Science.gov

Sample records for modeling vegetation diversity

  1. Palaeo plant diversity in subtropical Africa - ecological assessment of a conceptual model of climate-vegetation interaction

    NASA Astrophysics Data System (ADS)

    Groner, V. P.; Claussen, M.; Reick, C.

    2015-10-01

    We critically reassess a conceptual model here, dealing with the potential effect of plant diversity on climate-vegetation feedback, and we provide an improved version adjusted to plant types that prevailed during the African Humid Period (AHP). Our work contributes to the understanding of the timing and abruptness of vegetation decline at the end of the AHP, investigated by various working groups during the past 2 decades using a wide range of model and palaeo-proxy reconstruction approaches. While some studies indicated an abrupt collapse of vegetation at the end of the AHP, others suggested a gradual decline. Claussen et al. (2013) introduced a new aspect in the discussion, proposing that plant diversity in terms of moisture requirements could affect the strength of climate-vegetation feedback. In a conceptual model study, the authors illustrated that high plant diversity could stabilize an ecosystem, whereas a reduction in plant diversity might allow for an abrupt regime shift under gradually changing environmental conditions. In the light of recently published pollen data and the current state of ecological literature, the conceptual model by Claussen et al. (2013) reproduces the main features of different plant types interacting together with climate, but it does not capture the reconstructed diversity of AHP vegetation. Especially tropical gallery forest taxa, indirectly linked to local precipitation, are not appropriately represented. With a new model version adjusted to AHP vegetation, we can simulate a diverse mosaic-like environment as reconstructed from pollen, and we observe a stabilizing effect of high functional diversity on vegetation cover and precipitation. Sensitivity studies with different combinations of plant types highlight the importance of plant composition on system stability, and the stabilizing or destabilizing potential a single plant type may inherit. The model's simplicity limits its application; however, it provides a useful tool to

  2. Global vegetation model diversity and the risks of climate-driven ecosystem shifts

    SciTech Connect

    Bond-Lamberty, Benjamin

    2013-11-08

    Climate change is modifying global biogeochemical cycles, and is expected to exert increasingly large effects in the future. How these changes will in turn affect and interact with the structure and function of particular ecosystems is unclear, however, both because of scientific uncertainties and the very diversity of global vegetation models in use. Writing in Environmental Research Letters, Warszawski et al. (1) aggregate results from a group of models, across a range of emissions scenarios and climate data, to investigate these risks. Although the models frequently disagree about which specific regions are at risk, they consistently predict a greater chance of ecosystem restructuring with more warming; this risk roughly doubles between 2 and 3 °C increases in global mean temperature. The innovative work of Warszawski et al. represents an important first step towards fully consistent multi-model, multi-scenario assessments of the future risks to global ecosystems.

  3. Remote sensing Penman-Monteith model to estimate catchment evapotranspiration considering the vegetation diversity

    NASA Astrophysics Data System (ADS)

    Li, Fawen; Cao, Runxiang; Zhao, Yong; Mu, Dongjing; Fu, Changfeng; Ping, Feng

    2017-01-01

    A new method for calculating evaporation is proposed, using the Penman-Monteith (P-M) model with remote sensing. This paper achieved the effective estimation to daily evapotranspiration in the Ziya river catchment by using the P-M model based on MODIS remote sensing leaf area index and respectively estimated plant transpiration and soil evaporation by using coefficient of soil evaporation. This model divided catchment into seven different sub-regions which are prairie, meadow, grass, shrub, broad-leaved forest, cultivated vegetation, and coniferous forest through thoroughly considering the vegetation diversity. Furthermore, optimizing and calibrating parameters based on each sub-region and analyzing spatio-temporal variation rules of the model main parameters which are coefficient of soil evaporation f and maximum stomatal conductance g sx . The results indicate that f and g sx calibrated by model are basically consistent with measured data and have obvious spatio-temporal distribution characteristics. The monthly average evapotranspiration value of simulation is 37.96 mm/mon which is close to the measured value with 33.66 mm/mon and the relative error of simulation results in each subregion are within 11 %, which illustrates that simulated values and measured values fit well and the precision of model is high. In addition, plant transpiration and soil evaporation account for about 84.64 and 15.36 % respectively in total evapotranspiration, which means the difference between values of them is large. What is more, this model can effectively estimate the green water resources in basin and provide effective technological support for water resources estimation.

  4. The role of biodiversity for the carbon cycle: Implementation of functional diversity in a dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Sakschewski, Boris; Boit, Alice; von Bloh, Werner; Rammig, Anja; Thonicke, Kirsten

    2013-04-01

    Most dynamic global vegetation models (DGVMs) condense natural plant diversity to plant functional types (PFTs). A single PFT usually represents a whole biome, e.g. the PFT "tropical broadleaved evergreen tree" and its constant set of functional trait parameters covers entire regions in the model. This approach minimizes functional diversity and neglects the effects of functional diversity on the modeled vegetation and carbon dynamics. Our work aims to overcome this limitation and extend functional diversity in the vegetation model LPJmL to explore the role of biodiversity in climate change mitigation. Our approach improves the representation of biodiversity in the model by incorporating the natural ranges and eco-physiological interrelations of relevant plant traits. Empirical data on plant traits is provided by the TRY data base (www.try-db.org) and the ROBIN project (www.robinproject.info). A first sensitivity analysis revealed that simulated carbon stocks are very stable under a large range of trait combinations. However, several model output variables appeared highly sensitive to small changes of plant trait parameters and thus the introduction of trait ranges requires several improvements of the PFT concept of LPJmL. One possible way of improvement is to implement missing plant-trait tradeoffs, which will be used to simulate the growth of individual plants with flexible parameter combinations at the landscape scale. Our improved model will enable for the simulation of local competition and complementarity of individual plants which, according to their trait values and ranges, can then be categorized into a much broader variety of PFTs. This modeling approach will allow for investigating the role of bio- and functional diversity in the global carbon cycle as well as in regional vegetation dynamics.

  5. Palaeo plant diversity in subtropical Africa - ecological assessment of a conceptual model of climate-vegetation interaction

    NASA Astrophysics Data System (ADS)

    Groner, V. P.; Claussen, M.; Reick, C.

    2015-07-01

    We here critically re-assess a conceptual model dealing with the potential effect of plant diversity on climate-vegetation feedback, and provide an improved version adjusted to plant types that prevailed during the African Humid Period (AHP). Our work contributes to the understanding of the timing and abruptness of vegetation decline at the end of the AHP, investigated by various working groups during the past two decades using a wide range of model and palaeoproxy reconstruction approaches. While some studies indicated an abrupt collapse of vegetation at the end of the AHP, others suggested a gradual decline. Claussen et al. (2013) introduced a new aspect in the discussion, proposing that plant diversity in terms of moisture requirements could affect the strength of climate-vegetation feedback. In a conceptual model study, the authors illustrated that high plant diversity could stabilize an ecosystem, whereas a reduction in plant diversity might allow for an abrupt regime shift under gradually changing environmental conditions. Based on recently published pollen data and the current state of ecological literature, we evaluate the representation of climate-vegetation feedback in this conceptual approach, and put the suggested conclusions into an ecological context. In principle, the original model reproduces the main features of different plant types interacting together with climate although vegetation determinants other than precipitation are neglected. However, the model cannot capture the diversity of AHP vegetation. Especially tropical gallery forest taxa, indirectly linked to local precipitation, are not appropriately represented. In order to fill the gaps in the description of plant types regarding AHP diversity, we modify the original model in four main aspects. First, the growth ranges in terms of moisture requirements are extended by upper limits to represent full environmental envelopes. Second, data-based AHP plant types replace the hypothetical plant

  6. Establishing quantitative relations between mammalian communities, climate regimes, and vegetation density - A diversity-based reference model and case study

    NASA Astrophysics Data System (ADS)

    Hertler, Christine; Wolf, Dominik; Bruch, Angela; Märker, Michael

    2013-04-01

    A considerable diversity of hominin taxa is described from the Pleistocene of sub-Saharan Africa. Inner-African range expansions of these taxa are primarily addressed by morphological comparisons of the hominin specimens and systematic interpretation of the results. Considering hominin expansion patterns as being at least co-determined by ecology and environment requires an assessment of respective features of paleo-communities as well as features of the environments with which they are associated. Challenges in validation and integration of reconstructions of hominin environments and ecologies can be met with well-organized recent reference models. Modelling the present day situation permits to assess relevant variables and to establish interactions among them on a quantitative basis. In a next step such a model can be applied to classify hominin paleoenvironments, for which not all data sources are available. An example for this approach is introduced here. In order to characterize hominin environments in sub-Saharan Africa, we assessed sets of variables for composition, structure and diversity of the large mammal communities, climate (temperature and precipitation), and vegetation in African national parks. These data are applied to analyse correlations between faunal communities and their environments on a quantitative basis. While information on large mammal communities is frequently available for hominin localities and regional climate features are addressed on the basis of abiotic proxies, information on paleoflora and vegetation is mostly lacking for the Plio-Pleistocene in sub-Saharan Africa. A quantitative reference model therefore offers new options for reconstructions. A recent reference model moreover permits to quantify descriptive terms like 'savanna'. We will introduce a reference model for sub-Saharan Africa and demonstrate its application in the reconstruction of hominin paleoenvironments. The corresponding quantitative characterization of

  7. Mapping diverse vegetation with multichannel radar images

    NASA Technical Reports Server (NTRS)

    Ford, J. P.; Wickland, D. E.; Ocampo, A.; Sharitz, R. R.

    1986-01-01

    Airborne-SAR, SIR-A, Seasat SAR, and Landsat TM images of the Savannah River Plant, a gently sloping area of South Carolina covered with diverse vegetation, are presented and briefly characterized. Preliminary results indicate that multiple-polarization images constructed from the airborne-SAR data give some indication of forest density and understory growth but do not permit discrimination between evergreen and deciduous forests. Heat-tolerant vegetation growing on sand bars in streams bearing thermal effluents from nuclear reactors on the site is found to have a distinguishing polarization signature.

  8. Opposing Responses of Bird Functional Diversity to Vegetation Structural Diversity in Wet and Dry Forest.

    PubMed

    Sitters, Holly; York, Alan; Swan, Matthew; Christie, Fiona; Di Stefano, Julian

    2016-01-01

    Disturbance regimes are changing worldwide, and the consequences for ecosystem function and resilience are largely unknown. Functional diversity (FD) provides a surrogate measure of ecosystem function by capturing the range, abundance and distribution of trait values in a community. Enhanced understanding of the responses of FD to measures of vegetation structure at landscape scales is needed to guide conservation management. To address this knowledge gap, we used a whole-of-landscape sampling approach to examine relationships between bird FD, vegetation diversity and time since fire. We surveyed birds and measured vegetation at 36 landscape sampling units in dry and wet forest in southeast Australia during 2010 and 2011. Four uncorrelated indices of bird FD (richness, evenness, divergence and dispersion) were derived from six bird traits, and we investigated responses of these indices and species richness to both vertical and horizontal vegetation diversity using linear mixed models. We also considered the extent to which the mean and diversity of time since fire were related to vegetation diversity. Results showed opposing responses of FD to vegetation diversity in dry and wet forest. In dry forest, where fire is frequent, species richness and two FD indices (richness and dispersion) were positively related to vertical vegetation diversity, consistent with theory relating to environmental variation and coexistence. However, in wet forest subject to infrequent fire, the same three response variables were negatively associated with vertical diversity. We suggest that competitive dominance by species results in lower FD as vegetation diversity increases in wet forest. The responses of functional evenness were opposite to those of species richness, functional richness and dispersion in both forest types, highlighting the value of examining multiple FD metrics at management-relevant scales. The mean and diversity of time since fire were uncorrelated with vegetation

  9. Opposing Responses of Bird Functional Diversity to Vegetation Structural Diversity in Wet and Dry Forest

    PubMed Central

    York, Alan; Swan, Matthew; Christie, Fiona; Di Stefano, Julian

    2016-01-01

    Disturbance regimes are changing worldwide, and the consequences for ecosystem function and resilience are largely unknown. Functional diversity (FD) provides a surrogate measure of ecosystem function by capturing the range, abundance and distribution of trait values in a community. Enhanced understanding of the responses of FD to measures of vegetation structure at landscape scales is needed to guide conservation management. To address this knowledge gap, we used a whole-of-landscape sampling approach to examine relationships between bird FD, vegetation diversity and time since fire. We surveyed birds and measured vegetation at 36 landscape sampling units in dry and wet forest in southeast Australia during 2010 and 2011. Four uncorrelated indices of bird FD (richness, evenness, divergence and dispersion) were derived from six bird traits, and we investigated responses of these indices and species richness to both vertical and horizontal vegetation diversity using linear mixed models. We also considered the extent to which the mean and diversity of time since fire were related to vegetation diversity. Results showed opposing responses of FD to vegetation diversity in dry and wet forest. In dry forest, where fire is frequent, species richness and two FD indices (richness and dispersion) were positively related to vertical vegetation diversity, consistent with theory relating to environmental variation and coexistence. However, in wet forest subject to infrequent fire, the same three response variables were negatively associated with vertical diversity. We suggest that competitive dominance by species results in lower FD as vegetation diversity increases in wet forest. The responses of functional evenness were opposite to those of species richness, functional richness and dispersion in both forest types, highlighting the value of examining multiple FD metrics at management-relevant scales. The mean and diversity of time since fire were uncorrelated with vegetation

  10. Modelling vegetated dune landscapes

    NASA Astrophysics Data System (ADS)

    Baas, A. C. W.; Nield, J. M.

    2007-03-01

    This letter presents a self-organising cellular automaton model capable of simulating the evolution of vegetated dunes with multiple types of plant response in the environment. It can successfully replicate hairpin, or long-walled, parabolic dunes with trailing ridges as well as nebkha dunes with distinctive deposition tails. Quantification of simulated landscapes with eco-geomorphic state variables and subsequent cluster analysis and PCA yields a phase diagram of different types of coastal dunes developing from blow-outs as a function of vegetation vitality. This diagram indicates the potential sensitivity of dormant dune fields to reactivation under declining vegetation vitality, e.g. due to climatic changes. Nebkha simulations with different grid resolutions demonstrate that the interaction between the (abiotic) geomorphic processes and the biological vegetation component (life) introduces a characteristic length scale on the resultant landforms that breaks the typical self-similar scaling of (un-vegetated) bare-sand dunes.

  11. High herbivore density associated with vegetation diversity in interglacial ecosystems

    PubMed Central

    Sandom, Christopher J.; Ejrnæs, Rasmus; Hansen, Morten D. D.; Svenning, Jens-Christian

    2014-01-01

    The impact of large herbivores on ecosystems before modern human activities is an open question in ecology and conservation. For Europe, the controversial wood–pasture hypothesis posits that grazing by wild large herbivores supported a dynamic mosaic of vegetation structures at the landscape scale under temperate conditions before agriculture. The contrasting position suggests that European temperate vegetation was primarily closed forest with relatively small open areas, at most impacted locally by large herbivores. Given the role of modern humans in the world-wide decimations of megafauna during the late Quaternary, to resolve this debate it is necessary to understand herbivore–vegetation interactions before these losses. Here, a synthetic analysis of beetle fossils from Great Britain shows that beetles associated with herbivore dung were better represented during the Last Interglacial (132,000–110,000 y B.P., before modern human arrival) than in the early Holocene (10,000–5,000 y B.P.). Furthermore, beetle assemblages indicate closed and partially closed forest in the early Holocene but a greater mixture of semiopen vegetation and forest in the Last Interglacial. Hence, abundant and diverse large herbivores appear to have been associated with high structural diversity of vegetation before the megafauna extinctions at the end of the Pleistocene. After these losses and in the presence of modern humans, large herbivores generally were less abundant, and closed woodland was more prevalent in the early Holocene. Our findings point to the importance of the formerly rich fauna of large herbivores in sustaining structurally diverse vegetation in the temperate forest biome and provide support for recent moves toward rewilding-based conservation management. PMID:24591633

  12. Modeling Antibody Diversity.

    ERIC Educational Resources Information Center

    Baker, William P.; Moore, Cathy Ronstadt

    1998-01-01

    Understanding antibody structure and function is difficult for many students. The rearrangement of constant and variable regions during antibody differentiation can be effectively simulated using a paper model. Describes a hands-on laboratory exercise which allows students to model antibody diversity using readily available resources. (PVD)

  13. [Spatial pattern of vegetation landscape diversity in longitudinal Range-Gorge Region, southwestern China].

    PubMed

    Pan, Tao; Wu, Shao-hong; Dai, Er-fu; Zhao, Dong-sheng; Yin, Yun-he

    2010-12-01

    Based on the China 1:1000000 vegetation type map, and by using GIS spatial analysis, the spatial pattern of major vegetation landscape diversity indices and its relationships with environmental factors in Longitudinal Range-Gorge Region (LRGR) were analyzed. The proper scale for studying the vegetation landscape diversity in LRGR was 2000 m. In the study region, an obvious regional difference was observed in the vegetation landscape diversity indices, exhibiting typical longitudinal "corridor" and latitudinal "barrier" characteristics. The correlations between the vegetation landscape diversity indices and environmental elements were significant, and the regional difference in the environmental elements was the main factor controlling the spatial pattern of vegetation landscape diversity indices. The "corridor-barrier" function of the longitudinal range-gorge terrain made a spatial redistribution of hydro-thermal conditions, being the main cause of the special pattern of the vegetation landscape diversity in LRGR.

  14. Plant functional diversity enhances associations of soil fungal diversity with vegetation and soil in the restoration of semiarid sandy grassland.

    PubMed

    Zuo, Xiaoan; Wang, Shaokun; Lv, Peng; Zhou, Xin; Zhao, Xueyong; Zhang, Tonghui; Zhang, Jing

    2016-01-01

    The trait-based approach shows that plant functional diversity strongly affects ecosystem properties. However, few empirical studies show the relationship between soil fungal diversity and plant functional diversity in natural ecosystems. We investigated soil fungal diversity along a restoration gradient of sandy grassland (mobile dune, semifixed dune, fixed dune, and grassland) in Horqin Sand Land, northern China, using the denaturing gradient gel electrophoresis of 18S rRNA and gene sequencing. We also examined associations of soil fungal diversity with plant functional diversity reflected by the dominant species' traits in community (community-weighted mean, CWM) and the dispersion of functional trait values (FD is). We further used the structure equation model (SEM) to evaluate how plant richness, biomass, functional diversity, and soil properties affect soil fungal diversity in sandy grassland restoration. Soil fungal richness in mobile dune and semifixed dune was markedly lower than those of fixed dune and grassland (P < 0.05). Soil fungal richness was positively associated with plant richness, biomass, CWM plant height, and soil gradient aggregated from the principal component analysis, but SEM results showed that plant richness and CWM plant height determined by soil properties were the main factors exerting direct effects. Soil gradient increased fungal richness through indirect effect on vegetation rather than direct effect. The negative indirect effect of FDis on soil fungal richness was through its effect on plant biomass. Our final SEM model based on plant functional diversity explained nearly 70% variances of soil fungal richness. Strong association of soil fungal richness with the dominant species in the community supported the mass ratio hypothesis. Our results clearly highlight the role of plant functional diversity in enhancing associations of soil fungal diversity with community structure and soil properties in sandy grassland ecosystems.

  15. WATER DIVERSION MODEL

    SciTech Connect

    J.B. Case

    1999-12-21

    The distribution of seepage in the proposed repository will be highly variable due in part to variations in the spatial distribution of percolations. The performance of the drip shield and the backfill system may divert the water flux around the waste packages to the invert. Diversion will occur along the drift surface, within the backfill, at the drip shield, and at the Waste Package (WP) surface, even after the drip shield and WP have been breached by corrosion. The purpose and objective of this Analysis and Modeling Report (AMR) are to develop a conceptual model and constitutive properties for bounding the volume and rate of seepage water that flows around the drip shield (CRWMS M&O 1999c). This analysis model is to be compatible with the selected repository conceptual design (Wilkins and Heath, 1999) and will be used to evaluate the performance of the Engineered Barrier System (EBS), and to provide input to the EBS Water Distribution and Removal Model. This model supports the Engineered Barrier System (EBS) postclosure performance assessment for the Site Recommendation (SR). This document characterizes the hydrological constitutive properties of the backfill and invert materials (Section 6.2) and a third material that represents a mixture of the two. These include the Overton Sand which is selected as a backfill (Section 5.2), crushed tuff which is selected as the invert (Section 5.1), and a combined material (Sections 5.9 and 5.10) which has retention and hydraulic conductivity properties intermediate to the selected materials for the backfill and the invert. The properties include the grain size distribution, the dry bulk density and porosity, the moisture retention, the intrinsic permeability, the relative permeability, and the material thermal properties. The van Genuchten relationships with curve fit parameters are used to define the basic retention relationship of moisture potential to volumetric moisture content, and the basic relationship of unsaturated

  16. Next generation dynamic global vegetation models: learning from community ecology

    NASA Astrophysics Data System (ADS)

    Scheiter, Simon; Higgins, Steven; Langan, Liam

    2013-04-01

    Dynamic global vegetation models are a powerful tool to project the past, current and future distribution of vegetation and associated water and carbon fluxes. However, most models are limited by how they define vegetation and by their simplistic representation of competition. We discuss how concepts from community assembly theory and coexistence theory can help to improve vegetation models. We further present a new trait- and individual-based dynamic vegetation model (the aDGVM2) that allows each individual plant to adopt a unique combination of trait values. These traits define how each individual plant grows and competes with other plants under given environmental conditions. The performance of individual plants in turn drives the assembly of a plant community. A genetic optimisation algorithm is used to simulate the inheritance of traits and different levels of reproductive isolation between individuals. Together these model properties allow the assembly of plant communities that are well adapted to a site's biotic and abiotic conditions. Simulated communities can be classified into different plant functional types or biome types by using trait data bases. We illustrate that the aDGVM2 can simulate (1) how environmental conditions and changes in these conditions influence the trait spectra of assembled plant communities, (2) that fire selects for traits that enhance fire protection and reduces trait diversity, and (3) the emergence of communities dominated by life history strategies that are suggestive of colonisation-competition trade-offs. The aDGVM2 deals with functional diversity and competition fundamentally differently from current dynamic vegetation models. We argue that this approach will yield novel insights as to how vegetation may respond to climate change and we believe that it could foster fruitful collaborations between research communities that focus on plant functional traits, plant competition, plant physiology, systems ecology and earth system

  17. Beyond the Diversity Crisis Model: Decentralized Diversity Planning and Implementation

    ERIC Educational Resources Information Center

    Williams, Damon A.

    2008-01-01

    This article critiques the diversity crises model of diversity planning in higher education and presents a decentralized diversity planning model. The model is based on interviews with the nation's leading diversity officers, a review of the literature and the authors own experiences leading diversity change initiatives in higher education. The…

  18. Modelling consumer intakes of vegetable oils and fats.

    PubMed

    Tennant, David; Gosling, John Paul

    2015-01-01

    Vegetable oils and fats make up a significant part of the energy intake in typical European diets. However, their use as ingredients in a diverse range of different foods means that their consumption is often hidden, especially when oils and fats are used for cooking. As a result, there are no reliable estimates of the consumption of different vegetable oils and fats in the diet of European consumers for use in, for example, nutritional assessments or chemical risk assessments. We have developed an innovative model to estimate the consumption of vegetable oils and fats by European Union consumers using the European Union consumption databases and elements of probabilistic modelling. A key feature of the approach is the assessment of uncertainty in the modelling assumptions that can be used to build user confidence and to guide future development.

  19. Modelling consumer intakes of vegetable oils and fats

    PubMed Central

    Tennant, David; Gosling, John Paul

    2015-01-01

    Vegetable oils and fats make up a significant part of the energy intake in typical European diets. However, their use as ingredients in a diverse range of different foods means that their consumption is often hidden, especially when oils and fats are used for cooking. As a result, there are no reliable estimates of the consumption of different vegetable oils and fats in the diet of European consumers for use in, for example, nutritional assessments or chemical risk assessments. We have developed an innovative model to estimate the consumption of vegetable oils and fats by European Union consumers using the European Union consumption databases and elements of probabilistic modelling. A key feature of the approach is the assessment of uncertainty in the modelling assumptions that can be used to build user confidence and to guide future development. PMID:26160467

  20. Microbial community diversity in agroforestry and grass vegetative filter strips

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetative filter strips (VFS) have long been promoted as a soil conservation practice that yields many additional environmental benefits. Most previous studies have focused primarily on the role of vegetation and/or soil physical properties in these ecosystem services. Few studies have investigated...

  1. Vegetation pattern formation of a water-biomass model

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoli; Wang, Wendi; Zhang, Guohong

    2017-01-01

    In this paper, a mathematical model with diffusion and cross-diffusion is proposed to describe the interaction between the vegetation and the soil water. Based on the view of Turing pattern, we discuss the conditions of the diffusion-induced instability and the cross-diffusion-induced instability of a homogenous uniform steady state. We find that either a fast diffusion speed of water or a great hydraulic diffusivity due to the suction of roots may drive the instability of the homogenous steady state. Furthermore, we find that both the rain-fall rate and the infiltration feedback parameter can induce the transitions among the vegetation state, pattern formation and bare soil state. It is also found that the "terrain slope" may cause the instability of the homogenous steady state and drive the formation of periodic stripe pattern. Consequently, the diversity of dryland vegetation in reality can be explained as a result of pattern solutions of the model.

  2. An assessment of the impact of water impoundment and diversion structures on vegetation in Southern Arizona

    NASA Technical Reports Server (NTRS)

    Conn, J. S.; Mouat, D. A.; Clark, R. B.

    1975-01-01

    High-altitude color infrared photography was used to survey existing conditions, both upstream and downstream, from nineteen diversion structures in Southern Arizona to determine their effect upon vegetation health, vigor, and cover. A diversion structure is defined as a man/made feature constructed to control storm runoff. The results are used to determine the policy for future structure design.

  3. A model of goal directed vegetable parenting practices.

    PubMed

    Hingle, Melanie; Beltran, Alicia; O'Connor, Teresia; Thompson, Deborah; Baranowski, Janice; Baranowski, Tom

    2012-04-01

    The aim of this study was to explore factors underlying parents' motivations to use vegetable parenting practices (VPP) using the Model of Goal Directed Vegetable Parenting Practices (MGDVPP) (an adaptation of the Model of Goal Directed Behavior) as the theoretical basis for qualitative interviews. In-depth interviews with parents of 3-5-year-old children were conducted over the telephone by trained interviewers following a script. MGDVPP constructs provided the theoretical framework guiding script development. Audio-recordings were transcribed and analyzed, with themes coded independently by two interviewers. Fifteen participants completed the study. Interviews elicited information about possible predictors of motivations as they related to VPP, and themes emerged related to each of the MGDVPP constructs (attitudes, positive anticipated emotions, negative anticipated emotions, subjective norms, and perceived behavioral control). Parents believed child vegetable consumption was important and associated with child health and vitality. Parents described motivations to engage in specific VPP in terms of emotional responses, influential relationships, food preferences, resources, and food preparation skills. Parents discussed specific strategies to encourage child vegetable intake. Interview data suggested parents used diverse VPP to encourage child intake and that varied factors predicted their use. Understanding these factors could inform the design of interventions to increase parents' use of parenting practices that promote long-term child consumption of vegetables.

  4. Evaluating models of climate and forest vegetation

    NASA Technical Reports Server (NTRS)

    Clark, James S.

    1992-01-01

    Understanding how the biosphere may respond to increasing trace gas concentrations in the atmosphere requires models that contain vegetation responses to regional climate. Most of the processes ecologists study in forests, including trophic interactions, nutrient cycling, and disturbance regimes, and vital components of the world economy, such as forest products and agriculture, will be influenced in potentially unexpected ways by changing climate. These vegetation changes affect climate in the following ways: changing C, N, and S pools; trace gases; albedo; and water balance. The complexity of the indirect interactions among variables that depend on climate, together with the range of different space/time scales that best describe these processes, make the problems of modeling and prediction enormously difficult. These problems of predicting vegetation response to climate warming and potential ways of testing model predictions are the subjects of this chapter.

  5. Traditional leafy vegetables in Senegal: diversity and medicinal uses.

    PubMed

    Mathieu, Gueye; Meissa, Diouf

    2007-06-10

    Six administrative regions of Senegal were investigated. Forty species of vegetable leaves which are traditionally consumed in Senegal have been inventoried. All species are members of twenty-one families the most numerous of which are Amaranthaceae Juss., Malvaceae Juss., Moraceae Link., the Papilionaceae Giseke and Tiliaceae Juss. The species are subdivided into three groups: cultivated leafy vegetables, plants gathered annually, perennial sub-ligneous and ligneous species. The gathered species represent 67.5% of the inventory, 40.7% of which is ligneous. Cultivated species account for 32.5% of the inventory. The species are consumed for their medicinal properties, nutritive value and eating habits linked to specific ethnic traditions. During the drought years, with the scarcity of main food (millet, mays) consumption of leafy vegetables is high. All species reported except Sesuvium portulacastrum L. are consumed like vegetable herbs. The species of Hibiscus are eaten in spinach and condiment form while Sesuvium portulacastrum L is cooked in salad. Of the forty species examined, eleven are widely consumed. Within the entire study area, Hibiscus sabdariffa predominates among species consumed, followed by Moringa oleifera Lam. and Senna obtusifolia Link. A high consumption level of some species like amarante, Corchorus tridens L., Corchorus aestuans L., Leptadenia hastata Decne. and Vigna unguiculata (L.) Walp is confined to certain areas. In addition to their consumption as vegetables, the medicinal uses of 57.5% of these is of primary importance. The most commonly exploited parts are, respectively, leaf (40%), roots (20%), and bark (13.3%). Among the numerous pathologies treated, abscess, constipation, and rheumatism are predominant followed by aphrodisiac uses. The Amaranthus spp. L., Leptadenia hastata Decne., Senna obtusifolia Link., Adansonia digitata L. and Tamarindus indica L. are species with multiple medicinal uses.

  6. [Diversity and stability of arthropod community in peach orchard under effects of ground cover vegetation].

    PubMed

    Jiang, Jie-xian; Wan, Nian-feng; Ji, Xiang-yun; Dan, Jia-gui

    2011-09-01

    A comparative study was conducted on the arthropod community in peach orchards with and without ground cover vegetation. In the orchard with ground cover vegetation, the individuals of beneficial, neutral, and phytophagous arthropods were 1.48, 1.84 and 0.64 times of those in the orchard without ground cover vegetation, respectively, but the total number of arthropods had no significant difference with that in the orchard without ground cover vegetation. The species richness, Shannon's diversity, and Pielou's evenness index of the arthropods in the orchard with ground cover vegetation were 83.733 +/- 4.932, 4.966 +/- 0.110, and 0.795 +/- 0.014, respectively, being significantly higher than those in the orchard without ground cover vegetation, whereas the Berger-Parker's dominance index was 0.135 +/- 0.012, being significantly lower than that (0.184 +/- 0.018) in the orchard without ground cover vegetation. There were no significant differences in the stability indices S/N and Sd/Sp between the two orchards, but the Nn/Np, Nd/Np, and Sn/Sp in the orchard with ground cover vegetation were 0.883 +/- 0.123. 1714 +/- 0.683, and 0.781 +/- 0.040, respectively, being significantly higher than those in the orchard without ground cover vegetation. Pearson's correlation analysis indicated that in the orchard with ground cover vegetation, the Shannon's diversity index was significantly negatively correlated with Nd/Np, Sd/Sp, and S/N but had no significant correlations with Nn/Np and Sn/Sp, whereas in the orchard without ground cover vegetation, the diversity index was significantly positively correlated with Nn/Np and Nd/Np and had no significant correlations with Sd/Sp, Sn/Sp, and S/N.

  7. Branching model for vegetation. [polarimetric remote sensing

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Kong, J. A.; Jao, Jen K.; Shin, Robert T.; Le Toan, Thuy

    1992-01-01

    In the present branching model for remote sensing of vegetation, the frequency and angular responses of a two-scale cylinder cluster are calculated to illustrate the importance of vegetation architecture. Attention is given to the implementation of a two-scale branching model for soybeans, where the relative location of soybean plants is described by a pair of distribution functions. Theoretical backscattering coefficients evaluated by means of hole-correction pair distribution are in agreement with extensive data collected from soybean fields. The hole-correction approximation is found to be the more realistic.

  8. Submersed Aquatic Vegetation Modeling Output Online

    USGS Publications Warehouse

    Yin, Yao; Rogala, Jim; Sullivan, John; Rohweder, Jason J.

    2005-01-01

    Introduction The ability to predict the distribution of submersed aquatic vegetation in the Upper Mississippi River on the basis of physical or chemical variables is useful to resource managers. Wildlife managers have a keen interest in advanced estimates of food quantity such as American wildcelery (Vallisneria americana) population status to give out more informed advisories to hunters before the fall hunting season. Predictions for distribution of submerged aquatic vegetation beds can potentially increase hunter observance of voluntary avoidance zones where foraging birds are left alone to feed undisturbed. In years when submersed aquatic vegetation is predicted to be scarce in important wildlife habitats, managers can get the message out to hunters well before the hunting season (Jim Nissen, Upper Mississippi River National Wildlife and Fish Refuge, La Crosse District Manager, La Crosse, Wisconsin, personal communication). We developed a statistical model to predict the probability of occurrence of submersed aquatic vegetation in Pool 8 of the Upper Mississippi River on the basis of a few hydrological, physical, and geomorphic variables. Our model takes into consideration flow velocity, wind fetch, bathymetry, growing-season daily water level, and light extinction coefficient in the river (fig. 1) and calculates the probability of submersed aquatic vegetation existence in Pool 8 in individual 5- x 5-m grid cells. The model was calibrated using the data collected in 1998 (516 sites), 1999 (595 sites), and 2000 (649 sites) using a stratified random sampling protocol (Yin and others, 2000b). To validate the model, we chose the data from the Long Term Resource Monitoring Program (LTRMP) transect sampling in backwater areas (Rogers and Owens 1995; Yin and others, 2000a) and ran the model for each 5- x 5-m grid cell in every growing season from 1991 to 2001. We tallied all the cells and came up with an annual average percent frequency of submersed aquatic vegetation

  9. Disentangling vegetation diversity from climate-energy and habitat heterogeneity for explaining animal geographic patterns.

    PubMed

    Jiménez-Alfaro, Borja; Chytrý, Milan; Mucina, Ladislav; Grace, James B; Rejmánek, Marcel

    2016-03-01

    Broad-scale animal diversity patterns have been traditionally explained by hypotheses focused on climate-energy and habitat heterogeneity, without considering the direct influence of vegetation structure and composition. However, integrating these factors when considering plant-animal correlates still poses a major challenge because plant communities are controlled by abiotic factors that may, at the same time, influence animal distributions. By testing whether the number and variation of plant community types in Europe explain country-level diversity in six animal groups, we propose a conceptual framework in which vegetation diversity represents a bridge between abiotic factors and animal diversity. We show that vegetation diversity explains variation in animal richness not accounted for by altitudinal range or potential evapotranspiration, being the best predictor for butterflies, beetles, and amphibians. Moreover, the dissimilarity of plant community types explains the highest proportion of variation in animal assemblages across the studied regions, an effect that outperforms the effect of climate and their shared contribution with pure spatial variation. Our results at the country level suggest that vegetation diversity, as estimated from broad-scale classifications of plant communities, may contribute to our understanding of animal richness and may be disentangled, at least to a degree, from climate-energy and abiotic habitat heterogeneity.

  10. Disentangling vegetation diversity from climate–energy and habitat heterogeneity for explaining animal geographic patterns

    USGS Publications Warehouse

    Jimenez-Alfaro, Borja; Chytry, Milan; Mucina, Ladislav; Grace, James B.; Rejmanek, Marcel

    2016-01-01

    Broad-scale animal diversity patterns have been traditionally explained by hypotheses focused on climate–energy and habitat heterogeneity, without considering the direct influence of vegetation structure and composition. However, integrating these factors when considering plant–animal correlates still poses a major challenge because plant communities are controlled by abiotic factors that may, at the same time, influence animal distributions. By testing whether the number and variation of plant community types in Europe explain country-level diversity in six animal groups, we propose a conceptual framework in which vegetation diversity represents a bridge between abiotic factors and animal diversity. We show that vegetation diversity explains variation in animal richness not accounted for by altitudinal range or potential evapotranspiration, being the best predictor for butterflies, beetles, and amphibians. Moreover, the dissimilarity of plant community types explains the highest proportion of variation in animal assemblages across the studied regions, an effect that outperforms the effect of climate and their shared contribution with pure spatial variation. Our results at the country level suggest that vegetation diversity, as estimated from broad-scale classifications of plant communities, may contribute to our understanding of animal richness and may be disentangled, at least to a degree, from climate–energy and abiotic habitat heterogeneity.

  11. Modelling post-fire vegetation recovery in Portugal

    NASA Astrophysics Data System (ADS)

    Bastos, A.; Gouveia, C.; Dacamara, C. C.; Trigo, R. M.

    2011-05-01

    Wildfires in Mediterranean Europe have been increasing in number and extension over the last decades and constitute one of the major disturbances of these ecosystems. Portugal is the country with more burnt area in the last decade and the years of 2003 and 2005 were particularly devastating, the total burned areas of 425 000 and 338 000 ha being several times higher than the corresponding average. The year of 2005 further coincided with one of the most severe droughts since early 20th century. Due to different responses of vegetation to diverse fire regimes and to the complexity of landscape structures, fires have complex effects on vegetation recovery. Remote sensing has revealed to be a powerful tool in studying vegetation dynamics and in monitoring post-fire vegetation recovery, which is crucial to land-management and to prevent erosion. The main goals of the present work are (i) to assess the accuracy of a vegetation recovery model previously developed by the authors; (ii) to assess the model's performance, namely its sensitivity to initial conditions, to the temporal length of the input dataset and to missing data; (iii) to study vegetation recovery over two selected areas that were affected by two large wildfire events in the fire seasons of 2003 and 2005, respectively. The study relies on monthly values of NDVI over 11 yr (1998-2009), at 1 × 1 km spatial resolution, as obtained by the VEGETATION instrument. According to results from sensitivity analysis, the model is robust and able to provide good estimations of recovery times of vegetation when the regeneration process is regular, even when missing data is present. In what respect to the two selected burnt scars, results indicate that fire damage is a determinant factor of regeneration, as less damaged vegetation recovers more rapidly, which is mainly justified by the high coverage of Pinus Pinaster over the area, and by the fact that coniferous forests tend to recover slower than transitional woodland

  12. Modelling post-fire vegetation recovery in Portugal

    NASA Astrophysics Data System (ADS)

    Bastos, A.; Gouveia, C. M.; Dacamara, C. C.; Trigo, R. M.

    2011-12-01

    Wildfires in Mediterranean Europe have been increasing in number and extension over the last decades and constitute one of the major disturbances of these ecosystems. Portugal is the country with more burnt area in the last decade and the years of 2003 and 2005 were particularly devastating, the total burned areas of 425 000 and 338 000 ha being several times higher than the corresponding average. The year of 2005 further coincided with one of the most severe droughts since early 20th century. Due to different responses of vegetation to diverse fire regimes and to the complexity of landscape structures, fires have complex effects on vegetation recovery. Remote sensing has revealed to be a powerful tool in studying vegetation dynamics and in monitoring post-fire vegetation recovery, which is crucial to land-management and to prevent erosion. The main goals of the present work are (i) to assess the accuracy of a vegetation recovery model previously developed by the authors; (ii) to assess the model's performance, namely its sensitivity to initial conditions, to the temporal length of the input dataset and to missing data; (iii) to study vegetation recovery over two selected areas that were affected by two large wildfire events in the fire seasons of 2003 and 2005, respectively. The study relies on monthly values of NDVI over 11 years (1998-2009), at 1 km × 1 km spatial resolution, as obtained by the VEGETATION instrument. According to results from sensitivity analysis, the model is robust and able to provide good estimations of recovery times of vegetation when the regeneration process is regular, even when missing data is present. In respect to the two selected burnt scars, results indicate that fire damage is a determinant factor of regeneration, as less damaged vegetation recovers more rapidly, which is mainly justified by the high coverage of Pinus pinaster over the area, and by the fact that coniferous forests tend to recover slower than transitional woodland

  13. Anticipating the spatio-temporal response of plant diversity and vegetation structure to climate and land use change in a protected area.

    PubMed

    Boulangeat, Isabelle; Georges, Damien; Dentant, Cédric; Bonet, Richard; Van Es, Jérémie; Abdulhak, Sylvain; Zimmermann, Niklaus E; Thuiller, Wilfried

    2014-12-01

    Vegetation is a key driver of ecosystem functioning (e.g. productivity and stability) and of the maintenance of biodiversity (e.g. creating habitats for other species groups). While vegetation sensitivity to climate change has been widely investgated, its spatio-temporally response to the dual efects of land management and climate change has been ignored at landscape scale. Here we use a dynamic vegetation model called FATE-HD, which describes the dominant vegetation dynamics and associated functional diversity, in order to anticipate vegetation response to climate and land-use changes in both short and long-term perspectives. Using three contrasted management scenarios for the Ecrins National Park (French Alps) developed in collaboration with the park managers, and one regional climate change scenario, we tracked the dynamics of vegetation structure (forest expansion) and functional diversity over 100 years of climate change and a further 400 additional years of stabilization. As expected, we observed a slow upward shift in forest cover distribution, which appears to be severely impacted by pasture management (i.e. maintenance or abandonment). The tme lag before observing changes in vegetation cover was the result of demographic and seed dispersal processes. However, plant diversity response to environmental changes was rapid. Afer land abandonment, local diversity increased and spatial turnover was reduced, whereas local diversity decreased following land use intensification. Interestingly, in the long term, as both climate and management scenarios interacted, the regional diversity declined. Our innovative spatio-temporally explicit framework demonstrates that the vegetation may have contrasting responses to changes in the short and the long term. Moreover, climate and land-abandonment interact extensively leading to a decrease in both regional diversity and turnover in the long term. Based on our simulations we therefore suggest a continuing moderate intensity

  14. Anticipating the spatio-temporal response of plant diversity and vegetation structure to climate and land use change in a protected area

    PubMed Central

    Boulangeat, Isabelle; Georges, Damien; Dentant, Cédric; Bonet, Richard; Van Es, Jérémie; Abdulhak, Sylvain; Zimmermann, Niklaus E.; Thuiller, Wilfried

    2014-01-01

    Vegetation is a key driver of ecosystem functioning (e.g. productivity and stability) and of the maintenance of biodiversity (e.g. creating habitats for other species groups). While vegetation sensitivity to climate change has been widely investgated, its spatio-temporally response to the dual efects of land management and climate change has been ignored at landscape scale. Here we use a dynamic vegetation model called FATE-HD, which describes the dominant vegetation dynamics and associated functional diversity, in order to anticipate vegetation response to climate and land-use changes in both short and long-term perspectives. Using three contrasted management scenarios for the Ecrins National Park (French Alps) developed in collaboration with the park managers, and one regional climate change scenario, we tracked the dynamics of vegetation structure (forest expansion) and functional diversity over 100 years of climate change and a further 400 additional years of stabilization. As expected, we observed a slow upward shift in forest cover distribution, which appears to be severely impacted by pasture management (i.e. maintenance or abandonment). The tme lag before observing changes in vegetation cover was the result of demographic and seed dispersal processes. However, plant diversity response to environmental changes was rapid. Afer land abandonment, local diversity increased and spatial turnover was reduced, whereas local diversity decreased following land use intensification. Interestingly, in the long term, as both climate and management scenarios interacted, the regional diversity declined. Our innovative spatio-temporally explicit framework demonstrates that the vegetation may have contrasting responses to changes in the short and the long term. Moreover, climate and land-abandonment interact extensively leading to a decrease in both regional diversity and turnover in the long term. Based on our simulations we therefore suggest a continuing moderate intensity

  15. Mathematical Modeling of Diverse Phenomena

    NASA Technical Reports Server (NTRS)

    Howard, J. C.

    1979-01-01

    Tensor calculus is applied to the formulation of mathematical models of diverse phenomena. Aeronautics, fluid dynamics, and cosmology are among the areas of application. The feasibility of combining tensor methods and computer capability to formulate problems is demonstrated. The techniques described are an attempt to simplify the formulation of mathematical models by reducing the modeling process to a series of routine operations, which can be performed either manually or by computer.

  16. Comparison modeling for alpine vegetation distribution in an arid area.

    PubMed

    Zhou, Jihua; Lai, Liming; Guan, Tianyu; Cai, Wetao; Gao, Nannan; Zhang, Xiaolong; Yang, Dawen; Cong, Zhentao; Zheng, Yuanrun

    2016-07-01

    Mapping and modeling vegetation distribution are fundamental topics in vegetation ecology. With the rise of powerful new statistical techniques and GIS tools, the development of predictive vegetation distribution models has increased rapidly. However, modeling alpine vegetation with high accuracy in arid areas is still a challenge because of the complexity and heterogeneity of the environment. Here, we used a set of 70 variables from ASTER GDEM, WorldClim, and Landsat-8 OLI (land surface albedo and spectral vegetation indices) data with decision tree (DT), maximum likelihood classification (MLC), and random forest (RF) models to discriminate the eight vegetation groups and 19 vegetation formations in the upper reaches of the Heihe River Basin in the Qilian Mountains, northwest China. The combination of variables clearly discriminated vegetation groups but failed to discriminate vegetation formations. Different variable combinations performed differently in each type of model, but the most consistently important parameter in alpine vegetation modeling was elevation. The best RF model was more accurate for vegetation modeling compared with the DT and MLC models for this alpine region, with an overall accuracy of 75 % and a kappa coefficient of 0.64 verified against field point data and an overall accuracy of 65 % and a kappa of 0.52 verified against vegetation map data. The accuracy of regional vegetation modeling differed depending on the variable combinations and models, resulting in different classifications for specific vegetation groups.

  17. Vegetation Water Content Mapping in a Diverse Agricultural Landscape: National Airborne Field Experiment 2006

    NASA Technical Reports Server (NTRS)

    Cosh, Michael H.; Jing Tao; Jackson, Thomas J.; McKee, Lynn; O'Neill, Peggy

    2011-01-01

    Mapping land cover and vegetation characteristics on a regional scale is critical to soil moisture retrieval using microwave remote sensing. In aircraft-based experiments such as the National Airborne Field Experiment 2006 (NAFE 06), it is challenging to provide accurate high resolution vegetation information, especially on a daily basis. A technique proposed in previous studies was adapted here to the heterogenous conditions encountered in NAFE 06, which included a hydrologically complex landscape consisting of both irrigated and dryland agriculture. Using field vegetation sampling and ground-based reflectance measurements, the knowledge base for relating the Normalized Difference Water Index (NDWI) and the vegetation water content was extended to a greater diversity of agricultural crops, which included dryland and irrigated wheat, alfalfa, and canola. Critical to the generation of vegetation water content maps, the land cover for this region was determined from satellite visible/infrared imagery and ground surveys with an accuracy of 95.5% and a kappa coefficient of 0.95. The vegetation water content was estimated with a root mean square error of 0.33 kg/sq m. The results of this investigation contribute to a more robust database of global vegetation water content observations and demonstrate that the approach can be applied with high accuracy. Keywords: Vegetation, field experimentation, thematic mapper, NDWI, agriculture.

  18. Vegetation water content mapping in a diverse agricultural landscape: National Airborne Field Experiment 2006

    NASA Astrophysics Data System (ADS)

    Cosh, Michael H.; Tao, Jing; Jackson, Thomas J.; McKee, Lynn; O'Neill, Peggy

    2010-05-01

    Mapping land cover and vegetation characteristics on a regional scale is critical to soil moisture retrieval using microwave remote sensing. In aircraft-based experiments such as the National Airborne Field Experiment 2006 (NAFE'06), it is challenging to provide accurate high resolution vegetation information, especially on a daily basis. A technique proposed in previous studies was adapted here to the heterogenous conditions encountered in NAFE'06, which included a hydrologically complex landscape consisting of both irrigated and dryland agriculture. Using field vegetation sampling and ground-based reflectance measurements, the knowledge base for relating the Normalized Difference Water Index (NDWI) and the vegetation water content was extended to a greater diversity of agricultural crops, which included dryland and irrigated wheat, alfalfa, and canola. Critical to the generation of vegetation water content maps, the land cover for this region was determined from satellite visible/infrared imagery and ground surveys with an accuracy of 95.5% and a kappa coefficient of 0.95. The vegetation water content was estimated with a root mean square error of 0.33 kg/m2. The results of this investigation contribute to a more robust database of global vegetation water content observations and demonstrate that the approach can be applied with high accuracy.

  19. Introducing tropical lianas in a vegetation model

    NASA Astrophysics Data System (ADS)

    Verbeeck, Hans; De Deurwaerder, Hannes; Brugnera, Manfredo di Procia e.; Krshna Moorthy Paravathi, Sruthi; Pausenberger, Nancy; Roels, Jana; kearsley, elizabeth

    2016-04-01

    Tropical forests are essential components of the earth system and play a critical role for land surface feedbacks to climate change. These forests are currently experiencing large-scale structural changes, including the increase of liana abundance and biomass. This liana proliferation might have large impacts on the carbon cycle of tropical forests. However no single global vegetation model currently accounts for lianas. The TREECLIMBERS project (ERC starting grant) aims to introduce for the first time lianas into a vegetation model. The project attempts to reach this challenging goal by performing a global meta-analysis on liana data and by collecting new data in South American forests. Those new and existing datasets form the basis of a new liana plant functional type (PFT) that will be included in the Ecosystem Demography model (ED2). This presentation will show an overview of the current progress of the TREECLIMBERS project. Liana inventory data collected in French Guiana along a forest disturbance gradient show the relation between liana abundance and disturbance. Xylem water isotope analysis indicates that trees and lianas can rely on different soil water resources. New modelling concepts for liana PFTs will be presented and in-situ leaf gas exchange and sap flow data are used to parameterize water and carbon fluxes for this new PFT. Finally ongoing terrestrial LiDAR observations of liana infested forest will be highlighted.

  20. Probabilistic Evaluation of Anthropogenic Regulations In a Vegetated River Channel Using a Vegetation Dynamics Modeling

    NASA Astrophysics Data System (ADS)

    Miyamoto, Hitoshi

    2015-04-01

    Vegetation overgrowth in fluvial floodplains, gravel beds, and sand bars has been a serious engineering problem for riparian management in Japan. From the viewpoints of flood control and ecological conservation, it would be necessary to predict the vegetation dynamics accurately for long-term duration. In this research, we have developed a stochastic model for predicting the vegetation dynamics in fluvial floodplains with emphasis on the interaction with flood impacts. The model consists of the following four components: (i) long-term stochastic behavior of flow discharge, (ii) hydrodynamics in a channel with floodplain vegetation, (iii) variation of riverbed topography, and (iv) vegetation dynamics on floodplains. In the vegetation dynamics model, the flood discharge (i) is stochastically simulated using a filtered Poisson process, one of the conventional approaches in hydrological time-series generation. The component for vegetation dynamics (iv) includes the effects of tree growth, mortality by floods, and infant tree recruitment. Vegetation condition has been observed mainly before and after floods since 2008 at a field site located between 23-24 km from the river mouth in Kako River, Japan. The Kako River has the catchment area of 1,730 km2 and the main channel length of 96 km. This site is one of the vegetation overgrowth sites in the Kako River floodplains. The predominant tree species are willows and bamboos. In the field survey, the position, trunk diameter and height of each tree as well as the riverbed materials were measured after several flood events to investigate their impacts on the floodplain vegetation community. This presentation tries to examine effects of anthropogenic river regulations, i.e., thinning and cutting-down, in the vegetated channel in Kako River by using the vegetation dynamics model. Sensitivity of both the flood water level and the vegetation status in the channel is statistically evaluated in terms of the different cutting

  1. Canopy reflectance modelling of semiarid vegetation

    NASA Technical Reports Server (NTRS)

    Franklin, Janet

    1994-01-01

    Three different types of remote sensing algorithms for estimating vegetation amount and other land surface biophysical parameters were tested for semiarid environments. These included statistical linear models, the Li-Strahler geometric-optical canopy model, and linear spectral mixture analysis. The two study areas were the National Science Foundation's Jornada Long Term Ecological Research site near Las Cruces, NM, in the northern Chihuahuan desert, and the HAPEX-Sahel site near Niamey, Niger, in West Africa, comprising semiarid rangeland and subtropical crop land. The statistical approach (simple and multiple regression) resulted in high correlations between SPOT satellite spectral reflectance and shrub and grass cover, although these correlations varied with the spatial scale of aggregation of the measurements. The Li-Strahler model produced estimated of shrub size and density for both study sites with large standard errors. In the Jornada, the estimates were accurate enough to be useful for characterizing structural differences among three shrub strata. In Niger, the range of shrub cover and size in short-fallow shrublands is so low that the necessity of spatially distributed estimation of shrub size and density is questionable. Spectral mixture analysis of multiscale, multitemporal, multispectral radiometer data and imagery for Niger showed a positive relationship between fractions of spectral endmembers and surface parameters of interest including soil cover, vegetation cover, and leaf area index.

  2. Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests.

    PubMed

    Xu, Xiangtao; Medvigy, David; Powers, Jennifer S; Becknell, Justin M; Guan, Kaiyu

    2016-10-01

    We assessed whether diversity in plant hydraulic traits can explain the observed diversity in plant responses to water stress in seasonally dry tropical forests (SDTFs). The Ecosystem Demography model 2 (ED2) was updated with a trait-driven mechanistic plant hydraulic module, as well as novel drought-phenology and plant water stress schemes. Four plant functional types were parameterized on the basis of meta-analysis of plant hydraulic traits. Simulations from both the original and the updated ED2 were evaluated against 5 yr of field data from a Costa Rican SDTF site and remote-sensing data over Central America. The updated model generated realistic plant hydraulic dynamics, such as leaf water potential and stem sap flow. Compared with the original ED2, predictions from our novel trait-driven model matched better with observed growth, phenology and their variations among functional groups. Most notably, the original ED2 produced unrealistically small leaf area index (LAI) and underestimated cumulative leaf litter. Both of these biases were corrected by the updated model. The updated model was also better able to simulate spatial patterns of LAI dynamics in Central America. Plant hydraulic traits are intercorrelated in SDTFs. Mechanistic incorporation of plant hydraulic traits is necessary for the simulation of spatiotemporal patterns of vegetation dynamics in SDTFs in vegetation models.

  3. A nonlinear coupled soil moisture-vegetation model

    NASA Astrophysics Data System (ADS)

    Liu, Shikuo; Liu, Shida; Fu, Zuntao; Sun, Lan

    2005-06-01

    Based on the physical analysis that the soil moisture and vegetation depend mainly on the precipitation and evaporation as well as the growth, decay and consumption of vegetation a nonlinear dynamic coupled system of soil moisture-vegetation is established. Using this model, the stabilities of the steady states of vegetation are analyzed. This paper focuses on the research of the vegetation catastrophe point which represents the transition between aridness and wetness to a great extent. It is shown that the catastrophe point of steady states of vegetation depends mainly on the rainfall P and saturation value v0, which is selected to balance the growth and decay of vegetation. In addition, when the consumption of vegetation remains constant, the analytic solution of the vegetation equation is obtained.

  4. Ant diversity in Brazilian tropical dry forests across multiple vegetation domains

    NASA Astrophysics Data System (ADS)

    Figueiredo Silva, Luciana; Mello Souza, Rayana; Solar, Ricardo R. C.; de Siqueira Neves, Frederico

    2017-03-01

    Understanding the environmental drivers of biodiversity persistence and community organization in natural ecosystems is of great importance for planning the conservation of those ecosystems. This comprehension is even more important in severely threatened ecosystems. In this context, we analyzed ant communities in tropical dry forests (TDFs) in Brazil. These forests are embedded within other biomes, such as Cerrado and Caatinga. In this study, we asked whether (i) ant species richness and composition changes between TDFs within different vegetation domains; (ii) whether ant species richness and β-diversity increase north-to-south, possibly related to changes in tree richness and tree density; and (iii) species replacement contributes relatively more to β-diversity than does nestedness. We found that species composition is unique to each TDF within different biomes, and that species richness and β-diversity differ among the vegetation domains, being smaller in the Caatinga. We also found that replacement contributes most to β-diversity, although this contribution is lower in Caatinga than in Cerrado. We show that regional context is the main driver of species diversity, which is likely to be driven by both historical and ecological mechanisms. By analyzing large spatial scale variation in TDF environmental characteristics, we were able to evaluate how ant diversity changes along an environmental gradient. The high levels of species replacement and unique species composition of each region indicates that, to fully conserve TDFs, we need to have various conservation areas distributed across the entire range of vegetation domains in which these forests can be found. Thus, we demonstrate that a landscape-wise planning is urgent and necessary in order to preserve tropical dry forests.

  5. Repeated burning of eastern tallgrass prairie increases richness and diversity, stabilizing late successional vegetation.

    PubMed

    Bowles, Marlin L; Jones, Michael D

    2013-03-01

    Understanding temporal effects of fire frequency on plant species diversity and vegetation structure is critical for managing tallgrass prairie (TGP), which occupies a mid-continental longitudinal precipitation and productivity gradient. Eastern TGP has contributed little information toward understanding whether vegetation-fire interactions are uniform or change across this biome. We resampled 34 fire-managed mid- and late-successional ungrazed TGP remnants occurring across a dry to wet-mesic moisture gradient in the Chicago region of Illinois, USA. We compared hypotheses that burning acts either as a stabilizing force or causes change in diversity and structure, depending upon fire frequency and successional stage. Based on western TGP, we expected a unimodal species richness distribution across a cover-productivity gradient, variable functional group responses to fire frequency, and a negative relationship between fire frequency and species richness. Species diversity was unimodal across the cover gradient and was more strongly humpbacked in stands with greater fire frequency. In support of a stabilizing hypothesis, temporal similarity of late-successional vegetation had a logarithmic relationship with increasing fire frequency, while richness and evenness remained stable. Temporal similarity within mid-successional stands was not correlated with fire frequency, while richness increased and evenness decreased over time. Functional group responses to fire frequency were variable. Summer forb richness increased under high fire frequency, while C4 grasses, spring forbs, and nitrogen-fixing species decreased with fire exclusion. On mesic and wet-mesic sites, vegetation structure measured by the ratio of woody to graminoid species was negatively correlated with abundance of forbs and with fire frequency. Our findings that species richness responds unimodally to an environmental-productivity gradient, and that fire exclusion increases woody vegetation and leads to loss

  6. Functional diversity, succession, and human-mediated disturbances in raised bog vegetation.

    PubMed

    Dyderski, Marcin K; Czapiewska, Natalia; Zajdler, Mateusz; Tyborski, Jarosław; Jagodziński, Andrzej M

    2016-08-15

    Raised and transitional bogs are one of the most threatened types of ecosystem, due to high specialisation of biota, associated with adaptations to severe environmental conditions. The aim of the study was to characterize the relationships between functional diversity (reflecting ecosystem-shaping processes) of raised bog plant communities and successional gradients (expressed as tree dimensions) and to show how impacts of former clear cuts may alter these relationships in two raised bogs in 'Bory Tucholskie' National Park (N Poland). Herbaceous layers of the plant communities were examined by floristic relevés (25m(2)) on systematically established transects. We also assessed patterns of tree ring widths. There were no relationships between vegetation functional diversity components and successional progress: only functional dispersion was negatively, but weakly, correlated with median DBH. Lack of these relationships may be connected with lack of prevalence of habitat filtering and low level of competition over all the successional phases. Former clear cuts, indicated by peaks of tree ring width, influenced the growth of trees in the bogs studied. In the bog with more intensive clear cuts we found more species with higher trophic requirements, which may indicate nutrient influx. However, we did not observe differences in vegetation patterns, functional traits or functional diversity indices between the two bogs studied. We also did not find an influence of clear cut intensity on relationships between functional diversity indices and successional progress. Thus, we found that alteration of the ecosystems studied by neighbourhood clear cuts did not affect the bogs strongly, as the vegetation was resilient to these impacts. Knowledge of vegetation resilience after clear cuts may be crucial for conservation planning in raised bog ecosystems.

  7. A microwave scattering model for layered vegetation

    NASA Technical Reports Server (NTRS)

    Karam, Mostafa A.; Fung, Adrian K.; Lang, Roger H.; Chauhan, Narinder S.

    1992-01-01

    A microwave scattering model was developed for layered vegetation based on an iterative solution of the radiative transfer equation up to the second order to account for multiple scattering within the canopy and between the ground and the canopy. The model is designed to operate over a wide frequency range for both deciduous and coniferous forest and to account for the branch size distribution, leaf orientation distribution, and branch orientation distribution for each size. The canopy is modeled as a two-layered medium above a rough interface. The upper layer is the crown containing leaves, stems, and branches. The lower layer is the trunk region modeled as randomly positioned cylinders with a preferred orientation distribution above an irregular soil surface. Comparisons of this model with measurements from deciduous and coniferous forests show good agreements at several frequencies for both like and cross polarizations. Major features of the model needed to realize the agreement include allowance for: (1) branch size distribution, (2) second-order effects, and (3) tree component models valid over a wide range of frequencies.

  8. Potential benefits of plant diversity on vegetated roofs: a literature review.

    PubMed

    Cook-Patton, Susan C; Bauerle, Taryn L

    2012-09-15

    Although vegetated green roofs can be difficult to establish and maintain, they are an increasingly popular method for mitigating the negative environmental impacts of urbanization. Most green roof development has focused on maximizing green roof performance by planting one or a few drought-tolerant species. We present an alternative approach, which recognizes green roofs as dynamic ecosystems and employs a diversity of species. We draw links between the ecological and green roof literature to generate testable predictions about how increasing plant diversity could improve short- and long-term green roof functioning. Although we found few papers that experimentally manipulated diversity on green roofs, those that did revealed ecological dynamics similar to those in more natural systems. However, there are many unresolved issues. To improve overall green roof performance, we should (1) elucidate the links among plant diversity, structural complexity, and green roof performance, (2) describe feedback mechanisms between plant and animal diversity on green roofs, (3) identify species with complementary traits, and (4) determine whether diverse green roof communities are more resilient to disturbance and environmental change than less diverse green roofs.

  9. Contributions of Understory and/or Overstory Vegetations to Soil Microbial PLFA and Nematode Diversities in Eucalyptus Monocultures

    PubMed Central

    Liu, Zhanfeng; Zhou, Lixia; Fu, Shenglei

    2014-01-01

    Ecological interactions between aboveground and belowground biodiversity have received many attentions in the recent decades. Although soil biodiversity declined with the decrease of plant diversity, many previous studies found plant species identities were more important than plant diversity in controlling soil biodiversity. This study focused on the responses of soil biodiversity to the altering of plant functional groups, namely overstory and understory vegetations, rather than plant diversity gradient. We conducted an experiment by removing overstory and/or understory vegetation to compare their effects on soil microbial phospholipid fatty acid (PLFA) and nematode diversities in eucalyptus monocultures. Our results indicated that both overstory and understory vegetations could affect soil microbial PLFA and nematode diversities, which manifested as the decrease in Shannon–Wiener diversity index (H′) and Pielou evenness index (J) and the increase in Simpson dominance index (λ) after vegetation removal. Soil microclimate change explained part of variance of soil biodiversity indices. Both overstory and understory vegetations positively correlated with soil microbial PLFA and nematode diversities. In addition, the alteration of soil biodiversity might be due to a mixing effect of bottom-up control and soil microclimate change after vegetation removal in the studied plantations. Given the studied ecosystem is common in humid subtropical and tropical region of the world, our findings might have great potential to extrapolate to large scales and could be conducive to ecosystem management and service. PMID:24427315

  10. A Coupled Vegetation-Crust Model for Patchy Landscapes

    NASA Astrophysics Data System (ADS)

    Kinast, Shai; Ashkenazy, Yosef; Meron, Ehud

    2016-03-01

    A new model for patchy landscapes in drylands is introduced. The model captures the dynamics of biogenic soil crusts and their mutual interactions with vegetation growth. The model is used to identify spatially uniform and spatially periodic solutions that represent different vegetation-crust states, and map them along the rainfall gradient. The results are consistent extensions of the vegetation states found in earlier models. A significant difference between the current and earlier models of patchy landscapes is found in the bistability range of vegetated and unvegetated states; the incorporation of crust dynamics shifts the onset of vegetation patterns to a higher precipitation value and increases the biomass amplitude. These results can shed new light on the involvement of biogenic crusts in desertification processes that involve vegetation loss.

  11. Modeling Forest Structure and Vascular Plant Diversity in Piedmont Forests

    NASA Astrophysics Data System (ADS)

    Hakkenberg, C.

    2014-12-01

    When the interacting stressors of climate change and land cover/land use change (LCLUC) overwhelm ecosystem resilience to environmental and climatic variability, forest ecosystems are at increased risk of regime shifts and hyperdynamism in process rates. To meet the growing range of novel biotic and environmental stressors on human-impacted ecosystems, the maintenance of taxonomic diversity and functional redundancy in metacommunities has been proposed as a risk spreading measure ensuring that species critical to landscape ecosystem functioning are available for recruitment as local systems respond to novel conditions. This research is the first in a multi-part study to establish a dynamic, predictive model of the spatio-temporal dynamics of vascular plant diversity in North Carolina Piedmont mixed forests using remotely sensed data inputs. While remote sensing technologies are optimally suited to monitor LCLUC over large areas, direct approaches to the remote measurement of plant diversity remain a challenge. This study tests the efficacy of predicting indices of vascular plant diversity using remotely derived measures of forest structural heterogeneity from aerial LiDAR and high spatial resolution broadband optical imagery in addition to derived topo-environmental variables. Diversity distribution modelling of this sort is predicated upon the idea that environmental filtering of dispersing species help define fine-scale (permeable) environmental envelopes within which biotic structural and compositional factors drive competitive interactions that, in addition to background stochasticity, determine fine-scale alpha diversity. Results reveal that over a range of Piedmont forest communities, increasing structural complexity is positively correlated with measures of plant diversity, though the nature of this relationship varies by environmental conditions and community type. The diversity distribution model is parameterized and cross-validated using three high

  12. Legume Diversity Patterns in West Central Africa: Influence of Species Biology on Distribution Models

    PubMed Central

    de la Estrella, Manuel; Mateo, Rubén G.; Wieringa, Jan J.; Mackinder, Barbara; Muñoz, Jesús

    2012-01-01

    Objectives Species Distribution Models (SDMs) are used to produce predictions of potential Leguminosae diversity in West Central Africa. Those predictions are evaluated subsequently using expert opinion. The established methodology of combining all SDMs is refined to assess species diversity within five defined vegetation types. Potential species diversity is thus predicted for each vegetation type respectively. The primary aim of the new methodology is to define, in more detail, areas of species richness for conservation planning. Methodology Using Maxent, SDMs based on a suite of 14 environmental predictors were generated for 185 West Central African Leguminosae species, each categorised according to one of five vegetation types: Afromontane, coastal, non-flooded forest, open formations, or riverine forest. The relative contribution of each environmental variable was compared between different vegetation types using a nonparametric Kruskal-Wallis analysis followed by a post-hoc Kruskal-Wallis Paired Comparison contrast. Legume species diversity patterns were explored initially using the typical method of stacking all SDMs. Subsequently, five different ensemble models were generated by partitioning SDMs according to vegetation category. Ecological modelers worked with legume specialists to improve data integrity and integrate expert opinion in the interpretation of individual species models and potential species richness predictions for different vegetation types. Results/Conclusions Of the 14 environmental predictors used, five showed no difference in their relative contribution to the different vegetation models. Of the nine discriminating variables, the majority were related to temperature variation. The set of variables that played a major role in the Afromontane species diversity model differed significantly from the sets of variables of greatest relative important in other vegetation categories. The traditional approach of stacking all SDMs indicated overall

  13. Galling arthropod diversity in adjacent swamp forests and restinga vegetation in Rio Grande do Sul, Brazil.

    PubMed

    Mendonça, Milton De S; Piccardi, Hosana M F; Jahnke, Simone M; Dalbem, Ricardo V

    2010-01-01

    Galling arthropods create plant structures inside which they find shelter. Factors acting on galler diversity are still being discussed, with this fauna considered more diverse in xeric than mesic environments (higrothermic stress hypothesis, HSH), and also in more plant diverse sites. Here we compare galler abundance (N), equitability (E), species richness (S) and composition between adjacent restinga (xeric) and swamp forests (mesic) in Parque Estadual de Itapeva (29°21' S, 49°45' W), Rio Grande do Sul, southern Brazil. Five trails, two in swamp forest and three in restingas, were sampled four times each (January/December 2005). After an effort of 60h/person, 621 galled plant individuals belonging to 104 gall morphotypes were recorded. This suggests a high galler diversity for the Park, comparable to the richest places known. No differences were found for N, E or S between restingas and swamp forests. However, faunal composition differs significantly between the vegetation types. The dominant (most abundant) species are different in either vegetation type, and are rare or absent on the other vegetation type. Such species composition analysis is still largely ignored for gallers, and stresses the fact that the HSH cannot explain this pattern, since the latter is based on preferences by the ovipositing galler for xeric sites instead of mesic ones. The two habitats differ in microclimate, but species richness, as would be predicted by the HSH, does not differ. This small scale pattern can perhaps be attributed to biogeographic processes on larger scales, as suggested by the resource synchronisation hypothesis.

  14. Powdered hide model for vegetable tanning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Powdered hide samples for this initial study of vegetable tanning were prepared from hides that were dehaired by a typical sulfide or oxidative process, and carried through the delime/bate step of a tanning process. In this study, we report on interactions of the vegetable tannin, quebracho with th...

  15. Vegetation in Bangalore's Slums: Composition, Species Distribution, Density, Diversity, and History

    NASA Astrophysics Data System (ADS)

    Gopal, Divya; Nagendra, Harini; Manthey, Michael

    2015-06-01

    There is widespread acknowledgement of the need for biodiversity and greening to be part of urban sustainability efforts. Yet we know little about greenery in the context of urban poverty, particularly in slums, which constitute a significant challenge for inclusive development in many rapidly growing cities. We assessed the composition, density, diversity, and species distribution of vegetation in 44 slums of Bangalore, India, comparing these to published studies on vegetation diversity in other land-use categories. Most trees were native to the region, as compared to other land-use categories such as parks and streets which are dominated by introduced species. Of the most frequently encountered tree species, Moringa oleifera and Cocos nucifera are important for food, while Ficus religiosa plays a critical cultural and religious role. Tree density and diversity were much lower in slums compared to richer residential neighborhoods. There are also differences in species preferences, with most plant (herb, shrub and vines) species in slums having economic, food, medicinal, or cultural use, while the species planted in richer residential areas are largely ornamental. Historic development has had an impact on species distribution, with older slums having larger sized tree species, while recent slums were dominated by smaller sized tree species with greater economic and food use. Extensive focus on planting trees and plant species with utility value is required in these congested neighborhoods, to provide livelihood support.

  16. Abundance, diversity and community composition of free-living protozoa on vegetable sprouts.

    PubMed

    Chavatte, N; Lambrecht, E; Van Damme, I; Sabbe, K; Houf, K

    2016-05-01

    Interactions with free-living protozoa (FLP) have been implicated in the persistence of pathogenic bacteria on food products. In order to assess the potential involvement of FLP in this contamination, detailed knowledge on their occurrence, abundance and diversity on food products is required. In the present study, enrichment and cultivation methods were used to inventory and quantify FLP on eight types of commercial vegetable sprouts (alfalfa, beetroot, cress, green pea, leek, mung bean, red cabbage and rosabi). In parallel, total aerobic bacteria and Escherichia coli counts were performed. The vegetable sprouts harbored diverse communities of FLP, with Tetrahymena (ciliate), Bodo saltans and cercomonads (flagellates), and Acanthamoeba and Vannella (amoebae) as the dominant taxa. Protozoan community composition and abundance significantly differed between the sprout types. Beetroot harbored the most abundant and diverse FLP communities, with many unique species such as Korotnevella sp., Vannella sp., Chilodonella sp., Podophrya sp. and Sphaerophrya sp. In contrast, mung bean sprouts were species-poor and had low FLP numbers. Sampling month and company had no significant influence, suggesting that seasonal and local factors are of minor importance. Likewise, no significant relationship between protozoan community composition and bacterial load was observed.

  17. Remote Sensing of Vegetation Species Diversity: The Utility of Integrated Airborne Hyperspectral and Lidar Data

    NASA Astrophysics Data System (ADS)

    Krause, Keith Stuart

    The change, reduction, or extinction of species is a major issue currently facing the Earth. Efforts are underway to measure, monitor, and protect habitats that contain high species diversity. Remote sensing technology shows extreme value for monitoring species diversity by mapping ecosystems and using those land cover maps or other derived data as proxies to species number and distribution. The National Ecological Observatory Network (NEON) Airborne Observation Platform (AOP) consists of remote sensing instruments such as an imaging spectrometer, a full-waveform lidar, and a high-resolution color camera. AOP collected data over the Ordway-Swisher Biological Station (OSBS) in May 2014. A majority of the OSBS site is covered by the Sandhill ecosystem, which contains a very high diversity of vegetation species and is a native habitat for several threatened fauna species. The research presented here investigates ways to analyze the AOP data to map ecosystems at the OSBS site. The research attempts to leverage the high spatial resolution data and study the variability of the data within a ground plot scale along with integrating data from the different sensors. Mathematical features are derived from the data and brought into a decision tree classification algorithm (rpart), in order to create an ecosystem map for the site. The hyperspectral and lidar features serve as proxies for chemical, functional, and structural differences in the vegetation types for each of the ecosystems. K-folds cross validation shows a training accuracy of 91%, a validation accuracy of 78%, and a 66% accuracy using independent ground validation. The results presented here represent an important contribution to utilizing integrated hyperspectral and lidar remote sensing data for ecosystem mapping, by relating the spatial variability of the data within a ground plot scale to a collection of vegetation types that make up a given ecosystem.

  18. A model of goal directed vegetable parenting practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this study was to explore factors underlying parents' motivations to use vegetable parenting practices (VPP) using the Model of Goal Directed Vegetable Parenting Practices (MGDVPP) (an adaptation of the Model of Goal Directed Behavior) as the theoretical basis for qualitative interviews. ...

  19. Dynamic floodplain vegetation model development for the Kootenai River, USA.

    PubMed

    Benjankar, Rohan; Egger, Gregory; Jorde, Klaus; Goodwin, Peter; Glenn, Nancy F

    2011-12-01

    The Kootenai River floodplain in Idaho, USA, is nearly disconnected from its main channel due to levee construction and the operation of Libby Dam since 1972. The decreases in flood frequency and magnitude combined with the river modification have changed the physical processes and the dynamics of floodplain vegetation. This research describes the concept, methodologies and simulated results of the rule-based dynamic floodplain vegetation model "CASiMiR-vegetation" that is used to simulate the effect of hydrological alteration on vegetation dynamics. The vegetation dynamics are simulated based on existing theory but adapted to observed field data on the Kootenai River. The model simulates the changing vegetation patterns on an annual basis from an initial condition based on spatially distributed physical parameters such as shear stress, flood duration and height-over-base flow level. The model was calibrated and the robustness of the model was analyzed. The hydrodynamic (HD) models were used to simulate relevant physical processes representing historic, pre-dam, and post-dam conditions from different representative hydrographs. The general concept of the vegetation model is that a vegetation community will be recycled if the magnitude of a relevant physical parameter is greater than the threshold value for specific vegetation; otherwise, succession will take place toward maturation stage. The overall accuracy and agreement Kappa between simulated and field observed maps were low considering individual vegetation types in both calibration and validation areas. Overall accuracy (42% and 58%) and agreement between maps (0.18 and 0.27) increased notably when individual vegetation types were merged into vegetation phases in both calibration and validation areas, respectively. The area balance approach was used to analyze the proportion of area occupied by different vegetation phases in the simulated and observed map. The result showed the impact of the river

  20. [The floristic diversity of the psammophyte vegetation in the region of Tlemcen (north-west Algeria)].

    PubMed

    Stambouli-Meziane, Hassiba; Bouazza, M; Thinon, Michel

    2009-08-01

    This study is devoted to the analysis of the psammophyte of the coastal and semi-continental dunes in Tlemcen. Interesting results have been obtained, in particular, on the biological and ecological aspects of the psammophyte. The interpretation from Factoriel analysis of correspondences enabled us to identify the different phytosociological classes (Cakiletea maritimae, Ammophiletea, Quercetea ilicis, Therobrachypodietea and Stellarietea mediae). Some of these classes (Cakiletea maritimae and Ammophiletea) inhabit, exceedingly well, the embryonic dunes. Some species (Therobrachypodietea) colonize the quickset dunes. Lastly, some others (Quercetea ilicis) settle in the more mature and stable dunes. By using the phytosociological and phytodynamical data, we have been able to understand the vegetation and its diversity.

  1. Fire disturbance and vegetation dynamics : analysis and models

    NASA Astrophysics Data System (ADS)

    Thonicke, Kirsten

    2003-04-01

    Studies of the role of disturbance in vegetation or ecosystems showed that disturbances are an essential and intrinsic element of ecosystems that contribute substantially to ecosystem health, to structural diversity of ecosystems and to nutrient cycling at the local as well as global level. Fire as a grassland, bush or forest fire is a special disturbance agent, since it is caused by biotic as well abiotic environmental factors. Fire affects biogeochemical cycles and plays an important role in atmospheric chemistry by releasing climate-sensitive trace gases and aerosols, and thus in the global carbon cycle by releasing approximately 3.9 Gt C p.a. through biomass burning. A combined model to describe effects and feedbacks between fire and vegetation became relevant as changes in fire regimes due to land use and land management were observed and the global dimension of biomass burnt as an important carbon flux to the atmosphere, its influence on atmospheric chemistry and climate as well as vegetation dynamics were emphasized. The existing modelling approaches would not allow these investigations. As a consequence, an optimal set of variables that best describes fire occurrence, fire spread and its effects in ecosystems had to be defined, which can simulate observed fire regimes and help to analyse interactions between fire and vegetation dynamics as well as to allude to the reasons behind changing fire regimes. Especially, dynamic links between vegetation, climate and fire processes are required to analyse dynamic feedbacks and effects of changes of single environmental factors. This led us to the point, where new fire models had to be developed that would allow the investigations, mentioned above, and could help to improve our understanding of the role of fire in global ecology. In conclusion of the thesis, one can state that moisture conditions, its persistence over time and fuel load are the important components that describe global fire pattern. If time series of

  2. Bottom-up control of carabid beetle communities in early successional wetlands: mediated by vegetation structure or plant diversity?

    PubMed

    Brose, U

    2003-05-01

    Two hypotheses of bottom-up control that predict that the species richness of Carabidae will depend either on the taxonomic diversity of plants ("taxonomic diversity hypothesis") or on the structural heterogeneity of the vegetation ("structural heterogeneity hypothesis") were tested. Plant species were classified into nine plant structural groups through cluster analysis of morphological traits (e.g. total height) at 30 early successional temporary wetlands in the east-German agricultural landscape. In a linear regression analysis, the heterogeneity of vegetation structures explained 55% of the variation in carabid beetle diversity. According to a partial correlation analysis, plant taxonomic diversity did not have a significant effect, consistent with the "structural heterogeneity hypothesis," and contradicting previous studies which concluded that plant taxonomic diversity would be the most important factor in early successional habitats. An experimental study was used to test hypotheses on the processes underlying this bottom-up control by vegetation structure: the "hunting efficiency hypothesis," the "enemy-free space hypothesis," and the "microhabitat specialization hypothesis." The composition of plant structural groups in 15 vegetation plots (1 m(2)) was manipulated, creating a gradient from dense vegetation to open plots. Subsequent pitfall catches revealed significant differences in the activity-abundances of the carabid species. Large species preferred dense vegetation plots, consistent with the enemy-free space hypothesis that large species are more vulnerable to predation on the open plots and prefer dense vegetation to escape from natural enemies. The results indicate that bottom-up control is not mediated only by plant taxonomic or functional group diversity and that vegetation structures may be more important than previously suggested.

  3. INTERCOMPARISON OF ALTERNATIVE VEGETATION DATABASES FOR REGIONAL AIR QUALITY MODELING

    EPA Science Inventory

    Vegetation cover data are used to characterize several regional air quality modeling processes, including the calculation of heat, moisture, and momentum fluxes with the Mesoscale Meteorological Model (MM5) and the estimate of biogenic volatile organic compound and nitric oxide...

  4. Next generation dynamic global vegetation models: learning from community ecology (Invited)

    NASA Astrophysics Data System (ADS)

    Scheiter, S.; Higgins, S.; Langan, L.

    2013-12-01

    Dynamic global vegetation models are a powerful tool to project past, current and future vegetation patterns and the associated biogeochemical cycles. However, most models are limited by their representation of vegetation by using static and pre-defined plant functional types and by their simplistic representation of competition. We discuss how concepts from community assembly theory and coexistence theory can help to improve dynamic vegetation models. We present a trait- and individual-based dynamic vegetation model, the aDGVM2, that allows individual plants to adopt a unique combination of trait values. These traits define how individual plants grow, compete and reproduce under the given biotic and abiotic conditions. A genetic optimization algorithm is used to simulate trait inheritance and reproductive isolation between individuals. These model properties allow the assembly of plant communities that are adapted to biotic and abiotic conditions. We show (1) that the aDGVM2 can simulate coarse vegetation patterns in Africa, (2) that changes in the environmental conditions and disturbances strongly influence trait diversity and the assembled plant communities by influencing traits such as leaf phenology and carbon allocation patterns of individual plants and (3) that communities do not necessarily return to the initial state when environmental conditions return to the initial state. The aDGVM2 deals with functional diversity and competition fundamentally differently from current models and allows novel insights as to how vegetation may respond to climate change. We believe that the aDGVM2 approach could foster collaborations between research communities that focus on functional plant ecology, plant competition, plant physiology and Earth system science.

  5. Development of a coupled wave-flow-vegetation interaction model

    USGS Publications Warehouse

    Beudin, Alexis; Kalra, Tarandeep; Ganju, Neil Kamal; Warner, John C.

    2017-01-01

    Emergent and submerged vegetation can significantly affect coastal hydrodynamics. However, most deterministic numerical models do not take into account their influence on currents, waves, and turbulence. In this paper, we describe the implementation of a wave-flow-vegetation module into a Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system that includes a flow model (ROMS) and a wave model (SWAN), and illustrate various interacting processes using an idealized shallow basin application. The flow model has been modified to include plant posture-dependent three-dimensional drag, in-canopy wave-induced streaming, and production of turbulent kinetic energy and enstrophy to parameterize vertical mixing. The coupling framework has been updated to exchange vegetation-related variables between the flow model and the wave model to account for wave energy dissipation due to vegetation. This study i) demonstrates the validity of the plant posture-dependent drag parameterization against field measurements, ii) shows that the model is capable of reproducing the mean and turbulent flow field in the presence of vegetation as compared to various laboratory experiments, iii) provides insight into the flow-vegetation interaction through an analysis of the terms in the momentum balance, iv) describes the influence of a submerged vegetation patch on tidal currents and waves separately and combined, and v) proposes future directions for research and development.

  6. Development of a coupled wave-flow-vegetation interaction model

    NASA Astrophysics Data System (ADS)

    Beudin, Alexis; Kalra, Tarandeep S.; Ganju, Neil K.; Warner, John C.

    2017-03-01

    Emergent and submerged vegetation can significantly affect coastal hydrodynamics. However, most deterministic numerical models do not take into account their influence on currents, waves, and turbulence. In this paper, we describe the implementation of a wave-flow-vegetation module into a Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system that includes a flow model (ROMS) and a wave model (SWAN), and illustrate various interacting processes using an idealized shallow basin application. The flow model has been modified to include plant posture-dependent three-dimensional drag, in-canopy wave-induced streaming, and production of turbulent kinetic energy and enstrophy to parameterize vertical mixing. The coupling framework has been updated to exchange vegetation-related variables between the flow model and the wave model to account for wave energy dissipation due to vegetation. This study i) demonstrates the validity of the plant posture-dependent drag parameterization against field measurements, ii) shows that the model is capable of reproducing the mean and turbulent flow field in the presence of vegetation as compared to various laboratory experiments, iii) provides insight into the flow-vegetation interaction through an analysis of the terms in the momentum balance, iv) describes the influence of a submerged vegetation patch on tidal currents and waves separately and combined, and v) proposes future directions for research and development.

  7. Modeling Feedbacks Between Water and Vegetation in the Climate System

    NASA Technical Reports Server (NTRS)

    Miller, James R.; Russell, Gary L.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Not only is water essential for life on earth, but life itself affects the global hydrologic cycle and consequently the climate of the planet. Whether the global feedbacks between life and the hydrologic cycle tend to stabilize the climate system about some equilibrium level is difficult to assess. We use a global climate model to examine how the presence of vegetation can affect the hydrologic cycle in a particular region. A control for the present climate is compared with a model experiment in which the Sahara Desert is replaced by vegetation in the form of trees and shrubs common to the Sahel region. A second model experiment is designed to identify the separate roles of two different effects of vegetation, namely the modified albedo and the presence of roots that can extract moisture from deeper soil layers. The results show that the presence of vegetation leads to increases in precipitation and soil moisture in western Sahara. In eastern Sahara, the changes are less clear. The increase in soil moisture is greater when the desert albedo is replaced by the vegetation albedo than when both the vegetation albedo and roots are added. The effect of roots is to withdraw water from deeper layers during the dry season. One implication of this study is that the insertion of vegetation into the Sahara modifies the hydrologic cycle so that the vegetation is more likely to persist than initially.

  8. Hydraulic and Vegetative Models of Historic Environmental Conditions Isolate the Role of Riparian Vegetation in Inducing Channel Change

    NASA Astrophysics Data System (ADS)

    Manners, R.; Schmidt, J. C.; Wheaton, J. M.

    2011-12-01

    An enduring question in geomorphology is the role of riparian vegetation in inducing or exacerbating channel narrowing. It is typically difficult to isolate the role of vegetation in causing channel narrowing, because narrowing typically occurs where there are changes in stream flow, sediment supply, the invasion of non-native vegetation, and sometimes climate change. Therefore, linkages between changes in vegetation communities and changes in channel form are often difficult to identify. We took a mechanistic approach to isolate the role of the invasive riparian shrub tamarisk (Tamarix spp) in influencing channel narrowing in the Colorado River basin. Detailed geomorphic reconstructions of two sites on the Yampa and Green Rivers, respectively, in Dinosaur National Monument show that channel narrowing has been progressive and that tamarisk encroachment has also occurred; at the same time, dams have been constructed, diversions increased, and spring snowmelt runoff has been occurring earlier in spring. We simulated hydraulic and sediment transport conditions during the two largest floods of record -- 1984 and 2011. Two-dimensional hydraulic models were built to reflect these conditions and allowed us to perform sensitivity tests to determine the dominant determinants of the observed patterns of erosion and deposition. Channel and floodplain topography were constrained through detailed stratigraphic analysis, including precise dating of deposits based on dating of buried tamarisk plants in a series of floodplain trenches and pits. We also used historical air photos to establish past channel topography. To parameterize the influence of riparian vegetation, we developed a model that links detailed terrestrial laser scan (TLS) measurements of stand structure and its corresponding hydraulic roughness at the patch scale to reach-scale riparian vegetation patterns determined from airborne LiDaR (ALS). This model, in conjunction with maps of the ages and establishment

  9. Modeling the beta diversity of coral reefs.

    PubMed

    Harborne, Alastair R; Mumby, Peter J; Zychaluk, Kamila; Hedley, John D; Blackwell, Paul G

    2006-11-01

    Quantifying the beta diversity (species replacement along spatiotemporal gradients) of ecosystems is important for understanding and conserving patterns of biodiversity. However, virtually all studies of beta diversity focus on one-dimensional transects orientated along a specific environmental gradient that is defined a priori. By ignoring a second spatial dimension and the associated changes in species composition and environmental gradients, this approach may provide limited insight into the full pattern of beta diversity. Here, we use remotely sensed imagery to quantify beta diversity continuously, in two dimensions, and at multiple scales across an entire tropical marine seascape. We then show that beta diversity can be modeled (0.852 > or = r2 > or = 0.590) at spatial scales between 0.5 and 5.0 km2, using the environmental variables of mean and variance of depth and wave exposure. Beta diversity, quantified within a "window" of a given size, is positively correlated to the range of environmental conditions within that window. For example, beta diversity increases with increasing variance of depth. By analyzing such relationships across seascapes, this study provides a framework for a range of disparate coral reef literature including studies of zonation, diversity, and disturbance. Using supporting evidence from soft-bottom communities, we hypothesize that depth will be an important variable for modeling beta diversity in a range of marine systems. We discuss the implications of our results for the design of marine reserves.

  10. Effects of experimental protocol on global vegetation model accuracy: a comparison of simulated and observed vegetation patterns for Asia

    USGS Publications Warehouse

    Tang, Guoping; Shafer, Sarah L.; Barlein, Patrick J.; Holman, Justin O.

    2009-01-01

    Prognostic vegetation models have been widely used to study the interactions between environmental change and biological systems. This study examines the sensitivity of vegetation model simulations to: (i) the selection of input climatologies representing different time periods and their associated atmospheric CO2 concentrations, (ii) the choice of observed vegetation data for evaluating the model results, and (iii) the methods used to compare simulated and observed vegetation. We use vegetation simulated for Asia by the equilibrium vegetation model BIOME4 as a typical example of vegetation model output. BIOME4 was run using 19 different climatologies and their associated atmospheric CO2 concentrations. The Kappa statistic, Fuzzy Kappa statistic and a newly developed map-comparison method, the Nomad index, were used to quantify the agreement between the biomes simulated under each scenario and the observed vegetation from three different global land- and tree-cover data sets: the global Potential Natural Vegetation data set (PNV), the Global Land Cover Characteristics data set (GLCC), and the Global Land Cover Facility data set (GLCF). The results indicate that the 30-year mean climatology (and its associated atmospheric CO2 concentration) for the time period immediately preceding the collection date of the observed vegetation data produce the most accurate vegetation simulations when compared with all three observed vegetation data sets. The study also indicates that the BIOME4-simulated vegetation for Asia more closely matches the PNV data than the other two observed vegetation data sets. Given the same observed data, the accuracy assessments of the BIOME4 simulations made using the Kappa, Fuzzy Kappa and Nomad index map-comparison methods agree well when the compared vegetation types consist of a large number of spatially continuous grid cells. The results of this analysis can assist model users in designing experimental protocols for simulating vegetation.

  11. Assessing global vegetation activity using spatio-temporal Bayesian modelling

    NASA Astrophysics Data System (ADS)

    Mulder, Vera L.; van Eck, Christel M.; Friedlingstein, Pierre; Regnier, Pierre A. G.

    2016-04-01

    This work demonstrates the potential of modelling vegetation activity using a hierarchical Bayesian spatio-temporal model. This approach allows modelling changes in vegetation and climate simultaneous in space and time. Changes of vegetation activity such as phenology are modelled as a dynamic process depending on climate variability in both space and time. Additionally, differences in observed vegetation status can be contributed to other abiotic ecosystem properties, e.g. soil and terrain properties. Although these properties do not change in time, they do change in space and may provide valuable information in addition to the climate dynamics. The spatio-temporal Bayesian models were calibrated at a regional scale because the local trends in space and time can be better captured by the model. The regional subsets were defined according to the SREX segmentation, as defined by the IPCC. Each region is considered being relatively homogeneous in terms of large-scale climate and biomes, still capturing small-scale (grid-cell level) variability. Modelling within these regions is hence expected to be less uncertain due to the absence of these large-scale patterns, compared to a global approach. This overall modelling approach allows the comparison of model behavior for the different regions and may provide insights on the main dynamic processes driving the interaction between vegetation and climate within different regions. The data employed in this study encompasses the global datasets for soil properties (SoilGrids), terrain properties (Global Relief Model based on SRTM DEM and ETOPO), monthly time series of satellite-derived vegetation indices (GIMMS NDVI3g) and climate variables (Princeton Meteorological Forcing Dataset). The findings proved the potential of a spatio-temporal Bayesian modelling approach for assessing vegetation dynamics, at a regional scale. The observed interrelationships of the employed data and the different spatial and temporal trends support

  12. Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery: A new, publicly-available dataset

    NASA Astrophysics Data System (ADS)

    Richardson, A. D.

    2015-12-01

    Vegetation phenology controls the seasonality of many ecosystem processes, as well as numerous biosphere-atmosphere feedbacks. Phenology is highly sensitive to climate change and variability, and is thus a key aspect of global change ecology. The goal of the PhenoCam network is to serve as a long-term, continental-scale, phenological observatory. The network uses repeat digital photography—images captured using conventional, visible-wavelength, automated digital cameras—to characterize vegetation phenology in diverse ecosystems across North America and around the world. At present, imagery from over 200 research sites, spanning a wide range of ecoregions, climate zones, and plant functional types, is currently being archived and processed in near-real-time through the PhenoCam project web page (http://phenocam.sr.unh.edu/). Data derived from PhenoCam imagery have been previously used to evaluate satellite phenology products, to constrain and test new phenology models, to understand relationships between canopy phenology and ecosystem processes, and to study the seasonal changes in leaf-level physiology that are associated with changes in leaf color. I will describe a new, publicly-available phenological dataset, derived from over 600 site-years of PhenoCam imagery. For each archived image (ca. 5 million), we extracted RGB (red, green, blue) color channel information, with means and other statistics calculated across a region-of-interest (ROI) delineating a specific vegetation type. From the high-frequency (typically, 30 minute) imagery, we derived time series characterizing vegetation color, including "canopy greenness", processed to 1- and 3-day intervals. For ecosystems with a single annual cycle of vegetation activity, we derived estimates, with uncertainties, for the start, middle, and end of spring and autumn phenological transitions. Given the lack of multi-year, standardized, and geographically distributed phenological data for North America, we

  13. Vegetation canopy PAR absorptance and the normalized difference vegetation index - An assessment using the SAIL model

    NASA Technical Reports Server (NTRS)

    Goward, Samuel N.; Huemmrich, Karl F.

    1992-01-01

    Relationships are studied between the normalized-difference vegetation index (NDVI) and absorbed photosynthetically active radiation (APAR) in a vegetation canopy. The SAIL model of bidirectional canopy radiative transfer is employed to compare NDVI measurements that are instantaneous with diurnally integrated canopy APAR capacity. The NDVI measurements - taken at solar-zenith angles of more than 60 deg and sensor views of less than 40 deg from nadir - give stable near-linear estimates of diurnal APAR capacity. Discrepancies in the relations between APAR and NDVI are associated with variations in the optical properties of the canopy and with background spectral reflectance. The results are significant for the practical use of these remote sensing techniques but suggest that instantaneous observations can be used to characterize the diurnally integrated APAR in vegetation canopies.

  14. Coupling groundwater and riparian vegetation models to assess effects of reservoir releases

    USGS Publications Warehouse

    Springer, A.E.; Wright, J.M.; Shafroth, P.B.; Stromberg, J.C.; Patten, D.T.

    1999-01-01

    Although riparian areas in the arid southwestern United States are critical for maintaining species diversity, their extent and health have been declining since Euro-American settlement. The purpose of this study was to develop a methodology to evaluate the potential for riparian vegetation restoration and groundwater recharge. A numerical groundwater flow model was coupled with a conceptual riparian vegetation model to predict hydrologic conditions favorable to maintaining riparian vegetation downstream of a reservoir. A Geographic Information System (GIS) was used for this one-way coupling. Constant and seasonally varying releases from the dam were simulated using volumes anticipated to be permitted by a regional water supplier. Simulations indicated that seasonally variable releases would produce surface flow 5.4-8.5 km below the dam in a previously dry reach. Using depth to groundwater simulations from the numerical flow model with conceptual models of depths to water necessary for maintenance of riparian vegetation, the GIS analysis predicted a 5- to 6.5-fold increase in the area capable of sustaining riparian vegetation.

  15. Genetic diversity amongst landraces of a dioecious vegetatively propagated plant, betelvine (Piper betle L.).

    PubMed

    Verma, Anjali; Kumar, Nikhil; Ranade, S A

    2004-09-01

    Betelvine (Piper betle L., family Piperaceae) is an important, traditional and widely cultivated crop of India. The cultivators and consumers recognize more than 100 cultivars (landraces) based on regional and organoleptic considerations, while in terms of phytochemical constituents only five groups have been identified for all the landraces. Since betelvine is an obligate vegetatively propagated species, genomic changes, if any, may have become 'fixed' in the landraces. We carried out random amplified polymorphic DNA (RAPD) analysis in several landraces considered in four groups, namely, 'Kapoori', 'Bangla', 'Sanchi' and 'Others' in order to ascertain their genetic diversity. On the basis of the data from eleven RAPD primers, we distinguished genetic variation within and among the four groups of landraces. The results indicate the 'Kapoori' group is the most diverse. The neighbour joining (NJ) tree after a bootstrap (500 replicate) test of robustness clearly shows the four groups to be well separated. Interestingly, all known male or female betelvine landraces have separated in the NJ tree indicating an apparent gender-based distinction among the betelvines.

  16. Paleocene floral diversities and turnover events in eastern North America and their relation to diversity models

    USGS Publications Warehouse

    Frederiksen, N.O.

    1994-01-01

    This paper uses angiosperm pollen taxon turnover (first and last appearance) and diversity events as metrics to describe the Paleocene floral history of the eastern Gulf Coast; data are from 64 samples and 67 angiosperm pollen taxa. Angiosperm pollen diversity was very low at the beginning of the Paleocene, rose slowly and then somewhat more rapidly to a maximum for the epoch in the middle of the late Paleoceneas a result of the maximum in rate of first appearances during the late early Paleocene and earliest late Paleocene. Diversity then dropped very rapidly at or near the end of the epoch as the rate of last appearances reached its maximum, resulting in the Terminal Paleocene Extinction Event. The latest Paleocene diversity decline coincided with an increase in mean annual temperature and probably in rainfall, representing the beginning of the climatic maximum for the Tertiary which characterized the early Eocene. The increase in diversity of early Paleocene floras in the eastern Gulf Coast resulted from exploitation of unfilled ecospace originating from (1) low regional diversity following the Terminal Cretaceous Extinction Event, and (2) creation of many new niches during the Paleocene, resulting, according to megafloral evidence, from a change to a new vegetation type (multistratal tropical rainforest) brought about by an increase in rainfall. The slow rate of recovery of earliest Paleocene angiosperm diversity in the eastern Gulf Coast may be explained in part by the diversity-dependence model of Carr and Kitchell (1980). However, additional factors may have contributed to the slow recovery: (1) the adverse terminal Cretaceous climates may have extended into the early Paleocene, (2) the initial Paleocene environment of the eastern Gulf Coast may have contained relatively few niches, (3) some earliest Paleocene angiosperms, particularly trees, may have had inherently poor capabilities for rapid evolution, and (4) there was a lack of significant immigration of

  17. Modeling the interaction between flow and highly flexible aquatic vegetation

    NASA Astrophysics Data System (ADS)

    Dijkstra, J. T.; Uittenbogaard, R. E.

    2010-12-01

    Aquatic vegetation has an important role in estuaries and rivers by acting as bed stabilizer, filter, food source, and nursing area. However, macrophyte populations worldwide are under high anthropogenic pressure. Protection and restoration efforts will benefit from more insight into the interaction between vegetation, currents, waves, and sediment transport. Most aquatic plants are very flexible, implying that their shape and hence their drag and turbulence production depend on the flow conditions. We have developed a numerical simulation model that describes this dynamic interaction between very flexible vegetation and a time-varying flow, using the sea grass Zostera marina as an example. The model consists of two parts: an existing 1DV k-ɛ turbulence model simulating the flow combined with a new model simulating the bending of the plants, based on a force balance that takes account of both vegetation position and buoyancy. We validated this model using observations of positions of flexible plastic strips and of the forces they are subjected to, as well as hydrodynamic measurements. The model predicts important properties like the forces on plants, flow velocity profiles, and turbulence characteristics well. Although the validation data are limited, the results are sufficiently encouraging to consider our model to be of generic value in studying flow processes in fields of flexible vegetation.

  18. [Soil moisture estimation model based on multiple vegetation index].

    PubMed

    Wu, Hai-long; Yu, Xin-xiao; Zhang, Zhen-ming; Zhang, Yan

    2014-06-01

    Estimating soil moisture conveniently and exactly is a hot issues in water resource monitoring among agriculture and forestry. Estimating soil moisture based on vegetation index has been recognized and applied widely. 8 vegetation indexes were figured out based on the hyper-spectral data measured by portable spectrometer. The higher correlation indexes among 8 vegetation indexes and surface vegetation temperature were selected by Gray Relative Analysis method (GRA). Then, these selected indexes were analyzed using Multiple Linear Regression to establish soil moisture estimation model based on multiple vegetation indexes, and the model accuracy was evaluated. The accuracy evaluation indicated that the fitting was satisfied and the significance was 0.000 (P < 0.001). High correlation was turned out between estimated and measured soil moisture with R2 reached 0.636 1 and RMSE 2.149 9. This method introduced multiple vegetation indexes into soil water content estimating over micro scale by non-contact measuring method using portable spectrometer. The exact estimation could be an appropriate replacement for remote sensing inversion and direct measurement. The model could estimate soil moisture quickly and accurately, and provide theory and technology reference for water resource management in agriculture and forestry.

  19. Stochastic models of cover class dynamics. [remote sensing of vegetation

    NASA Technical Reports Server (NTRS)

    Barringer, T. H.; Robinson, V. B.

    1981-01-01

    Investigations related to satellite remote sensing of vegetation have been concerned with questions of signature identification and extension, cover inventory accuracy, and change detection and monitoring. Attention is given to models of ecological succession, present directions in successional modeling and analysis, nondynamic spatial models, issues in the analysis of spatial data, and aspects of spatial modeling. Issues in time-series analysis are considered along with dynamic spatial models, and problems of model specification and identification.

  20. [Simulation of vegetation indices optimizing under retrieval of vegetation biochemical parameters based on PROSPECT + SAIL model].

    PubMed

    Wu, Ling; Liu, Xiang-Nan; Zhou, Bo-Tian; Liu, Chuan-Hao; Li, Lu-Feng

    2012-12-01

    This study analyzed the sensitivities of three vegetation biochemical parameters [chlorophyll content (Cab), leaf water content (Cw), and leaf area index (LAI)] to the changes of canopy reflectance, with the effects of each parameter on the wavelength regions of canopy reflectance considered, and selected three vegetation indices as the optimization comparison targets of cost function. Then, the Cab, Cw, and LAI were estimated, based on the particle swarm optimization algorithm and PROSPECT + SAIL model. The results showed that retrieval efficiency with vegetation indices as the optimization comparison targets of cost function was better than that with all spectral reflectance. The correlation coefficients (R2) between the measured and estimated values of Cab, Cw, and LAI were 90.8%, 95.7%, and 99.7%, and the root mean square errors of Cab, Cw, and LAI were 4.73 microg x cm(-2), 0.001 g x cm(-2), and 0.08, respectively. It was suggested that to adopt vegetation indices as the optimization comparison targets of cost function could effectively improve the efficiency and precision of the retrieval of biochemical parameters based on PROSPECT + SAIL model.

  1. Development of the IAP Dynamic Global Vegetation Model

    NASA Astrophysics Data System (ADS)

    Zeng, Xiaodong; Li, Fang; Song, Xiang

    2014-05-01

    The IAP Dynamic Global Vegetation Model (IAP-DGVM) has been developed to simulate the distribution and structure of global vegetation within the framework of Earth System Models. It incorporates our group's recent developments of major model components such as the shrub sub-model, establishment and competition parameterization schemes, and a process-based fire parameterization of intermediate complexity. The model has 12 plant functional types, including seven tree, two shrub, and three grass types, plus bare soil. Different PFTs are allowed to coexist within a grid cell, and their state variables are updated by various governing equations describing vegetation processes from fine-scale biogeophysics and biogeochemistry, to individual and population dynamics, to large-scale biogeography. Environmental disturbance due to fire not only affects regional vegetation competition, but also influences atmospheric chemistry and aerosol emissions. Simulations under observed atmospheric conditions showed that the model can correctly reproduce the global distribution of trees, shrubs, grasses, and bare soil. The simulated global dominant vegetation types reproduce the transition from forest to grassland (savanna) in the tropical region, and from forest to shrubland in the boreal region, but overestimate the region of temperate forest.

  2. Effects of temperature seasonality on tundra vegetation productivity using a daily vegetation dynamics model

    NASA Astrophysics Data System (ADS)

    Epstein, H. E.; Erler, A.; Frazier, J.; Bhatt, U. S.

    2011-12-01

    Changes in the seasonality of air temperature will elicit interacting effects on the dynamics of snow cover, nutrient availability, vegetation growth, and other ecosystem properties and processes in arctic tundra. Simulation models often do not have the fine temporal resolution necessary to develop theory and propose hypotheses for the effects of daily and weekly timescale changes on ecosystem dynamics. We therefore developed a daily version of an arctic tundra vegetation dynamics model (ArcVeg) to simulate how changes in the seasonality of air temperatures influences the dynamics of vegetation growth and carbon sequestration across regions of arctic tundra. High temporal-resolution air and soil temperature data collected from field sites across the five arctic tundra bioclimate subzones were used to develop a daily weather generator operable for sites throughout the arctic tundra. Empirical relationships between temperature and soil nitrogen were used to generate daily dynamics of soil nitrogen availability, which drive the daily uptake of nitrogen and growth among twelve tundra plant functional types. Seasonal dynamics of the remotely sensed normalized difference vegetation index (NDVI) and remotely sensed land surface temperature from the Advanced Very High Resolution Radiometer (AVHRR) GIMMS 3g dataset were used to investigate constraints on the start of the growing season, although there was no indication of any spatially consistent temperature or day-length controls on greening onset. Because of the exponential nature of the relationship between soil temperature and nitrogen mineralization, temperature changes during the peak of the growing season had greater effects on vegetation productivity than changes earlier in the growing season. However, early season changes in temperature had a greater effect on the relative productivities of different plant functional types, with potential influences on species composition.

  3. A trait-based approach in modeling fluxes to and from vegetation in ESM projections

    NASA Astrophysics Data System (ADS)

    Verheijen, Lieneke; Brovkin, Victor; Aerts, Rien; van Bodegom, Peter

    2013-04-01

    Large uncertainties exist in projections of earth system models (ESMs) both with respect to the size and direction of change in terrestrial carbon pools, as well as to how vegetation will respond (e.g. diebacks). These uncertainties may be partly explained by differences in the way biophysical or biochemical vegetation processes and disturbances are modeled, which may affect carbon exchange between the terrestrial biosphere and the atmosphere. Most models only contain a limited number of Plant functional types (PFTs) to represent the vast diversity in vascular plants. The currently static nature of PFT properties contrasts with the variation seen in natural vegetation, where plants adjust their traits in response to environmental change. As PFTs remain relatively inert under changing climatic conditions, they do not allow for such plant adaptation to the environment and plant-atmosphere feedbacks, with unknown consequences for model projections. A way to solve this problem is to allow traits of PFTs to vary with environmental conditions. This can be achieved by implementing trait-climate relationships based on the ecological concept of habitat filtering, where abiotic conditions act as a filter and reduce the number of viable plant traits in a habitat, resulting in different community means across global environmental gradients. In this project, such relationships were incorporation in the DGVM JSBACH to allow for variable traits in PFT-means within grid cells. As projections concern elevated CO2 concentrations, plant CO2 adaptation was modeled as well, based on long-term FACE-experiments. Simulations were performed with and without increasing CO2 affecting vegetation to disentangle the effects of climate and CO2 fertilization on vegetation. Equilibrium simulations with and without plant adaptation via variable traits already showed large differences in patterns of vegetation and productivity, with the model with variable traits performing better than the default

  4. A regional dynamic vegetation-climate model for Central America

    NASA Astrophysics Data System (ADS)

    Snell, R. S.; Cowling, S. A.; Smith, B.

    2009-12-01

    Global vegetation models simulate the distribution of vegetation as a function of climate. Dynamic global vegetation models (DGVMs) are also able to simulate the vegetation shifts in response to climate change, which makes them particularly useful for addressing questions about past and future climate scenarios. However, DGVMs have been criticized for using generic plant functional types (PFTs) and running the models at a coarse grid cell resolution. Regional dynamic vegetation models are able to simulate important landscape variation, since they use a finer resolution and specific PFTs for their region. Regional studies have typically focused on boreal or temperate ecosystems in North America and Europe. We will be presenting the results of applying a dynamic regional vegetation-climate model (LPJ-GUESS) for Central America. Initially, the model was run with the described global PFTs. However, several biomes were very poorly represented. Two PFTs were added: a Tropical Needleleaf Evergreen Tree to improve the simulation of the Mixed Pine-Oak biome, and a Desert Shrub to capture the Xeric Shrublands. The overall distribution of biomes was visually similar, however the Kappa statistic indicated a poor agreement with the potential biome map (overall Kappa = 0.301). The Kappa statistic did improve as we aggregated cell sizes and simplified the biomes (overall Kappa = 0.728). Compared to remote sensing data, the model showed a strong correlation with total LAI (r = 0.75). The poor Kappa statistic is likely due to a combination of factors. The way in which biomes are defined by the author can have a large influence on the level of agreement between simulated and potential vegetation. The Kappa statistic is also limited to comparing individual grid cells and thus, cannot detect overall patterns. Examining those areas which are poorly represented will help to identify future work and improve the representation of vegetation in these ecological models. In particular, the

  5. Dynamical vegetation-atmosphere modelling of the boreal zone

    NASA Astrophysics Data System (ADS)

    Tang, Hui; Stordal, Frode; Berntsen, Terje K.; Bryn, Anders

    2016-04-01

    Vegetation interacts with climate on seasonal to inter-annual time scales through albedo, roughness, evapotranspiration, CO2 sequestration and by influencing snow accumulation and ablation. The Scandinavian mountains and high latitudes is a hot spot for land-atmosphere feedback, as the future's increased winter minimum temperature supports a boreal tree line advance, lowering the surface albedo. The northern ecosystem is dominated by mires, boreal forests and alpine heaths, in addition to agricultural land. Model studies have shown that vegetation-climate feedbacks are strong enough to lead to regime shifts in vegetation and local climate in boreal regions. Biogeophysical factors, such as albedo, the Bowen ratio, and surface roughness, are all involved in these feedbacks, and they are also altered by land use change such as reforestation. For calculations of the dynamical coupling between the atmosphere and the vegetation we have used the Earth System Model NorESM, which includes several advanced features in its land surface model (CLM4.5), such as the inclusion of the radiative forcing due to black carbon and dust deposit onto snow, improved representation of fire, permafrost and its hydrological impact, a new snow cover fraction parameterization reflecting the hysteresis in fractional snow cover for a given snow depth between accumulation and melt phases, as well as dynamic vegetation coupled with carbon-nitrogen cycles. These new features improve the representation of surface albedo feedback in Arctic. We have performed experiments with coupled as well fixed ocean for the current as a quadrupled atmospheric CO2 situation. This model configuration is used to study changes in vegetation in a high end radiative forcing case. It is contrasted with an experiment where vegetation dynamics is neglected. Changes in the features of the vegetation along with surface fluxes, albedo and atmospheric temperatures are analysed, with main emphasis on the boreal zone. In

  6. Modeling soil water content for vegetation modeling improvement

    NASA Astrophysics Data System (ADS)

    Cianfrani, Carmen; Buri, Aline; Zingg, Barbara; Vittoz, Pascal; Verrecchia, Eric; Guisan, Antoine

    2016-04-01

    adjusted-R2 ranging from 0.55 to 0.65. Bivariate models with higher performance were the one using OM and river distance for pF < 2.7 and the one using clay content and topography (convexity) for pF > 2.7.We found that adding SWC improves vegetation models. It improves 51%-64% (depending on pF) of plant SDMs. In 6-10% of SDMs, SWC was the most important variable. In conclusion, this study emphasized that important information is still missing in SDMs to capture all abiotic drivers of plant species distributions.

  7. Using Ecosystem Experiments to Improve Vegetation Models

    SciTech Connect

    Medlyn, Belinda; Zaehle, S; DeKauwe, Martin G.; Walker, Anthony P.; Dietze, Michael; Hanson, Paul J.; Hickler, Thomas; Jain, Atul; Luo, Yiqi; Parton, William; Prentice, I. Collin; Thornton, Peter E.; Wang, Shusen; Wang, Yingping; Weng, Ensheng; Iversen, Colleen M.; McCarthy, Heather R.; Warren, Jeffrey; Oren, Ram; Norby, Richard J

    2015-05-21

    Ecosystem responses to rising CO2 concentrations are a major source of uncertainty in climate change projections. Data from ecosystem-scale Free-Air CO2 Enrichment (FACE) experiments provide a unique opportunity to reduce this uncertainty. The recent FACE Model–Data Synthesis project aimed to use the information gathered in two forest FACE experiments to assess and improve land ecosystem models. A new 'assumption-centred' model intercomparison approach was used, in which participating models were evaluated against experimental data based on the ways in which they represent key ecological processes. Identifying and evaluating the main assumptions caused differences among models, and the assumption-centered approach produced a clear roadmap for reducing model uncertainty. We explain this approach and summarize the resulting research agenda. We encourage the application of this approach in other model intercomparison projects to fundamentally improve predictive understanding of the Earth system.

  8. Using Ecosystem Experiments to Improve Vegetation Models

    DOE PAGES

    Medlyn, Belinda; Zaehle, S; DeKauwe, Martin G.; ...

    2015-05-21

    Ecosystem responses to rising CO2 concentrations are a major source of uncertainty in climate change projections. Data from ecosystem-scale Free-Air CO2 Enrichment (FACE) experiments provide a unique opportunity to reduce this uncertainty. The recent FACE Model–Data Synthesis project aimed to use the information gathered in two forest FACE experiments to assess and improve land ecosystem models. A new 'assumption-centred' model intercomparison approach was used, in which participating models were evaluated against experimental data based on the ways in which they represent key ecological processes. Identifying and evaluating the main assumptions caused differences among models, and the assumption-centered approach produced amore » clear roadmap for reducing model uncertainty. We explain this approach and summarize the resulting research agenda. We encourage the application of this approach in other model intercomparison projects to fundamentally improve predictive understanding of the Earth system.« less

  9. Effects of vegetation type on soil microbial community structure and catabolic diversity assessed by polyphasic methods in North China.

    PubMed

    Han, Xue-mei; Wang, Ren-qing; Liu, Jian; Wang, Meng-cheng; Zhou, Juan; Guo, Wei-hua

    2007-01-01

    Soil microbes play a major role in ecological processes and are closely associated with the aboveground plant community. In order to understand the effects of vegetation type on the characteristics of soil microbial communities, the soil microbial communities were assessed by plate counts, phospholipid fatty acid (PLFA) and Biolog microplate techniques in five plant communities, i.e., soybean field (SF), artificial turf (AT), artificial shrub (AS), natural shrub (NS), and maize field (MF) in Jinan, Shandong Province, North China. The results showed that plant diversity had little discernible effect on microbial biomass but a positive impact on the evenness of utilized substrates in Biolog microplate. Legumes could significantly enhance the number of cultural microorganisms, microbial biomass, and community catabolic diversity. Except for SF dominated by legumes, the biomass of fungi and the catabolic diversity of microbial community were higher in less disturbed soil beneath NS than in frequently disturbed soils beneath the other vegetation types. These results confirmed that high number of plant species, legumes, and natural vegetation types tend to support soil microbial communities with higher function. The present study also found a significant correlation between the number of cultured bacteria and catabolic diversity of the bacterial community. Different research methods led to varied results in this study. The combination of several approaches is recommended for accurately describing the characteristics of microbial communities in many respects.

  10. Mathematical Modeling of Flow Through Vegetated Regions

    DTIC Science & Technology

    2013-08-01

    including stem population density and flow Reynolds number. These results are compared to well-respected experimental results. We model real- life beds of...We model real- life beds of Spartina alterniflora grass with represen- tative beds of flexible beams and perform similar comparisons. x 13 Table of...and pressure contours ( right ) for instanta- neous snapshots of flows of various Reynolds numbers in 2D porous media domain with circle diameter 0.25 m

  11. Importance of Soil Texture in Paleo-Vegetation Modeling Studies

    NASA Astrophysics Data System (ADS)

    Shellito, C. J.; Clifthorne, S.; Sloan, L. C.; Kueppers, L.

    2005-12-01

    The utility of a dynamic global vegetation model (DGVM) depends on the accuracy of the background climatology driving the model and the boundary conditions. In this study, we examine the sensitivity of the NCAR LSM-DGVM to one aspect of the boundary condition, the global soil texture. Soil texture is a critical factor influencing the availability of soil moisture. Available soil moisture will generally determine the dominant vegetation in a region, and, both soil moisture and vegetation will have important feedbacks on climate. Most paleoclimate modeling studies incorporate a globally uniform soil texture due to a lack of a global datasets regarding paleosol types. This becomes problematic when trying to address questions regarding potential changes in the global ecosystem due to a change in climate because the influence of soil texture on equilibrium vegetation in a DGVM experiment may be as large as other climatic forcing factors in a given region. In this study, we consider the effect of soil texture on the distribution of global vegetation in an Early Eocene DGVM study. We generate a global distribution of clay abundances using annual averaged temperatures and precipitation estimates from previous Eocene modeling studies. In all previous Eocene climate modeling studies, clay is specified at globally uniform value of 18%. In our new Eocene soil distribution, clay percentages vary from near zero to 80%. We incorporate the new soil scheme into the surface boundary conditions for a DGVM experiment. As model output demonstrates, the clay has a pronounced impact on soil moisture, which has a strong impact on the presence and abundance of plant functional types in the model.

  12. A Model for Cultural Diversity Training.

    ERIC Educational Resources Information Center

    Sue, Derald Wing

    1991-01-01

    Presents model for incorporating cultural diversity in organizations, based on 3 X 3 X 3 matrix, which analyzes organization's functional focus (recruitment, retention, promotion), barriers (differences, discrimination, systemic factors), and cross-cultural competencies (beliefs/attitudes, knowledge, skills). Although originally developed for…

  13. Vegetable parenting practices scale: Item response modeling analyses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our objective was to evaluate the psychometric properties of a vegetable parenting practices scale using multidimensional polytomous item response modeling which enables assessing item fit to latent variables and the distributional characteristics of the items in comparison to the respondents. We al...

  14. A model for seed dispersion and vegetation growth

    NASA Astrophysics Data System (ADS)

    da Silva, Jaqueline Maria; Vieira Kritz, Maurício

    2016-08-01

    The study of processes associated with vegetation grow is very important to understand the dynamics of flooded ecosystems and their sustainable management. We present a cell-centered individual-based probabilistic model for the dynamics of tree-populations, that is further tailored towards the environmental conditions present in the Amazon floodplains.

  15. The copper spoil heap Knappenberg, Austria, as a model for metal habitats - Vegetation, substrate and contamination.

    PubMed

    Adlassnig, Wolfram; Weiss, Yasmin S; Sassmann, Stefan; Steinhauser, Georg; Hofhansl, Florian; Baumann, Nils; Lichtscheidl, Irene K; Lang, Ingeborg

    2016-09-01

    Historic mining in the Eastern Alps has left us with a legacy of numerous spoil heaps hosting specific, metal tolerant vegetation. Such habitats are characterized by elevated concentrations of toxic elements but also by high irradiation, a poorly developed substrate or extreme pH of the soil. This study investigates the distribution of vascular plants, mosses and lichens on a copper spoil heap on the ore bearing Knappenberg formed by Prebichl Layers and Werfener Schist in Lower Austria. It serves as a model for discriminating between various ecological traits and their effects on vegetation. Five distinct clusters were distinguished: (1) The bare, metal rich Central Spoil Heap was only colonised by highly resistant specialists. (2) The Northern and (3) Southern Peripheries contained less copper; the contrasting vegetation was best explained by the different microclimate. (4) A forest over acidic bedrock hosted a vegetation overlapping with the periphery of the spoil heap. (5) A forest over calcareous bedrock was similar to the spoil heap with regard to pH and humus content but hosted a vegetation differing strongly to all other habitats. Among the multiple toxic elements at the spoil heap, only Cu seems to exert a crucial influence on the vegetation pattern. Besides metal concentrations, irradiation, humidity, humus, pH and grain size distribution are important for the establishment of a metal tolerant vegetation. The difference between the species poor Northern and the diverse Southern Periphery can be explained by the microclimate rather than by the substrate. All plant species penetrating from the forest into the periphery of the spoil heap originate from the acidic but not from the calcareous bedrock.

  16. A comprehensive benchmarking system for evaluating global vegetation models

    NASA Astrophysics Data System (ADS)

    Kelley, D. I.; Prentice, I. C.; Harrison, S. P.; Wang, H.; Simard, M.; Fisher, J. B.; Willis, K. O.

    2013-05-01

    We present a benchmark system for global vegetation models. This system provides a quantitative evaluation of multiple simulated vegetation properties, including primary production; seasonal net ecosystem production; vegetation cover; composition and height; fire regime; and runoff. The benchmarks are derived from remotely sensed gridded datasets and site-based observations. The datasets allow comparisons of annual average conditions and seasonal and inter-annual variability, and they allow the impact of spatial and temporal biases in means and variability to be assessed separately. Specifically designed metrics quantify model performance for each process, and are compared to scores based on the temporal or spatial mean value of the observations and a "random" model produced by bootstrap resampling of the observations. The benchmark system is applied to three models: a simple light-use efficiency and water-balance model (the Simple Diagnostic Biosphere Model: SDBM), the Lund-Potsdam-Jena (LPJ) and Land Processes and eXchanges (LPX) dynamic global vegetation models (DGVMs). In general, the SDBM performs better than either of the DGVMs. It reproduces independent measurements of net primary production (NPP) but underestimates the amplitude of the observed CO2 seasonal cycle. The two DGVMs show little difference for most benchmarks (including the inter-annual variability in the growth rate and seasonal cycle of atmospheric CO2), but LPX represents burnt fraction demonstrably more accurately. Benchmarking also identified several weaknesses common to both DGVMs. The benchmarking system provides a quantitative approach for evaluating how adequately processes are represented in a model, identifying errors and biases, tracking improvements in performance through model development, and discriminating among models. Adoption of such a system would do much to improve confidence in terrestrial model predictions of climate change impacts and feedbacks.

  17. A comprehensive benchmarking system for evaluating global vegetation models

    NASA Astrophysics Data System (ADS)

    Kelley, D. I.; Prentice, I. Colin; Harrison, S. P.; Wang, H.; Simard, M.; Fisher, J. B.; Willis, K. O.

    2012-11-01

    We present a benchmark system for global vegetation models. This system provides a quantitative evaluation of multiple simulated vegetation properties, including primary production; seasonal net ecosystem production; vegetation cover, composition and height; fire regime; and runoff. The benchmarks are derived from remotely sensed gridded datasets and site-based observations. The datasets allow comparisons of annual average conditions and seasonal and inter-annual variability, and they allow the impact of spatial and temporal biases in means and variability to be assessed separately. Specifically designed metrics quantify model performance for each process, and are compared to scores based on the temporal or spatial mean value of the observations and a "random" model produced by bootstrap resampling of the observations. The benchmark system is applied to three models: a simple light-use efficiency and water-balance model (the Simple Diagnostic Biosphere Model: SDBM), and the Lund-Potsdam-Jena (LPJ) and Land Processes and eXchanges (LPX) dynamic global vegetation models (DGVMs). SDBM reproduces observed CO2 seasonal cycles, but its simulation of independent measurements of net primary production (NPP) is too high. The two DGVMs show little difference for most benchmarks (including the inter-annual variability in the growth rate and seasonal cycle of atmospheric CO2), but LPX represents burnt fraction demonstrably more accurately. Benchmarking also identified several weaknesses common to both DGVMs. The benchmarking system provides a quantitative approach for evaluating how adequately processes are represented in a model, identifying errors and biases, tracking improvements in performance through model development, and discriminating among models. Adoption of such a system would do much to improve confidence in terrestrial model predictions of climate change impacts and feedbacks.

  18. Accounting for Vegetation Effects in Spatially Distributed Snowmelt Modeling

    NASA Astrophysics Data System (ADS)

    Garen, D. C.; Marks, D.

    2004-05-01

    The effects of vegetation on snowpack energy dynamics can be highly significant and must be taken into account when simulating snowmelt. This becomes challenging, however, for spatially distributed models covering large areas such as river basins. In this case, processes occurring at the scale of individual trees or bushes must be parameterized and upscaled to the size of the model's grid cells, which could range from 10 up to a few hundred meters. An application of a spatially distributed energy balance snowmelt model to the Boise River basin in Idaho, USA has required the development of algorithms to account for the effects of vegetation (especially forest) on the climate input data to the model. This particularly affects the solar and thermal radiation input to the snowpack, including not only the direct effects of the vegetation but also the effect of vegetation debris on the snow albedo. Vegetation effects on vertical profiles of wind speed and temperature could not be considered due to limited measurements, and only a crude estimate of wind speed differences between forested and nonforested grid cells was used. The simulated snow fields were verified using point snow water equivalent and snow depth data as well as satellite images of snow covered area. Although good results were obtained in these comparisons, each of these methods has limitations, in that point measurements are not necessarily representative of a grid cell, and satellite images have a coarse resolution and cannot detect snow under trees. Another test was to use the simulated snowmelt fields as input to a spatially distributed water balance and streamflow simulation model, which indicated that the volume and timing of snowmelt input to the basin were accurately represented. A limitation of the modeling method used is that the models are run independently in sequence, the output of one being stored and becoming the input of the next. This means that there is no opportunity for feedbacks between

  19. Potential climatic impacts of vegetation change: A regional modeling study

    USGS Publications Warehouse

    Copeland, J.H.; Pielke, R.A.; Kittel, T.G.F.

    1996-01-01

    The human species has been modifying the landscape long before the development of modern agrarian techniques. Much of the land area of the conterminous United States is currently used for agricultural production. In certain regions this change in vegetative cover from its natural state may have led to local climatic change. A regional climate version of the Colorado State University Regional Atmospheric Modeling System was used to assess the impact of a natural versus current vegetation distribution on the weather and climate of July 1989. The results indicate that coherent regions of substantial changes, of both positive and negative sign, in screen height temperature, humidity, wind speed, and precipitation are a possible consequence of land use change throughout the United States. The simulated changes in the screen height quantities were closely related to changes in the vegetation parameters of albedo, roughness length, leaf area index, and fractional coverage. Copyright 1996 by the American Geophysical Union.

  20. Fine and Coarse-Scale Patterns of Vegetation Diversity on Reclaimed Surface Mine-land Over a 40-Year Chronosequence.

    PubMed

    Bohrer, Stefanie L; Limb, Ryan F; Daigh, Aaron L; Volk, Jay M; Wick, Abbey F

    2017-03-01

    Rangelands are described as heterogeneous, due to patterning in species assemblages and productivity that arise from species dispersal and interactions with environmental gradients and disturbances across multiple scales. The objectives of rangeland reclamation are typically vegetation establishment, plant community productivity, and soil stability. However, while fine-scale diversity is often promoted through species-rich seed mixes, landscape heterogeneity and coarse-scale diversity are largely overlooked. Our objectives were to evaluate fine and coarse-scale vegetation patterns across a 40-year reclamation chronosequence on reclaimed surface coalmine lands. We hypothesized that both α-diversity and β-diversity would increase and community patch size and species dissimilarity to reference sites would decrease on independent sites over 40 years. Plant communities were surveyed on 19 post-coalmine reclaimed sites and four intact native reference sites in central North Dakota mixed-grass prairie. Our results showed no differences in α or β-diversity and plant community patch size over the 40-year chronosequence. However, both α-diversity and β-diversity on reclaimed sites was similar to reference sites. Native species establishment was limited due to the presence of non-native species such as Kentucky bluegrass (Poa pratensis) on both the reclaimed and reference sites. Species composition was different between reclaimed and reference sites and community dissimilarity increased on reclaimed sites over the 40-year chronosequence. Plant communities resulting from reclamation followed non-equilibrium succession, even with consistent seeds mixes established across all reclaimed years. This suggests post-reclamation management strategies influence species composition outcomes and land management strategies applied uniformly may not increase landscape-level diversity.

  1. Fine and Coarse-Scale Patterns of Vegetation Diversity on Reclaimed Surface Mine-land Over a 40-Year Chronosequence

    NASA Astrophysics Data System (ADS)

    Bohrer, Stefanie L.; Limb, Ryan F.; Daigh, Aaron L.; Volk, Jay M.; Wick, Abbey F.

    2017-03-01

    Rangelands are described as heterogeneous, due to patterning in species assemblages and productivity that arise from species dispersal and interactions with environmental gradients and disturbances across multiple scales. The objectives of rangeland reclamation are typically vegetation establishment, plant community productivity, and soil stability. However, while fine-scale diversity is often promoted through species-rich seed mixes, landscape heterogeneity and coarse-scale diversity are largely overlooked. Our objectives were to evaluate fine and coarse-scale vegetation patterns across a 40-year reclamation chronosequence on reclaimed surface coalmine lands. We hypothesized that both α-diversity and β-diversity would increase and community patch size and species dissimilarity to reference sites would decrease on independent sites over 40 years. Plant communities were surveyed on 19 post-coalmine reclaimed sites and four intact native reference sites in central North Dakota mixed-grass prairie. Our results showed no differences in α or β-diversity and plant community patch size over the 40-year chronosequence. However, both α-diversity and β-diversity on reclaimed sites was similar to reference sites. Native species establishment was limited due to the presence of non-native species such as Kentucky bluegrass ( Poa pratensis) on both the reclaimed and reference sites. Species composition was different between reclaimed and reference sites and community dissimilarity increased on reclaimed sites over the 40-year chronosequence. Plant communities resulting from reclamation followed non-equilibrium succession, even with consistent seeds mixes established across all reclaimed years. This suggests post-reclamation management strategies influence species composition outcomes and land management strategies applied uniformly may not increase landscape-level diversity.

  2. Discrete random media techniques for microwave modeling of vegetated terrain

    NASA Technical Reports Server (NTRS)

    Lang, Roger H.

    1991-01-01

    Microwave remote sensing models of vegetated terrain are investigated. The problem is to determine canopy characteristics such as biomass, canopy height, and the moisture of the underlying soil. The report describes a discrete scatter model which has been employed to model backscatter in the active (radar) case and to model brightness temperature in the passive (radiometric) case. The acquisition of ground truth data is discussed, as well as the comparison of theory and experiment. The overall conclusion of the work has been that the discrete scatter model in conjunction with efficient scatter algorithms and the distorted Born approximation is a most appropriate methodology to use for modeling purposes in the microwave region.

  3. Statistical Models for Inferring Vegetation Composition from Fossil Pollen

    NASA Astrophysics Data System (ADS)

    Paciorek, C.; McLachlan, J. S.; Shang, Z.

    2011-12-01

    Fossil pollen provide information about vegetation composition that can be used to help understand how vegetation has changed over the past. However, these data have not traditionally been analyzed in a way that allows for statistical inference about spatio-temporal patterns and trends. We build a Bayesian hierarchical model called STEPPS (Spatio-Temporal Empirical Prediction from Pollen in Sediments) that predicts forest composition in southern New England, USA, over the last two millenia based on fossil pollen. The critical relationships between abundances of tree taxa in the pollen record and abundances in actual vegetation are estimated using modern (Forest Inventory Analysis) data and (witness tree) data from colonial records. This gives us two time points at which both pollen and direct vegetation data are available. Based on these relationships, and incorporating our uncertainty about them, we predict forest composition using fossil pollen. We estimate the spatial distribution and relative abundances of tree species and draw inference about how these patterns have changed over time. Finally, we describe ongoing work to extend the modeling to the upper Midwest of the U.S., including an approach to infer tree density and thereby estimate the prairie-forest boundary in Minnesota and Wisconsin. This work is part of the PalEON project, which brings together a team of ecosystem modelers, paleoecologists, and statisticians with the goal of reconstructing vegetation responses to climate during the last two millenia in the northeastern and midwestern United States. The estimates from the statistical modeling will be used to assess and calibrate ecosystem models that are used to project ecological changes in response to global change.

  4. Why we need better predictive models of vegetation phenology

    NASA Astrophysics Data System (ADS)

    Richardson, Andrew; Migliavacca, Mirco; Keenan, Trevor

    2014-05-01

    Vegetation phenology is strongly affected by climate change, with warmer temperatures causing earlier spring onset and delayed autumn senescence in most temperate and boreal ecosystems. In arid regions where phenology is driven by the seasonality of soil water availability, shifts in the timing, intensity, and total amount of precipitation are, likewise, affecting the seasonality of vegetation activity. Changes in the duration of the growing season have important implications for ecosystem productivity and uptake of CO2 from the atmosphere, as well as site water balance and runoff, microclimate, ecological interactions within and across trophic levels, and numerous feedbacks to the climate system associated with the surface energy budget. However, an outstanding challenge is that existing phenology sub-models used in ecosystem, land surface, and terrestrial biosphere models fail to adequately represent the seasonality, or sensitivity to environmental drivers, of vegetation phenology. This has two implications. First, these models are therefore likely to perform poorly under future climate scenarios. Second, the seasonality of important ecological processes and interactions, as well as biosphere-atmosphere feedbacks, is likely to be misrepresented as a result. Using data from several recent analyses, and focusing on temperate and boreal ecosystems, we will review current challenges associated with modeling vegetation phenology. We will discuss uncertainties associated with phenology model structure, model parameters, and driver sensitivity (forcing, chilling, and photoperiod). We will show why being able to extrapolate and generalize models (and model parameterization) is essential. We will consider added challenges associated with trying to model autumn phenology. Finally, we will use canopy photosynthesis and uptake of CO2 as an example of why improved understanding of the "rhythm of the seasons" is critically important.

  5. Evaluating simulated functional trait patterns and quantifying modelled trait diversity effects on simulated ecosystem fluxes

    NASA Astrophysics Data System (ADS)

    Pavlick, R.; Schimel, D.

    2014-12-01

    Dynamic Global Vegetation Models (DGVMs) typically employ only a small set of Plant Functional Types (PFTs) to represent the vast diversity of observed vegetation forms and functioning. There is growing evidence, however, that this abstraction may not adequately represent the observed variation in plant functional traits, which is thought to play an important role for many ecosystem functions and for ecosystem resilience to environmental change. The geographic distribution of PFTs in these models is also often based on empirical relationships between present-day climate and vegetation patterns. Projections of future climate change, however, point toward the possibility of novel regional climates, which could lead to no-analog vegetation compositions incompatible with the PFT paradigm. Here, we present results from the Jena Diversity-DGVM (JeDi-DGVM), a novel traits-based vegetation model, which simulates a large number of hypothetical plant growth strategies constrained by functional tradeoffs, thereby allowing for a more flexible temporal and spatial representation of the terrestrial biosphere. First, we compare simulated present-day geographical patterns of functional traits with empirical trait observations (in-situ and from airborne imaging spectroscopy). The observed trait patterns are then used to improve the tradeoff parameterizations of JeDi-DGVM. Finally, focusing primarily on the simulated leaf traits, we run the model with various amounts of trait diversity. We quantify the effects of these modeled biodiversity manipulations on simulated ecosystem fluxes and stocks for both present-day conditions and transient climate change scenarios. The simulation results reveal that the coarse treatment of plant functional traits by current PFT-based vegetation models may contribute substantial uncertainty regarding carbon-climate feedbacks. Further development of trait-based models and further investment in global in-situ and spectroscopic plant trait observations

  6. Microwave model prediction and verifications for vegetated terrain

    NASA Technical Reports Server (NTRS)

    Fung, A. K.

    1985-01-01

    To understand the scattering properties of a deciduous and a coniferous type vegetation scattering models were developed assuming either a disc type leaf or a needle type leaf. The major effort is to calculate the corresponding scattering phase functions and then each of the functions is used in a radiative transfer formulation to compute the scattering intensity and consequently the scattering coefficient. The radiative transfer formulation takes into account the irregular ground surface by including the rough soil surface in the boundary condition. Thus, the scattering model accounts for volume scattering inside the vegetation layer, the surface scattering from the ground and the interaction between scattering from the soil surface and the vegetation volume. The contribution to backscattering by each of the three scattering mechanisms is illustrated along with the effects of each layer or surface parameter. The major difference between the two types of vegetation is that when the incident wavelength is comparable to the size of the leaf there is a peak appearing in the mid angular region of the backscattering curve for the disc type leaf whereas it is a dip in the same region for a needle type leaf.

  7. Genetic Diversity and Antibiotic Resistance Patterns of Staphylococcus Aureus Isolated from Leaf Vegetables in Korea.

    PubMed

    Hong, Jisoo; Kim, Yangkyun; Kim, Jonguk; Heu, Sunggi; Kim, Se-ri; Kim, Kwang-Pyo; Roh, Eunjung

    2015-07-01

    Staphylococcus aureus is an important foodborne pathogen on global basis. The current study investigated the genetic patterns in S. aureus isolates from leaf vegetables (n = 53). Additional isolates from livestock (n = 31) and humans (n = 27) were compared with the leaf vegetable isolates. Genes associated with toxins, antibiotic resistance, and pulsed-field gel electrophoresis (PFGE) patterns were analyzed. At least 1 enterotoxin-encoding gene (sea, seb, sec, sed, and see) was detected in 11 of 53 (20.75%) leaf vegetable isolates. When the agr (accessory gene regulator) grouping was analyzed, agr II was the major group, whereas agr IV was not present in leaf vegetable isolates. All S. aureus isolates from leaf vegetables were resistant to more than one of the antibiotics tested. Nineteen of 53 (35.85%) isolates from leaf vegetables exhibited multidrug-resistance, and 11 of these were MRSA (methicillin-resistant S. aureus). A dendrogram displaying the composite types of S. aureus isolates from 3 origins was generated based on the combination of the toxin genes, agr genes, antibiotic resistance, and PFGE patterns. The isolates could be clustered into 8 major composite types. The genetic patterns of S. aureus isolates from leaf vegetables and humans were similar, whereas those from livestock had unique patterns. This suggests some S. aureus isolates from leaf vegetables to be of human origin.

  8. A Novel Approach to Modeling Vegetation Distributions and Analyzing Vegetation Sensitivity Through Trait-Climate Relationships In China

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Peng, C.; Zhu, Q.; Wang, H.

    2015-12-01

    There is increasing evidence that current DGVMs have suffered insufficient realism and hard to improve, particularly because they are built on plant functional type (PFT)-climate schemes. It is urgent to develop new approaches, like plant trait-based methods (FTs), to replace of PFT schemes when predicting the distribution of vegetation and investigating the vegetation sensitivity. In this research, we proposed a novel approach to modeling vegetation distributions and analyzing the vegetation sensitivity through trait-climate relationship in China. First, we aggregated data on three key FTs, including leaf mass per area (LMA), area-based leaf nitrogen (Narea), and mass-based leaf nitrogen (Nmass), from the available literatures. In addition, one structural trait of plant communities, leaf area index (LAI), was extracted from MODIS products across China. Second, we derived and developed trait-climate relationships and used different trait combinations in a Gaussian Mixture Model (GMM) to model vegetation distribution. Finally, the GMM trained by the LMA-Nmass-LAI combination was applied to investigate the climate sensitivity of vegetation. The results demonstrated the following: (1) all four traits captured well the relationships between climate variables and traits, as well as effectively predicted vegetation distribution and helped analyzing environmental sensitivity; (2) the LMA-Nmass-LAI combination yielded an accuracy of 72.05% for simulating vegetation distribution, providing more detailed parameter information regarding community structures and ecosystem function, and was therefore selected for training GMMs; and (3) a sensitivity analysis indicated that increasing temperatures shifted the boundaries of most vegetation northward and westward. Because the forests in these regions are well adapted to growth under rainy conditions, increasing precipitation is predicted to expand the boundaries of forests compared with the baseline vegetation distribution

  9. Dynamic vegetation modeling of tropical biomes during Heinrich events

    NASA Astrophysics Data System (ADS)

    Handiani, Dian Noor; Paul, André; Dupont, Lydie M.

    2010-05-01

    Heinrich events are thought to be associated with a slowdown of the Atlantic Meridional Overturning Circulation (AMOC), which in turn would lead to a cooling of the North Atlantic Ocean and a warming of the South Atlantic Ocean (the "bipolar seesaw" hypothesis). The accompanying abrupt climate changes occurred not only in the ocean but also on the continents. Changes were strongest in the Northern Hemisphere but were registered in the tropics as well. Pollen data from Angola and Brazil showed that climate changes during Heinrich events affected vegetation patterns very differently in eastern South America and western Africa. To understand the differential response in the terrestrial tropics, we studied the vegetation changes during Heinrich events by using a dynamic global vegetation model (TRIFFID) as part of the University of Victoria (UVic) Earth System-Climate Model (ESCM). The model results show a bipolar seesaw pattern in temperature and precipitation during a near-collapse of the AMOC. The succession in plant-functional types (PFTs) showed changes from forest to shrubs to desert, including spreading desert in northwest Africa, retreating broadleaf trees in West Africa and northern South America, but advancing broadleaf trees in Brazil. The pattern is explained by a southward shift of the tropical rainbelt resulting in a strong decrease in precipitation over northwest and West Africa as well as in northern South America, but an increase in precipitation in eastern Brazil. To facilitate the comparison between modeled vegetation results with pollen data, we diagnosed the distribution of biomes from the PFT coverage and the simulated model climate. The biome distribution was computed for Heinrich event 1 and the Last Glacial Maximum as well as for pre-industrial conditions. We used a classification of biomes in terms of "mega-biomes", which were defined following a scheme originally proposed by BIOME 6000 (v 4.2). The biome distribution of the Sahel region

  10. A novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China

    PubMed Central

    Yang, Yanzheng; Zhu, Qiuan; Peng, Changhui; Wang, Han; Xue, Wei; Lin, Guanghui; Wen, Zhongming; Chang, Jie; Wang, Meng; Liu, Guobin; Li, Shiqing

    2016-01-01

    Increasing evidence indicates that current dynamic global vegetation models (DGVMs) have suffered from insufficient realism and are difficult to improve, particularly because they are built on plant functional type (PFT) schemes. Therefore, new approaches, such as plant trait-based methods, are urgently needed to replace PFT schemes when predicting the distribution of vegetation and investigating vegetation sensitivity. As an important direction towards constructing next-generation DGVMs based on plant functional traits, we propose a novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China. The results demonstrated that a Gaussian mixture model (GMM) trained with a LMA-Nmass-LAI data combination yielded an accuracy of 72.82% in simulating vegetation distribution, providing more detailed parameter information regarding community structures and ecosystem functions. The new approach also performed well in analyses of vegetation sensitivity to different climatic scenarios. Although the trait-climate relationship is not the only candidate useful for predicting vegetation distributions and analysing climatic sensitivity, it sheds new light on the development of next-generation trait-based DGVMs. PMID:27052108

  11. A novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China

    NASA Astrophysics Data System (ADS)

    Yang, Yanzheng; Zhu, Qiuan; Peng, Changhui; Wang, Han; Xue, Wei; Lin, Guanghui; Wen, Zhongming; Chang, Jie; Wang, Meng; Liu, Guobin; Li, Shiqing

    2016-04-01

    Increasing evidence indicates that current dynamic global vegetation models (DGVMs) have suffered from insufficient realism and are difficult to improve, particularly because they are built on plant functional type (PFT) schemes. Therefore, new approaches, such as plant trait-based methods, are urgently needed to replace PFT schemes when predicting the distribution of vegetation and investigating vegetation sensitivity. As an important direction towards constructing next-generation DGVMs based on plant functional traits, we propose a novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China. The results demonstrated that a Gaussian mixture model (GMM) trained with a LMA-Nmass-LAI data combination yielded an accuracy of 72.82% in simulating vegetation distribution, providing more detailed parameter information regarding community structures and ecosystem functions. The new approach also performed well in analyses of vegetation sensitivity to different climatic scenarios. Although the trait-climate relationship is not the only candidate useful for predicting vegetation distributions and analysing climatic sensitivity, it sheds new light on the development of next-generation trait-based DGVMs.

  12. A novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China.

    PubMed

    Yang, Yanzheng; Zhu, Qiuan; Peng, Changhui; Wang, Han; Xue, Wei; Lin, Guanghui; Wen, Zhongming; Chang, Jie; Wang, Meng; Liu, Guobin; Li, Shiqing

    2016-04-07

    Increasing evidence indicates that current dynamic global vegetation models (DGVMs) have suffered from insufficient realism and are difficult to improve, particularly because they are built on plant functional type (PFT) schemes. Therefore, new approaches, such as plant trait-based methods, are urgently needed to replace PFT schemes when predicting the distribution of vegetation and investigating vegetation sensitivity. As an important direction towards constructing next-generation DGVMs based on plant functional traits, we propose a novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China. The results demonstrated that a Gaussian mixture model (GMM) trained with a LMA-Nmass-LAI data combination yielded an accuracy of 72.82% in simulating vegetation distribution, providing more detailed parameter information regarding community structures and ecosystem functions. The new approach also performed well in analyses of vegetation sensitivity to different climatic scenarios. Although the trait-climate relationship is not the only candidate useful for predicting vegetation distributions and analysing climatic sensitivity, it sheds new light on the development of next-generation trait-based DGVMs.

  13. Pathogen Propagation Model with Superinfection in Vegetatively Propagated Plants on Lattice Space

    PubMed Central

    Sakai, Yuma; Takada, Takenori

    2016-01-01

    Many clonal plants have two reproductive patterns, seed propagation and vegetative propagation. By vegetative propagation, plants reproduce the genetically identical offspring with a low mortality, because resources are supplied from the other individuals through interconnected ramets at vegetative-propagated offspring. However, the ramets transport not only resources but also systemic pathogen. Pathogens evolve to establish and spread widely within the plant population. The superinfection, which is defined as the ability that an established pathogen spreads widely by infecting to already-infected individuals with other strains of a pathogen, is important to the evolution of pathogens. We examine the dynamics of plant reproduction and pathogen propagation considering spatial structure and the effect of superinfection on genetic diversity of pathogen by analysis of several models, 1-strain and multiple-strain models, on two-dimensional square lattice. In the analysis of 1-strain model, we derive equilibrium value by mean-field approximation and pair approximation, and its local stability by Routh-Hurwitz stability criterion. In the multiple-strain models, we analyze the dynamics by numerical simulation of mean-field approximation, pair approximation and Monte Carlo simulation. Through the analyses, we show the effect of parameter values to dynamics of models, such as transition of dominant strain of pathogen, competition between plants and pathogens and density of individuals. As a result, (i) The strain with intermediate cost becomes dominant when both superinfection rate and growth rate are low. (ii) The competition between plants and pathogens occurs in the phase of coexistence of various strains by pair approximation and Monte Carlo simulation. (iii) Too high growth rate leads to the decrease of plant population in all models. (iv) Pathogens are easy to maintain their genetic diversity with low superinfection rate. However, if they do not superinfect, the

  14. Geomorphic process and vegetation diversity in the active riverbed and the floodplain in the Kamikochi valley, central Japan

    NASA Astrophysics Data System (ADS)

    Shimazu, H.

    2012-04-01

    The Kamikochi valley is located in a mountainous area in central Japan. The R. Azusa in this valley is a braided river with floodplains. Dense riparian forests cover the floodplains and fragmented small pioneer plant patches and isolated old pioneer trees are distributed in the active riverbed. This study aims to discuss the relationships between geomorphic processes of the river and vegetation diversity. Yearly mapping of the riverbed micro-landforms revealed that channel migrations and landform changes in the active riverbed occurs once every one or several years during a bankfull flood in the rainy season. Germination ages of riparian trees using a dendrochronological technique, their established layers and landform structure were examined to reconstruct floodplain dynamics. Major channel migrations destroyed the riparian forest repeatedly and the recent event occurred about 100 years ago. This caused a longitudinal zonal structure of the riparian forest vegetation, elm-fir forest, mature pioneer forest and young pioneer forests. The young pioneer forest is located alongside the present riverbed. The mature pioneer forest lies between the older elm-fir forests. The pioneer plants germinated simultaneously on the abandoned channel after channel migration. These trees became the mature pioneer forest. Ditches and lobes including boulders are found in the floodplain. The ditches extend parallel to the direction of the present and former channels. The lobes are distributed alongside them. Younger trees under the canopy grow on the lobes in the inner part of the floodplain. These young trees and lobes show that dominant sedimentation process in the floodplain is not lateral flooding, but longitudinal flooding. Sediments from the present channel flew downward through the ditches and were overflowed on the floodplain. This process destroyed the vegetation in and alongside the ditches causing vegetation diversity in the inner part of the riparian forest. Several species

  15. The Hydrological Regimes Brought by the Three Gorges Project Affected Riparian Vegetation Distribution and Diversity in 2009 and 2010

    NASA Astrophysics Data System (ADS)

    Miao, Ling-Feng; Liu, Wei-Wei; Yang, Fan

    2017-01-01

    Post-dam riparian vegetations affected by the new hydrological regimes in the Three Gorges Reservoir (TGR) were investigated in 2009 and 2010, respectively. The investigation in 2009 showed that about 231 vascular plant species belonging to 169 genera of 61 families were distributed in the water-level-fluctuation zone (WLFZ) of the (TGR). Three vegetation types, including Chuanjiang, Gorge, and other vegetation types, were classified efficiently via cluster analysis. Alpha diversity analysis indicated that species richness gradually decreased with decreasing elevation. Beta diversity analysis indicated that high environment heterogeneity was existed between the lower section and the other two sections, and environment homogeneity was also existed between middle section and upper section. Using the analysis of the field growth in the 2009 and 2010 field surveys as bases, we proposed a list of perennial herb species and woody species that may potentially occurred in the WLFZ of the TGR. In addition, we predicted plant community structural changes in the different altitude sections of WLFZ in the future.

  16. Understanding the behavioral linkages needed for designing effective interventions to increase fruit and vegetable intake in diverse populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The design of interventions to increase fruit and vegetable consumption in a population (e.g. all men, all elementary school students) requires an underlying model that organizes the relevant literatures and provides an audience. The mediating-moderating variable model is a statistical analysis tech...

  17. Measuring and Modeling of the Dielectric Properties and Attenuation of Vegetation

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.

    1984-01-01

    The dielectric properties and attenuation of vegetation was measured and modeled. The purpose was to: (1) measure the microwave dielectric properties of vegetation material as a function of moisture content and microwave frequency; (2) develop dielectric mixing models for the vegetation-water mixture; (3) develop a model for the loss factor of a vegetation canopy; (4) relate the results of (1) and (2) to (3); and (5) test the model in (3) against direct canopy transmission measurements.

  18. Modeling of microwave scattering from vegetated covered terrain

    NASA Technical Reports Server (NTRS)

    Lang, R. H.

    1982-01-01

    General formulation of resonant backscattering from vegetation, mean field and Green's function in three media, and electromagnetic backscattering coefficients from a layer of vegetation are discussed.

  19. Vegetation types, dominant compositions, woody plant diversity and stand structure in Trishna Wildlife Sanctuary of Northeast India.

    PubMed

    Majumdar, Koushik; Datta, B K

    2015-03-01

    Present study was carried out to assess the vegetation types, diversity and phytosociological status of woody plants in Trishna Wildlife Sanctuary of Tripura, Northeast India. Vegetation data was derived by 25 line transects (10 m wide and 500 m length, each 0.5 ha size). All woody species at >10 cm gbh (Girth at Breast Height) within each plots were measured and counted. A total of six forest types were classified by cluster analysis using Importance Value Index (IVI) of 289 woody species. Species diversity, forest structure and woody community associations were evaluated and discussed. One way ANOVA revealed significant differences in all species diversity measures and stand structure along the forest types. Distribution of stem density at ten different gbh classes showed reverse J-shaped curves. Population status of woody plants was also examined through grouping of all individuals into four population age stages viz. sapling (<30 cm gbh), adult (> or = 30 - <120 cm gbh), mature (>120 - 210 cm gbh) and old (> or =210 cm). To observe dominant composition and species population trend, IVI of top ten dominant species from all forest types were tabulated. The present study suggested that Trishna Wildlife Sanctuary is an important habitat in Tripura from floristic point of view and it should be conserved on priority basis for remaining wildlife endurances and monitor for forest livelihoods products for sustainable biodiversity conservation in this region.

  20. Wild fire effects on floristic diversity in three thermo-Mediterranean vegetation types in a small islet of eastern Aegean sea

    NASA Astrophysics Data System (ADS)

    Abraham, Eleni; Kyriazopoulos, Apostolos; Korakis, George; Parissi, Zoi; Chouvardas, Dimitrios

    2014-05-01

    Sclerophyllus scrub formations, the main vegetation type in many islands of the Aegean area, are characterized by their high biodiversity. Dominant shrub species of sclerophyllus formations are well adapted to dry season conditions by various anatomical and physiological mechanisms. As a result, their biomass acts as very flammable fine fuel, and consequently wild fires are very common in these ecosystems. Wildfire effects on vegetation and biodiversity in the Mediterranean basin have been studied and the results are diverse depending mainly on vegetation type and frequency of fire. The aim of this study was to evaluate the effects of wildfire on floristic diversity and species composition in three thermo-Mediterranean vegetation types 1) Sacropoterium spinosum phrygana, 2) low formations of Cistus creticus and 3) low formations of Cistus creticus in abandoned terraces. The research was conducted in Enoussa islet, which is located northeastern of Chios Island, in May 2013 (one year after the fire). Vegetation sampling was performed along five transects placed in recently burned and in adjacent unburned sites of each vegetation type. The plant cover and the floristic composition were measured, while diversity, evenness and dominance indices were determined for the vegetation data. Vegetation cover and the floristic diversity were significant lower and higher respectively in burned areas in comparison to the unburned. The woody species followed by the annual grasses and the annual forbs dominated in both burned and unburned areas. However, the woody species were significantly decreased in the burned areas in all vegetation types, while the annual grasses only in the burned areas of Sacropoterium spinosum phrygana and Cistus creticus in abandoned terraces. Inversely, the annual forbs significantly increased in the burned sites of Cistus creticus formations. The highest value of Morisita-Horn Index of similarity between burned and unburned sites (beta diversity) was

  1. Models of life: epigenetics, diversity and cycles

    NASA Astrophysics Data System (ADS)

    Sneppen, Kim

    2017-04-01

    This review emphasizes aspects of biology that can be understood through repeated applications of simple causal rules. The selected topics include perspectives on gene regulation, phage lambda development, epigenetics, microbial ecology, as well as model approaches to diversity and to punctuated equilibrium in evolution. Two outstanding features are repeatedly described. One is the minimal number of rules to sustain specific states of complex systems for a long time. The other is the collapse of such states and the subsequent dynamical cycle of situations that restitute the system to a potentially new metastable state.

  2. Models of life: epigenetics, diversity and cycles.

    PubMed

    Sneppen, Kim

    2017-01-20

    This review emphasizes aspects of biology that can be understood through repeated applications of simple causal rules. The selected topics include perspectives on gene regulation, phage lambda development, epigenetics, microbial ecology, as well as model approaches to diversity and to punctuated equilibrium in evolution. Two outstanding features are repeatedly described. One is the minimal number of rules to sustain specific states of complex systems for a long time. The other is the collapse of such states and the subsequent dynamical cycle of situations that restitute the system to a potentially new metastable state.

  3. Effect of vegetation on the presence and genetic diversity of Bacillus thuringiensis in soil.

    PubMed

    Ricieto, Ana Paula Scaramal; Fazion, Fernanda Aparecida Pires; Carvalho Filho, Celso Duarte; Vilas-Boas, Laurival Antonio; Vilas-Bôas, Gislayne Trindade

    2013-01-01

    Bacillus thuringiensis isolates were obtained from soil samples collected at different sites located in the same region but with different vegetation. The sites showed different frequencies of B. thuringiensis, depending on the type of vegetation. Strains of B. thuringiensis were found to be less common in samples of riparian forest soil than in soil of other types of vegetation. The rate of occurrence of B. thuringiensis in the samples also varied according to the vegetation. These results show that whenever this bacterium was found, it showed a high rate of occurrence, indicating that this species could be better adapted to using soil as a reservoir than other Bacillus species. The presence of cry genes was analyzed by polymerase chain reaction, and genes that exhibited activity against Diptera species were the most commonly found. The isolates obtained were characterized by random amplified polymorphic DNA, and 50% were clustered into clonal groups. These results demonstrated the possible occurrence of a high number of genetically similar strains when samples are collected from the same region, even if they are from locations with different vegetation.

  4. PROP taster status not related to reported cruciferous vegetable intake among ethnically diverse children

    PubMed Central

    Baranowski, Tom; Baranowski, Janice C; Watson, Kathleen B; Jago, Russell; Islam, Noemi; Beltran, Alicia; Martin, Shelby J; Nguyen, Nga; Tepper, Beverly J

    2011-01-01

    Sensitivity to the taste of 6-n-propylthiouracil (PROP) (a bitter tasting chemical related to the phenylthiocarbamide found in cruciferous vegetables) has been related to dietary intake or preferences of cruciferous vegetables among adults and young children, but not middle aged children or adolescents. We hypothesized that PROP taste sensitivity is related to lower reported dietary intake of cruciferous vegetables, primarily among younger children (i.e. a moderating effect of child age). This study examined the relationship of PROP sensitivity to reported dietary intake across three days in two age groups of youth (9–10 years and 17–18 year), while statistically controlling for physical activity, social desirability and reporting bias. Cross sectional design was employed with a multi-ethnic (White, African American, Hispanic, and Other) sample of 843 males and females. Children were recruited from and data were collected in local elementary and high schools that had at least 30% ethnic minority enrollment. Children providing nonplausible reports of dietary intake were deleted from the analyses. BMI was calculated and expressed in z-scores. Energy intake and physical activity were measured by three telephone conducted 24-hour dietary recalls with the Nutrient Data System for Research (NDSR) and 5 days of Actigraph activity monitor. The primary analyses included 347 students. PROP sensitivity was not related to intake of cruciferous vegetables. Intakes of the cruciferous vegetables were low, which may explain the lack of relationship. PMID:21925344

  5. Land Use Effects on Vegetation Diversity in High-Elevation Ecosystems: a Comparison of Disturbed and Undisturbed Paramos

    NASA Astrophysics Data System (ADS)

    Avery, W. A.; Riveros-Iregui, D.; Jaimes, J. C.; Washington-Allen, R. A.; Delgado, A.

    2012-12-01

    The relationship between vegetation density, diversity, and structure in a given ecosystem and the capacity for that ecosystem to provide services has been widely investigated. However, the capacity of ecological systems to adapt to various degrees of anthropogenic land use represents a significant challenge in scientific investigations. We examined the effects of disturbance on vegetation diversity and ecosystem function across two paramos in the Andes Mountains of Colombia. The paramo, an alpine meadow that occurs at elevations above 3,000 m mainly in South America, is the major drinking water provider for the Andean highlands. These meadows collect water during the rainy season and release it during the dry season. The goal of this study is to elucidate the relationship between land use, vegetation biodiversity, and ecosystem services. Plant species richness was collected in two paramo watersheds with similar elevation and climatic conditions but with different historic land use, including potato cultivation and cattle grazing. Leaf area index (LAI), canopy cover, species richness and height diversity was quantified using a plant canopy analyzer and terrestrial LiDAR across thirty-six 1-m x1-m plots in each watershed. Results show that species richness is higher in the undisturbed paramo watershed than in the disturbed site. However, species complexity and richness increase in areas closer to streams in both watersheds, suggesting that ecosystem adaptation to disturbance is dependant on landscape position. Our results highlight that paramo ecosystems are vulnerable to human-induced disturbance and their capacity to respond to such disturbance is dependent on proximity to streams.

  6. Regression based modeling of vegetation and climate variables for the Amazon rainforests

    NASA Astrophysics Data System (ADS)

    Kodali, A.; Khandelwal, A.; Ganguly, S.; Bongard, J.; Das, K.

    2015-12-01

    Both short-term (weather) and long-term (climate) variations in the atmosphere directly impact various ecosystems on earth. Forest ecosystems, especially tropical forests, are crucial as they are the largest reserves of terrestrial carbon sink. For example, the Amazon forests are a critical component of global carbon cycle storing about 100 billion tons of carbon in its woody biomass. There is a growing concern that these forests could succumb to precipitation reduction in a progressively warming climate, leading to release of significant amount of carbon in the atmosphere. Therefore, there is a need to accurately quantify the dependence of vegetation growth on different climate variables and obtain better estimates of drought-induced changes to atmospheric CO2. The availability of globally consistent climate and earth observation datasets have allowed global scale monitoring of various climate and vegetation variables such as precipitation, radiation, surface greenness, etc. Using these diverse datasets, we aim to quantify the magnitude and extent of ecosystem exposure, sensitivity and resilience to droughts in forests. The Amazon rainforests have undergone severe droughts twice in last decade (2005 and 2010), which makes them an ideal candidate for the regional scale analysis. Current studies on vegetation and climate relationships have mostly explored linear dependence due to computational and domain knowledge constraints. We explore a modeling technique called symbolic regression based on evolutionary computation that allows discovery of the dependency structure without any prior assumptions. In symbolic regression the population of possible solutions is defined via trees structures. Each tree represents a mathematical expression that includes pre-defined functions (mathematical operators) and terminal sets (independent variables from data). Selection of these sets is critical to computational efficiency and model accuracy. In this work we investigate

  7. Modeling vertebrate diversity in Oregon using satellite imagery

    NASA Astrophysics Data System (ADS)

    Cablk, Mary Elizabeth

    Vertebrate diversity was modeled for the state of Oregon using a parametric approach to regression tree analysis. This exploratory data analysis effectively modeled the non-linear relationships between vertebrate richness and phenology, terrain, and climate. Phenology was derived from time-series NOAA-AVHRR satellite imagery for the year 1992 using two methods: principal component analysis and derivation of EROS data center greenness metrics. These two measures of spatial and temporal vegetation condition incorporated the critical temporal element in this analysis. The first three principal components were shown to contain spatial and temporal information about the landscape and discriminated phenologically distinct regions in Oregon. Principal components 2 and 3, 6 greenness metrics, elevation, slope, aspect, annual precipitation, and annual seasonal temperature difference were investigated as correlates to amphibians, birds, all vertebrates, reptiles, and mammals. Variation explained for each regression tree by taxa were: amphibians (91%), birds (67%), all vertebrates (66%), reptiles (57%), and mammals (55%). Spatial statistics were used to quantify the pattern of each taxa and assess validity of resulting predictions from regression tree models. Regression tree analysis was relatively robust against spatial autocorrelation in the response data and graphical results indicated models were well fit to the data.

  8. Numerical Modelling of Vegetation Flow Interaction: the Wienfluss Test Case

    NASA Astrophysics Data System (ADS)

    Wilson, C.; Yagci, O.; Rauch, H.; Stoesser, T.

    2003-04-01

    We apply a three-dimensional computational fluid dynamics code based on a finite-volume discretisation to a 170m test reach of the a river in Vienna. One of the primary aims of this paper is to test various methods for representing the flow resistance of natural vegetation. The two approaches considered vary in complexity and could be practically implemented and applied within 2D and 3D flood modelling tools. The first approach uses empirical relationships derived from the laboratory data and modifies the existing friction term in the momentum equations. While the second approach introduces a drag related sink term in addition to the bed friction term. The roughness closure models considered do not modify the turbulence model (in this case the k-e model) and hence do not require re-calibration for each application. The test reach is straight and comprises an asymmetrical compound channel that is vegetated on the floodplain by willows and unvegetated within the main channel. The development of the willows has been monitored over a four year period and plant parameters which characterise the dimensions of individual trees and their distribution have been quantified. Further, streamwise velocity data of high-spatial resolution has been collected at one cross-section for a series of flood events. The performance of each approach is quantified in terms of its ability to reproduce the streamwise velocity distribution in a partially vegetated channel. Different parameter tests are conducted to allow the sensitivity of the computed velocities against mesh resolution, and other important plant properties to be examined. For both flow resistance approaches, reasonable agreement is found between the measured and computed floodplain velocities.

  9. Predicting use of ineffective vegetable parenting practices with the Model of Goal Directed Behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing a parent's ability to influence a child's vegetable intake may require reducing the parent's use of ineffective vegetable parenting practices (IVPP). To understand the influences on IVPP, this study modeled use of IVPP using validated scales from a Model of Goal Directed Vegetable Parenti...

  10. Predicting use of effective vegetable parenting practices with the Model of Goal Directed Behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our objective was to model effective vegetable parenting practices using the Model of Goal Directed Vegetable Parenting Practices construct scales. An internet survey was conducted with 307 parents (mostly mothers) of preschoolers in Houston, Texas to assess their agreement with effective vegetable ...

  11. Farmers’ market use is associated with fruit and vegetable consumption in diverse southern rural communities

    PubMed Central

    2014-01-01

    Background While farmers’ markets are a potential strategy to increase access to fruits and vegetables in rural areas, more information is needed regarding use of farmers’ markets among rural residents. Thus, this study’s purpose was to examine (1) socio-demographic characteristics of participants; (2) barriers and facilitators to farmers’ market shopping in southern rural communities; and (3) associations between farmers’ market use with fruit and vegetable consumption and body mass index (BMI). Methods Cross-sectional surveys were conducted with a purposive sample of farmers’ market customers and a representative sample of primary household food shoppers in eastern North Carolina (NC) and the Appalachian region of Kentucky (KY). Customers were interviewed using an intercept survey instrument at farmers’ markets. Representative samples of primary food shoppers were identified via random digit dial (RDD) cellular phone and landline methods in counties that had at least one farmers’ market. All questionnaires assessed socio-demographic characteristics, food shopping patterns, barriers to and facilitators of farmers’ market shopping, fruit and vegetable consumption and self-reported height and weight. The main outcome measures were fruit and vegetable consumption and BMI. Descriptive statistics were used to examine socio-demographic characteristics, food shopping patterns, and barriers and facilitators to farmers’ market shopping. Linear regression analyses were used to examine associations between farmers’ market use with fruit and vegetable consumption and BMI, controlling for age, race, education, and gender. Results Among farmers’ market customers, 44% and 55% (NC and KY customers, respectively) reported shopping at a farmers’ market at least weekly, compared to 16% and 18% of NC and KY RDD respondents. Frequently reported barriers to farmers’ market shopping were market days and hours, “only come when I need something”, extreme

  12. Ant diversity and its relationship with vegetation and soil factors in an alluvial fan of the Tehuacán Valley, Mexico

    NASA Astrophysics Data System (ADS)

    Ríos-Casanova, Leticia; Valiente-Banuet, Alfonso; Rico-Gray, Víctor

    2006-05-01

    In this study, we analyze the ant community found along an alluvial fan located in the Tehuacán Valley, central Mexico. Considering that this fan is composed of four terraces with different soils and vegetation structures, our main goal was to determine whether there are significant differences in ant diversity among terraces. To accomplish this goal, we determine species richness and abundance in order to calculate diversity and evenness indices. In addition, we classify species in different feeding guilds to evaluate whether differences among terraces exist. We expected higher ant diversity and variety of food guilds in terraces with sandy soils and complex vegetation structures than in terraces with argillic and calcic horizons. Correlations between several diversity parameters, and soil percent-sand and vegetation structure were also conducted. A total of 26 ant species were recorded along the fan. Species richness was not different among terraces whereas abundance was higher in sandy soils and on terraces with complex vegetation structure. Particularly, the abundance of the harvester ant Pogonomyrmex barbatus was higher in these terraces decreasing total ant diversity and evenness. Species richness within feeding guilds was similar among terraces with the generalized foragers as the most common. Our work suggests that percentage of sand in the soil and complexity of vegetation structure of the alluvial fan studied might be influencing ant distribution and favoring the abundance of numerically dominant species which could be affecting the diversity patterns of the whole community.

  13. MODELING DYNAMIC VEGETATION RESPONSE TO RAPID CLIMATE CHANGE USING BIOCLIMATIC CLASSIFICATION

    EPA Science Inventory

    Modeling potential global redistribution of terrestrial vegetation frequently is based on bioclimatic classifications which relate static regional vegetation zones (biomes) to a set of static climate parameters. The equilibrium character of the relationships limits our confidence...

  14. Inversion of canopy reflectance models for estimation of vegetation parameters

    NASA Technical Reports Server (NTRS)

    Goel, Narendra S.

    1987-01-01

    One of the keys to successful remote sensing of vegetation is to be able to estimate important agronomic parameters like leaf area index (LAI) and biomass (BM) from the bidirectional canopy reflectance (CR) data obtained by a space-shuttle or satellite borne sensor. One approach for such an estimation is through inversion of CR models which relate these parameters to CR. The feasibility of this approach was shown. The overall objective of the research carried out was to address heretofore uninvestigated but important fundamental issues, develop the inversion technique further, and delineate its strengths and limitations.

  15. Richness, diversity and evenness of vegetation upon rehabilitation of gypsum mine spoiled lands in the Indian arid zone

    USGS Publications Warehouse

    Kumar, S.; Sharma, K.D.; Sharma, U.K.; Gough, L.P.

    1998-01-01

    Richness, diversity and evenness of vegetation, after rehabilitation of gypsum mine spoils at Barmer were investigated in plots protected and planted one year and four years ago. There were four water harvesting treatments, viz., half-moon terraces, micro-catchments with 5% slope, ridge and furrow and control, wherein, indigenous and exotic trees and shrubs were planted at 5 ?? 5 m spacing. Sampling of the planted and natural vegetation, using quadrats and transacts, revealed much less species richness in unplanted control as compared to all treatments and in all the years. The species richness that increased initially (within one year) gradually declined over time (during four year), though the extent varied in different treatments. The water harvesting treatment showing maximum initial increase in richness also showed maximum decline over time, though decline was more in annual species. Two perennial species increased in richness with time. This was further proved from the trends in diversity and evenness indices. It was concluded that natural successional process was accelerated by rehabilitation providing stability to the habitat.

  16. Modeling the backscattering and transmission properties of vegetation canopies

    NASA Technical Reports Server (NTRS)

    Allen, C. T.; Ulaby, F. T.

    1984-01-01

    Experimental measurements of canopy attenuation at 10.2 GHz (X-band) for canopies of wheat and soybeans, experimental observations of the effect upon the microwave backscattering coefficient (sigma) of free water in a vegetation canopy, and experimental measurements of sigma (10.2 GHz, 50 deg, VV and VH polarization) of 30 agricultural fields over the growing season of each crop are discussed. The measurements of the canopy attenuation through wheat independently determined the attenuation resulting from the wheat heads and that from the stalks. An experiment conducted to simulate the effects of rain or dew on sigma showed that sigma increases by about 3 dB as a result of spraying a vegetation canopy with water. The temporal observations of sigma for the 30 agricultural fields (10 each of wheat, corn, and soybeans) indicated fields of the same crop type exhibits similar temporal patterns. Models previously reported were tested using these multitemporal sigma data, and a new model for each crop type was developed and tested. The new models proved to be superior to the previous ones.

  17. Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics

    SciTech Connect

    Xu, Chonggang; Fisher, Rosie; Wullschleger, Stan D; Wilson, Cathy; Cai, Michael; McDowell, Nathan

    2012-01-01

    Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO{sub 2} concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO{sub 2} concentration, temperature, and radiation when evaluated against published data of V{sub c,max} (maximum carboxylation rate) and J{sub max} (maximum electron transport rate). A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO{sub 2} concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions

  18. [Effects of landscape and vegetation structure on the diversity of phyllostomid bats (Chiroptera: Phyllostomidae) in Oaxaca, Mexico].

    PubMed

    García-García, José Luis; Santos-Moreno, Antonio

    2014-03-01

    The tropical forest fragmentation is known to affect the spatial structure of the landscape and habitat. These alterations can modify the attributes of bat assemblages, however, this phenomenon has been little studied and understood. In this work we evaluated the structure of landscape (i.e. composition and configuration) and vegetation, and its relationship with assemblage- and population-level characteristics of phyllostomid bats in a tropical rainforest of Southeastern Mexico. For this, we previously selected 12 sites located in continuous and fragmented forests, where bats were captured using mist nets during a two years sampling effort (144 nights). Bats relative abundance, species richness (diversity of order 0, 0D), Shannon diversity index (1D) and Simpson index (2D) were evaluated in all sites, and their relationship with seven measures of landscape structure and seven measures of vegetation structure was described using a Hierarchical Partitioning Analysis. A total of 1 840 individuals of 29 species of phyllostomid bats were captured in this period. Differences in the assemblages were manifested only in the relative abundance and not in the richness of the species. The assemblages of fragmented forest exhibited greater variation in species composition and a greater abundance of frugivorous and nectarivorous bats in comparison with the assemblages of continuous forest. The landscape configuration was related to the assemblage- and population-level attributes, contrasting with previous studies where the composition was a key element. At habitat level, tree density and canopy cover determined the abundance of bats. Nectarivorous and frugivorous bats were mostly found in disturbed vegetation landscapes, primarily due to landscape configuration (e.g. edge density). This phenomenon could be a response to the availability of food in primary and intermediate successional stages, which are characterized by an abundance of food value.

  19. A STATISTICAL THERMODYNAMIC MODEL OF THE ORGANIZATIONAL ORDER OF VEGETATION. (R827676)

    EPA Science Inventory

    The complex pattern of vegetation is the macroscopic manifestation of biological diversity and the ecological order in space and time. How is this overwhelmingly diverse, yet wonderfully ordered spatial pattern formed, and how does it evolve? To answer these questions, most tr...

  20. Irrigation Requirement Estimation Using Vegetation Indices and Inverse Biophysical Modeling

    NASA Technical Reports Server (NTRS)

    Bounoua, Lahouari; Imhoff, Marc L.; Franks, Shannon

    2010-01-01

    We explore an inverse biophysical modeling process forced by satellite and climatological data to quantify irrigation requirements in semi-arid agricultural areas. We constrain the carbon and water cycles modeled under both equilibrium, balance between vegetation and climate, and non-equilibrium, water added through irrigation. We postulate that the degree to which irrigated dry lands vary from equilibrium climate conditions is related to the amount of irrigation. The amount of water required over and above precipitation is considered as an irrigation requirement. For July, results show that spray irrigation resulted in an additional amount of water of 1.3 mm per occurrence with a frequency of 24.6 hours. In contrast, the drip irrigation required only 0.6 mm every 45.6 hours or 46% of that simulated by the spray irrigation. The modeled estimates account for 87% of the total reported irrigation water use, when soil salinity is not important and 66% in saline lands.

  1. The Jena Diversity Model: Towards a Richer Representation of the Terrestrial Biosphere for Earth System Modelling

    NASA Astrophysics Data System (ADS)

    Pavlick, R.; Reu, B.; Bohn, K.; Dyke, J.; Kleidon, A.

    2010-12-01

    The terrestrial biosphere is a complex, self-organizing system which is continually both adapting to and altering its global environment. It also exhibits a vast diversity of vegetation forms and functioning. However, the terrestrial biosphere components within current state-of-the-art Earth System Models abstract this diversity in to a handful of relatively static plant functional types. These coarse and static representations of functional diversity might contribute to overly pessimistic projections regarding terrestrial ecosystem responses to scenarios of global change (e.g. Amazonian and boreal forest diebacks). In the Jena Diversity (JeDi) model, we introduce a new approach to vegetation modelling with a richer representation of functional diversity, based not on plant functional types, but on unavoidable plant ecophysiological trade-offs, which we hypothesize should be more stable in time. The JeDi model tests a large number of plant growth strategies. Each growth strategy is simulated using a set of randomly generated parameter values, which characterize its functioning in terms of carbon allocation, ecophysiology, and phenology, which are then linked to the growing conditions at the land surface. The model is constructed in such a way that these parameters inherently lead to ecophysiological trade-offs, which determine whether a growth strategy is able to survive and reproduce under the prevalent climatic conditions. Kleidon and Mooney (2000) demonstrated that this approach is capable of reproducing the geographic distribution of species richness. More recently, we have shown the JeDi model can explain other biogeographical phenomena including the present-day global pattern of biomes (Reu et al., accepted), ecosystem evenness (Kleidon et al. 2009), and possible mechanisms for biome shifts and biodiversity changes under scenarios of global warming (Reu et al., submitted). We have also evaluated the simulated biogeochemical fluxes from JeDi against a variety

  2. Diversity of Cronobacter spp. isolates from the vegetables in the middle-east coastline of China.

    PubMed

    Chen, Wanyi; Yang, Jielin; You, Chunping; Liu, Zhenmin

    2016-06-01

    Cronobacter spp. has caused life-threatening neonatal infections mainly resulted from consumption of contaminated powdered infant formula. A total of 102 vegetable samples from retail markets were evaluated for the presence of Cronobacter spp. Thirty-five presumptive Cronobacter isolates were isolated and identified using API 20E and 16S rDNA sequencing analyses. All isolates and type strains were characterized using enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR), and genetic profiles of cluster analysis from this molecular typing test clearly showed that there were differences among isolates from different vegetables. A polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) based on the amplification of the gyrB gene (1258 bp) was developed to differentiate among Cronobacter species. A new PCR-RFLP assay based on the amplification of the gyrB gene using Alu I and Hinf I endonuclease combination is established and it has been confirmed an accurate and rapid subtyping method to differentiate Cronobacter species. Sequence analysis of the gyrB gene was proven to be suitable for the phylogenetic analysis of the Cronobacter strains, which has much better resolution based on SNPs in the identification of Cronobacter species specificity than PCR-RFLP and ERIC-PCR. Our study further confirmed that vegetables are one of the most common habitats or sources of Cronobacter spp. contamination in the middle-east coastline of China.

  3. Modelling the risk of ecosystem disruption in Europe with a dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Dury, M.; Hambuckers, A.; Warnant, P.; Jacquemin, I.; Thuiller, W.; François, L.

    2012-04-01

    What will be the European ecosystem responses to future climate? With unprecedented speed and extent, the projected climate change might lead to a disruption of terrestrial plants functioning in many regions. In the framework of the EcoChange project, transient projections over the 1901-2100 period have been performed with a process-based dynamic vegetation model, CARAIB DVM (Dury et al., 2011, iForest 4: 82, 99). The vegetation model was driven by the outputs of four climate models under the SRES A1B scenario: the ARPEGE/Climate model and three regional climate models (KNMI-RACMO2, DMI-HIRHAM5 and HC-HadRM3Q0 RCMs) from the European Union project ENSEMBLES. DVMs are appropriate tools to apprehend potential climate change impacts on ecosystems and identify threatened regions over Europe. CARAIB outputs (soil moisture, runoff, net primary productivity, fire, etc.) were used to characterise the ecosystem evolution. To assess consequences on biodiversity, the evolution of 100 natural common European species (47 herbs, 12 shrubs and 41 trees) has been studied year-to-year over the 1901-2100 period. Under the combined effects of projected changes particularly in temperature and precipitations, CARAIB simulates important reductions in the annual soil water content. The species productivities vary strongly from year to year reaching during the driest years values much lower than present-day average productivities. According to CARAIB, a lot of species might go beyond their water tolerance very frequently, particularly after 2050, due to more intense summer droughts. In the northern part of Europe and in the Alps, with reduced temperature variability and positive soil water anomalies, NPP variability tends to decrease. Regions with more severe droughts might also be affected by an increase of the frequency and intensity of wildfires. With this background, the species distributions might be strongly modified at the end of the century. 15% of tree species and 30% of herb and

  4. Modeling terrestrial carbon and water dynamics across climatic gradients: does plant trait diversity matter?

    PubMed

    Pappas, Christoforos; Fatichi, Simone; Burlando, Paolo

    2016-01-01

    Plant trait diversity in many vegetation models is crudely represented using a discrete classification of a handful of 'plant types' (named plant functional types; PFTs). The parameterization of PFTs reflects mean properties of observed plant traits over broad categories ignoring most of the inter- and intraspecific plant trait variability. Taking advantage of a multivariate leaf-trait distribution (leaf economics spectrum), as well as documented plant drought strategies, we generate an ensemble of hypothetical species with coordinated attributes, rather than using few PFTs. The behavior of these proxy species is tested using a mechanistic ecohydrological model that translates plant traits into plant performance. Simulations are carried out for a range of climates representative of different elevations and wetness conditions in the European Alps. Using this framework we investigate the sensitivity of ecosystem response to plant trait diversity and compare it with the sensitivity to climate variability. Plant trait diversity leads to highly divergent vegetation carbon dynamics (fluxes and pools) and to a lesser extent water fluxes (transpiration). Abiotic variables, such as soil water content and evaporation, are only marginally affected. These results highlight the need for revising the representation of plant attributes in vegetation models. Probabilistic approaches, based on observed multivariate whole-plant trait distributions, provide a viable alternative.

  5. Transition and pattern diversity in arid and semiarid grassland: A modeling study

    NASA Astrophysics Data System (ADS)

    Zeng, Xiaodong; Zeng, Xubin

    2007-12-01

    Abrupt transitions between large-scale grassland and desert in arid and semiarid regions have been observed in nature and reproduced by modeling studies. Observations also show the existence of nonuniform fine-scale vegetation patterns along the transition zone. This paper attempts to better understand these observations from two very different spatial scales. By explicitly introducing horizontal interaction terms into our previous dynamical grassland model, vegetation patterns with high diversities are found in the transition zone, and the system possesses an infinite number of equilibrium states in response to a given climatic forcing. The transition can be elucidated in two ways. In terms of the vegetation formations, the ecosystem undergoes the transition from uniform grassland to regular and irregular vegetation patterns, and then to pure desert as the moisture index (i.e., the ratio of precipitation over potential evaporation) decreases. In terms of biomass, the transition from grassland to desert goes through a narrow range of moisture index under which grassland is most fragile, as indicated by erratic vegetation patterns and large variation of average biomass. The existence of this range, however, has not been reported in previous modeling studies, and still needs to be validated using observational data.

  6. Modeling low-height vegetation with airborne LiDAR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low-height vegetation, common in semiarid regions, is difficult to characterize with LiDAR (Light Detection and Ranging) due to similarities, in time and space, of the point returns of vegetation and ground. Other complications may occur due to the low-height vegetation structural characteristics a...

  7. Psychometric assessment of scales for a Model of Goal Directed Vegetable Parenting Practices (MGDVPP)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable intake has been related to lower risk of chronic illnesses in the adult years. The habit of vegetable intake should be established early in life, but many parents of preschoolers report not being able to get their child to eat vegetables. The Model of Goal Directed Behavior (MGDB) has been...

  8. Importance of vegetation classes in modeling CH4 emissions from boreal and subarctic wetlands in Finland.

    PubMed

    Li, Tingting; Raivonen, Maarit; Alekseychik, Pavel; Aurela, Mika; Lohila, Annalea; Zheng, Xunhua; Zhang, Qing; Wang, Guocheng; Mammarella, Ivan; Rinne, Janne; Yu, Lijun; Xie, Baohua; Vesala, Timo; Zhang, Wen

    2016-12-01

    Boreal/arctic wetlands are dominated by diverse plant species, which vary in their contribution to CH4 production, oxidation and transport processes. Earlier studies have often lumped the processes all together, which may induce large uncertainties into the results. We present a novel model, which includes three vegetation classes and can be used to simulate CH4 emissions from boreal and arctic treeless wetlands. The model is based on an earlier biogeophysical model, CH4MODwetland. We grouped the vegetation as graminoids, shrubs and Sphagnum and recalibrated the vegetation parameters according to their different CH4 production, oxidation and transport capacities. Then, we used eddy-covariance-based CH4 flux observations from a boreal (Siikaneva) and a subarctic fen (Lompolojänkkä) in Finland to validate the model. The results showed that the recalibrated model could generally simulate the seasonal patterns of the Finnish wetlands with different plant communities. The comparison between the simulated and measured daily CH4 fluxes resulted in a correlation coefficient (R(2)) of 0.82 with a slope of 1.0 and an intercept of -0.1mgm(-2)h(-1) for the Siikaneva site (n=2249, p<0.001) and an R(2) of 0.82 with a slope of 1.0 and an intercept of 0.0mgm(-2)h(-1) for the Lompolojänkkä site (n=1826, p<0.001). Compared with the original model, the recalibrated model in this study significantly improved the model efficiency (EF), from -5.5 to 0.8 at the Siikaneva site and from -0.4 to 0.8 at the Lompolojänkkä site. The simulated annual CH4 emissions ranged from 7 to 24gm(-2)yr(-1), which was consistent with the observations (7-22gm(-2)yr(-1)). However, there are some discrepancies between the simulated and observed daily CH4 fluxes for the Siikaneva site (RMSE=50.0%) and the Lompolojänkkä site (RMSE=47.9%). Model sensitivity analysis showed that increasing the proportion of the graminoids would significantly increase the CH4 emission levels. Our study demonstrated that

  9. Modeling radium and radon transport through soil and vegetation

    USGS Publications Warehouse

    Kozak, J.A.; Reeves, H.W.; Lewis, B.A.

    2003-01-01

    A one-dimensional flow and transport model was developed to describe the movement of two fluid phases, gas and water, within a porous medium and the transport of 226Ra and 222Rn within and between these two phases. Included in this model is the vegetative uptake of water and aqueous 226Ra and 222Rn that can be extracted from the soil via the transpiration stream. The mathematical model is formulated through a set of phase balance equations and a set of species balance equations. Mass exchange, sink terms and the dependence of physical properties upon phase composition couple the two sets of equations. Numerical solution of each set, with iteration between the sets, is carried out leading to a set-iterative compositional model. The Petrov-Galerkin finite element approach is used to allow for upstream weighting if required for a given simulation. Mass lumping improves solution convergence and stability behavior. The resulting numerical model was applied to four problems and was found to produce accurate, mass conservative solutions when compared to published experimental and numerical results and theoretical column experiments. Preliminary results suggest that the model can be used as an investigative tool to determine the feasibility of phytoremediating radium and radon-contaminated soil. ?? 2003 Elsevier Science B.V. All rights reserved.

  10. Numerical Model Sensitivity to Heterogeneous Satellite Derived Vegetation Roughness

    NASA Technical Reports Server (NTRS)

    Jasinski, Michael; Eastman, Joseph; Borak, Jordan

    2011-01-01

    The sensitivity of a mesoscale weather prediction model to a 1 km satellite-based vegetation roughness initialization is investigated for a domain within the south central United States. Three different roughness databases are employed: i) a control or standard lookup table roughness that is a function only of land cover type, ii) a spatially heterogeneous roughness database, specific to the domain, that was previously derived using a physically based procedure and Moderate Resolution Imaging Spectroradiometer (MODIS) imagery, and iii) a MODIS climatologic roughness database that like (i) is a function only of land cover type, but possesses domain specific mean values from (ii). The model used is the Weather Research and Forecast Model (WRF) coupled to the Community Land Model within the Land Information System (LIS). For each simulation, a statistical comparison is made between modeled results and ground observations within a domain including Oklahoma, Eastern Arkansas, and Northwest Louisiana during a 4-day period within IHOP 2002. Sensitivity analysis compares the impact the three roughness initializations on time-series temperature, precipitation probability of detection (POD), average wind speed, boundary layer height, and turbulent kinetic energy (TKE). Overall, the results indicate that, for the current investigation, replacement of the standard look-up table values with the satellite-derived values statistically improves model performance for most observed variables. Such natural roughness heterogeneity enhances the surface wind speed, PBL height and TKE production up to 10 percent, with a lesser effect over grassland, and greater effect over mixed land cover domains.

  11. Effect of ground cover vegetation on the abundance and diversity of beneficial arthropods in citrus orchards.

    PubMed

    Silva, E B; Franco, J C; Vasconcelos, T; Branco, M

    2010-08-01

    The effect of ground cover upon the communities of beneficial arthropods established in the canopy of lemon trees was investigated, by comparing three ground-cover management treatments applied: RV, resident vegetation; S, sowed selected species; and BS, bare soil by controlling weeds with herbicide. Over two consecutive years, arthropod communities in the tree canopy were sampled periodically by beating and suction techniques. Significantly higher numbers of beneficial arthropods were found in the RV and S treatments in comparison with bare soil. Spiders and parasitoid wasps were the two most common groups, representing, respectively, 70% and 19% of all catches in beating samples and 33% and 53% in suction samples. For the RV and S treatments, significant seasonal deviations from the bare soil treatment were observed using principal response curves. Similar seasonal patterns were observed over the two years. The RV and S treatments showed significant positive deviations from the BS treatment in late spring and summer, accounted for the higher numbers of parasitoid wasps, coccinelids and lacewings present. By contrast, the seasonal deviations observed for the spider community differed from those of the remaining arthropods. During late winter and early spring, the RV and S treatments presented a higher abundance of spiders in the tree canopy, in comparison with bare soil, whereas in the summer significantly more spiders were found in the bare soil treatment. Spider movements between tree canopy and ground vegetation layers may justify this result.

  12. Using Simpson’s diversity index to examine multidimensional models of diversity in health professions education

    PubMed Central

    McLaughlin, Gerald W.; McLaughlin, Josetta S.; White, Carla Y.

    2016-01-01

    Objectives This study explored new models of diversity for health professions education that incorporate multiple attributes and examined differences in diversity based on urbanicity, geographic region, and institutional structure. Methods Simpson’s Diversity Index was used to develop race, gender, and interprofessional diversity indices for health professions schools in the United States (N = 318). Sullivan’s extension was used to develop a composite diversity index that incorporated multiple individual attributes for each school. Pearson’s r was used to investigate correlations between continuous variables. ANOVA and independent t-tests were used to compare groups based on urbanicity, geographic region, and Basic Carnegie Classification. Results Mean (SD) for race, gender, and interprofessional  diversity indices were 0.36(0.17), 0.45(0.07), and 0.22(0.27) respectively. All correlations between the three indices were weak. The composite diversity index for this sample was 0.34(0.13). Significant differences in diversity were found between institutions based on urbanicity, Basic Carnegie Classification, and geographic region. Conclusions Multidimensional models provide support for expanding measures of diversity to include multiple characteristics and attributes. The approach demonstrated in this study enables institutions to complement and extend traditional measures of diversity as a means of providing evidence for decision-making and progress towards institutional initiatives. PMID:26724917

  13. Beyond Potential Vegetation II: Using Repeat Lidar Data on Changes in Vegetation Height to Test Model Predictions of Ecosystem Dynamics

    NASA Astrophysics Data System (ADS)

    Hurtt, G.; Thomas, R. Q.; Dubayah, R.

    2007-12-01

    Carbon estimates from terrestrial ecosystem models are limited by large uncertainties in the current state of the land surface, as previous disturbances have important and lasting influences on ecosystem structure and fluxes and can be difficult to detect or assess. Previous studies have illustrated how data on the vertical structure of vegetation from lidar can help to provide needed information on successional status for model initialization and constrain estimates of both carbon stock and fluxes. Here, we illustrate how repeat lidar data on vegetation structure can be used to test model predictions of ecosystem dynamics at a tropical forest site at La Selva, Costa Rica (108259 N, 848009 W). Airborne lidar remote sensing was used to measure spatial heterogeneity in the vertical structure of vegetation in 1998 and 2005. The ecosystem demography model (ED) was used to estimate corresponding patterns of carbon stocks, fluxes, and ecosystem dynamics during the interval. Lidar-initialized ED estimates of changes in maximum canopy height) were comparable to but significantly lower than observed (0.85 +/- 0.9 m observed vs. 0.53 +/- 0.4 m modeled) over the whole domain. Most of the model-data difference was due to growth of primary forest trees that exceeded model estimates (0.44 +/-0.9 m observed vs. 0.04 +/-0.1 m modeled), while the model-data comparison was significantly better over secondary forest areas (1.84 +/- 0.18 m observed vs. 1.71 +/-0.9 m modeled). The results of this study provide a promising illustration of the power of using repeat lidar data on changes in vegetation height to test estimates of ecosystem dynamics from height-structured ecosystem models. Extending these capabilities to regional and global scales will require repeat lidar data sets from space, and the continued development of height-structured ecosystem models.

  14. Comparing biodiversity effects among ecosystem engineers of contrasting strength: macrofauna diversity in Zostera noltii and Spartina anglica vegetations

    NASA Astrophysics Data System (ADS)

    Bouma, Tjeerd J.; Ortells, Victor; Ysebaert, Tom

    2009-03-01

    Whereas it is well known that ecosystem engineers can have a large influence on biodiversity, underlying mechanisms are still not fully clear. We try to enhance insight by comparing biodiversity effects of two neighboring intertidal, clonal, ecosystem engineering plant species that modify the physical environmental parameters in a similar way, but with a different magnitude. Macrobenthic assemblages were compared between meadows of the seagrass Zostera noltii, small patches (≤0.5 m Ø) and large areas (≫5 m Ø) of the emergent halophyte Spartina anglica and the surrounding bare tidal mudflat (control). Multivariate analyses revealed that the mudflat benthic assemblage and Zostera meadow assemblage showed highest similarities, whereas the Spartina marsh assemblage showed the highest dissimilarity with these two areas. Whereas the descriptive nature of our study limits interpretation of the data, some clear patterns were observed. For all vegetated areas, species diversity was lower compared to the unvegetated mudflat, and we observed a strong shift from endo- towards epibenthic species, suggesting that increased above-ground habitat complexity may be a main driving process in our system. As there were no clear patterns related to feeding types, food availability/productivity appeared to be of minor importance in structuring the benthic assemblages. Nevertheless, animals were in general smaller in vegetated areas. Patchiness had a distinct positive effect on biodiversity.

  15. Epigenetic Diversity of Clonal White Poplar (Populus alba L.) Populations: Could Methylation Support the Success of Vegetative Reproduction Strategy?

    PubMed

    Guarino, Francesco; Cicatelli, Angela; Brundu, Giuseppe; Heinze, Berthold; Castiglione, Stefano

    2015-01-01

    The widespread poplar populations of Sardinia are vegetatively propagated and live in different natural environments forming large monoclonal stands. The main goals of the present study were: i) to investigate/measure the epigenetic diversity of the poplar populations by determining their DNA methylation status; ii) to assess if and how methylation status influences population clustering; iii) to shed light on the changes that occur in the epigenome of ramets of the same poplar clone. To these purposes, 83 white poplar trees were sampled at different locations on the island of Sardinia. Methylation sensitive amplified polymorphism analysis was carried out on the genomic DNA extracted from leaves at the same juvenile stage. The study showed that the genetic biodiversity of poplars is quite limited but it is counterbalanced by epigenetic inter-population molecular variability. The comparison between MspI and HpaII DNA fragmentation profiles revealed that environmental conditions strongly influence hemi-methylation of the inner cytosine. The variable epigenetic status of Sardinian white poplars revealed a decreased number of population clusters. Landscape genetics analyses clearly demonstrated that ramets of the same clone were differentially methylated in relation to their geographic position. Therefore, our data support the notion that studies on plant biodiversity should no longer be restricted to genetic aspects, especially in the case of vegetatively propagated plant species.

  16. Evaluation of unmanned aerial vehicle (UAV) imagery to model vegetation heights in Hulun Buir grassland ecosystem

    NASA Astrophysics Data System (ADS)

    Wang, D.; Xin, X.; Li, Z.

    2015-12-01

    Vertical vegetation structure in grassland ecosystem is needed to assess grassland health and monitor available forage for livestock and wildlife habitat. Traditional ground-based field methods for measuring vegetation heights are time consuming. Most emerging airborne remote sensing techniques capable of measuring surface and vegetation height (e.g., LIDAR) are too expensive to apply at broad scales. Aerial or spaceborne stereo imagery has the cost advantage for mapping height of tall vegetation, such as forest. However, the accuracy and uncertainty of using stereo imagery for modeling heights of short vegetation, such as grass (generally lower than 50cm) needs to be investigated. In this study, 2.5-cm resolution UAV stereo imagery are used to model vegetation heights in Hulun Buir grassland ecosystem. Strong correlations were observed (r > 0.9) between vegetation heights derived from UAV stereo imagery and those field-measured ones at individual and plot level. However, vegetation heights tended to be underestimated in the imagery especially for those areas with high vegetation coverage. The strong correlations between field-collected vegetation heights and metrics derived from UAV stereo imagery suggest that UAV stereo imagery can be used to estimate short vegetation heights such as those in grassland ecosystem. Future work will be needed to verify the extensibility of the methods to other sites and vegetation types.

  17. Uncertainties of Nitrogen Fixation in a Dynamic Global Vegetation Model

    NASA Astrophysics Data System (ADS)

    Steinkamp, Joerg; Werner, Christian; Weber, Bettina; Hickler, Thomas

    2015-04-01

    Nitrogen is an essential nutrient for life on earth. However, most of it is in the form of dinitrogen (N2) unutilizable to life and only few organisms are able to break the triple bond, fix the nitrogen and thus make it available for cycling in the biosphere through "fixation". In most state-of-the-art dynamic global vegetation models (DGVMs) including a nitrogen cycle, N fixation is simulated by the Cleveland et al. (1999) algorithm (O-CN, LPJ-GUESS, CLM), that correlates annual N fixation to evapotranspiration rates or net primary production. Nevertheless, this algorithm has two major uncertainties, which are investigated by us: 1. The algorithm is based on annual fixation rates that are then applied uniformly throughout the year. However, in nature nitrogen fixation is an expensive process, which occurs only under favorable conditions. Here we compare the annual fixation values evenly distributed over the year with daily-derived fixation values based on a modified version of the Cleveland algorithm. We postulate that in higher latitudinal regions with seasonal climate as well as in regions with a distinct dry/wet season, modeled growth is enhanced by daily derived values compared to evenly distributed values, whereas in tropical regions hardly any difference will be visible. 2. One distinguishes between symbiotic and unsymbiotic nitrogen fixation, where the first one is associated with higher plants as symbionts supplying the fixers with carbohydrates, whereas the second, unsymbiotic is performed by so-called cryptogamic covers (CC). We found that the fixation by CC is underrepresented by the Cleveland algorithm, and a correction thus leads to enhanced growth in forested regions of higher latitudes that feature substantial CC fractions. Overall, the improvements of the algorithm proposed by us are expected to better reflect the reality of nitrogen fixation and cause an increased growth of vegetation, especially in higher northern latitudes.

  18. Diversity modelling for electrical power system simulation

    NASA Astrophysics Data System (ADS)

    Sharip, R. M.; Abu Zarim, M. A. U. A.

    2013-12-01

    This paper considers diversity of generation and demand profiles against the different future energy scenarios and evaluates these on a technical basis. Compared to previous studies, this research applied a forecasting concept based on possible growth rates from publically electrical distribution scenarios concerning the UK. These scenarios were created by different bodies considering aspects such as environment, policy, regulation, economic and technical. In line with these scenarios, forecasting is on a long term timescale (up to every ten years from 2020 until 2050) in order to create a possible output of generation mix and demand profiles to be used as an appropriate boundary condition for the network simulation. The network considered is a segment of rural LV populated with a mixture of different housing types. The profiles for the 'future' energy and demand have been successfully modelled by applying a forecasting method. The network results under these profiles shows for the cases studied that even though the value of the power produced from each Micro-generation is often in line with the demand requirements of an individual dwelling there will be no problems arising from high penetration of Micro-generation and demand side management for each dwellings considered. The results obtained highlight the technical issues/changes for energy delivery and management to rural customers under the future energy scenarios.

  19. Bioclimatic distribution of vegetation for general circulation model studies

    NASA Technical Reports Server (NTRS)

    Prentice, Katharine Culbertson

    1990-01-01

    Four global bioclimatic schemes which qualify climates on the basis of the distribution of vegetation, including the Holdridge (1947), Thornthwaite (1948), Koeppen (1936), and Troll and Paffen (1964) schemes, were applied to two global climate data sets to produce maps of global vegetation distribution: the Rand set described by Schutz and Gates (1971, 1973, and 1974) and the Shea (1986) data set. The results show that only 38 to 40 percent of the observed land surface, mapped as 31 vegetation types, could be replicated by applying the four schemes to these data sets. The simulations were significantly improved by further subdividing and regrouping the climates defined by the schemes and by regrouping the observed vegetation types. With these alterations, 77 percent of the predicted vegetative landscape coresponded with the observed distribution of vegetation.

  20. The diversity pyramid: an organizational model to structure diversity recruitment and retention in nursing programs.

    PubMed

    Rosenberg, Lisa; O'Rourke, Marilyn E

    2011-10-01

    The literature on increasing the diversity of individuals who enter and practice the nursing profession comes with sound argument, yet we have seen only modest gains in diversification over the past 10 years. This article addresses how to develop a sustainable program to increase the recruitment and retention of underrepresented students. The diversity pyramid is suggested as a conceptual planning model for increasing diversity that is matched to an institution and its resources. The foundation of the pyramid is an organizational commitment to attracting and retaining diverse students. The middle level addresses financial support for underrepresented students. From the top of the pyramid, one chooses appropriate media and relational tactics necessary to attract the underrepresented students a program seeks. All three elements of the pyramid-organizational commitment to diversity, significant financial support, and a targeted use of resources-play important and sequential roles in building a sustainable diversity initiative.

  1. Effects of tourism and topography on vegetation diversity in the subalpine meadows of the Dongling Mountains of Beijing, China.

    PubMed

    Zhang, Jin-Tun; Xiang, ChunLing; Li, Min

    2012-02-01

    Subalpine meadows in the Dongling Mountains (located at E115º26'-115º40', N40º00'-40º05') of Beijing, China are important for tourism and the provision of ecosystem services. However, because of poor management serious degradation has occurred on these subalpine meadows. The aim of this paper is to present a quantitative analysis of effects of tourism disturbance and topography on the status and diversity of montane meadow communities and to provide direction for improved management. Sixty quadrats of 2 × 2 m(2) along 10 transects were set up to collect data on site characteristics and vegetation status. The relationships between community composition and structure, species diversity, and tourism disturbance and topographic variables were analyzed by multivariate methods (TWINSPAN and CCA). The results showed that eight meadow communities were identified by TWINSPAN. Most of them were seriously degraded. The first CCA axis identified an elevation and tourism disturbance intensity gradient, which illustrated that tourism disturbance and elevation were most important factors influencing meadow types, composition and structure. Some resistant species and response species to tourism disturbance were identified and can be used as indicator species of tourism disturbance. Species richness, heterogeneity and evenness were closely related to tourism disturbance and elevation. It is concluded that tourism disturbance must be controlled to enable grassland rehabilitation to occur in the meadows. Measures of effective management of the meadows were discussed.

  2. Mapping, Monitoring and Modeling Submersed Aquatic Vegetation Species and Communities

    NASA Astrophysics Data System (ADS)

    Hartis, Brett Michael

    Aquatic macrophyte communities are critically important habitat species in aquatic systems worldwide. None are more important than those found beneath the water's surface, commonly referred to as submersed aquatic vegetation (SAV). Although vital to such systems, many native submersed plants have shown near irreversible declines in recent decades as water quality impairment, habitat destruction, and encroachment by invasive species have increased. In the past, aquatic plant science has emphasized the restoration and protection of native species and the management of invasive species. Comparatively little emphasis has been directed toward adequately mapping and monitoring these resources to track their viability over time. Modeling the potential intrusion of certain invasive plant species has also been given little attention, likely because aquatic systems in general can be difficult to assess. In recent years, scientists and resource managers alike have begun paying more attention to mapping SAV communities and to address the spread of invasive species across various regions. This research attempts to provide new, cutting-edge techniques to improve SAV mapping and monitoring efforts in coastal regions, at both community and individual species levels, while also providing insights about the establishment potential of Hydrilla verticillata, a noxious, highly invasive submersed plant. Technological advances in satellite remote sensing, interpolation and spatial analysis in geographic information systems, and state-of-the-art climate envelope modeling techniques were used to further assess the dynamic nature of SAV on various scales. This work contributes to the growing science of mapping, monitoring, and modeling of SAV

  3. Uncertainty analysis of vegetation distribution in the northern high latitudes during the 21st century with a dynamic vegetation model

    PubMed Central

    Jiang, Yueyang; Zhuang, Qianlai; Schaphoff, Sibyll; Sitch, Stephen; Sokolov, Andrei; Kicklighter, David; Melillo, Jerry

    2012-01-01

    This study aims to assess how high-latitude vegetation may respond under various climate scenarios during the 21st century with a focus on analyzing model parameters induced uncertainty and how this uncertainty compares to the uncertainty induced by various climates. The analysis was based on a set of 10,000 Monte Carlo ensemble Lund-Potsdam-Jena (LPJ) simulations for the northern high latitudes (45oN and polewards) for the period 1900–2100. The LPJ Dynamic Global Vegetation Model (LPJ-DGVM) was run under contemporary and future climates from four Special Report Emission Scenarios (SRES), A1FI, A2, B1, and B2, based on the Hadley Centre General Circulation Model (GCM), and six climate scenarios, X901M, X902L, X903H, X904M, X905L, and X906H from the Integrated Global System Model (IGSM) at the Massachusetts Institute of Technology (MIT). In the current dynamic vegetation model, some parameters are more important than others in determining the vegetation distribution. Parameters that control plant carbon uptake and light-use efficiency have the predominant influence on the vegetation distribution of both woody and herbaceous plant functional types. The relative importance of different parameters varies temporally and spatially and is influenced by climate inputs. In addition to climate, these parameters play an important role in determining the vegetation distribution in the region. The parameter-based uncertainties contribute most to the total uncertainty. The current warming conditions lead to a complexity of vegetation responses in the region. Temperate trees will be more sensitive to climate variability, compared with boreal forest trees and C3 perennial grasses. This sensitivity would result in a unanimous northward greenness migration due to anomalous warming in the northern high latitudes. Temporally, boreal needleleaved evergreen plants are projected to decline considerably, and a large portion of C3 perennial grass is projected to disappear by the end of

  4. Importance and genetic diversity of vegetable-infecting tospoviruses in India.

    PubMed

    Kunkalikar, Suresh R; Poojari, Sudarsana; Arun, Bhanupriya M; Rajagopalan, Prem A; Chen, Tsung-Chi; Yeh, Shyi-Dong; Naidu, Rayapati A; Zehr, Usha B; Ravi, Kankanallu S

    2011-03-01

    A survey for Peanut bud necrosis virus (PBNV), Watermelon bud necrosis virus (WBNV), Capsicum chlorosis virus (CaCV), and Iris yellow spot virus (IYSV) was conducted between 2002 and 2009 in the major vegetable-growing areas in India. PBNV was documented widely in tomato and chili peppers in 14 states representing southern, north-western, north-eastern, and central regions and WBNV was predominantly detected in watermelons and cucurbits in all except north-eastern regions. In addition, the expanded host range of PBNV to watermelons and other cucurbits and WBNV to tomato and chili peppers was observed leading to natural mixed infection of the two viruses. IYSV was found in onion in southern, central, and north-eastern regions and CaCV in tomato and chili peppers in northern and southern regions, respectively. Phylogenetic analysis of the nucleocapsid gene revealed segregation of field isolates of PBNV and WBNV into two distinct subclades, whereas isolates of CaCV and IYSV each clustered into a single clade. A proposal for establishing WBNV as a distinct tospovirus species is made based on the molecular characterization of small- (S) and medium- (M) RNA segments.

  5. SCHOOL-BASED PROMOTION OF FRUIT AND VEGETABLE CONSUMPTION IN MULTICULTURALLY DIVERSE, URBAN SCHOOLS

    PubMed Central

    BLOM-HOFFMAN, JESSICA

    2009-01-01

    Rates of childhood overweight1 have reached epidemic proportions (U.S. Department of Health and Human Services, 2001), and schools have been called on to play a role in the prevention of this medical condition. This article describes a multiyear health promotion effort—the Athletes in Service fruit and vegetable (F&V) promotion program—which is based on social learning theory for urban, elementary school children in kindergarten through third grade. Children participate in the program for a period of 3 years. The goals of the program are to increase opportunities for children to be more physically active during the school day and to help students increase their F&V consumption. This article describes the F&V promotion components of the program that were implemented in year 1, including implementation integrity and treatment acceptability data. Year 1 evaluation data demonstrated that the program is acceptable from the perspective of school staff and was implemented by school staff with high levels of integrity. Hallmarks of the program’s successful implementation and high acceptability include (a) having a school-based program champion; (b) designing the program to include low-cost, attractive, interactive materials; (c) including many school staff members to facilitate a culture of healthy eating in the school; and (d) spreading out implementation responsibilities among the multiple staff members so that each individual’s involvement is time efficient. PMID:19834582

  6. Incorporating grassland management in a global vegetation model

    NASA Astrophysics Data System (ADS)

    Chang, Jinfeng; Viovy, Nicolas; Vuichard, Nicolas; Ciais, Philippe; Wang, Tao; Cozic, Anne; Lardy, Romain; Graux, Anne-Isabelle; Klumpp, Katja; Martin, Raphael; Soussana, Jean-François

    2013-04-01

    Grassland is a widespread vegetation type, covering nearly one-fifth of the world's land surface (24 million km2), and playing a significant role in the global carbon (C) cycle. Most of grasslands in Europe are cultivated to feed animals, either directly by grazing or indirectly by grass harvest (cutting). A better understanding of the C fluxes from grassland ecosystems in response to climate and management requires not only field experiments but also the aid of simulation models. ORCHIDEE process-based ecosystem model designed for large-scale applications treats grasslands as being unmanaged, where C / water fluxes are only subject to atmospheric CO2 and climate changes. Our study describes how management of grasslands is included in the ORCHIDEE, and how management affects modeled grassland-atmosphere CO2 fluxes. The new model, ORCHIDEE-GM (Grassland Management) is capable with a management module inspired from a grassland model (PaSim, version 5.0), of accounting for two grassland management practices (cutting and grazing). The evaluation of the results of ORCHIDEE-GM compared with those of ORCHIDEE at 11 European sites equipped with eddy covariance and biometric measurements, show that ORCHIDEE-GM can capture realistically the cut-induced seasonal variation in biometric variables (LAI: Leaf Area Index; AGB: Aboveground Biomass) and in CO2 fluxes (GPP: Gross Primary Productivity; TER: Total Ecosystem Respiration; and NEE: Net Ecosystem Exchange). But improvements at grazing sites are only marginal in ORCHIDEE-GM, which relates to the difficulty in accounting for continuous grazing disturbance and its induced complex animal-vegetation interactions. Both NEE and GPP on monthly to annual timescales can be better simulated in ORCHIDEE-GM than in ORCHIDEE without management. At some sites, the model-observation misfit in ORCHIDEE-GM is found to be more related to ill-constrained parameter values than to model structure. Additionally, ORCHIDEE-GM is able to simulate

  7. Vegetation fires, absorbing aerosols and smoke plume characteristics in diverse biomass burning regions of Asia

    NASA Astrophysics Data System (ADS)

    Prasad Vadrevu, Krishna; Lasko, Kristofer; Giglio, Louis; Justice, Chris

    2015-10-01

    In this study, we explored the relationships between the satellite-retrieved fire counts (FC), fire radiative power (FRP) and aerosol indices using multi-satellite datasets at a daily time-step covering ten different biomass burning regions in Asia. We first assessed the variations in MODIS-retrieved aerosol optical depths (AOD’s) in agriculture, forests, plantation and peat land burning regions and then used MODIS FC and FRP (hereafter FC/FRP) to explain the variations in AOD characteristics. Results suggest that tropical broadleaf forests in Laos burn more intensively than the other vegetation fires. FC/FRP-AOD correlations in different agricultural residue burning regions did not exceed 20% whereas in forest regions they reached 40%. To specifically account for absorbing aerosols, we used Ozone Monitoring Instrument-derived aerosol absorption optical depth (AAOD) and UV aerosol index (UVAI). Results suggest relatively high AAOD and UVAI values in forest fires compared with peat and agriculture fires. Further, FC/FRP could explain a maximum of 29% and 53% of AAOD variations, whereas FC/FRP could explain at most 33% and 51% of the variation in agricultural and forest biomass burning regions, respectively. Relatively, UVAI was found to be a better indicator than AOD and AAOD in both agriculture and forest biomass burning plumes. Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations data showed vertically elevated aerosol profiles greater than 3.2-5.3 km altitude in the forest fire plumes compared to 2.2-3.9 km and less than 1 km in agriculture and peat-land fires, respectively. We infer the need to assimilate smoke plume height information for effective characterization of pollutants from different sources.

  8. A gradient model of vegetation and climate utilizing NOAA satellite imagery. Phase 1: Texas transect

    NASA Technical Reports Server (NTRS)

    Greegor, D.; Norwine, J. (Principal Investigator)

    1981-01-01

    A climatological model/variable termed the sponge (a measure of moisture availability based on daily temperature maxima and minima, and precipitation) was tested for potential biogeograhic, ecological, and agro-climatological applications. Results, depicted in tabular and graphic form, suggest that, as generalized climatic index, sponge is particularly appropriate for large-area and global vegetation monitoring. The feasibility of utilizing NOAA/AVHRR data for vegetation classification was investigated and a vegetation gradient model that utilizes sponge and AVHRR data was initiated. Along an east-west Texas gradient, vegetation, sponge, and AVHRR pixel data (channels 1 and 2) were obtained for 12 locations. The normalized difference values for the AVHRR data when plotted against vegetation characteristics (biomass, net productivity, leaf area) and sponge values along the Texas gradient suggest that a multivariate gradient model incorporating AVHRR and sponge data may indeed be useful in global vegetation stratification and monitoring.

  9. Metabolic model for diversity-generating biosynthesis

    PubMed Central

    Tianero, Ma. Diarey; Pierce, Elizabeth; Raghuraman, Shrinivasan; Sardar, Debosmita; McIntosh, John A.; Heemstra, John R.; Schonrock, Zachary; Covington, Brett C.; Maschek, J. Alan; Cox, James E.; Bachmann, Brian O.; Olivera, Baldomero M.; Ruffner, Duane E.; Schmidt, Eric W.

    2016-01-01

    A conventional metabolic pathway leads to a specific product. In stark contrast, there are diversity-generating metabolic pathways that naturally produce different chemicals, sometimes of great diversity. We demonstrate that for one such pathway, tru, each ensuing metabolic step is slower, in parallel with the increasing potential chemical divergence generated as the pathway proceeds. Intermediates are long lived and accumulate progressively, in contrast with conventional metabolic pathways, in which the first step is rate-limiting and metabolic intermediates are short-lived. Understanding these fundamental differences enables several different practical applications, such as combinatorial biosynthesis, some of which we demonstrate here. We propose that these principles may provide a unifying framework underlying diversity-generating metabolism in many different biosynthetic pathways. PMID:26831074

  10. Diversity of insect galls associated with coastal shrub vegetation in Rio de Janeiro, Brazil.

    PubMed

    Carvalho-Fernandes, Sheila P; Ascendino, Sharlene; Maia, Valéria C; Couri, Márcia S

    2016-09-01

    Surveys in the coastal sandy plains (restingas) of Rio de Janeiro have shown a great richness of galls. We investigated the galling insects in two preserved restingas areas of Rio de Janeiro state: Parque Estadual da Costa do Sol and Reserva Particular do Patrimônio Natural Fazenda Caruara. The collections were done each two months, from June 2011 to May 2012. We investigated 38 points during 45 minutes each per collection. The galls were taken to the laboratory for rearing the insects. A total number of 151 insect galls were found in 82 plant species distributed into 34 botanic families. Most of the galls occurred on leaves and the plant families with the highest richness of galls were Myrtaceae and Fabaceae. All the six insect orders with galling species were found in this survey, where Cecidomyiidae (Diptera) was the main galler group. Hymenoptera and Thysanoptera were found as parasitoids and inquilines in 29 galls. The richness of galls in the surveyed areas reveals the importance of restinga for the composition and diversity of gall-inducing insect fauna.

  11. Lidar based vegetation height models to quantify carbon stocks in Galveston saltmarshes

    NASA Astrophysics Data System (ADS)

    Kulawardhana, R. W.; Popescu, S. C.; Feagin, R. A.

    2012-12-01

    Concern over global climate change has stimulated much interest in identifying existing and potential carbon sinks. Wetland ecosystems are highly recognized for their high productivity and thus as major terrestrial carbon (C) sinks. The rapid decline in the extent and health of these wetland ecosystems has created a need for non-destructive methods for the study of their C dynamics. However, these biomass estimates are mostly based on vegetation structural properties, particularly based on vegetation height models. Hence, for better quantification of vegetation biomass and C estimates, the accuracy of vegetation height models derived using lidar data is of paramount importance. Yet, unlike in woody vegetation dominated ecosystems, the use of lidar in saltmarshes is limited due to several reasons: 1) relatively dense vegetation cover limits laser penetration affecting the accuracy of terrain and thus vegetation height estimates; and 2) relatively shorter vegetation demands high point density data with high vertical accuracy to capture relatively smaller differences between terrain and vegetation canopy surfaces. Thus, the use of lidar data to characterize saltmarsh vegetation community demands appropriate methodologies. Our overall objective in this study was to develop a methodology for deriving salt marsh vegetation height models using airborne lidar data. More specific objectives involved: (1) understanding the interaction between discrete-return airborne lidar data and marsh vegetation; (2) finding appropriate grid sizes for deriving terrain and vegetation height models; and (3) analyze lidar-derived surface accuracies by comparing estimates to field measurements. In this study, we used 1m point spacing airborne lidar data from Federal Emergency Management Agency (FEMA) program to derive vegetation height models (VHM) for Spartina alterniflora saltmarshes in Galveston, Texas. We first derived digital terrain models (DEMs) and verified their vertical accuracy

  12. Use of dynamic soil-vegetation models to assess impacts of nitrogen deposition on plant species composition: an overview.

    PubMed

    De Vries, W; Wamelink, G W W; Van Dobben, H; Kros, J; Reinds, G J; Mol-Dijkstra, J P; Smart, S M; Evans, C D; Rowe, E C; Belyazid, S; Sverdrup, H U; Van Hinsberg, A; Posch, M; Hettelingh, J-P; Spranger, T; Bobbink, R

    2010-01-01

    Field observations and experimental data of effects of nitrogen (N) deposition on plant species diversity have been used to derive empirical critical N loads for various ecosystems. The great advantage of such an approach is the inclusion of field evidence, but there are also restrictions, such as the absence of explicit criteria regarding significant effects on the vegetation, and the impossibility to predict future impacts when N deposition changes. Model approaches can account for this. In this paper, we review the possibilities of static and dynamic multispecies models in combination with dynamic soil-vegetation models to (1) predict plant species composition as a function of atmospheric N deposition and (2) calculate critical N loads in relation to a prescribed protection level of the species composition. The similarities between the models are presented, but also several important differences, including the use of different indicators for N and acidity and the prediction of individual plant species vs. plant communities. A summary of the strengths and weaknesses of the various models, including their validation status, is given. Furthermore, examples are given of critical load calculations with the model chains and their comparison with empirical critical N loads. We show that linked biogeochemistry-biodiversity models for N have potential for applications to support European policy to reduce N input, but the definition of damage thresholds for terrestrial biodiversity represents a major challenge. There is also a clear need for further testing and validation of the models against long-term monitoring or long-term experimental data sets and against large-scale survey data. This requires a focused data collection in Europe, combing vegetation descriptions with variables affecting the species diversity, such as soil acidity, nutrient status and water availability. Finally, there is a need for adaptation and upscaling of the models beyond the regions for which

  13. Responses of serpentine plants to pine invasion: Vegetation diversity and nickel accumulation in species with contrasting adaptive strategies.

    PubMed

    Selvi, Federico; Carrari, Elisa; Colzi, Ilaria; Coppi, Andrea; Gonnelli, Cristina

    2017-04-01

    Introduction of non-native trees is one of the major threats to ecosystem integrity and biodiversity. Stands of maritime pine (Pinus pinaster Ait.) introduced decades ago represent a threat to the specialized plant communities of serpentine outcrops in Italy. This study investigates the effects of such invasions at the community and species level, based on vegetation sampling in three selected sites with comparable environmental conditions. Pine cover caused a decrease of α-diversity by lowering the species evenness of the community, though species richness was not negatively affected. Compositional changes between the two habitats were significant but not clearly associated with a decrease in taxonomic distinctness in the pine stands. As many as nine indicator species were found in the open vegetation, along with the obligate endemics Odontarrhena bertolonii and Armeria denticulata. Both of them declined in the pine stands. Here, an increase in the phytoavailable nickel fraction was associated with a decrease in total nickel concentration in the soil, via mobilization of the metal caused by lowering of pH induced by the conifer litter. The nickel-hyperaccumulator O. bertolonii was able to maintain high metal concentrations in the shoots despite a decrease in root concentration, resulting in a higher shoot/root ratio in the pine stands (~20). Conversely, shoot/root ratio in the non-accumulator Plantago holosteum was <1 and not affected by the conifer, as well as its abundance in this anthropogenic habitat. Contrasting responses of the two species were likely due to their different sensitivity to modified light and soil conditions, whereas stability of shoot nickel-concentration in O. bertolonii did not support increased predation by natural enemies as one of the causes for its decline under the conifer. Progressive thinning of these stands is advocated to limit soil nickel mobilization and to restore a unique ecosystem with its endemic metallophytes.

  14. Diversity of Phytophthora Species from Declining Mediterranean Maquis Vegetation, including Two New Species, Phytophthora crassamura and P. ornamentata sp. nov.

    PubMed Central

    Scanu, Bruno; Linaldeddu, Benedetto T.; Deidda, Antonio; Jung, Thomas

    2015-01-01

    The Mediterranean basin is recognized as a global biodiversity hotspot accounting for more than 25,000 plant species that represent almost 10% of the world’s vascular flora. In particular, the maquis vegetation on Mediterranean islands and archipelagos constitutes an important resource of the Mediterranean plant diversity due to its high rate of endemism. Since 2009, a severe and widespread dieback and mortality of Quercus ilex trees and several other plant species of the Mediterranean maquis has been observed in the National Park of La Maddalena archipelago (northeast Sardinia, Italy). Infected plants showed severe decline symptoms and a significant reduction of natural regeneration. First studies revealed the involvement of the highly invasive wide-host range pathogen Phytophthora cinnamomi and several fungal pathogens. Subsequent detailed research led to a better understanding of these epidemics showing that multiple Phytophthora spp. were involved, some of them unknown to science. In total, nine Phytophthora species were isolated from rhizosphere soil samples collected from around symptomatic trees and shrubs including Asparagus albus, Cistus sp., Juniperus phoenicea, J. oxycedrus, Pistacia lentiscus and Rhamnus alaternus. Based on morphological characters, growth-temperature relations and sequence analysis of the ITS and cox1 gene regions, the isolates were identified as Phytophthora asparagi, P. bilorbang, P. cinnamomi, P. cryptogea, P. gonapodyides, P. melonis, P. syringae and two new Clade 6 taxa which are here described as P. crassamura sp. nov. and P. ornamentata sp. nov. Pathogenicity tests supported their possible involvement in the severe decline that is currently threatening the Mediterranean maquis vegetation in the La Maddalena archipelago. PMID:26649428

  15. Modeling the Effect of Vegetation on Passive Microwave Remote Sensing of Soil Moisture

    NASA Technical Reports Server (NTRS)

    Liu, Y. P.; Inguva, R.; Crosson, W. L.; Coleman, T. L.; Laymon, C.; Fahsi, A.

    1998-01-01

    The effect of vegetation on passive microwave remote sensing of soil moisture is studied. The radiative transfer modeling work of Njoku and Kong is applied to a stratified medium of which the upper layer is treated as a layer of vegetation. An effective dielectric constant for this vegetation layer is computed using estimates of the dielectric constant of individual components of the vegetation layer. The horizontally-polarized brightness temperature is then computed as a function of the incidence angle. Model predictions are used to compare with the data obtained in the Huntsville '96, remote sensing of soil moisture experiment, and with predictions obtained using a correction procedure of Jackson and Schmugge.

  16. Inclusion of Additional Plant Species and Trait Information in Dynamic Vegetation Modeling of Arctic Tundra and Boreal Forest Ecosystem

    NASA Astrophysics Data System (ADS)

    Euskirchen, E. S.; Patil, V.; Roach, J.; Griffith, B.; McGuire, A. D.

    2015-12-01

    Dynamic vegetation models (DVMs) have been developed to model the ecophysiological characteristics of plant functional types in terrestrial ecosystems. They have frequently been used to answer questions pertaining to processes such as disturbance, plant succession, and community composition under historical and future climate scenarios. While DVMs have proved useful in these types of applications, it has often been questioned if additional detail, such as including plant dynamics at the species-level and/or including species-specific traits would make these models more accurate and/or broadly applicable. A sub-question associated with this issue is, 'How many species, or what degree of functional diversity, should we incorporate to sustain ecosystem function in modeled ecosystems?' Here, we focus on how the inclusion of additional plant species and trait information may strengthen dynamic vegetation modeling in applications pertaining to: (1) forage for caribou in northern Alaska, (2) above- and belowground carbon storage in the boreal forest and lake margin wetlands of interior Alaska, and (3) arctic tundra and boreal forest leaf phenology. While the inclusion of additional information generally proved valuable in these three applications, this additional detail depends on field data that may not always be available and may also result in increased computational complexity. Therefore, it is important to assess these possible limitations against the perceived need for additional plant species and trait information in the development and application of dynamic vegetation models.

  17. Effects of heterogeneous wind fields and vegetation composition on modeled estimates of pollen source area

    NASA Astrophysics Data System (ADS)

    Burke, K. D.; Goring, S. J.; Williams, J. W.; Holloway, T.

    2015-12-01

    Fossil pollen records from lakes, bogs, and small hollows offer the main source of information about vegetation responses to climate change and land use over timescales of decades to millennia. Millions of pollen grains are released from individual trees each year, and are transported by wind before settling out of the atmosphere. Reconstructing past vegetation from sedimentary pollen records, however, requires careful modeling of pollen production, transport, and deposition. The atmosphere is turbulent, and regional wind patterns shift from day to day. In accordance with this, it is necessary for pollen transport models to adequately account for variable, non-uniform wind patterns and vegetation heterogeneity. Using a simulation approach, with both simulated vegetation patterns and vegetation gradients, as well as simulated wind fields, we show the inconsistency in pollen loading proportions and local vegetation proportions when non-uniform wind patterns are incorporated. Vegetation upwind from the lake is over-represented due to the increased prevalence of winds transporting pollen from that area. The inclusion of North American Regional Reanalysis (NARR) wind records affirms this finding. Of the lake sites explored in this study, none had uniform wind patterns. The use of a settlement-era gridded vegetation dataset, compiled by the PalEON project and based on Public Land Survey System (PLSS) records allows us to model pollen source area with realistic vegetation heterogeneity. Due to differences in productivity, pollen fall speeds, and neighboring vegetation, there exist patterns of vegetation that may be poorly characterized due to over/under representation of different taxa. Better understanding these differences in representation allows for more accurate reconstruction of historical vegetation, and pollen-vegetation relationships.

  18. A population model of chaparral vegetation response to frequent wildfires.

    PubMed

    Lucas, Timothy A; Johns, Garrett; Jiang, Wancen; Yang, Lucie

    2013-12-01

    The recent increase in wildfire frequency in the Santa Monica Mountains (SMM) may substantially impact plant community structure. Species of Chaparral shrubs represent the dominant vegetation type in the SMM. These species can be divided into three life history types according to their response to wildfires. Nonsprouting species are completely killed by fire and reproduce by seeds that germinate in response to a fire cue, obligate sprouting species survive by resprouting from dormant buds in a root crown because their seeds are destroyed by fire, and facultative sprouting species recover after fire both by seeds and resprouts. Based on these assumptions, we developed a set of nonlinear difference equations to model each life history type. These models can be used to predict species survivorship under varying fire return intervals. For example, frequent fires can lead to localized extinction of nonsprouting species such as Ceanothus megacarpus while several facultative sprouting species such as Ceanothus spinosus and Malosma (Rhus) laurina will persist as documented by a longitudinal study in a biological preserve in the SMM. We estimated appropriate parameter values for several chaparral species using 25 years of data and explored parameter relationships that lead to equilibrium populations. We conclude by looking at the survival strategies of these three species of chaparral shrubs under varying fire return intervals and predict changes in plant community structure under fire intervals of short return. In particular, our model predicts that an average fire return interval of greater than 12 years is required for 50 % of the initial Ceanothus megacarpus population and 25 % of the initial Ceanothus spinosus population to survive. In contrast, we predict that the Malosma laurina population will have 90 % survivorship for an average fire return interval of at least 6 years.

  19. Modeling and analysis of vegetation-climate interactions using neutral networks and generalized logit models

    SciTech Connect

    Siegel, E.; Kandikar, M.; Dowlatabadi, H.

    1995-12-31

    The importance of biosphere-climate interactions for energy and moisture balances and major biogeochemical cycles is well recognized. Climate change is expected to alter the functioning and distribution of major ecosystems. These changes have been investigated using global vegetation transfer models.

  20. Perceptions of diverse educators regarding ethnic-minority deaf college students, role models, and diversity.

    PubMed

    Parasnis, Ila; Fischer, Susan D

    2005-01-01

    IN A QUALITATIVE STUDY, the researchers documented the perceptions of deaf and hearing ethnically diverse university faculty and staff regarding issues related to the education of ethnic-minority deaf college students. These experienced educators commented on the importance of ethnic-minority role models for deaf college students, the academic preparedness of ethnic-minority deaf students, these students' level of comfort on campus, and the success of institutional efforts to increase awareness regarding ethnic diversity. The insightful reflections of these diverse educators can be informative in improving the educational experience of ethnic-minority deaf students.

  1. Using a Dynamic Global Vegetation Model to Simulate the Response of Vegetation to Warming at the Paleocene-Eocene Boundary

    NASA Astrophysics Data System (ADS)

    Shellito, C. J.; Sloan, L. C.

    2004-12-01

    A major turnover in benthic marine and terrestrial fauna marks the Initial Eocene Thermal Maximum (IETM) (~55Ma), a period of ~150 ky in which there was a rapid rise in deep sea and high latitude sea surface temperatures by 5-8C. Curiously, no major responses to this warming in the terrestrial floral record have been detected to date. Here, we present results from experiments examining the response of the global distribution of vegetation to changes in climate at the IETM using the NCAR Land Surface Model (LSM1.2) integrated with a dynamic global vegetation model (DGVM). DGVMs allow vegetation to respond to and interact with climate, and thus, provide a unique new method for addressing questions regarding feedbacks between the ecosystem and climate in Earth's past. However, there are a number of drawbacks to using these models that can affect interpretation of results. More specifically, these drawbacks involve uncertainties in the application of modern plant functional types to paleo-flora simulations, inaccuracies in the model climatology used to drive the DGVM, and lack of available detail regarding paleo-geography and paleo-soil type for use in model boundary conditions. For a better understanding of these drawbacks, we present results from a series of tests in the NCAR LSM-DGVM which examine (1) the effect of removing C4 grasses from the available plant functional types in the model; (2) model sensitivity to a change in soil texture; and (3), model sensitivity to a change in the value of pCO2 used in the photosynthetic rate equations. We consider our DGVM results for the IETM in light of output from these sensitivity experiments.

  2. Using the Adventure Model to Teach about Diversity and Tolerance

    ERIC Educational Resources Information Center

    Latess, Dennis R.; Walker, Richard L.

    2011-01-01

    There are a variety of curricular approaches in physical education, any one of which can provide a framework and scheme that is the foundation of a physical education unit of study. This article will discuss the use of an adventure model to teach about diversity, multi-cultural understanding and tolerance. Teaching children diversity and tolerance…

  3. The Diversity Challenge: A Collection of Model Programs.

    ERIC Educational Resources Information Center

    Mellander, Gustavo A., Ed.; Prochaska, Fred, Ed.

    Model programs designed to promote diversity within the West Valley-Mission Community College District (WVMCCD) in California are discussed and described in this report. First, an introductory chapter, "The Importance of Cultural Issues to Higher Education," by Gustavo A. Mellander and Fred Prochaska, reviews the diversity recommendations of the…

  4. Assessing top- and subsoil organic carbon stocks of Low-Input High-Diversity systems using soil and vegetation characteristics.

    PubMed

    Ottoy, Sam; Van Meerbeek, Koenraad; Sindayihebura, Anicet; Hermy, Martin; Van Orshoven, Jos

    2017-03-01

    The soil organic carbon (SOC) stock is an important indicator in ecosystem service assessments. Even though a considerable fraction of the total stock is stored in the subsoil, current assessments often consider the topsoil only. Furthermore, mapping efforts are hampered by the limited spatial density of these topsoil measurements. The aim of this study was to assess the SOC stock in the upper 100cm of soil in 30,556ha of Low-Input High-Diversity systems, such as nature reserves, in Flanders (Belgium) and compare this estimate with the stock found in the topsoil (upper 15cm). To this end, we combined depth extrapolation of 139 measurements limited to the topsoil with four digital soil mapping techniques: multiple linear regression, boosted regression trees, artificial neural networks and least-squares support vector machines. Particular attention was given to vegetation characteristics as predictors. For both the stock in the upper 15cm and 100cm, a boosted regression trees approach was most informative as it resulted in the lowest cross-validation errors and provided insights in the relative importance of predictors. The predictors of the stock in the upper 100cm were soil type, groundwater level, clay fraction and community weighted mean (CWM) and variance (CWV) of plant height. These predictors, together with the CWM of specific leaf area, aboveground biomass production, CWV and CWM of rooting depth, terrain slope, CWM of mycorrhizal associations and species diversity also explained the topsoil stock. Our total stock estimates show that focusing on the topsoil (1.63Tg OC) only considers 36% of the stock in the upper 100cm (4.53Tg OC). Given the magnitude of subsoil OC and its dependency on typical ecosystem characteristics, it should not be neglected in regional ecosystem service assessments.

  5. Improved meteorology from an updated WRF/CMAQ modeling system with MODIS vegetation and albedo

    EPA Science Inventory

    Realistic vegetation characteristics and phenology from the Moderate Resolution Imaging Spectroradiometer (MODIS) products improve the simulation for the meteorology and air quality modeling system WRF/CMAQ (Weather Research and Forecasting model and Community Multiscale Air Qual...

  6. Modelling Holocene peatland and permafrost dynamics with the LPJ-GUESS dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Chaudhary, Nitin; Miller, Paul A.; Smith, Benjamin

    2016-04-01

    Dynamic global vegetation models (DGVMs) are an important platform to study past, present and future vegetation patterns together with associated biogeochemical cycles and climate feedbacks (e.g. Sitch et al. 2008, Smith et al. 2001). However, very few attempts have been made to simulate peatlands using DGVMs (Kleinen et al. 2012, Tang et al. 2015, Wania et al. 2009a). In the present study, we have improved the peatland dynamics in the state-of-the-art dynamic vegetation model (LPJ-GUESS) in order to understand the long-term evolution of northern peatland ecosystems and to assess the effect of changing climate on peatland carbon balance. We combined a dynamic multi-layer approach (Frolking et al. 2010, Hilbert et al. 2000) with soil freezing-thawing functionality (Ekici et al. 2015, Wania et al. 2009a) in LPJ-GUESS. The new model is named LPJ-GUESS Peatland (LPJ-GUESS-P) (Chaudhary et al. in prep). The model was calibrated and tested at the sub-arctic mire in Stordalen, Sweden, and the model was able to capture the reported long-term vegetation dynamics and peat accumulation patterns in the mire (Kokfelt et al. 2010). For evaluation, the model was run at 13 grid points across a north to south transect in Europe. The modelled peat accumulation values were found to be consistent with the published data for each grid point (Loisel et al. 2014). Finally, a series of additional experiments were carried out to investigate the vulnerability of high-latitude peatlands to climate change. We find that the Stordalen mire will sequester more carbon in the future due to milder and wetter climate conditions, longer growing seasons, and the carbon fertilization effect. References: - Chaudhary et al. (in prep.). Modelling Holocene peatland and permafrost dynamics with the LPJ-GUESS dynamic vegetation model - Ekici A, et al. 2015. Site-level model intercomparison of high latitude and high altitude soil thermal dynamics in tundra and barren landscapes. The Cryosphere 9: 1343

  7. Modeling the effect of wave-vegetation interaction on wave setup

    NASA Astrophysics Data System (ADS)

    van Rooijen, A. A.; McCall, R. T.; van Thiel de Vries, J. S. M.; van Dongeren, A. R.; Reniers, A. J. H. M.; Roelvink, J. A.

    2016-06-01

    Aquatic vegetation in the coastal zone attenuates wave energy and reduces the risk of coastal hazards, e.g., flooding. Besides the attenuation of sea-swell waves, vegetation may also affect infragravity-band (IG) waves and wave setup. To date, knowledge on the effect of vegetation on IG waves and wave setup is lacking, while they are potentially important parameters for coastal risk assessment. In this study, the storm impact model XBeach is extended with formulations for attenuation of sea-swell and IG waves, and wave setup effects in two modes: the sea-swell wave phase-resolving (nonhydrostatic) and the phase-averaged (surfbeat) mode. In surfbeat mode, a wave shape model is implemented to capture the effect of nonlinear wave-vegetation interaction processes on wave setup. Both modeling modes are verified using data from two flume experiments with mimic vegetation and show good skill in computing the sea-swell and IG wave transformation, and wave setup. In surfbeat mode, the wave setup prediction greatly improves when using the wave shape model, while in nonhydrostatic mode (nonlinear) intrawave effects are directly accounted for. Subsequently, the model is used for a range of coastal geomorphological configurations by varying bed slope and vegetation extent. The results indicate that the effect of wave-vegetation interaction on wave setup may be relevant for a range of typical coastal geomorphological configurations (e.g., relatively steep to gentle slope coasts fronted by vegetation).

  8. Soil C and N models that integrate microbial diversity.

    PubMed

    Louis, Benjamin P; Maron, Pierre-Alain; Viaud, Valérie; Leterme, Philippe; Menasseri-Aubry, Safya

    Industrial agriculture is yearly responsible for the loss of 55-100 Pg of historical soil carbon and 9.9 Tg of reactive nitrogen worldwide. Therefore, management practices should be adapted to preserve ecological processes and reduce inputs and environmental impacts. In particular, the management of soil organic matter (SOM) is a key factor influencing C and N cycles. Soil microorganisms play a central role in SOM dynamics. For instance, microbial diversity may explain up to 77 % of carbon mineralisation activities. However, soil microbial diversity is actually rarely taken into account in models of C and N dynamics. Here, we review the influence of microbial diversity on C and N dynamics, and the integration of microbial diversity in soil C and N models. We found that a gain of microbial richness and evenness enhances soil C and N dynamics on the average, though the improvement of C and N dynamics depends on the composition of microbial community. We reviewed 50 models integrating soil microbial diversity. More than 90 % of models integrate microbial diversity with discrete compartments representing conceptual functional groups (64 %) or identified taxonomic groups interacting in a food web (28 %). Half of the models have not been tested against an empirical dataset while the other half mainly consider fixed parameters. This is due to the difficulty to link taxonomic and functional diversity.

  9. Projected Future Vegetation Changes for the Northwest United States and Southwest Canada at a Fine Spatial Resolution Using a Dynamic Global Vegetation Model.

    PubMed

    Shafer, Sarah L; Bartlein, Patrick J; Gray, Elizabeth M; Pelltier, Richard T

    2015-01-01

    Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0-58.0°N latitude by 136.6-103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070-2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas.

  10. Projected Future Vegetation Changes for the Northwest United States and Southwest Canada at a Fine Spatial Resolution Using a Dynamic Global Vegetation Model

    PubMed Central

    Shafer, Sarah L.; Bartlein, Patrick J.; Gray, Elizabeth M.; Pelltier, Richard T.

    2015-01-01

    Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0–58.0°N latitude by 136.6–103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070–2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas. PMID:26488750

  11. Projected future vegetation changes for the northwest United States and southwest Canada at a fine spatial resolution using a dynamic global vegetation model.

    USGS Publications Warehouse

    Shafer, Sarah; Bartlein, Patrick J.; Gray, Elizabeth M.; Pelltier, Richard T.

    2015-01-01

    Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0–58.0°N latitude by 136.6–103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070–2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas.

  12. A gradient model of vegetation and climate utilizing NOAA satellite imagery. Phase 1: Texas transect

    NASA Technical Reports Server (NTRS)

    Greegor, D. H.; Norwine, J.

    1981-01-01

    A new experimental climatological model/variable termed the sponge, a measure of moisture availability based on daily temperature maxima and minima and precipitation, is tested for potential biogeographic, ecological, and agro-climatological applications. Results, depicted in tabular and graphic from, suggest that, as a generalized climatic index, sponge's simplicity and sensitivity make particularly appropriate for trans-regional biogeographic studies (e.g., large-area and global vegetation monitoring). The feasibility of utilizing NOAA/AVHRR data for vegetation classification was investigated and a vegetation gradient model that utilizes sponge, and AVHRR pixel data (channels 1 and 2) were obtained for 12 locations. The normalized difference values for the AVHRR data when plotted against vegetation characteristics (biomass, net productivity, leaf area) and sponge values suggest that a multivariate gradient model incorporating AVHRR and sponge data may indeed be useful in global vegetation stratification and monitoring.

  13. Microwave measurement and modeling of the dielectric properties of vegetation

    NASA Astrophysics Data System (ADS)

    Shrestha, Bijay Lal

    Some of the important applications of microwaves in the industrial, scientific and medical sectors include processing and treatment of various materials, and determining their physical properties. The dielectric properties of the materials of interest are paramount irrespective of the applications, hence, a wide range of materials covering food products, building materials, ores and fuels, and biological materials have been investigated for their dielectric properties. However, very few studies have been conducted towards the measurement of dielectric properties of green vegetations, including commercially important plant crops such as alfalfa. Because of its high nutritional value, there is a huge demand for this plant and its processed products in national and international markets, and an investigation into the possibility of applying microwaves to improve both the net yield and quality of the crop can be beneficial. Therefore, a dielectric measurement system based upon the probe reflection technique has been set up to measure dielectric properties of green plants over a frequency range from 300 MHz to 18 GHz, moisture contents from 12%, wet basis to 79%, wet basis, and temperatures from -15°C to 30°C. Dielectric properties of chopped alfalfa were measured with this system over frequency range of 300 MHz to 18 GHz, moisture content from 11.5%, wet basis, to 73%, wet basis, and density over the range from 139 kg m-3 to 716 kg m-3 at 23°C. The system accuracy was found to be +/-6% and +/-10% in measuring the dielectric constant and loss factor respectively. Empirical, semi empirical and theoretical models that require only moisture content and operating frequency were determined to represent the dielectric properties of both leaves and stems of alfalfa at 22°C. The empirical models fitted the measured dielectric data extremely well. The root mean square error (RMSE) and the coefficient of determination (r2) for dielectric constant and loss factor of leaves

  14. Plant functional types in Earth system models: past experiences and future directions for application of dynamic vegetation models in high-latitude ecosystems

    PubMed Central

    Wullschleger, Stan D.; Epstein, Howard E.; Box, Elgene O.; Euskirchen, Eugénie S.; Goswami, Santonu; Iversen, Colleen M.; Kattge, Jens; Norby, Richard J.; van Bodegom, Peter M.; Xu, Xiaofeng

    2014-01-01

    Background Earth system models describe the physical, chemical and biological processes that govern our global climate. While it is difficult to single out one component as being more important than another in these sophisticated models, terrestrial vegetation is a critical player in the biogeochemical and biophysical dynamics of the Earth system. There is much debate, however, as to how plant diversity and function should be represented in these models. Scope Plant functional types (PFTs) have been adopted by modellers to represent broad groupings of plant species that share similar characteristics (e.g. growth form) and roles (e.g. photosynthetic pathway) in ecosystem function. In this review, the PFT concept is traced from its origin in the early 1800s to its current use in regional and global dynamic vegetation models (DVMs). Special attention is given to the representation and parameterization of PFTs and to validation and benchmarking of predicted patterns of vegetation distribution in high-latitude ecosystems. These ecosystems are sensitive to changing climate and thus provide a useful test case for model-based simulations of past, current and future distribution of vegetation. Conclusions Models that incorporate the PFT concept predict many of the emerging patterns of vegetation change in tundra and boreal forests, given known processes of tree mortality, treeline migration and shrub expansion. However, representation of above- and especially below-ground traits for specific PFTs continues to be problematic. Potential solutions include developing trait databases and replacing fixed parameters for PFTs with formulations based on trait co-variance and empirical trait–environment relationships. Surprisingly, despite being important to land–atmosphere interactions of carbon, water and energy, PFTs such as moss and lichen are largely absent from DVMs. Close collaboration among those involved in modelling with the disciplines of taxonomy, biogeography

  15. Item Response Modeling: An Evaluation of the Children's Fruit and Vegetable Self-Efficacy Questionnaire

    ERIC Educational Resources Information Center

    Watson, Kathy; Baranowski, Tom; Thompson, Debbe

    2006-01-01

    Perceived self-efficacy (SE) for eating fruit and vegetables (FV) is a key variable mediating FV change in interventions. This study applies item response modeling (IRM) to a fruit, juice and vegetable self-efficacy questionnaire (FVSEQ) previously validated with classical test theory (CTT) procedures. The 24-item (five-point Likert scale) FVSEQ…

  16. Do Stacked Species Distribution Models Reflect Altitudinal Diversity Patterns?

    PubMed Central

    Mateo, Rubén G.; Felicísimo, Ángel M.; Pottier, Julien; Guisan, Antoine; Muñoz, Jesús

    2012-01-01

    The objective of this study was to evaluate the performance of stacked species distribution models in predicting the alpha and gamma species diversity patterns of two important plant clades along elevation in the Andes. We modelled the distribution of the species in the Anthurium genus (53 species) and the Bromeliaceae family (89 species) using six modelling techniques. We combined all of the predictions for the same species in ensemble models based on two different criteria: the average of the rescaled predictions by all techniques and the average of the best techniques. The rescaled predictions were then reclassified into binary predictions (presence/absence). By stacking either the original predictions or binary predictions for both ensemble procedures, we obtained four different species richness models per taxa. The gamma and alpha diversity per elevation band (500 m) was also computed. To evaluate the prediction abilities for the four predictions of species richness and gamma diversity, the models were compared with the real data along an elevation gradient that was independently compiled by specialists. Finally, we also tested whether our richness models performed better than a null model of altitudinal changes of diversity based on the literature. Stacking of the ensemble prediction of the individual species models generated richness models that proved to be well correlated with the observed alpha diversity richness patterns along elevation and with the gamma diversity derived from the literature. Overall, these models tend to overpredict species richness. The use of the ensemble predictions from the species models built with different techniques seems very promising for modelling of species assemblages. Stacking of the binary models reduced the over-prediction, although more research is needed. The randomisation test proved to be a promising method for testing the performance of the stacked models, but other implementations may still be developed. PMID

  17. Accounting for spatial variation in vegetation properties improves simulations of Amazon forest biomass and productivity in a global vegetation model

    NASA Astrophysics Data System (ADS)

    de Almeida Castanho, A. D.; Coe, M. T.; Heil Costa, M.; Malhi, Y.; Galbraith, D.; Quesada, C. A.

    2012-08-01

    Dynamic vegetation models forced with spatially homogeneous biophysical parameters are capable of producing average productivity and biomass values for the Amazon basin forest biome that are close to the observed estimates, but are unable to reproduce the observed spatial variability. Recent observational studies have shown substantial regional spatial variability of above-ground productivity and biomass across the Amazon basin, which is believed to be primarily driven by soil physical and chemical properties. In this study, spatial heterogeneity of vegetation properties is added to the IBIS land surface model, and the simulated productivity and biomass of the Amazon basin are compared to observations from undisturbed forest. The maximum Rubisco carboxylation capacity (Vcmax) and the woody biomass residence time (τw) were found to be the most important properties determining the modeled spatial variation of above-ground woody net primary productivity and biomass, respectively. Spatial heterogeneity of these properties may lead to a spatial variability of 1.8 times in the simulated woody net primary productivity and 2.8 times in the woody above-ground biomass. The coefficient of correlation between the modeled and observed woody productivity improved from 0.10 with homogeneous parameters to 0.73 with spatially heterogeneous parameters, while the coefficient of correlation between the simulated and observed woody above-ground biomass improved from 0.33 to 0.88. The results from our analyses with the IBIS dynamic vegetation model demonstrate that using single values for key ecological parameters in the tropical forest biome severely limits simulation accuracy. We emphasize that our approach must be viewed as an important first step and that a clearer understanding of the biophysical mechanisms that drive the spatial variability of carbon allocation, τw and Vcmax are necessary.

  18. How much does weather-driven vegetation dynamics matter in land surface modelling?

    NASA Astrophysics Data System (ADS)

    Ingwersen, Joachim; Streck, Thilo

    2016-04-01

    Land surface models (LSM) are an essential part of weather and climate models as they provide the lower boundary condition for the atmospheric models. In state-of-the-art LSMs the seasonal vegetation dynamics is "frozen". The seasonal variation of vegetation state variables, such as leaf area index or green vegetation fraction, are prescribed in lookup tables. Hence, a year-by-year variation in the development of vegetation due to changing weather conditions cannot be considered. For climate simulations, this is obviously a severe drawback. The objective of the present study was to quantify the potential error in the simulation of land surface exchange processes resulting from "frozen" vegetation dynamics. For this purpose we simulated energy and water fluxes from a winter wheat stand and a maize stand in Southwest Germany. In a first set of simulations, six years (2010 to 2015) were simulated considering weather-driven vegetation dynamics. For this purpose, we coupled the generic crop growth model GECROS with the NOAH-MP model (NOAHMP-GECROS). In a second set of simulations all vegetation-related state variables of the 2010 simulation were written to an external file and were used to overwrite the vegetation-related state variables of the simulations of the years 2011-2015. The difference between both sets was taken as a measure for the potential error introduced to the LSM due to the assumption of a "frozen" vegetation dynamics. We will present first results and discuss the impact of "frozen" vegetation dynamics on climate change simulations.

  19. Laboratory measurements of wave attenuation through model and live vegetation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surge and waves generated by hurricanes and tropical storms often cause severe damage and loss of life in coastal areas. It is widely recognized that wetlands along coastal fringes reduce storm surge and waves. Yet, the potential role and primary mechanisms of wave mitigation by wetland vegetation a...

  20. Experimental investigation of wave attenuation through model and live vegetation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hurricanes and tropical storms often cause severe damage and loss of life in coastal areas. It is widely recognized that wetlands along coastal fringes reduce storm surge and waves. Yet, the potential role and primary mechanisms of wave mitigation by wetland vegetation are not fully understood. K...

  1. Powdered hide model for vegetable tanning II. hydrolyzable tannin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable tannages employ both condensed and hydrolyzable tannins. As part of our exploration of tanning mechanisms, we reported last year on interactions of the condensed tannin, quebracho, with powdered hide. In this study, the interactions of chestnut extract, a hydrolyzable tannin, with powdere...

  2. [Application of biotope mapping model integrated with vegetation cover continuity attributes in urban biodiversity conservation].

    PubMed

    Gao, Tian; Qiu, Ling; Chen, Cun-gen

    2010-09-01

    Based on the biotope classification system with vegetation structure as the framework, a modified biotope mapping model integrated with vegetation cover continuity attributes was developed, and applied to the study of the greenbelts in Helsingborg in southern Sweden. An evaluation of the vegetation cover continuity in the greenbelts was carried out by the comparisons of the vascular plant species richness in long- and short-continuity forests, based on the identification of woodland continuity by using ancient woodland indicator species (AWIS). In the test greenbelts, long-continuity woodlands had more AWIS. Among the forests where the dominant trees were more than 30-year-old, the long-continuity ones had a higher biodiversity of vascular plants, compared with the short-continuity ones with the similar vegetation structure. The modified biotope mapping model integrated with the continuity features of vegetation cover could be an important tool in investigating urban biodiversity, and provide corresponding strategies for future urban biodiversity conservation.

  3. A model for predicting continental-scale vegetation distribution and water balance

    SciTech Connect

    Neilson, R.P.

    1995-05-01

    A Mapped atmosphere-Plant-Soil System (MAPSS) has been constructed for simulating the potential biosphere impacts and biosphere-atmosphere feedbacks from climatic change. The system calculates the potential vegetation type and leaf area that could be supported at a site, within the constraints of the abiotic climate. Both woody vegetation and grass are supported and compete for light and water. The woody vegetation can be either trees or shrubs, evergreen or deciduous, and needleleaved or broadleaved. A complete site water balance is calculated and integrates the vegetation leaf area and stomatal conductance in canopy transpiration and soil hydrology. The MAPSS model accurately simulates the distributions of forests, grasslands, and deserts and reproduces observed monthly runoff. The model can be used for predictions of new vegetation distribution patterns, soil moisture, and runoff patterns in alternative climates. 112 refs., 11 figs., 4 tabs.

  4. Developing an algorithm for enhancement of a digital terrain model for a densely vegetated floodplain wetland

    NASA Astrophysics Data System (ADS)

    Mirosław-Świątek, Dorota; Szporak-Wasilewska, Sylwia; Michałowski, Robert; Kardel, Ignacy; Grygoruk, Mateusz

    2016-07-01

    Airborne laser scanning survey data were conducted with a scanning density of 4 points/m2 to accurately map the surface of a unique central European complex of wetlands: the lower Biebrza River valley (Poland). A method to correct a degrading effect of vegetation (so-called "vegetation effect") on digital terrain models (DTMs) was applied utilizing remotely sensed images, real-time kinematic global positioning system elevation measurements, topographical surveys, and vegetation height measurements. Geographic object-based image analysis (GEOBIA) was performed to map vegetation within the study area that was used as categories from which vegetation height information was derived for the DTM correction. The final DTM was compared with a model obtained, where additional correction of the "vegetation effect" was neglected. A comparison between corrected and uncorrected DTMs demonstrated the importance of accurate topography through a simple presentation of the discrepancies arising in features of the flood using various DTM products. An overall map classification accuracy of 80% was attained with the use of GEOBIA. Correction factors developed for various types of the vegetation reached values from 0.08 up to 0.92 m and were dependent on the vegetation type.

  5. Effects of vegetation structure on biomass accumulation in a coupled water-carbon-energy balance model in West Africa

    NASA Astrophysics Data System (ADS)

    Yin, Zun; Dekker, Stefan; van den Hurk, Bart; Dijkstra, Henk

    2013-04-01

    A myriad of interactions exist between vegetation and local climate for arid and semi-arid regions. Vegetation function, structure and individual behavior have enormous impacts on carbon-water-energy balances, which consequently influence local climate variability that, in turn, feeds back to the vegetation. In this study, a conceptual vegetation structure scheme is formulated and tested in a new carbon-water-energy coupled model to explore the importance of vegetation structure on equilibrium biomass states. Two different strategies of vegetation adaptation to water stress are included. Surface energy, water and carbon fluxes are simulated for a range of vegetation structures across a precipitation gradient in West Africa and optimal vegetation structures that maximize biomass for each precipitation regime are determined. Under dry conditions vegetation tries to maximize the Water Use Efficiency and Leaf Area Index as it tries to maximize carbon gain. However, as the vegetation can also engineer its environment by extracting water from the surrounding bare soil (thereby forming patches of vertical vegetation) it can also minimize its vegetation cover. With increasing precipitation, the vegetation tries to maximize its cover as it then can reduce water loss from bare soil while having maximum carbon gain due to a large Leaf Area Index. The competition between vegetation and bare soil determines a transition between a 'survival' regime to a 'growing' regime. The new modeling framework is useful to represent the effects of dynamic vegetation structure in coupled land-atmosphere feedback models.

  6. Biglan Model Test Based on Institutional Diversity.

    ERIC Educational Resources Information Center

    Roskens, Ronald W.; Creswell, John W.

    The Biglan model, a theoretical framework for empirically examining the differences among subject areas, classifies according to three dimensions: adherence to common set of paradigms (hard or soft), application orientation (pure or applied), and emphasis on living systems (life or nonlife). Tests of the model are reviewed, and a further test is…

  7. The diversity changes of soil microbial communities stimulated by climate, soil type and vegetation type analyzed via a functional gene array.

    PubMed

    Chen, Fu; Tan, Min; Yang, Yongjun; Ma, Jing; Zhang, Shaoliang; Li, Gang

    2015-11-01

    The aim of this study was to analyze the changes of soil microbial communities stimulated by climate, soil type and vegetation type using a functional gene array. The dataset GSE51592 was obtained from Gene Expression Omnibus, including 54 soil samples. Genetic diversity variation of samples under different sites, soil and vegetation types was examined by calculating the percentage of specific gene number in each sample. Furthermore, gene functional categories and microorganism species in samples under different environmental factors were respectively divided. Gene number in samples with cropping was higher than in samples without cropping. When site, soil type and vegetation type were as the sole variable, respectively, the percentage of specific genes in samples from Yingtan, in phaeozem samples and in samples with cropping was higher. Furthermore, the percentage of gene number in organic remediation for phaeozem and cambisol samples was significant at p < 0.05, comparing with that for acrisol samples. At superkingdom level of microorganisms, for the same category, there was no significant difference (p < 0.05) between the samples. At phylum level, for the categories of Bacteroidetes and Cyanobacteria, the percentage of gene number in cambisol samples was significantly higher (p < 0.05). Conversely, in the category of Proteobacteria, the percentage of gene number in phaeozem and acrisol samples was markedly higher (p < 0.05). Microbial diversity of soil was cooperatively driven by climate, soil type and vegetation type.

  8. Integrating microbial diversity in soil carbon dynamic models parameters

    NASA Astrophysics Data System (ADS)

    Louis, Benjamin; Menasseri-Aubry, Safya; Leterme, Philippe; Maron, Pierre-Alain; Viaud, Valérie

    2015-04-01

    Faced with the numerous concerns about soil carbon dynamic, a large quantity of carbon dynamic models has been developed during the last century. These models are mainly in the form of deterministic compartment models with carbon fluxes between compartments represented by ordinary differential equations. Nowadays, lots of them consider the microbial biomass as a compartment of the soil organic matter (carbon quantity). But the amount of microbial carbon is rarely used in the differential equations of the models as a limiting factor. Additionally, microbial diversity and community composition are mostly missing, although last advances in soil microbial analytical methods during the two past decades have shown that these characteristics play also a significant role in soil carbon dynamic. As soil microorganisms are essential drivers of soil carbon dynamic, the question about explicitly integrating their role have become a key issue in soil carbon dynamic models development. Some interesting attempts can be found and are dominated by the incorporation of several compartments of different groups of microbial biomass in terms of functional traits and/or biogeochemical compositions to integrate microbial diversity. However, these models are basically heuristic models in the sense that they are used to test hypotheses through simulations. They have rarely been confronted to real data and thus cannot be used to predict realistic situations. The objective of this work was to empirically integrate microbial diversity in a simple model of carbon dynamic through statistical modelling of the model parameters. This work is based on available experimental results coming from a French National Research Agency program called DIMIMOS. Briefly, 13C-labelled wheat residue has been incorporated into soils with different pedological characteristics and land use history. Then, the soils have been incubated during 104 days and labelled and non-labelled CO2 fluxes have been measured at ten

  9. Dietary Diversity and Vegetable and Fruit Consumption of Households in a Resource-Poor Peri-Urban South Africa Community Differ by Food Security Status.

    PubMed

    Faber, Mieke; Wenhold, Friede A M; Laurie, Sunette M

    2017-01-01

    Sociodemographic, living standard measure, consumption of vegetables and fruit, and dietary diversity in relation to household food security were assessed. Using a hunger score, households were categorized as food secure (n = 125) or food insecure (n = 273). Food secure respondents had a higher mean dietary diversity score (3.98; 95%CI [3.79, 4.18] versus 3.65; 95% [CI 3.53, 3.77]), were more likely to eat vitamin A-rich foods (OR 1.15; 95% CI [1.05, 1.26]), a more varied diet (DDS ≥ 4, OR 1.90; 95% CI [1.19, 3.13]), and vegetables daily (OR 3.37; 95% CI [2.00, 5.76]). Cost limited daily vegetable/fruit consumption in food insecure households. Respondents with ≥ 8 years of schooling were more likely (OR 2.07; 95% CI [1.22, 3.53]) and households receiving social grants were less likely (OR 0.37; 95% CI [0.19, 0.72]) to be food secure. Results highlight the association between dietary diversity and household food security.

  10. The Association between Self-Reported Grocery Store Access, Fruit and Vegetable Intake, Sugar-Sweetened Beverage Consumption, and Obesity in a Racially Diverse, Low-Income Population

    PubMed Central

    Gase, Lauren Nichol; DeFosset, Amelia Rose; Smith, Lisa V.; Kuo, Tony

    2014-01-01

    This study sought to examine the relationship between self-reported time and distance to the nearest retail grocery store, healthy and unhealthy food consumption, and objectively measured body mass index (BMI). We conducted a survey with 1,503 racially diverse, low-income residents at five public health centers in Los Angeles County. Most participants reported shopping at a supermarket (86.7%) and driving (59.9%) to their usual source for groceries. Over half reported living less than a mile from (58.9%) and traveling 5 min or less to reach (50.3%) the nearest grocery store. In the multivariable regression models, neither self-reported distance nor time to the nearest grocery store was consistently associated with fruit and vegetable intake, sugar-sweetened beverage consumption, or BMI. Results suggest that the need to consider access and quality as well as urban planning and transportation, when examining the relationship between the retail food environment and health outcomes. PMID:25426485

  11. Dynamic modeling of vegetation change in arid lands

    NASA Technical Reports Server (NTRS)

    Robinson, V. B.; Coiner, J. C.; Barringer, T. H.

    1982-01-01

    A general framework for a digital desertification monitoring system (DDMS) for assessing the worldwide desertification growth rate is presented. The system relies on the development of Landsat derived indicators to identify local processes signalling the growth of arid regions. A study area consisting of the eastern edge of the Niger River delta in Mali was used to characterize three indicators in terms of the covariance of the multispectral scanner (MSS) bands 2 and 4, the correlation of the two bands, and the percent variance expressed by the first eigenvalue. The scenes are imaged multitemporallly in a 400 x 400 pixel array to detect vegetation cover changes. Criteria were defined which characterized the decrease or increase of vegetation. It was determined that the correlation coefficients are the best indicators, and are easily computed.

  12. Vegetation Cover in a Warmer World Simulated using a Dynamic Global Vegetation Model for the mid Pliocene

    NASA Astrophysics Data System (ADS)

    Haywood, A. M.; Valdes, P. J.; Sellwood, B. W.

    2005-12-01

    In this study we employ the TRIFFID Dynamic Global Vegetation Model (DGVM) and the HadAM3 GCM to investigate vegetation distributions and climate-vegetation feedbacks during the mid Pliocene, and examine the implications of these results for the origins of hominid bipedalism. The TRIFFID model outputs broadly support extant palaeoenvironmental reconstructions for the mid Pliocene provided by the PRISM Group (Pliocene Research Interpretations and Synoptic Mapping). TRIFFID simulates a significant increase in forest cover, composed of Needle leaf trees in the higher latitudes of the Northern Hemisphere and Broad leaf trees in other regions. Needle leaf trees extend from the Arctic Coast into the northern mid latitudes. The fractional coverage of bare soil declines in North Africa, the Arabian Peninsula, Australia and southern South America which is consistent with PRISM's assertion of a reduced geographical coverage of arid deserts. A significant increase in the fractional coverage of both Broad leaf trees in Africa and South America is not indicative of a major expansion in the tropical rainforests. Rather, it represents an expansion of general forest and woodland type habitats in these regions. The principal impact of using a DGVM on the GCM predicted climatology is to reduce minimum and maximum temperature extremes, thus reducing the seasonality of temperature over wide regions. The expansion in Broad leaf trees in Africa is not compatible with the `savannah hypothesis' for the evolution of hominid bipedalism. Rather the results lend credence to an alternative hypothesis which suggests that bipedalism evolved in wooded to forested ecosystems and was, for several million years, linked to arborealism.

  13. Evaluation of a new model of aeolian transport in the presence of vegetation

    USGS Publications Warehouse

    Li, Junran; Okin, Gregory S.; Herrick, Jeffrey E.; Belnap, Jayne; Miller, Mark E.; Vest, Kimberly; Draut, Amy E.

    2013-01-01

    Aeolian transport is an important characteristic of many arid and semiarid regions worldwide that affects dust emission and ecosystem processes. The purpose of this paper is to evaluate a recent model of aeolian transport in the presence of vegetation. This approach differs from previous models by accounting for how vegetation affects the distribution of shear velocity on the surface rather than merely calculating the average effect of vegetation on surface shear velocity or simply using empirical relationships. Vegetation, soil, and meteorological data at 65 field sites with measurements of horizontal aeolian flux were collected from the Western United States. Measured fluxes were tested against modeled values to evaluate model performance, to obtain a set of optimum model parameters, and to estimate the uncertainty in these parameters. The same field data were used to model horizontal aeolian flux using three other schemes. Our results show that the model can predict horizontal aeolian flux with an approximate relative error of 2.1 and that further empirical corrections can reduce the approximate relative error to 1.0. The level of error is within what would be expected given uncertainties in threshold shear velocity and wind speed at our sites. The model outperforms the alternative schemes both in terms of approximate relative error and the number of sites at which threshold shear velocity was exceeded. These results lend support to an understanding of the physics of aeolian transport in which (1) vegetation's impact on transport is dependent upon the distribution of vegetation rather than merely its average lateral cover and (2) vegetation impacts surface shear stress locally by depressing it in the immediate lee of plants rather than by changing the bulk surface's threshold shear velocity. Our results also suggest that threshold shear velocity is exceeded more than might be estimated by single measurements of threshold shear stress and roughness length

  14. An Analytical Model for the Distributions of Velocity and Discharge in Compound Channels with Submerged Vegetation

    PubMed Central

    Jiang, Beihan; Yang, Kejun; Cao, Shuyou

    2015-01-01

    Based on the momentum transfer theory, an analytical model is proposed for the velocity and discharge distributions in compound channels with submerged vegetation on the floodplain. The partially vegetated channel was divided into three sub-regions, i.e. the main channel region, the floodplain region with submerged vegetation and the floodplain region without vegetation. For each region, the force balance relationship was established, and the momentum transfer between different regions was presented. Verification by the experimental data and comparison with the traditional method shows that the proposed method is capable of predicting for the velocity and discharge distributions in compound channels with submerged vegetation and is superior to the conventional method. The results also show that when the momentum transfer between different regions is ignored, the computed discharge will be much lager than the measured data, and the error increases with the discharge, especially in the floodplain region. PMID:26161661

  15. Parsimonious modeling of vegetation dynamics for ecohydrologic studies of water-limited ecosystems

    NASA Astrophysics Data System (ADS)

    Montaldo, Nicola; Rondena, Roberta; Albertson, John D.; Mancini, Marco

    2005-10-01

    The structure and function of vegetation regulate fluxes across the biosphere-atmosphere interface with large effects in water-limited ecosystems. Vegetation dynamics are often neglected in hydrological modeling except for simple prescriptions of seasonal phenology. However, changes in vegetation densities, influencing the partitioning of incoming solar energy into sensible and latent heat fluxes, can result in long-term changes in both local and global climates with resulting feedbacks on vegetation growth. This paper seeks a simple vegetation dynamics model (VDM) for simulation of the leaf area index (LAI) dynamics in hydrologic models. Five variants of a VDM are employed, with a range of model complexities. The VDMs are coupled to a land surface model (LSM), with the VDM providing the LAI evolution through time and the LSM using this to compute the land surface fluxes and update the soil water contents. We explore the models through case studies of water-limited grass fields in California (United States) and North Carolina (United States). Results show that a simple VDM, simulating only the living aboveground green biomass (i.e., with low parameterization), is able to accurately simulate the LAI. Results also highlight the importance of including the VDM in the LSM when studying the climate-soil-vegetation interactions over moderate to long timescales. The inclusion of the VDM in the LSM is demonstrated to be essential for assessing the impact of interannual rainfall variability on the water budget of a water limited region.

  16. 6-n-propylthiouracil taster status not related to reported cruciferous vegetable intake among ethnically diverse children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sensitivity to the taste of 6-n-propylthiouracil (PROP) (a bitter chemical related to the phenylthiocarbamide found in cruciferous vegetables) has been related to dietary intake or preferences of cruciferous vegetables among adults and young children but not middle-aged children or adolescents. We h...

  17. Fractional vegetation cover estimation based on an improved selective endmember spectral mixture model.

    PubMed

    Li, Ying; Wang, Hong; Li, Xiao Bing

    2015-01-01

    Vegetation is an important part of ecosystem and estimation of fractional vegetation cover is of significant meaning to monitoring of vegetation growth in a certain region. With Landsat TM images and HJ-1B images as data source, an improved selective endmember linear spectral mixture model (SELSMM) was put forward in this research to estimate the fractional vegetation cover in Huangfuchuan watershed in China. We compared the result with the vegetation coverage estimated with linear spectral mixture model (LSMM) and conducted accuracy test on the two results with field survey data to study the effectiveness of different models in estimation of vegetation coverage. Results indicated that: (1) the RMSE of the estimation result of SELSMM based on TM images is the lowest, which is 0.044. The RMSEs of the estimation results of LSMM based on TM images, SELSMM based on HJ-1B images and LSMM based on HJ-1B images are respectively 0.052, 0.077 and 0.082, which are all higher than that of SELSMM based on TM images; (2) the R2 of SELSMM based on TM images, LSMM based on TM images, SELSMM based on HJ-1B images and LSMM based on HJ-1B images are respectively 0.668, 0.531, 0.342 and 0.336. Among these models, SELSMM based on TM images has the highest estimation accuracy and also the highest correlation with measured vegetation coverage. Of the two methods tested, SELSMM is superior to LSMM in estimation of vegetation coverage and it is also better at unmixing mixed pixels of TM images than pixels of HJ-1B images. So, the SELSMM based on TM images is comparatively accurate and reliable in the research of regional fractional vegetation cover estimation.

  18. New Models for Reaching Diverse Learners.

    ERIC Educational Resources Information Center

    Dew, Debra R.; Waggoner, Jan E.

    This paper reports on the influence of a graduate course, "Methods for Masters," designed to broaden the pedagogical repertoires of cooperating teachers by providing experience in six instructional models (cooperative learning, concept attainment, group investigation, learning contracts, simulations, and synectics). The course used…

  19. A structured model for vegetative growth and sporulation in Bacillus thuringiensis.

    PubMed

    Starzak, M; Bajpai, R K

    1991-01-01

    A mathematical model has been developed for the delta-endotoxin producing Bacillus thuringiensis. The structure of the model involves the processes taking place during vegetative growth, those leading to the initiation of sporulation under conditions of carbon and/or nitrogen limitation, and the sporulation events. The key features in the model are the pools of compounds, such as PRPP, IMP, ADP/ATP, GDP/GTP, pyrimidine nucleotides, NAD/NADH2, amino acids, nucleic acids, cell wall, and vegetative and sporulation proteins. These, along with sigma-factors that control the nature of RNA-polymerase during the different phases, effectively stimulate the vegetative growth and sporulation. The initiation of sporulation is controlled by the intracellular concentration of GTP. Results of simulation of vegetative growth, initiation of sporulation, spore protein formation, and production of delta-endotoxin under C- or N-limitation are presented.

  20. A structured model for vegetative growth and sporulation in Bacillus thuringiensis

    SciTech Connect

    Starzak, M.; Bajpai, R.K.

    1991-12-31

    A mathematical model has been developed for the 6-endotoxin producing Bacillus thuringiensis. The structure of the model involves the processes taking place during vegetative growth, those leading to the initiation of sporulation under conditions of carbon and/or nitrogen limitation, and the sporulation events. The key features in the model are the pools of compounds, such as PRPP, IMP, ADP/ATP, GDP/GTP, pyrimidine nucleotides, NAD/NADH{sub 2}, amino acids, nucleic acids, cell wall, and vegetative and sporulation proteins. These, along with a-factors that control the nature of RNA-polymerase during the different phases, effectively stimulate the vegetative growth and sporulation. The initiation of sporulation is controlled by the intracellular concentration of GTP. Results of simulation of vegetative growth, initiation of sporulation, spore protein formation, and production of {delta}-endotoxin under C- or N-limitation are presented.

  1. Predicting use of ineffective responsive, structure and control vegetable parenting practices with the Model of Goal Directed Behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study reports the modeling of three categories of ineffective vegetable parenting practices (IVPP) separately (responsive, structure, and control vegetable parenting practices). An internet survey was employed for a cross sectional assessment of parenting practices and cognitive-emotional varia...

  2. Application of a coupled vegetation competition and groundwater simulation model to study effects of sea level rise and storm surges on coastal vegetation

    USGS Publications Warehouse

    Teh, Su Yean; Turtora, Michael; DeAngelis, Don; Jiang Jiang,; Pearlstine, Leonard G.; Smith, Thomas; Koh, Hock Lye

    2015-01-01

    Global climate change poses challenges to areas such as low-lying coastal zones, where sea level rise (SLR) and storm-surge overwash events can have long-term effects on vegetation and on soil and groundwater salinities, posing risks of habitat loss critical to native species. An early warning system is urgently needed to predict and prepare for the consequences of these climate-related impacts on both the short-term dynamics of salinity in the soil and groundwater and the long-term effects on vegetation. For this purpose, the U.S. Geological Survey’s spatially explicit model of vegetation community dynamics along coastal salinity gradients (MANHAM) is integrated into the USGS groundwater model (SUTRA) to create a coupled hydrology–salinity–vegetation model, MANTRA. In MANTRA, the uptake of water by plants is modeled as a fluid mass sink term. Groundwater salinity, water saturation and vegetation biomass determine the water available for plant transpiration. Formulations and assumptions used in the coupled model are presented. MANTRA is calibrated with salinity data and vegetation pattern for a coastal area of Florida Everglades vulnerable to storm surges. A possible regime shift at that site is investigated by simulating the vegetation responses to climate variability and disturbances, including SLR and storm surges based on empirical information.

  3. Stochastic Modeling of Vegetation Growth, Mortality and Invasion in a Fluvial Floodplain in Interaction with Floods

    NASA Astrophysics Data System (ADS)

    Miyamoto, Hitoshi; Toshimori, Nobuhiko; Kimura, Ryo

    2013-04-01

    Vegetation overgrowth in fluvial floodplains and sand bars has become a serious engineering problem for riparian management in Japan. From both viewpoints of flood control and ecological conservation, it would be necessary to predict the vegetation dynamics accurately for long-term duration. In this research, we have tried to develop a stochastic model for predicting the dynamics of trees in fluvial floodplains with emphasis on the interaction with flood impacts. The model consists of the following four components: (i) long-term stochastic behavior of flow discharge, (ii) hydrodynamics in a channel with floodplain vegetation, (iii) variation of riverbed topography, and (iv) vegetation dynamics on floodplains. In the model, the flood discharge is stochastically simulated using a filtered Poisson process, one of the conventional approaches in hydrological time-series generation. The modeling for vegetation dynamics includes the effects of tree growth, mortality by flood impacts, and infant tree invasion. Vegetation condition has been observed mainly before and after flood impacts since 2008 at a field site located between 23.2-24.0 km from the river mouth in Kako River, Japan. The Kako River has the catchment area of 1,730 km2 and the main channel length of 96 km. This site is one of the vegetation overgrowth locations in the Kako River floodplains, where the predominant tree species are willows and bamboos. In the field survey, the position, trunk diameter and height of each tree as well as the riverbed materials were measured after several flood events to investigate their impacts on the floodplain vegetation community. In this presentation, the three effects in vegetation dynamics, i.e., the tree growth rate, mortality, and infant tree invasion, are refined for improving the model predictability. The growth rate curve proposed here is derived by introducing inhibition effect of larger trees into the conventional Richards growth curve. As for the mortality rate

  4. [Application of five atmospheric correction models for Landsat TM data in vegetation remote sensing].

    PubMed

    Song, Wei-wei; Guan, Dong-sheng

    2008-04-01

    Based on the Landsat TM image of northeast Guangzhou City and north Huizhou City on July 18, 2005, and compared with apparent reflectance model, five atmospheric correction models including four dark object subtraction models and 6S model were evaluated from the aspects of vegetation reflectance, surface reflectance, and normalized difference vegetation index (NDVI). The results showed that the dark object subtraction model DOS4 produced the highest accurate vegetation reflectance, and had the largest information loads for surface reflectance and NDVI, being the best for the atmospheric correction in the study areas. It was necessary to analyze and to compare different models to find out an appropriate model for atmospheric correction in the study of other areas.

  5. Modeling vegetation reflectance from satellite and in-situ monitoring data

    NASA Astrophysics Data System (ADS)

    Zoran, Maria; Florin Zoran, Liviu; Ionescu Golovanov, Carmen; Dida, Adrian

    2010-05-01

    Vegetation can be distinguished using remote sensing data from most other (mainly inorganic) materials by virtue of its notable absorption in the red and blue segments of the visible spectrum, its higher green reflectance and, especially, its very strong reflectance in the near-IR. Different types of vegetation show often distinctive variability from one another owing to such parameters as leaf shape and size, overall plant shape, water content, and associated background (e.g., soil types and spacing of the plants (density of vegetative cover within the scene). Different three-dimensional numerical models explicitly represent the vegetation canopy and use numerical methods to calculate reflectance. These models are computationally intensive and are therefore not generally suited to the correction of satellite imagery containing millions of pixels. Physically based models do provide understanding and are potentially more robust in extrapolation. They consider the vegetation canopy to comprise thin layers of leaves, suspended in air like sediment particles in water forming a turbid medium. Monitoring of vegetation cover changes by remote sensing data is one of the most important applications of satellite imagery. Vegetation reflectance has variations with sun zenith angle, view zenith angle, and terrain slope angle. To provide corrections of these effects, for visible and near-infrared light, was used a three parameters model and developed a simple physical model of vegetation reflectance, by assuming homogeneous and closed vegetation canopy with randomly oriented leaves. Multiple scattering theory was used to extend the model to function for both near-infrared and visible light. This vegetation reflectance model may be used to correct satellite imagery for bidirectional and topographic effects. For two ASTER images over Cernica forested area, placed to the East of Bucharest town , Romania, acquired within minutes from one another ,a nadir and off-nadir for band 3

  6. A Hydrological Model for Predicting the Effects of Dams on the Shoreline Vegetation of Lakes and Reservoirs

    PubMed

    Hill; Keddy; Wisheu

    1998-09-01

    / The species richness of shoreline vegetation of unregulated lakes in Nova Scotia, Canada, is known to increase as a function of catchment area, a topographic variable governing water level fluctuations. Predictions based on catchment area however, fail to account for richness patterns at the margins of lakes enlarged by dams. Here, we compare the vegetation and hydrological regimes of regulated and unregulated systems. Hydrological regimes of regulated systems deviated from natural systems of similar catchment area by being either hypovariable or hypervariable for both within-year and among-year fluctuations in water level. Plant communities of dammed systems were less diverse, contained more exotic species, and were, with one exception, devoid of rare shoreline herbs. Data from "recovering," or previously dammed systems indicated that shoreline communities can be restored upon return of the appropriate hydrological regime. Using observed within-year and among-year water level fluctuation data, we propose a general model for the maintenance or restoration of diverse herbaceous wetlands on shorelines of temperate lakes or reservoirs. Managers can manipulate the within-year water level variation within prescribed limits (1-2 m), while ensuring that among-year variation (SD of summer levels) is less than 25% of within-year variation. This preliminary model is based on data from low-fertility, temperate lakes in river systems. To calibrate the model, plant community data from other regions are needed, as are long-term water-level data for unregulated lakes, data which are essential but largely lacking in many areas.KEY WORDS: Catchment area; Regulated lakes; Shoreline restoration; Rare plants; Exotic plants; Diversity

  7. Linking riparian dynamics and groundwater: an ecohydrologic approach to modeling groundwater and riparian vegetation.

    PubMed

    Baird, Kathryn J; Stromberg, Juliet C; Maddock, Thomas

    2005-10-01

    The growing use of global freshwater supplies is increasing the need for improved modeling of the linkage between groundwater and riparian vegetation. Traditional groundwater models such as MODFLOW have been used to predict changes in regional groundwater levels, and thus riparian vegetation potential attributable to anthropogenic water use. This article describes an approach that improves on these modeling techniques through several innovations. First, evapotranspiration from riparian/wetland systems is modeled in a manner that more realistically reflects plant ecophysiology and vegetation complexity. In the authors' model programs (RIP-ET and PRE-RIP-ET), the single, monotonically increasing evapotranspiration flux curve in traditional groundwater models is replaced with a set of ecophysiologically based curves, one for each plant functional group present. For each group, the curve simulates transpiration declines that occur both as water levels decline below rooting depths and as waters rise to levels that produce anoxic soil conditions. Accuracy is further improved by more effective spatial handling of vegetation distribution, which allows modeling of surface elevation and depth to water for multiple vegetation types within each large model cell. The use of RIP-ET in groundwater models can improve the accuracy of basin scale estimates of riparian evapotranspiration rates, riparian vegetation water requirements, and water budgets. Two case studies are used to demonstrate that RIP-ET produces significantly different evapotranspiration estimates than the traditional method. When combined with vegetation mapping and a supporting program (RIP-GIS), RIP-ET also enables predictions of riparian vegetation response to water use and development scenarios. The RIP-GIS program links the head distribution from MODFLOW with surface digital elevation models, producing moderate- to high-resolution depth-to-groundwater maps. Together with information on plant rooting depths

  8. A fully traits-based approach to modeling global vegetation distribution

    PubMed Central

    van Bodegom, Peter M.; Douma, Jacob C.; Verheijen, Lieneke M.

    2014-01-01

    Dynamic Global Vegetation Models (DGVMs) are indispensable for our understanding of climate change impacts. The application of traits in DGVMs is increasingly refined. However, a comprehensive analysis of the direct impacts of trait variation on global vegetation distribution does not yet exist. Here, we present such analysis as proof of principle. We run regressions of trait observations for leaf mass per area, stem-specific density, and seed mass from a global database against multiple environmental drivers, making use of findings of global trait convergence. This analysis explained up to 52% of the global variation of traits. Global trait maps, generated by coupling the regression equations to gridded soil and climate maps, showed up to orders of magnitude variation in trait values. Subsequently, nine vegetation types were characterized by the trait combinations that they possess using Gaussian mixture density functions. The trait maps were input to these functions to determine global occurrence probabilities for each vegetation type. We prepared vegetation maps, assuming that the most probable (and thus, most suited) vegetation type at each location will be realized. This fully traits-based vegetation map predicted 42% of the observed vegetation distribution correctly. Our results indicate that a major proportion of the predictive ability of DGVMs with respect to vegetation distribution can be attained by three traits alone if traits like stem-specific density and seed mass are included. We envision that our traits-based approach, our observation-driven trait maps, and our vegetation maps may inspire a new generation of powerful traits-based DGVMs. PMID:25225413

  9. A fully traits-based approach to modeling global vegetation distribution.

    PubMed

    van Bodegom, Peter M; Douma, Jacob C; Verheijen, Lieneke M

    2014-09-23

    Dynamic Global Vegetation Models (DGVMs) are indispensable for our understanding of climate change impacts. The application of traits in DGVMs is increasingly refined. However, a comprehensive analysis of the direct impacts of trait variation on global vegetation distribution does not yet exist. Here, we present such analysis as proof of principle. We run regressions of trait observations for leaf mass per area, stem-specific density, and seed mass from a global database against multiple environmental drivers, making use of findings of global trait convergence. This analysis explained up to 52% of the global variation of traits. Global trait maps, generated by coupling the regression equations to gridded soil and climate maps, showed up to orders of magnitude variation in trait values. Subsequently, nine vegetation types were characterized by the trait combinations that they possess using Gaussian mixture density functions. The trait maps were input to these functions to determine global occurrence probabilities for each vegetation type. We prepared vegetation maps, assuming that the most probable (and thus, most suited) vegetation type at each location will be realized. This fully traits-based vegetation map predicted 42% of the observed vegetation distribution correctly. Our results indicate that a major proportion of the predictive ability of DGVMs with respect to vegetation distribution can be attained by three traits alone if traits like stem-specific density and seed mass are included. We envision that our traits-based approach, our observation-driven trait maps, and our vegetation maps may inspire a new generation of powerful traits-based DGVMs.

  10. Assessing environmental drivers of vegetation greenness by integrating multiple earth observation data in the LPJmL dynamic global vegetation model

    NASA Astrophysics Data System (ADS)

    Forkel, Matthias; Carvalhais, Nuno; Schaphoff, Sibyll; von Bloh, Werner; Thurner, Martin; Thonicke, Kirsten

    2014-05-01

    Recently produced satellite datasets of vegetation greenness demonstrate a widespread greening of the earth in the last three decades. These positive trends in vegetation greenness are related to changes in leaf area, vegetation cover and photosynthetic activity. Climatic changes, CO2 fertilization, disturbances and other land cover changes are potential drivers of these greening trends. Nevertheless, different satellite datasets show different magnitudes and trends in vegetation greenness. This fact raises the question about the reliability of these datasets. On the other hand, global vegetation models can be potentially used to assess the effects of environmental drivers on vegetation greenness and thus to explore the environmental reliability of these datasets. Unfortunately, current vegetation models have several weaknesses in reproducing observed temporal dynamics in vegetation greenness. Our aim is to integrate multiple earth observation data sets in a dynamic global vegetation model in order to 1) improve the model's capability to reproduce observed dynamics and spatial patterns of vegetation greenness and 2) to assess the spatial and temporal importance of environmental drivers for the seasonal to decadal variability of vegetation greenness. For this purpose, we developed a data integration system for the LPJmL dynamic global vegetation model (LPJmL-DIS). We implemented a new phenology scheme in LPJmL to better represent observed temporal dynamics of FAPAR (fraction of absorbed photosynthetic active radiation). Model parameters were globally optimized using a genetic optimization algorithm. The model optimization was performed globally against 30 year FAPAR time series (GIMMS3g dataset), against 10 year albedo time series (MODIS) and global patterns of gross primary production as up-scaled from FLUXNET eddy covariance measurements. Additionally, we directly prescribed satellite observations of land and tree cover in LPJmL to better represent global

  11. Evaluation of Vegetation Biomass in CMIP5 Models over the Northern High-Latitudes

    NASA Astrophysics Data System (ADS)

    Yang, C. E.; Mao, J.; Hoffman, F. M.; Ricciuto, D. M.; Fu, J. S.

    2015-12-01

    Global vegetation biomass stores huge amounts of carbon and is thus important to the global carbon budget. For the past few decades, different observation-based estimates and modeling of biomass in above- and below-ground vegetation components have been comprehensively conducted. However, uncertainties still exist, in particular for the simulation of biomass magnitude, tendency, and the response of biomass to natural and anthropogenic drivers. To elucidate these uncertainties, this study compares vegetation biomass of sixteen Earth System Models (ESMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5) archive with latest observation-based data over the Northern High-Latitudes. Results demonstrate that the models exhibit large variability of vegetation biomass, and the model ensemble mean underestimates temperate forest total biomass but overestimates boreal forest total biomass compared to the observational data. Moreover, both the model outputs and the observational data show individual biomass components are highly sensitive to the change of precipitation across different biomes. Possible causes behind inter-model and model-observation differences, such as the discrepancies of climatic conditions, the carbon allocation schemes, prescribed vegetation distributions, representation of disturbances as well as spin-up processes in the ESMs, are investigated and will be discussed.

  12. From terrestrial to aquatic fluxes: Integrating stream dynamics within a dynamic global vegetation modeling framework

    NASA Astrophysics Data System (ADS)

    Hoy, Jerad; Poulter, Benjamin; Emmett, Kristen; Cross, Molly; Al-Chokhachy, Robert; Maneta, Marco

    2016-04-01

    Integrated terrestrial ecosystem models simulate the dynamics and feedbacks between climate, vegetation, disturbance, and hydrology and are used to better understand biogeography and biogeochemical cycles. Extending dynamic vegetation models to the aquatic interface requires coupling surface and sub-surface runoff to catchment routing schemes and has the potential to enhance how researchers and managers investigate how changes in the environment might impact the availability of water resources for human and natural systems. In an effort towards creating such a coupled model, we developed catchment-based hydrologic routing and stream temperature model to pair with LPJ-GUESS, a dynamic global vegetation model. LPJ-GUESS simulates detailed stand-level vegetation dynamics such as growth, carbon allocation, and mortality, as well as various physical and hydrologic processes such as canopy interception and through-fall, and can be applied at small spatial scales, i.e., 1 km. We demonstrate how the coupled model can be used to investigate the effects of transient vegetation dynamics and CO2 on seasonal and annual stream discharge and temperature regimes. As a direct management application, we extend the modeling framework to predict habitat suitability for fish habitat within the Greater Yellowstone Ecosystem, a 200,000 km2 region that provides critical habitat for a range of aquatic species. The model is used to evaluate, quantitatively, the effects of management practices aimed to enhance hydrologic resilience to climate change, and benefits for water storage and fish habitat in the coming century.

  13. Implementing Perennial Kitchen Garden Model to Improve Diet Diversity in Melghat, India

    PubMed Central

    Birdi, Tannaz J.; Shah, Shimoni U.

    2016-01-01

    Lack of diet diversity causing micronutrient deficiency is common in developing countries and is gaining attention due to the hidden consequences of impaired physical and cognitive development. This paper describes the propagation of a sustainable perennial kitchen garden (KG) model to address household (HH) diet diversity in Melghat. Nutrient dense plants, comprising of minimum one tree (perennial) and one green leafy vegetable (GLV) were given to participating HHs along with qualitative interventions. Baseline survey was conducted in winter 2011 followed by seasonal surveys over 2 years to record changes in KG practices, dietary intake and childcare practices. Marked increase from 4% at baseline to 95% at endline was seen in the KG maintainance. Increased diversity was seen in all food categories other than cereals and pulses. Variety of GLVs consumed increased over the two winters as well as the 2 summers. However, no change in the quantity of GLV consumed was noted which was attributed to the duration of the study period being insufficient for the trees to grow and provide adequate leaves for consumption. Notably, livelihood component was not promoted and HHs were encouraged to harvest and distribute excess seeds to relatives and neighbours. The study generated huge demand from HHs within the intervention and neighbouring villages. It concludes that a well designed perennial KG along with imparting adequate knowledge can be a sustainable practice to increase diet diversity and GLV intake which would help address micronutrient deficiencies in the community. PMID:26573040

  14. Diversity and Community: The Role of Agent-Based Modeling.

    PubMed

    Stivala, Alex

    2017-03-13

    Community psychology involves several dialectics between potentially opposing ideals, such as theory and practice, rights and needs, and respect for human diversity and sense of community. Some recent papers in the American Journal of Community Psychology have examined the diversity-community dialectic, some with the aid of agent-based modeling and concepts from network science. This paper further elucidates these concepts and suggests that research in community psychology can benefit from a useful dialectic between agent-based modeling and the real-world concerns of community psychology.

  15. New progress in study on vegetation models for hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Tong, Qingxi; Zhao, Yongchao; Zhang, Xia; Zhang, Bing; Zheng, Lanfen

    2001-02-01

    Some new vegetation models for hyperspectral remote sensing are provided in this paper. They are Derivative Spectral Model (DSM), Multi-temporal Index Image Cube Model (MIIC), Hybrid Decision Tree Model (HDT) and Correlation Simulating Analysis Model (CSAM). All models are developed and used to process the images acquired by Airborne Pushbroom Hyperspectral Imager (PHI) in Changzhou area, China, 1999. Some successful applications are provided and evaluated. The results show that DSM has the ability of eliminating the background interference of vegetation analysis. MIIC is a viable method for monitoring dynamic change of land cover and vegetation growth stages. HDT is effective in precise classification of rice land while CSAM provide a possibility and theoretical basis for crop identification, breed classification, and land information extraction especially for rice.

  16. Succession of Bacterial Community Structure and Diversity in Soil along a Chronosequence of Reclamation and Re-Vegetation on Coal Mine Spoils in China

    PubMed Central

    Li, Yuanyuan; Wen, Hongyu; Chen, Longqian; Yin, Tingting

    2014-01-01

    The growing concern about the effectiveness of reclamation strategies has motivated the evaluation of soil properties following reclamation. Recovery of belowground microbial community is important for reclamation success, however, the response of soil bacterial communities to reclamation has not been well understood. In this study, PCR-based 454 pyrosequencing was applied to compare bacterial communities in undisturbed soils with those in reclaimed soils using chronosequences ranging in time following reclamation from 1 to 20 year. Bacteria from the Proteobacteria, Chloroflexi, Actinobacteria, Acidobacteria, Planctomycetes and Bacteroidetes were abundant in all soils, while the composition of predominant phyla differed greatly across all sites. Long-term reclamation strongly affected microbial community structure and diversity. Initial effects of reclamation resulted in significant declines in bacterial diversity indices in younger reclaimed sites (1, 8-year-old) compared to the undisturbed site. However, bacterial diversity indices tended to be higher in older reclaimed sites (15, 20-year-old) as recovery time increased, and were more similar to predisturbance levels nearly 20 years after reclamation. Bacterial communities are highly responsive to soil physicochemical properties (pH, soil organic matter, Total N and P), in terms of both their diversity and community composition. Our results suggest that the response of soil microorganisms to reclamation is likely governed by soil characteristics and, indirectly, by the effects of vegetation restoration. Mixture sowing of gramineae and leguminosae herbage largely promoted soil geochemical conditions and bacterial diversity that recovered to those of undisturbed soil, representing an adequate solution for soil remediation and sustainable utilization for agriculture. These results confirm the positive impacts of reclamation and vegetation restoration on soil microbial diversity and suggest that the most important

  17. Modeling of vegetation canopy reflectance: Status, issues and recommended future strategy

    NASA Technical Reports Server (NTRS)

    Goel, N. S. (Editor)

    1982-01-01

    Various technical issues related to mapping of vegetative type, condition and stage of maturity, utilizing remotely sensed spectral data are reviewed. The existing knowledge base of models, especially of radiative properties of the vegetation canopy and atmosphere, is reviewed to establish the state of the art for addressing the problem of vegetation mapping. Activities to advance the state of the art are recommended. They include working on canopy reflectance and atmospheric scattering models, and field measurements of canopy reflectance as well as of canopy components. Leaf area index (LAI) and solar radiation interception (SRI) are identified as the two most important vegetation variables requiring further investigation. It is recommended that activities related to sensing them or understanding their relationships with measurable variables, should be encouraged and supported.

  18. Characterising Vegetation Canopies by means of optical data and Microwave Scattering models

    NASA Astrophysics Data System (ADS)

    Molina, Iñigo; Gonzalez, Constancio; Ormeño, Santiago; Morillo, Carmen; Garcia-Melendez, Eduardo

    One of the main strengths of active microwave remote sensing, in relation to frequency, is its capacity to penetrate vegetation canopies, and reach the ground surface, so that information about the vegetation and hydrological properties of the surface can be drawn. All this infor-mation is gathered in the so called backscattering coefficient (σ 0 ), and in a vegetated medium, this coefficient reveals important information on the vegetation water content, geometry and/or structure of the canopy elements, above ground biomass, and soil roughness and moisture. In the scope of microwave frequencies, modeling the backscattering coefficient of vegetated terrain, involves taking into account scattering models that simulate the soil surface contribution by means of its physical variables, and the vegetation layer, through the knowledge of its biophys-ical properties. Soil surface scattering models require describing parameters of roughness, like soil profile height displacement standard deviation and correlation length, and moisture, which determines sur-face reflective properties. The knowledge of these parameters, allows to establishing surface scattering models with different validity ranges. Some frequently used models are divided into theoretical and empirical models. The vegetation canopy is usually regarded as a homogeneous, or random layer, at a certain height above terrain surface, and it is used to compute the attenuation through this layer. This requires a geometric generalization of the vegetation layer and its constituents, specifying additionally its electromagnetic properties. The main simulation models are based on Radiative Transfer theory, which allows for different approaches and simplifications. In this sense, somo of these models, can be efficiently adapted to any vegetated medium, and the constituents can by approximated by more general variables like Leaf Area Index (LAI), or Water total Content (WTC) of Vegetation. Moreover, in the microwave region

  19. Investigation of North American vegetation variability under recent climate: A study using the SSiB4/TRIFFID biophysical/dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengqiu; Xue, Yongkang; MacDonald, Glen; Cox, Peter M.; Collatz, G. James

    2015-02-01

    Recent studies have shown that current dynamic vegetation models have serious weaknesses in reproducing the observed vegetation dynamics and contribute to bias in climate simulations. This study intends to identify the major factors that underlie the connections between vegetation dynamics and climate variability and investigates vegetation spatial distribution and temporal variability at seasonal to decadal scales over North America (NA) to assess a 2-D biophysical model/dynamic vegetation model's (Simplified Simple Biosphere Model version 4, coupled with the Top-down Representation of Interactive Foliage and Flora Including Dynamics Model (SSiB4/TRIFFID)) ability to simulate these characteristics for the past 60 years (1948 through 2008). Satellite data are employed as constraints for the study and to compare the relationships between vegetation and climate from the observational and the simulation data sets. Trends in NA vegetation over this period are examined. The optimum temperature for photosynthesis, leaf drop threshold temperatures, and competition coefficients in the Lotka-Volterra equation, which describes the population dynamics of species competing for some common resource, have been identified as having major impacts on vegetation spatial distribution and obtaining proper initial vegetation conditions in SSiB4/TRIFFID. The finding that vegetation competition coefficients significantly affect vegetation distribution suggests the importance of including biotic effects in dynamical vegetation modeling. The improved SSiB4/TRIFFID can reproduce the main features of the NA distributions of dominant vegetation types, the vegetation fraction, and leaf area index (LAI), including its seasonal, interannual, and decadal variabilities. The simulated NA LAI also shows a general increasing trend after the 1970s in responding to warming. Both simulation and satellite observations reveal that LAI increased substantially in the southeastern U.S. starting from the 1980

  20. Thresholds in vegetation responses to drought: Implications for rainfall-runoff modeling

    NASA Astrophysics Data System (ADS)

    Tague, C.; Dugger, A. L.

    2011-12-01

    While threshold behavior is often associated with soil and subsurface runoff generation, dynamic vegetation responses to water stress may be an important contributor to threshold type behavior in rainfall runoff models. Vegetation water loss varies with vegetation type and biomass and transpiration dynamics in many settings are regulated by stomatal function. In water limited environments the timing and frequency of stomatal closure varies from year to year as a function of water stress. Stomatal closure and associated fine time scale (hourly to weekly) plant transpiration may appear as threshold (on/off) behavior. Total seasonal to annual plant water use, however, typically show a continuous relationship with atmospheric conditions and soil moisture. Thus while short-time scale behavior may demonstrate non-linear, threshold type behavior, continuous relationships at slightly longer time scales can be used to capture the role of vegetation mediated water loss and its associated impact on storage and runoff. Many rainfall runoff models rely on these types of relationships. However these relationships may change if water stress influences vegetation structure as it does in drought conditions. Forest dieback under drought is a dramatic example of a threshold event, and one that is expected to occur with increasing frequency under a warmer climate. Less dramatic but still important are changes in leaf and root biomass in response to drought. We demonstrate these effects using a coupled ecosystem carbon cycling and hydrology model and show that by accounting for drought driven changes in vegetation dynamics we improve our ability to capture inter-annual variation in streamflow for a semi-arid watershed in New Mexico. We also use the model to predict spatial patterns of more catastrophic vegetation dieback with moisture stress and show that we can accurately capture the spatial pattern of ponderosa pine dieback during a early 2000s drought in New Mexico. We use these

  1. Analysis of vegetation effect on waves using a vertical 2-D RANS model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A vertical two-dimensional (2-D) model has been applied in the simulation of wave propagation through vegetated water bodies. The model is based on an existing model SOLA-VOF which solves the Reynolds-Averaged Navier-Stokes (RANS) equations with the finite difference method on a staggered rectangula...

  2. Modeling Pacific Northwest carbon and water cycling using CARAIB Dynamic Vegetation Model

    NASA Astrophysics Data System (ADS)

    Dury, M.; Kim, J. B.; Still, C. J.; Francois, L. M.; Jiang, Y.

    2015-12-01

    While uncertainties remain regarding projected temperature and precipitation changes, climate warming is already affecting ecosystems in the Pacific Northwest (PNW). Decrease in ecosystem productivity as well as increase in mortality of some plant species induced by drought and disturbance have been reported. Here, we applied the process-based dynamic vegetation model CARAIB to PNW to simulate the response of water and carbon cycling to current and future climate change projections. The vegetation model has already been successfully applied to Europe to simulate plant physiological response to climate change. We calibrated CARAIB to PNW using global Plant Functional Types. For calibration, the model is driven with the gridded surface meteorological dataset UIdaho MACA METDATA with 1/24-degree (~4-km) resolution at a daily time step for the period 1979-2014. The model ability to reproduce the current spatial and temporal variations of carbon stocks and fluxes was evaluated using a variety of available datasets, including eddy covariance and satellite observations. We focused particularly on past severe drought and fire episodes. Then, we simulated future conditions using the UIdaho MACAv2-METDATA dataset, which includes downscaled CMIP5 projections from 28 GCMs for RCP4.5 and RCP8.5. We evaluated the future ecosystem carbon balance resulting from changes in drought frequency as well as in fire risk. We also simulated future productivity and drought-induced mortality of several key PNW tree species.

  3. The interplay between cooperativity and diversity in model threshold ensembles.

    PubMed

    Cervera, Javier; Manzanares, José A; Mafe, Salvador

    2014-10-06

    The interplay between cooperativity and diversity is crucial for biological ensembles because single molecule experiments show a significant degree of heterogeneity and also for artificial nanostructures because of the high individual variability characteristic of nanoscale units. We study the cross-effects between cooperativity and diversity in model threshold ensembles composed of individually different units that show a cooperative behaviour. The units are modelled as statistical distributions of parameters (the individual threshold potentials here) characterized by central and width distribution values. The simulations show that the interplay between cooperativity and diversity results in ensemble-averaged responses of interest for the understanding of electrical transduction in cell membranes, the experimental characterization of heterogeneous groups of biomolecules and the development of biologically inspired engineering designs with individually different building blocks.

  4. The interplay between cooperativity and diversity in model threshold ensembles

    PubMed Central

    Cervera, Javier; Manzanares, José A.; Mafe, Salvador

    2014-01-01

    The interplay between cooperativity and diversity is crucial for biological ensembles because single molecule experiments show a significant degree of heterogeneity and also for artificial nanostructures because of the high individual variability characteristic of nanoscale units. We study the cross-effects between cooperativity and diversity in model threshold ensembles composed of individually different units that show a cooperative behaviour. The units are modelled as statistical distributions of parameters (the individual threshold potentials here) characterized by central and width distribution values. The simulations show that the interplay between cooperativity and diversity results in ensemble-averaged responses of interest for the understanding of electrical transduction in cell membranes, the experimental characterization of heterogeneous groups of biomolecules and the development of biologically inspired engineering designs with individually different building blocks. PMID:25142516

  5. Using a LIDAR Vegetation Model to Predict UHF SAR Attenuation in Coniferous Forests

    PubMed Central

    Swanson, Alan; Huang, Shengli; Crabtree, Robert

    2009-01-01

    Attenuation of radar signals by vegetation can be a problem for target detection and GPS reception, and is an important parameter in models describing vegetation backscatter. Here we first present a model describing the 3D distribution of stem and foliage structure based on small footprint scanning LIDAR data. Secondly we present a model that uses ray-tracing methodology to record detailed interactions between simulated radar beams and vegetation components. These interactions are combined over the SAR aperture and used to predict two-way attenuation of the SAR signal. Accuracy of the model is demonstrated using UHF SAR observations of large trihedral corner reflectors in coniferous forest stands. Our study showed that the model explains between 66% and 81% of the variability in observed attenuation. PMID:22573972

  6. Using a LIDAR Vegetation Model to Predict UHF SAR Attenuation in Coniferous Forests.

    PubMed

    Swanson, Alan; Huang, Shengli; Crabtree, Robert

    2009-01-01

    Attenuation of radar signals by vegetation can be a problem for target detection and GPS reception, and is an important parameter in models describing vegetation backscatter. Here we first present a model describing the 3D distribution of stem and foliage structure based on small footprint scanning LIDAR data. Secondly we present a model that uses ray-tracing methodology to record detailed interactions between simulated radar beams and vegetation components. These interactions are combined over the SAR aperture and used to predict two-way attenuation of the SAR signal. Accuracy of the model is demonstrated using UHF SAR observations of large trihedral corner reflectors in coniferous forest stands. Our study showed that the model explains between 66% and 81% of the variability in observed attenuation.

  7. Investigation of North American Vegetation Variability under Recent Climate: A Study Using the SSiB4/TRIFFID Biophysical/Dynamic Vegetation Model

    NASA Technical Reports Server (NTRS)

    Zhang, Zhengqiu; Xue, Yongkang; MacDonald, Glen; Cox, Peter M.; Collatz, George J.

    2015-01-01

    Recent studies have shown that current dynamic vegetation models have serious weaknesses in reproducing the observed vegetation dynamics and contribute to bias in climate simulations. This study intends to identify the major factors that underlie the connections between vegetation dynamics and climate variability and investigates vegetation spatial distribution and temporal variability at seasonal to decadal scales over North America (NA) to assess a 2-D biophysical model/dynamic vegetation model's (Simplified Simple Biosphere Model version 4, coupled with the Top-down Representation of Interactive Foliage and Flora Including Dynamics Model (SSiB4/TRIFFID)) ability to simulate these characteristics for the past 60 years (1948 through 2008). Satellite data are employed as constraints for the study and to compare the relationships between vegetation and climate from the observational and the simulation data sets. Trends in NA vegetation over this period are examined. The optimum temperature for photosynthesis, leaf drop threshold temperatures, and competition coefficients in the Lotka-Volterra equation, which describes the population dynamics of species competing for some common resource, have been identified as having major impacts on vegetation spatial distribution and obtaining proper initial vegetation conditions in SSiB4/TRIFFID. The finding that vegetation competition coefficients significantly affect vegetation distribution suggests the importance of including biotic effects in dynamical vegetation modeling. The improved SSiB4/TRIFFID can reproduce the main features of the NA distributions of dominant vegetation types, the vegetation fraction, and leaf area index (LAI), including its seasonal, interannual, and decadal variabilities. The simulated NA LAI also shows a general increasing trend after the 1970s in responding to warming. Both simulation and satellite observations reveal that LAI increased substantially in the southeastern U.S. starting from the 1980

  8. Climate change and Ecotone boundaries: Insights from a cellular automata ecohydrology model in a Mediterranean catchment with topography controlled vegetation patterns

    NASA Astrophysics Data System (ADS)

    Caracciolo, Domenico; Noto, Leonardo Valerio; Istanbulluoglu, Erkan; Fatichi, Simone; Zhou, Xiaochi

    2014-11-01

    Regions of vegetation transitions (ecotones) are known to be highly sensitive to climate fluctuations. In this study, the Cellular-Automata Tree Grass Shrub Simulator (CATGraSS) has been modified, calibrated and used with downscaled future climate scenarios to examine the role of climate change on vegetation patterns in a steep mountainous catchment (1.3 km2) located in Sicily, Italy. In the catchment, north-facing slopes are mostly covered by trees and grass, and south-facing slopes by Indian Fig opuntia and grass, with grasses dominating as elevation grows. CATGraSS simulates solar radiation, evapotranspiration, and soil moisture in space and time. Each model cell can hold a single plant type or can be bare soil. Plant competition is modeled explicitly through mortality and the establishment of individual plants in open spaces. In this study, CATGraSS is modified to account for heterogeneity in soil thickness and tested in the study catchment using the historical climate of the region. Predicted vegetation patterns are compared with those obtained from satellite images. Results of model under current climate underscore the importance of solar irradiance and soil thickness, especially in the uplands where soil is shallow, in determining vegetation composition over complex terrain. A stochastic weather generator is used to generate future climate change scenarios for the catchment by downscaling GCM realizations in space and time. Future increase in atmospheric CO2 concentration was considered through modifying the vegetation water use efficiency and stomatal resistance for our study site. Model results suggest that vegetation pattern is highly sensitive to temperature and rainfall variations provided by climate scenarios (30% reduction of the annual precipitation and a 2.8 °C increase of the mean annual temperature). Future climate change is predicted to bring a considerable reorganization of the plant composition following topographic patterns, leading to a

  9. Characterization of Seasonally Dependent Emergent Vegetation Variables for Coastal Impact Models

    NASA Astrophysics Data System (ADS)

    Stellern, C.; Grossman, E.; Linneman, S. R.; Fuller, R.

    2015-12-01

    Emergent wetland vegetation has been shown to mitigate coastal inundation and erosion hazards by reducing wave energy through friction (Shepard et al., 2011), although its use in coastal protection planning is limited because predictive models require improved vegetation data. We isolated biophysical characteristics (biomass, stem density, rigidity, etc.) of plants using horizontal digital photographs (Side-On Photos) in conjunction with remote sensing and physical surveys. We studied the dominant salt-marsh species/assemblages in Port Susan Bay of Washington State, a vulnerable estuary that has experienced up to 1 kilometer of marsh retreat since the mid-1960s. We measured plant height, stem diameter, stem density (area available for flow) from fall to early spring (August 2014 through April 2015) using Side-On Photography and digital image processing techniques. Metrics from Side-On Photography were highly correlated to physical lab measurements. Vegetation rigidity was measured in-situ with a handheld digital scale with respect to measurement height and bending angle. Plant elasticity showed a strong correlation to stem diameter in two dominant bulrush species. We employed remote sensing supervised classifications techniques (Maximum-Likelihood and Decision Tree Classifiers) to hyperspectral imagery to map the spatial extent of vegetation assemblages with an overall accuracy of 86.7%. Combining these methods enabled us to extrapolate and validate vegetation characteristics across the study area and to estimate species-specific friction coefficients for input to cross-shore wave models. On-going studies include sensitivity analyses of wave models to seasonally-dependent vegetation parameters in the nearshore and ultimately wave impacts along the coast. By accounting for site-specific and spatiotemporal variability in vegetation data, we inform scientific understanding of the interactions of vegetation, waves, and sediment processes.

  10. Diversity and Impacts of Mining on the Non-Volant Small Mammal Communities of Two Vegetation Types in the Brazilian Amazon.

    PubMed

    Ardente, Natália Carneiro; Ferreguetti, Átilla Colombo; Gettinger, Donald; Leal, Pricila; Mendes-Oliveira, Ana Cristina; Martins-Hatano, Fernanda; Bergallo, Helena Godoy

    2016-01-01

    The Carajás National Forest contains some of the largest iron ore deposits in the world. The majority of the minerals are found below a plant community known as Savana Metalófila, or "Canga", which represents only 3% of the landscape within the Carajás National Forest (CNF). The aim of our study was to understand the diversity of community of non-volant small mammals in the two predominant vegetation types: Ombrophilous Forest and Canga, and to examine how mining impacts these communities. Sampling was conducted from January 2010 to August 2011 in 11 sampling sites divided by the total area of Canga and 12 sampling sites in the forest, totalizing 23 sites. Of these, 12 sites (Canga and Forest) were considered impacted areas located close to the mine (< 900 meters) and 11 sites (Canga and Forest), serving as controls, which were at least 7,000 meters from the mine. We recorded 28 species, 11 from the Order Didelphimorphia and 17 from the Order Rodentia. The two forest types shared 68.42% of the species found in the CNF. A gradient analysis (Non-metric multidimensional scaling) revealed that the first axis clearly separated the non-flying small mammal communities by vegetation type. Occupancy models showed that the detectability of species was affected by the distance from the mining activities. Of all the small mammals analyzed, 10 species were positively affected by the distance from mining in areas impacted (e.g. more likely to be detected farther from mining areas) and detectability was lower in impacted areas. However, three species were negatively affected by the distance from mining, with higher detectability in the impacted areas, and seven species showed no effect of their proximity to mining operations. To date, there are no studies in Brazil about the impact of mining on mammals or other vertebrates. This study reveals that the effect of mining may go beyond the forest destruction caused by the opening of the mining pits, but also may negatively affect

  11. Diversity and Impacts of Mining on the Non-Volant Small Mammal Communities of Two Vegetation Types in the Brazilian Amazon

    PubMed Central

    Ardente, Natália Carneiro; Ferreguetti, Átilla Colombo; Gettinger, Donald; Leal, Pricila; Mendes-Oliveira, Ana Cristina; Martins-Hatano, Fernanda; Bergallo, Helena Godoy

    2016-01-01

    The Carajás National Forest contains some of the largest iron ore deposits in the world. The majority of the minerals are found below a plant community known as Savana Metalófila, or “Canga”, which represents only 3% of the landscape within the Carajás National Forest (CNF). The aim of our study was to understand the diversity of community of non-volant small mammals in the two predominant vegetation types: Ombrophilous Forest and Canga, and to examine how mining impacts these communities. Sampling was conducted from January 2010 to August 2011 in 11 sampling sites divided by the total area of Canga and 12 sampling sites in the forest, totalizing 23 sites. Of these, 12 sites (Canga and Forest) were considered impacted areas located close to the mine (<< 900 meters) and 11 sites (Canga and Forest), serving as controls, which were at least 7,000 meters from the mine. We recorded 28 species, 11 from the Order Didelphimorphia and 17 from the Order Rodentia. The two forest types shared 68.42% of the species found in the CNF. A gradient analysis (Non-metric multidimensional scaling) revealed that the first axis clearly separated the non-flying small mammal communities by vegetation type. Occupancy models showed that the detectability of species was affected by the distance from the mining activities. Of all the small mammals analyzed, 10 species were positively affected by the distance from mining in areas impacted (e.g. more likely to be detected farther from mining areas) and detectability was lower in impacted areas. However, three species were negatively affected by the distance from mining, with higher detectability in the impacted areas, and seven species showed no effect of their proximity to mining operations. To date, there are no studies in Brazil about the impact of mining on mammals or other vertebrates. This study reveals that the effect of mining may go beyond the forest destruction caused by the opening of the mining pits, but also may negatively

  12. PALADYN, a comprehensive land surface-vegetation-carbon cycle model of intermediate complexity

    NASA Astrophysics Data System (ADS)

    Willeit, Matteo; Ganopolski, Andrey

    2016-04-01

    PALADYN is presented, a new comprehensive and computationally efficient land surface-vegetation-carbon cycle model designed to be used in Earth system models of intermediate complexity for long-term simulations and paleoclimate studies. The model treats in a consistent manner the interaction between atmosphere, terrestrial vegetation and soil through the fluxes of energy, water and carbon. Energy, water and carbon are conserved. The model explicitly treats permafrost, both in physical processes and as important carbon pool. The model distinguishes 9 surface types of which 5 are different vegetation types, bare soil, land ice, lake and ocean shelf. Including the ocean shelf allows to treat continuous changes in sea level and shelf area associated with glacial cycles. Over each surface type the model solves the surface energy balance and computes the fluxes of sensible, latent and ground heat and upward shortwave and longwave radiation. It includes a single snow layer. The soil model distinguishes between three different macro surface types which have their own soil column: vegetation and bare soil, ice sheet and ocean shelf. The soil is vertically discretized into 5 layers where prognostic equations for temperature, water and carbon are consistently solved. Phase changes of water in the soil are explicitly considered. A surface hydrology module computes precipitation interception by vegetation, surface runoff and soil infiltration. The soil water equation is based on Darcy's law. Given soil water content, the wetland fraction is computed based on a topographic index. Photosynthesis is computed using a light use efficiency model. Carbon assimilation by vegetation is coupled to the transpiration of water through stomatal conductance. The model includes a dynamic vegetation module with 5 plant functional types competing for the gridcell share with their respective net primary productivity. Each macro surface type has its own carbon pools represented by a litter, a fast

  13. Modelling vegetation dynamics at global scale due to climate changes: Comparison of two approaches

    SciTech Connect

    Belotelov, N.V.; Bogatyrev, B.G.; Lobanov, A.I.

    1996-12-31

    Climate changes will influence vegetation dynamics. One of the ways of forecasting these changes is the creation of mathematical models describing vegetation dynamics. Computer experiments can then be conducted under climate change scenarios. Two main approaches are used to create such models. The first approach is based on a bioclimatic dynamic approach. The second approach is based on modelling the main eco-physiological processes. The bioclimatic dynamic approach consists of hypotheses about vegetation types or biomes, and their interrelationships with climate. In the eco-physiological approach, a detailed description of the processes, such as production, mortality, plants migration and their competition is presented. A number of computer experiments has been conducted for several climatic scenario for Russia and the whole world. A qualitative comparison of the results with the results of an earlier bioclimatic model has been done.

  14. Combining geostatistical models and remotely sensed data to improve vegetation classification in Horqin sandy land

    NASA Astrophysics Data System (ADS)

    Liao, Chujiang

    2015-08-01

    On different degrees of desertification land, there exists different vegetation communities, and spatial structure differences are obvious among different vegetation communities. This study implemented variogram calculation using typical sample selected from the image, adopting a common global optimization method to fit them into the spherical model. The results showed that the difference is obvious among different vegetation communities for the sill and range, such as, the sill and range are smaller for sample variogram of Artemisia halodendron and Salix flavida community than that of Artemisia halodendron and Caragana microphylla community, and the range for sample variogram of Agriophyllum arenarium community is bigger than that of Artemisia halodendron and Salix flavida community, but smaller than that of Artemisia halodendron and Caragana microphylla community. Incorporating the difference of the spatial structure characterization into the vegetation classification can improve sample separation, thereby increasing the overall classification accuracy.

  15. Modeling the effects of vegetation on methane oxidation and emissions through soil landfill final covers across different climates.

    PubMed

    Abichou, Tarek; Kormi, Tarek; Yuan, Lei; Johnson, Terry; Francisco, Escobar

    2015-02-01

    Plant roots are reported to enhance the aeration of soil by creating secondary macropores which improve the diffusion of oxygen into soil as well as the supply of methane to bacteria. Therefore, methane oxidation can be improved considerably by the soil structuring processes of vegetation, along with the increase of organic biomass in the soil associated with plant roots. This study consisted of using a numerical model that combines flow of water and heat with gas transport and oxidation in soils, to simulate methane emission and oxidation through simulated vegetated and non-vegetated landfill covers under different climatic conditions. Different simulations were performed using different methane loading flux (5-200 g m(-2) d(-1)) as the bottom boundary. The lowest modeled surface emissions were always obtained with vegetated soil covers for all simulated climates. The largest differences in simulated surface emissions between the vegetated and non-vegetated scenarios occur during the growing season. Higher average yearly percent oxidation was obtained in simulations with vegetated soil covers as compared to non-vegetated scenario. The modeled effects of vegetation on methane surface emissions and percent oxidation were attributed to two separate mechanisms: (1) increase in methane oxidation associated with the change of the physical properties of the upper vegetative layer and (2) increase in organic matter associated with vegetated soil layers. Finally, correlations between percent oxidation and methane loading into simulated vegetated and non-vegetated covers were proposed to allow decision makers to compare vegetated versus non-vegetated soil landfill covers. These results were obtained using a modeling study with several simplifying assumptions that do not capture the complexities of vegetated soils under field conditions.

  16. Reconstructing marginality: a new model of cultural diversity in nursing.

    PubMed

    Southwick, Margaret; Polaschek, Nick

    2014-05-01

    This article presents a new model of cultural diversity in nursing that critically reconstructs the concept of marginality that underpins other models. Rather than viewing the marginal as "other," marginality is redefined as the space in between the dominant cultural reality and the cultural realities of minority groups located within a society. Members of a minority cultural group who become skilled in the difficult process of negotiating this in-between space open the possibility of transformation within nursing education and practice. This model has been applied in a study of the experience of nursing students of Pacific ethnicity in New Zealand. Subsequently, an undergraduate Pacific nursing program was developed, with greatly increased success rates in registration of Pacific nurses. This model of cultural diversity can also be used to understand nursing practice involving people from minority cultures or other socially excluded categories.

  17. A global vegetation corrected SRTM DEM for use in hazard modelling

    NASA Astrophysics Data System (ADS)

    Bates, P. D.; O'Loughlin, F.; Neal, J. C.; Durand, M. T.; Alsdorf, D. E.; Paiva, R. C. D.

    2015-12-01

    We present the methodology and results from the development of a near-global 'bare-earth' Digital Elevation Model (DEM) derived from the Shuttle Radar Topography Mission (SRTM) data. Digital Elevation Models are the most important input for hazard modelling, as the DEM quality governs the accuracy of the model outputs. While SRTM is currently the best near-globally [60N to 60S] available DEM, it requires adjustments to reduce the vegetation contamination and make it useful for hazard modelling over heavily vegetated areas (e.g. tropical wetlands). Unlike previous methods of accounting for vegetation contamination, which concentrated on correcting relatively small areas and usually applied a static adjustment, we account for vegetation contamination globally and apply a spatial varying correction, based on information about canopy height and density. Our new 'Bare-Earth' SRTM DEM combines multiple remote sensing datasets, including ICESat GLA14 ground elevations, the vegetation continuous field dataset as a proxy for penetration depth of SRTM and a global vegetation height map, to remove the vegetation artefacts present in the original SRTM DEM. In creating the final 'bare-earth' SRTM DEM dataset, we produced three different 'bare-earth' SRTM products. The first applies global parameters, while the second and third products apply parameters that are regionalised based on either climatic zones or vegetation types, respectively. We also tested two different canopy density proxies of different spatial resolution. Using ground elevations obtained from the ICESat GLA14 satellite altimeter, we calculate the residual errors for the raw SRTM and the three 'bare-earth' SRTM products and compare performances. The three 'bare-earth' products all show large improvements over the raw SRTM in vegetated areas with the overall mean bias reduced by between 75 and 92% from 4.94 m to 0.40 m. The overall standard deviation is reduced by between 29 and 33 % from 7.12 m to 4.80 m. As

  18. Data-based modelling and environmental sensitivity of vegetation in China

    NASA Astrophysics Data System (ADS)

    Wang, H.; Prentice, I. C.; Ni, J.

    2013-09-01

    A process-oriented niche specification (PONS) model was constructed to quantify climatic controls on the distribution of ecosystems, based on the vegetation map of China. PONS uses general hypotheses about bioclimatic controls to provide a "bridge" between statistical niche models and more complex process-based models. Canonical correspondence analysis provided an overview of relationships between the abundances of 55 plant communities in 0.1° grid cells and associated mean values of 20 predictor variables. Of these, GDD0 (accumulated degree days above 0 °C), Cramer-Prentice α (an estimate of the ratio of actual to equilibrium evapotranspiration) and mGDD5 (mean temperature during the period above 5 °C) showed the greatest predictive power. These three variables were used to develop generalized linear models for the probability of occurrence of 16 vegetation classes, aggregated from the original 55 types by k-means clustering according to bioclimatic similarity. Each class was hypothesized to possess a unimodal relationship to each bioclimate variable, independently of the other variables. A simple calibration was used to generate vegetation maps from the predicted probabilities of the classes. Modelled and observed vegetation maps showed good to excellent agreement (κ = 0.745). A sensitivity study examined modelled responses of vegetation distribution to spatially uniform changes in temperature, precipitation and [CO2], the latter included via an offset to α (based on an independent, data-based light use efficiency model for forest net primary production). Warming shifted the boundaries of most vegetation classes northward and westward while temperate steppe and desert replaced alpine tundra and steppe in the southeast of the Tibetan Plateau. Increased precipitation expanded mesic vegetation at the expense of xeric vegetation. The effect of [CO2] doubling was roughly equivalent to increasing precipitation by ~ 30%, favouring woody vegetation types

  19. Data-based modelling and environmental sensitivity of vegetation in China

    NASA Astrophysics Data System (ADS)

    Wang, H.; Prentice, I. C.; Ni, J.

    2013-01-01

    A process-oriented niche specification (PONS) model was constructed to quantify climatic controls on the distribution of ecosystems, based on the vegetation map of China. PONS uses general hypotheses about bioclimatic controls to provide a "bridge" between statistical niche models and more complex process-based models. Canonical correspondence analysis provided an overview of relationships between the abundances of 55 plant communities in 0.1° grid cells and associated mean values of 20 predictor variables. Of these, GDD (accumulated degree days above 0 °C) Cramer-Prentice α (an estimate of the ratio of actual to equilibrium evapotranspiration) and mGDD5 (mean temperature during the period above 5 °C) showed the greatest predictive power. These three variables were used to develop generalized linear models for the probability of occurrence of 16 vegetation classes, aggregated from the original 55 types by k-means clustering according to bioclimatic similarity. Each class was hypothesized to possess a unimodal relationship to each bioclimate variable, independently of the other variables. A simple calibration was used to generate vegetation maps from the predicted probabilities of the classes. Modelled and observed vegetation maps showed good to excellent agreement (κ = 0.745). A sensitivity study examined modelled responses of vegetation distribution to spatially uniform changes in temperature, precipitation and [CO2], the latter included via an offset to α (based on an independent, data-based light use efficiency model for forest net primary production). Warming shifted the boundaries of most vegetation classes northward and westward while temperate steppe and desert replaced alpine tundra and steppe in the southeast of the Tibetan Plateau. Increased precipitation expanded mesic vegetation at the expense of xeric vegetation. The effect of [CO2] doubling was roughly equivalent to increasing precipitation by ∼ 30%, favouring woody vegetation types

  20. Influence of vegetation dynamic modeling on the allocation of green and blue waters

    NASA Astrophysics Data System (ADS)

    Ruiz-Pérez, Guiomar; Francés, Félix

    2015-04-01

    The long history of the Mediterranean region is dominated by the interactions and co-evolution between man and its natural environment. It is important to consider that the Mediterranean region is recurrently or permanently confronted with the scarcity of the water. The issue of climate change is (and will be) aggravating this situation. This raises the question of a loss of services that ecosystems provide to human and also the amount of available water to be used by vegetation. The question of the water cycle, therefore, should be considered in an integrated manner by taking into account both blue water (water in liquid form used for the human needs or which flows into the oceans) and green water (water having the vapor for resulting from evaporation and transpiration processes). In spite of this, traditionally, very few hydrological models have incorporated the vegetation dynamic as a state variable. In fact, most of them are able to represent fairly well the observed discharge, but usually including the vegetation as a static parameter. However, in the last decade, the number of hydrological models which explicitly take into account the vegetation development as a state variable has increased substantially. In this work, we want to analyze if it is really necessary to use a dynamic vegetation model to quantify adequately the distribution of water into blue and green water. The study site is located in the Public Forest Monte de la Hunde y Palomeras (Spain). The vegetation in the study area is dominated by Aleppo pine of high tree density with scant presence of other species. Two different daily models were applied (with static and dynamic vegetation representation respectively) in three different scenarios: dry year (2005), normal year (2008) and wet year (2010). The static vegetation model simulates the evapotranspiration considering the vegetation as a stationary parameter. Contrarily, the dynamic vegetation model connects the hydrological model with a

  1. Projected vegetation changes for the American Southwest: combined dynamic modeling and bioclimatic-envelope approach.

    PubMed

    Notaro, Michael; Mauss, Adrien; Williams, John W

    2012-06-01

    This study focuses on potential impacts of 21st century climate change on vegetation in the Southwest United States, based on debiased and interpolated climate projections from 17 global climate models used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Among these models a warming trend is universal, but projected changes in precipitation vary in sign and magnitude. Two independent methods are applied: a dynamic global vegetation model to assess changes in plant functional types and bioclimatic envelope modeling to assess changes in individual tree and shrub species and biodiversity. The former approach investigates broad responses of plant functional types to climate change, while considering competition, disturbances, and carbon fertilization, while the latter approach focuses on the response of individual plant species, and net biodiversity, to climate change. The dynamic model simulates a region-wide reduction in vegetation cover during the 21st century, with a partial replacement of evergreen trees with grasses in the mountains of Colorado and Utah, except at the highest elevations, where tree cover increases. Across southern Arizona, central New Mexico, and eastern Colorado, grass cover declines, in some cases abruptly. Due to the prevalent warming trend among all 17 climate models, vegetation cover declines in the 21st century, with the greatest vegetation losses associated with models that project a drying trend. The inclusion of the carbon fertilization effect largely ameliorates the projected vegetation loss. Based on bioclimatic envelope modeling for the 21st century, the number of tree and shrub species that are expected to experience robust declines in range likely outweighs the number of species that are expected to expand in range. Dramatic shifts in plant species richness are projected, with declines in the high-elevation evergreen forests, increases in the eastern New Mexico prairies, and a northward shift of the

  2. Modelling spatial and temporal vegetation variability with the Climate Constrained Vegetation Index: evidence of CO2 fertilisation and of water stress in continental interiors

    NASA Astrophysics Data System (ADS)

    Los, S. O.

    2015-06-01

    A model was developed to simulate spatial, seasonal and interannual variations in vegetation in response to temperature, precipitation and atmospheric CO2 concentrations; the model addresses shortcomings in current implementations. The model uses the minimum of 12 temperature and precipitation constraint functions to simulate NDVI. Functions vary based on the Köppen-Trewartha climate classification to take adaptations of vegetation to climate into account. The simulated NDVI, referred to as the climate constrained vegetation index (CCVI), captured the spatial variability (0.82 < r <0.87), seasonal variability (median r = 0.83) and interannual variability (median global r = 0.24) in NDVI. The CCVI simulated the effects of adverse climate on vegetation during the 1984 drought in the Sahel and during dust bowls of the 1930s and 1950s in the Great Plains in North America. A global CO2 fertilisation effect was found in NDVI data, similar in magnitude to that of earlier estimates (8 % for the 20th century). This effect increased linearly with simple ratio, a transformation of the NDVI. Three CCVI scenarios, based on climate simulations using the representative concentration pathway RCP4.5, showed a greater sensitivity of vegetation towards precipitation in Northern Hemisphere mid latitudes than is currently implemented in climate models. This higher sensitivity is of importance to assess the impact of climate variability on vegetation, in particular on agricultural productivity.

  3. Main vegetation types and plant species diversity along an altitudinal gradient of Al Baha region, Saudi Arabia.

    PubMed

    Al-Aklabi, Abdullah; Al-Khulaidi, Abdul Wali; Hussain, Akram; Al-Sagheer, Nageeb

    2016-11-01

    Plant species composition patterns and vegetation types were investigated along Elevational Gradients in Al Baha region, Saudi Arabia. Sandy plain, wadis, drainage lines, rocky outcrops, hills and fallow lands occur over a wide geographic range encompassing variation in plant species and communities among these different ecological sites. To provide a quantitatively based classification of the vegetation we used Multi Variant Statistical Package (MVSP) software, followed by the re-arrangement of a matrix of the similar plant species in rows and similar sample sites in columns. Plant density and environmental variables were measured and recorded in each quadrat. Two-way indicator species analysis and Canonical Correspondence Analysis (CCA) were used to analyze the relationships between vegetation and environmental variables, while Arc Map was used to analyze the pattern of plant species density. A total of 59 sample plots (25 × 25 m), stratified, randomly-placed relevés were collected in Al Baha region, along a cross section running from south-west to north-west. About 190 plant species belonging to 59 families were recognized. This study showed that these plant species formed 15 vegetation types that primarily correspond mainly to different combinations of elevation, and topography. The study concluded that this research has provided the first quantitative and systematic survey of the vegetation in Al Baha region.

  4. 6-n-propylthiouracil taster status not related to reported cruciferous vegetable intake among ethnically diverse children.

    PubMed

    Baranowski, Tom; Baranowski, Janice C; Watson, Kathleen B; Jago, Russell; Islam, Noemi; Beltran, Alicia; Martin, Shelby J; Nguyen, Nga; Tepper, Beverly J

    2011-08-01

    Sensitivity to the taste of 6-n-propylthiouracil (PROP) (a bitter chemical related to the phenylthiocarbamide found in cruciferous vegetables) has been related to dietary intake or preferences of cruciferous vegetables among adults and young children but not middle-aged children or adolescents. We hypothesized that PROP taste sensitivity is related to lower reported dietary intake of cruciferous vegetables, primarily among younger children (ie, a moderating effect of child age). This study examined the relationship of PROP sensitivity to reported dietary intake across 3 days in 2 age groups of youth (9-10 and 17-18 years) while statistically controlling for physical activity, social desirability, and reporting bias. Cross-sectional design was used with a multiethnic (white, African American, Hispanic, etc) sample of 843 men and women. Children were recruited from and data were collected in local elementary and high schools that had at least 30% ethnic minority enrollment. Children providing nonplausible reports of dietary intake were deleted from the analyses. Body mass index was calculated and expressed in z scores. Energy intake and physical activity were measured by 3 telephone-conducted 24-hour dietary recalls with the Nutrient Data System for Research and 5 days of Actigraph (ActiGraph, Shalimar, Florida) activity monitor. The primary analyses included 347 students. 6-n-Propylthiouracil sensitivity was not related to intake of cruciferous vegetables. Intakes of the cruciferous vegetables were low, which may explain the lack of relationship.

  5. A new vegetation model at the topographic scale in Mongolia under human activity and climate change

    NASA Astrophysics Data System (ADS)

    Ishii, R.; Matsuoka, M.; Fujita, N.

    2013-12-01

    To predict future vegetation not only the changes in climate conditions but those of essential human activities must also be incorporated in a vegetation model, since most terrestrial systems are now under the strong influence of both of these drivers. Previous dynamic vegetation models, however, had difficulties to incorporate these effects in a comparative way and one of the critical barrier was the mismatch of the spatial scales at which both of these drivers are quantified, that is, climate conditions are generally observed and modeled with much coarser resolutions than human activities often influenced by topography or transportation networks. In northern part of Mongolia, where plant growth is basically limited by water availability and grazing pressure by livestock, the vegetation exhibits a clear discontinuous transition between grassland and forest but no sound modeling could be achieved to clarify the transition mechanisms nor to project future vegetation and hence the distribution of ecosystem functions. To tackle this problem, we developed a pair of new models at the topographic scale (Models 1&2) based on the observation in a sample region in Mongolia. Model 1 is a mathematical model for the dynamic interactions among the two plant biomasses (grass and trees) and local soil water content (SWC). We here assume positive/negative feedbacks in plant growth-SWC interaction and uneven grazing pressures for the two plants. Model 2 estimates numerically the spatial distribution of the potential SWC governed by climate and topography conditions in a given region. We used satellite remote sensing data to obtain the spatial distributions of the initial vegetation cover and the topography. By integrating these two models we could successfully reconstruct the current spatial vegetation patterns in our sample area only when we assumed a strong positive feedback in plant growth-SWC interaction and grazing pressure. This result underscores the importance of the

  6. Fire emissions simulated by prescribing burned area observations in a global vegetation model

    NASA Astrophysics Data System (ADS)

    Khlystova, Iryna G.; Wilkenskjeld, Stiig; Kloster, Silvia

    2014-05-01

    The emissions of trace gases and aerosols from large vegetation fires into the atmosphere have an important climate impact. In this study we integrate observed burned area into a global vegetation model to derive global fire emissions. A global continuous burned area products provided by GFED (Global Fire Emissions Dataset) were obtained from MODIS (and pre-MODIS) satellites and are available for the time period 1997-2011. We integrate the global burned area product into the global vegetation model JSBACH, a land part of the Earth-System model developed at the Max Planck Institute for Meteorology. JSBACH simulates land biomass in terms of carbon, which can be combined with the satellite burned area information to derive fire carbon emissions. Some assumptions on fire fuel consumptions have to be made during the integration of satellite burned area into the JSBACH. This includes processes such as tree mortality and combustion completeness, i.e. how much of the vegetation biomass gets combusted during a fire. Partially, this information can be also obtained from measurements. In this study we follow closely the approach of GFED, incorporating also GFED supplemental information, to simulate fuel consumption in JSBACH. And we compare simulated by this approach fire carbon emissions with the fire emissions from GFED. Global vegetation models often use prescribed land cover maps. The simulated in the JSBACH vegetation biomass and thus the simulated fire carbon emissions critically depend on the land cover distribution. In our study we derive fire carbon emissions using two different land cover parameterizations, based on two different satellite datasets. We will present the results obtained from simulations using the JSBACH standard MODIS based vegetation distribution and compare them to the results derived using the recently released ESA CCI land cover satellite product to demonstrate the sensitivity of simulated fire carbon emissions to the underlying land cover

  7. Modeling Vegetation Dynamics in Response to Hydrological Changes in a Small Urban Tropical Freshwater Wetland

    NASA Astrophysics Data System (ADS)

    Chui, T. M.; Palanisamy, B.; Mohanadas, H.

    2011-12-01

    Wetlands worldwide face drastic degradation from human-induced changes. A small freshwater wetland located within the dense urbanized island state of Singapore---the Nee Soon Wetland---is no exception. It is the only significant locality in Singapore of peat swamp forest and is home to a wide range of rare and endangered floral and faunal species. Unfortunately, changes in downstream land use and surrounding reservoirs' operations may pose threats to the coupled hydrological and vegetation systems. This study develops and applies coupled hydrological-vegetation models to understand the dynamic relationships between hydrology and vegetation systems, and simulates vegetation responses to hydrological changes in Nee Soon. The models combine a hydrological component with a vegetation component. The hydrological component accounts for both saturated and unsaturated flows, and incorporates evapotranspiration, rainfall infiltration and recharge from streams and reservoirs. The vegetation component is described by Lokta-Volterra equations that are tailored for plant growth, to simulate the vegetation dynamics of up to three species that thrive in different flooding conditions. Important findings include: (1) groundwater levels within Nee Soon are not highly sensitive to the operating levels of the surrounding reservoirs. However, (2) downstream drainage results in a localized zone of influence with significant adverse impacts, especially on the less flood-tolerant species. In addition, (3) the severely impacted less flood-tolerant species is unable to recover even when previous hydrological conditions are restored, unless the downstream drainage duration is reduced, or the plant characteristics such as maximum assimilation rates or competitiveness are increased. Finally, (4) hydrological conditions and species competitiveness supersede any other plant growth characteristics in determining the stable coexistence of different species. The developed models and modeling

  8. Predicting the impact of water demand and river flow regulation over riparian vegetation through mathematical modeling

    NASA Astrophysics Data System (ADS)

    Garcia-Arias, A.; Pons, C.; Frances, F.

    2013-12-01

    The vegetation of the riversides is a main part of the complex riparian ecosystems and has an important role maintaining the fluvial ecosystems. Biotic and abiotic interactions between the river and the riverbank are essential for the subsistence and the development of both ecosystems. In semi-arid Mediterranean areas, the riparian vegetation growth and distribution is especially controlled by the water accessibility, determining the limit between the lush riparian bands and the sparse upland. Human intervention can alter the river hydrology determining the riparian vegetation wellbeing and its distribution and, in consequence, affecting both riparian and fluvial ecosystems. Predictive models are necessary decision support tools for adequate river management and restoration initiatives. In this context, the RibAV model is useful to predict the impact of water demand and river flow regulation on the riparian vegetation. RibAV is able to reproduce the vegetation performance on the riverside allowing the scenarios analysis in terms of vegetation distribution and wellbeing. In this research several flow regulation and water demand scenarios are proposed and the impacts over three plant functional types (PFTs) are analyzed. The PFTs group the herbaceous riparian plants, the woody riparian plants and the terrestrial vegetation. The study site is the Terde reach at the Mijares River, a 539m length reach located in a semi-arid Mediterranean area in Spain. The scenarios represent river flow alterations required to attend different human demands. These demands encompass different seasonality, magnitude and location. The seasonality is represented as hydroelectric (constant all over the year), urban (increased during the summer period) and agricultural demands (monthly seasonality). The magnitude is varied considering the 20%, the 40% and the 80% of the mean daily flow. Two locations are considered, upstream or downstream the study site. To attend the demands located

  9. Modeling mechanisms of vegetation change due to fire in a semi-arid ecosystem

    USGS Publications Warehouse

    White, J.D.; Gutzwiller, K.J.; Barrow, W.C.; Randall, L.J.; Swint, P.

    2008-01-01

    Vegetation growth and community composition in semi-arid environments is determined by water availability and carbon assimilation mechanisms specific to different plant types. Disturbance also impacts vegetation productivity and composition dependent on area affected, intensity, and frequency factors. In this study, a new spatially explicit ecosystem model is presented for the purpose of simulating vegetation cover type changes associated with fire disturbance in the northern Chihuahuan Desert region. The model is called the Landscape and Fire Simulator (LAFS) and represents physiological activity of six functional plant types incorporating site climate, fire, and seed dispersal routines for individual grid cells. We applied this model for Big Bend National Park, Texas, by assessing the impact of wildfire on the trajectory of vegetation communities over time. The model was initialized and calibrated based on landcover maps derived from Landsat-5 Thematic Mapper data acquired in 1986 and 1999 coupled with plant biomass measurements collected in the field during 2000. Initial vegetation cover change analysis from satellite data showed shrub encroachment during this time period that was captured in the simulated results. A synthetic 50-year climate record was derived from historical meteorological data to assess system response based on initial landcover conditions. This simulation showed that shrublands increased to the detriment of grass and yucca-ocotillo vegetation cover types indicating an ecosystem-level trajectory for shrub encroachment. Our analysis of simulated fires also showed that fires significantly reduced site biomass components including leaf area, stem, and seed biomass in this semi-arid ecosystem. In contrast to other landscape simulation models, this new model incorporates detailed physiological responses of functional plant types that will allow us to simulated the impact of increased atmospheric CO2 occurring with climate change coupled with fire

  10. A SIMPLE CELLULAR AUTOMATON MODEL FOR HIGH-LEVEL VEGETATION DYNAMICS

    EPA Science Inventory

    We have produced a simple two-dimensional (ground-plan) cellular automata model of vegetation dynamics specifically to investigate high-level community processes. The model is probabilistic, with individual plant behavior determined by physiologically-based rules derived from a w...

  11. A predictive model for floating leaf vegetation in the St. Louis River Estuary

    EPA Science Inventory

    In July 2014, USEPA staff was asked by MPCA to develop a predictive model for floating leaf vegetation (FLV) in the St. Louis River Estuary (SLRE). The existing model (Host et al. 2012) greatly overpredicts FLV in St. Louis Bay probably because it was based on a limited number of...

  12. State-and-transition prototype model of riparian vegetation downstream of Glen Canyon Dam, Arizona

    USGS Publications Warehouse

    Ralston, Barbara E.; Starfield, Anthony M.; Black, Ronald S.; Van Lonkhuyzen, Robert A.

    2014-01-01

    Facing an altered riparian plant community dominated by nonnative species, resource managers are increasingly interested in understanding how to manage and promote healthy riparian habitats in which native species dominate. For regulated rivers, managing flows is one tool resource managers consider to achieve these goals. Among many factors that can influence riparian community composition, hydrology is a primary forcing variable. Frame-based models, used successfully in grassland systems, provide an opportunity for stakeholders concerned with riparian systems to evaluate potential riparian vegetation responses to alternative flows. Frame-based, state-and-transition models of riparian vegetation for reattachment bars, separation bars, and the channel margin found on the Colorado River downstream of Glen Canyon Dam were constructed using information from the literature. Frame-based models can be simple spreadsheet models (created in Microsoft® Excel) or developed further with programming languages (for example, C-sharp). The models described here include seven community states and five dam operations that cause transitions between states. Each model divides operations into growing (April–September) and non-growing seasons (October–March) and incorporates upper and lower bar models, using stage elevation as a division. The inputs (operations) can be used by stakeholders to evaluate flows that may promote dynamic riparian vegetation states, or identify those flow options that may promote less desirable states (for example, Tamarisk [Tamarix sp.] temporarily flooded shrubland). This prototype model, although simple, can still elicit discussion about operational options and vegetation response.

  13. [Effects of different vegetation restoration patterns on the diversity of soil nitrogen-fixing microbes in Hulunbeier sandy land, Inner Mongolia of North China].

    PubMed

    Li, Gang; Wang, Li-Juan; Li, Yu-Jie; Qiao, Jiang; Zhang, Hai-Fang; Song, Xiao-Long; Yang, Dian-Lin

    2013-06-01

    By using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and sequence analysis, this paper studied the nifH gene diversity and community structure of soil nitrogen-fixing microbes in Hulunbeier sandy land of Inner Mongolia under four years management of five vegetation restoration modes, i. e., mixed-planting of Agropyron cristatum, Hedysarum fruticosum, Caragana korshinskii, and Elymus nutans (ACHE) and of Agropyron cristatum and Hedysarum fruticosum (AC), and mono-planting of Caragana korshinskii (UC), Agropyron cristatum (UA), and Hedysarum fruticosum (UH), taking the bare land as the control (CK). There existed significant differences in the community composition of nitrogen-fixing microbes among the five vegetation restoration patterns. The Shannon index of the nifH gene was the highest under ACHE, followed by under AC, UC, UA, and UH, and the lowest in CK. Except that UH and CK had less difference in the Shannon index, the other four vegetation restoration modes had a significantly higher Shannon index than CK (P < 0.05). The phylogenetic analysis showed that the soil nitrogen-fixing microbes under UA, UH, and UC were mainly of cyanobacteria, but the soil nitrogen-fixing microbes under AC and ACHE changed obviously, mainly of proteobacteria, and also of cyanobacteria. The canonical correlation analysis showed that the soil total phosphorus, available phosphorus, total nitrogen, and nitrate nitrogen contents under the five vegetation restoration modes had significant effects on the nitrogen-fixing microbial communities, and there existed significant correlations among the soil total phosphorus, available phosphorus, total nitrogen, and nitrate nitrogen. It was suggested that the variations of the community composition of soil nitrogen-fixing microbes under the five vegetation restoration modes were resulted from the interactive and combined effects of the soil physical and chemical factors.

  14. Detecting vegetation-precipitation feedbacks in mid-Holocene North Africa from two climate models

    SciTech Connect

    Wang, Yi; Notaro, Michael; Liu, Zhengyu; Gallimore, Robert; Levis, Samuel; Kutzbach, John E.

    2008-03-31

    Using two climate-vegetation model simulations from the Fast Ocean Atmosphere Model (FOAM) and the Community Climate System Model (CCSM, version 2), we investigate vegetation-precipitation feedbacks across North Africa during the mid-Holocene. From mid-Holocene snapshot runs of FOAM and CCSM2, we detect a negative feedback at the annual timescale with our statistical analysis. Using the Monte- Carlo bootstrap method, the annual negative feedback is further confirmed to be significant in both simulations. Additional analysis shows that this negative interaction is partially caused by the competition between evaporation and transpiration in North African grasslands. Furthermore, we find the feedbacks decrease with increasing timescales, and change signs from positive to negative at increasing timescales in FOAM. The proposed mechanism for this sign switch is associated with the different persistent timescales of upper and lower soil water contents, and their interactions with vegetation and atmospheric precipitation.

  15. \\vspace{8mm}Inclusion of vegetation in the Town Energy Balance model for modelling urban green areas

    NASA Astrophysics Data System (ADS)

    Lemonsu, A.; Masson, V.; Shashua-Bar, L.; Erell, E.; Pearlmutter, D.

    2012-11-01

    Cities impact both local climate, through urban heat islands and global climate, because they are an area of heavy greenhouse gas release into the atmosphere due to heating, air conditioning and traffic. Including more vegetation into cities is a planning strategy having possible positive impacts for both concerns. Improving vegetation representation into urban models will allow us to address more accurately these questions. This paper presents an improvement of the Town Energy Balance (TEB) urban canopy model. Vegetation is directly included inside the canyon, allowing shadowing of grass by buildings, better representation of urban canopy form and, a priori, a more accurate simulation of canyon air microclimate. The surface exchanges over vegetation are modelled with the well-known Interaction Soil Biosphere Atmosphere (ISBA) model that is integrated in the TEB's code architecture in order to account for interactions between natural and built-up covers. The design of the code makes possible to plug and use any vegetation scheme. Both versions of TEB are confronted to experimental data issued from a field campaign conducted in Israel in 2007. Two semi-enclosed courtyards arranged with bare soil or watered lawn were instrumented to evaluate the impact of landscaping strategies on microclimatic variables and evapotranspiration. For this case study, the new version of the model with integrated vegetation performs better than if vegetation is treated outside the canyon. Surface temperatures are closer to the observations, especially at night when radiative trapping is important. The integrated vegetation version simulates a more humid air inside the canyon. The microclimatic quantities (i.e., the street-level meteorological variables) are better simulated with this new version. This opens opportunities to study with better accuracy the urban microclimate, down to the micro (or canyon) scale.

  16. Middle Pliocene vegetation: Reconstructions, paleoclimatic inferences, and boundary conditions for climate modeling

    USGS Publications Warehouse

    Thompson, R.S.; Fleming, R.F.

    1996-01-01

    The general characteristics of global vegetation during the middle Pliocene warm period can be reconstructed from fossil pollen and plant megafossil data. The largest differences between Pliocene vegetation and that of today occurred at high latitudes in both hemispheres, where warming was pronounced relative to today. In the Northern Hemisphere coniferous forests lived in the modern tundra and polar desert regions, whereas in the Southern Hemisphere southern beech apparently grew in coastal areas of Antarctica. Pliocene middle latitude vegetation differed less, although moister-than-modern conditions supported forest and woodland growth in some regions now covered by steppe or grassland. Pliocene tropical vegetation reflects essentially modern conditions in some regions and slightly cooler-than-or warmer-than- modern climates in other areas. Changes in topography induced by tectonics may be responsible for many of the climatic changes since the Pliocene in both middle and lower latitudes. However, the overall latitudinal progression of climatic conditions on land parallels that seen in the reconstruction of middle Pliocene sea-surface temperatures. Pliocene paleovegetational data was employed to construct a 2????2?? global grid of estimated mid-Pliocene vegetational cover for use as boundary conditions for numerical General Circulation Model simulations of middle Pliocene climates. Continental outlines and topography were first modified to represent the Pliocene landscape on the 2????2?? grid. A modern 1????1?? vegetation grid was simplified and mapped on this Pliocene grid, and then modified following general geographic trends evident in the Pliocene paleovegetation data set.

  17. Global terrestrial ecosystem models of productivity and nutrient cycling and vegetation response to climate

    SciTech Connect

    Kercher, J.R.; Chambers, J.Q.; Axelrod, M.C. )

    1993-06-01

    We are developing two global terrestrial ecosystem models (TERRA and HABITAT) to be coupled to atmospheric and oceanic models in an Earth System Model. TERRA is a model of ecosystem productivity and biogeochemical cycling covering the Earth's land surface as a grid of independent, local models. HABITAT is being designed as a gridded, dynamic model of vegetation response to climate. The TERRA grid cell models are calibrated to 17 vegetation types. The parameter for maximum gross primary productivity was found to average (2.4 +/- 1.4 s.d.) x 10[sup 4] g m[sup [minus]2] y[sup [minus]1] across the 17 types. Maximum rate of nitrogen uptake by vegetation averaged 13 +/- 3 g m[sup [minus]2] y[sup [minus]1] for all forest types, 9 +/- 3 for all woodland and savanna types, and 5 +/- 2 for all grassland, tundra, and shrubland types. Preliminary analysis for designing HABITAT suggests that total annual precipitation and average monthly temperature do not resolve vegetation types. This result emphasizes the need for constructing a set of climatic variables that simplify the biological response.

  18. Modelling the response of fresh groundwater to climate and vegetation changes in coral islands

    NASA Astrophysics Data System (ADS)

    Comte, Jean-Christophe; Join, Jean-Lambert; Banton, Olivier; Nicolini, Eric

    2014-12-01

    In coral islands, groundwater is a crucial freshwater resource for terrestrial life, including human water supply. Response of the freshwater lens to expected climate changes and subsequent vegetation alterations is quantified for Grande Glorieuse, a low-lying coral island in the Western Indian Ocean. Distributed models of recharge, evapotranspiration and saltwater phytotoxicity are integrated into a variable-density groundwater model to simulate the evolution of groundwater salinity. Model results are assessed against field observations including groundwater and geophysical measurements. Simulations show the major control currently exerted by the vegetation with regards to the lens morphology and the high sensitivity of the lens to climate alterations, impacting both quantity and salinity. Long-term changes in mean sea level and climatic conditions (rainfall and evapotranspiration) are predicted to be responsible for an average increase in salinity approaching 140 % (+8 kg m-3) when combined. In low-lying areas with high vegetation density, these changes top +300 % (+10 kg m-3). However, due to salinity increase and its phytotoxicity, it is shown that a corollary drop in vegetation activity can buffer the alteration of fresh groundwater. This illustrates the importance of accounting for vegetation dynamics to study groundwater in coral islands.

  19. [Hyperspectral remote sensing estimation models on vegetation coverage of natural grassland].

    PubMed

    Liu, Zhanyu; Huang, Jingfeng; Wu, Xinhong; Dong, Yongping; Wang, Fumin; Liu, Pengtao

    2006-06-01

    By using ASD FieldSpec Pro FR spectroradiometer, the spectral measurement of natural grassland in Xilingole Leaguer of Inner Mongolia was performed, with the vegetation coverage of natural grassland calculated, and the correlation of 25 hyperspectral feature variables with the vegetation coverage of natural grassland was analyzed. The results showed that there were 17 variables correlated significantly with the vegetation coverage of natural grassland, among which, the correlation coefficient between vegetation coverage and the area of red edge peak calculated as the sum of the amplitudes between 680 nm and 780 nm (sigma dr 680 - 780 nm) was the highest, with the value of 0.781. The basic experimental data including the vegetation coverage and canopy reflectance of natural grassland were classified into two groups. One group was used as the training sample to build the regression models with one-sample linear method, nonlinear method, and stepwise analysis method, while the other was used as the testing sample to test the precision of regression models. It was suggested that the variable of the area of red edge peak calculated as the sum of amplitudes between 680 nm and 780 nm (sigma dr 680 - 780 nm) was the best one to univariate general linear model, with a standard deviation of 10.4% and an estimation precision of 83.99%, while the stepwise regression technique was not effective to estimate the grassland coverage with raw hyperspectral canopy reflectance.

  20. Comparison between microwave coherent and incoherent scattering models for wetland vegetation in Poyang Lake area

    NASA Astrophysics Data System (ADS)

    Xu, Tao; Liao, Jingjuan

    2014-11-01

    In order to reveal more deeply the scattering characteristics of wetland vegetation and determine the microwave scattering model suitable for the inversion of wetland vegetation parameters, the comparison and analysis between microwave coherent and incoherent scattering models for wetland vegetation in Poyang Lake area were performed in this paper. In the research, we proposed a coherent scattering model exclusive for wetland vegetation, in which, Generalized Rayleigh-Gans (GRG) approach and infinite-length dielectric cylinder were used to calculate single-scattering matrices of wetland vegetation leaves and stalks. In addition, coherent components produced from interaction among the scattering mechanisms and different scatterers were also considered and this coherent model was compared with Michigan Microwave Canopy Scattering (MIMICS) model. The measured data collected in 2011 in Poyang Lake wetland were used as the input parameters of the coherent and incoherent models. We simulated backscattering coefficients of VV, VH and HH polarization at C band and made a comparison between the simulation results and C-band data from the Radarsat-2 satellite. For both coherent and incoherent scattering model, simulation results for HH and VV polarization were better than the simulation results for HV polarization. In addition, comparisons between coherent and incoherent scattering models proved that the coherence triggered by the scattering mechanism and different scatterers can't be ignored. In the research, we analyzed differences between coherent and incoherent scattering models with change of incident angle. In most instances, the difference between coherent and incoherent scattering models is of the order of several dB.

  1. a Radiative Transfer Equation/phase Function Approach to Vegetation Canopy Reflectance Modeling

    NASA Astrophysics Data System (ADS)

    Randolph, Marion Herbert

    Vegetation canopy reflectance models currently in use differ considerably in their treatment of the radiation scattering problem, and it is this fundamental difference which stimulated this investigation of the radiative transfer equation/phase function approach. The primary objective of this thesis is the development of vegetation canopy phase functions which describe the probability of radiation scattering within a canopy in terms of its biological and physical characteristics. In this thesis a technique based upon quadrature formulae is used to numerically generate a variety of vegetation canopy phase functions. Based upon leaf inclination distribution functions, phase functions are generated for plagiophile, extremophile, erectophile, spherical, planophile, blue grama (Bouteloua gracilis), and soybean canopies. The vegetation canopy phase functions generated are symmetric with respect to the incident and exitant angles, and hence satisfy the principle of reciprocity. The remaining terms in the radiative transfer equation are also derived in terms of canopy geometry and optical properties to complete the development of the radiative transfer equation/phase function description for vegetation canopy reflectance modeling. In order to test the radiative transfer equation/phase function approach the iterative discrete ordinates method for solving the radiative transfer equation is implemented. In comparison with field data, the approach tends to underestimate the visible reflectance and overestimate infrared reflectance. The approach does compare well, however, with other extant canopy reflectance models; for example, it agrees to within ten to fifteen percent of the Suits model (Suits, 1972). Sensitivity analysis indicates that canopy geometry may influence reflectance as much as 100 percent for a given wavelength. Optical thickness produces little change in reflectance after a depth of 2.5 (Leaf area index of 4.0) is reached, and reflectance generally increases

  2. Predicting equilibrium vegetation responses to global climate change using coupled biogeography and ecosystem models

    SciTech Connect

    Borchers, J.G.; Nielson, R.P.

    1995-06-01

    Much current uncertainty surrounding the sensitivity to climatic change of natural vegetation in the USA is related to widely-varying approaches taken in constructing simulation models. Our goal was to reduce this uncertainty by coupling the biogeography model MAPSS (Mapped Atmosphere-Plant-Soil System) with critical ecosystem processes as simulated by TEM (Terrestrial Ecosystem Model). MAPSS predicts changes in leaf-area index (LAI) and vegetation biome boundaries using a site water balance model in conjunction with a physiologically-conceived rule-base model. On the other hand, TEM simulates equilibrium fluxes and pools of carbon (C) and nitrogen (N) such as net primary productivity (NPP) and available N without redistributing vegetation. In the coupled version of MAPSS presented here, these hydrological and biogeochemical processes are mutually constrained. For example, N availability may limit maximum LAI, and therefore, site water balance. Alternatively, actual evapotranspiration and soil water availability may modulate NPP via photosynthesis and net N mineralization. Initial results with this TEM-coupled version of MAPSS reveal significantly different patterns of NPP and vegetation distribution for the conterminous USA compared to those from uncoupled models, particularly at thermal and hydric extremes.

  3. Implementation of diverse tree hydraulics in a land surface model

    NASA Astrophysics Data System (ADS)

    Wolf, A.; Shevliakova, E.; Malyshev, S.; Weng, E.; Pacala, S. W.

    2013-12-01

    Increasing attention has been devoted to the occurence of drought kill in forests worldwide. These mortality events are significant disruptions to the terrestrial carbon cycle, but the mechanisms required to represent drought kill are not represented in terrestrial carbon cycle models. In part, this is due to the challenge of representing the diversity of hydraulic strategies, which include stomatal sensitivity to water deficit and woody tissue vulnerability to cavitation at low water potential. In part, this is due to the challenge of representing this boundary value problem numerically, because the hydraulic components determine water potential at the leaf, but the stomatal conductance on the leaf also determines the hydraulic gradients within the plant. This poster will describe the development of a land surface model parameterization of diverse tree hydraulic strategies.

  4. Relating biomass and vegetation structure in water limited ecosystems using a celluar automata based model

    NASA Astrophysics Data System (ADS)

    Frechen, Nanu; Hinz, Christoph; McGrath, Gavan

    2015-04-01

    Within arid and semiarid regions banded vegetation patterns are wide spread. While the soil-vegetation feedback causing this self-organized has been well understood and implemented in various models, the relationship between the actual pattern, e.g. band width and spacing as well as plant density, has not been well understood. In this study we use a cellular automaton [1] to investigate the effect of infiltration properties and rainfall on patter formation as well as on biomass production and vegetation coverage. The first part of the investigation showed that the model is consistent with the existing knowledge on the dependence of wavelength on annual rainfall. We use the same parameter space to assess biomass and fractional coverage. We found that there is a nonlinear relationship between biomass and infiltration capacity normalized with rainfall input. This indicates that the degree of organisation is not directly related to the productivity as expressed with biomass. Similar results were found for fractional surface cover of the vegetation. [1] McGrath, G. S., K. Paik, and C. Hinz. 2012. Microtopography alters self-organized vegetation patterns in water-limited ecosystems, Journal of Geophysical Research: Biogeosciences (2005-2012) 117, G03021, doi:10.1029/2011JG001870

  5. Reaction pathways for the deoxygenation of vegetable oils and related model compounds.

    PubMed

    Gosselink, Robert W; Hollak, Stefan A W; Chang, Shu-Wei; van Haveren, Jacco; de Jong, Krijn P; Bitter, Johannes H; van Es, Daan S

    2013-09-01

    Vegetable oil-based feeds are regarded as an alternative source for the production of fuels and chemicals. Paraffins and olefins can be produced from these feeds through catalytic deoxygenation. The fundamentals of this process are mostly studied by using model compounds such as fatty acids, fatty acid esters, and specific triglycerides because of their structural similarity to vegetable oils. In this Review we discuss the impact of feedstock, reaction conditions, and nature of the catalyst on the reaction pathways of the deoxygenation of vegetable oils and its derivatives. As such, we conclude on the suitability of model compounds for this reaction. It is shown that the type of catalyst has a significant effect on the deoxygenation pathway, that is, group 10 metal catalysts are active in decarbonylation/decarboxylation whereas metal sulfide catalysts are more selective to hydrodeoxygenation. Deoxygenation studies performed under H2 showed similar pathways for fatty acids, fatty acid esters, triglycerides, and vegetable oils, as mostly deoxygenation occurs indirectly via the formation of fatty acids. Deoxygenation in the absence of H2 results in significant differences in reaction pathways and selectivities depending on the feedstock. Additionally, using unsaturated feedstocks under inert gas results in a high selectivity to undesired reactions such as cracking and the formation of heavies. Therefore, addition of H2 is proposed to be essential for the catalytic deoxygenation of vegetable oil feeds.

  6. A Test of the Optimality Approach to Modelling Canopy gas Exchange by Natural Vegetation

    NASA Astrophysics Data System (ADS)

    Schymanski, S. J.; Sivapalan, M.; Roderick, M. L.; Beringer, J.; Hutley, L. B.

    2005-12-01

    Natural vegetation has co-evolved with its environment over a long period of time and natural selection has led to a species composition that is most suited for the given conditions. Part of this adaptation is the vegetation's water use strategy, which determines the amount and timing of water extraction from the soil. Knowing that water extraction by vegetation often accounts for over 90% of the annual water balance in some places, we need to understand its controls if we want to properly model the hydrologic cycle. Water extraction by roots is driven by transpiration from the canopy, which in turn is an inevitable consequence of CO2 uptake for photosynthesis. Photosynthesis provides plants with their main building material, carbohydrates, and with the energy necessary to thrive and prosper in their environment. Therefore we expect that natural vegetation would have evolved an optimal water use strategy to maximise its `net carbon profit' (the difference between carbon acquired by photosynthesis and carbon spent on maintenance of the organs involved in its uptake). Based on this hypothesis and on an ecophysiological gas exchange and photosynthesis model (Cowan and Farquhar 1977; von Caemmerer 2000), we model the optimal vegetation for a site in Howard Springs (N.T., Australia) and compare the modelled fluxes with measurements by Beringer, Hutley et al. (2003). The comparison gives insights into theoretical and real controls on transpiration and photosynthesis and tests the optimality approach to modelling gas exchange of natural vegetation with unknown properties. The main advantage of the optimality approach is that no assumptions about the particular vegetation on a site are needed, which makes it very powerful for predicting vegetation response to long-term climate- or land use change. Literature: Beringer, J., L. B. Hutley, et al. (2003). "Fire impacts on surface heat, moisture and carbon fluxes from a tropical savanna in northern Australia." International

  7. Improved meteorology from an updated WRF/CMAQ modeling system with MODIS vegetation and albedo

    NASA Astrophysics Data System (ADS)

    Ran, Limei; Pleim, Jonathan; Gilliam, Robert; Binkowski, Francis S.; Hogrefe, Christian; Band, Larry

    2016-03-01

    Realistic vegetation characteristics and phenology from the Moderate Resolution Imaging Spectroradiometer (MODIS) products improve the simulation for the meteorology and air quality modeling system WRF/CMAQ (Weather Research and Forecasting model and Community Multiscale Air Quality model) that employs the Pleim-Xiu land surface model (PX LSM). Recently, PX LSM WRF/CMAQ has been updated in vegetation, soil, and boundary layer processes resulting in improved 2 m temperature (T) and mixing ratio (Q), 10 m wind speed, and surface ozone simulations across the domain compared to the previous version for a period around August 2006. Yearlong meteorology simulations with the updated system demonstrate that MODIS input helps reduce bias of the 2 m Q estimation during the growing season from April to September. Improvements follow the green-up in the southeast from April and move toward the west and north through August. From October to March, MODIS input does not have much influence on the system because vegetation is not as active. The greatest effects of MODIS input include more accurate phenology, better representation of leaf area index (LAI) for various forest ecosystems and agricultural areas, and realistically sparse vegetation coverage in the western drylands. Despite the improved meteorology, MODIS input causes higher bias for the surface O3 simulation in April, August, and October in areas where MODIS LAI is much less than the base LAI. Thus, improvements may be needed in the CMAQ dry deposition model for low LAI areas where deposition on the soil surface becomes important.

  8. Neutral null models for diversity in serial transfer evolution experiments.

    PubMed

    Harpak, Arbel; Sella, Guy

    2014-09-01

    Evolution experiments with microorganisms coupled with genome-wide sequencing now allow for the systematic study of population genetic processes under a wide range of conditions. In learning about these processes in natural, sexual populations, neutral models that describe the behavior of diversity and divergence summaries have played a pivotal role. It is therefore natural to ask whether neutral models, suitably modified, could be useful in the context of evolution experiments. Here, we introduce coalescent models for polymorphism and divergence under the most common experimental evolution assay, a serial transfer experiment. This relatively simple setting allows us to address several issues that could affect diversity patterns in evolution experiments, whether selection is operating or not: the transient behavior of neutral polymorphism in an experiment beginning from a single clone, the effects of randomness in the timing of cell division and noisiness in population size in the dilution stage. In our analyses and discussion, we emphasize the implications for experiments aimed at measuring diversity patterns and making inferences about population genetic processes based on these measurements.

  9. Analysis of Evapotranspiration Model Sensitivity to Climate and Vegetation Parameters With Dependence

    NASA Astrophysics Data System (ADS)

    Levy, M. C.

    2013-12-01

    Evapotranspiration (ET) is a dominant component of the global water balance and in the study of hydroclimatic effects of climate change. However, its computation remains challenging due to the multiple environmental factors that influence the magnitude of ET flux. Therefore, understanding the sensitivity of ET models to changes in climate and vegetation inputs remains a major concern for hydrologists, biometeorologists, and climatologists. To date, sensitivity analyses (SAs) of evapotranspiration (ET) models are incomplete on two counts: 1) contemporary, data-driven SAs do not account for the effects of both climate and vegetation input variables on model output (ET estimates); and 2) SAs do not account for the effects of input variable correlation on model output. This is problematic because of the potentially dominant role of vegetation in controlling ET, and the non-trivial interactions between climate variables, and climate and vegetation variables. Ignoring the role of interactions between variables limits the value of SAs for reducing model dimensionality and guiding model calibration, and may lead to incorrect assessments of environmental system response to climate change, where the synchronies between climate variables change over time and space. The problems addressed by this study are the issues identified above: the lack of accounting for both climate and vegetation inputs, and correlated inputs, on ET model SAs. This study: 1) performs a SA of the standardized American Society of Civil Engineers (ASCE) Penman-Monteith (PM) equation for reference ET to both climate and vegetation variables using a mixed empirical and simulation based global Sobol' SA; and 2) performs a SA of ASCE PM reference ET to both climate and vegetation variables through a simulation-based analysis using a new Sobol' SA analogue developed for models with correlated input variables. At the time of completion, this study constitutes the first use of a Sobol' SA (Sobol', 2001

  10. Modeling radiative transfer in heterogeneous 3D vegetation canopies

    NASA Astrophysics Data System (ADS)

    Gastellu-Etchegorry, J. P.; Demarez, V.; Pinel, Veronique; Zagolski, Francis

    1995-01-01

    The DART (discrete anisotropic radiative transfer) model simulates radiative transfer in heterogeneous 3-D scenes; here, a forest plantation. Similarly to Kimes model, the scene is divided into a rectangular cell matrix, i.e., a building block for simulating larger scenes. Cells are parallelipipedic. The scene encompasses different landscape features (i.e., trees with leaves and trunks, grass, water, and soil) with specific optical (reflectance, transmittance) and structural (LAI, LAD) characteristics. Radiation directions are subdivided into contiguous sectors with possibly uneven spacing. Topography, hot spot, and multiple interactions (scattering, attenuation) within cells are modeled. Two major steps are distinguished: (1) Illumination of cells by direct sun radiation. Actual locations of within cell scattering are determined for optimizing scattering computation. (2) Interception and scattering of previously scattered radiation. Diffuse atmospheric radiation is input at this level. Multiple scattering is represented with a spherical harmonic decomposition, for reducing data volume. The model iterates on step 2 for all cells, and stops with the energetic equilibrium. This model predicts the bi-directional reflectance factors of 3D canopies, with each scene component contribution; it was successfully tested with homogeneous covers. It gives also the radiation regime with canopies, and consequently some information about volume distribution of photosynthesis rates and primary production.

  11. Floristic diversity and vegetation analysis of Wadi Arar: A typical desert Wadi of the Northern Border region of Saudi Arabia.

    PubMed

    Osman, Ahmed K; Al-Ghamdi, Faraj; Bawadekji, Abdulhakim

    2014-12-01

    Wadi Arar in the Northern border region of Saudi Arabia is one of the most important Wadis of the Kingdom. The present study provides an analysis of vegetation types, life forms, as well as floristic categories and species distribution. A total of 196 species representing 31 families of vascular plants were recorded. Compositae, Gramineae and Leguminosae were the most common families. Therophytes and chamaephytes are the most frequent life forms, indicating typical desert spectrum vegetation. The distribution of these species in the different sectors of the Wadi as well as the phytochoria for the recorded species is provided. Ninety-one species (46.5%) are typical bi-regional. Furthermore, about 105 species (53.5%) are mono- or pluriregional taxa. The highest number of species (136 or 69.5%) was recorded for annual plants, while the lowest number of species (60% or 30.5%) was recorded for perennial, short perennial or annual to biennial species.

  12. Floristic diversity and vegetation analysis of Wadi Arar: A typical desert Wadi of the Northern Border region of Saudi Arabia

    PubMed Central

    Osman, Ahmed K.; Al-Ghamdi, Faraj; Bawadekji, Abdulhakim

    2014-01-01

    Wadi Arar in the Northern border region of Saudi Arabia is one of the most important Wadis of the Kingdom. The present study provides an analysis of vegetation types, life forms, as well as floristic categories and species distribution. A total of 196 species representing 31 families of vascular plants were recorded. Compositae, Gramineae and Leguminosae were the most common families. Therophytes and chamaephytes are the most frequent life forms, indicating typical desert spectrum vegetation. The distribution of these species in the different sectors of the Wadi as well as the phytochoria for the recorded species is provided. Ninety-one species (46.5%) are typical bi-regional. Furthermore, about 105 species (53.5%) are mono- or pluriregional taxa. The highest number of species (136 or 69.5%) was recorded for annual plants, while the lowest number of species (60% or 30.5%) was recorded for perennial, short perennial or annual to biennial species. PMID:25473364

  13. Feedback of observed interannual vegetation change: a regional climate model analysis for the West African monsoon

    NASA Astrophysics Data System (ADS)

    Klein, Cornelia; Bliefernicht, Jan; Heinzeller, Dominikus; Gessner, Ursula; Klein, Igor; Kunstmann, Harald

    2016-06-01

    West Africa is a hot spot region for land-atmosphere coupling where atmospheric conditions and convective rainfall can strongly depend on surface characteristics. To investigate the effect of natural interannual vegetation changes on the West African monsoon precipitation, we implement satellite-derived dynamical datasets for vegetation fraction (VF), albedo and leaf area index into the Weather Research and Forecasting model. Two sets of 4-member ensembles with dynamic and static land surface description are used to extract vegetation-related changes in the interannual difference between August-September 2009 and 2010. The observed vegetation patterns retain a significant long-term memory of preceding rainfall patterns of at least 2 months. The interannual vegetation changes exhibit the strongest effect on latent heat fluxes and associated surface temperatures. We find a decrease (increase) of rainy hours over regions with higher (lower) VF during the day and the opposite during the night. The probability that maximum precipitation is shifted to nighttime (daytime) over higher (lower) VF is 12 % higher than by chance. We attribute this behaviour to horizontal circulations driven by differential heating. Over more vegetated regions, the divergence of moist air together with lower sensible heat fluxes hinders the initiation of deep convection during the day. During the night, mature convective systems cause an increase in the number of rainy hours over these regions. We identify this feedback in both water- and energy-limited regions of West Africa. The inclusion of observed dynamical surface information improved the spatial distribution of modelled rainfall in the Sahel with respect to observations, illustrating the potential of satellite data as a boundary constraint for atmospheric models.

  14. Measuring and Modeling of the Dielectric Properties and Attenuation of Vegetation

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.

    1984-01-01

    The dielectric properties of vegetation material--primarily agricultural plants--as a function of moisture content and microwave frequency was measured and used to develop dielectric mixing models for the vegetation-water mixture. A model for the loss factor of a vegetation canopy was also developed. During the first phase of this investigation, three waveguide transmission systems covering from 1 to 2-GHz, from 3.5 to 6.5-GHz, and from 7.5 to 8.5-GHz bands were constructed and calibrated. By measuring the magnitude and phase of the field transmission coefficient of a given sample, it was possible to calculate the real and imaginary parts of the complex dielectric constant of the sample. Measurements were made for numerous samples of leaves and stalks of wheat and corn, and for wheat heads. Also, dielectric measurements were made of the liquid included in the vegetation material after extraction by mechanical means. The propagation loss is more than an order of magnitude greater than had previously been assumed. Various types of dielectric mixing models were investigated in terms of the available data, and a propagation model was developed and evaluated against direct canopy attenuation measurements. The canopy measurements were made by transmitting a signal from a radar antenna mounted atop a truck-mounted boom, and using a small antenna mounted on a rail beneath the canopy to receive it.

  15. Distribution of submerged aquatic vegetation in the St. Louis River estuary: Maps and models

    EPA Science Inventory

    In late summer of 2011 and 2012 we used echo-sounding gear to map the distribution of submerged aquatic vegetation (SAV) in the St. Louis River Estuary (SLRE). From these data we produced maps of SAV distribution and we created logistic models to predict the probability of occurr...

  16. Soil detachment by overland flow under different vegetation restoration models in the loess plateau of China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land use change has significant effects on soil properties and vegetation cover and thus probably affects soil detachment by overland flow. Few studies were conducted to evaluate the effect of restoration models on the soil detachment process in the Loess Plateau in the past decade during which a Gr...

  17. Coastal marsh degradation: modeling the influence of vegetation die-off patterns on flow and sedimentation

    NASA Astrophysics Data System (ADS)

    Schepers, Lennert; Wang, Chen; Kirwan, Matthew; Belluco, Enrica; D'Alpaos, Andrea; Temmerman, Stijn

    2014-05-01

    erosion, which may explain their lower surface elevation. Therefore the establishment of marsh plants will be unfavorable. So far, however, this hypothesis has not been verified. In order to investigate the influence of these different types of pool patterns on spatial flow and sedimentation patterns, we used an existing hydrodynamic and sediment transport model (Delft3D) that has been calibrated and validated against field data on tidal marsh flow and sedimentation. The model reproduces the bio-geomorphologic effects of complete vegetation removal, but different pool patterns have not been studied until now. By simulating different pool patterns, we are able to verify our hypothesis regarding elevation changes and marsh recovery potential in degraded marsh pools. This highlights the importance of bio-geomorphologic feedbacks for marsh degradation and recovery.

  18. Coupled Hydro-Mechanical Constitutive Model for Vegetated Soils: Validation and Applications

    NASA Astrophysics Data System (ADS)

    Switala, Barbara Maria; Veenhof, Rick; Wu, Wei; Askarinejad, Amin

    2016-04-01

    It is well known, that presence of vegetation influences stability of the slope. However, the quantitative assessment of this contribution remains challenging. It is essential to develop a numerical model, which combines mechanical root reinforcement and root water uptake, and allows modelling rainfall induced landslides of vegetated slopes. Therefore a novel constitutive formulation is proposed, which is based on the modified Cam-clay model for unsaturated soils. Mechanical root reinforcement is modelled introducing a new constitutive parameter, which governs the evolution of the Cam-clay failure surface with the degree of root reinforcement. Evapotranspiration is modelled in terms of the root water uptake, defined as a sink term in the water flow continuity equation. The original concept is extended for different shapes of the root architecture in three dimensions, and combined with the mechanical model. The model is implemented in the research finite element code Comes-Geo, and in the commercial software Abaqus. The formulation is tested, performing a series of numerical examples, which allow validation of the concept. The direct shear test and the triaxial test are modelled in order to test the performance of the mechanical part of the model. In order to validate the hydrological part of the constitutive formulation, evapotranspiration from the vegetated box is simulated and compared with the experimental results. Obtained numerical results exhibit a good agreement with the experimental data. The implemented model is capable of reproducing results of basic geotechnical laboratory tests. Moreover, the constitutive formulation can be used to model rainfall induced landslides of vegetated slopes, taking into account the most important factors influencing the slope stability (root reinforcement and evapotranspiration).

  19. Spatial heterogeneity in vegetation canopies and remote sensing of absorbed photosynthetically active radiation - A modeling study

    NASA Technical Reports Server (NTRS)

    Asrar, G.; Myneni, R. B.; Choudhury, B. J.

    1992-01-01

    A 3D radiative transfer model is used to investigate the relationship between spectral indices and fraction of absorbed photosynthetically active radiation (PAR) in horizontally heterogeneous vegetation canopies. Canopy reflection at optical wavelengths and PAR absorption are simulated. Data obtained indicate that the leaf area index of a canopy is less of an instructive parameter than the ground cover and clump leaf area index for these canopies. It is found that the relationship between the normalized difference vegetation index and fraction of absorbed PAR is almost linear and independent of spatial heterogeneity.

  20. Wind erosion in semiarid landscapes: Predictive models and remote sensing methods for the influence of vegetation

    NASA Technical Reports Server (NTRS)

    Musick, H. Brad

    1993-01-01

    The objectives of this research are: to develop and test predictive relations for the quantitative influence of vegetation canopy structure on wind erosion of semiarid rangeland soils, and to develop remote sensing methods for measuring the canopy structural parameters that determine sheltering against wind erosion. The influence of canopy structure on wind erosion will be investigated by means of wind-tunnel and field experiments using structural variables identified by the wind-tunnel and field experiments using model roughness elements to simulate plant canopies. The canopy structural variables identified by the wind-tunnel and field experiments as important in determining vegetative sheltering against wind erosion will then be measured at a number of naturally vegetated field sites and compared with estimates of these variables derived from analysis of remotely sensed data.

  1. Lampreys as Diverse Model Organisms in the Genomics Era.

    PubMed

    McCauley, David W; Docker, Margaret F; Whyard, Steve; Li, Weiming

    2015-11-01

    Lampreys, one of the two surviving groups of ancient vertebrates, have become important models for study in diverse fields of biology. Lampreys (of which there are approximately 40 species) are being studied, for example, (a) to control pest sea lamprey in the North American Great Lakes and to restore declining populations of native species elsewhere; (b) in biomedical research, focusing particularly on the regenerative capability of lampreys; and (c) by developmental biologists studying the evolution of key vertebrate characters. Although a lack of genetic resources has hindered research on the mechanisms regulating many aspects of lamprey life history and development, formerly intractable questions are now amenable to investigation following the recent publication of the sea lamprey genome. Here, we provide an overview of the ways in which genomic tools are currently being deployed to tackle diverse research questions and suggest several areas that may benefit from the availability of the sea lamprey genome.

  2. Lampreys as Diverse Model Organisms in the Genomics Era

    PubMed Central

    McCauley, David W.; Docker, Margaret F.; Whyard, Steve; Li, Weiming

    2015-01-01

    Lampreys, one of the two surviving groups of ancient vertebrates, have become important models for study in diverse fields of biology. Lampreys (of which there are approximately 40 species) are being studied, for example, (a) to control pest sea lamprey in the North American Great Lakes and to restore declining populations of native species elsewhere; (b) in biomedical research, focusing particularly on the regenerative capability of lampreys; and (c) by developmental biologists studying the evolution of key vertebrate characters. Although a lack of genetic resources has hindered research on the mechanisms regulating many aspects of lamprey life history and development, formerly intractable questions are now amenable to investigation following the recent publication of the sea lamprey genome. Here, we provide an overview of the ways in which genomic tools are currently being deployed to tackle diverse research questions and suggest several areas that may benefit from the availability of the sea lamprey genome. PMID:26951616

  3. The impact of geoengineering on vegetation in experiment G1 of the Geoengineering Model Intercomparison Project

    NASA Astrophysics Data System (ADS)

    Irvine, Peter; Glienke, Susanne; Lawrence, Mark

    2015-04-01

    Solar Radiation Management (SRM) has been proposed as a means to partly counteract global warming. The Geoengineering Model Intercomparison Project (GeoMIP) simulated the climate consequences of a number of SRM techniques, but the effects on vegetation have not yet been thoroughly studied. Here, the vegetation response to the idealized GeoMIP G1 experiment is analyzed, in which a reduction of the solar constant counterbalances the radiative effects of quadrupled atmospheric CO2 concentrations; the results from eight fully coupled earth system models (ESMs) are included. For most models and regions, changes in net primary productivity (NPP) are dominated by the increase in CO2, via the CO2 fertilization effect. As SRM will lower temperatures, in high latitudes this will reverse gains in NPP from the lifting of temperature limitations. In low latitudes this cooling relative to the 4xCO2 simulation decreases plant respiration whilst having little effect on gross primary productivity, increasing NPP. Despite reductions in precipitation in most regions in response to SRM, runoff and NPP increase in many regions including those previously highlighted as potentially being at risk of drought under SRM. This is due to simultaneous reductions in evaporation and increases in water use efficiency by plants due to higher CO2 concentrations. The relative differences between models in the vegetation response are substantially larger than the differences in their climate responses. The largest differences between models are for those with and without a nitrogen-cycle, with a much smaller CO2 fertilization effect for the former. These results suggest that until key vegetation processes are integrated into ESM predictions, the vegetation response to SRM will remain highly uncertain.

  4. Equilibrium Response and Transient Dynamics Datasets from VEMAP: Vegetation/Ecosystem Modeling and Analysis Project

    DOE Data Explorer

    The Vegetation-Ecosystem Modeling and Analysis Project (VEMAP) was a large, collaborative, multi-agency program to simulate and understand ecosystem dynamics for the continental U.S. The project involved the development of common data sets for model input including a high-resolution topographically-adjusted climate history of the U.S. from 1895-1993 on a 0.5? grid, with soils and vegetation cover. The vegetation cover data set includes a detailed agricultural data base based on USDA statistics and remote sensing, as well as natural vegetation (also derived from satellite imagery). Two principal model experiments were run. First, a series of ecosystem models were run from 1895 to 1993 to simulate current ecosystem biogeochemistry. Second, these same models were integrated forward using the output from two climate system models (CCC (Canadian Climate Centre) and Hadley Centre models) using climate results translated into the VEMAP grid and re-adjusted for high-resolution topography for the simulated period 1994-2100.[Quoted from http://www.cgd.ucar.edu/vemap/findings.html] The VEMAP Data Portal is a central collection of files maintained and serviced by the NCAR Data Group. These files (the VEMAP Community Datasets) represent a complete and current collection of VEMAP data files. All data files available through the Data Portal have undergone extensive quality assurance.[Taken from http://www.cgd.ucar.edu/vemap/datasets.html] Users of the VEMAP Portal can access input files of numerical data that include monthly and daily files of geographic data, soil and site files, scenario files, etc. Model results from Phase I, the Equilibrium Response datasets, are available through the NCAR anonymous FTP site at http://www.cgd.ucar.edu/vemap/vresults.html. Phase II, Transient Dynamics, include climate datasets, models results, and analysis tools. Many supplemental files are also available from the main data page at http://www.cgd.ucar.edu/vemap/datasets.html.

  5. A physical model of the bidirectional reflectance of vegetation canopies. I - Theory. II - Inversion and validation

    NASA Technical Reports Server (NTRS)

    Verstraete, Michel M.; Pinty, Bernard; Dickinson, Robert E.

    1990-01-01

    A new physically based analytical model of the bidirectional reflectance of vegetation canopies is derived. The model expresses the bidirectional reflectance field of a semiinfinite canopy as a combination of functions describing (1) the optical properties of the leaves through their single-scattering albedo and their phase function, (2) the average distribution of leaf orientations, and (3) the architecture of the canopy. The model is validated against laboratory and ground-based measurements in the visible and IR spectral regions, taken over two vegetation covers. The intrinsic optical properties of leaves and the information on the geometrical canopy arrangements in space were obtained using an inversion procedure based on a nonlinear optimization technique. Model predictions of bidirectional reflectances obtained using the inversion procedure compare well with actual observations.

  6. Genetic diversity in the SIR model of pathogen evolution.

    PubMed

    Gordo, Isabel; Gomes, M Gabriela M; Reis, Daniel G; Campos, Paulo R A

    2009-01-01

    We introduce a model for assessing the levels and patterns of genetic diversity in pathogen populations, whose epidemiology follows a susceptible-infected-recovered model (SIR). We model the population of pathogens as a metapopulation composed of subpopulations (infected hosts), where pathogens replicate and mutate. Hosts transmit pathogens to uninfected hosts. We show that the level of pathogen variation is well predicted by analytical expressions, such that pathogen neutral molecular variation is bounded by the level of infection and increases with the duration of infection. We then introduce selection in the model and study the invasion probability of a new pathogenic strain whose fitness (R(0)(1+s)) is higher than the fitness of the resident strain (R(0)). We show that this invasion probability is given by the relative increment in R(0) of the new pathogen (s). By analyzing the patterns of genetic diversity in this framework, we identify the molecular signatures during the replacement and compare these with those observed in sequences of influenza A.

  7. Palaeodistribution modelling of European vegetation types at the Last Glacial Maximum using modern analogues from Siberia: Prospects and limitations

    NASA Astrophysics Data System (ADS)

    Janská, Veronika; Jiménez-Alfaro, Borja; Chytrý, Milan; Divíšek, Jan; Anenkhonov, Oleg; Korolyuk, Andrey; Lashchinskyi, Nikolai; Culek, Martin

    2017-03-01

    We modelled the European distribution of vegetation types at the Last Glacial Maximum (LGM) using present-day data from Siberia, a region hypothesized to be a modern analogue of European glacial climate. Distribution models were calibrated with current climate using 6274 vegetation-plot records surveyed in Siberia. Out of 22 initially used vegetation types, good or moderately good models in terms of statistical validation and expert-based evaluation were computed for 18 types, which were then projected to European climate at the LGM. The resulting distributions were generally consistent with reconstructions based on pollen records and dynamic vegetation models. Spatial predictions were most reliable for steppe, forest-steppe, taiga, tundra, fens and bogs in eastern and central Europe, which had LGM climate more similar to present-day Siberia. The models for western and southern Europe, regions with a lower degree of climatic analogy, were only reliable for mires and steppe vegetation, respectively. Modelling LGM vegetation types for the wetter and warmer regions of Europe would therefore require gathering calibration data from outside Siberia. Our approach adds value to the reconstruction of vegetation at the LGM, which is limited by scarcity of pollen and macrofossil data, suggesting where specific habitats could have occurred. Despite the uncertainties of climatic extrapolations and the difficulty of validating the projections for vegetation types, the integration of palaeodistribution modelling with other approaches has a great potential for improving our understanding of biodiversity patterns during the LGM.

  8. Vegetation controls on northern high latitude snow-albedo feedback: observations and CMIP5 model simulations.

    PubMed

    Loranty, Michael M; Berner, Logan T; Goetz, Scott J; Jin, Yufang; Randerson, James T

    2014-02-01

    The snow-masking effect of vegetation exerts strong control on albedo in northern high latitude ecosystems. Large-scale changes in the distribution and stature of vegetation in this region will thus have important feedbacks to climate. The snow-albedo feedback is controlled largely by the contrast between snow-covered and snow-free albedo (Δα), which influences predictions of future warming in coupled climate models, despite being poorly constrained at seasonal and century time scales. Here, we compare satellite observations and coupled climate model representations of albedo and tree cover for the boreal and Arctic region. Our analyses reveal consistent declines in albedo with increasing tree cover, occurring south of latitudinal tree line, that are poorly represented in coupled climate models. Observed relationships between albedo and tree cover differ substantially between snow-covered and snow-free periods, and among plant functional type. Tree cover in models varies widely but surprisingly does not correlate well with model albedo. Furthermore, our results demonstrate a relationship between tree cover and snow-albedo feedback that may be used to accurately constrain high latitude albedo feedbacks in coupled climate models under current and future vegetation distributions.

  9. Carbon lost and carbon gained: a study of vegetation and carbon trade-offs among diverse land uses in Phoenix, Arizona.

    PubMed

    McHale, Melissa R; Hall, Sharon J; Majumdar, Anandamayee; Grimm, Nancy B

    2017-03-01

    Human modification and management of urban landscapes drastically alters vegetation and soils, thereby altering carbon (C) storage and rates of net primary productivity (NPP). Complex social and ecological processes drive vegetation cover in cities, leading to heterogeneity in C dynamics depending on regional climate, land use, and land cover. Recent work has demonstrated homogenization in ecological processes within human-dominated landscapes (the urban convergence hypothesis) in soils and biotic communities. However, a lack of information on vegetation in arid land cities has hindered an understanding of potential C storage and NPP convergence across a diversity of ecosystem types. We estimated C storage and NPP of trees and shrubs for six different land-use types in the arid metropolis of Phoenix, Arizona, USA, and compared those results to native desert ecosystems, as well as other urban and natural systems around the world. Results from Phoenix do not support the convergence hypothesis. In particular, C storage in urban trees and shrubs was 42% of that found in desert vegetation, while NPP was only 20% of the total NPP estimated for comparable natural ecosystems. Furthermore, the overall estimates of C storage and NPP associated with urban trees in the CAP ecosystem were much lower (8-63%) than the other cities included in this analysis. We also found that C storage (175.25-388.94 g/m(2) ) and NPP (8.07-15.99 g·m(-2) ·yr(-1) ) were dominated by trees in the urban residential land uses, while in the desert, shrubs were the primary source for pools (183.65 g/m(2) ) and fluxes (6.51 g·m(-2) ·yr(-1) ). These results indicate a trade-off between shrubs and trees in arid ecosystems, with shrubs playing a major role in overall C storage and NPP in deserts and trees serving as the dominant C pool in cities. Our research supports current literature that calls for the development of spatially explicit and standardized methods for analyzing C dynamics associated

  10. Technique for assessing vegetation-induced moisture flux, with implications for global climate modeling

    NASA Technical Reports Server (NTRS)

    Macari, Emir Jose

    1990-01-01

    The time between storms, the duration of storms, and the storm depths are studied in relation to vegetation controls on the disposition of rainfall. It is proposed that understanding the movement of water between the vegetation and soil (including evapotranspiration and infiltration) will be the gateway for modeling atmospheric flux and improving global climate models. The overall objective goal of the proposed research effort is to develop a field/lab methodology which will provide a better understanding of vegetation induced water movement. Water flow initiated from stem flow of wooded slopes feeds soil water pathways, which in turn feed the deeper ground water system and give rise to stream response. This is balanced by more water inputs via throughfall, where it percolates the soil matrix and allows much greater rates of evapotranspiration and atmospheric/soil moisture flux. This research study seeks to gain an understanding of the effect of vegetation on soil moisture, and the effect of this differential wetting on resulting evapotranspiration and atmospheric flux.

  11. Simulation and analysis of NDVI performance based on vegetation canopy radiative transfer model

    NASA Astrophysics Data System (ADS)

    Zeng, Yuyan; Shi, Runhe; Liu, Pudong; Ai, Jinquan; Zhou, Cong

    2015-09-01

    This paper uses PROSAIL model to simulate vegetation canopy reflectance under different chlorophyll contents and Leaf area index (LAI). The changes of NDVIs with different LAIs and chlorophyll contents are analyzed. A simulated spectral dataset was built firstly by using PROSIAL vegetation radiative transfer model with various vegetation chlorophyll concentrations and leaf area index. The responses of NDVIs to LAIs are quantitatively analyzed further based on the dataset. The results show that chlorophyll contents affect canopy reflectance mainly in visible band. Canopy reflectance decreases with an increasing chlorophyll content. Under the same LAI value, NDVI values increase with an increase chlorophyll contents. Under constant content of chlorophyll, NDVIs increases with an increasing LAI. When the value of LAI is less than5, the canopy reflectance is significantly affected by soil background. When value of LAI is higher than5, the earth surface is almost completely covered with vegetation. The increase in LAI has little effect on canopy reflectance and NDVIs consequently. NDVIs increases with the adding of chlorophyll content, when chlorophyll is higher than 40, the rangeability of NDVIs is becoming stable.

  12. Quantifying the Negative Feedback of Vegetation to Greenhouse Warming: A Modeling Approach

    NASA Technical Reports Server (NTRS)

    Bounous, L.; Hall, F. G.; Sellers, P. J.; Kumar, A.; Collatz, G. J.; Tucker, C. J.; Imhoff, M. L.

    2010-01-01

    Several climate models indicate that in a 2 x CO2 environment, temperature and precipitation would increase and runoff would increase faster than precipitation. These models, however, did not allow the vegetation to increase its leaf density as a response to the physiological effects of increased CO2 and consequent changes in climate. Other assessments included these interactions but did not account for the vegetation down-regulation to reduce plant's photosynthetic activity and as such resulted in a weak vegetation negative response. When we combine these interactions in climate simulations with 2 x CO2, the associated increase in precipitation contributes primarily to increase evapotranspiration rather than surface runoff, consistent with observations, and results in an additional cooling effect not fully accounted for in previous simulations with elevated CO2. By accelerating the water cycle, this feedback slows but does not alleviate the projected warming, reducing the land surface warming by 0.6 C. Compared to previous studies, these results imply that long term negative feedback from CO2-induced increases in vegetation density could reduce temperature following a stabilization of CO2 concentration.

  13. Newly Implemented Snow-Vegetation Representation in the Community Land Model

    NASA Astrophysics Data System (ADS)

    Perket, J.; Flanner, M.; Clark, M. P.; Lawrence, D. M.

    2014-12-01

    Boreal forests are a major source of surface albedo feedback spread in CMIP5 models. We've incorporated improvements into the Community Land Model (CLM) vegetation canopy snow treatment in order to more realistically represent boreal forest canopy albedo. Current CLM hydrology does not differentiate the phase of precipitation intercepted by vegetation. To represent canopy snow, there is a sharp temperature-dependent switch in canopy albedo parameters at 0 K. Snow immediately ceases to exist when vegetation temperature rises above freezing. We've separated phases in the CLM vegetation hydrology, allowing snow to have its own storage maximum and interception treatment. Wind and melt based unloading terms have also been incorporated to more accurately simulate canopy processes, creating a path for canopy snow loss in freezing temperatures. To evaluate the new treatment, we compared singe-point CLM 4.5 simulations with accumulated canopy snow mass measurements from Umpqua Forest, Oregon. Additionally, we have considered the effects of modifying snow cover fraction and latent heat fluxes from phase changes. Global CLM simulations evaluate the climatic differences between existing CLM and CLM with the new implementations for boreal forests.

  14. Estimating vegetation structural effects on carbon uptake using satellite data fusion and inverse modeling

    NASA Astrophysics Data System (ADS)

    Asner, Gregory P.; Bateson, C. Ann; Privette, Jeffrey L.; El Saleous, Nazmi; Wessman, Carol A.

    1998-11-01

    Regional analyses of biogeochemical processes can benefit significantly from observational information on land cover, vegetation structure (e.g., leaf area index), and biophysical properties such as fractional PAR absorption. Few remote sensing efforts have provided a suite of plant attributes needed to link vegetation structure to ecosystem function at high spatial resolution. In arid and semiarid ecosystems (e.g., savannas), high spatial heterogeneity of land cover results in significant functional interaction between dominant vegetation types, requiring new approaches to resolve their structural characteristics for regional-scale biogeochemical research. We developed and tested a satellite data fusion and radiative transfer inverse modeling approach to deliver estimates of vegetation structure in a savanna region of Texas. Spectral mixture analysis of Landsat data provided verifiable estimates of woody plant, herbaceous, bare soil, and shade fractions at 28.5 m resolution. Using these subpixel cover fractions, a geometric-optical model was inverted to estimate overstory stand density and crown dimensions with reasonable accuracy. The Landsat cover estimates were then used to spectrally unmix the contribution of woody plant and herbaceous canopies to AVHRR multiangle reflectance data. These angular reflectances were used with radiative transfer model inversions to estimate canopy leaf area index (LAI). The suite of estimated canopy and landscape variables indicated distinct patterns in land cover and structural attributes related to land use. These variables were used to calculate diurnal PAR absorption and carbon uptake by woody and herbaceous canopies in contrasting land cover and land use types. We found that both LAI and the spatial distribution of vegetation structural types exert strong control on carbon fluxes and that intercanopy shading is an important factor controlling functional processes in spatially heterogeneous environments.

  15. Field Verification of the Prediction Model on Desert Locust Adult Phase Status From Density and Vegetation

    PubMed Central

    Cissé, S.; Ghaout, S.; Babah Ebbe, M. A; Kamara, S; Piou, C.

    2016-01-01

    Previous studies investigated the effect of vegetation on density thresholds of adult Desert Locust gregarization from historical data in Mauritania. We examine here the prediction of locust phase based on adult density and vegetation conditions using the statistical model from Cisse et al. compared with actual behavior of Desert Locust adults observed in the field in Mauritania. From the 130 sites where adult locusts were found, the model predicted the phase of Desert Locust adults with a relatively small error of prediction of 6.1%. Preventive locust control should be rational, based on a risk assessment. The staff involved in implementation of the preventive control strategy needs specific indicators for when or where chemical treatment should be done. In this respect, we show here that the statistical model of Cisse et al. may be appropriate. PMID:27432351

  16. Field Verification of the Prediction Model on Desert Locust Adult Phase Status From Density and Vegetation.

    PubMed

    Cissé, S; Ghaout, S; Babah Ebbe, M A; Kamara, S; Piou, C

    2016-01-01

    Previous studies investigated the effect of vegetation on density thresholds of adult Desert Locust gregarization from historical data in Mauritania. We examine here the prediction of locust phase based on adult density and vegetation conditions using the statistical model from Cisse et al. compared with actual behavior of Desert Locust adults observed in the field in Mauritania. From the 130 sites where adult locusts were found, the model predicted the phase of Desert Locust adults with a relatively small error of prediction of 6.1%. Preventive locust control should be rational, based on a risk assessment. The staff involved in implementation of the preventive control strategy needs specific indicators for when or where chemical treatment should be done. In this respect, we show here that the statistical model of Cisse et al. may be appropriate.

  17. Importance of vegetation processes for model spread in the fast precipitation response to CO2 forcing

    NASA Astrophysics Data System (ADS)

    DeAngelis, Anthony M.; Qu, Xin; Hall, Alex

    2016-12-01

    In the current generation of climate models, the projected increase in global precipitation over the 21st century ranges from 2% to 10% under a high-emission scenario. Some of this uncertainty can be traced to the rapid response to carbon dioxide (CO2) forcing. We analyze an ensemble of simulations to better understand model spread in this rapid response. A substantial amount is linked to how the land surface partitions a change in latent versus sensible heat flux in response to the CO2-induced radiative perturbation; a larger increase in sensible heat results in a larger decrease in global precipitation. Model differences in the land surface response appear to be strongly related to the vegetation response to increased CO2, specifically, the closure of leaf stomata. Future research should thus focus on evaluation of the vegetation physiological response, including stomatal conductance parameterizations, for the purpose of constraining the fast response of Earth's hydrologic cycle to CO2 forcing.

  18. Modeling the flow resistance of woody vegetation using physically based properties of the foliage and stem

    NASA Astrophysics Data System (ADS)

    Västilä, Kaisa; Järvelä, Juha

    2014-01-01

    Both the foliage and stem essentially influence the flow resistance of woody plants, but their different biomechanical properties complicate the parameterization of foliated vegetation for modeling. This paper investigates whether modeling of flow resistance caused by natural woody vegetation can be improved using explicit description of both the foliage and stem. For this purpose, we directly measured the drag forces of Alnus glutinosa, Betula pendula, Salix viminalis, and Salix x rubens twigs in a laboratory flume at four foliation levels, parameterized with the leaf-area-to-stem-area ratio AL/AS. The species differed in the foliage drag but had approximately equal stem drag. For the foliated twigs, increasing AL/AS was found to increase the reconfiguration and the share of the foliage drag to the total drag. The experiments provided new insight into the factors governing the flow resistance of natural woody vegetation and allowed us to develop a model for estimating the vegetative friction factor using the linear superposition of the foliage and stem drag. The model is novel in that the foliage and stem are separately described with physically based parameters: drag coefficients, reconfiguration parameters, and leaf area and frontal-projected stem area per ground area. The model could satisfactorily predict the flow resistance of twig to sapling-sized specimens of the investigated species at velocities of 0.05-1 m/s. As a further benefit, the model allows exploring the variability in drag and reconfiguration associated with differing abundance of the foliage in relation to the stem.

  19. Wildfire risk for main vegetation units in a biodiversity hotspot: modeling approach in New Caledonia, South Pacific

    PubMed Central

    Gomez, Céline; Mangeas, Morgan; Curt, Thomas; Ibanez, Thomas; Munzinger, Jérôme; Dumas, Pascal; Jérémy, André; Despinoy, Marc; Hély, Christelle

    2015-01-01

    Wildfire has been recognized as one of the most ubiquitous disturbance agents to impact on natural environments. In this study, our main objective was to propose a modeling approach to investigate the potential impact of wildfire on biodiversity. The method is illustrated with an application example in New Caledonia where conservation and sustainable biodiversity management represent an important challenge. Firstly, a biodiversity loss index, including the diversity and the vulnerability indexes, was calculated for every vegetation unit in New Caledonia and mapped according to its distribution over the New Caledonian mainland. Then, based on spatially explicit fire behavior simulations (using the FLAMMAP software) and fire ignition probabilities, two original fire risk assessment approaches were proposed: a one-off event model and a multi-event burn probability model. The spatial distribution of fire risk across New Caledonia was similar for both indices with very small localized spots having high risk. The patterns relating to highest risk are all located around the remaining sclerophyll forest fragments and are representing 0.012% of the mainland surface. A small part of maquis and areas adjacent to dense humid forest on ultramafic substrates should also be monitored. Vegetation interfaces between secondary and primary units displayed high risk and should represent priority zones for fire effects mitigation. Low fire ignition probability in anthropogenic-free areas decreases drastically the risk. A one-off event associated risk allowed localizing of the most likely ignition areas with potential for extensive damage. Emergency actions could aim limiting specific fire spread known to have high impact or consist of on targeting high risk areas to limit one-off fire ignitions. Spatially explicit information on burning probability is necessary for setting strategic fire and fuel management planning. Both risk indices provide clues to preserve New Caledonia hot spot of

  20. Associations Between School Meals Offered Through the National School Lunch Program and the School Breakfast Program and Fruit and Vegetable Intake Among Ethnically Diverse, Low-Income Children

    PubMed Central

    Robinson-O'Brien, Ramona; Burgess-Champoux, Teri; Haines, Jess; Hannan, Peter J.; Neumark-Sztainer, Dianne

    2013-01-01

    BACKGROUND Despite evidence in support of the health benefits associated with fruit and vegetable (FV) intake, national data indicate that FV consumption among school-aged children is below recommended levels, particularly among low-income children. School meals offered through the School Breakfast Program and National School Lunch Program can provide an important contribution to child FV intake. This study examines the proportion of fruits and vegetables consumed from school meals programs among ethnically diverse, low socioeconomic status children. METHODS Participants (n = 103) included fourth to sixth grade boys and girls from 4 urban elementary schools in St. Paul, Minnesota serving primarily low-income populations. Research staff interviewed children during school hours and recorded dietary intake via 24-hour recall. Analysis included descriptive statistics using cross tabulations and means. RESULTS Average reported mean (SD) daily FV intake was 3.6 (2.5) servings, with 80% of children consuming fewer than 5 daily servings of FV. On average, children consumed over half of their daily FV intake within school. Children with low FV intake (<5 FV servings daily) consumed a higher proportion of their daily intake at school than children with higher FV intake (≥5 FV servings daily) (39% vs 59%; p = .002). CONCLUSIONS Child FV intake is below recommended levels. School meals provide an important contribution to the daily FV intake among ethnically diverse, low socioeconomic status children, particularly among those with the lowest FV intake. School meals programs promoting FV intake within the school environment may provide an opportunity to encourage increased FV consumption. PMID:20840658

  1. Prokaryotes in salt marsh sediments of Ria de Aveiro: Effects of halophyte vegetation on abundance and diversity

    NASA Astrophysics Data System (ADS)

    Oliveira, Vanessa; Santos, Ana L.; Aguiar, Claúdia; Santos, Luisa; Salvador, Ângelo C.; Gomes, Newton C. M.; Silva, Helena; Rocha, Sílvia M.; Almeida, Adelaide; Cunha, Ângela

    2012-09-01

    The aim of this study was to investigate the influence of monospecific colonization of sediment stands by Spartina maritima or Halimione portulacoides on benthic prokaryote assemblages in a salt marsh located in Ria de Aveiro (Portugal). The distribution of Bacteria, Archaea and sulfate-reducing bacteria (SRB) in sediments with monospecific plant stands and in unvegetated sediments was characterized by Fluorescence In Situ Hybridization (FISH). Total prokaryote abundance (0.4 × 109-1.7 × 109 cells gdw-1) was highest in sediments from the surface layer. The domain Bacteria comprised approximately 40% of total prokaryote communities with the highest percentages occurring in the surface layer. Archaeal cells corresponded to an average of 25% of total prokaryote population, with higher abundance in the vegetation banks, and displaying homogeneous vertical distribution. The relative abundance of SRB represented approximately 3% of total 4', 6-diamidino-2-phenylindole dihydrochloride (DAPI) stained cells at unvegetated sediment and H. portulacoides stand and 7% at S. maritima stand. Headspace solid-phase microextraction (HS-SPME) combined with Comprehensive Two-Dimensional Gas Chromatography-Time-of-Flight Mass Spectrometry (GC × GC-ToFMS) was used to analyse the volatile and semi-volatile fraction of root exudates. A total of 171 compounds were identified and Principal Component Analysis showed a clear separation between the chemical composition (volatile and semi-volatile organic compounds) of the exudates of the two plants. The patterns of vertical distribution and differences in the proportion of SRB and Archaea in the prokaryote communities developing in sediments colonized by Spartina maritima or Halimione portulacoides suggest the existence of plant-specific interactions between halophyte vegetation and estuarine sediment bacteria in Ria de Aveiro salt marshes, exerted via sediment lithology and root-derived exudates.

  2. Phreatophytic vegetation and groundwater fluctuations: a review of current research and application of ecosystem response modeling with an emphasis on great basin vegetation.

    PubMed

    Naumburg, Elke; Mata-Gonzalez, Ricardo; Hunter, Rachael G; McLendon, Terry; Martin, David W

    2005-06-01

    Although changes in depth to groundwater occur naturally, anthropogenic alterations may exacerbate these fluctuations and, thus, affect vegetation reliant on groundwater. These effects include changes in physiology, structure, and community dynamics, particularly in arid regions where groundwater can be an important water source for many plants. To properly manage ecosystems subject to changes in depth to groundwater, plant responses to both rising and falling groundwater tables must be understood. However, most research has focused exclusively on riparian ecosystems, ignoring regions where groundwater is available to a wider range of species. Here, we review responses of riparian and other species to changes in groundwater levels in arid environments. Although decreasing water tables often result in plant water stress and reduced live biomass, the converse is not necessarily true for rising water tables. Initially, rising water tables kill flooded roots because most species cannot tolerate the associated low oxygen levels. Thus, flooded plants can also experience water stress. Ultimately, individual species responses to either scenario depend on drought and flooding tolerance and the change in root system size and water uptake capacity. However, additional environmental and biological factors can play important roles in the severity of vegetation response to altered groundwater tables. Using the reviewed information, we created two conceptual models to highlight vegetation dynamics in areas with groundwater fluctuations. These models use flow charts to identify key vegetation and ecosystem properties and their responses to changes in groundwater tables to predict community responses. We then incorporated key concepts from these models into EDYS, a comprehensive ecosystem model, to highlight the potential complexity of predicting community change under different fluctuating groundwater scenarios. Such models provide a valuable tool for managing vegetation and

  3. Utilizing observations of vegetation patterns to infer ecosystem parameters and test model predictions

    NASA Astrophysics Data System (ADS)

    Penny, G.; Daniels, K. E.; Thompson, S. E.

    2012-12-01

    Periodic vegetation patterns arise globally in arid and semi-arid environments, and are believed to indicate competing positive and negative feedbacks between resource availability and plant uptake at different length scales. The patterns have become the object of two separate research themes, one focusing on observation of ecosystem properties and vegetation morphology, and another focusing on the development of theoretical models and descriptions of pattern behavior. Given the growing body of work in both directions, there is a compelling need to unify both strands of research by bringing together observations of large-scale pattern morphology with predictions made by various models. Previous attempts have employed spectral analysis on pattern images and inverse modeling on one-dimensional transects of patterns images, yet have not made a concerted effort to rigorously confront predictions with observational data in two dimensions. This study makes the first steps towards unification, utilizing high resolution landscape-scale images of vegetation patterns over multiple years at five different locations, including Niger, Central Mexico, Baja California, Texas, and Australia. Initial analyses of the observed patterns reveal considerable departures from the idealized morphologies predicted by models. Pattern wavelengths, while clustered around a local average, vary through space and are frequently altered by pattern defects such as missing or broken bands. While often locally homogeneous, pattern orientation also varies through space, allowing the correlations between landscape features and changes in local pattern morphology to be explored. Stationarity of the pattern can then be examined by comparing temporal changes in morphology with local climatic fluctuations. Ultimately, by identifying homogeneous regions of coherent pattern, inversion approaches can be applied to infer model parameters and build links between observable pattern and landscape features and the

  4. Aboveground Biomass and Dynamics of Forest Attributes using LiDAR Data and Vegetation Model

    NASA Astrophysics Data System (ADS)

    V V L, P. A.

    2015-12-01

    In recent years, biomass estimation for tropical forests has received much attention because of the fact that regional biomass is considered to be a critical input to climate change. Biomass almost determines the potential carbon emission that could be released to the atmosphere due to deforestation or conservation to non-forest land use. Thus, accurate biomass estimation is necessary for better understating of deforestation impacts on global warming and environmental degradation. In this context, forest stand height inclusion in biomass estimation plays a major role in reducing the uncertainty in the estimation of biomass. The improvement in the accuracy in biomass shall also help in meeting the MRV objectives of REDD+. Along with the precise estimate of biomass, it is also important to emphasize the role of vegetation models that will most likely become an important tool for assessing the effects of climate change on potential vegetation dynamics and terrestrial carbon storage and for managing terrestrial ecosystem sustainability. Remote sensing is an efficient way to estimate forest parameters in large area, especially at regional scale where field data is limited. LIDAR (Light Detection And Ranging) provides accurate information on the vertical structure of forests. We estimated average tree canopy heights and AGB from GLAS waveform parameters by using a multi-regression linear model in forested area of Madhya Pradesh (area-3,08,245 km2), India. The derived heights from ICESat-GLAS were correlated with field measured tree canopy heights for 60 plots. Results have shown a significant correlation of R2= 74% for top canopy heights and R2= 57% for stand biomass. The total biomass estimation 320.17 Mt and canopy heights are generated by using random forest algorithm. These canopy heights and biomass maps were used in vegetation models to predict the changes biophysical/physiological characteristics of forest according to the changing climate. In our study we have

  5. Models for Gamma-Ray Bursts and Diverse Transients

    SciTech Connect

    Woosley, S.E.; Zhang, Weiqun; /KIPAC, Menlo Park

    2007-01-17

    The observational diversity of ''gamma-ray bursts'' (GRBs) has been increasing, and the natural inclination is a proliferation of models. We explore the possibility that at least part of this diversity is a consequence of a single basic model for the central engine operating in a massive star of variable mass, differential rotation rate, and mass loss rate. Whatever that central engine may be--and here the collapsar is used as a reference point--it must be capable of generating both a narrowly collimated, highly relativistic jet to make the GRB, and a wide angle, sub-relativistic outflow responsible for exploding the star and making the supernova bright. To some extent, the two components may vary independently, so it is possible to produce a variety of jet energies and supernova luminosities. We explore, in particular, the production of low energy bursts and find a lower limit, {approx} 10{sup 48} erg s{sup -1} to the power required for a jet to escape a massive star before that star either explodes or is accreted. Lower energy bursts and ''suffocated'' bursts may be particularly prevalent when the metallicity is high, i.e., in the modern universe at low redshift.

  6. [Estimation models of vegetation fractional coverage (VFC) based on remote sensing image at different radiometric correction levels].

    PubMed

    Gu, Zhu-Jun; Zeng, Zhi-Yuan; Shi, Xue-Zheng; Yu, Dong-Sheng; Zheng, Wei; Zhang, Zhen-Long; Hu, Zi-Fu

    2008-06-01

    The images of post atmospheric correction reflectance (PAC), top of atmosphere reflectance (TOA), and digital number (DN) of a SPOT5 HRG remote sensing image of Nanjing, China were used to derive four vegetation indices (VIs), i. e., normalized difference vegetation index (NDVI), transformed vegetation index (TVI), soil-adjusted vegetation index (SAVI), and modified soil-adjusted vegetation index (MSAVI), and 36 VI-VFC relationship models were established based on these VIs and the VFC data obtained from ground measurement. The results showed that among the models established, the cubic polynomial models based on NDVI and TVI from PAC were the best, followed by those based on SAVI and MSAVI from DN, with the accuracy being slightly higher than that of the former two models when VFC > 0.8. The accuracy of these four models was higher in middle-densely vegetated areas (VFC = 0.4-0.8) than in sparsely vegetated areas (VFC = 0-0.4). All the established models could be used in other places via the introduction of calibration models. In VI-VFC modeling, using VIs derived from different radiometric correction levels of remote sensing image could help mining valuable information from remote sensing image, and thus, improving the accuracy of VFC estimation.

  7. Measuring and modelling water related soil-vegetation feedbacks in a fallow plot

    NASA Astrophysics Data System (ADS)

    Ursino, N.; Cassiani, G.; Deiana, R.; Vignoli, G.; Boaga, J.

    2013-08-01

    Land fallowing is one possible response to shortage of water for irrigation. Leaving the soil unseeded implies a change of the soil functioning that has an impact on the water cycle. The development of a soil crust in the open spaces between the patterns of grass weed affects the soil properties and the field scale water balance. The objectives of this study are to test the potential of integrated non invasive geophysical methods and ground-image analysis and to quantify the effect of the soil vegetation interaction on the water balance of a fallow land at the local and plot scale. We measured repeatedly in space and time local soil saturation and vegetation cover over two small plots located in southern Sardinia, Italy, during a controlled irrigation experiment. One plot was left unseeded and the other was cultivated. The comparative analysis of ERT maps of soil moisture evidenced a considerably different hydrologic response to irrigation of the two plots. Local measurements of soil saturation and vegetation cover were repeated in space to evidence a positive feedback between weed growth and infiltration at the fallow plot. A simple bucket model captured the different soil moisture dynamics at the two plots during the infiltration experiment and was used to estimate the impact of the soil vegetation feedback on the yearly water balance at the fallow site.

  8. Measuring and modeling water-related soil-vegetation feedbacks in a fallow plot

    NASA Astrophysics Data System (ADS)

    Ursino, N.; Cassiani, G.; Deiana, R.; Vignoli, G.; Boaga, J.

    2014-03-01

    Land fallowing is one possible response to shortage of water for irrigation. Leaving the soil unseeded implies a change of the soil functioning that has an impact on the water cycle. The development of a soil crust in the open spaces between the patterns of grass weed affects the soil properties and the field-scale water balance. The objectives of this study are to test the potential of integrated non-invasive geophysical methods and ground-image analysis and to quantify the effect of the soil-vegetation interaction on the water balance of fallow land at the local- and plot scale. We measured repeatedly in space and time local soil saturation and vegetation cover over two small plots located in southern Sardinia, Italy, during a controlled irrigation experiment. One plot was left unseeded and the other was cultivated. The comparative analysis of ERT maps of soil moisture evidenced a considerably different hydrologic response to irrigation of the two plots. Local measurements of soil saturation and vegetation cover were repeated in space to evidence a positive feedback between weed growth and infiltration at the fallow plot. A simple bucket model captured the different soil moisture dynamics at the two plots during the infiltration experiment and was used to estimate the impact of the soil vegetation feedback on the yearly water balance at the fallow site.

  9. High-resolution hydrometeorological modeling in diverse landscapes

    NASA Astrophysics Data System (ADS)

    Byrne, J. M.; MacDonald, R. J.; Booth, E.; Dalla Vicenza, S. A.; Boon, S.; Jiskoot, H.; Letts, M. G.

    2011-12-01

    The presentation describes the continued development and application of the physically-based hydrometeorological model GENESYS (GENerate Earth SYstems Science). GENESYS was originally developed to simulate the detailed landscape-dependent micrometeorological variables needed to model daily snow and rainfall processes in diverse and complex terrain. We have developed routines to model (i) spatial and temporal accumulation and ablation of alpine snowpack; (ii) soil water processes; and (iii) high-resolution spatial and temporal runoff volumes from distinct watershed terrain categories, at spatial resolutions of 1 ha or less. The model functions well for operational forecasting and water management time frames, using high-end desktop workstations. The model has been used in distinct watersheds on the eastern slopes of the Rocky Mountains in Alberta, Canada. Results from these studies demonstrate that the GENESYS model simulates watershed processes, including water supply, with a high degree of accuracy. We have successfully operated GENESYS at scales of 2000 and 20,000 km2 and expect that the model can be applied to much larger watersheds and in different geographic regions. GENESYS is an effective operational forecast modeling tool that can be used to simulate the impacts of environmental change on water supply from mountain watersheds. Ongoing developments and applications of the GENESYS model include: soil moisture simulation for drought and fire hazard risk assessment; glacial mass balance and glacial meltwater runoff routines including the effects of glacier recession; a surface and groundwater interactive runoff module; and a daily stream channel water temperature model. The stream temperature model is the focus of a PhD thesis that incorporates atmospheric and hydrologic controls to estimate stream temperatures, with the ultimate objective of assessing the impacts of environmental change on the habitat of freshwater and anadromous salmonid species in the

  10. Effects of human trampling on abundance and diversity of vascular plants, bryophytes and lichens in alpine heath vegetation, Northern Sweden.

    PubMed

    Jägerbrand, Annika K; Alatalo, Juha M

    2015-01-01

    This study investigated the effects of human trampling on cover, diversity and species richness in an alpine heath ecosystem in northern Sweden. We tested the hypothesis that proximity to trails decreases plant cover, diversity and species richness of the canopy and the understory. We found a significant decrease in plant cover with proximity to the trail for the understory, but not for the canopy level, and significant decreases in the abundance of deciduous shrubs in the canopy layer and lichens in the understory. Proximity also had a significant negative impact on species richness of lichens. However, there were no significant changes in species richness, diversity or evenness of distribution in the canopy or understory with proximity to the trail. While not significant, liverworts, acrocarpous and pleurocarpous bryophytes tended to have contrasting abundance patterns with differing proximity to the trail, indicating that trampling may cause shifts in dominance hierarchies of different groups of bryophytes. Due to the decrease in understory cover, the abundance of litter, rock and soil increased with proximity to the trail. These results demonstrate that low-frequency human trampling in alpine heaths over long periods can have major negative impacts on lichen abundance and species richness. To our knowledge, this is the first study to demonstrate that trampling can decrease species richness of lichens. It emphasises the importance of including species-level data on non-vascular plants when conducting studies in alpine or tundra ecosystems, since they often make up the majority of species and play a significant role in ecosystem functioning and response in many of these extreme environments.

  11. Improving wildlife habitat model performance: Sensitivity to the scale and detail of vegetation measurements

    NASA Astrophysics Data System (ADS)

    Roberts, Lance Jay, Jr.

    Monitoring the impacts of resource use and landscape change on wildlife habitat over large areas is a daunting assignment. Forest land managers could benefit from linking the frequent decisions of resource use (timber harvesting) with a system of wildlife habitat accounting, but to date these tools are not widely available. I examined aspects of wildlife habitat modeling that: (in Chapter 2) could potentially lead to the establishment of wildlife habitat accounting within a resource decision support tool, (in Chapter 3) improve our theoretical understanding and methods to interpret the accuracy of wildlife habitat models, (in Chapter 4) explore the effects of vegetation classification systems on wildlife habitat model results, and (in Chapter 5) show that forest structural estimates from satellite imagery can improve potential habitat distribution models (GAP) for forest bird species. The majority of the analyses in this dissertation were done using a forest resource inventory developed by the State of Michigan (IFMAP). Paired with field vegetation and bird samples from sites across the lower peninsula of Michigan, we compared the relative accuracy of wildlife habitat relationship models built with plot-scale vegetation samples and stand-scale forest inventory maps. Recursive partitioning trees were used to build wildlife habitat models for 30 bird species. The habitat distribution maps from the Michigan Gap Analysis (MIGAP) were used as a baseline for comparison of model accuracy results. Both the plot and stand-scale measurements achieved high accuracy and there were few large differences between plot and stand-scale models for any individual species. Where the plot and stand-scale models were different, they tended to be species associated with mixed habitats. This may be evidence that scale of vegetation measurement has a larger influence on species associated with edges and ecotones. Habitat models that were built solely with land cover data were less accurate

  12. Modelling the evolution and diversity of cumulative culture.

    PubMed

    Enquist, Magnus; Ghirlanda, Stefano; Eriksson, Kimmo

    2011-02-12

    Previous work on mathematical models of cultural evolution has mainly focused on the diffusion of simple cultural elements. However, a characteristic feature of human cultural evolution is the seemingly limitless appearance of new and increasingly complex cultural elements. Here, we develop a general modelling framework to study such cumulative processes, in which we assume that the appearance and disappearance of cultural elements are stochastic events that depend on the current state of culture. Five scenarios are explored: evolution of independent cultural elements, stepwise modification of elements, differentiation or combination of elements and systems of cultural elements. As one application of our framework, we study the evolution of cultural diversity (in time as well as between groups).

  13. Modelling the evolution and diversity of cumulative culture

    PubMed Central

    Enquist, Magnus; Ghirlanda, Stefano; Eriksson, Kimmo

    2011-01-01

    Previous work on mathematical models of cultural evolution has mainly focused on the diffusion of simple cultural elements. However, a characteristic feature of human cultural evolution is the seemingly limitless appearance of new and increasingly complex cultural elements. Here, we develop a general modelling framework to study such cumulative processes, in which we assume that the appearance and disappearance of cultural elements are stochastic events that depend on the current state of culture. Five scenarios are explored: evolution of independent cultural elements, stepwise modification of elements, differentiation or combination of elements and systems of cultural elements. As one application of our framework, we study the evolution of cultural diversity (in time as well as between groups). PMID:21199845

  14. Climate-vegetation interactions in the coupled RegCM4 - CLM4.5 CNDV model

    NASA Astrophysics Data System (ADS)

    Caporaso, Luca; Giuliani, Graziano; Giorgi, Filippo

    2016-04-01

    We use the latest version of International Center for Theoretical Physics (ICTP) regional climate model (RegCM4) coupled with the Community Land Model version 4.5 (CLM4.5) including a dynamic vegetation model to study biogeophysical feedbacks in the climate system related to vegetation composition and structure. Sets of parallel experiments are conducted over the Africa and South America CORDEX domains using the RegCM4-CLM4.5 in its standard configuration and with the CNDV activated (CLM 4.5 with both the Carbon Nitrogen and the Dynamic Vegetation Model activated). The potential role of regional vegetation feedbacks within the climate system and the impact of climate variability and change on the ecosystem dynamics is assessed for both domains. In addition, the sensitivity to initial vegetation conditions and different idealized climate forcings is investigated. Preliminary results show that the changes in the climate forcing can have substantial effects on the dynamics and evolution of different vegetation types over both domains, and that the vegetation coupling can have a substantial effect on the simulated regional climate regimes. Our results thus indicate on the one hand that climate change can have profound effects on the evolution of important ecosystems for the two regions, and on the other that vegetation dynamics can indeed affect the climate response at the regional scale.

  15. Accounting for the influence of vegetation and landscape improves model transferability in a tropical savannah region

    NASA Astrophysics Data System (ADS)

    Gao, Hongkai; Hrachowitz, Markus; Sriwongsitanon, Nutchanart; Fenicia, Fabrizio; Gharari, Shervan; Savenije, Hubert H. G.

    2016-10-01

    Understanding which catchment characteristics dominate hydrologic response and how to take them into account remains a challenge in hydrological modeling, particularly in ungauged basins. This is even more so in nontemperate and nonhumid catchments, where—due to the combination of seasonality and the occurrence of dry spells—threshold processes are more prominent in rainfall runoff behavior. An example is the tropical savannah, the second largest climatic zone, characterized by pronounced dry and wet seasons and high evaporative demand. In this study, we investigated the importance of landscape variability on the spatial variability of stream flow in tropical savannah basins. We applied a stepwise modeling approach to 23 subcatchments of the Upper Ping River in Thailand, where gradually more information on landscape was incorporated. The benchmark is represented by a classical lumped model (FLEXL), which does not account for spatial variability. We then tested the effect of accounting for vegetation information within the lumped model (FLEXLM), and subsequently two semidistributed models: one accounting for the spatial variability of topography-based landscape features alone (FLEXT), and another accounting for both topographic features and vegetation (FLEXTM). In cross validation, each model was calibrated on one catchment, and then transferred with its fitted parameters to the remaining catchments. We found that when transferring model parameters in space, the semidistributed models accounting for vegetation and topographic heterogeneity clearly outperformed the lumped model. This suggests that landscape controls a considerable part of the hydrological function and explicit consideration of its heterogeneity can be highly beneficial for prediction in ungauged basins in tropical savannah.

  16. Extension of virtual flux decomposition model to the case of two vegetation layers: FDM-2

    NASA Astrophysics Data System (ADS)

    Kallel, Abdelaziz

    2012-04-01

    As an approximation, the forest could be assumed a discrete media composed of three main components: trees, understory vegetation and soil background. To describe the reflectance of such a canopy in the optical wavelength domain, it is necessary to develop a radiative transfer model which considers two vegetation layers (understory and trees). In this article, we propose a new model, FDM-2, an extension of the flux decomposition model (FDM), to take into account such a canopy architecture. Like FDM, FDM-2 models the diffuse flux anisotropy and takes into account the hot spot effect as well as conserves energy. The hot spot which corresponds to an increase of the probability of photon escape after first collision close to the backscattering direction is modeled as a decrease of “the effective vegetation density” encountered by the diffuse flux (E+1) and the radiance both created by first order scattering of the direct sun radiation. Compared to the turbid case (for which our model is equivalent to SAIL++ and therefore accurately conserving energy), such a density variation redistributes energy but does not affect the budget. Energy remains well conserved in the discrete case as well. To solve the RT problem, FDM-2 separates E+1 from the high order diffuse flux. As E+1 corresponding effective density is not constant function of the altitude (when traveling along the canopy) therefore it is decomposed into sub-fluxes of constant densities. The sub-flux RT problems are linear and simply solved based on SAIL++ formalism. The global RT solution is obtained summing the contribution of the sub-fluxes. Simulation tests confirm that FDM-2 conserves energy (i.e., radiative budget closes to zero in the purist corner case with an error due to the discretization less than 0.5%). Compared to the Rayspread model (among the best 3-D models of the RAMI Exercise third phase), our model provides similar performance.

  17. Modeling the effect of photosynthetic vegetation properties on the NDVI--LAI relationship.

    PubMed

    Steltzer, Heidi; Welker, Jeffrey M

    2006-11-01

    Developing a relationship between the normalized difference vegetation index (NDVI) and the leaf area index (LAI) is essential to describe the pattern of spatial or temporal variation in LAI that controls carbon, water, and energy exchange in many ecosystem process models. Photosynthetic vegetation (PV) properties can affect the estimation of LAI, but no models integrate the effects of multiple species. We developed four alternative NDVI-LAI models, three of which integrate PV effects: no PV effects, leaf-level effects, canopy-level effects, and effects at both levels. The models were fit to data across the natural range of variation in NDVI for a widespread High Arctic ecosystem. The weight of evidence supported the canopy-level model (Akaike weight, wr = 0.98), which includes species-specific canopy coefficients that primarily scale fractional PV cover to LAI by accounting for the area of unexposed PV. Modeling the canopy-level effects improved prediction of LAI (R2 = 0.82) over the model with no PV effect (R2 = 0.71) across the natural range of variation in NDVI but did not affect the site-level estimate of LAI. Satellite-based methods to estimate species composition, a variable in the model, will need to be developed. We expect that including the effects of PV properties in NDVI-LAI models will improve prediction of LAI where species composition varies across space or changes over time.

  18. Modeling Training Site Vegetation Coverage Probability with a Random Optimizing Procedure: An Artificial Neural Network Approach.

    DTIC Science & Technology

    1998-05-01

    Coverage Probability with a Random Optimization Procedure: An Artificial Neural Network Approach by Biing T. Guan, George Z. Gertner, and Alan B...Modeling Training Site Vegetation Coverage Probability with a Random Optimizing Procedure: An Artificial Neural Network Approach 6. AUTHOR(S) Biing...coverage based on past coverage. Approach A literature survey was conducted to identify artificial neural network analysis techniques applicable for

  19. Numerical modeling of drag for flow through vegetated domains and porous structures

    NASA Astrophysics Data System (ADS)

    Mattis, Steven A.; Dawson, Clint N.; Kees, Christopher E.; Farthing, Matthew W.

    2012-04-01

    In this paper, we study flow through vegetated wetlands using high resolution computational models to describe the flow. The goal is to describe drag characteristics of this flow at the large scales as a function of Reynolds number. This work is of importance to scientists and engineers dealing with wetland health and restoration, inland flooding due to tropical storms and hurricanes, and river lining projects. The existence of vegetation affects the flow resistance, which is a major factor in determining velocity and water level distribution in wetlands. For low Reynolds numbers, wetlands behave similarly to porous media, where it is well-known that Stokes flow at the micro-scale can be upscaled through homogenization to Darcy's Law at the macro-scale. As Reynolds number increases moderately, small-scale drag effects can be captured by adding a quadratic and/or cubic term to the Darcy equation; the so-called Darcy-Forchheimer model. For higher Reynolds numbers, Stokes equation is no longer a valid approximation, and full Navier-Stokes models must be used. We utilize large eddy simulation (LES) to study vegetative drag at high Reynolds numbers. The numerical simulations in this paper are performed using the Proteus Toolkit, which is under development by Kees and Farthing at ERDC.

  20. Physically-based modeling of drag force caused by natural woody vegetation

    NASA Astrophysics Data System (ADS)

    Järvelä, J.; Aberle, J.

    2014-12-01

    Riparian areas and floodplains are characterized by woody vegetation, which is an essential feature to be accounted for in many hydro-environmental models. For applications including flood protection, river restoration and modelling of sediment processes, there is a need to improve the reliability of flow resistance estimates. Conventional methods such as the use of lumped resistance coefficients or simplistic cylinder-based drag force equations can result in significant errors, as these methods do not adequately address the effect of foliage and reconfiguration of flexible plant parts under flow action. To tackle the problem, physically-based methods relying on objective and measurable vegetation properties are advantageous for describing complex vegetation. We have conducted flume and towing tank investigations with living and artificial plants, both in arrays and with isolated plants, providing new insight into advanced parameterization of natural vegetation. The stem, leaf and total areas of the trees confirmed to be suitable characteristic dimensions for estimating flow resistance. Consequently, we propose the use of leaf area index and leaf-to-stem-area ratio to achieve better drag force estimates. Novel remote sensing techniques including laser scanning have become available for effective collection of the required data. The benefits of the proposed parameterization have been clearly demonstrated in our newest experimental studies, but it remains to be investigated to what extent the parameter values are species-specific and how they depend on local habitat conditions. The purpose of this contribution is to summarize developments in the estimation of vegetative drag force based on physically-based approaches as the latest research results are somewhat dispersed. In particular, concerning woody vegetation we seek to discuss three issues: 1) parameterization of reconfiguration with the Vogel exponent; 2) advantage of parameterizing plants with the leaf area

  1. Beyond the zebrafish: diverse fish species for modeling human disease

    PubMed Central

    Schartl, Manfred

    2014-01-01

    ABSTRACT In recent years, zebrafish, and to a lesser extent medaka, have become widely used small animal models for human diseases. These organisms have convincingly demonstrated the usefulness of fish for improving our understanding of the molecular and cellular mechanisms leading to pathological conditions, and for the development of new diagnostic and therapeutic tools. Despite the usefulness of zebrafish and medaka in the investigation of a wide spectrum of traits, there is evidence to suggest that other fish species could be better suited for more targeted questions. With the emergence of new, improved sequencing technologies that enable genomic resources to be generated with increasing efficiency and speed, the potential of non-mainstream fish species as disease models can now be explored. A key feature of these fish species is that the pathological condition that they model is often related to specific evolutionary adaptations. By exploring these adaptations, new disease-causing and disease-modifier genes might be identified; thus, diverse fish species could be exploited to better understand the complexity of disease processes. In addition, non-mainstream fish models could allow us to study the impact of environmental factors, as well as genetic variation, on complex disease phenotypes. This Review will discuss the opportunities that such fish models offer for current and future biomedical research. PMID:24271780

  2. Identifying controls on vegetation greenness phenology through model-data integration

    NASA Astrophysics Data System (ADS)

    Forkel, Matthias; Migliavacca, Mirco; Reichstein, Markus; Schaphoff, Sibyll; Thonicke, Kirsten; Thurner, Martin; von Bloh, Werner; Weber, Ulrich; Carvalhais, Nuno

    2015-04-01

    Satellite observations demonstrate significant trends in vegetation phenology since the 1980s like an earlier start of the growing season or a wide-spread greening of northern ecosystems. Nevertheless, identifying the environmental controls for these trends and for inter-annual variability is challenging. Firstly, quantifications of land surface phenology and greenness dynamics are impaired by differences between satellite datasets and phenology detection methods. Secondly, dynamic global vegetation models (DGVM) that can be used to diagnose controls still reveal structural limitations and contrasting sensitivities to environmental drivers. Combining DGVMs with observational data sets can potentially help to revise current modelling approaches and thus to enhance the understanding of processes that control seasonal to long-term vegetation greenness dynamics. Here we implemented a new phenology model based on the growing season index (GSI) approach within the LPJmL (Lund Potsdam Jena managed lands) DGVM and integrated several observational data sets to improve the ability of the model in reproducing seasonal to long-term greenness dynamics. Specifically, we optimized model parameters against decadal satellite time series of the fraction of absorbed photosynthetic active radiation (FAPAR), albedo and gross primary production using a genetic optimization algorithm. We assessed the model performance by considering observational uncertainties from three satellite datasets of vegetation greenness and ten statistical phenology detection methods. LPJmL with new phenology and optimized parameters better reproduces seasonality, inter-annual variability and trends of vegetation greenness. We quantified the effects of temperature, incoming short-wave radiation, water availability, fire, permafrost, land use/land cover change, and CO2 fertilization on average patterns, inter-annual variability and trends of the start of growing season and peak greenness. Start of growing season

  3. Testing a dynamic global vegetation model for pre-industrial and Last Glacial Maximum boundary conditions

    NASA Astrophysics Data System (ADS)

    Handiani, Dian N.; Rachmayani, Rima; Paul, André; Dupont, Lydie M.

    2010-05-01

    Achieving better comparison between dynamic global vegetation models (DGVM) with pollen or plant data is important for the climate-vegetation modeling community. Our study tried to find a scheme that can be applied consistently to compare DGVMs with pollen data sets. We tested two models, the Top-down Representation of Interactive Foliage and Flora Including Dynamics (TRIFFID) and the Community Land Model's Dynamic Global Vegetation Model (CLM-DGVM), which we both ran for pre-industrial boundary conditions. In addition, we ran the TRIFFID model using boundary conditions for the Last Glacial Maximum (LGM, ~19,000- 23,000 years before present). For comparisons, we used the modern vegetation of the BIOME4 model and the reconstruction for the year 18000 after pollen data from the BIOME6000 (Version 4.2) project. Differences in the number of PFTs in each DGVMs lead to different results of the biome distribution even if models and data qualitatively agree. In the CLM-DGVM pre-industrial run, northern South America is covered by savanna or desert biome, which is associated with more growing degree days and lower rates of precipitation. Meanwhile, the TRIFFID model simulated a tropical forest in northern South America and a desert biome in Australia, probably because of higher values of growing degree days and different precipitation rates, which is lower in South America and higher in Australia. The climate parameters from both models show a similar pattern as in the BIOME4 model, but the values are higher in the DGVMs. Biome distributions of the pre-industrial simulation show similarities and differences between dynamic vegetation modeling and data reconstructions. Both models reveal a fair agreement simulating savanna and desert biomes around the Sahel, tropical forest in western Africa, boreal forest in eastern North America and in Siberia, and tundra in northern Canada. Some discrepancies appear in South America and Africa, where pollen data indicate a combination of

  4. WC WAVE - Integrating Diverse Hydrological-Modeling Data and Services Into an Interoperable Geospatial Infrastructure

    NASA Astrophysics Data System (ADS)

    Hudspeth, W. B.; Baros, S.; Barrett, H.; Savickas, J.; Erickson, J.

    2015-12-01

    WC WAVE (Western Consortium for Watershed Analysis, Visualization and Exploration) is a collaborative research project between the states of Idaho, Nevada, and New Mexico that is funded under the National Science Foundation's Experimental Program to Stimulate Competitive Research (EPSCoR). The goal of the project is to understand and document the effects of climate change on interactions between precipitation, vegetation growth, soil moisture and other landscape properties. These interactions are modeled within a framework we refer to as a virtual watershed (VW), a computer infrastructure that simulates watershed dynamics by linking scientific modeling, visualization, and data management components into a coherent whole. Developed and hosted at the Earth Data Analysis Center, University of New Mexico, the virtual watershed has a number of core functions which include: a) streamlined access to data required for model initialization and boundary conditions; b) the development of analytic scenarios through interactive visualization of available data and the storage of model configuration options; c) coupling of hydrological models through the rapid assimilation of model outputs into the data management system for access and use by sequent models. The WC-WAVE virtual watershed accomplishes these functions by provision of large-scale vector and raster data discovery, subsetting, and delivery via Open Geospatial Consortium (OGC) and REST web service standards. Central to the virtual watershed is the design and use of an innovative array of metadata elements that permits the stepwise coupling of diverse hydrological models (e.g. ISNOBAL, PRMS, CASiMiR) and input data to rapidly assess variation in outcomes under different climatic conditions. We present details on the architecture and functionality of the virtual watershed, results from three western U.S. watersheds, and discuss the realized benefits to watershed science of employing this integrated solution.

  5. Vegetation monitoring and estimation of evapotranspiration using remote sensing-based models in heterogeneous areas with patchy natural vegetation and crops

    NASA Astrophysics Data System (ADS)

    Carpintero, Elisabet; Andreu, Ana; Gonzalez-Dugo, Maria P.

    2015-04-01

    The integration of remotely sensed data into models for estimating evapotranspiration (ET) has increased significantly in recent years, allowing the extension of these models application from point to regional scale. Remote sensors provide distributed information about the status of vegetation and allow for a regular monitoring of water consumption. Currently, there are two types of approaches for estimating ET based either on the soil water balance, or surface energy balance. The first one uses the reflectance of vegetated surfaces in the visible and near infrared regions of the electromagnetic spectrum (VIS / NIR) to characterize the vegetation and its role in the water balance (Gonzalez-Dugo and Mateos, 2008). On the other hand, thermal-based energy balance models use the radiometric surface temperature registered by the sensor on thermal infrared (TIR) bands as the primary boundary condition for estimating ET (Kustas and Norman, 1996). The aim of this work is to carry out, using Landsat-8 satellite images, a continuous monitoring of growth and evapotranspiration of the different vegetation types, both natural and cultivated, in a region located in Southern Spain during the season August 2013 / September 2014. The region, with about 13800 ha, is marked by strong contrasts in the physical environment, with significant altitudinal gradient combined with a great variety of soil types and vegetation. It is characterized by a variation of grassland, scrubs, conifers, oaks and irrigated crops. In this work, a daily soil water balance has been applied using the vegetation index-basal crop coefficient approach (RSWB). This model is based on FAO-56 methodology (Allen et al., 1998), which determines the evapotranspiration of vegetation with the concepts of crop coefficient and reference ET. The crop coefficient accounts for the influence of the plants on the evapotranspiration, considering the effect of changes in canopy biophysical properties throughout the growth cycle

  6. Nitrogen feedbacks increase future terrestrial ecosystem carbon uptake in an individual-based dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Wårlind, D.; Smith, B.; Hickler, T.; Arneth, A.

    2014-11-01

    Recently a considerable amount of effort has been put into quantifying how interactions of the carbon and nitrogen cycle affect future terrestrial carbon sinks. Dynamic vegetation models, representing the nitrogen cycle with varying degree of complexity, have shown diverging constraints of nitrogen dynamics on future carbon sequestration. In this study, we use LPJ-GUESS, a dynamic vegetation model employing a detailed individual- and patch-based representation of vegetation dynamics, to evaluate how population dynamics and resource competition between plant functional types, combined with nitrogen dynamics, have influenced the terrestrial carbon storage in the past and to investigate how terrestrial carbon and nitrogen dynamics might change in the future (1850 to 2100; one representative "business-as-usual" climate scenario). Single-factor model experiments of CO2 fertilisation and climate change show generally similar directions of the responses of C-N interactions, compared to the C-only version of the model as documented in previous studies using other global models. Under an RCP 8.5 scenario, nitrogen limitation suppresses potential CO2 fertilisation, reducing the cumulative net ecosystem carbon uptake between 1850 and 2100 by 61%, and soil warming-induced increase in nitrogen mineralisation reduces terrestrial carbon loss by 31%. When environmental changes are considered conjointly, carbon sequestration is limited by nitrogen dynamics up to the present. However, during the 21st century, nitrogen dynamics induce a net increase in carbon sequestration, resulting in an overall larger carbon uptake of 17% over the full period. This contrasts with previous results with other global models that have shown an 8 to 37% decrease in carbon uptake relative to modern baseline conditions. Implications for the plausibility of earlier projections of future terrestrial C dynamics based on C-only models are discussed.

  7. The 1km estimation of Vegetation carbon budgets in South Korea using a terrestrial ecosystem model

    NASA Astrophysics Data System (ADS)

    Yoo, S.; Ito, A.; Lee, W.; Son, Y.; Kwak, D.; Oh, S.; Song, Y.; Lee, S.; Choi, S.

    2012-12-01

    Terrestrial ecosystem can store atmospheric carbon dioxide (CO2), one of the major factors of global warming, in vegetation and soils through photosynthesis process. Human induced CO2 emission has been rapidly increased by industrialization. On the current situation, Terrestrial ecosystem could be regarded as one of the major sinks of CO2 for mitigating global warming. So it is very important to quantify carbon dynamics and budget for preparing adaptation measures to climate change. Terrestrial ecosystem models have been developed and used for investigating the terrestrial carbon dynamics and quantifying budget. In this study, we simulated biogeochemistry model, VISIT, in whole South Korea territory to quantify ecosystem carbon budgets. Before simulating this model, we modified model parameters such as maximum photosynthetic rate and phonological parameters with flux measurement data. And then, we prepared high resolution input variables for simulation from reliable national source. As a result, the model estimated the vegetation ecosystems in South Korea are a net carbon sink, with a value of 3.51 Tg C year-1 during the period 1999-2008. Compared with the anthropogenic emission of South Korea, vegetation ecosystems offset 3.3% of human emissions. Spatially, evident latitudinal and topographical gradients were found in all estimates over entire areas due to the environmental difference surrounding ecosystems. In addition, seasonal and inter-annual variability could be found in the estimates, especially biomass growth and carbon uptake, in consequence of the variation of annual weather conditions. However, to achieve a reliable estimate of a carbon budget, the result should be examined and validated carefully by the independent approaches. And also, to overcome the uncertainties in the simulation model, we need to develop a method for consideration of disturbances, such as land-use change, fertilizing, timber production, and air pollution. This modeling approach can

  8. From Dynamic Global Vegetation Modelling to Real-World regional and local Application

    NASA Astrophysics Data System (ADS)

    Steinkamp, J.; Forrest, M.; Kamm, K.; Leiblein-Wild, M.; Pachzelt, A.; Werner, C.; Hickler, T.

    2015-12-01

    Dynamic (global) vegetation models (DGVM) can be applied to any spatial resolution on the local, national, continental and global scale given suitable climatic and geographic input forcing data. LPJ-GUESS, the main DGVM applied in our research group, uses the plant functional type (PFT) concept in the global setup with typically about 10-20 tree PFTs (subdivided into tropical, temperate and boreal) and two herbaceous PFTs by default. When modelling smaller spatial extents, such as continental (e.g. Europe/North America) national domains, or individual sites (e.g. Frankfurt, Germany), i.e. the scale of decision making, it becomes necessary to refine the PFT representation, the model initialization and validation and, in some case, to include additional processes. I will present examples of LPJ-GUESS applications at the continental to local scale performed by our working group including i.) a European simulation representing the main tree species and Mediterranean shrubs, ii.) a climate impact study for Turkey, iii.) coupled dynamic large grazer-vegetation modelling across Africa and, iv.) modelling an allergenic and in Europe invasive shrub (Ambrosia artemisiifolia), iv.) simulating water usage by an oak-pine forest stand near Frankfurt, and v.) stand specific differences in modelling at the FACE sites. Finally, I will present some thoughts on how to advance the models in terms of more detailed and realistic PFT or species parameterizations accounting for adaptive functional trait responses also within species.

  9. Understanding barriers and facilitators of fruit and vegetable consumption among a diverse multi-ethnic population in the USA.

    PubMed

    Yeh, Ming-Chin; Ickes, Scott B; Lowenstein, Lisa M; Shuval, Kerem; Ammerman, Alice S; Farris, Rosanne; Katz, David L

    2008-03-01

    A diet high in fruits and vegetables (F&V) has been associated with a decreased risk of certain cancers, reduced morbidity and mortality from heart disease, and enhanced weight management. Yet to date, most of the US population does not consume the recommended amount of F&V despite numerous interventions and government guidelines to promote consumption. Research has found various impediments to F&V consumption, such as high costs, an obesogenic environment and low socio-economic status. However, studies have not sufficiently focused on barriers and enablers to F&V intake among adult multi-ethnic populations. The present qualitative study examines 147 focus group participants' perceptions of impediments and enablers to F&V consumption. Twelve focus groups were conducted among African American, Hispanic and Caucasian men and women in North Carolina and Connecticut. Focus groups were audiotaped, transcribed verbatim and entered into QSR NVivo Software. Text data were systematically analyzed by investigators to identify recurrent themes both within and across groups and states. Focus group results indicate that most participants were aware of the health benefits associated with a diet rich in F&V. Yet many admitted not adhering to the Health and Human Service's recommendations. Individual impediments consisted of the high costs of F&V and a perceived lack of time. Early home food environment was perceived as affecting F&V consumption later in life. Other barriers reported were ethnic-specific. The African American participants reported limited access to fresh produce. This finding is consistent with numerous studies and must be addressed through health promotion intervention. Both the church and primary care clinics were described by African Americans as appropriate settings for health behavior interventions; these findings should be considered. Hispanic participants, mostly immigrants, cited inhibiting factors encountered in their adopted US environment. There is a

  10. Comparison of fractional vegetation cover estimations using dimidiate pixel models and look-up table inversions of the PROSAIL model from Landsat 8 OLI data

    NASA Astrophysics Data System (ADS)

    Ding, Yanling; Zhang, Hongyan; Li, Zhenwang; Xin, Xiaoping; Zheng, Xingming; Zhao, Kai

    2016-07-01

    Fractional vegetation cover (FVC) is an important variable for describing the quality and changes of vegetation in terrestrial ecosystems. Dimidiate pixel models and physical models are widely used to estimate FVC. Six dimidiate pixel models based on different vegetation indices (VI) and four look-up table (LUT) methods were compared to estimate FVC from Landsat 8 OLI data. Comparisons with in situ FVC of steppe and corn showed that the model proposed by Baret et al., which is based on the normalized difference vegetation index (NDVI), predicted FVC most accurately followed by Carlson and Ripley's method. Gutman and Ignatov's method overestimated FVC. Modified soil adjusted vegetation index (MSAVI) and the mixture of NDVI and RVI showed potential to replace NDVI in Gutman and Ignatov's model, whereas the difference vegetation index (DVI) performed less well. At low vegetation cover, the LUT using reflectances to constrain the cost function performed better than LUTs using VI to constrain the cost function, whereas at high vegetation cover, the LUT based on NDVI estimated FVC most accurately. The applications of DVI and MSAVI to constrain the cost function also obtained improvement at high vegetation cover. Overall, the accuracies of LUT methods were a little lower than those of dimidiate pixel models.

  11. Modeling Agricultural Crop Production in China using AVHRR-based Vegetation Health Indices

    NASA Astrophysics Data System (ADS)

    Yang, B.; Kogan, F.; Guo, W.; Zhiyuan, P.; Xianfeng, J.

    Weather related crop losses have always been a concern for farmers On a wider scale it has always influenced decision of Governments traders and other policy makers for the purpose of balanced food supplies trade and distribution of aid to the nations in need Therefore national policy and decision makers are giving increasing importance to early assessment of crop losses in response to weather fluctuations This presentation emphasizes utility of AVHRR-based Vegetation health index VHI for early warning of drought-related losses of agricultural production in China The VHI is a three-channel index characterizing greenness vigor and temperature of land surface which can be used as proxy for estimation of how healthy and potentially productive could be vegetation China is the largest in the world producer of grain including wheat and rice and cotton In the major agricultural areas China s crop production is very dependent on weather The VHI being a proxy indicator of weather impact on vegetation showed some correlation with productivity of agricultural crops during the critical period of their development The periods of the strongest correlation were investigated and used to build regression models where crop yield deviation from technological trend was accepted as a dependent and VHI as independent variables The models were developed for several major crops including wheat corn and soybeans

  12. Large-Scale Variation in Forest Carbon Turnover Rate and its Relation to Climate - Remote Sensing vs. Global Vegetation Models

    NASA Astrophysics Data System (ADS)

    Carvalhais, N.; Thurner, M.; Beer, C.; Forkel, M.; Rademacher, T. T.; Santoro, M.; Tum, M.; Schmullius, C.

    2015-12-01

    While vegetation productivity is known to be strongly correlated to climate, there is a need for an improved understanding of the underlying processes of vegetation carbon turnover and their importance at a global scale. This shortcoming has been due to the lack of spatially extensive information on vegetation carbon stocks, which we recently have been able to overcome by a biomass dataset covering northern boreal and temperate forests originating from radar remote sensing. Based on state-of-the-art products on biomass and NPP, we are for the first time able to study the relation between carbon turnover rate and a set of climate indices in northern boreal and temperate forests. The implementation of climate-related mortality processes, for instance drought, fire, frost or insect effects, is often lacking or insufficient in current global vegetation models. In contrast to our observation-based findings, investigated models from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT, are able to reproduce spatial climate - turnover rate relationships only to a limited extent. While most of the models compare relatively well to observation-based NPP, simulated vegetation carbon stocks are severely biased compared to our biomass dataset. Current limitations lead to considerable uncertainties in the estimated vegetation carbon turnover, contributing substantially to the forest feedback to climate change. Our results are the basis for improving mortality concepts in global vegetation models and estimating their impact on the land carbon balance.

  13. Analyzing savannah vegetation phenology with remotely sensed data, lagged time-series models and phenopictures

    NASA Astrophysics Data System (ADS)

    Boke-Olén, Niklas; Lehsten, Veiko; Ardö, Jonas; Eklundh, Lars; Holst, Thomas; Beringer, Jason; Veenendaal, Elmar; Tagesson, Torbern

    2016-04-01

    It is predicted that savannah regions will see changes in precipitation patterns due to current climate change projections. The change will most likely affect leaf phenology which controls net primary production. It is therefore important to; 1) study those changes and its drivers, 2) to be able to correctly model the changes to vegetation phenology due to climate change. To our knowledge there is no existing global savannah phenology model that can capture both the phenological events and the vegetation state between the events. We therefore, investigate how day length, mean annual precipitation and soil moisture affects and controls the vegetation phenology of savannahs (using MODIS NDVI as a proxy for phenological state) with a lagged time series model for global application. We furthermore use phenological pictures (phenopictures) to investigate savannah tree and grass phenology. Phenopictures are pictures taken with a digital time-lapse camera with the purpose of recording and studying phenological events. We used climate data from 15 flux towers sites located in 4 continents together with normalized difference vegetation index from MODIS for the model development. Two of the sites located in Africa were further analyzed using phenopictures. The developed model identified all three considered variables as usable for modelling of savannah leaf phenology but showed some inconsistent result for some of the sites indicating the difficulties in creating a simple common model that works equally well across sites. We attribute some of these difficulties to site specific differences (e.g. grazing or tree and grass ratio) that the simplified model did not consider. But we expect it to on average give the cross-validated result (r2= 0.6, RMSE = 0.1) when applied to other savannah areas. The preliminary analysis of the phenological pictures with respect to tree and grass to some extent support this by showing differences in the start of the leaves development in the

  14. Climate-vegetation modelling and fossil plant data suggest low atmospheric CO2 in the late Miocene

    NASA Astrophysics Data System (ADS)

    Forrest, M.; Eronen, J. T.; Utescher, T.; Knorr, G.; Stepanek, C.; Lohmann, G.; Hickler, T.

    2015-12-01

    There is an increasing need to understand the pre-Quaternary warm climates, how climate-vegetation interactions functioned in the past, and how we can use this information to understand the present. Here we report vegetation modelling results for the Late Miocene (11-7 Ma) to study the mechanisms of vegetation dynamics and the role of different forcing factors that influence the spatial patterns of vegetation coverage. One of the key uncertainties is the atmospheric concentration of CO2 during past climates. Estimates for the last 20 million years range from 280 to 500 ppm. We simulated Late Miocene vegetation using two plausible CO2 concentrations, 280 ppm CO2 and 450 ppm CO2, with a dynamic global vegetation model (LPJ-GUESS) driven by climate input from a coupled AOGCM (Atmosphere-Ocean General Circulation Model). The simulated vegetation was compared to existing plant fossil data for the whole Northern Hemisphere. For the comparison we developed a novel approach that uses information of the relative dominance of different plant functional types (PFTs) in the palaeobotanical data to provide a quantitative estimate of the agreement between the simulated and reconstructed vegetation. Based on this quantitative assessment we find that pre-industrial CO2 levels are largely consistent with the presence of seasonal temperate forests in Europe (suggested by fossil data) and open vegetation in North America (suggested by multiple lines of evidence). This suggests that during the Late Miocene the CO2 levels have been relatively low, or that other factors that are not included in the models maintained the seasonal temperate forests and open vegetation.

  15. Modeling wave effects on limits of woody vegetation in Catahoula Lake, LA, USA

    NASA Astrophysics Data System (ADS)

    Edwards, B. L.; Curcic, M.; Keim, R.

    2014-12-01

    Exposure to water waves in lakes is an important control on the structure and distribution of both submerged and shoreline vegetative communities. Wave exposure incident on the shoreline limits the distribution of shrubs on both lake and coastal margins by preventing establishment of seedlings via bed disturbance and uprooting. The goal of this study is to investigate the relationship between bed stress due to wave action and the spatial distribution of woody seedling establishment in Catahoula Lake, Louisiana, USA. The lake bed consists of a broad, seasonally inundated flat bordered by a band of woody shrubs. Annual summer de-watering of the lake allows the lake bed to support a moist-soil herbaceous vegetation community, but recent encroachment by woody shrubs over the past ~70 years threatens ecosystem conversion. We use the University of Miami Wave Model (UMWM) to simulate surface wave evolution and bed shear stress for a range of dominant wind conditions and water levels. UMWM is a 3rdgeneration ocean wave model that solves the wave energy balance equation given wind forcing input. While the model has been previously validated in deep water and coastal ocean applications, this study validates the model in very shallow water where bed-induced wave dissipation is a significant process. Model results show that waves of sufficient energy to prevent establishment or to uproot seedlings are common in areas of the lake that are experiencing the least woody encroachment. Areas of the lake bed that are experiencing encroachment are often sheltered from the strongest waves due to the lakes orientation with respect to dominant winds and prior establishment of woody growth, which dissipates wave energy significantly. Results are consistent with some otherwise-unexplained conditions at the lake such as spatially inconsistent relationships between elevation and vegetation communities. We use model results to investigate feedbacks between woody encoachment (both new and

  16. Models of interacting supernovae and their spectral diversity

    NASA Astrophysics Data System (ADS)

    Dessart, Luc; Hillier, D. John; Audit, Edouard; Livne, Eli; Waldman, Roni

    2016-05-01

    Using radiation hydrodynamics and radiative transfer simulations, we explore the origin of the spectral diversity of interacting supernovae (SNe) of Type IIn. We revisit SN 1994W and investigate the dynamical configurations that can give rise to spectra with narrow lines at all times. We find that a standard ˜10 M⊙ 1051 erg SN ejecta ramming into a 0.4 M⊙ dense circumstellar material is inadequate for SN 1994W, as it leads to the appearance of broad lines at late times. This structure, however, generates spectra that exhibit the key morphological changes seen in SN 1998S. For SN 1994W, we consider a completely different configuration, which involves the interaction at a large radius of a low-mass inner shell with a high-mass outer shell. Such a structure may arise in an 8-12 M⊙ star from a nuclear flash (e.g. of Ne) followed within a few years by core collapse. Our simulations show that the large mass of the outer shell leads to the complete braking of the inner shell material, the formation of a slow dense shell, and the powering of a luminous SN IIn, even for a low inner shell energy. Early on, our model line profiles are typical of SNe IIn, exhibiting narrow cores and broad electron-scattering wings. As observed in SN 1994W, they also remain narrow at late times. Our SN 1994W model invokes two low-energy ejections, both atypical of observed massive stars, and illustrates the diversity of configurations leading to SNe IIn. These results also highlight the importance of spectra to constrain the dynamical properties and understand the origin of SNe IIn.

  17. The vegetation-to-air concentration ratio in a specific activity atmospheric tritium model

    SciTech Connect

    Hamby, D.M.; Bauer, L.R.

    1994-03-01

    Specific activity models are frequently used to estimate the concentration of tritium oxide in vegetation. In such models, a single value represents the ratio (R) of the specific activity of tritium oxide in vegetation to the specific activity of atmospheric tritium oxide. Federal agencies such as the Nuclear Regulatory Commission and the Environmental Protection Agency have not established a consensus default for R. Literature on this topic suggests that a site-specific distribution of R should be developed when feasible. In this study, a distribution of R is established for the Savannah River Site. Environmental tritium concentrations in air and vegetation measured on and around the Savannah River Site over a 9-y period form the basis for the analysis. For dose assessments of chronic atmospheric tritium releases at the Savannah River Site, R is best parameterized by a normal distribution with a mean of 0.54 and one standard deviation of 0.10. The Nuclear Regulatory Commission default for R is approximately equal to the Savannah River Site site-specific estimate. Based on the results, the default value for R recognized by the Environmental Protection Agency overestimates tritium concentrations in vegetation and, therefore, doses from foodstuff consumption pathways at humid sites. For the Savannah River Site, the magnitude of the error is on the order of a factor of 2. This consideration may be important if an estimated dose approaches an as-low-as-reasonably-achievable or regulatory threshold. Conversely, without the benefit of site-specific data, ingestion doses may be underestimated in regions with dry climates. 11 refs., 1 fig., 3 tabs.

  18. The vegetation-to-air concentration ratio in a specific activity atmospheric tritium model.

    PubMed

    Hamby, D M; Bauer, L R

    1994-03-01

    Specific activity models are frequently used to estimate the concentration of tritium oxide in vegetation. In such models, a single value represents the ratio (R) of the specific activity of tritium oxide in vegetation to the specific activity of atmospheric tritium oxide. Federal agencies such as the Nuclear Regulatory Commission and the Environmental Protection Agency have not established a consensus default for R. Literature on this topic suggests that a site-specific distribution of R should be developed when feasible. In this study, a distribution of R is established for the Savannah River Site. Environmental tritium concentrations in air and vegetation measured on and around the Savannah River Site over a 9-y period form the basis for the analysis. For dose assessments of chronic atmospheric tritium releases at the Savannah River Site, R is best parameterized by a normal distribution with a mean of 0.54 and one standard deviation of 0.10. The Nuclear Regulatory Commission default for R is approximately equal to the Savannah River Site site-specific estimate. Based on the results, the default value for R recognized by the Environmental Protection Agency overestimates tritium concentrations in vegetation and, therefore, doses from foodstuff consumption pathways at humid sites. For the Savannah River Site, the magnitude of the error is on the order of a factor of 2. This consideration may be important if an estimated dose approaches an as-low-as-reasonably-achievable or regulatory threshold. Conversely, without the benefit of site-specific data, ingestion doses may be underestimated in regions with dry climates.

  19. Assessing the robustness of spatial pattern sequences in a dryland vegetation model

    PubMed Central

    Chen, Yuxin; Iams, Sarah; Silber, Mary

    2016-01-01

    A particular sequence of patterns, ‘gaps→labyrinth→spots’, occurs with decreasing precipitation in previously reported numerical simulations of partial differential equation dryland vegetation models. These observations have led to the suggestion that this sequence of patterns can serve as an early indicator of desertification in some ecosystems. Because parameter values in the vegetation models can take on a range of plausible values, it is important to investigate whether the pattern sequence prediction is robust to variation. For a particular model, we find that a quantity calculated via bifurcation-theoretic analysis appears to serve as a proxy for the pattern sequences that occur in numerical simulations across a range of parameter values. We find in further analysis that the quantity takes on values consistent with the standard sequence in an ecologically relevant limit of the model parameter values. This suggests that the standard sequence is a robust prediction of the model, and we conclude by proposing a methodology for assessing the robustness of the standard sequence in other models and formulations. PMID:27118924

  20. Assessing the robustness of spatial pattern sequences in a dryland vegetation model

    NASA Astrophysics Data System (ADS)

    Gowda, Karna; Chen, Yuxin; Iams, Sarah; Silber, Mary

    2016-03-01

    A particular sequence of patterns, `gaps→labyrinth→spots', occurs with decreasing precipitation in previously reported numerical simulations of partial differential equation dryland vegetation models. These observations have led to the suggestion that this sequence of patterns can serve as an early indicator of desertification in some ecosystems. Because parameter values in the vegetation models can take on a range of plausible values, it is important to investigate whether the pattern sequence prediction is robust to variation. For a particular model, we find that a quantity calculated via bifurcation-theoretic analysis appears to serve as a proxy for the pattern sequences that occur in numerical simulations across a range of parameter values. We find in further analysis that the quantity takes on values consistent with the standard sequence in an ecologically relevant limit of the model parameter values. This suggests that the standard sequence is a robust prediction of the model, and we conclude by proposing a methodology for assessing the robustness of the standard sequence in other models and formulations.

  1. Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change.

    PubMed

    Galbraith, David; Levy, Peter E; Sitch, Stephen; Huntingford, Chris; Cox, Peter; Williams, Mathew; Meir, Patrick

    2010-08-01

    *The large-scale loss of Amazonian rainforest under some future climate scenarios has generally been considered to be driven by increased drying over Amazonia predicted by some general circulation models (GCMs). However, the importance of rainfall relative to other drivers has never been formally examined. *Here, we conducted factorial simulations to ascertain the contributions of four environmental drivers (precipitation, temperature, humidity and CO(2)) to simulated changes in Amazonian vegetation carbon (C(veg)), in three dynamic global vegetation models (DGVMs) forced with climate data based on HadCM3 for four SRES scenarios. *Increased temperature was found to be more important than precipitation reduction in causing losses of Amazonian C(veg) in two DGVMs (Hyland and TRIFFID), and as important as precipitation reduction in a third DGVM (LPJ). Increases in plant respiration, direct declines in photosynthesis and increases in vapour pressure deficit (VPD) all contributed to reduce C(veg) under high temperature, but the contribution of each mechanism varied greatly across models. Rising CO(2) mitigated much of the climate-driven biomass losses in the models. *Additional work is required to constrain model behaviour with experimental data under conditions of high temperature and drought. Current models may be overly sensitive to long-term elevated temperatures as they do not account for physiological acclimation.

  2. Modeling Laser Altimeter Return Waveforms Over Complex Vegetation Using High-Resolution Elevation Data

    NASA Technical Reports Server (NTRS)

    Blair, J. Bryan; Hofton, Michelle A.

    1999-01-01

    The upcoming generation of laser altimeters record the interaction of emitted laser radiation with terrestrial surfaces in the form of a digitized waveform. We model these laser altimeter return waveforms as the sum of the reflections from individual surfaces within laser footprints, accounting for instrument-specific properties. We compare over 1000 modeled and recorded waveform pairs using the Pearson correlation. We show that we reliably synthesize the vertical structure information for vegetation canopies contained in a medium-large diameter laser footprint from a high-resolution elevation data set.

  3. Development and validation of a dynamical atmosphere-vegetation-soil HTO transport and OBT formation model.

    PubMed

    Ota, Masakazu; Nagai, Haruyasu

    2011-09-01

    A numerical model simulating transport of tritiated water (HTO) in atmosphere-soil-vegetation system, and, accumulation of organically bound tritium (OBT) in vegetative leaves was developed. Characteristic of the model is, for calculating tritium transport, it incorporates a dynamical atmosphere-soil-vegetation model (SOLVEG-II) that calculates transport of heat and water, and, exchange of CO(2). The processes included for calculating tissue free water tritium (TFWT) in leaves are HTO exchange between canopy air and leaf cellular water, root uptake of aqueous HTO in soil, photosynthetic assimilation of TFWT into OBT, and, TFWT formation from OBT through respiration. Tritium fluxes at the last two processes are input to a carbohydrate compartment model in leaves that calculates OBT translocation from leaves and allocation in them, by using photosynthesis and respiration rate in leaves. The developed model was then validated through a simulation of an existing experiment of acute exposure of grape plants to atmospheric HTO. Calculated TFWT concentration in leaves increased soon after the start of HTO exposure, reaching to equilibrium with the atmospheric HTO within a few hours, and then rapidly decreased after the end of the exposure. Calculated non-exchangeable OBT amount in leaves linearly increased during the exposure, and after the exposure, rapidly decreased in daytime, and, moderately nighttime. These variations in the calculated TFWT concentrations and OBT amounts, each mainly controlled by HTO exchange between canopy air and leaf cellular water and by carbohydrates translocation from leaves, fairly agreed with the observations within average errors of a factor of two.

  4. Determination of strength behaviour of slope supported by vegetated crib walls using centrifuge model testing

    NASA Astrophysics Data System (ADS)

    Sudan Acharya, Madhu

    2010-05-01

    The crib retaining structures made of wooden/bamboo logs with live plants inside are called vegetative crib walls which are now becoming popular due to their advantages over conventional civil engineering walls. Conventionally, wooden crib walls were dimensioned based on past experiences. At present, there are several guidelines and design standards for machine finished wooden crib walls, but only few guidelines for the design and construction of vegetative log crib walls are available which are generally not sufficient for an economic engineering design of such walls. Analytical methods are generally used to determine the strength of vegetated crib retaining walls. The crib construction is analysed statically by satisfying the condition of static equilibrium with acceptable level of safety. The crib wall system is checked for internal and external stability using conventional monolithic and silo theories. Due to limitations of available theories, the exact calculation of the strength of vegetated wooden/bamboo crib wall cannot be made in static calculation. Therefore, experimental measurements are generally done to verify the static analysis. In this work, a model crib construction (1:20) made of bamboo elements is tested in the centrifuge machine to determine the strength behaviour of the slope supported by vegetated crib retaining wall. A geotechnical centrifuge is used to conduct model tests to study geotechnical problems such as the strength, stiffness and bearing capacity of different structures, settlement of embankments, stability of slopes, earth retaining structures etc. Centrifuge model testing is particularly well suited to modelling geotechnical events because the increase in gravitational force creates stresses in the model that are equivalent to the much larger prototype and hence ensures that the mechanisms of ground movements observed in the tests are realistic. Centrifuge model testing provides data to improve our understanding of basic mechanisms

  5. Integration of Insect Infestations into Dynamic Global Vegetation Models Using Insect Functional Types

    NASA Astrophysics Data System (ADS)

    Kim, J. B.; Smith, E.

    2011-12-01

    Many have explored the impact of climate change on insects and explored predictions under future scenarios. But the converse has been limited: no DGVM simulates insect infestation. We are assessing the potential impact of simulating insect infestation processes on DGVMs, and creating a framework for development of insect functional types (IFTs) for integration with DGVMs. Some work have been done devising IFTs for conservation and resource management, but results are limited to qualitative groupings of insect taxa based on resource usage and response to environment. The integration of IFTs into DGVMs would enable exploration of interaction between climate change and vegetation dynamics at the global scale. IFTs have the potential to significantly impact global carbon balance and vegetation distributions, and interaction with other disturbance regimes already modeled in DGVMs (e.g., fire, drought, herbivory). We identify relevant features of existing DGVMs, including spatial and temporal scales, extents, and focuses; how other disturbances are modeled; and model areas where IFTs would link to DGVMs. We identify relevant features of insect models, including hazard and risk models; spatial and temporal resolutions and extents; spatial processes; and commonly used variables. We outline the key considerations, including tradeoffs between accuracy of representation and the breadth of applicability; morphology, physiology, biochemistry, reproductive and demographic characteristics; functional effects vs. functional responses; major axes of specialization that are consistent across environments, biogeographic regions, and major insect taxa; and whether IFTs can be empirically evaluated. We propose major axes to define IFTs, and present a sample IFT, the westwide pine beetle.

  6. Insights for empirically modeling evapotranspiration influenced by riparian and upland vegetation in semiarid regions

    USGS Publications Warehouse

    Bunting, Daniel P.; Kurc, Shirley A.; Glenn, Edward P.; Nagler, Pamela L.; Scott, Russell L.

    2014-01-01

    Water resource managers aim to ensure long-term water supplies for increasing human populations. Evapotranspiration (ET) is a key component of the water balance and accurate estimates are important to quantify safe allocations to humans while supporting environmental needs. Scaling up ET measurements from small spatial scales has been problematic due to spatiotemporal variability. Remote sensing products provide spatially distributed data that account for seasonal climate and vegetation variability. We used MODIS products [i.e., Enhanced Vegetation Index (EVI) and nighttime land surface temperatures (LSTn)] to create empirical ET models calibrated using measured ET from three riparian-influenced and two upland, water-limited flux tower sites. Results showed that combining all sites introduced systematic bias, so we developed separate models to estimate riparian and upland ET. While EVI and LSTn were the main drivers for ET in riparian sites, precipitation replaced LSTn as the secondary driver of ET in upland sites. Riparian ET was successfully modeled using an inverse exponential approach (r2 = 0.92) while upland ET was adequately modeled using a multiple linear regression approach (r2 = 0.77). These models can be used in combination to estimate ET at basin scales provided each region is classified and precipitation data is available.

  7. Environmental distribution and genetic diversity of vegetative compatibility groups determine biocontrol strategies to mitigate aflatoxin contamination of maize by Aspergillus flavus.

    PubMed

    Atehnkeng, Joseph; Donner, Matthias; Ojiambo, Peter S; Ikotun, Babatunde; Augusto, Joao; Cotty, Peter J; Bandyopadhyay, Ranajit

    2016-01-01

    Maize infected by aflatoxin-producing Aspergillus flavus may become contaminated with aflatoxins, and as a result, threaten human health, food security and farmers' income in developing countries where maize is a staple. Environmental distribution and genetic diversity of A. flavus can influence the effectiveness of atoxigenic isolates in mitigating aflatoxin contamination. However, such information has not been used to facilitate selection and deployment of atoxigenic isolates. A total of 35 isolates of A. flavus isolated from maize samples collected from three agro-ecological zones of Nigeria were used in this study. Ecophysiological characteristics, distribution and genetic diversity of the isolates were determined to identify vegetative compatibility groups (VCGs). The generated data were used to inform selection and deployment of native atoxigenic isolates to mitigate aflatoxin contamination in maize. In co-inoculation with toxigenic isolates, atoxigenic isolates reduced aflatoxin contamination in grain by > 96%. A total of 25 VCGs were inferred from the collected isolates based on complementation tests involving nitrate non-utilizing (nit(-)) mutants. To determine genetic diversity and distribution of VCGs across agro-ecological zones, 832 nit(-) mutants from 52 locations in 11 administrative districts were paired with one self-complementary nitrate auxotroph tester-pair for each VCG. Atoxigenic VCGs accounted for 81.1% of the 153 positive complementations recorded. Genetic diversity of VCGs was highest in the derived savannah agro-ecological zone (H = 2.61) compared with the southern Guinea savannah (H = 1.90) and northern Guinea savannah (H = 0.94) zones. Genetic richness (H = 2.60) and evenness (E5  = 0.96) of VCGs were high across all agro-ecological zones. Ten VCGs (40%) had members restricted to the original location of isolation, whereas 15 VCGs (60%) had members located between the original source of isolation and a distance

  8. The modeled effects of fire on carbon balance and vegetation abundance in Alaskan tundra

    NASA Astrophysics Data System (ADS)

    Dietze, M. C.; Davidson, C. D.; Kelly, R.; Higuera, P. E.; Hu, F.

    2012-12-01

    Arctic climate is warming at a rate disproportionately faster than the rest of the world. Changes have been observed within the tundra that are attributed to this trend, including active layer thickening, shrub land expansion, and increases in fire frequency. Whether tundra remains a global net sink of carbon could depend upon the effects of fire on vegetation, specifically concerning the speed at which vegetation reestablishes, the stimulation of growth after fire, and the changes that occur in species composition during succession. While rapid regeneration of graminoid vegetation favors the spread of this functional type in early succession, late succession appears to favor shrub vegetation at abundances greater than those observed before fire. Possible reasons for this latter observation include changes in albedo, soil insulation, and soil moisture regimes. Here we investigate the course of succession after fire disturbance within tundra ecosystems, and the mechanisms involved. A series of simulated burn experiments were conducted on the burn site left by the 2007 Anaktuvuk River fire to access the behavior of the Ecosystem Demography model v2.2 (ED2) in the simulation of fire on the tundra. The land surface sub-model within ED is modified to improve simulate permafrost through the effects of an increased soil-column depth, a peat texture class, and the effects of wind compaction and depth hoar on snow density. Parameterization is conducted through Bayesian techniques used to constrain parameter distributions based upon data from a literature survey, field measurements at Toolik Lake, Alaska, and a data assimilation over three datasets. At each step, priority was assigned to measurements that could constrain parameters that account for the greatest explained variance in model output as determined through sensitivity analysis. Following parameterization, a series of simulations were performed to gauge the suitability of the model in predicting carbon balance and

  9. Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy - Effect of crown shape and mutual shadowing

    NASA Technical Reports Server (NTRS)

    Li, Xiaowen; Strahler, Alan H.

    1992-01-01

    Many natural vegetation covers can be regarded as assemblages of plant crowns, on a background, which interact with light as discrete objects. On this basis, geometric optics furnish an approach to the modeling of vegetation canopies that captures the most important features of such growths' bidirectional measurements. Attention is presently given to models which approximate these phenomena and relate the size, shape, and count density of plant crowns to viewing and illumination positions and to crown-background reflectance contrasts.

  10. Modeling Surface Winds in Mountainous Catchments as a Function of Topography and Vegetation

    NASA Astrophysics Data System (ADS)

    Winstral, A.; Marks, D.

    2006-12-01

    In order to develop accurate distributed hydrological models, spatially accurate meteorological forcing fields are required. In mountainous basins, elevation and topography strongly influence temperature, precipitation, vapor pressure, and wind. At the watershed scale, temperature, precipitation, and vapor pressure are largely dependent on elevation and receive adequate representation via lapse rates. Wind speed and its consequent effects on the redistribution of snow however, are also strongly dependent on proximal upstream physiography and strong gradients are often present within defined elevation bands. This study used wind data from a unique set of wind monitoring sites located across a gradient of exposures within the 0.36 km2 Reynolds Mountain East (RME) research basin in southwestern Idaho, USA to examine relationships between wind speeds, upstream topography, and vegetation. Following a one-year calibration period an optimal relationship between topography, vegetation cover, and hourly averaged wind speeds was developed. Using a jack-knife procedure the topography-vegetation-wind speed relationship was then validated in successive years at RME. The developed procedure for spatially distributing wind speeds accurately simulated the observed wind gradients, had extrapolation capabilities such that end-members could be reasonably predicted when not available, and was computationally efficient.

  11. Measuring and Modelling water related soil - vegetation feedbacks in a fallow plot

    NASA Astrophysics Data System (ADS)

    Ursino, Nadia; Cassiani, Giorgio; Deiana, Rita; Vignoli, Giulio; Boaga, Jacopo

    2013-04-01

    Land fallowing is one possible response to shortage of water for irrigation. Leaving the soil unseeded implies a change of the soil functioning that has an impact on the water cycle. The development of a soil crust in the open spaces between the patterns of grass weed affects the soil properties and the field scale water balance. The objective of this study was to test the potential of integrated non invasive geophysics and ground-image analysis and to quantify the effect of the soil vegetation interaction on the water balance of a fallow land at the local and plot scale. We measured repeatedly in space and time local soil saturation and vegetation cover over two small plots located in southern Sardinia, Italy, during an infiltration experiment. One plot was left unseeded and the other was cultivated. The comparative analysis of the experimental data evidenced a positive feedback between weed growth and infiltration at the fallow plot. A simple bucket model captured the different soil moisture dynamics at the two plots during the infiltration experiment and was used to estimate the impact of the soil vegetation feedback on the yearly water balance at the site.

  12. Radiative Transfer Modeling Within the Vegetation Based on Virtual Flux Decomposition

    NASA Astrophysics Data System (ADS)

    Kallel, A.

    2009-04-01

    The knowledge of vegetation density and structure at large scales is important for many applications related to global energy budget, carbon cycle, gross primary productivity, monitoring of land use change, hydrology, etc. The tools and methods allowing the acquisition of such information at regional to global scales are based on air- or spaceborne remote sensing data. Many methods and algorithms have therefore been developed in order to understand the relationships between the vegetation features (namely amount and structure) and the amount of sunlight, through reflectance measurements in the optical and near- to middle-infrared spectral domains. On the one hand, passive optical remote sensing has shown good results in monitoring the changes in canopy structure. On the other hand, despite the long development process, many of the physically-based approaches (i.e., methods based on physical radiative transfer models) suffer from significant shortcomings, in particular considering hyperspectral and multiangular data. Concerning the energy conservation, although the law of the conservation of radiative energy is one of the basement of the physically-based radiative transfer models, these latter tend to violate it frequently. This arises in particular when considering some finite size scattering elements (leaves or shoots) into equations originally describing a turbid medium (i.e. a medium having components with null size). This phenomenon, called the hot spot effect, is managed in classical radiative transfer model by increasing the reflectance due to the first collision of the solar irradiance calculated for turbid medium. Recently, Kallel et al. (2008) proposed another formulation in terms of increase of the posterior probability of gap which could itself be viewed as a decreasing of the vegetation density called "the effective vegetation density". Then, energy conservation is achieved using the same effective density to estimate the upward diffuse flux provided by

  13. Tropical Forests, Savannas and Grasslands: Bridging the Knowledge Gap Between Ecology and Dynamic Global Vegetation Models

    NASA Astrophysics Data System (ADS)

    Baudena, M.; Dekker, S. C.; van Bodegom, P. M.; Cuesta, B.; Higgins, S. I.; Lehsten, V.; Reick, C. H.; Rietkerk, M.; Scheiter, S.; Yin, Z.; Zavala, M. A.; Brovkin, V.

    2014-12-01

    Due to global climate change, tropical forest, savanna, and grassland biomes, and the transitions between them, are expected to undergo major changes in the future. Dynamic Global Vegetation Models (DGVMs) are largely used to understand vegetation dynamics under present climate, and to predict its changes under future conditions. However, several DGVMs display high uncertainty in predicting vegetation in tropical areas. Here we present the results of a comparative analysis of three different DGVMs (JSBACH, LPJ-GUESS-SPITFIRE and aDGVM) with regard to their different representations of the ecological mechanisms and feedbacks that determine the forest, savanna and grassland biomes, in an attempt to bridge the knowledge gap between ecology and global modelling. We compared model outcomes to observed tree cover along a mean annual precipitation gradient in Africa. Through these comparisons, and by drawing on the large number of recent studies that have delivered new insights into the ecology of tropical ecosystems in general, and of savannas in particular, we identify two main mechanisms that need an improved representation in the DGVMs. The first mechanism encompasses water limitation to tree growth, and tree-grass competition for water, which are key factors in determining savanna occurrence in arid and semi-arid areas. The second is a grass-fire feedback, which maintains both forest and savannas in mesic areas. Grasses constitute the majority of the fuel load, and at the same time benefit from the openness of the landscape after fires, since they recover faster than trees. Additionally, these two mechanisms are better represented when the models also include tree life stages (adults and seedlings), and distinguish between fire-prone and shade-tolerant savanna trees, and fire-resistant and shade-intolerant forest trees. Including these basic elements could improve the predictive ability of the DGVMs, not only under current climate conditions but also and especially

  14. Forests, savannas, and grasslands: bridging the knowledge gap between ecology and Dynamic Global Vegetation Models

    NASA Astrophysics Data System (ADS)

    Baudena, M.; Dekker, S. C.; van Bodegom, P. M.; Cuesta, B.; Higgins, S. I.; Lehsten, V.; Reick, C. H.; Rietkerk, M.; Scheiter, S.; Yin, Z.; Zavala, M. A.; Brovkin, V.

    2015-03-01

    The forest, savanna, and grassland biomes, and the transitions between them, are expected to undergo major changes in the future due to global climate change. Dynamic global vegetation models (DGVMs) are very useful for understanding vegetation dynamics under the present climate, and for predicting its changes under future conditions. However, several DGVMs display high uncertainty in predicting vegetation in tropical areas. Here we perform a comparative analysis of three different DGVMs (JSBACH, LPJ-GUESS-SPITFIRE and aDGVM) with regard to their representation of the ecological mechanisms and feedbacks that determine the forest, savanna, and grassland biomes, in an attempt to bridge the knowledge gap between ecology and global modeling. The outcomes of the models, which include different mechanisms, are compared to observed tree cover along a mean annual precipitation gradient in Africa. By drawing on the large number of recent studies that have delivered new insights into the ecology of tropical ecosystems in general, and of savannas in particular, we identify two main mechanisms that need improved representation in the examined DGVMs. The first mechanism includes water limitation to tree growth, and tree-grass competition for water, which are key factors in determining savanna presence in arid and semi-arid areas. The second is a grass-fire feedback, which maintains both forest and savanna presence in mesic areas. Grasses constitute the majority of the fuel load, and at the same time benefit from the openness of the landscape after fires, since they recover faster than trees. Additionally, these two mechanisms are better represented when the models also include tree life stages (adults and seedlings), and distinguish between fire-prone and shade-tolerant forest trees, and fire-resistant and shade-intolerant savanna trees. Including these basic elements could improve the predictive ability of the DGVMs, not only under current climate conditions but also and

  15. The Chief Diversity Officer: An Examination of CDO Models and Strategies

    ERIC Educational Resources Information Center

    Stanley, Christine A.

    2014-01-01

    Herein, C. A. Stanley comments on R. A. Leon's "Journal of Diversity in Higher Education" article, "The Chief Diversity Officer: An Examination of CDO Models and Strategies" that focuses on the role of the chief diversity officer (CDO) in higher education. Stanley, in her position as Vice President and Associate Provost…

  16. Reducing Ambulance Diversion at Hospital and Regional Levels: Systemic Review of Insights from Simulation Models

    PubMed Central

    Delgado, M. Kit; Meng, Lesley J.; Mercer, Mary P.; Pines, Jesse M.; Owens, Douglas K.; Zaric, Gregory S.

    2013-01-01

    Introduction: Optimal solutions for reducing diversion without worsening emergency department (ED) crowding are unclear. We performed a systematic review of published simulation studies to identify: 1) the tradeoff between ambulance diversion and ED wait times; 2) the predicted impact of patient flow interventions on reducing diversion; and 3) the optimal regional strategy for reducing diversion. Methods: Data Sources: Systematic review of articles using MEDLINE, Inspec, Scopus. Additional studies identified through bibliography review, Google Scholar, and scientific conference proceedings. Study Selection: Only simulations modeling ambulance diversion as a result of ED crowding or inpatient capacity problems were included. Data extraction: Independent extraction by two authors using predefined data fields. Results: We identified 5,116 potentially relevant records; 10 studies met inclusion criteria. In models that quantified the relationship between ED throughput times and diversion, diversion was found to only minimally improve ED waiting room times. Adding holding units for inpatient boarders and ED-based fast tracks, improving lab turnaround times, and smoothing elective surgery caseloads were found to reduce diversion considerably. While two models found a cooperative agreement between hospitals is necessary to prevent defensive diversion behavior by a hospital when a nearby hospital goes on diversion, one model found there may be more optimal solutions for reducing region wide wait times than a regional ban on diversion. Conclusion: Smoothing elective surgery caseloads, adding ED fast tracks as well as holding units for inpatient boarders, improving ED lab turnaround times, and implementing regional cooperative agreements among hospitals are promising avenues for reducing diversion. PMID:24106548

  17. Modeling the SHG activities of diverse protein crystals

    PubMed Central

    Haupert, Levi M.; DeWalt, Emma L.; Simpson, Garth J.

    2012-01-01

    A symmetry-additive ab initio model for second-harmonic generation (SHG) activity of protein crystals was applied to assess the likely protein-crystal coverage of SHG microscopy. Calculations were performed for 250 proteins in nine point-group symmetries: a total of 2250 crystals. The model suggests that the crystal symmetry and the limit of detection of the instrument are expected to be the strongest predictors of coverage of the factors considered, which also included secondary-structural content and protein size. Much of the diversity in SHG activity is expected to arise primarily from the variability in the intrinsic protein response as well as the orientation within the crystal lattice. Two or more orders-of-­magnitude variation in intensity are expected even within protein crystals of the same symmetry. SHG measurements of tetragonal lysozyme crystals confirmed detection, from which a protein coverage of ∼84% was estimated based on the proportion of proteins calculated to produce SHG responses greater than that of tetragonal lysozyme. Good agreement was observed between the measured and calculated ratios of the SHG intensity from lysozyme in tetragonal and monoclinic lattices. PMID:23090400

  18. Carbon Cycle and Vegetation Dynamics in the GFDL-Princeton University Coupled Atmosphere-Biosphere Model

    NASA Astrophysics Data System (ADS)

    Shevliakova, E.; Pacala, S. W.; Malyshev, S.; Hurtt, G. C.; Caspersen, J. P.

    2003-12-01

    Modeling global interactions between the atmosphere, hydrosphere and biosphere continues to pose a significant challenge, because of the tight and complex coupling of flows of water, energy, greenhouse gases, and ecosystem dynamics. We developed a comprehensive dynamic land surface model (LM3) able to simulate carbon and vegetation dynamics on time scales from minutes to centuries, as well as the exchange of water and energy among the land, LM3 predicts carbon dynamics in vegetation and soil in response to environmental conditions (weather, climate and soil type), ambient concentration of CO2, natural disturbances (e.g. fire), and anthropogenic land use changes (e.g. deforestation, agricultural cropland abandonment and forest management). A suite of the historical 300 years land cover change scenarios (developed at University of New Hampshire) is used to represent direct anthropogenic forcing on the terrestrial carbon system. Here we analyze the behavior of LM3 forced with observed atmospheric data and coupled with GFDL atmospheric circulation model AM2. The series of experiments indicates that our model adequately simulates climatic gradients of net primary productivity (NPP), leaf area index (LAI), biomass accumulation, evapotranspiration, and runoff. Additionally, analysis of the simulations suggests that anthropogenic land use has been a major forcing on the terrestrial carbon cycle, with large sources of CO2 caused primarily by deforestation and timber harvesting in the current tropics and past north temperate zone, and large current north temperate sinks caused primarily by secondary forest growth.

  19. A process-based fire parameterization of intermediate complexity in a Dynamic Global Vegetation Model

    NASA Astrophysics Data System (ADS)

    Li, F.; Zeng, X. D.; Levis, S.

    2012-07-01

    A process-based fire parameterization of intermediate complexity has been developed for global simulations in the framework of a Dynamic Global Vegetation Model (DGVM) in an Earth System Model (ESM). Burned area in a grid cell is estimated by the product of fire counts and average burned area of a fire. The scheme comprises three parts: fire occurrence, fire spread, and fire impact. In the fire occurrence part, fire counts rather than fire occurrence probability are calculated in order to capture the observed high burned area fraction in areas of high fire frequency and realize parameter calibration based on MODIS fire counts product. In the fire spread part, post-fire region of a fire is assumed to be elliptical in shape. Mathematical properties of ellipses and some mathematical derivations are applied to improve the equation and assumptions of an existing fire spread parameterization. In the fire impact part, trace gas and aerosol emissions due to biomass burning are estimated, which offers an interface with atmospheric chemistry and aerosol models in ESMs. In addition, flexible time-step length makes the new fire parameterization easily applied to various DGVMs. Global performance of the new fire parameterization is assessed by using an improved version of the Community Land Model version 3 with the Dynamic Global Vegetation Model (CLM-DGVM). Simulations are compared against the latest satellite-based Global Fire Emission Database version 3 (GFED3) for 1997-2004. Results show that simulated global totals and spatial patterns of burned area and fire carbon emissions, regional totals and spreads of burned area, global annual burned area fractions for various vegetation types, and interannual variability of burned area are reasonable, and closer to GFED3 than CLM-DGVM simulations with the commonly used Glob-FIRM fire parameterization and the old fire module of CLM-DGVM. Furthermore, average error of simulated trace gas and aerosol emissions due to biomass burning

  20. Europlanet/IDIS: Combining Diverse Planetary Observations and Models

    NASA Astrophysics Data System (ADS)

    Schmidt, Walter; Capria, Maria Teresa; Chanteur, Gerard

    2013-04-01

    Planetary research involves a diversity of research fields from astrophysics and plasma physics to atmospheric physics, climatology, spectroscopy and surface imaging. Data from all these disciplines are collected from various space-borne platforms or telescopes, supported by modelling teams and laboratory work. In order to interpret one set of data often supporting data from different disciplines and other missions are needed while the scientist does not always have the detailed expertise to access and utilize these observations. The Integrated and Distributed Information System (IDIS) [1], developed in the framework of the Europlanet-RI project, implements a Virtual Observatory approach ([2] and [3]), where different data sets, stored in archives around the world and in different formats, are accessed, re-formatted and combined to meet the user's requirements without the need of familiarizing oneself with the different technical details. While observational astrophysical data from different observatories could already earlier be accessed via Virtual Observatories, this concept is now extended to diverse planetary data and related model data sets, spectral data bases etc. A dedicated XML-based Europlanet Data Model (EPN-DM) [4] was developed based on data models from the planetary science community and the Virtual Observatory approach. A dedicated editor simplifies the registration of new resources. As the EPN-DM is a super-set of existing data models existing archives as well as new spectroscopic or chemical data bases for the interpretation of atmospheric or surface observations, or even modeling facilities at research institutes in Europe or Russia can be easily integrated and accessed via a Table Access Protocol (EPN-TAP) [5] adapted from the corresponding protocol of the International Virtual Observatory Alliance [6] (IVOA-TAP). EPN-TAP allows to search catalogues, retrieve data and make them available through standard IVOA tools if the access to the archive

  1. Mapping vegetation patterns in arable land using the models STICS and DAISY

    NASA Astrophysics Data System (ADS)

    Heuer, Antje; Casper, Markus

    2010-05-01

    Several statistical methods exist to detect spatial and / or temporal variability with regard to ecological data-analysis: Semivariance-analysis, Trend surface analysis, Kriging, Voronoi polygons, Moran's I and Mantel-test, to mention just some of them. In this contribution, we concentrate on spatial vegetation patterns within the soil-vegetation-atmosphere (SVAT) system. Using variography, spatial analysis with a geographic information system and self-organizing maps, spatial patterns of yield have been isolated in an agro-ecosystem (see poster contribution EGU 2009, EGU2009-8948). Data were derived from two agricultural plots, each about 5 hectare, in the area of Newel, located in Western Palatinate, Germany. The plots have been conventionally cultivated with a crop rotation of winter rape, winter wheat and spring barley. The aim of the present study is to find out if the existing natural spatial patterns can be mapped by means of SVAT models. If so, the discretization of a landscape according to its spatial patterns could be the basis for parameterization of SVAT models in order to model soil-vegetation-atmosphere interaction over a large area, that is for up-scaling. For this purpose the SVAT models STICS (developed by INRA, France) and DAISY (developed at Tåstrup University, Denmark) are applied. After a wide sensitivity analysis both models are parameterized with field data according to the given situation of each of the detected spatial patterns. The results of the simulation per representative location of a pattern are validated first with field data concerning yield, soil water content and soil nitrogen; besides, above ground dry matter, root depth and specific stress indices are used for validation. The conclusions that can be made with regard to up-scaling are discussed in detail. In a second step the results of the STICS model are compared with those of the DAISY model to analyse the models' behaviour, to get further knowledge about the inner structure

  2. Biomass Burning Related Ozone Damage on Vegetation Over the Amazon Forest: a Model Sensitivity Study

    NASA Astrophysics Data System (ADS)

    Sitch, S.; Folberth, G.; Pacifico, F.; Haywood, J. M.; Malavelle, F.; Rizzo, L. V.; Artaxo, P.

    2015-12-01

    The HadGEM2 earth system climate model was used to assess the impact of biomass burning on surface ozone concentrations over the Amazon forest and its impact on vegetation, under present-day climate conditions. Here we consider biomass burning emissions from wildfires, deforestation fires, agricultural forest burning, and residential and commercial combustion. Simulated surface ozone concentration is evaluated against observations taken at two sites in the Brazilian Amazon forest for years 2010 to 2012. The model is able to reproduce the observed diurnal cycle of surface ozone mixing ratio at the two sites, but overestimates the magnitude of the monthly averaged hourly measurements by 5-15 ppb for each available month at one of the sites. We vary biomass burning emissions over South America by ± 20, 40, 60, 80 and 100% to quantify the modelled impact of biomass burning on surface ozone concentrations and ozone damage on vegetation productivity over the Amazon forest. We used the ozone damage scheme in the "high" sensitivity mode to give an upper limit for this effect. Decreasing South American biomass burning emissions by 100% (i.e. to zero) reduces surface ozone concentrations (by about 15 ppb during the biomass burning season) and suggests a 15% increase in monthly mean net primary productivity averaged over the Amazon forest, with local increases up to 60 %. The simulated impact of ozone damage from present-day biomass burning on vegetation productivity is about 230 TgC yr-1. Taking into account that uncertainty in these estimates is substantial, this ozone damage impact over the Amazon forest is of the same order of magnitude as the release of carbon dioxide due to fire in South America; in effect it potentially doubles the impact of biomass burning on the carbon cycle.

  3. Biomass burning related ozone damage on vegetation over the Amazon forest: a model sensitivity study

    NASA Astrophysics Data System (ADS)

    Pacifico, F.; Folberth, G. A.; Sitch, S.; Haywood, J. M.; Rizzo, L. V.; Malavelle, F. F.; Artaxo, P.

    2015-03-01

    The HadGEM2 earth system climate model was used to assess the impact of biomass burning on surface ozone concentrations over the Amazon forest and its impact on vegetation, under present-day climate conditions. Here we consider biomass burning emissions from wildfires, deforestation fires, agricultural forest burning, and residential and commercial combustion. Simulated surface ozone concentration is evaluated against observations taken at two sites in the Brazilian Amazon forest for years 2010 to 2012. The model is able to reproduce the observed diurnal cycle of surface ozone mixing ratio at the two sites, but overestimates the magnitude of the monthly averaged hourly measurements by 5-15 ppb for each available month at one of the sites. We vary biomass burning emissions over South America by ±20, 40, 60, 80 and 100% to quantify the modelled impact of biomass burning on surface ozone concentrations and ozone damage on vegetation productivity over the Amazon forest. We used the ozone damage scheme in the "high" sensitivity mode to give an upper limit for this effect. Decreasing South American biomass burning emissions by 100% (i.e. to zero) reduces surface ozone concentrations (by about 15 ppb during the biomass burning season) and suggests a 15% increase in monthly mean net primary productivity averaged over the Amazon forest, with local increases up to 60%. The simulated impact of ozone damage from present-day biomass burning on vegetation productivity is about 230 TgC yr-1. Taking into account that uncertainty in these estimates is substantial, this ozone damage impact over the Amazon forest is of the same order of magnitude as the release of carbon dioxide due to fire in South America; in effect it potentially doubles the impact of biomass burning on the carbon cycle.

  4. Interactions between vegetation and climate variability: what are the lessons of models and paleovegetation data

    NASA Astrophysics Data System (ADS)

    Guiot, Joël; Hély-Alleaume, Christelle; Wu, Haibin; Gaucherel, Cédric

    2008-09-01

    The climate reconstruction by using pollen data is classically done by statistical methods. The use of a conceptual model of niches show a few weaknesses of this approach which is not enough supported by causal relationships. A solution is to take into account ecophysiological processes through a mechanistic model. On the one hand, these models help to test the biases that can bring some changes in the distribution of the extremes, and, on the other hand, they help to understand the effect of some external constraints such as the concentration of the atmospheric CO 2. At a shorter time scale, dendrochronological series are useful to test the response of the Aleppo pine to a warming combined to a stronger water stress. This approach is facilitated by the use of vegetation models used in inverse mode or with climatic scenarios. This paper illustrates that purpose through several examples.

  5. Regional adaptation of a dynamic global vegetation model using a remote sensing data derived land cover map of Russia

    NASA Astrophysics Data System (ADS)

    Khvostikov, S.; Venevsky, S.; Bartalev, S.

    2015-12-01

    The dynamic global vegetation model (DGVM) SEVER has been regionally adapted using a remote sensing data-derived land cover map in order to improve the reconstruction conformity of the distribution of vegetation functional types over Russia. The SEVER model was modified to address noticeable divergences between modelling results and the land cover map. The model modification included a light competition method elaboration and the introduction of a tundra class into the model. The rigorous optimisation of key model parameters was performed using a two-step procedure. First, an approximate global optimum was found using the efficient global optimisation (EGO) algorithm, and afterwards a local search in the vicinity of the approximate optimum was performed using the quasi-Newton algorithm BFGS. The regionally adapted model shows a significant improvement of the vegetation distribution reconstruction over Russia with better matching with the satellite-derived land cover map, which was confirmed by both a visual comparison and a formal conformity criterion.

  6. Use of Normalized Difference Vegetation Index (NDVI) habitat models to predict breeding birds on the San Pedro River, Arizona

    USGS Publications Warehouse

    McFarland, Tiffany Marie; van Riper, Charles

    2013-01-01

    Successful management practices of avian populations depend on understanding relationships between birds and their habitat, especially in rare habitats, such as riparian areas of the desert Southwest. Remote-sensing technology has become popular in habitat modeling, but most of these models focus on single species, leaving their applicability to understanding broader community structure and function largely untested. We investigated the usefulness of two Normalized Difference Vegetation Index (NDVI) habitat models to model avian abundance and species richness on the upper San Pedro River in southeastern Arizona. Although NDVI was positively correlated with our bird metrics, the amount of explained variation was low. We then investigated the addition of vegetation metrics and other remote-sensing metrics to improve our models. Although both vegetation metrics and remotely sensed metrics increased the power of our models, the overall explained variation was still low, suggesting that general avian community structure may be too complex for NDVI models.

  7. Dynamics of global vegetation biomass simulated by the integrated Earth System Model

    NASA Astrophysics Data System (ADS)

    Mao, J.; Shi, X.; Di Vittorio, A. V.; Thornton, P. E.; Piao, S.; Yang, X.; Truesdale, J. E.; Bond-Lamberty, B. P.; Chini, L. P.; Thomson, A. M.; Hurtt, G. C.; Collins, W.; Edmonds, J.

    2014-12-01

    The global vegetation biomass stores huge amounts of carbon and is thus important to the global carbon budget (Pan et al., 2010). For the past few decades, different observation-based estimates and modeling of biomass in the above- and below-ground vegetation compartments have been comprehensively conducted (Saatchi et al., 2011; Baccini et al., 2012). However, uncertainties still exist, in particular for the simulation of biomass magnitude, tendency, and the response of biomass to climatic conditions and natural and human disturbances. The recently successful coupling of the integrated Earth System Model (iESM) (Di Vittorio et al., 2014; Bond-Lamberty et al., 2014), which links the Global Change Assessment Model (GCAM), Global Land-use Model (GLM), and Community Earth System Model (CESM), offers a great opportunity to understand the biomass-related dynamics in a fully-coupled natural and human modeling system. In this study, we focus on the systematic analysis and evaluation of the iESM simulated historical (1850-2005) and future (2006-2100) biomass changes and the response of the biomass dynamics to various impact factors, in particular the human-induced Land Use/Land Cover Change (LULCC). By analyzing the iESM simulations with and without the interactive LULCC feedbacks, we further study how and where the climate feedbacks affect socioeconomic decisions and LULCC, such as to alter vegetation carbon storage. References Pan Y et. al: A large and persistent carbon sink in the World's forests. Science 2011, 333:988-993. Saatchi SS et al: Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci 2011, 108:9899-9904. Baccini A et al: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Clim Change 2012, 2:182-185. Di Vittorio AV et al: From land use to land cover: restoring the afforestation signal in a coupled integrated assessment-earth system model and the implications for

  8. Modeling diverse range of potassium channels with Brownian dynamics.

    PubMed Central

    Chung, Shin-Ho; Allen, Toby W; Kuyucak, Serdar

    2002-01-01

    Using the experimentally determined KcsA structure as a template, we propose a plausible explanation for the diversity of potassium channels seen in nature. A simplified model of KcsA is constructed from its atomic resolution structure by smoothing out the protein-water boundary and representing the atoms forming the channel protein as a homogeneous, low dielectric medium. The properties of the simplified and atomic-detail models, deduced from electrostatic calculations and Brownian dynamics simulations, are shown to be qualitatively similar. We then study how the current flowing across the simplified model channel changes as the shape of the intrapore region is modified. This is achieved by increasing the radius of the intracellular pore systematically from 1.5 to 5 A while leaving the dimensions of the selectivity filter and inner chamber unaltered. The strengths of the dipoles located near the entrances of the channel, the carbonyl groups lining the selectivity filter, and the helix macrodipoles are kept constant. The channel conductance increases steadily as the radius of the intracellular pore is increased. The rate-limiting step for both the outward and inward current is the time it takes for an ion to cross the residual energy barrier located in the intrapore region. The current-voltage relationship obtained with symmetrical solutions is linear when the applied potential is less than approximately 100 mV but deviates slightly from Ohm's law at higher applied potentials. The nonlinearity in the current-voltage curve becomes less pronounced as the radius of the intracellular pore is increased. When the strengths of the dipoles near the intracellular entrance are reduced, the channel shows a pronounced inward rectification. Finally, the conductance exhibits the saturation property observed experimentally. We discuss the implications of these findings on the transport of ions across the potassium channels and membrane channels in general. PMID:12080118

  9. A model of onshore-offshore change in faunal diversity

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1991-01-01

    Onshore-offshore patterns of faunal change occurred at many taxonomic scales during the Paleozoic Era, ranging from replacement of the Cambrian evolutionary fauna by the Paleozoic fauna to the environmental expansion of many orders and classes. A simple mathematical model is constructed to investigate such change. The environmental gradient across the marine shelf-slope is treated as a linear array of discrete habitats, each of which holds a set number of species, as observed in the fossil record. During any interval of time, some portion of the species in each habitat becomes extinct by background processes, with rates of extinction varying among both clades and habitats, as also observed in the record. After extinction, species are replaced from within the habitat and from immediately adjacent habitats, with proportions dependent on surviving species. This model leads to the prediction that extinction-resistant clades will always diversify at the expense of extinction-prone clades. But if extinction intensity is highest in nearshore habitats, extinction-resistant clades will expand preferentially in the onshore direction, build up diversity there, and then diversify outward toward the offshore. Thus, onshore-offshore patterns of diversification may be the expectation for faunal change quite independently of whether or not clades originate onshore. When the model is parameterized for Paleozoic trilobites and brachiopods, numerical solutions exhibit both a pattern of faunal change and a time span for diversification similar to that seen in the fossil record. They also generate structure similar to that seen in global diversification, including logistic patterns of growth, declining origination but constant extinction within clades through time, and declining overall extinction across clades through time.

  10. Counseling Psychology Model Training Values Statement Addressing Diversity

    ERIC Educational Resources Information Center

    Counseling Psychologist, 2009

    2009-01-01

    Respect for diversity and for values different from one's own is a central value of counseling psychology training programs. The valuing of diversity is also consistent with the profession of psychology as mandated by the American Psychological Association's (APA's) Ethical Principles and Code of Conduct and as discussed in the Guidelines and…

  11. Representation of vegetation effects on the snow-covered albedo in the Noah land surface model with multiple physics options

    NASA Astrophysics Data System (ADS)

    Park, S.; Park, S. K.

    2015-04-01

    Snow albedo plays a critical role in calculating the energy budget, but parameterization of the snow surface albedo is still under great uncertainty. It varies with snow grain size, snow cover thickness, snow age, forest shading factor and other variables. Snow albedo of forest is typically lower than that of short vegetation; thus snow albedo is dependent on the spatial distributions of characteristic land cover and on the canopy density and structure. In the Noah land surface model with multiple physics options (Noah-MP), almost all vegetation types in East Asia during winter have the minimum values of leaf area index (LAI) and stem area index (SAI), which are too low and do not consider the vegetation types. Because LAI and SAI are represented in terms of photosynthetic activeness, the vegetation effect rarely exerts on the surface albedo in winter in East Asia with only these parameters. Thus, we investigated the vegetation effects on the snow-covered albedo from observations and evaluated the model improvement by considering such effect. We found that calculation of albedo without proper reflection of the vegetation effect is mainly responsible for the large positive bias in winter. Therefore, we developed new parameters, called leaf index (LI) and stem index (SI), which properly manage the effect of vegetation structure on the winter albedo. As a result, the Noah-MP's performance in albedo has been significantly improved - RMSE is reduced by approximately 73%.

  12. Characterization of a Field Spectroradiometer for Unattended Vegetation Monitoring. Key Sensor Models and Impacts on Reflectance

    PubMed Central

    Pacheco-Labrador, Javier; Martín, M. Pilar

    2015-01-01

    Field spectroradiometers integrated in automated systems at Eddy Covariance (EC) sites are a powerful tool for monitoring and upscaling vegetation physiology and carbon and water fluxes. However, exposure to varying environmental conditions can affect the functioning of these sensors, especially if these cannot be completely insulated and stabilized. This can cause inaccuracy in the spectral measurements and hinder the comparison between data acquired at different sites. This paper describes the characterization of key sensor models in a double beam spectroradiometer necessary to calculate the Hemispherical-Conical Reflectance Factor (HCRF). Dark current, temperature dependence, non-linearity, spectral calibration and cosine receptor directional responses are modeled in the laboratory as a function of temperature, instrument settings, radiation measured or illumination angle. These models are used to correct the spectral measurements acquired continuously by the same instrument integrated outdoors in an automated system (AMSPEC-MED). Results suggest that part of the instrumental issues cancel out mutually or can be controlled by the instrument configuration, so that changes induced in HCFR reached about 0.05 at maximum. However, these corrections are necessary to ensure the inter-comparison of data with other ground or remote sensors and to discriminate instrumentally induced changes in HCRF from those related with vegetation physiology and directional effects. PMID:25679315

  13. Characterization of a field spectroradiometer for unattended vegetation monitoring. Key sensor models and impacts on reflectance.

    PubMed

    Pacheco-Labrador, Javier; Martín, M Pilar

    2015-02-11

    Field spectroradiometers integrated in automated systems at Eddy Covariance (EC) sites are a powerful tool for monitoring and upscaling vegetation physiology and carbon and water fluxes. However, exposure to varying environmental conditions can affect the functioning of these sensors, especially if these cannot be completely insulated and stabilized. This can cause inaccuracy in the spectral measurements and hinder the comparison between data acquired at different sites. This paper describes the characterization of key sensor models in a double beam spectroradiometer necessary to calculate the Hemispherical-Conical Reflectance Factor (HCRF). Dark current, temperature dependence, non-linearity, spectral calibration and cosine receptor directional responses are modeled in the laboratory as a function of temperature, instrument settings, radiation measured or illumination angle. These models are used to correct the spectral measurements acquired continuously by the same instrument integrated outdoors in an automated system (AMSPEC-MED). Results suggest that part of the instrumental issues cancel out mutually or can be controlled by the instrument configuration, so that changes induced in HCFR reached about 0.05 at maximum. However, these corrections are necessary to ensure the inter-comparison of data with other ground or remote sensors and to discriminate instrumentally induced changes in HCRF from those related with vegetation physiology and directional effects.

  14. Mapping the land surface for global atmosphere-biosphere models: Toward continuous distributions of vegetation's functional properties

    NASA Astrophysics Data System (ADS)

    Defries, Ruth S.; Field, Christopher B.; Fung, Inez; Justice, Christopher O.; Los, Sietse; Matson, Pamela A.; Matthews, Elaine; Mooney, Harold A.; Potter, Christopher S.; Prentice, Katharine; Sellers, Piers J.; Townshend, John R. G.; Tucker, Compton J.; Ustin, Susan L.; Vitousek, Peter M.

    1995-10-01

    Global land surface characteristics are important boundary conditions for global models that describe exchanges of water, energy, and carbon dioxide between the atmosphere and biosphere. Existing data sets of global land cover are based on classification schemes that characterize each grid cell as a discrete vegetation type. Consequently, parameter fields derived from these data sets are dependent on the particular scheme and the number of vegetation types it includes. The functional controls on exchanges of water, energy, and carbon dioxide between the atmosphere and biosphere are now well enough understood that it is increasingly feasible to model these exchanges using a small number of vegetation characteristics that either are related to or closely related to the functional controls. Ideally, these characteristics would be mapped as continuous distributions to capture mixtures and gradients in vegetation within the cell size of the model. While such an approach makes it more difficult to build models from detailed observations at a small number of sites, it increases the potential for capturing functionally important variation within, as well as between, vegetation types. Globally, the vegetation characteristics that appear to be most important in controlling fluxes of water, energy, and carbon dioxide include (1) growth form (tree, shrub, herb), (2) seasonality of woody vegetation (deciduous, evergreen), (3) leaf type (broadleaf, coniferous), (4) photosynthetic pathway of nonwoody vegetation (C3, C4), (5) longevity (annual, perennial), and (6) type and intensity of disturbance (e.g., cultivation, fire history). Many of these characteristics can be obtained through remote sensing, though some require ground-based information. The minimum number and the identity of the required land surface characteristics almost certainly vary with the intended objective, but the philosophy of driving models with continuous distributions of a small number of land surface

  15. A computer model to forecast wetland vegetation changes resulting from restoration and protection in coastal Louisiana

    USGS Publications Warehouse

    Visser, Jenneke M.; Duke-Sylvester, Scott M.; Carter, Jacoby; Broussard, Whitney P.

    2013-01-01

    The coastal wetlands of Louisiana are a unique ecosystem that supports a diversity of wildlife as well as a diverse community of commercial interests of both local and national importance. The state of Louisiana has established a 5-year cycle of scientific investigation to provide up-to-date information to guide future legislation and regulation aimed at preserving this critical ecosystem. Here we report on a model that projects changes in plant community distribution and composition in response to environmental conditions. This model is linked to a suite of other models and requires input from those that simulate the hydrology and morphology of coastal Louisiana. Collectively, these models are used to assess how alternative management plans may affect the wetland ecosystem through explicit spatial modeling of the physical and biological processes affected by proposed modifications to the ecosystem. We have also taken the opportunity to advance the state-of-the-art in wetland plant community modeling by using a model that is more species-based in its description of plant communities instead of one based on aggregated community types such as brackish marsh and saline marsh. The resulting model provides an increased level of ecological detail about how wetland communities are expected to respond. In addition, the output from this model provides critical inputs for estimating the effects of management on higher trophic level species though a more complete description of the shifts in habitat.

  16. Explaining the Linguistic Diversity of Sahul Using Population Models

    PubMed Central

    Reesink, Ger; Singer, Ruth; Dunn, Michael

    2009-01-01

    The region of the ancient Sahul continent (present day Australia and New Guinea, and surrounding islands) is home to extreme linguistic diversity. Even apart from the huge Austronesian language family, which spread into the area after the breakup of the Sahul continent in the Holocene, there are hundreds of languages from many apparently unrelated families. On each of the subcontinents, the generally accepted classification recognizes one large, widespread family and a number of unrelatable smaller families. If these language families are related to each other, it is at a depth which is inaccessible to standard linguistic methods. We have inferred the history of structural characteristics of these languages under an admixture model, using a Bayesian algorithm originally developed to discover populations on the basis of recombining genetic markers. This analysis identifies 10 ancestral language populations, some of which can be identified with clearly defined phylogenetic groups. The results also show traces of early dispersals, including hints at ancient connections between Australian languages and some Papuan groups (long hypothesized, never before demonstrated). Systematic language contact effects between members of big phylogenetic groups are also detected, which can in some cases be identified with a diffusional or substrate signal. Most interestingly, however, there remains striking evidence of a phylogenetic signal, with many languages showing negligible amounts of admixture. PMID:19918360

  17. [Comparison and analysis of hyperspectral remote sensing identifiable models for different vegetation under waterlogging stress].

    PubMed

    Jiang, Jin-Bao; Steven, Michael D; He, Ru-Yan; Cai, Qing-Kong

    2013-11-01

    With the global climate warming, flooding disasters frequently occurred and its influence scope constantly increased in China. The objective of the present paper was to study the leaf spectral features of vegetation (maize and beetroot) under waterlogging stress and design a hyperspectral remote sensing model to monitor the flooding disasters through a field simulated experiment. The experiment was carried out in the Sutton Bonington Campus of University of Nottingham (52.8 degrees N, 1. 2 degrees W) from May to August in 2008, and samples were collected one time every week and spectra were measured in the laboratory. The result showed that the reflectance of the maize and beetroot decreased in the 550 and 800-1 300 nm region, and the reflectance slightly increased in the 680 nm region. This paper chose NDVI, SIPI, PRI, SRPI, GNDVI and R800 * R550/R680 to identify the vegetation under waterlogging stress, respectively. The result suggested that the SIPI and R800 * R550/R680 was sensitive for maize under waterlogging stress, and then SIPI and PRI and R800 * R550/R680 was sensitive for beetroot under waterlogging stress. In order to seek the best identifiable model, the normalized distances between means of control and stressed vegetation indices were calculated and analyzed, the result indicated that the distance of R800 * R550/R680 is more than that of indices' in the early stress stage, illustrated that the index identifiable ability for waterlogging stress is better than other indices, then the index has the strong sensitivity and stability. Therefore, the index R800 * R550/R680 could be used to quickly extract flooding disaster area by using hyperspectral remote sensing, and would provide information support for disaster relief decisions.

  18. On Dry Deposition Modelling of Atmospheric Pollutants on Vegetation at the Microscale: Application to the Impact of Street Vegetation on Air Quality

    NASA Astrophysics Data System (ADS)

    Santiago, Jose-Luis; Martilli, Alberto; Martin, Fernando

    2017-03-01

    A Reynolds-averaged Navier-Stokes model is used to investigate the impact of urban canopy vegetation on air quality, with particular emphasis on the comparison between the positive effect induced by deposition versus the negative effect due to a reduction of ventilation. With this aim, a series of simulations over a simplified urban geometry with different vegetation designs are carried out. The problem is tackled at two scales. From the mesoscale point of view, the relevant variable is the total deposition flux of pollutant as a function of the pollutant concentration above the canopy (e.g. the "mesoscale" deposition velocity). This is assessed within the Monin-Obukov similarity theory framework, and a modification of the classical formulation is proposed based on the numerical results. At the microscale, the distribution of concentration within the urban canopy is investigated for the different configurations. The main conclusion is that the height of the vegetation and the magnitude of the microscale deposition velocity are key parameters that determine which of the two effects (deposition or reduction of ventilation) prevails.

  19. On Dry Deposition Modelling of Atmospheric Pollutants on Vegetation at the Microscale: Application to the Impact of Street Vegetation on Air Quality

    NASA Astrophysics Data System (ADS)

    Santiago, Jose-Luis; Martilli, Alberto; Martin, Fernando

    2016-10-01

    A Reynolds-averaged Navier-Stokes model is used to investigate the impact of urban canopy vegetation on air quality, with particular emphasis on the comparison between the positive effect induced by deposition versus the negative effect due to a reduction of ventilation. With this aim, a series of simulations over a simplified urban geometry with different vegetation designs are carried out. The problem is tackled at two scales. From the mesoscale point of view, the relevant variable is the total deposition flux of pollutant as a function of the pollutant concentration above the canopy (e.g. the "mesoscale" deposition velocity). This is assessed within the Monin-Obukov similarity theory framework, and a modification of the classical formulation is proposed based on the numerical results. At the microscale, the distribution of concentration within the urban canopy is investigated for the different configurations. The main conclusion is that the height of the vegetation and the magnitude of the microscale deposition velocity are key parameters that determine which of the two effects (deposition or reduction of ventilation) prevails.

  20. Irrigation Requirement Estimation using MODIS Vegetation Indices and Inverse Biophysical Modeling; A Case Study for Oran, Algeria

    NASA Technical Reports Server (NTRS)

    Bounoua, L.; Imhoff, M.L.; Franks, S.

    2008-01-01

    Human demand for food influences the water cycle through diversion and extraction of fresh water needed to support agriculture. Future population growth and economic development alone will substantially increase water demand and much of it for agricultural uses. For many semi-arid lands, socio-economic shifts are likely to exacerbate changes in climate as a driver of future water supply and demand. For these areas in particular, where the balance between water supply and demand is fragile, variations in regional climate can have potentially predictable effect on agricultural production. Satellite data and biophysically-based models provide a powerful method to quantify the interactions between local climate, plant growth and water resource requirements. In irrigated agricultural lands, satellite observations indicate high vegetation density while the precipitation amount indicates otherwise. This inconsistency between the observed precipitation and the observed canopy leaf density triggers the possibility that the observed high leaf density is due to an alternate source of water, irrigation. We explore an inverse process approach using observations from the Moderate Resolution Imaging Spectroradiometer (MODIS), climatological data, and the NASA's Simple Biosphere model, SiB2, to quantitatively assess water demand in a semi-arid agricultural land by constraining the carbon and water cycles modeled under both equilibrium (balance between vegetation and prevailing local climate) and nonequilibrium (water added through irrigation) conditions. We postulate that the degree to which irrigated lands vary from equilibrium conditions is related to the amount of irrigation water used. We added water using two distribution methods: The first method adds water on top of the canopy and is a proxy for the traditional spray irrigation. The second method allows water to be applied directly into the soil layer and serves as proxy for drip irrigation. Our approach indicates that over

  1. Nitrogen feedbacks increase future terrestrial ecosystem carbon uptake in an individual-based dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Wårlind, D.; Smith, B.; Hickler, T.; Arneth, A.

    2014-01-01

    Recently a considerable amount of effort has been put into quantifying how interactions of the carbon and nitrogen cycle affect future terrestrial carbon sinks. Dynamic vegetation models, representing the nitrogen cycle with varying degree of complexity, have shown diverging constraints of nitrogen dynamics on future carbon sequestration. In this study, we use the dynamic vegetation model LPJ-GUESS to evaluate how population dynamics and resource competition between plant functional types, combined with nitrogen dynamics, have influenced the terrestrial carbon storage in the past and to investigate how terrestrial carbon and nitrogen dynamics might change in the future (1850 to 2100; one exemplary "business-as-usual" climate scenario). Single factor model experiments of CO2 fertilisation and climate change show generally similar directions of the responses of C-N interactions, compared to the C-only version of the model, as documented in previous studies. Under a RCP 8.5 scenario, nitrogen limitation suppresses potential CO2 fertilisation, reducing the cumulative net ecosystem carbon uptake between 1850 and 2100 by 61%, and soil warming-induced increase in nitrogen mineralisation reduces terrestrial carbon loss by 31%. When environmental changes are considered conjointly, carbon sequestration is limited by nitrogen dynamics until present. However, during the 21st century nitrogen dynamics induce a net increase in carbon sequestration, resulting in an overall larger carbon uptake of 17% over the full period. This contradicts earlier model results that showed an 8 to 37% decrease in carbon uptake, questioning the often stated assumption that projections of future terrestrial C dynamics from C-only models are too optimistic.

  2. [Estimation model for daily transpiration of greenhouse muskmelon in its vegetative growth period].

    PubMed

    Zhang, Da-Long; Li, Jian-Ming; Wu, Pu-Te; Li, Wei-Li; Zhao, Zhi-Hua; Xu, Fei; Li, Jun

    2013-07-01

    For developing an estimation method of muskmelon transpiration in greenhouse, an estimation model for the daily transpiration of greenhouse muskmelon in its vegetative growth period was established, based on the greenhouse environmental parameters, muskmelon growth and development parameters, and soil moisture parameters. According to the specific environment in greenhouse, the item of aerodynamics in Penman-Monteith equation was modified, and the greenhouse environmental sub-model suitable for calculating the reference crop evapotranspiration in greenhouse was deduced. The crop factor sub-model was established with the leaf area index as independent variable, and the form of the model was linear function. The soil moisture sub-model was established with the soil relative effective moisture content as independent variable, and the form of the model was logarithmic function. With interval sowing, the model parameters were estimated and analyzed, according to the measurement data of different sowing dates in a year. The prediction accuracy of the model for sufficient irrigation and water-saving irrigation was verified, according to measurement data when the relative soil moisture content was 80%, 70%, and 60%, and the mean relative error was 11.5%, 16.2% , and 16.9% respectively. The model was a beneficial exploration for the application of Penman-Monteith equation under greenhouse environment and water-saving irrigation, having good application foreground and popularization value.

  3. Predictive vegetation modeling for conservation: impact of error propagation from digital elevation data.

    PubMed

    Van Niel, Kimberly P; Austin, Mike P

    2007-01-01

    The effect of digital elevation model (DEM) error on environmental variables, and subsequently on predictive habitat models, has not been explored. Based on an error analysis of a DEM, multiple error realizations of the DEM were created and used to develop both direct and indirect environmental variables for input to predictive habitat models. The study explores the effects of DEM error and the resultant uncertainty of results on typical steps in the modeling procedure for prediction of vegetation species presence/absence. Results indicate that all of these steps and results, including the statistical significance of environmental variables, shapes of species response curves in generalized additive models (GAMs), stepwise model selection, coefficients and standard errors for generalized linear models (GLMs), prediction accuracy (Cohen's kappa and AUC), and spatial extent of predictions, were greatly affected by this type of error. Error in the DEM can affect the reliability of interpretations of model results and level of accuracy in predictions, as well as the spatial extent of the predictions. We suggest that the sensitivity of DEM-derived environmental variables to error in the DEM should be considered before including them in the modeling processes.

  4. Analysis of Multi-sensor Continuity of Reflectance and Vegetation Indices Using Radiative Transfer Models

    NASA Astrophysics Data System (ADS)

    Miura, T.; Yoshioka, H.; Huete, A. R.

    2004-12-01

    Long term observations of global vegetation from multiple satellites require much effort to ensure continuity and compatibility due to different sensor characteristics (e.g., band pass filters and spatial resolutions) and product generation algorithms (e.g., atmospheric correction and compositing schemes) as well as different observation geometries. While it is important to investigate and correct for each of these factors individually, it is also of great importance to develop a systematic understanding of simultaneous impacts of multiple factors on data continuity for translation. In this study, a coupled canopy-atmosphere radiative transfer model (SAIL+6S) was employed to investigate the relative impacts of the multiple factors on reflectance and vegetation index (VI) product continuity. Reflectance spectra for a variety of canopy, atmosphere, and geometry conditions were simulated for a grassland biome based on the observed ranges of the parameters. These data were then spectrally convolved to simulate AVHRR, MODIS, ETM+, and ASTER band passes and analyzed to determine the relative impacts on continuity. We found that inter-sensor relationships of reflectance and VIs vary systematically with canopy, atmosphere, and geometry conditions and that multi-sensor data sets can be made interchangeably useable by modeling these systematic behaviors as translation equations.

  5. Modeling PAH uptake by vegetation from the air using field measurements

    NASA Astrophysics Data System (ADS)

    St-Amand, Annick D.; Mayer, Paul M.; Blais, Jules M.

    We examined PAH uptake by Norway spruce needles following the emergence of new buds in spring 2004-June 2005. Atmospheric PAH concentrations (gaseous phase and particle-bound) were monitored during this period, and PAH concentrations from these three environmental media were then used to calculate deposition and transfer velocities. Benzo(a)pyrene was found almost exclusively associated to particles and thus was used to determine a particle-bound deposition velocity of 10.8 m h -1. PAHs present in both compartments had net gaseous transfer velocities ranging from negligible values to 75.6 m h -1 and correlated significantly with log KOA. The loss velocities thereafter calculated were found to be higher for more volatile PAHs. Using the calculated average atmospheric PAH concentrations and deposition velocities, it was thus possible to model PAH uptake by vegetation through time. We demonstrate that this approach can be used to determine deposition velocities without the use of a surrogate surface. In considering both particulate-bound and gaseous deposition processes this model can be used not only to study air-foliage exchange of semi-volatile organic compounds, but also to illustrate the relative contribution of gaseous deposition and particulate-bound deposition in the overall atmospheric vegetation uptake of semi-volatile organic compounds.

  6. Formative research on HAPA model determinants for fruit and vegetable intake: target beliefs for audiences at different stages of change.

    PubMed

    Godinho, Cristina A; Alvarez, Maria-João; Lima, Maria Luísa

    2013-12-01

    Theoretically driven health communications are needed to promote fruit and vegetable intake among people at different stages of change. The Health Action Process Approach, a clearly specified model and good predictor of fruit and vegetable intake, was used as a framework to guide a formative research for the development of health messages targeting individuals at either a non-intentional or intentional stage of change. A mixed-method approach was used, combining eight focus groups (n = 45) and a questionnaire (n = 390). Target beliefs for people at both stages were identified under five theoretical constructs (risk perception, outcome expectancies, action planning, coping planning and self-efficacy). Highlighting health problems due to low fruit and vegetable consumption, health benefits, weight reduction and pleasure and enhancing self-efficacy to increase fruit and vegetable intake are the main guidelines for designing messages to non-intenders. For intenders, messages should reassure them of their ability to maintain adequate fruit and vegetable consumption, outline specific plans for increased consumption, identify barriers such as preparation, forgetting or being tired and unwilling to eat fruits and vegetables and suggest strategies to overcome them, such as presenting some practical examples on how to include fruits and vegetables when eating out.

  7. Pattern selection and hysteresis in the Rietkerk model for banded vegetation in semi-arid environments

    PubMed Central

    Dagbovie, Ayawoa S.; Sherratt, Jonathan A.

    2014-01-01

    Banded vegetation is a characteristic feature of semi-arid environments. It occurs on gentle slopes, with alternating stripes of vegetation and bare ground running parallel to the contours. A number of mathematical models have been proposed to investigate the mechanisms underlying these patterns, and how they might be affected by changes in environmental conditions. One of the most widely used models is due to Rietkerk and co-workers, and is based on a water redistribution hypothesis, with the key feedback being that the rate of rainwater infiltration into the soil is an increasing function of plant biomass. Here, for the first time, we present a detailed study of the existence and stability of pattern solutions of the Rietkerk model on slopes, using the software package wavetrain (www.ma.hw.ac.uk/wavetrain). Specifically, we calculate the region of the rainfall–migration speed parameter plane in which patterns exist, and the sub-region in which these patterns are stable as solutions of the model partial differential equations. We then perform a detailed simulation-based study of the way in which patterns evolve when the rainfall parameter is slowly varied. This reveals complex behaviour, with sudden jumps in pattern wavelength, and hysteresis; we show that these jumps occur when the contours of constant pattern wavelength leave the parameter region giving stable patterns. Finally, we extend our results to the case in which a diffusion term for surface water is added to the model equations. The parameter regions for pattern existence and stability are relatively insensitive to small or moderate levels of surface water diffusion, but larger diffusion coefficients significantly change the subdivision into stable and unstable patterns. PMID:25142517

  8. Multi-objective assessment of three remote sensing vegetation products for streamflow prediction in a conceptual ecohydrological model

    NASA Astrophysics Data System (ADS)

    Naseem, Bushra; Ajami, Hoori; Liu, Yi; Cordery, Ian; Sharma, Ashish

    2016-12-01

    This study assesses the implications of using three alternate remote sensing vegetation products in the simulation of streamflow using a conceptual ecohydrologic model. Vegetation is represented as a dynamic component in this model which simulates two response variables, streamflow and one of the following three vegetation attributes: Gross Primary Productivity (GPP), Leaf Area Index (LAI) or Vegetation Optical Depth (VOD). Model simulations are performed across 50 catchments with areas ranging between 50 and 1600 km2 in the Murray-Darling Basin in Australia. Moderate Resolution Imaging Spectroradiometer (MODIS) LAI and GPP products, passive microwave observations of VOD and streamflow are used for model calibration and/or validation. Single-objective model calibration based on one of the vegetation products (GPP, LAI and VOD) shows that GPP is the best vegetation simulating product. On the contrary, LAI produces the best streamflow during validation when the optimized parameters are applied for streamflow estimation. To obtain the best compromise solution for simultaneous simulation of streamflow and a vegetation product, a multi-objective optimization is applied on GPP and streamflow, VOD and streamflow and LAI and streamflow. Results show that LAI and then VOD are the two best products in simulating streamflow across these catchments. Improved simulation of VOD and LAI in a multi-objective setting is partly related to the higher temporal resolution of these datasets and inclusion of processes for converting GPP to net primary productivity and biomass. It is suggested that further development of these remote sensing products at finer spatial and temporal resolutions may lead to improved streamflow prediction, as well as a better simulation capability of the ecohydrological system being modeled.

  9. Effect of vegetation physiology and structure on thermal and hydrological state in a coupled terrestrial system model

    NASA Astrophysics Data System (ADS)

    Lu, Yen-Sen; Rihani, Jehan; Langensiepen, Matthias; Simmer, Clemens

    2015-04-01

    When simulating the circulation of energy and moisture in the terrestrial system, vegetation is one of the key factors which affect energy and water fluxes at land surface and in the subsurface. Vegetation physiology in the terrestrial system includes transpiration, respiration, and root water uptake. One of the main vegetation schemes controlling transpiration in Land Surface Models is the empirical parameterization for stomatal conductance. There are two main types of stomatal conductance used in land surface models: the Jarvis-Stewart type based on environmental factors such as light use efficiency, temperature, vapor pressure deficit, and soil moisture limit: and the Ball-Berry type based on photosynthesis schemes with a semi-mechanistic parameterization. Moreover, the interconnection between soil moisture and stomatal conductance is not fully understood and needs further investigation. Alongside stomatal conductance, Leaf area index (LAI) also has a significant effect on the modelling system and thereby can impact the calculation of latent heat and sensible heat fluxes, ground temperature, and soil moisture. LAI represents the vegetation structure effects on the hydrological and thermal state of land surface by interception, albedo, and shading, and therefore altering transpiration and leaf surface evaporation. LAI can be obtained from observations such as field and satellite measurement; or estimated using parameterization in Land Surface Models and Dynamic Vegetation Models.. This study focuses on how different vegetation schemes of stomatal conductance and LAI input effect land surface energy fluxes and groundwater flow, and how the uncertainty of different schemes propagates to the calculation of thermal and hydrologic state of land surface and soil moisture. To reach the research aims of this study, land surface simulations and coupled land surface-groundwater simulations are performed and compared. In this numerical experiment, the modelling platform

  10. Modeled diversity effects on microbial ecosystem functions of primary production, nutrient uptake, and remineralization.

    PubMed

    Goebel, Nicole L; Edwards, Christopher A; Follows, Michael J; Zehr, Jonathan P

    2014-01-01

    Ecosystem-wide primary productivity generally increases with primary producer diversity, emphasizing the importance of diversity for ecosystem function. However, most studies that demonstrate this positive relationship have focused on terrestrial and aquatic benthic systems, with little attention to the diverse marine pelagic primary producers that play an important role in regulating global climate. Here we show how phytoplankton biodiversity enhances overall marine ecosystem primary productivity and other ecosystem functions using a self-organizing ecosystem model. Diversity manipulation numerical experiments reveal positive, asymptotically saturating relationships between ecosystem-wide phytoplankton diversity and functions of productivity, nutrient uptake, remineralization, and diversity metrics used to identify mechanisms shaping these relationships. Increase in productivity with increasing diversity improves modeled ecosystem stability and model robustness and leads to productivity rates that exceed expected yields primarily through niche complementarity and facilitative interactions between coexisting phytoplankton types; the composition of traits in assemblages determines the magnitude of complementarity and selection effects. While findings based on these aggregate measures of diversity effects parallel those from the majority of experimental outcomes of terrestrial and benthic biodiversity-ecosystem function studies, we combine analyses of community diversity effects and investigations of the underlying interactions among phytoplankton types to demonstrate how an increase in recycled production of non-diatoms through an increase in new production of diatoms drives this diversity-cosystem function response. We demonstrate the important role that facilitation plays in the modeled marine plankton and how this facilitative interaction could amplify future climate-driven changes in ocean ecosystem productivity.

  11. Recent trends of high-latitude vegetation activity assessed and explained by contrasting modelling approaches with earth observation data

    NASA Astrophysics Data System (ADS)

    Forkel, M.; Carvalhais, N.; Reichstein, M.; Thonicke, K.

    2012-04-01

    Satellite observations of Normalized Difference Vegetation Index (NDVI) showed increasing trends in the arctic tundra and the boreal forests since the 1980s. This greening is related to an increase in photosynthetic activity and is driven by increasing temperatures and a prolongation of the growing season. However, NDVI experienced a decrease in large regions of the boreal forests since the mid-1990s. This browning is related to fire disturbances, temperature-induced summer drought and potentially to insect infestations and diseases. Terrestrial biosphere models (TBM) can be used to assess the impacts of these changes in vegetation productivity on the carbon and water cycles and on the climate system. In general, these models provide descriptions of ecosystem processes and states that are forced by and feedback to the climate system such as photosynthesis and transpiration, ecosystem respiration, soil carbon and water stocks and vegetation composition. The evaluation of TBMs against observations is a necessary step to assess their suitability to simulate such processes and dynamics. The increasing availability of long-term observations of vegetation activity enables us to evaluate the model ability to diagnose these vegetation greening and browning trends in arctic and boreal regions. The first aim of this study is to evaluate trends in vegetation activity in high-latitude regions as simulated by TBMs against observed trends in vegetation activity. The second aim is to identify potential drivers of these observed and simulated trends to evaluate the ability of models to reproduce the observed functional relations between climatic and environmental drivers and the vegetation trends. The trends in vegetation activity were estimated for a set of satellite-based remote sensing products: NDVI from AVHRR (Advanced Very High Resolution Radiometer) and MODIS (Moderate Resolution Imaging Spectrometer), as well as FAPAR observations (Fraction of Observed Photosynthetically

  12. Modeling soil processes - are we lost in diversity?

    NASA Astrophysics Data System (ADS)

    Vogel, Hans-Joerg; Schlüter, Steffen

    2015-04-01

    Soils are among the most complex environmental systems. Soil functions - e.g. production of biomass, habitat for organisms, reactor for and storage of organic matter, filter for ground water - emerge from a multitude of processes interacting at different scales. It still remains a challenge to model and predict these functions including their stability and resilience towards external perturbations. As an inherent property of complex systems it is prohibitive to unravel all the relevant process in all detail to derive soil functions and their dynamics from first principles. Hence, when modeling soil processes and their interactions one is close to be lost in the overwhelming diversity and spatial heterogeneity of soil properties. In this contribution we suggest to look for characteristic similarities within the hyperdimensional state space of soil properties. The underlying hypothesis is that this state space is not evenly and/or randomly populated but that processes of self organization produce attractors of physical, chemical and biological properties which can be identified. (The formation of characteristic soil horizons is an obvious example). To render such a concept operational a suitable and limited set of indicators is required. Ideally, such indicators are i) related to soil functions, ii) are measurable and iii) are integral measures of the relevant physical, chemical and biological soil properties. This would allow for identifying suitable attractors. We will discuss possible indicators and will focus on soil structure as an especially promising candidate. It governs the availability of water and gas, it effects the spatial distribution of organic matter and, moreover, it forms the habitat of soil organisms and it is formed by soil biota. Quantification of soil structural properties became possible only recently with the development of more powerful tools for non-invasive imaging. Future research need to demonstrate in how far these tools can be used to

  13. Predicting use of ineffective vegetable parenting practices with the Model of Goal Directed Behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing a parent's ability to influence a child's vegetable intake may require reducing the parent's use of ineffective vegetable parenting practices. This study assessed the psychosocial influences on ineffective vegetable parenting practices. A cross-sectional web-based survey was conducted to ...

  14. Use of generalized regression tree models to characterize vegetation favoring Anopheles albimanus breeding.

    PubMed

    Hernandez, J E; Epstein, L D; Rodriguez, M H; Rodriguez, A D; Rejmankova, E; Roberts, D R

    1997-03-01

    We propose the use of generalized tree models (GTMs) to analyze data from entomological field studies. Generalized tree models can be used to characterize environments with different mosquito breeding capacity. A GTM simultaneously analyzes a set of predictor variables (e.g., vegetation coverage) in relation to a response variable (e.g., counts of Anopheles albimanus larvae), and how it varies with respect to a set of criterion variables (e.g., presence of predators). The algorithm produces a treelike graphical display with its root at the top and 2 branches stemming down from each node. At each node, conditions on the value of predictors partition the observations into subgroups (environments) in which the relation between response and criterion variables is most homogeneous.

  15. Hierarchical set of models for estimating the effects of air pollution on vegetation

    SciTech Connect

    Kercher, J.R.; Axelrod, M.C.; Bingham, G.E.

    1981-05-26

    Three models have been developed to estimate the effects of air pollutants on vegetation at the photosynthetic process (PHOTO), plant (GROWl), and community (SILVA) levels of resolution. PHOTO simulates the enhancement of photosynthesis at low H/sub 2/S levels, depression of photosynthesis at high H/sub 2/S levels, and the threshold effects for sulfur pollutants. GROWl simulates the growth and development of a plant during a growing season. GROWl has been used to assess the effects on sugar beets of geothermal energy development in the Imperial Valley, California. SILVA is a community-level model simulating the effects of SO/sub 2/ on growth, species composition, and succession, for the mixed conifer forest types of the Sierra Nevada, California.

  16. Correlation of basic oil quality indices and electrical properties of model vegetable oil systems.

    PubMed

    Prevc, Tjaša; Cigić, Blaž; Vidrih, Rajko; Poklar Ulrih, Nataša; Šegatin, Nataša

    2013-11-27

    Model vegetable oil mixtures with significantly different basic oil quality indices (free fatty acid, iodine, and Totox values) were prepared by adding oleic acids, synthetic saturated triglycerides, or oxidized safflower oil ( Carthamus tinctorius ) to the oleic type of sunflower oil. Dielectric constants, dielectric loss factors, quality factors, and electrical conductivities of model lipids were determined at frequencies from 50 Hz to 2 MHz and at temperatures from 293.15 to 323.15 K. The dependence of these dielectric parameters on basic oil quality indices was investigated. Adding oleic acids to sunflower oil resulted in lower dielectric constants and conductivities and higher quality factors. Reduced iodine values resulted in increased dielectric constants and quality factors and decreased conductivities. Higher Totox values resulted in higher dielectric constants and conductivities at high frequencies and lower quality factors. Dielectric constants decreased linearly with temperature, whereas conductivities followed the Arrhenius law.

  17. A dynamic growth model of vegetative soya bean plants: model structure and behaviour under varying root temperature and nitrogen concentration

    NASA Technical Reports Server (NTRS)

    Lim, J. T.; Wilkerson, G. G.; Raper, C. D. Jr; Gold, H. J.

    1990-01-01

    A differential equation model of vegetative growth of the soya bean plant (Glycine max (L.) Merrill cv. Ransom') was developed to account for plant growth in a phytotron system under variation of root temperature and nitrogen concentration in nutrient solution. The model was tested by comparing model outputs with data from four different experiments. Model predictions agreed fairly well with measured plant performance over a wide range of root temperatures and over a range of nitrogen concentrations in nutrient solution between 0.5 and 10.0 mmol NO3- in the phytotron environment. Sensitivity analyses revealed that the model was most sensitive to changes in parameters relating to carbohydrate concentration in the plant and nitrogen uptake rate.

  18. How to upscale the coupling between hydrology and vegetation at the hillslope scale with an equivalent soil-vegetation column model

    NASA Astrophysics Data System (ADS)

    Maquin, Mathilde; Mugler, Claude; Mouche, Emmanuel; Ducharne, Agnès

    2014-05-01

    Three-dimensional watershed models coupled with land surface models have demonstrated the control of soil moisture over land energy fluxes, as evaporation and transpiration (Maxwell and Kollet, Nature Geoscience, 2008; Condon et al., Advances in Water Resources, 2013). However, due to computational costs, these fully integrated watershed models cannot be used at larger scales. Upscaling hydrological models can be an alternative to take into account the impact of groundwater hydrology on land energy fluxes at various scales. In this purpose, we propose a two-step upscaling methodology aiming to replace a hillslope model by an equivalent vertical soil column model suitable for land surface modelling. The hillslope reference model is based on a two-dimensional aquifer model (resolution of Richards' equation) combined with a representation of vegetation and climate forcing as boundary condition. In this system, two main hydrological processes corresponding to different time scales have to be distinguished: the vertical water transfer from roots to the atmosphere through the vegetation, and the longitudinal flow of the aquifer to the stream. In an upscaling approach, two options can be considered: one may accurately model the aquifer longitudinal flow but with a degraded model of vertical transfer, or inversely give a preferential treatment to the vertical flow. As the exchanges between soil, vegetation and atmosphere are strongly dependent on the vertical profile of water (through the distribution of roots), the second option appears to be more adapted to our objective which is the assessment of hillslope hydrology on land surface fluxes. In the first step of our upscaling methodology, the two-dimensional reference hillslope is modelled as a set of one-dimensional independent vertical soil vegetation columns. In each of them, Richards' equation is solved in the vertical direction, the representation of roots and climate forcing remaining unchanged. Moreover, a sink

  19. Obtaining a Pragmatic Representation of Fire Disturbance in Dynamic Vegetation Models by Assimilating Earth Observation Data

    NASA Astrophysics Data System (ADS)

    Kantzas, Euripides; Quegan, Shaun

    2015-04-01

    Fire constitutes a violent and unpredictable pathway of carbon from the terrestrial biosphere into the atmosphere. Despite fire emissions being in many biomes of similar magnitude to that of Net Ecosystem Exchange, even the most complex Dynamic Vegetation Models (DVMs) embedded in IPCC General Circulation Models poorly represent fire behavior and dynamics, a fact which still remains understated. As DVMs operate on a deterministic, grid cell-by-grid cell basis they are unable to describe a host of important fire characteristics such as its propagation, magnitude of area burned and stochastic nature. Here we address these issues by describing a model-independent methodology which assimilates Earth Observation (EO) data by employing image analysis techniques and algorithms to offer a realistic fire disturbance regime in a DVM. This novel approach, with minimum model restructuring, manages to retain the Fire Return Interval produced by the model whilst assigning pragmatic characteristics to its fire outputs thus allowing realistic simulations of fire-related processes such as carbon injection into the atmosphere and permafrost degradation. We focus our simulations in the Arctic and specifically Canada and Russia and we offer a snippet of how this approach permits models to engage in post-fire dynamics hitherto absent from any other model regardless of complexity.

  20. Assimilation of Remotely Sensed Soil Moisture and Vegetation with a Crop Simulation Model

    NASA Astrophysics Data System (ADS)

    Ines, A. V. M.; Das, N. N.

    2015-12-01

    When a crop model is used to predict crop yields early in the growing season, two sources of uncertainties prevail those coming from climate and model uncertainties. Climate uncertainty is greatest early in the growing season and tends to decrease as weather data become available in the growing season. Model uncertainty due to errors in model structure, modeling assumptions and other ancillary data, generally remains constant through the growing season. Skillful climate forecasts can reduce climate uncertainty especially at the earlier stages of the growing season, while assimilating remote sensing (RS) data within the growing season can reduced model uncertainty. In this talk, we focus on the development, application and verification of a crop modeling-data assimilation framework capable of ingesting RS soil moisture and vegetation parameters, in this case, leaf area index for predicting aggregated crop yields. We discuss the lessons learned from our case studies in Iowa, with more homogenous rainfed agricultural system, and Georgia, more heterogeneous mixed rainfed/irrigated agricultural system. One of our goals is to show the utility of better soil moisture products, e.g. from SMAP, for improving the prediction of agricultural/hydrological variables with actionable lead-times.

  1. Improvement of Climate Model Simulation through Inter-Model Diversity: An ENSO Example

    NASA Astrophysics Data System (ADS)

    Ham, Y. G.; Kug, J. S.

    2014-12-01

    In this study, a new methodology is developed to improve the climate simulation of state-of-the-art coupled GCMs, by post-processing based on the inter-model diversity (i.e. ensemble spread from the Multi-Model Ensemble (MME)). Based on the close connection between the interannual variability and climatological state, the distinctive relation between the inter-model diversity of the interannual variability, and that of the basic state, is found. Based on this relation, the simulated interannual variabilities can be improved, by correcting their climatological bias. In order to test this methodology, the dominant inter-model difference in precipitation responses during the ENSO is investigated, and its relationship with climatological state. It is found that the dominant inter-model diversity of the ENSO precipitation in CMIP5 is associated with the zonal location shift of the positive precipitation center during El Nino. This dominant inter-model difference is significantly correlated with the difference in the basic state. The models with wetter (dryer) climatology than the climatology of the MME over the central Pacific, tend to shift positive ENSO precipitation anomalies to the east (west). Based on the model's systematic errors in atmospheric ENSO response and bias, it is shown that the models with better climatological state tend to simulate more realistic atmospheric ENSO responses. Therefore, the statistical method to correct the ENSO response by minimizing mean bias mostly improves the ENSO response. After the statistical correction, the deficiencies in simulating the MME ENSO precipitation are improved, so that the pattern correlation of tropical atmospheric MME response is increased from 0.81 before the correction, to 0.92 after the correction. In particular, this improvement is robust in the models whose original response is far from realistic. These results provide the possibility that the methodology developed in this study can also be applied to

  2. Predicting physical activity and fruit and vegetable intake in adolescents: a test of the information, motivation, behavioral skills model.

    PubMed

    Kelly, Stephanie; Melnyk, Bernadette Mazurek; Belyea, Michael

    2012-04-01

    Most adolescents do not meet national recommendations regarding physical activity and/or the intake of fruits and vegetables. The purpose of this study was to explore whether variables in the information, motivation, behavioral skills (IMB) model of health promotion predicted physical activity and fruit and vegetable intake in 404 adolescents from 2 high schools in the Southwest United States using structural equation modeling (SEM). The SEM models included theoretical constructs, contextual variables, and moderators. The theoretical relationships in the IMB model were confirmed and were moderated by gender and race. Interventions that incorporate cognitive-behavioral skills building may be a key factor for promoting physical activity as well as fruit and vegetable intake in adolescents.

  3. Advances in Modeling Streambank Stability by Incorporating the Mechanical and Hydrologic Effects of Woody and Herbaceous Riparian Vegetation

    NASA Astrophysics Data System (ADS)

    Simon, A.; C