES systems. An overly restrictive approach to permitting is instead likely to create an artificial scarcity of available space, limiting the potential of the technology in urban areas. In response, master plans - which take into account the collective arrangement of multiple systems - have emerged as an increasingly popular alternative. However, permits and master plans both take a static, ex ante view of ATES governance, making it difficult to predict the effect of evolving ATES use or climactic conditions on overall performance. In particular, the adoption of new systems by building operators is likely to be driven by the available subsurface space and by the performance of existing systems; these outcomes are themselves a function of planning parameters. From this perspective, the interactions between planning authorities, ATES operators, and subsurface conditions form a complex adaptive system, for which agent-based modelling provides a useful analysis framework. This study therefore explores the interactions between endogenous ATES adoption processes and the relative performance of different planning schemes, using an agent-based adoption model coupled with a hydrologic model of the subsurface. The models are parameterized to simulate typical operating conditions for ATES systems in a dense urban area. Furthermore, uncertainties relating to planning parameters, adoption processes, and climactic conditions are explicitly considered using exploratory modelling techniques. Results are therefore presented for the performance of different planning policies over a broad range of plausible scenarios.
Wei, Z G; Macwan, A P; Wieringa, P A
1998-06-01
In this paper we quantitatively model degree of automation (DofA) in supervisory control as a function of the number and nature of tasks to be performed by the operator and automation. This model uses a task weighting scheme in which weighting factors are obtained from task demand load, task mental load, and task effect on system performance. The computation of DofA is demonstrated using an experimental system. Based on controlled experiments using operators, analyses of the task effect on system performance, the prediction and assessment of task demand load, and the prediction of mental load were performed. Each experiment had a different DofA. The effect of a change in DofA on system performance and mental load was investigated. It was found that system performance became less sensitive to changes in DofA at higher levels of DofA. The experimental data showed that when the operator controlled a partly automated system, perceived mental load could be predicted from the task mental load for each task component, as calculated by analyzing a situation in which all tasks were manually controlled. Actual or potential applications of this research include a methodology to balance and optimize the automation of complex industrial systems.
Human performance interfaces in air traffic control.
Chang, Yu-Hern; Yeh, Chung-Hsing
2010-01-01
This paper examines how human performance factors in air traffic control (ATC) affect each other through their mutual interactions. The paper extends the conceptual SHEL model of ergonomics to describe the ATC system as human performance interfaces in which the air traffic controllers interact with other human performance factors including other controllers, software, hardware, environment, and organisation. New research hypotheses about the relationships between human performance interfaces of the system are developed and tested on data collected from air traffic controllers, using structural equation modelling. The research result suggests that organisation influences play a more significant role than individual differences or peer influences on how the controllers interact with the software, hardware, and environment of the ATC system. There are mutual influences between the controller-software, controller-hardware, controller-environment, and controller-organisation interfaces of the ATC system, with the exception of the controller-controller interface. Research findings of this study provide practical insights in managing human performance interfaces of the ATC system in the face of internal or external change, particularly in understanding its possible consequences in relation to the interactions between human performance factors.
NASA Astrophysics Data System (ADS)
Kurtulus, Bedri; Razack, Moumtaz
2010-02-01
SummaryThis paper compares two methods for modeling karst aquifers, which are heterogeneous, highly non-linear, and hierarchical systems. There is a clear need to model these systems given the crucial role they play in water supply in many countries. In recent years, the main components of soft computing (fuzzy logic (FL), and Artificial Neural Networks, (ANNs)) have come to prevail in the modeling of complex non-linear systems in different scientific and technologic disciplines. In this study, Artificial Neural Networks and Adaptive Neuro-Fuzzy Interface System (ANFIS) methods were used for the prediction of daily discharge of karstic aquifers and their capability was compared. The approach was applied to 7 years of daily data of La Rochefoucauld karst system in south-western France. In order to predict the karst daily discharges, single-input (rainfall, piezometric level) vs. multiple-input (rainfall and piezometric level) series were used. In addition to these inputs, all models used measured or simulated discharges from the previous days with a specified delay. The models were designed in a Matlab™ environment. An automatic procedure was used to select the best calibrated models. Daily discharge predictions were then performed using the calibrated models. Comparing predicted and observed hydrographs indicates that both models (ANN and ANFIS) provide close predictions of the karst daily discharges. The summary statistics of both series (observed and predicted daily discharges) are comparable. The performance of both models is improved when the number of inputs is increased from one to two. The root mean square error between the observed and predicted series reaches a minimum for two-input models. However, the ANFIS model demonstrates a better performance than the ANN model to predict peak flow. The ANFIS approach demonstrates a better generalization capability and slightly higher performance than the ANN, especially for peak discharges.
Tian, Zhen; Yuan, Jingqi; Xu, Liang; Zhang, Xiang; Wang, Jingcheng
2018-05-25
As higher requirements are proposed for the load regulation and efficiency enhancement, the control performance of boiler-turbine systems has become much more important. In this paper, a novel robust control approach is proposed to improve the coordinated control performance for subcritical boiler-turbine units. To capture the key features of the boiler-turbine system, a nonlinear control-oriented model is established and validated with the history operation data of a 300 MW unit. To achieve system linearization and decoupling, an adaptive feedback linearization strategy is proposed, which could asymptotically eliminate the linearization error caused by the model uncertainties. Based on the linearized boiler-turbine system, a second-order sliding mode controller is designed with the super-twisting algorithm. Moreover, the closed-loop system is proved robustly stable with respect to uncertainties and disturbances. Simulation results are presented to illustrate the effectiveness of the proposed control scheme, which achieves excellent tracking performance, strong robustness and chattering reduction. Copyright © 2018. Published by Elsevier Ltd.
Implementation of Mamdani Fuzzy Method in Employee Promotion System
NASA Astrophysics Data System (ADS)
Zulfikar, W. B.; Jumadi; Prasetyo, P. K.; Ramdhani, M. A.
2018-01-01
Nowadays, employees are big assets to an institution. Every employee has a different educational background, degree, work skill, attitude and ethic that affect the performance. An institution including government institution implements a promotion system in order to improve the performance of the employees. Pangandaran Tourism, Industry, Trade, and SME Department is one of government agency that implements a promotion system to discover employees who deserve to get promotion. However, there are some practical deficiencies in the promotion system, one of which is the subjectivity issue. This work proposed a classification model that could minimize the subjectivity issue in employee promotion system. This paper reported a classification employee based on their eligibility for promotion. The degree of membership was decided using Mamdani Fuzzy based on determinant factors of the performance of employees. In the evaluation phase, this model had an accuracy of 91.4%. It goes to show that this model may minimize the subjectivity issue in the promotion system, especially at Pangandaran Tourism, Industry, Trade, and SME Department.
System-based strategies for p53 recovery.
Azam, Muhammad Rizwan; Fazal, Sahar; Ullah, Mukhtar; Bhatti, Aamer I
2018-06-01
The authors have proposed a systems theory-based novel drug design approach for the p53 pathway. The pathway is taken as a dynamic system represented by ordinary differential equations-based mathematical model. Using control engineering practices, the system analysis and subsequent controller design is performed for the re-activation of wild-type p53. p53 revival is discussed for both modes of operation, i.e. the sustained and oscillatory. To define the problem in control system paradigm, modification in the existing mathematical model is performed to incorporate the effect of Nutlin. Attractor point analysis is carried out to select the suitable domain of attraction. A two-loop negative feedback control strategy is devised to drag the system trajectories to the attractor point and to regulate cellular concentration of Nutlin, respectively. An integrated framework is constituted to incorporate the pharmacokinetic effects of Nutlin in the cancerous cells. Bifurcation analysis is also performed on the p53 model to see the conditions for p53 oscillation.
Phased models for evaluating the performability of computing systems
NASA Technical Reports Server (NTRS)
Wu, L. T.; Meyer, J. F.
1979-01-01
A phase-by-phase modelling technique is introduced to evaluate a fault tolerant system's ability to execute different sets of computational tasks during different phases of the control process. Intraphase processes are allowed to differ from phase to phase. The probabilities of interphase state transitions are specified by interphase transition matrices. Based on constraints imposed on the intraphase and interphase transition probabilities, various iterative solution methods are developed for calculating system performability.
A control method for bilateral teleoperating systems
NASA Astrophysics Data System (ADS)
Strassberg, Yesayahu
1992-01-01
The thesis focuses on control of bilateral master-slave teleoperators. The bilateral control issue of teleoperators is studied and a new scheme that overcomes basic unsolved problems is proposed. A performance measure, based on the multiport modeling method, is introduced in order to evaluate and understand the limitations of earlier published bilateral control laws. Based on the study evaluating the different methods, the objective of the thesis is stated. The proposed control law is then introduced, its ideal performance is demonstrated, and conditions for stability and robustness are derived. It is shown that stability, desired performance, and robustness can be obtained under the assumption that the deviation of the model from the actual system satisfies certain norm inequalities and the measurement uncertainties are bounded. The proposed scheme is validated by numerical simulation. The simulated system is based on the configuration of the RAL (Robotics and Automation Laboratory) telerobot. From the simulation results it is shown that good tracking performance can be obtained. In order to verify the performance of the proposed scheme when applied to a real hardware system, an experimental setup of a three degree of freedom master-slave teleoperator (i.e. three degree of freedom master and three degree of freedom slave robot) was built. Three basic experiments were conducted to verify the performance of the proposed control scheme. The first experiment verified the master control law and its contribution to the robustness and performance of the entire system. The second experiment demonstrated the actual performance of the system while performing a free motion teleoperating task. From the experimental results, it is shown that the control law has good performance and is robust to uncertainties in the models of the master and slave.
Nonlinear control of linear parameter varying systems with applications to hypersonic vehicles
NASA Astrophysics Data System (ADS)
Wilcox, Zachary Donald
The focus of this dissertation is to design a controller for linear parameter varying (LPV) systems, apply it specifically to air-breathing hypersonic vehicles, and examine the interplay between control performance and the structural dynamics design. Specifically a Lyapunov-based continuous robust controller is developed that yields exponential tracking of a reference model, despite the presence of bounded, nonvanishing disturbances. The hypersonic vehicle has time varying parameters, specifically temperature profiles, and its dynamics can be reduced to an LPV system with additive disturbances. Since the HSV can be modeled as an LPV system the proposed control design is directly applicable. The control performance is directly examined through simulations. A wide variety of applications exist that can be effectively modeled as LPV systems. In particular, flight systems have historically been modeled as LPV systems and associated control tools have been applied such as gain-scheduling, linear matrix inequalities (LMIs), linear fractional transformations (LFT), and mu-types. However, as the type of flight environments and trajectories become more demanding, the traditional LPV controllers may no longer be sufficient. In particular, hypersonic flight vehicles (HSVs) present an inherently difficult problem because of the nonlinear aerothermoelastic coupling effects in the dynamics. HSV flight conditions produce temperature variations that can alter both the structural dynamics and flight dynamics. Starting with the full nonlinear dynamics, the aerothermoelastic effects are modeled by a temperature dependent, parameter varying state-space representation with added disturbances. The model includes an uncertain parameter varying state matrix, an uncertain parameter varying non-square (column deficient) input matrix, and an additive bounded disturbance. In this dissertation, a robust dynamic controller is formulated for a uncertain and disturbed LPV system. The developed controller is then applied to a HSV model, and a Lyapunov analysis is used to prove global exponential reference model tracking in the presence of uncertainty in the state and input matrices and exogenous disturbances. Simulations with a spectrum of gains and temperature profiles on the full nonlinear dynamic model of the HSV is used to illustrate the performance and robustness of the developed controller. In addition, this work considers how the performance of the developed controller varies over a wide variety of control gains and temperature profiles and are optimized with respect to different performance metrics. Specifically, various temperature profile models and related nonlinear temperature dependent disturbances are used to characterize the relative control performance and effort for each model. Examining such metrics as a function of temperature provides a potential inroad to examine the interplay between structural/thermal protection design and control development and has application for future HSV design and control implementation.
PANORAMA: An approach to performance modeling and diagnosis of extreme-scale workflows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deelman, Ewa; Carothers, Christopher; Mandal, Anirban
Here we report that computational science is well established as the third pillar of scientific discovery and is on par with experimentation and theory. However, as we move closer toward the ability to execute exascale calculations and process the ensuing extreme-scale amounts of data produced by both experiments and computations alike, the complexity of managing the compute and data analysis tasks has grown beyond the capabilities of domain scientists. Therefore, workflow management systems are absolutely necessary to ensure current and future scientific discoveries. A key research question for these workflow management systems concerns the performance optimization of complex calculation andmore » data analysis tasks. The central contribution of this article is a description of the PANORAMA approach for modeling and diagnosing the run-time performance of complex scientific workflows. This approach integrates extreme-scale systems testbed experimentation, structured analytical modeling, and parallel systems simulation into a comprehensive workflow framework called Pegasus for understanding and improving the overall performance of complex scientific workflows.« less
NASA Astrophysics Data System (ADS)
Walker, Ernest L.
1994-05-01
This paper presents results of a theoretical investigation to evaluate the performance of code division multiple access communications over multimode optical fiber channels in an asynchronous, multiuser communication network environment. The system is evaluated using Gold sequences for spectral spreading of the baseband signal from each user employing direct-sequence biphase shift keying and intensity modulation techniques. The transmission channel model employed is a lossless linear system approximation of the field transfer function for the alpha -profile multimode optical fiber. Due to channel model complexity, a correlation receiver model employing a suboptimal receive filter was used in calculating the peak output signal at the ith receiver. In Part 1, the performance measures for the system, i.e., signal-to-noise ratio and bit error probability for the ith receiver, are derived as functions of channel characteristics, spectral spreading, number of active users, and the bit energy to noise (white) spectral density ratio. In Part 2, the overall system performance is evaluated.
PANORAMA: An approach to performance modeling and diagnosis of extreme-scale workflows
Deelman, Ewa; Carothers, Christopher; Mandal, Anirban; ...
2015-07-14
Here we report that computational science is well established as the third pillar of scientific discovery and is on par with experimentation and theory. However, as we move closer toward the ability to execute exascale calculations and process the ensuing extreme-scale amounts of data produced by both experiments and computations alike, the complexity of managing the compute and data analysis tasks has grown beyond the capabilities of domain scientists. Therefore, workflow management systems are absolutely necessary to ensure current and future scientific discoveries. A key research question for these workflow management systems concerns the performance optimization of complex calculation andmore » data analysis tasks. The central contribution of this article is a description of the PANORAMA approach for modeling and diagnosing the run-time performance of complex scientific workflows. This approach integrates extreme-scale systems testbed experimentation, structured analytical modeling, and parallel systems simulation into a comprehensive workflow framework called Pegasus for understanding and improving the overall performance of complex scientific workflows.« less
The Relationship of Learning and Performance Diagnosis at Different System Levels.
ERIC Educational Resources Information Center
Lubega, Khalid
2003-01-01
Examines learning and performance diagnosis, separately and in relation to each other, as they function in organization systems; explains the relationship between learning and performance diagnosis at the individual, process, and organizational levels using a three-level performance model; and discusses types of learning, including nonlearning,…
Conversations, Not Evaluations: An Alternative Model of Performance Management
ERIC Educational Resources Information Center
Lee, Christopher D.
2003-01-01
Traditional appraisal and evaluation systems focus almost exclusively on an employee's past performance. The desired result in each of these systems is better work performance. The very nature of most appraisals or evaluations, however, may inhibit performance unintentionally by focusing energy, attention and effort on past shortcomings rather…
Nuclear thermal propulsion engine system design analysis code development
NASA Astrophysics Data System (ADS)
Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.; Ivanenok, Joseph F.
1992-01-01
A Nuclear Thermal Propulsion (NTP) Engine System Design Analyis Code has recently been developed to characterize key NTP engine system design features. Such a versatile, standalone NTP system performance and engine design code is required to support ongoing and future engine system and vehicle design efforts associated with proposed Space Exploration Initiative (SEI) missions of interest. Key areas of interest in the engine system modeling effort were the reactor, shielding, and inclusion of an engine multi-redundant propellant pump feed system design option. A solid-core nuclear thermal reactor and internal shielding code model was developed to estimate the reactor's thermal-hydraulic and physical parameters based on a prescribed thermal output which was integrated into a state-of-the-art engine system design model. The reactor code module has the capability to model graphite, composite, or carbide fuels. Key output from the model consists of reactor parameters such as thermal power, pressure drop, thermal profile, and heat generation in cooled structures (reflector, shield, and core supports), as well as the engine system parameters such as weight, dimensions, pressures, temperatures, mass flows, and performance. The model's overall analysis methodology and its key assumptions and capabilities are summarized in this paper.
Nagy, Christopher J; Fitzgerald, Brian M; Kraus, Gregory P
2014-01-01
Anesthesiology residency programs will be expected to have Milestones-based evaluation systems in place by July 2014 as part of the Next Accreditation System. The San Antonio Uniformed Services Health Education Consortium (SAUSHEC) anesthesiology residency program developed and implemented a Milestones-based feedback and evaluation system a year ahead of schedule. It has been named the Milestone-specific, Observed Data points for Evaluating Levels of performance (MODEL) assessment strategy. The "MODEL Menu" and the "MODEL Blueprint" are tools that other anesthesiology residency programs can use in developing their own Milestones-based feedback and evaluation systems prior to ACGME-required implementation. Data from our early experience with the streamlined MODEL blueprint assessment strategy showed substantially improved faculty compliance with reporting requirements. The MODEL assessment strategy provides programs with a workable assessment method for residents, and important Milestones data points to programs for ACGME reporting.
NASA Technical Reports Server (NTRS)
Fisher, Jody l.; Striepe, Scott A.
2007-01-01
The Program to Optimize Simulated Trajectories II (POST2) is used as a basis for an end-to-end descent and landing trajectory simulation that is essential in determining the design and performance capability of lunar descent and landing system models and lunar environment models for the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. This POST2-based ALHAT simulation provides descent and landing simulation capability by integrating lunar environment and lander system models (including terrain, sensor, guidance, navigation, and control models), along with the data necessary to design and operate a landing system for robotic, human, and cargo lunar-landing success. This paper presents the current and planned development and model validation of the POST2-based end-to-end trajectory simulation used for the testing, performance and evaluation of ALHAT project system and models.
NASA Technical Reports Server (NTRS)
Frisch, Harold P.
2007-01-01
Engineers, who design systems using text specification documents, focus their work upon the completed system to meet Performance, time and budget goals. Consistency and integrity is difficult to maintain within text documents for a single complex system and more difficult to maintain as several systems are combined into higher-level systems, are maintained over decades, and evolve technically and in performance through updates. This system design approach frequently results in major changes during the system integration and test phase, and in time and budget overruns. Engineers who build system specification documents within a model-based systems environment go a step further and aggregate all of the data. They interrelate all of the data to insure consistency and integrity. After the model is constructed, the various system specification documents are prepared, all from the same database. The consistency and integrity of the model is assured, therefore the consistency and integrity of the various specification documents is insured. This article attempts to define model-based systems relative to such an environment. The intent is to expose the complexity of the enabling problem by outlining what is needed, why it is needed and how needs are being addressed by international standards writing teams.
ASTP ranging system mathematical model
NASA Technical Reports Server (NTRS)
Ellis, M. R.; Robinson, L. H.
1973-01-01
A mathematical model is presented of the VHF ranging system to analyze the performance of the Apollo-Soyuz test project (ASTP). The system was adapted for use in the ASTP. The ranging system mathematical model is presented in block diagram form, and a brief description of the overall model is also included. A procedure for implementing the math model is presented along with a discussion of the validation of the math model and the overall summary and conclusions of the study effort. Detailed appendices of the five study tasks are presented: early late gate model development, unlock probability development, system error model development, probability of acquisition and model development, and math model validation testing.
Maximum flow-based resilience analysis: From component to system
Jin, Chong; Li, Ruiying; Kang, Rui
2017-01-01
Resilience, the ability to withstand disruptions and recover quickly, must be considered during system design because any disruption of the system may cause considerable loss, including economic and societal. This work develops analytic maximum flow-based resilience models for series and parallel systems using Zobel’s resilience measure. The two analytic models can be used to evaluate quantitatively and compare the resilience of the systems with the corresponding performance structures. For systems with identical components, the resilience of the parallel system increases with increasing number of components, while the resilience remains constant in the series system. A Monte Carlo-based simulation method is also provided to verify the correctness of our analytic resilience models and to analyze the resilience of networked systems based on that of components. A road network example is used to illustrate the analysis process, and the resilience comparison among networks with different topologies but the same components indicates that a system with redundant performance is usually more resilient than one without redundant performance. However, not all redundant capacities of components can improve the system resilience, the effectiveness of the capacity redundancy depends on where the redundant capacity is located. PMID:28545135
NASA Astrophysics Data System (ADS)
Zhang, Y. Y.; Shao, Q. X.; Ye, A. Z.; Xing, H. T.; Xia, J.
2016-02-01
Integrated water system modeling is a feasible approach to understanding severe water crises in the world and promoting the implementation of integrated river basin management. In this study, a classic hydrological model (the time variant gain model: TVGM) was extended to an integrated water system model by coupling multiple water-related processes in hydrology, biogeochemistry, water quality, and ecology, and considering the interference of human activities. A parameter analysis tool, which included sensitivity analysis, autocalibration and model performance evaluation, was developed to improve modeling efficiency. To demonstrate the model performances, the Shaying River catchment, which is the largest highly regulated and heavily polluted tributary of the Huai River basin in China, was selected as the case study area. The model performances were evaluated on the key water-related components including runoff, water quality, diffuse pollution load (or nonpoint sources) and crop yield. Results showed that our proposed model simulated most components reasonably well. The simulated daily runoff at most regulated and less-regulated stations matched well with the observations. The average correlation coefficient and Nash-Sutcliffe efficiency were 0.85 and 0.70, respectively. Both the simulated low and high flows at most stations were improved when the dam regulation was considered. The daily ammonium-nitrogen (NH4-N) concentration was also well captured with the average correlation coefficient of 0.67. Furthermore, the diffuse source load of NH4-N and the corn yield were reasonably simulated at the administrative region scale. This integrated water system model is expected to improve the simulation performances with extension to more model functionalities, and to provide a scientific basis for the implementation in integrated river basin managements.
Assessing Continuous Operator Workload With a Hybrid Scaffolded Neuroergonomic Modeling Approach.
Borghetti, Brett J; Giametta, Joseph J; Rusnock, Christina F
2017-02-01
We aimed to predict operator workload from neurological data using statistical learning methods to fit neurological-to-state-assessment models. Adaptive systems require real-time mental workload assessment to perform dynamic task allocations or operator augmentation as workload issues arise. Neuroergonomic measures have great potential for informing adaptive systems, and we combine these measures with models of task demand as well as information about critical events and performance to clarify the inherent ambiguity of interpretation. We use machine learning algorithms on electroencephalogram (EEG) input to infer operator workload based upon Improved Performance Research Integration Tool workload model estimates. Cross-participant models predict workload of other participants, statistically distinguishing between 62% of the workload changes. Machine learning models trained from Monte Carlo resampled workload profiles can be used in place of deterministic workload profiles for cross-participant modeling without incurring a significant decrease in machine learning model performance, suggesting that stochastic models can be used when limited training data are available. We employed a novel temporary scaffold of simulation-generated workload profile truth data during the model-fitting process. A continuous workload profile serves as the target to train our statistical machine learning models. Once trained, the workload profile scaffolding is removed and the trained model is used directly on neurophysiological data in future operator state assessments. These modeling techniques demonstrate how to use neuroergonomic methods to develop operator state assessments, which can be employed in adaptive systems.
On-Board Propulsion System Analysis of High Density Propellants
NASA Technical Reports Server (NTRS)
Schneider, Steven J.
1998-01-01
The impact of the performance and density of on-board propellants on science payload mass of Discovery Program class missions is evaluated. A propulsion system dry mass model, anchored on flight-weight system data from the Near Earth Asteroid Rendezvous mission is used. This model is used to evaluate the performance of liquid oxygen, hydrogen peroxide, hydroxylammonium nitrate, and oxygen difluoride oxidizers with hydrocarbon and metal hydride fuels. Results for the propellants evaluated indicate that the state-of-art, Earth Storable propellants with high performance rhenium engine technology in both the axial and attitude control systems has performance capabilities that can only be exceeded by liquid oxygen/hydrazine, liquid oxygen/diborane and oxygen difluoride/diborane propellant combinations. Potentially lower ground operations costs is the incentive for working with nontoxic propellant combinations.
System model development for nuclear thermal propulsion
NASA Technical Reports Server (NTRS)
Walton, James T.; Hannan, Nelson A.; Perkins, Ken R.; Buksa, John H.; Worley, Brian A.; Dobranich, Dean
1992-01-01
A critical enabling technology in the evolutionary development of nuclear thermal propulsion (NTP) is the ability to predict the system performance under a variety of operating conditions. This is crucial for mission analysis and for control subsystem testing as well as for the modeling of various failure modes. Performance must be accurately predicted during steady-state and transient operation, including startup, shutdown, and post operation cooling. The development and application of verified and validated system models has the potential to reduce the design, testing, and cost and time required for the technology to reach flight-ready status. Since Oct. 1991, the U.S. Department of Energy (DOE), Department of Defense (DOD), and NASA have initiated critical technology development efforts for NTP systems to be used on Space Exploration Initiative (SEI) missions to the Moon and Mars. This paper presents the strategy and progress of an interagency NASA/DOE/DOD team for NTP system modeling. It is the intent of the interagency team to develop several levels of computer programs to simulate various NTP systems. The first level will provide rapid, parameterized calculations of overall system performance. Succeeding computer programs will provide analysis of each component in sufficient detail to guide the design teams and experimental efforts. The computer programs will allow simulation of the entire system to allow prediction of the integrated performance. An interagency team was formed for this task to use the best capabilities available and to assure appropriate peer review.
Spacecraft VHF Radio Propagation Analysis in Ocean Environments Including Atmospheric Effects
NASA Technical Reports Server (NTRS)
Hwu, Shian; Moreno, Gerardo; Desilva, Kanishka; Jih, CIndy
2010-01-01
The Communication Systems Simulation Laboratory (CSSL) at the National Aeronautics and Space Administration (NASA)/Johnson Space Center (JSC) is tasked to perform spacecraft and ground network communication system simulations. The CSSL has developed simulation tools that model spacecraft communication systems and the space/ground environment in which they operate. This paper is to analyze a spacecraft's very high frequency (VHF) radio signal propagation and the impact to performance when landing in an ocean. Very little research work has been done for VHF radio systems in a maritime environment. Rigorous Radio Frequency (RF) modeling/simulation techniques were employed for various environmental effects. The simulation results illustrate the significance of the environmental effects on the VHF radio system performance.
Parametric System Model for a Stirling Radioisotope Generator
NASA Technical Reports Server (NTRS)
Schmitz, Paul C.
2015-01-01
A Parametric System Model (PSM) was created in order to explore conceptual designs, the impact of component changes and power level on the performance of the Stirling Radioisotope Generator (SRG). Using the General Purpose Heat Source (GPHS approximately 250 Wth) modules as the thermal building block from which a SRG is conceptualized, trade studies are performed to understand the importance of individual component scaling on isotope usage. Mathematical relationships based on heat and power throughput, temperature, mass, and volume were developed for each of the required subsystems. The PSM uses these relationships to perform component- and system-level trades.
Parametric System Model for a Stirling Radioisotope Generator
NASA Technical Reports Server (NTRS)
Schmitz, Paul C.
2014-01-01
A Parametric System Model (PSM) was created in order to explore conceptual designs, the impact of component changes and power level on the performance of Stirling Radioisotope Generator (SRG). Using the General Purpose Heat Source (GPHS approximately 250 watt thermal) modules as the thermal building block around which a SRG is conceptualized, trade studies are performed to understand the importance of individual component scaling on isotope usage. Mathematical relationships based on heat and power throughput, temperature, mass and volume were developed for each of the required subsystems. The PSM uses these relationships to perform component and system level trades.
NASA Technical Reports Server (NTRS)
Briggs, Maxwell H.
2011-01-01
The Fission Power System (FPS) project is developing a Technology Demonstration Unit (TDU) to verify the performance and functionality of a subscale version of the FPS reference concept in a relevant environment, and to verify component and system models. As hardware is developed for the TDU, component and system models must be refined to include the details of specific component designs. This paper describes the development of a Sage-based pseudo-steady-state Stirling convertor model and its implementation into a system-level model of the TDU.
NASA Technical Reports Server (NTRS)
Choi, Benjamin B.; Brown, Gerald V.
2017-01-01
It is essential to design a propulsion powertrain real-time simulator using the hardware-in-the-loop (HIL) system that emulates an electrified aircraft propulsion (EAP) systems power grid. This simulator would enable us to facilitate in-depth understanding of the system principles, to validate system model analysis and performance prediction, and to demonstrate the proof-of-concept of the EAP electrical system. This paper describes how subscale electrical machines with their controllers can mimic the power components in an EAP powertrain. In particular, three powertrain emulations are presented to mimic 1) a gas turbo-=shaft engine driving a generator, consisting of two permanent magnet (PM) motors with brushless motor drives, coupled by a shaft, 2) a motor driving a propulsive fan, and 3) a turbo-shaft engine driven fan (turbofan engine) operation. As a first step towards the demonstration, experimental dynamic characterization of the two motor drive systems, coupled by a mechanical shaft, were performed. The previously developed analytical motor models1 were then replaced with the experimental motor models to perform the real-time demonstration in the predefined flight path profiles. This technique can convert the plain motor system into a unique EAP power grid emulator that enables rapid analysis and real-time simulation performance using hardware-in-the-loop (HIL).
USDA-ARS?s Scientific Manuscript database
Simulation modelers increasingly require greater flexibility for model implementation on diverse operating systems, and they demand high computational speed for efficient iterative simulations. Additionally, model users may differ in preference for proprietary versus open-source software environment...
Biocellion: accelerating computer simulation of multicellular biological system models
Kang, Seunghwa; Kahan, Simon; McDermott, Jason; Flann, Nicholas; Shmulevich, Ilya
2014-01-01
Motivation: Biological system behaviors are often the outcome of complex interactions among a large number of cells and their biotic and abiotic environment. Computational biologists attempt to understand, predict and manipulate biological system behavior through mathematical modeling and computer simulation. Discrete agent-based modeling (in combination with high-resolution grids to model the extracellular environment) is a popular approach for building biological system models. However, the computational complexity of this approach forces computational biologists to resort to coarser resolution approaches to simulate large biological systems. High-performance parallel computers have the potential to address the computing challenge, but writing efficient software for parallel computers is difficult and time-consuming. Results: We have developed Biocellion, a high-performance software framework, to solve this computing challenge using parallel computers. To support a wide range of multicellular biological system models, Biocellion asks users to provide their model specifics by filling the function body of pre-defined model routines. Using Biocellion, modelers without parallel computing expertise can efficiently exploit parallel computers with less effort than writing sequential programs from scratch. We simulate cell sorting, microbial patterning and a bacterial system in soil aggregate as case studies. Availability and implementation: Biocellion runs on x86 compatible systems with the 64 bit Linux operating system and is freely available for academic use. Visit http://biocellion.com for additional information. Contact: seunghwa.kang@pnnl.gov PMID:25064572
NASA Astrophysics Data System (ADS)
Manninen, L. M.
1993-12-01
The document describes TKKMOD, a simulation model developed at Helsinki University of Technology for a specific wind-diesel system layout, with special emphasis on the battery submodel and its use in simulation. The model has been included into the European wind-diesel modeling software package WDLTOOLS under the CEC JOULE project 'Engineering Design Tools for Wind-Diesel Systems' (JOUR-0078). WDLTOOLS serves as the user interface and processes the input and output data of different logistic simulation models developed by the project participants. TKKMOD cannot be run without this shell. The report only describes the simulation principles and model specific parameters of TKKMOD and gives model specific user instructions. The input and output data processing performed outside this model is described in the documentation of the shell. The simulation model is utilized for calculation of long-term performance of the reference system configuration for given wind and load conditions. The main results are energy flows, losses in the system components, diesel fuel consumption, and the number of diesel engine starts.
Model-centric distribution automation: Capacity, reliability, and efficiency
Onen, Ahmet; Jung, Jaesung; Dilek, Murat; ...
2016-02-26
A series of analyses along with field validations that evaluate efficiency, reliability, and capacity improvements of model-centric distribution automation are presented. With model-centric distribution automation, the same model is used from design to real-time control calculations. A 14-feeder system with 7 substations is considered. The analyses involve hourly time-varying loads and annual load growth factors. Phase balancing and capacitor redesign modifications are used to better prepare the system for distribution automation, where the designs are performed considering time-varying loads. Coordinated control of load tap changing transformers, line regulators, and switched capacitor banks is considered. In evaluating distribution automation versus traditionalmore » system design and operation, quasi-steady-state power flow analysis is used. In evaluating distribution automation performance for substation transformer failures, reconfiguration for restoration analysis is performed. In evaluating distribution automation for storm conditions, Monte Carlo simulations coupled with reconfiguration for restoration calculations are used. As a result, the evaluations demonstrate that model-centric distribution automation has positive effects on system efficiency, capacity, and reliability.« less
Model-centric distribution automation: Capacity, reliability, and efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onen, Ahmet; Jung, Jaesung; Dilek, Murat
A series of analyses along with field validations that evaluate efficiency, reliability, and capacity improvements of model-centric distribution automation are presented. With model-centric distribution automation, the same model is used from design to real-time control calculations. A 14-feeder system with 7 substations is considered. The analyses involve hourly time-varying loads and annual load growth factors. Phase balancing and capacitor redesign modifications are used to better prepare the system for distribution automation, where the designs are performed considering time-varying loads. Coordinated control of load tap changing transformers, line regulators, and switched capacitor banks is considered. In evaluating distribution automation versus traditionalmore » system design and operation, quasi-steady-state power flow analysis is used. In evaluating distribution automation performance for substation transformer failures, reconfiguration for restoration analysis is performed. In evaluating distribution automation for storm conditions, Monte Carlo simulations coupled with reconfiguration for restoration calculations are used. As a result, the evaluations demonstrate that model-centric distribution automation has positive effects on system efficiency, capacity, and reliability.« less
NASA Astrophysics Data System (ADS)
Trung, Ha Duyen
2017-12-01
In this paper, the end-to-end performance of free-space optical (FSO) communication system combining with Amplify-and-Forward (AF)-assisted or fixed-gain relaying technology using subcarrier quadrature amplitude modulation (SC-QAM) over weak atmospheric turbulence channels modeled by log-normal distribution with pointing error impairments is studied. More specifically, unlike previous studies on AF relaying FSO communication systems without pointing error effects; the pointing error effect is studied by taking into account the influence of beamwidth, aperture size and jitter variance. In addition, a combination of these models to analyze the combined effect of atmospheric turbulence and pointing error to AF relaying FSO/SC-QAM systems is used. Finally, an analytical expression is derived to evaluate the average symbol error rate (ASER) performance of such systems. The numerical results show that the impact of pointing error on the performance of AF relaying FSO/SC-QAM systems and how we use proper values of aperture size and beamwidth to improve the performance of such systems. Some analytical results are confirmed by Monte-Carlo simulations.
Flight-Test Validation and Flying Qualities Evaluation of a Rotorcraft UAV Flight Control System
NASA Technical Reports Server (NTRS)
Mettler, Bernard; Tuschler, Mark B.; Kanade, Takeo
2000-01-01
This paper presents a process of design and flight-test validation and flying qualities evaluation of a flight control system for a rotorcraft-based unmanned aerial vehicle (RUAV). The keystone of this process is an accurate flight-dynamic model of the aircraft, derived by using system identification modeling. The model captures the most relevant dynamic features of our unmanned rotorcraft, and explicitly accounts for the presence of a stabilizer bar. Using the identified model we were able to determine the performance margins of our original control system and identify limiting factors. The performance limitations were addressed and the attitude control system was 0ptimize.d for different three performance levels: slow, medium, fast. The optimized control laws will be implemented in our RUAV. We will first determine the validity of our control design approach by flight test validating our optimized controllers. Subsequently, we will fly a series of maneuvers with the three optimized controllers to determine the level of flying qualities that can be attained. The outcome enable us to draw important conclusions on the flying qualities requirements for small-scale RUAVs.
Histogram equalization with Bayesian estimation for noise robust speech recognition.
Suh, Youngjoo; Kim, Hoirin
2018-02-01
The histogram equalization approach is an efficient feature normalization technique for noise robust automatic speech recognition. However, it suffers from performance degradation when some fundamental conditions are not satisfied in the test environment. To remedy these limitations of the original histogram equalization methods, class-based histogram equalization approach has been proposed. Although this approach showed substantial performance improvement under noise environments, it still suffers from performance degradation due to the overfitting problem when test data are insufficient. To address this issue, the proposed histogram equalization technique employs the Bayesian estimation method in the test cumulative distribution function estimation. It was reported in a previous study conducted on the Aurora-4 task that the proposed approach provided substantial performance gains in speech recognition systems based on the acoustic modeling of the Gaussian mixture model-hidden Markov model. In this work, the proposed approach was examined in speech recognition systems with deep neural network-hidden Markov model (DNN-HMM), the current mainstream speech recognition approach where it also showed meaningful performance improvement over the conventional maximum likelihood estimation-based method. The fusion of the proposed features with the mel-frequency cepstral coefficients provided additional performance gains in DNN-HMM systems, which otherwise suffer from performance degradation in the clean test condition.
Designing and benchmarking the MULTICOM protein structure prediction system
2013-01-01
Background Predicting protein structure from sequence is one of the most significant and challenging problems in bioinformatics. Numerous bioinformatics techniques and tools have been developed to tackle almost every aspect of protein structure prediction ranging from structural feature prediction, template identification and query-template alignment to structure sampling, model quality assessment, and model refinement. How to synergistically select, integrate and improve the strengths of the complementary techniques at each prediction stage and build a high-performance system is becoming a critical issue for constructing a successful, competitive protein structure predictor. Results Over the past several years, we have constructed a standalone protein structure prediction system MULTICOM that combines multiple sources of information and complementary methods at all five stages of the protein structure prediction process including template identification, template combination, model generation, model assessment, and model refinement. The system was blindly tested during the ninth Critical Assessment of Techniques for Protein Structure Prediction (CASP9) in 2010 and yielded very good performance. In addition to studying the overall performance on the CASP9 benchmark, we thoroughly investigated the performance and contributions of each component at each stage of prediction. Conclusions Our comprehensive and comparative study not only provides useful and practical insights about how to select, improve, and integrate complementary methods to build a cutting-edge protein structure prediction system but also identifies a few new sources of information that may help improve the design of a protein structure prediction system. Several components used in the MULTICOM system are available at: http://sysbio.rnet.missouri.edu/multicom_toolbox/. PMID:23442819
A Global System for Transportation Simulation and Visualization in Emergency Evacuation Scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Wei; Liu, Cheng; Thomas, Neil
2015-01-01
Simulation-based studies are frequently used for evacuation planning and decision making processes. Given the transportation systems complexity and data availability, most evacuation simulation models focus on certain geographic areas. With routine improvement of OpenStreetMap road networks and LandScanTM global population distribution data, we present WWEE, a uniform system for world-wide emergency evacuation simulations. WWEE uses unified data structure for simulation inputs. It also integrates a super-node trip distribution model as the default simulation parameter to improve the system computational performance. Two levels of visualization tools are implemented for evacuation performance analysis, including link-based macroscopic visualization and vehicle-based microscopic visualization. Formore » left-hand and right-hand traffic patterns in different countries, the authors propose a mirror technique to experiment with both scenarios without significantly changing traffic simulation models. Ten cities in US, Europe, Middle East, and Asia are modeled for demonstration. With default traffic simulation models for fast and easy-to-use evacuation estimation and visualization, WWEE also retains the capability of interactive operation for users to adopt customized traffic simulation models. For the first time, WWEE provides a unified platform for global evacuation researchers to estimate and visualize their strategies performance of transportation systems under evacuation scenarios.« less
1981-12-01
time control system algorithms that will perform adequately (i.e., at least maintain closed-loop system stability) when ucertain parameters in the...system design models vary significantly. Such a control algorithm is said to have stability robustness-or more simply is said to be "robust". This...cas6s above, the performance is analyzed using a covariance analysis. The development of all the controllers and the performance analysis algorithms is
SAINT: A combined simulation language for modeling man-machine systems
NASA Technical Reports Server (NTRS)
Seifert, D. J.
1979-01-01
SAINT (Systems Analysis of Integrated Networks of Tasks) is a network modeling and simulation technique for design and analysis of complex man machine systems. SAINT provides the conceptual framework for representing systems that consist of discrete task elements, continuous state variables, and interactions between them. It also provides a mechanism for combining human performance models and dynamic system behaviors in a single modeling structure. The SAINT technique is described and applications of the SAINT are discussed.
Models and techniques for evaluating the effectiveness of aircraft computing systems
NASA Technical Reports Server (NTRS)
Meyer, J. F.
1978-01-01
The development of system models that can provide a basis for the formulation and evaluation of aircraft computer system effectiveness, the formulation of quantitative measures of system effectiveness, and the development of analytic and simulation techniques for evaluating the effectiveness of a proposed or existing aircraft computer are described. Specific topics covered include: system models; performability evaluation; capability and functional dependence; computation of trajectory set probabilities; and hierarchical modeling of an air transport mission.
Advances in Engineering Software for Lift Transportation Systems
NASA Astrophysics Data System (ADS)
Kazakoff, Alexander Borisoff
2012-03-01
In this paper an attempt is performed at computer modelling of ropeway ski lift systems. The logic in these systems is based on a travel form between the two terminals, which operates with high capacity cabins, chairs, gondolas or draw-bars. Computer codes AUTOCAD, MATLAB and Compaq-Visual Fortran - version 6.6 are used in the computer modelling. The rope systems computer modelling is organized in two stages in this paper. The first stage is organization of the ground relief profile and a design of the lift system as a whole, according to the terrain profile and the climatic and atmospheric conditions. The ground profile is prepared by the geodesists and is presented in an AUTOCAD view. The next step is the design of the lift itself which is performed by programmes using the computer code MATLAB. The second stage of the computer modelling is performed after the optimization of the co-ordinates and the lift profile using the computer code MATLAB. Then the co-ordinates and the parameters are inserted into a program written in Compaq Visual Fortran - version 6.6., which calculates 171 lift parameters, organized in 42 tables. The objective of the work presented in this paper is an attempt at computer modelling of the design and parameters derivation of the rope way systems and their computer variation and optimization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Junjian; Wang, Jianhui; Liu, Hui
Abstract: In this paper, nonlinear model reduction for power systems is performed by the balancing of empirical controllability and observability covariances that are calculated around the operating region. Unlike existing model reduction methods, the external system does not need to be linearized but is directly dealt with as a nonlinear system. A transformation is found to balance the controllability and observability covariances in order to determine which states have the greatest contribution to the input-output behavior. The original system model is then reduced by Galerkin projection based on this transformation. The proposed method is tested and validated on a systemmore » comprised of a 16-machine 68-bus system and an IEEE 50-machine 145-bus system. The results show that by using the proposed model reduction the calculation efficiency can be greatly improved; at the same time, the obtained state trajectories are close to those for directly simulating the whole system or partitioning the system while not performing reduction. Compared with the balanced truncation method based on a linearized model, the proposed nonlinear model reduction method can guarantee higher accuracy and similar calculation efficiency. It is shown that the proposed method is not sensitive to the choice of the matrices for calculating the empirical covariances.« less
Bing, Chenchen; Nofiele, Joris; Staruch, Robert; Ladouceur-Wodzak, Michelle; Chatzinoff, Yonatan; Ranjan, Ashish; Chopra, Rajiv
2015-01-01
Purpose Localised hyperthermia in rodent studies is challenging due to the small target size. This study describes the development and characterisation of an MRI-compatible high-intensity focused ultrasound (HIFU) system to perform localised mild hyperthermia treatments in rodent models. Material and methods The hyperthermia platform consisted of an MRI-compatible small animal HIFU system, focused transducers with sector-vortex lenses, a custom-made receive coil, and means to maintain systemic temperatures of rodents. The system was integrated into a 3T MR imager. Control software was developed to acquire images, process temperature maps, and adjust output power using a proportional-integral-derivative feedback control algorithm. Hyperthermia exposures were performed in tissue-mimicking phantoms and in a rodent model (n = 9). During heating, an ROI was assigned in the heated region for temperature control and the target temperature was 42 °C; 30 min mild hyperthermia treatment followed by a 10-min cooling procedure was performed on each animal. Results 3D-printed sector-vortex lenses were successful at creating annular focal regions which enables customisation of the heating volume. Localised mild hyperthermia performed in rats produced a mean ROI temperature of 42.1 ± 0.3 °C. The T10 and T90 percentiles were 43.2 ± 0.4 °C and 41.0 ± 0.3 °C, respectively. For a 30-min treatment, the mean time duration between 41–45 °C was 31.1 min within the ROI. Conclusions The MRI-compatible HIFU system was successfully adapted to perform localised mild hyperthermia treatment in rodent models. A target temperature of 42 °C was well-maintained in a rat thigh model for 30 min. PMID:26540488
Modeling and comparative study of linear and nonlinear controllers for rotary inverted pendulum
NASA Astrophysics Data System (ADS)
Lima, Byron; Cajo, Ricardo; Huilcapi, Víctor; Agila, Wilton
2017-01-01
The rotary inverted pendulum (RIP) is a problem difficult to control, several studies have been conducted where different control techniques have been applied. Literature reports that, although problem is nonlinear, classical PID controllers presents appropriate performances when applied to the system. In this paper, a comparative study of the performances of linear and nonlinear PID structures is carried out. The control algorithms are evaluated in the RIP system, using indices of performance and power consumption, which allow the categorization of control strategies according to their performance. This article also presents the modeling system, which has been estimated some of the parameters involved in the RIP system, using computer-aided design tools (CAD) and experimental methods or techniques proposed by several authors attended. The results indicate a better performance of the nonlinear controller with an increase in the robustness and faster response than the linear controller.
NASA Astrophysics Data System (ADS)
Ji, Xuewu; He, Xiangkun; Lv, Chen; Liu, Yahui; Wu, Jian
2018-06-01
Modelling uncertainty, parameter variation and unknown external disturbance are the major concerns in the development of an advanced controller for vehicle stability at the limits of handling. Sliding mode control (SMC) method has proved to be robust against parameter variation and unknown external disturbance with satisfactory tracking performance. But modelling uncertainty, such as errors caused in model simplification, is inevitable in model-based controller design, resulting in lowered control quality. The adaptive radial basis function network (ARBFN) can effectively improve the control performance against large system uncertainty by learning to approximate arbitrary nonlinear functions and ensure the global asymptotic stability of the closed-loop system. In this paper, a novel vehicle dynamics stability control strategy is proposed using the adaptive radial basis function network sliding mode control (ARBFN-SMC) to learn system uncertainty and eliminate its adverse effects. This strategy adopts a hierarchical control structure which consists of reference model layer, yaw moment control layer, braking torque allocation layer and executive layer. Co-simulation using MATLAB/Simulink and AMESim is conducted on a verified 15-DOF nonlinear vehicle system model with the integrated-electro-hydraulic brake system (I-EHB) actuator in a Sine With Dwell manoeuvre. The simulation results show that ARBFN-SMC scheme exhibits superior stability and tracking performance in different running conditions compared with SMC scheme.
An ICAI architecture for troubleshooting in complex, dynamic systems
NASA Technical Reports Server (NTRS)
Fath, Janet L.; Mitchell, Christine M.; Govindaraj, T.
1990-01-01
Ahab, an intelligent computer-aided instruction (ICAI) program, illustrates an architecture for simulator-based ICAI programs to teach troubleshooting in complex, dynamic environments. The architecture posits three elements of a computerized instructor: the task model, the student model, and the instructional module. The task model is a prescriptive model of expert performance that uses symptomatic and topographic search strategies to provide students with directed problem-solving aids. The student model is a descriptive model of student performance in the context of the task model. This student model compares the student and task models, critiques student performance, and provides interactive performance feedback. The instructional module coordinates information presented by the instructional media, the task model, and the student model so that each student receives individualized instruction. Concept and metaconcept knowledge that supports these elements is contained in frames and production rules, respectively. The results of an experimental evaluation are discussed. They support the hypothesis that training with an adaptive online system built using the Ahab architecture produces better performance than training using simulator practice alone, at least with unfamiliar problems. It is not sufficient to develop an expert strategy and present it to students using offline materials. The training is most effective if it adapts to individual student needs.
Comparative analysis for various redox flow batteries chemistries using a cost performance model
NASA Astrophysics Data System (ADS)
Crawford, Alasdair; Viswanathan, Vilayanur; Stephenson, David; Wang, Wei; Thomsen, Edwin; Reed, David; Li, Bin; Balducci, Patrick; Kintner-Meyer, Michael; Sprenkle, Vincent
2015-10-01
The total energy storage system cost is determined by means of a robust performance-based cost model for multiple flow battery chemistries. Systems aspects such as shunt current losses, pumping losses and various flow patterns through electrodes are accounted for. The system cost minimizing objective function determines stack design by optimizing the state of charge operating range, along with current density and current-normalized flow. The model cost estimates are validated using 2-kW stack performance data for the same size electrodes and operating conditions. Using our validated tool, it has been demonstrated that an optimized all-vanadium system has an estimated system cost of < 350 kWh-1 for 4-h application. With an anticipated decrease in component costs facilitated by economies of scale from larger production volumes, coupled with performance improvements enabled by technology development, the system cost is expected to decrease to 160 kWh-1 for a 4-h application, and to 100 kWh-1 for a 10-h application. This tool has been shared with the redox flow battery community to enable cost estimation using their stack data and guide future direction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Im, Piljae; Munk, Jeffrey D; Gehl, Anthony C
2015-06-01
A research project “Evaluation of Variable Refrigerant Flow (VRF) Systems Performance and the Enhanced Control Algorithm on Oak Ridge National Laboratory’s (ORNL’s) Flexible Research Platform” was performed to (1) install and validate the performance of Samsung VRF systems compared with the baseline rooftop unit (RTU) variable-air-volume (VAV) system and (2) evaluate the enhanced control algorithm for the VRF system on the two-story flexible research platform (FRP) in Oak Ridge, Tennessee. Based on the VRF system designed by Samsung and ORNL, the system was installed from February 18 through April 15, 2014. The final commissioning and system optimization were completed onmore » June 2, 2014, and the initial test for system operation was started the following day, June 3, 2014. In addition, the enhanced control algorithm was implemented and updated on June 18. After a series of additional commissioning actions, the energy performance data from the RTU and the VRF system were monitored from July 7, 2014, through February 28, 2015. Data monitoring and analysis were performed for the cooling season and heating season separately, and the calibrated simulation model was developed and used to estimate the energy performance of the RTU and VRF systems. This final report includes discussion of the design and installation of the VRF system, the data monitoring and analysis plan, the cooling season and heating season data analysis, and the building energy modeling study« less
General Algebraic Modeling System Tutorial | High-Performance Computing |
power generation from two different fuels. The goal is to minimize the cost for one of the fuels while Here's a basic tutorial for modeling optimization problems with the General Algebraic Modeling System (GAMS). Overview The GAMS (General Algebraic Modeling System) package is essentially a compiler for a
MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden
Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomassmore » characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the BLM evaluates economic performance of the engineered system, as well as determining energy consumption and green house gas performance of the design. This paper presents a BLM case study delivering corn stover to produce cellulosic ethanol. The case study utilizes the BLM to model the performance of several feedstock supply system designs. The case study also explores the impact of temporal variations in climate conditions to test the sensitivity of the engineering designs. Results from the case study show that under certain conditions corn stover can be delivered to the cellulosic ethanol biorefinery for $35/dry ton.« less
An instrumental electrode model for solving EIT forward problems.
Zhang, Weida; Li, David
2014-10-01
An instrumental electrode model (IEM) capable of describing the performance of electrical impedance tomography (EIT) systems in the MHz frequency range has been proposed. Compared with the commonly used Complete Electrode Model (CEM), which assumes ideal front-end interfaces, the proposed model considers the effects of non-ideal components in the front-end circuits. This introduces an extra boundary condition in the forward model and offers a more accurate modelling for EIT systems. We have demonstrated its performance using simple geometry structures and compared the results with the CEM and full Maxwell methods. The IEM can provide a significantly more accurate approximation than the CEM in the MHz frequency range, where the full Maxwell methods are favoured over the quasi-static approximation. The improved electrode model will facilitate the future characterization and front-end design of real-world EIT systems.
MOGO: Model-Oriented Global Optimization of Petascale Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malony, Allen D.; Shende, Sameer S.
The MOGO project was initiated under in 2008 under the DOE Program Announcement for Software Development Tools for Improved Ease-of-Use on Petascale systems (LAB 08-19). The MOGO team consisted of Oak Ridge National Lab, Argonne National Lab, and the University of Oregon. The overall goal of MOGO was to attack petascale performance analysis by developing a general framework where empirical performance data could be efficiently and accurately compared with performance expectations at various levels of abstraction. This information could then be used to automatically identify and remediate performance problems. MOGO was be based on performance models derived from application knowledge,more » performance experiments, and symbolic analysis. MOGO was able to make reasonable impact on existing DOE applications and systems. New tools and techniques were developed, which, in turn, were used on important DOE applications on DOE LCF systems to show significant performance improvements.« less
Performance monitoring can boost turboexpander efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
McIntire, R.
1982-07-05
This paper discusses ways of improving the productivity of the turboexpander/refrigeration system's radial expander and radial compressor through systematic review of component performance. It reviews several techniques to determine the performance of an expander and compressor. It suggests that any performance improvement program requires quantifying the performance of separate components over a range of operating conditions; estimating the increase in performance associated with any hardware change; and developing an analytical (computer) model of the entire system by using the performance curve of individual components. The model is used to quantify the economic benefits of any change in the system, eithermore » a change in operating procedures or a hardware modification. Topics include proper ways of using antisurge control valves and modifying flow rate/shaft speed (Q/N). It is noted that compressor efficiency depends on the incidence angle of blade at the rotor leading edge and the angle of the incoming gas stream.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blair, N.; Dobos, S.; Janzou, S.
2013-08-01
The System Advisor Model (SAM) is a broad and robust set of models and frameworks for analyzing both system performance and system financing. It does this across a range of technologies dominated by solar technologies including photovoltaics (PV) and concentrated solar power (CSP). The U.S. Department of Energy (DOE) Solar Energy Technology Program requested the SAM development team to review the photovoltaic performance modeling with the development community and specifically, with the independent engineering community. The report summarizes the major effort for this technical review committee (TRC).
The Development of a Modelling Solution to Address Manpower and Personnel Issues Using the IPME
2010-11-01
training for a military system. It deals with the number of personnel spaces and available people. One of the main concerns in this domain is to...are often addressed by examining existing solutions for similar systems and/or a trial-and-error method based on human-in- the -loop tests. Such an...significant effort and resources on the development of a human performance modelling software, the Integrated Performance Modelling Environment (IPME
NASA Astrophysics Data System (ADS)
Riviere, Nicolas; Ceolato, Romain; Hespel, Laurent
2014-10-01
Onera, the French aerospace lab, develops and models active imaging systems to understand the relevant physical phenomena affecting these systems performance. As a consequence, efforts have been done on the propagation of a pulse through the atmosphere and on target geometries and surface properties. These imaging systems must operate at night in all ambient illumination and weather conditions in order to perform strategic surveillance for various worldwide operations. We have implemented codes for 2D and 3D laser imaging systems. As we aim to image a scene in the presence of rain, snow, fog or haze, we introduce such light-scattering effects in our numerical models and compare simulated images with measurements provided by commercial laser scanners.
Advances in POST2 End-to-End Descent and Landing Simulation for the ALHAT Project
NASA Technical Reports Server (NTRS)
Davis, Jody L.; Striepe, Scott A.; Maddock, Robert W.; Hines, Glenn D.; Paschall, Stephen, II; Cohanim, Babak E.; Fill, Thomas; Johnson, Michael C.; Bishop, Robert H.; DeMars, Kyle J.;
2008-01-01
Program to Optimize Simulated Trajectories II (POST2) is used as a basis for an end-to-end descent and landing trajectory simulation that is essential in determining design and integration capability and system performance of the lunar descent and landing system and environment models for the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. The POST2 simulation provides a six degree-of-freedom capability necessary to test, design and operate a descent and landing system for successful lunar landing. This paper presents advances in the development and model-implementation of the POST2 simulation, as well as preliminary system performance analysis, used for the testing and evaluation of ALHAT project system models.
An approach to secure weather and climate models against hardware faults
NASA Astrophysics Data System (ADS)
Düben, Peter D.; Dawson, Andrew
2017-03-01
Enabling Earth System models to run efficiently on future supercomputers is a serious challenge for model development. Many publications study efficient parallelization to allow better scaling of performance on an increasing number of computing cores. However, one of the most alarming threats for weather and climate predictions on future high performance computing architectures is widely ignored: the presence of hardware faults that will frequently hit large applications as we approach exascale supercomputing. Changes in the structure of weather and climate models that would allow them to be resilient against hardware faults are hardly discussed in the model development community. In this paper, we present an approach to secure the dynamical core of weather and climate models against hardware faults using a backup system that stores coarse resolution copies of prognostic variables. Frequent checks of the model fields on the backup grid allow the detection of severe hardware faults, and prognostic variables that are changed by hardware faults on the model grid can be restored from the backup grid to continue model simulations with no significant delay. To justify the approach, we perform model simulations with a C-grid shallow water model in the presence of frequent hardware faults. As long as the backup system is used, simulations do not crash and a high level of model quality can be maintained. The overhead due to the backup system is reasonable and additional storage requirements are small. Runtime is increased by only 13 % for the shallow water model.
Directly Comparing Computer and Human Performance in Language Understanding and Visual Reasoning.
ERIC Educational Resources Information Center
Baker, Eva L.; And Others
Evaluation models are being developed for assessing artificial intelligence (AI) systems in terms of similar performance by groups of people. Natural language understanding and vision systems are the areas of concentration. In simplest terms, the goal is to norm a given natural language system's performance on a sample of people. The specific…
2012-03-01
EMPIRICAL ANALYSIS OF OPTICAL ATTENUATOR PERFORMANCE IN QUANTUM KEY DISTRIBUTION SYSTEMS USING A...DISTRIBUTION IS UNLIMITED AFIT/GCS/ENG/12-01 EMPIRICAL ANALYSIS OF OPTICAL ATTENUATOR PERFORMANCE IN QUANTUM KEY DISTRIBUTION SYSTEMS USING ...challenging as the complexity of actual implementation specifics are considered. Two components common to most quantum key distribution
DSN telemetry system performance with convolutionally code data
NASA Technical Reports Server (NTRS)
Mulhall, B. D. L.; Benjauthrit, B.; Greenhall, C. A.; Kuma, D. M.; Lam, J. K.; Wong, J. S.; Urech, J.; Vit, L. D.
1975-01-01
The results obtained to date and the plans for future experiments for the DSN telemetry system were presented. The performance of the DSN telemetry system in decoding convolutionally coded data by both sequential and maximum likelihood techniques is being determined by testing at various deep space stations. The evaluation of performance models is also an objective of this activity.
NASA Technical Reports Server (NTRS)
Chatterjee, Sharmista
1993-01-01
Our first goal in this project was to perform a systems analysis of a closed loop Environmental Control Life Support System (ECLSS). This pertains to the development of a model of an existing real system from which to assess the state or performance of the existing system. Systems analysis is applied to conceptual models obtained from a system design effort. For our modelling purposes we used a simulator tool called ASPEN (Advanced System for Process Engineering). Our second goal was to evaluate the thermodynamic efficiency of the different components comprising an ECLSS. Use is made of the second law of thermodynamics to determine the amount of irreversibility of energy loss of each component. This will aid design scientists in selecting the components generating the least entropy, as our penultimate goal is to keep the entropy generation of the whole system at a minimum.
Microworlds of the dynamic balanced scorecard for university (DBSC-UNI)
NASA Astrophysics Data System (ADS)
Hawari, Nurul Nazihah; Tahar, Razman Mat
2015-12-01
This research focuses on the development of a Microworlds of the dynamic balanced scorecard for university in order to enhance the university strategic planning process. To develop the model, we integrated both the balanced scorecard method and the system dynamics modelling method. Contrasting the traditional university planning tools, the developed model addresses university management problems holistically and dynamically. It is found that using system dynamics modelling method, the cause-and-effect relationships among variables related to the four conventional balanced scorecard perspectives are better understand. The dynamic processes that give rise to performance differences between targeted and actual performances also could be better understood. So, it is expected that the quality of the decisions taken are improved because of being better informed. The developed Microworlds can be exploited by university management to design policies that can positively influence the future in the direction of desired goals, and will have minimal side effects. This paper integrates balanced scorecard and system dynamics modelling methods in analyzing university performance. Therefore, this paper demonstrates the effectiveness and strength of system dynamics modelling method in solving problem in strategic planning area particularly in higher education sector.
Performance Model and Sensitivity Analysis for a Solar Thermoelectric Generator
NASA Astrophysics Data System (ADS)
Rehman, Naveed Ur; Siddiqui, Mubashir Ali
2017-03-01
In this paper, a regression model for evaluating the performance of solar concentrated thermoelectric generators (SCTEGs) is established and the significance of contributing parameters is discussed in detail. The model is based on several natural, design and operational parameters of the system, including the thermoelectric generator (TEG) module and its intrinsic material properties, the connected electrical load, concentrator attributes, heat transfer coefficients, solar flux, and ambient temperature. The model is developed by fitting a response curve, using the least-squares method, to the results. The sample points for the model were obtained by simulating a thermodynamic model, also developed in this paper, over a range of values of input variables. These samples were generated employing the Latin hypercube sampling (LHS) technique using a realistic distribution of parameters. The coefficient of determination was found to be 99.2%. The proposed model is validated by comparing the predicted results with those in the published literature. In addition, based on the elasticity for parameters in the model, sensitivity analysis was performed and the effects of parameters on the performance of SCTEGs are discussed in detail. This research will contribute to the design and performance evaluation of any SCTEG system for a variety of applications.
Modeling of NASA's 30/20 GHz satellite communications system
NASA Technical Reports Server (NTRS)
Kwatra, S. C.; Maples, B. W.; Stevens, G. A.
1984-01-01
NASA is in the process of developing technology for a 30/20 GHz satellite communications link. Currently hardware is being assembled for a test transponder. A simulation package is being developed to study the link performance in the presence of interference and noise. This requires developing models for the components of the system. This paper describes techniques used to model the components for which data is available. Results of experiments performed using these models are described. A brief overview of NASA's 30/20 GHz communications satellite program is also included.
Virtual Observation System for Earth System Model: An Application to ACME Land Model Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Dali; Yuan, Fengming; Hernandez, Benjamin
Investigating and evaluating physical-chemical-biological processes within an Earth system model (EMS) can be very challenging due to the complexity of both model design and software implementation. A virtual observation system (VOS) is presented to enable interactive observation of these processes during system simulation. Based on advance computing technologies, such as compiler-based software analysis, automatic code instrumentation, and high-performance data transport, the VOS provides run-time observation capability, in-situ data analytics for Earth system model simulation, model behavior adjustment opportunities through simulation steering. A VOS for a terrestrial land model simulation within the Accelerated Climate Modeling for Energy model is also presentedmore » to demonstrate the implementation details and system innovations.« less
Virtual Observation System for Earth System Model: An Application to ACME Land Model Simulations
Wang, Dali; Yuan, Fengming; Hernandez, Benjamin; ...
2017-01-01
Investigating and evaluating physical-chemical-biological processes within an Earth system model (EMS) can be very challenging due to the complexity of both model design and software implementation. A virtual observation system (VOS) is presented to enable interactive observation of these processes during system simulation. Based on advance computing technologies, such as compiler-based software analysis, automatic code instrumentation, and high-performance data transport, the VOS provides run-time observation capability, in-situ data analytics for Earth system model simulation, model behavior adjustment opportunities through simulation steering. A VOS for a terrestrial land model simulation within the Accelerated Climate Modeling for Energy model is also presentedmore » to demonstrate the implementation details and system innovations.« less
Jung, Kiwook; Morris, K C; Lyons, Kevin W; Leong, Swee; Cho, Hyunbo
2015-12-01
Smart Manufacturing Systems (SMS) need to be agile to adapt to new situations by using detailed, precise, and appropriate data for intelligent decision-making. The intricacy of the relationship of strategic goals to operational performance across the many levels of a manufacturing system inhibits the realization of SMS. This paper proposes a method for identifying what aspects of a manufacturing system should be addressed to respond to changing strategic goals. The method uses standard modeling techniques in specifying a manufacturing system and the relationship between strategic goals and operational performance metrics. Two existing reference models related to manufacturing operations are represented formally and harmonized to support the proposed method. The method is illustrated for a single scenario using agility as a strategic goal. By replicating the proposed method for other strategic goals and with multiple scenarios, a comprehensive set of performance challenges can be identified.
Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen Minh
2002-03-31
This report summarizes the work performed by Honeywell during the January 2002 to March 2002 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. For this reporting period the following activities have been carried out: {lg_bullet} Conceptual system design trade studies were performed {lg_bullet} System-level performance model was created {lg_bullet}more » Dynamic control models are being developed {lg_bullet} Mechanical properties of candidate heat exchanger materials were investigated {lg_bullet} SOFC performance mapping as a function of flow rate and pressure was completed« less
Jung, Kiwook; Morris, KC; Lyons, Kevin W.; Leong, Swee; Cho, Hyunbo
2016-01-01
Smart Manufacturing Systems (SMS) need to be agile to adapt to new situations by using detailed, precise, and appropriate data for intelligent decision-making. The intricacy of the relationship of strategic goals to operational performance across the many levels of a manufacturing system inhibits the realization of SMS. This paper proposes a method for identifying what aspects of a manufacturing system should be addressed to respond to changing strategic goals. The method uses standard modeling techniques in specifying a manufacturing system and the relationship between strategic goals and operational performance metrics. Two existing reference models related to manufacturing operations are represented formally and harmonized to support the proposed method. The method is illustrated for a single scenario using agility as a strategic goal. By replicating the proposed method for other strategic goals and with multiple scenarios, a comprehensive set of performance challenges can be identified. PMID:27141209
NASA Astrophysics Data System (ADS)
Riviere, Nicolas; Hespel, Laurent; Ceolato, Romain; Drouet, Florence
2011-11-01
Onera, the French Aerospace Lab, develops and models active imaging systems to understand the relevant physical phenomena impacting on their performances. As a consequence, efforts have been done both on the propagation of a pulse through the atmosphere (scintillation and turbulence effects) and, on target geometries and their surface properties (radiometric and speckle effects). But these imaging systems must operate at night in all ambient illuminations and weather conditions in order to perform the strategic surveillance of the environment for various worldwide operations or to perform the enhanced navigation of an aircraft. Onera has implemented codes for 2D and 3D laser imaging systems. As we aim to image a scene even in the presence of rain, snow, fog or haze, Onera introduces such meteorological effects in these numerical models and compares simulated images with measurements provided by commercial imaging systems.
Instrument Landing System performance prediction
DOT National Transportation Integrated Search
1974-01-01
Further achievements made in fiscal year 1973 on the development : of an Instrument Landing System (ILS) performance prediction model : are reported. These include (ILS) localizer scattering from generalized : slanted rectangular, triangular and cyli...
Assessing the performance of regional landslide early warning models: the EDuMaP method
NASA Astrophysics Data System (ADS)
Calvello, M.; Piciullo, L.
2015-10-01
The paper proposes the evaluation of the technical performance of a regional landslide early warning system by means of an original approach, called EDuMaP method, comprising three successive steps: identification and analysis of the Events (E), i.e. landslide events and warning events derived from available landslides and warnings databases; definition and computation of a Duration Matrix (DuMa), whose elements report the time associated with the occurrence of landslide events in relation to the occurrence of warning events, in their respective classes; evaluation of the early warning model Performance (P) by means of performance criteria and indicators applied to the duration matrix. During the first step, the analyst takes into account the features of the warning model by means of ten input parameters, which are used to identify and classify landslide and warning events according to their spatial and temporal characteristics. In the second step, the analyst computes a time-based duration matrix having a number of rows and columns equal to the number of classes defined for the warning and landslide events, respectively. In the third step, the analyst computes a series of model performance indicators derived from a set of performance criteria, which need to be defined by considering, once again, the features of the warning model. The proposed method is based on a framework clearly distinguishing between local and regional landslide early warning systems as well as among correlation laws, warning models and warning systems. The applicability, potentialities and limitations of the EDuMaP method are tested and discussed using real landslides and warnings data from the municipal early warning system operating in Rio de Janeiro (Brazil).
Performance of an Automated-Mixed-Traffic-Vehicle /AMTV/ System. [urban people mover
NASA Technical Reports Server (NTRS)
Peng, T. K. C.; Chon, K.
1978-01-01
This study analyzes the operation and evaluates the expected performance of a proposed automatic guideway transit system which uses low-speed Automated Mixed Traffic Vehicles (AMTV's). Vehicle scheduling and headway control policies are evaluated with a transit system simulation model. The effect of mixed-traffic interference on the average vehicle speed is examined with a vehicle-pedestrian interface model. Control parameters regulating vehicle speed are evaluated for safe stopping and passenger comfort.
Quasi 1D Modeling of Mixed Compression Supersonic Inlets
NASA Technical Reports Server (NTRS)
Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Woolwine, Kyle J.
2012-01-01
The AeroServoElasticity task under the NASA Supersonics Project is developing dynamic models of the propulsion system and the vehicle in order to conduct research for integrated vehicle dynamic performance. As part of this effort, a nonlinear quasi 1-dimensional model of the 2-dimensional bifurcated mixed compression supersonic inlet is being developed. The model utilizes computational fluid dynamics for both the supersonic and subsonic diffusers. The oblique shocks are modeled utilizing compressible flow equations. This model also implements variable geometry required to control the normal shock position. The model is flexible and can also be utilized to simulate other mixed compression supersonic inlet designs. The model was validated both in time and in the frequency domain against the legacy LArge Perturbation INlet code, which has been previously verified using test data. This legacy code written in FORTRAN is quite extensive and complex in terms of the amount of software and number of subroutines. Further, the legacy code is not suitable for closed loop feedback controls design, and the simulation environment is not amenable to systems integration. Therefore, a solution is to develop an innovative, more simplified, mixed compression inlet model with the same steady state and dynamic performance as the legacy code that also can be used for controls design. The new nonlinear dynamic model is implemented in MATLAB Simulink. This environment allows easier development of linear models for controls design for shock positioning. The new model is also well suited for integration with a propulsion system model to study inlet/propulsion system performance, and integration with an aero-servo-elastic system model to study integrated vehicle ride quality, vehicle stability, and efficiency.
NASA Astrophysics Data System (ADS)
Tarboton, D. G.; Idaszak, R.; Horsburgh, J. S.; Ames, D.; Goodall, J. L.; Band, L. E.; Merwade, V.; Couch, A.; Arrigo, J.; Hooper, R. P.; Valentine, D. W.; Maidment, D. R.
2013-12-01
HydroShare is an online, collaborative system being developed for sharing hydrologic data and models. The goal of HydroShare is to enable scientists to easily discover and access data and models, retrieve them to their desktop or perform analyses in a distributed computing environment that may include grid, cloud or high performance computing model instances as necessary. Scientists may also publish outcomes (data, results or models) into HydroShare, using the system as a collaboration platform for sharing data, models and analyses. HydroShare is expanding the data sharing capability of the CUAHSI Hydrologic Information System by broadening the classes of data accommodated, creating new capability to share models and model components, and taking advantage of emerging social media functionality to enhance information about and collaboration around hydrologic data and models. One of the fundamental concepts in HydroShare is that of a Resource. All content is represented using a Resource Data Model that separates system and science metadata and has elements common to all resources as well as elements specific to the types of resources HydroShare will support. These will include different data types used in the hydrology community and models and workflows that require metadata on execution functionality. HydroShare will use the integrated Rule-Oriented Data System (iRODS) to manage federated data content and perform rule-based background actions on data and model resources, including parsing to generate metadata catalog information and the execution of models and workflows. This presentation will introduce the HydroShare functionality developed to date, describe key elements of the Resource Data Model and outline the roadmap for future development.
Hypoglycemia alarm enhancement using data fusion.
Skladnev, Victor N; Tarnavskii, Stanislav; McGregor, Thomas; Ghevondian, Nejhdeh; Gourlay, Steve; Jones, Timothy W
2010-01-01
The acceptance of closed-loop blood glucose (BG) control using continuous glucose monitoring systems (CGMS) is likely to improve with enhanced performance of their integral hypoglycemia alarms. This article presents an in silico analysis (based on clinical data) of a modeled CGMS alarm system with trained thresholds on type 1 diabetes mellitus (T1DM) patients that is augmented by sensor fusion from a prototype hypoglycemia alarm system (HypoMon). This prototype alarm system is based on largely independent autonomic nervous system (ANS) response features. Alarm performance was modeled using overnight BG profiles recorded previously on 98 T1DM volunteers. These data included the corresponding ANS response features detected by HypoMon (AiMedics Pty. Ltd.) systems. CGMS data and alarms were simulated by applying a probabilistic model to these overnight BG profiles. The probabilistic model developed used a mean response delay of 7.1 minutes, measurement error offsets on each sample of +/- standard deviation (SD) = 4.5 mg/dl (0.25 mmol/liter), and vertical shifts (calibration offsets) of +/- SD = 19.8 mg/dl (1.1 mmol/liter). Modeling produced 90 to 100 simulated measurements per patient. Alarm systems for all analyses were optimized on a training set of 46 patients and evaluated on the test set of 56 patients. The split between the sets was based on enrollment dates. Optimization was based on detection accuracy but not time to detection for these analyses. The contribution of this form of data fusion to hypoglycemia alarm performance was evaluated by comparing the performance of the trained CGMS and fused data algorithms on the test set under the same evaluation conditions. The simulated addition of HypoMon data produced an improvement in CGMS hypoglycemia alarm performance of 10% at equal specificity. Sensitivity improved from 87% (CGMS as stand-alone measurement) to 97% for the enhanced alarm system. Specificity was maintained constant at 85%. Positive predictive values on the test set improved from 61 to 66% with negative predictive values improving from 96 to 99%. These enhancements were stable within sensitivity analyses. Sensitivity analyses also suggested larger performance increases at lower CGMS alarm performance levels. Autonomic nervous system response features provide complementary information suitable for fusion with CGMS data to enhance nocturnal hypoglycemia alarms. 2010 Diabetes Technology Society.
2012-03-01
such as FASCODE is accomplished. The assessment is limited by the correctness of the models used; validating the models is beyond the scope of this...comparisons with other models and validation against data sets (Snell et al. 2000). 2.3.2 Previous Research Several LADAR simulations have been produced...performance models would better capture the atmosphere physics and climatological effects on these systems. Also, further validation needs to be performed