Sample records for modeling virtual screening

  1. Customizing G Protein-coupled receptor models for structure-based virtual screening.

    PubMed

    de Graaf, Chris; Rognan, Didier

    2009-01-01

    This review will focus on the construction, refinement, and validation of G Protein-coupled receptor models for the purpose of structure-based virtual screening. Practical tips and tricks derived from concrete modeling and virtual screening exercises to overcome the problems and pitfalls associated with the different steps of the receptor modeling workflow will be presented. These examples will not only include rhodopsin-like (class A), but also secretine-like (class B), and glutamate-like (class C) receptors. In addition, the review will present a careful comparative analysis of current crystal structures and their implication on homology modeling. The following themes will be discussed: i) the use of experimental anchors in guiding the modeling procedure; ii) amino acid sequence alignments; iii) ligand binding mode accommodation and binding cavity expansion; iv) proline-induced kinks in transmembrane helices; v) binding mode prediction and virtual screening by receptor-ligand interaction fingerprint scoring; vi) extracellular loop modeling; vii) virtual filtering schemes. Finally, an overview of several successful structure-based screening shows that receptor models, despite structural inaccuracies, can be efficiently used to find novel ligands.

  2. GPURFSCREEN: a GPU based virtual screening tool using random forest classifier.

    PubMed

    Jayaraj, P B; Ajay, Mathias K; Nufail, M; Gopakumar, G; Jaleel, U C A

    2016-01-01

    In-silico methods are an integral part of modern drug discovery paradigm. Virtual screening, an in-silico method, is used to refine data models and reduce the chemical space on which wet lab experiments need to be performed. Virtual screening of a ligand data model requires large scale computations, making it a highly time consuming task. This process can be speeded up by implementing parallelized algorithms on a Graphical Processing Unit (GPU). Random Forest is a robust classification algorithm that can be employed in the virtual screening. A ligand based virtual screening tool (GPURFSCREEN) that uses random forests on GPU systems has been proposed and evaluated in this paper. This tool produces optimized results at a lower execution time for large bioassay data sets. The quality of results produced by our tool on GPU is same as that on a regular serial environment. Considering the magnitude of data to be screened, the parallelized virtual screening has a significantly lower running time at high throughput. The proposed parallel tool outperforms its serial counterpart by successfully screening billions of molecules in training and prediction phases.

  3. The Texas-Indiana Virtual STAR Center: Zebrafish Models for Developmental Toxicity Screening

    EPA Pesticide Factsheets

    The Texas-Indiana Virtual STAR Center: Zebrafish Models for Developmental Toxicity Screening (Presented by Maria Bondesson Bolin, Ph.D, University of Houston, Center for Nuclear Receptors and Cell Signaling) (3/22/2012)

  4. Virtual screening of B-Raf kinase inhibitors: A combination of pharmacophore modelling, molecular docking, 3D-QSAR model and binding free energy calculation studies.

    PubMed

    Zhang, Wen; Qiu, Kai-Xiong; Yu, Fang; Xie, Xiao-Guang; Zhang, Shu-Qun; Chen, Ya-Juan; Xie, Hui-Ding

    2017-10-01

    B-Raf kinase has been identified as an important target in recent cancer treatment. In order to discover structurally diverse and novel B-Raf inhibitors (BRIs), a virtual screening of BRIs against ZINC database was performed by using a combination of pharmacophore modelling, molecular docking, 3D-QSAR model and binding free energy (ΔG bind ) calculation studies in this work. After the virtual screening, six promising hit compounds were obtained, which were then tested for inhibitory activities of A375 cell lines. In the result, five hit compounds show good biological activities (IC 50 <50μM). The present method of virtual screening can be applied to find structurally diverse inhibitors, and the obtained five structurally diverse compounds are expected to develop novel BRIs. Copyright © 2017. Published by Elsevier Ltd.

  5. Combining structure-based pharmacophore modeling, virtual screening, and in silico ADMET analysis to discover novel tetrahydro-quinoline based pyruvate kinase isozyme M2 activators with antitumor activity

    PubMed Central

    Chen, Can; Wang, Ting; Wu, Fengbo; Huang, Wei; He, Gu; Ouyang, Liang; Xiang, Mingli; Peng, Cheng; Jiang, Qinglin

    2014-01-01

    Compared with normal differentiated cells, cancer cells upregulate the expression of pyruvate kinase isozyme M2 (PKM2) to support glycolytic intermediates for anabolic processes, including the synthesis of nucleic acids, amino acids, and lipids. In this study, a combination of the structure-based pharmacophore modeling and a hybrid protocol of virtual screening methods comprised of pharmacophore model-based virtual screening, docking-based virtual screening, and in silico ADMET (absorption, distribution, metabolism, excretion and toxicity) analysis were used to retrieve novel PKM2 activators from commercially available chemical databases. Tetrahydroquinoline derivatives were identified as potential scaffolds of PKM2 activators. Thus, the hybrid virtual screening approach was applied to screen the focused tetrahydroquinoline derivatives embedded in the ZINC database. Six hit compounds were selected from the final hits and experimental studies were then performed. Compound 8 displayed a potent inhibitory effect on human lung cancer cells. Following treatment with Compound 8, cell viability, apoptosis, and reactive oxygen species (ROS) production were examined in A549 cells. Finally, we evaluated the effects of Compound 8 on mice xenograft tumor models in vivo. These results may provide important information for further research on novel PKM2 activators as antitumor agents. PMID:25214764

  6. Inhibitors of Helicobacter pylori Protease HtrA Found by ‘Virtual Ligand’ Screening Combat Bacterial Invasion of Epithelia

    PubMed Central

    Schneider, Petra; Hoy, Benjamin; Wessler, Silja; Schneider, Gisbert

    2011-01-01

    Background The human pathogen Helicobacter pylori (H. pylori) is a main cause for gastric inflammation and cancer. Increasing bacterial resistance against antibiotics demands for innovative strategies for therapeutic intervention. Methodology/Principal Findings We present a method for structure-based virtual screening that is based on the comprehensive prediction of ligand binding sites on a protein model and automated construction of a ligand-receptor interaction map. Pharmacophoric features of the map are clustered and transformed in a correlation vector (‘virtual ligand’) for rapid virtual screening of compound databases. This computer-based technique was validated for 18 different targets of pharmaceutical interest in a retrospective screening experiment. Prospective screening for inhibitory agents was performed for the protease HtrA from the human pathogen H. pylori using a homology model of the target protein. Among 22 tested compounds six block E-cadherin cleavage by HtrA in vitro and result in reduced scattering and wound healing of gastric epithelial cells, thereby preventing bacterial infiltration of the epithelium. Conclusions/Significance This study demonstrates that receptor-based virtual screening with a permissive (‘fuzzy’) pharmacophore model can help identify small bioactive agents for combating bacterial infection. PMID:21483848

  7. DEC Ada interface to Screen Management Guidelines (SMG)

    NASA Technical Reports Server (NTRS)

    Laomanachareon, Somsak; Lekkos, Anthony A.

    1986-01-01

    DEC's Screen Management Guidelines are the Run-Time Library procedures that perform terminal-independent screen management functions on a VT100-class terminal. These procedures assist users in designing, composing, and keeping track of complex images on a video screen. There are three fundamental elements in the screen management model: the pasteboard, the virtual display, and the virtual keyboard. The pasteboard is like a two-dimensional area on which a user places and manipulates screen displays. The virtual display is a rectangular part of the terminal screen to which a program writes data with procedure calls. The virtual keyboard is a logical structure for input operation associated with a physical keyboard. SMG can be called by all major VAX languages. Through Ada, predefined language Pragmas are used to interface with SMG. These features and elements of SMG are briefly discussed.

  8. Exploiting PubChem for Virtual Screening

    PubMed Central

    Xie, Xiang-Qun

    2011-01-01

    Importance of the field PubChem is a public molecular information repository, a scientific showcase of the NIH Roadmap Initiative. The PubChem database holds over 27 million records of unique chemical structures of compounds (CID) derived from nearly 70 million substance depositions (SID), and contains more than 449,000 bioassay records with over thousands of in vitro biochemical and cell-based screening bioassays established, with targeting more than 7000 proteins and genes linking to over 1.8 million of substances. Areas covered in this review This review builds on recent PubChem-related computational chemistry research reported by other authors while providing readers with an overview of the PubChem database, focusing on its increasing role in cheminformatics, virtual screening and toxicity prediction modeling. What the reader will gain These publicly available datasets in PubChem provide great opportunities for scientists to perform cheminformatics and virtual screening research for computer-aided drug design. However, the high volume and complexity of the datasets, in particular the bioassay-associated false positives/negatives and highly imbalanced datasets in PubChem, also creates major challenges. Several approaches regarding the modeling of PubChem datasets and development of virtual screening models for bioactivity and toxicity predictions are also reviewed. Take home message Novel data-mining cheminformatics tools and virtual screening algorithms are being developed and used to retrieve, annotate and analyze the large-scale and highly complex PubChem biological screening data for drug design. PMID:21691435

  9. Identification of promising DNA GyrB inhibitors for Tuberculosis using pharmacophore-based virtual screening, molecular docking and molecular dynamics studies.

    PubMed

    Islam, Md Ataul; Pillay, Tahir S

    2017-08-01

    In this study, we searched for potential DNA GyrB inhibitors using pharmacophore-based virtual screening followed by molecular docking and molecular dynamics simulation approaches. For this purpose, a set of 248 DNA GyrB inhibitors was collected from the literature and a well-validated pharmacophore model was generated. The best pharmacophore model explained that two each of hydrogen bond acceptors and hydrophobicity regions were critical for inhibition of DNA GyrB. Good statistical results of the pharmacophore model indicated that the model was robust in nature. Virtual screening of molecular databases revealed three molecules as potential antimycobacterial agents. The final screened promising compounds were evaluated in molecular docking and molecular dynamics simulation studies. In the molecular dynamics studies, RMSD and RMSF values undoubtedly explained that the screened compounds formed stable complexes with DNA GyrB. Therefore, it can be concluded that the compounds identified may have potential for the treatment of TB. © 2017 John Wiley & Sons A/S.

  10. Novel Hybrid Virtual Screening Protocol Based on Molecular Docking and Structure-Based Pharmacophore for Discovery of Methionyl-tRNA Synthetase Inhibitors as Antibacterial Agents

    PubMed Central

    Liu, Chi; He, Gu; Jiang, Qinglin; Han, Bo; Peng, Cheng

    2013-01-01

    Methione tRNA synthetase (MetRS) is an essential enzyme involved in protein biosynthesis in all living organisms and is a potential antibacterial target. In the current study, the structure-based pharmacophore (SBP)-guided method has been suggested to generate a comprehensive pharmacophore of MetRS based on fourteen crystal structures of MetRS-inhibitor complexes. In this investigation, a hybrid protocol of a virtual screening method, comprised of pharmacophore model-based virtual screening (PBVS), rigid and flexible docking-based virtual screenings (DBVS), is used for retrieving new MetRS inhibitors from commercially available chemical databases. This hybrid virtual screening approach was then applied to screen the Specs (202,408 compounds) database, a structurally diverse chemical database. Fifteen hit compounds were selected from the final hits and shifted to experimental studies. These results may provide important information for further research of novel MetRS inhibitors as antibacterial agents. PMID:23839093

  11. Modeling and Deorphanization of Orphan GPCRs.

    PubMed

    Diaz, Constantino; Angelloz-Nicoud, Patricia; Pihan, Emilie

    2018-01-01

    Despite tremendous efforts, approximately 120 GPCRs remain orphan. Their physiological functions and their potential roles in diseases are poorly understood. Orphan GPCRs are extremely important because they may provide novel therapeutic targets for unmet medical needs. As a complement to experimental approaches, molecular modeling and virtual screening are efficient techniques to discover synthetic surrogate ligands which can help to elucidate the role of oGPCRs. Constitutively activated mutants and recently published active structures of GPCRs provide stimulating opportunities for building active molecular models for oGPCRs and identifying activators using virtual screening of compound libraries. We describe the molecular modeling and virtual screening process we have applied in the discovery of surrogate ligands, and provide examples for CCKA, a simulated oGPCR, and for two oGPCRs, GPR52 and GPR34.

  12. Quantitative structure-activity relationship analysis and virtual screening studies for identifying HDAC2 inhibitors from known HDAC bioactive chemical libraries.

    PubMed

    Pham-The, H; Casañola-Martin, G; Diéguez-Santana, K; Nguyen-Hai, N; Ngoc, N T; Vu-Duc, L; Le-Thi-Thu, H

    2017-03-01

    Histone deacetylases (HDAC) are emerging as promising targets in cancer, neuronal diseases and immune disorders. Computational modelling approaches have been widely applied for the virtual screening and rational design of novel HDAC inhibitors. In this study, different machine learning (ML) techniques were applied for the development of models that accurately discriminate HDAC2 inhibitors form non-inhibitors. The obtained models showed encouraging results, with the global accuracy in the external set ranging from 0.83 to 0.90. Various aspects related to the comparison of modelling techniques, applicability domain and descriptor interpretations were discussed. Finally, consensus predictions of these models were used for screening HDAC2 inhibitors from four chemical libraries whose bioactivities against HDAC1, HDAC3, HDAC6 and HDAC8 have been known. According to the results of virtual screening assays, structures of some hits with pair-isoform-selective activity (between HDAC2 and other HDACs) were revealed. This study illustrates the power of ML-based QSAR approaches for the screening and discovery of potent, isoform-selective HDACIs.

  13. In silico approaches to identify novel myeloid cell leukemia-1 (Mcl-1) inhibitors for treatment of cancer.

    PubMed

    Ren, Ji-Xia; Li, Cheng-Ping; Zhou, Xiu-Ling; Cao, Xue-Song; Xie, Yong

    2017-08-22

    Myeloid cell leukemia-1 (Mcl-1) has been a validated and attractive target for cancer therapy. Over-expression of Mcl-1 in many cancers allows cancer cells to evade apoptosis and contributes to the resistance to current chemotherapeutics. Here, we identified new Mcl-1 inhibitors using a multi-step virtual screening approach. First, based on two different ligand-receptor complexes, 20 pharmacophore models were established by simultaneously using 'Receptor-Ligand Pharmacophore Generation' method and manual build feature method, and then carefully validated by a test database. Then, pharmacophore-based virtual screening (PB-VS) could be performed by using the 20 pharmacophore models. In addition, docking study was used to predict the possible binding poses of compounds, and the docking parameters were optimized before performing docking-based virtual screening (DB-VS). Moreover, a 3D QSAR model was established by applying the 55 aligned Mcl-1 inhibitors. The 55 inhibitors sharing the same scaffold were docked into the Mcl-1 active site before alignment, then the inhibitors with possible binding conformations were aligned. For the training set, the 3D QSAR model gave a correlation coefficient r 2 of 0.996; for the test set, the correlation coefficient r 2 was 0.812. Therefore, the developed 3D QSAR model was a good model, which could be applied for carrying out 3D QSAR-based virtual screening (QSARD-VS). After the above three virtual screening methods orderly filtering, 23 potential inhibitors with novel scaffolds were identified. Furthermore, we have discussed in detail the mapping results of two potent compounds onto pharmacophore models, 3D QSAR model, and the interactions between the compounds and active site residues.

  14. Application of QSAR and shape pharmacophore modeling approaches for targeted chemical library design.

    PubMed

    Ebalunode, Jerry O; Zheng, Weifan; Tropsha, Alexander

    2011-01-01

    Optimization of chemical library composition affords more efficient identification of hits from biological screening experiments. The optimization could be achieved through rational selection of reagents used in combinatorial library synthesis. However, with a rapid advent of parallel synthesis methods and availability of millions of compounds synthesized by many vendors, it may be more efficient to design targeted libraries by means of virtual screening of commercial compound collections. This chapter reviews the application of advanced cheminformatics approaches such as quantitative structure-activity relationships (QSAR) and pharmacophore modeling (both ligand and structure based) for virtual screening. Both approaches rely on empirical SAR data to build models; thus, the emphasis is placed on achieving models of the highest rigor and external predictive power. We present several examples of successful applications of both approaches for virtual screening to illustrate their utility. We suggest that the expert use of both QSAR and pharmacophore models, either independently or in combination, enables users to achieve targeted libraries enriched with experimentally confirmed hit compounds.

  15. Incorporating Virtual Reactions into a Logic-based Ligand-based Virtual Screening Method to Discover New Leads

    PubMed Central

    Reynolds, Christopher R; Muggleton, Stephen H; Sternberg, Michael J E

    2015-01-01

    The use of virtual screening has become increasingly central to the drug development pipeline, with ligand-based virtual screening used to screen databases of compounds to predict their bioactivity against a target. These databases can only represent a small fraction of chemical space, and this paper describes a method of exploring synthetic space by applying virtual reactions to promising compounds within a database, and generating focussed libraries of predicted derivatives. A ligand-based virtual screening tool Investigational Novel Drug Discovery by Example (INDDEx) is used as the basis for a system of virtual reactions. The use of virtual reactions is estimated to open up a potential space of 1.21×1012 potential molecules. A de novo design algorithm known as Partial Logical-Rule Reactant Selection (PLoRRS) is introduced and incorporated into the INDDEx methodology. PLoRRS uses logical rules from the INDDEx model to select reactants for the de novo generation of potentially active products. The PLoRRS method is found to increase significantly the likelihood of retrieving molecules similar to known actives with a p-value of 0.016. Case studies demonstrate that the virtual reactions produce molecules highly similar to known actives, including known blockbuster drugs. PMID:26583052

  16. On various metrics used for validation of predictive QSAR models with applications in virtual screening and focused library design.

    PubMed

    Roy, Kunal; Mitra, Indrani

    2011-07-01

    Quantitative structure-activity relationships (QSARs) have important applications in drug discovery research, environmental fate modeling, property prediction, etc. Validation has been recognized as a very important step for QSAR model development. As one of the important objectives of QSAR modeling is to predict activity/property/toxicity of new chemicals falling within the domain of applicability of the developed models and QSARs are being used for regulatory decisions, checking reliability of the models and confidence of their predictions is a very important aspect, which can be judged during the validation process. One prime application of a statistically significant QSAR model is virtual screening for molecules with improved potency based on the pharmacophoric features and the descriptors appearing in the QSAR model. Validated QSAR models may also be utilized for design of focused libraries which may be subsequently screened for the selection of hits. The present review focuses on various metrics used for validation of predictive QSAR models together with an overview of the application of QSAR models in the fields of virtual screening and focused library design for diverse series of compounds with citation of some recent examples.

  17. Virtual screening and optimization of Type II inhibitors of JAK2 from a natural product library.

    PubMed

    Ma, Dik-Lung; Chan, Daniel Shiu-Hin; Wei, Guo; Zhong, Hai-Jing; Yang, Hui; Leung, Lai To; Gullen, Elizabeth A; Chiu, Pauline; Cheng, Yung-Chi; Leung, Chung-Hang

    2014-11-21

    Amentoflavone has been identified as a JAK2 inhibitor by structure-based virtual screening of a natural product library. In silico optimization using the DOLPHIN model yielded analogues with enhanced potency against JAK2 activity and HCV activity in cellulo. Molecular modeling and kinetic experiments suggested that the analogues may function as Type II inhibitors of JAK2.

  18. Discovering Novel Alternaria solani Succinate Dehydrogenase Inhibitors by In Silico Modeling and Virtual Screening Strategies to Combat Early Blight

    NASA Astrophysics Data System (ADS)

    Iftikhar, Sehrish; Shahid, Ahmad A.; Halim, Sobia A.; Wolters, Pieter J.; Vleeshouwers, Vivianne G. A. A.; Khan, Ajmal; Al-Harrasi, Ahmed; Ahmad, Shahbaz

    2017-11-01

    Alternaria blight is an important foliage disease caused by Alternaria solani. The enzyme Succinate dehydrogenase (SDH) is a potential drug target because of its role in tricarboxylic acid cycle. Hence targeting Alternaria solani SDH enzyme could be efficient tool to design novel fungicides against A. solani. We employed computational methodologies to design new SDH inhibitors using homology modeling; pharmacophore modeling and structure based virtual screening protocol. The three dimensional SDH model showed good stereo-chemical and structural properties. Based on virtual screening results twelve commercially available compounds were purchased and tested in vitro and in vivo. The compounds were found to inhibit mycelial growth of A. solani. Moreover in vitro trials showed that inhibitory effects were enhanced with increase in concentrations. Similarly increased disease control was observed in pre-treated potato tubers. Hence the applied in silico strategy led us to identify new and novel fungicides.

  19. Discovering Novel Alternaria solani Succinate Dehydrogenase Inhibitors by in Silico Modeling and Virtual Screening Strategies to Combat Early Blight

    PubMed Central

    Iftikhar, Sehrish; Shahid, Ahmad A.; Halim, Sobia A.; Wolters, Pieter J.; Vleeshouwers, Vivianne G. A. A.; Khan, Ajmal; Al-Harrasi, Ahmed; Ahmad, Shahbaz

    2017-01-01

    Alternaria blight is an important foliage disease caused by Alternaria solani. The enzyme Succinate dehydrogenase (SDH) is a potential drug target because of its role in tricarboxylic acid cycle. Hence targeting Alternaria solani SDH enzyme could be efficient tool to design novel fungicides against A. solani. We employed computational methodologies to design new SDH inhibitors using homology modeling; pharmacophore modeling and structure based virtual screening. The three dimensional SDH model showed good stereo-chemical and structural properties. Based on virtual screening results twelve commercially available compounds were purchased and tested in vitro and in vivo. The compounds were found to inhibit mycelial growth of A. solani. Moreover in vitro trials showed that inhibitory effects were enhanced with increase in concentrations. Similarly increased disease control was observed in pre-treated potato tubers. Hence the applied in silico strategy led us to identify novel fungicides. PMID:29204422

  20. Novel Design Strategy for Checkpoint Kinase 2 Inhibitors Using Pharmacophore Modeling, Combinatorial Fusion, and Virtual Screening

    PubMed Central

    Wang, Yen-Ling

    2014-01-01

    Checkpoint kinase 2 (Chk2) has a great effect on DNA-damage and plays an important role in response to DNA double-strand breaks and related lesions. In this study, we will concentrate on Chk2 and the purpose is to find the potential inhibitors by the pharmacophore hypotheses (PhModels), combinatorial fusion, and virtual screening techniques. Applying combinatorial fusion into PhModels and virtual screening techniques is a novel design strategy for drug design. We used combinatorial fusion to analyze the prediction results and then obtained the best correlation coefficient of the testing set (r test) with the value 0.816 by combining the BesttrainBesttest and FasttrainFasttest prediction results. The potential inhibitors were selected from NCI database by screening according to BesttrainBesttest + FasttrainFasttest prediction results and molecular docking with CDOCKER docking program. Finally, the selected compounds have high interaction energy between a ligand and a receptor. Through these approaches, 23 potential inhibitors for Chk2 are retrieved for further study. PMID:24864236

  1. Approaches to virtual screening and screening library selection.

    PubMed

    Wildman, Scott A

    2013-01-01

    The ease of access to virtual screening (VS) software in recent years has resulted in a large increase in literature reports. Over 300 publications in the last year report the use of virtual screening techniques to identify new chemical matter or present the development of new virtual screening techniques. The increased use is accompanied by a corresponding increase in misuse and misinterpretation of virtual screening results. This review aims to identify many of the common difficulties associated with virtual screening and allow researchers to better assess the reliability of their virtual screening effort.

  2. Discovering new PI3Kα inhibitors with a strategy of combining ligand-based and structure-based virtual screening

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Gu, Qiong; Xu, Jun

    2018-02-01

    PI3Kα is a promising drug target for cancer chemotherapy. In this paper, we report a strategy of combing ligand-based and structure-based virtual screening to identify new PI3Kα inhibitors. First, naïve Bayesian (NB) learning models and a 3D-QSAR pharmacophore model were built based upon known PI3Kα inhibitors. Then, the SPECS library was screened by the best NB model. This resulted in virtual hits, which were validated by matching the structures against the pharmacophore models. The pharmacophore matched hits were then docked into PI3Kα crystal structures to form ligand-receptor complexes, which are further validated by the Glide-XP program to result in structural validated hits. The structural validated hits were examined by PI3Kα inhibitory assay. With this screening protocol, ten PI3Kα inhibitors with new scaffolds were discovered with IC50 values ranging 0.44-31.25 μM. The binding affinities for the most active compounds 33 and 74 were estimated through molecular dynamics simulations and MM-PBSA analyses.

  3. Virtual screening and rational drug design method using structure generation system based on 3D-QSAR and docking.

    PubMed

    Chen, H F; Dong, X C; Zen, B S; Gao, K; Yuan, S G; Panaye, A; Doucet, J P; Fan, B T

    2003-08-01

    An efficient virtual and rational drug design method is presented. It combines virtual bioactive compound generation with 3D-QSAR model and docking. Using this method, it is possible to generate a lot of highly diverse molecules and find virtual active lead compounds. The method was validated by the study of a set of anti-tumor drugs. With the constraints of pharmacophore obtained by DISCO implemented in SYBYL 6.8, 97 virtual bioactive compounds were generated, and their anti-tumor activities were predicted by CoMFA. Eight structures with high activity were selected and screened by the 3D-QSAR model. The most active generated structure was further investigated by modifying its structure in order to increase the activity. A comparative docking study with telomeric receptor was carried out, and the results showed that the generated structures could form more stable complexes with receptor than the reference compound selected from experimental data. This investigation showed that the proposed method was a feasible way for rational drug design with high screening efficiency.

  4. Discovery of Novel HIV-1 Integrase Inhibitors Using QSAR-Based Virtual Screening of the NCI Open Database.

    PubMed

    Ko, Gene M; Garg, Rajni; Bailey, Barbara A; Kumar, Sunil

    2016-01-01

    Quantitative structure-activity relationship (QSAR) models can be used as a predictive tool for virtual screening of chemical libraries to identify novel drug candidates. The aims of this paper were to report the results of a study performed for descriptor selection, QSAR model development, and virtual screening for identifying novel HIV-1 integrase inhibitor drug candidates. First, three evolutionary algorithms were compared for descriptor selection: differential evolution-binary particle swarm optimization (DE-BPSO), binary particle swarm optimization, and genetic algorithms. Next, three QSAR models were developed from an ensemble of multiple linear regression, partial least squares, and extremely randomized trees models. A comparison of the performances of three evolutionary algorithms showed that DE-BPSO has a significant improvement over the other two algorithms. QSAR models developed in this study were used in consensus as a predictive tool for virtual screening of the NCI Open Database containing 265,242 compounds to identify potential novel HIV-1 integrase inhibitors. Six compounds were predicted to be highly active (plC50 > 6) by each of the three models. The use of a hybrid evolutionary algorithm (DE-BPSO) for descriptor selection and QSAR model development in drug design is a novel approach. Consensus modeling may provide better predictivity by taking into account a broader range of chemical properties within the data set conducive for inhibition that may be missed by an individual model. The six compounds identified provide novel drug candidate leads in the design of next generation HIV- 1 integrase inhibitors targeting drug resistant mutant viruses.

  5. Modeling of luminance distribution in CAVE-type virtual reality systems

    NASA Astrophysics Data System (ADS)

    Meironke, Michał; Mazikowski, Adam

    2017-08-01

    At present, one of the most advanced virtual reality systems are CAVE-type (Cave Automatic Virtual Environment) installations. Such systems are usually consisted of four, five or six projection screens and in case of six screens arranged in form of a cube. Providing the user with a high level of immersion feeling in such systems is largely dependent of optical properties of the system. The modeling of physical phenomena plays nowadays a huge role in the most fields of science and technology. It allows to simulate work of device without a need to make any changes in the physical constructions. In this paper distribution of luminance in CAVE-type virtual reality systems were modelled. Calculations were performed for the model of 6-walled CAVE-type installation, based on Immersive 3D Visualization Laboratory, situated at the Faculty of Electronics, Telecommunications and Informatics at the Gdańsk University of Technology. Tests have been carried out for two different scattering distribution of the screen material in order to check how these characteristicinfluence on the luminance distribution of the whole CAVE. The basis assumption and simplification of modeled CAVE-type installation and results were presented. The brief discussion about the results and usefulness of developed model were also carried out.

  6. Free Energy-Based Virtual Screening and Optimization of RNase H Inhibitors of HIV-1 Reverse Transcriptase.

    PubMed

    Zhang, Baofeng; D'Erasmo, Michael P; Murelli, Ryan P; Gallicchio, Emilio

    2016-09-30

    We report the results of a binding free energy-based virtual screening campaign of a library of 77 α-hydroxytropolone derivatives against the challenging RNase H active site of the reverse transcriptase (RT) enzyme of human immunodeficiency virus-1. Multiple protonation states, rotamer states, and binding modalities of each compound were individually evaluated. The work involved more than 300 individual absolute alchemical binding free energy parallel molecular dynamics calculations and over 1 million CPU hours on national computing clusters and a local campus computational grid. The thermodynamic and structural measures obtained in this work rationalize a series of characteristics of this system useful for guiding future synthetic and biochemical efforts. The free energy model identified key ligand-dependent entropic and conformational reorganization processes difficult to capture using standard docking and scoring approaches. Binding free energy-based optimization of the lead compounds emerging from the virtual screen has yielded four compounds with very favorable binding properties, which will be the subject of further experimental investigations. This work is one of the few reported applications of advanced-binding free energy models to large-scale virtual screening and optimization projects. It further demonstrates that, with suitable algorithms and automation, advanced-binding free energy models can have a useful role in early-stage drug-discovery programs.

  7. Modelling, simulation and verification of the screening process of a swing-bar sieve based on the DEM

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Yu, Jianqun; Yu, Yajun

    2018-05-01

    To solve the problems in the DEM simulations of the screening process of a swing-bar sieve, in this paper we propose the real-virtual boundary method to build the geometrical model of the screen deck on a swing-bar sieve. The motion of the swing-bar sieve is modelled by the planer multi-body kinematics. A coupled model of the discrete element method (DEM) with multi-body kinematics (MBK) is presented to simulate the flowing and passing processes of soybean particles on the screen deck. By the comparison of the simulated results with the experimental results of the screening process of the LA-LK laboratory scale swing-bar sieve, the feasibility and validity of the real-virtual boundary method and the coupled DEM-MBK model we proposed in this paper can be verified. This work provides the basis for the optimization design of the swing-bar sieve with circular apertures and complex motion.

  8. Novel design strategy for checkpoint kinase 2 inhibitors using pharmacophore modeling, combinatorial fusion, and virtual screening.

    PubMed

    Lin, Chun-Yuan; Wang, Yen-Ling

    2014-01-01

    Checkpoint kinase 2 (Chk2) has a great effect on DNA-damage and plays an important role in response to DNA double-strand breaks and related lesions. In this study, we will concentrate on Chk2 and the purpose is to find the potential inhibitors by the pharmacophore hypotheses (PhModels), combinatorial fusion, and virtual screening techniques. Applying combinatorial fusion into PhModels and virtual screening techniques is a novel design strategy for drug design. We used combinatorial fusion to analyze the prediction results and then obtained the best correlation coefficient of the testing set (r test) with the value 0.816 by combining the Best(train)Best(test) and Fast(train)Fast(test) prediction results. The potential inhibitors were selected from NCI database by screening according to Best(train)Best(test) + Fast(train)Fast(test) prediction results and molecular docking with CDOCKER docking program. Finally, the selected compounds have high interaction energy between a ligand and a receptor. Through these approaches, 23 potential inhibitors for Chk2 are retrieved for further study.

  9. Effective virtual screening protocol for CYP2C9 ligands using a screening site constructed from flurbiprofen and S-warfarin pockets

    NASA Astrophysics Data System (ADS)

    Polgár, Tímea; Menyhárd, Dóra K.; Keserű, György M.

    2007-09-01

    An effective virtual screening protocol was developed against an extended active site of CYP2C9, which was derived from X-ray structures complexed with flubiprofen and S-warfarin. Virtual screening has been effectively supported by our structure-based pharmacophore model. Importance of hot residues identified by mutation data and structural analysis was first estimated in an enrichment study. Key role of Arg108 and Phe114 in ligand binding was also underlined. Our screening protocol successfully identified 76% of known CYP2C9 ligands in the top 1% of the ranked database resulting 76-fold enrichment relative to random situation. Relevance of the protocol was further confirmed in selectivity studies, when 89% of CYP2C9 ligands were retrieved from a mixture of CYP2C9 and CYP2C8 ligands, while only 22% of CYP2C8 ligands were found applying the structure-based pharmacophore constraints. Moderate discrimination of CYP2C9 ligands from CYP2C18 and CYP2C19 ligands could also be achieved extending the application domain of our virtual screening protocol for the entire CYP2C family. Our findings further demonstrate the existence of an active site comprising of at least two binding pockets and strengthens the need of involvement of protein flexibility in virtual screening.

  10. Pharmacophore Based 3D-QSAR, Virtual Screening and Docking Studies on Novel Series of HDAC Inhibitors with Thiophen Linker as Anticancer Agents.

    PubMed

    Patel, Preeti; Singh, Avineesh; Patel, Vijay K; Jain, Deepak K; Veerasamy, Ravichandran; Rajak, Harish

    2016-01-01

    Histone deacetylase (HDAC) inhibitors can reactivate gene expression and inhibit the growth and survival of cancer cells. To identify the important pharmacophoric features and correlate 3Dchemical structure with biological activity using 3D-QSAR and Pharmacophore modeling studies. The pharmacophore hypotheses were developed using e-pharmacophore script and phase module. Pharmacophore hypothesis represents the 3D arrangement of molecular features necessary for activity. A series of 55 compounds with wellassigned HDAC inhibitory activity were used for 3D-QSAR model development. Best 3D-QSAR model, which is a five partial least square (PLS) factor model with good statistics and predictive ability, acquired Q2 (0.7293), R2 (0.9811), cross-validated coefficient rcv 2=0.9807 and R2 pred=0.7147 with low standard deviation (0.0952). Additionally, the selected pharmacophore model DDRRR.419 was used as a 3D query for virtual screening against the ZINC database. In the virtual screening workflow, docking studies (HTVS, SP and XP) were carried out by selecting multiple receptors (PDB ID: 1T69, 1T64, 4LXZ, 4LY1, 3MAX, 2VQQ, 3C10, 1W22). Finally, six compounds were obtained based on high scoring function (dock score -11.2278-10.2222 kcal/mol) and diverse structures. The structure activity correlation was established using virtual screening, docking, energetic based pharmacophore modelling, pharmacophore, atom based 3D QSAR models and their validation. The outcomes of these studies could be further employed for the design of novel HDAC inhibitors for anticancer activity.

  11. A Novel Approach for Efficient Pharmacophore-based Virtual Screening: Method and Applications

    PubMed Central

    Dror, Oranit; Schneidman-Duhovny, Dina; Inbar, Yuval; Nussinov, Ruth; Wolfson, Haim J.

    2009-01-01

    Virtual screening is emerging as a productive and cost-effective technology in rational drug design for the identification of novel lead compounds. An important model for virtual screening is the pharmacophore. Pharmacophore is the spatial configuration of essential features that enable a ligand molecule to interact with a specific target receptor. In the absence of a known receptor structure, a pharmacophore can be identified from a set of ligands that have been observed to interact with the target receptor. Here, we present a novel computational method for pharmacophore detection and virtual screening. The pharmacophore detection module is able to: (i) align multiple flexible ligands in a deterministic manner without exhaustive enumeration of the conformational space, (ii) detect subsets of input ligands that may bind to different binding sites or have different binding modes, (iii) address cases where the input ligands have different affinities by defining weighted pharmacophores based on the number of ligands that share them, and (iv) automatically select the most appropriate pharmacophore candidates for virtual screening. The algorithm is highly efficient, allowing a fast exploration of the chemical space by virtual screening of huge compound databases. The performance of PharmaGist was successfully evaluated on a commonly used dataset of G-Protein Coupled Receptor alpha1A. Additionally, a large-scale evaluation using the DUD (directory of useful decoys) dataset was performed. DUD contains 2950 active ligands for 40 different receptors, with 36 decoy compounds for each active ligand. PharmaGist enrichment rates are comparable with other state-of-the-art tools for virtual screening. Availability The software is available for download. A user-friendly web interface for pharmacophore detection is available at http://bioinfo3d.cs.tau.ac.il/PharmaGist. PMID:19803502

  12. Assessment of wheelchair driving performance in a virtual reality-based simulator

    PubMed Central

    Mahajan, Harshal P.; Dicianno, Brad E.; Cooper, Rory A.; Ding, Dan

    2013-01-01

    Objective To develop a virtual reality (VR)-based simulator that can assist clinicians in performing standardized wheelchair driving assessments. Design A completely within-subjects repeated measures design. Methods Participants drove their wheelchairs along a virtual driving circuit modeled after the Power Mobility Road Test (PMRT) and in a hallway with decreasing width. The virtual simulator was displayed on computer screen and VR screens and participants interacted with it using a set of instrumented rollers and a wheelchair joystick. Driving performances of participants were estimated and compared using quantitative metrics from the simulator. Qualitative ratings from two experienced clinicians were used to estimate intra- and inter-rater reliability. Results Ten regular wheelchair users (seven men, three women; mean age ± SD, 39.5 ± 15.39 years) participated. The virtual PMRT scores from the two clinicians show high inter-rater reliability (78–90%) and high intra-rater reliability (71–90%) for all test conditions. More research is required to explore user preferences and effectiveness of the two control methods (rollers and mathematical model) and the display screens. Conclusions The virtual driving simulator seems to be a promising tool for wheelchair driving assessment that clinicians can use to supplement their real-world evaluations. PMID:23820148

  13. A web-based platform for virtual screening.

    PubMed

    Watson, Paul; Verdonk, Marcel; Hartshorn, Michael J

    2003-09-01

    A fully integrated, web-based, virtual screening platform has been developed to allow rapid virtual screening of large numbers of compounds. ORACLE is used to store information at all stages of the process. The system includes a large database of historical compounds from high throughput screenings (HTS) chemical suppliers, ATLAS, containing over 3.1 million unique compounds with their associated physiochemical properties (ClogP, MW, etc.). The database can be screened using a web-based interface to produce compound subsets for virtual screening or virtual library (VL) enumeration. In order to carry out the latter task within ORACLE a reaction data cartridge has been developed. Virtual libraries can be enumerated rapidly using the web-based interface to the cartridge. The compound subsets can be seamlessly submitted for virtual screening experiments, and the results can be viewed via another web-based interface allowing ad hoc querying of the virtual screening data stored in ORACLE.

  14. Virtual Screening with AutoDock: Theory and Practice

    PubMed Central

    Cosconati, Sandro; Forli, Stefano; Perryman, Alex L.; Harris, Rodney; Goodsell, David S.; Olson, Arthur J.

    2011-01-01

    Importance to the field Virtual screening is a computer-based technique for identifying promising compounds to bind to a target molecule of known structure. Given the rapidly increasing number of protein and nucleic acid structures, virtual screening continues to grow as an effective method for the discovery of new inhibitors and drug molecules. Areas covered in this review We describe virtual screening methods that are available in the AutoDock suite of programs, and several of our successes in using AutoDock virtual screening in pharmaceutical lead discovery. What the reader will gain A general overview of the challenges of virtual screening is presented, along with the tools available in the AutoDock suite of programs for addressing these challenges. Take home message Virtual screening is an effective tool for the discovery of compounds for use as leads in drug discovery, and the free, open source program AutoDock is an effective tool for virtual screening. PMID:21532931

  15. Bayesian Models Leveraging Bioactivity and Cytotoxicity Information for Drug Discovery

    PubMed Central

    Ekins, Sean; Reynolds, Robert C.; Kim, Hiyun; Koo, Mi-Sun; Ekonomidis, Marilyn; Talaue, Meliza; Paget, Steve D.; Woolhiser, Lisa K.; Lenaerts, Anne J.; Bunin, Barry A.; Connell, Nancy; Freundlich, Joel S.

    2013-01-01

    SUMMARY Identification of unique leads represents a significant challenge in drug discovery. This hurdle is magnified in neglected diseases such as tuberculosis. We have leveraged public high-throughput screening (HTS) data, to experimentally validate virtual screening approach employing Bayesian models built with bioactivity information (single-event model) as well as bioactivity and cytotoxicity information (dual-event model). We virtually screen a commercial library and experimentally confirm actives with hit rates exceeding typical HTS results by 1-2 orders of magnitude. The first dual-event Bayesian model identified compounds with antitubercular whole-cell activity and low mammalian cell cytotoxicity from a published set of antimalarials. The most potent hit exhibits the in vitro activity and in vitro/in vivo safety profile of a drug lead. These Bayesian models offer significant economies in time and cost to drug discovery. PMID:23521795

  16. Predictive QSAR modeling workflow, model applicability domains, and virtual screening.

    PubMed

    Tropsha, Alexander; Golbraikh, Alexander

    2007-01-01

    Quantitative Structure Activity Relationship (QSAR) modeling has been traditionally applied as an evaluative approach, i.e., with the focus on developing retrospective and explanatory models of existing data. Model extrapolation was considered if only in hypothetical sense in terms of potential modifications of known biologically active chemicals that could improve compounds' activity. This critical review re-examines the strategy and the output of the modern QSAR modeling approaches. We provide examples and arguments suggesting that current methodologies may afford robust and validated models capable of accurate prediction of compound properties for molecules not included in the training sets. We discuss a data-analytical modeling workflow developed in our laboratory that incorporates modules for combinatorial QSAR model development (i.e., using all possible binary combinations of available descriptor sets and statistical data modeling techniques), rigorous model validation, and virtual screening of available chemical databases to identify novel biologically active compounds. Our approach places particular emphasis on model validation as well as the need to define model applicability domains in the chemistry space. We present examples of studies where the application of rigorously validated QSAR models to virtual screening identified computational hits that were confirmed by subsequent experimental investigations. The emerging focus of QSAR modeling on target property forecasting brings it forward as predictive, as opposed to evaluative, modeling approach.

  17. Hierarchical virtual screening approaches in small molecule drug discovery.

    PubMed

    Kumar, Ashutosh; Zhang, Kam Y J

    2015-01-01

    Virtual screening has played a significant role in the discovery of small molecule inhibitors of therapeutic targets in last two decades. Various ligand and structure-based virtual screening approaches are employed to identify small molecule ligands for proteins of interest. These approaches are often combined in either hierarchical or parallel manner to take advantage of the strength and avoid the limitations associated with individual methods. Hierarchical combination of ligand and structure-based virtual screening approaches has received noteworthy success in numerous drug discovery campaigns. In hierarchical virtual screening, several filters using ligand and structure-based approaches are sequentially applied to reduce a large screening library to a number small enough for experimental testing. In this review, we focus on different hierarchical virtual screening strategies and their application in the discovery of small molecule modulators of important drug targets. Several virtual screening studies are discussed to demonstrate the successful application of hierarchical virtual screening in small molecule drug discovery. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Synergism of virtual screening and medicinal chemistry: identification and optimization of allosteric antagonists of metabotropic glutamate receptor 1.

    PubMed

    Noeske, Tobias; Trifanova, Dina; Kauss, Valerjans; Renner, Steffen; Parsons, Christopher G; Schneider, Gisbert; Weil, Tanja

    2009-08-01

    We report the identification of novel potent and selective metabotropic glutamate receptor 1 (mGluR1) antagonists by virtual screening and subsequent hit optimization. For ligand-based virtual screening, molecules were represented by a topological pharmacophore descriptor (CATS-2D) and clustered by a self-organizing map (SOM). The most promising compounds were tested in mGluR1 functional and binding assays. We identified a potent chemotype exhibiting selective antagonistic activity at mGluR1 (functional IC(50)=0.74+/-0.29 microM). Hit optimization yielded lead structure 16 with an affinity of K(i)=0.024+/-0.001 microM and greater than 1000-fold selectivity for mGluR1 versus mGluR5. Homology-based receptor modelling suggests a binding site compatible with previously reported mutation studies. Our study demonstrates the usefulness of ligand-based virtual screening for scaffold-hopping and rapid lead structure identification in early drug discovery projects.

  19. Congestion game scheduling for virtual drug screening optimization

    NASA Astrophysics Data System (ADS)

    Nikitina, Natalia; Ivashko, Evgeny; Tchernykh, Andrei

    2018-02-01

    In virtual drug screening, the chemical diversity of hits is an important factor, along with their predicted activity. Moreover, interim results are of interest for directing the further research, and their diversity is also desirable. In this paper, we consider a problem of obtaining a diverse set of virtual screening hits in a short time. To this end, we propose a mathematical model of task scheduling for virtual drug screening in high-performance computational systems as a congestion game between computational nodes to find the equilibrium solutions for best balancing the number of interim hits with their chemical diversity. The model considers the heterogeneous environment with workload uncertainty, processing time uncertainty, and limited knowledge about the input dataset structure. We perform computational experiments and evaluate the performance of the developed approach considering organic molecules database GDB-9. The used set of molecules is rich enough to demonstrate the feasibility and practicability of proposed solutions. We compare the algorithm with two known heuristics used in practice and observe that game-based scheduling outperforms them by the hit discovery rate and chemical diversity at earlier steps. Based on these results, we use a social utility metric for assessing the efficiency of our equilibrium solutions and show that they reach greatest values.

  20. Quantum probability ranking principle for ligand-based virtual screening.

    PubMed

    Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal

    2017-04-01

    Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.

  1. Quantum probability ranking principle for ligand-based virtual screening

    NASA Astrophysics Data System (ADS)

    Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal

    2017-04-01

    Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.

  2. Virtual screening of integrase inhibitors by large scale binding free energy calculations: the SAMPL4 challenge

    PubMed Central

    Gallicchio, Emilio; Deng, Nanjie; He, Peng; Wickstrom, Lauren; Perryman, Alexander L.; Santiago, Daniel N.; Forli, Stefano; Olson, Arthur J.; Levy, Ronald M.

    2014-01-01

    As part of the SAMPL4 blind challenge, filtered AutoDock Vina ligand docking predictions and large scale binding energy distribution analysis method binding free energy calculations have been applied to the virtual screening of a focused library of candidate binders to the LEDGF site of the HIV integrase protein. The computational protocol leveraged docking and high level atomistic models to improve enrichment. The enrichment factor of our blind predictions ranked best among all of the computational submissions, and second best overall. This work represents to our knowledge the first example of the application of an all-atom physics-based binding free energy model to large scale virtual screening. A total of 285 parallel Hamiltonian replica exchange molecular dynamics absolute protein-ligand binding free energy simulations were conducted starting from docked poses. The setup of the simulations was fully automated, calculations were distributed on multiple computing resources and were completed in a 6-weeks period. The accuracy of the docked poses and the inclusion of intramolecular strain and entropic losses in the binding free energy estimates were the major factors behind the success of the method. Lack of sufficient time and computing resources to investigate additional protonation states of the ligands was a major cause of mispredictions. The experiment demonstrated the applicability of binding free energy modeling to improve hit rates in challenging virtual screening of focused ligand libraries during lead optimization. PMID:24504704

  3. GeauxDock: Accelerating Structure-Based Virtual Screening with Heterogeneous Computing

    PubMed Central

    Fang, Ye; Ding, Yun; Feinstein, Wei P.; Koppelman, David M.; Moreno, Juana; Jarrell, Mark; Ramanujam, J.; Brylinski, Michal

    2016-01-01

    Computational modeling of drug binding to proteins is an integral component of direct drug design. Particularly, structure-based virtual screening is often used to perform large-scale modeling of putative associations between small organic molecules and their pharmacologically relevant protein targets. Because of a large number of drug candidates to be evaluated, an accurate and fast docking engine is a critical element of virtual screening. Consequently, highly optimized docking codes are of paramount importance for the effectiveness of virtual screening methods. In this communication, we describe the implementation, tuning and performance characteristics of GeauxDock, a recently developed molecular docking program. GeauxDock is built upon the Monte Carlo algorithm and features a novel scoring function combining physics-based energy terms with statistical and knowledge-based potentials. Developed specifically for heterogeneous computing platforms, the current version of GeauxDock can be deployed on modern, multi-core Central Processing Units (CPUs) as well as massively parallel accelerators, Intel Xeon Phi and NVIDIA Graphics Processing Unit (GPU). First, we carried out a thorough performance tuning of the high-level framework and the docking kernel to produce a fast serial code, which was then ported to shared-memory multi-core CPUs yielding a near-ideal scaling. Further, using Xeon Phi gives 1.9× performance improvement over a dual 10-core Xeon CPU, whereas the best GPU accelerator, GeForce GTX 980, achieves a speedup as high as 3.5×. On that account, GeauxDock can take advantage of modern heterogeneous architectures to considerably accelerate structure-based virtual screening applications. GeauxDock is open-sourced and publicly available at www.brylinski.org/geauxdock and https://figshare.com/articles/geauxdock_tar_gz/3205249. PMID:27420300

  4. GeauxDock: Accelerating Structure-Based Virtual Screening with Heterogeneous Computing.

    PubMed

    Fang, Ye; Ding, Yun; Feinstein, Wei P; Koppelman, David M; Moreno, Juana; Jarrell, Mark; Ramanujam, J; Brylinski, Michal

    2016-01-01

    Computational modeling of drug binding to proteins is an integral component of direct drug design. Particularly, structure-based virtual screening is often used to perform large-scale modeling of putative associations between small organic molecules and their pharmacologically relevant protein targets. Because of a large number of drug candidates to be evaluated, an accurate and fast docking engine is a critical element of virtual screening. Consequently, highly optimized docking codes are of paramount importance for the effectiveness of virtual screening methods. In this communication, we describe the implementation, tuning and performance characteristics of GeauxDock, a recently developed molecular docking program. GeauxDock is built upon the Monte Carlo algorithm and features a novel scoring function combining physics-based energy terms with statistical and knowledge-based potentials. Developed specifically for heterogeneous computing platforms, the current version of GeauxDock can be deployed on modern, multi-core Central Processing Units (CPUs) as well as massively parallel accelerators, Intel Xeon Phi and NVIDIA Graphics Processing Unit (GPU). First, we carried out a thorough performance tuning of the high-level framework and the docking kernel to produce a fast serial code, which was then ported to shared-memory multi-core CPUs yielding a near-ideal scaling. Further, using Xeon Phi gives 1.9× performance improvement over a dual 10-core Xeon CPU, whereas the best GPU accelerator, GeForce GTX 980, achieves a speedup as high as 3.5×. On that account, GeauxDock can take advantage of modern heterogeneous architectures to considerably accelerate structure-based virtual screening applications. GeauxDock is open-sourced and publicly available at www.brylinski.org/geauxdock and https://figshare.com/articles/geauxdock_tar_gz/3205249.

  5. Virtual screening and pharmacophore design for a novel theoretical inhibitor of macrophage stimulating factor as a metastatic agent.

    PubMed

    Torktaz, Ibrahim; Mohamadhashem, Faezeh; Esmaeili, Abolghasem; Behjati, Mohaddeseh; Sharifzadeh, Sara

    2013-01-01

    Metastasis is a crucial aspect of cancer. Macrophage stimulating protein (MSP) is a single chain protein and can be cleaved by serum proteases. MSP has several roles in metastasis. In this in silico study, MSP as a metastatic agent was considered as a drug target. Crystallographic structure of MSP was retrieved from protein data bank. To find a chemical inhibitor of MSP, a library of KEGG compounds was screened and 1000 shape complemented ligands were retrieved with FindSite algorithm. Molegro Virtual Docker (MVD) software was used for docking simulation of shape complemented ligands against MSP. Moldock score was used as scoring function for virtual screening and potential inhibitors with more negative binding energy were obtained. PLANS scoring function was used for revaluation of virtual screening data. The top found chemical had binding affinity of -183.55 based on MolDock score and equal to -66.733 PLANTs score to MSP structure. Based on pharmacophore model of potential inhibitor, this study suggests that the chemical which was found in this research and its derivate can be used for subsequent laboratory studies.

  6. Virtual Ligand Screening Using PL-PatchSurfer2, a Molecular Surface-Based Protein-Ligand Docking Method.

    PubMed

    Shin, Woong-Hee; Kihara, Daisuke

    2018-01-01

    Virtual screening is a computational technique for predicting a potent binding compound for a receptor protein from a ligand library. It has been a widely used in the drug discovery field to reduce the efforts of medicinal chemists to find hit compounds by experiments.Here, we introduce our novel structure-based virtual screening program, PL-PatchSurfer, which uses molecular surface representation with the three-dimensional Zernike descriptors, which is an effective mathematical representation for identifying physicochemical complementarities between local surfaces of a target protein and a ligand. The advantage of the surface-patch description is its tolerance on a receptor and compound structure variation. PL-PatchSurfer2 achieves higher accuracy on apo form and computationally modeled receptor structures than conventional structure-based virtual screening programs. Thus, PL-PatchSurfer2 opens up an opportunity for targets that do not have their crystal structures. The program is provided as a stand-alone program at http://kiharalab.org/plps2 . We also provide files for two ligand libraries, ChEMBL and ZINC Drug-like.

  7. Pharmacophore Models and Pharmacophore-Based Virtual Screening: Concepts and Applications Exemplified on Hydroxysteroid Dehydrogenases.

    PubMed

    Kaserer, Teresa; Beck, Katharina R; Akram, Muhammad; Odermatt, Alex; Schuster, Daniela

    2015-12-19

    Computational methods are well-established tools in the drug discovery process and can be employed for a variety of tasks. Common applications include lead identification and scaffold hopping, as well as lead optimization by structure-activity relationship analysis and selectivity profiling. In addition, compound-target interactions associated with potentially harmful effects can be identified and investigated. This review focuses on pharmacophore-based virtual screening campaigns specifically addressing the target class of hydroxysteroid dehydrogenases. Many members of this enzyme family are associated with specific pathological conditions, and pharmacological modulation of their activity may represent promising therapeutic strategies. On the other hand, unintended interference with their biological functions, e.g., upon inhibition by xenobiotics, can disrupt steroid hormone-mediated effects, thereby contributing to the development and progression of major diseases. Besides a general introduction to pharmacophore modeling and pharmacophore-based virtual screening, exemplary case studies from the field of short-chain dehydrogenase/reductase (SDR) research are presented. These success stories highlight the suitability of pharmacophore modeling for the various application fields and suggest its application also in futures studies.

  8. Tools for building a comprehensive modeling system for virtual screening under real biological conditions: The Computational Titration algorithm.

    PubMed

    Kellogg, Glen E; Fornabaio, Micaela; Chen, Deliang L; Abraham, Donald J; Spyrakis, Francesca; Cozzini, Pietro; Mozzarelli, Andrea

    2006-05-01

    Computational tools utilizing a unique empirical modeling system based on the hydrophobic effect and the measurement of logP(o/w) (the partition coefficient for solvent transfer between 1-octanol and water) are described. The associated force field, Hydropathic INTeractions (HINT), contains much rich information about non-covalent interactions in the biological environment because of its basis in an experiment that measures interactions in solution. HINT is shown to be the core of an evolving virtual screening system that is capable of taking into account a number of factors often ignored such as entropy, effects of solvent molecules at the active site, and the ionization states of acidic and basic residues and ligand functional groups. The outline of a comprehensive modeling system for virtual screening that incorporates these features is described. In addition, a detailed description of the Computational Titration algorithm is provided. As an example, three complexes of dihydrofolate reductase (DHFR) are analyzed with our system and these results are compared with the experimental free energies of binding.

  9. Dockres: a computer program that analyzes the output of virtual screening of small molecules

    PubMed Central

    2010-01-01

    Background This paper describes a computer program named Dockres that is designed to analyze and summarize results of virtual screening of small molecules. The program is supplemented with utilities that support the screening process. Foremost among these utilities are scripts that run the virtual screening of a chemical library on a large number of processors in parallel. Methods Dockres and some of its supporting utilities are written Fortran-77; other utilities are written as C-shell scripts. They support the parallel execution of the screening. The current implementation of the program handles virtual screening with Autodock-3 and Autodock-4, but can be extended to work with the output of other programs. Results Analysis of virtual screening by Dockres led to both active and selective lead compounds. Conclusions Analysis of virtual screening was facilitated and enhanced by Dockres in both the authors' laboratories as well as laboratories elsewhere. PMID:20205801

  10. The power metric: a new statistically robust enrichment-type metric for virtual screening applications with early recovery capability.

    PubMed

    Lopes, Julio Cesar Dias; Dos Santos, Fábio Mendes; Martins-José, Andrelly; Augustyns, Koen; De Winter, Hans

    2017-01-01

    A new metric for the evaluation of model performance in the field of virtual screening and quantitative structure-activity relationship applications is described. This metric has been termed the power metric and is defined as the fraction of the true positive rate divided by the sum of the true positive and false positive rates, for a given cutoff threshold. The performance of this metric is compared with alternative metrics such as the enrichment factor, the relative enrichment factor, the receiver operating curve enrichment factor, the correct classification rate, Matthews correlation coefficient and Cohen's kappa coefficient. The performance of this new metric is found to be quite robust with respect to variations in the applied cutoff threshold and ratio of the number of active compounds to the total number of compounds, and at the same time being sensitive to variations in model quality. It possesses the correct characteristics for its application in early-recognition virtual screening problems.

  11. Combination of virtual screening protocol by in silico towards the discovery of novel 4-hydroxyphenylpyruvate dioxygenase inhibitors

    NASA Astrophysics Data System (ADS)

    Fu, Ying; Sun, Yi-Na; Yi, Ke-Han; Li, Ming-Qiang; Cao, Hai-Feng; Li, Jia-Zhong; Ye, Fei

    2018-02-01

    4-Hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, HPPD) is a potent new bleaching herbicide target. Therefore, in silico structure-based virtual screening was performed in order to speed up the identification of promising HPPD inhibitors. In this study, an integrated virtual screening protocol by combining 3D-pharmacophore model, molecular docking and molecular dynamics (MD) simulation was established to find novel HPPD inhibitors from four commercial databases. 3D-pharmacophore Hypo1 model was applied to efficiently narrow potential hits. The hit compounds were subsequently submitted to molecular docking studies, showing four compounds as potent inhibitor with the mechanism of the Fe(II) coordination and interaction with Phe360, Phe403 and Phe398. MD result demonstrated that nonpolar term of compound 3881 made great contributions to binding affinities. It showed an IC50 being 2.49 µM against AtHPPD in vitro. The results provided useful information for developing novel HPPD inhibitors, leading to further understanding of the interaction mechanism of HPPD inhibitors.

  12. Discovery of novel inhibitors for DHODH via virtual screening and X-ray crystallographic structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLean, Larry R.; Zhang, Ying; Degnen, William

    2010-10-28

    Amino-benzoic acid derivatives 1-4 were found to be inhibitors for DHODH by virtual screening, biochemical, and X-ray crystallographic studies. X-ray structures showed that 1 and 2 bind to DHODH as predicted by virtual screening, but 3 and 4 were found to be structurally different from the corresponding compounds initially identified by virtual screening.

  13. ILP-2 modeling and virtual screening of an FDA-approved library:a possible anticancer therapy.

    PubMed

    Khalili, Saeed; Mohammadpour, Hemn; Shokrollahi Barough, Mahideh; Kokhaei, Parviz

    2016-06-23

    The members of the inhibitors of apoptosis protein (IAP) family inhibit diverse components of the caspase signaling pathway, notably caspase 3, 7, and 9. ILP-2 (BIRC-8) is the most recently identified member of the IAPs, mainly interacting with caspase 9. This interaction would eventually lead to death resistance in the case of cancerous cells. Therefore, structural modeling of ILP-2 and finding applicable inhibitors of its interaction with caspase 9 are a compelling challenge. Three main protein modeling approaches along with various model refinement measures were harnessed to achieve a reliable 3D model, using state-of-the-art software. Thereafter, the selected model was employed to perform virtual screening of an FDA approved library. A model built by a combinatorial approach (homology and ab initio approaches) was chosen as the best model. Model refinement processes successfully bolstered the model quality. Virtual screening of the compound library introduced several high affinity inhibitor candidates that interact with functional residues of ILP2. Given the 3D structure of the ILP2 molecule, we found promising inhibitory molecules. In addition to high affinity towards the ILP2 molecule, these molecules interact with residues that play pivotal rules in ILP2-caspase interaction. These molecules would inhibit ILP2-caspase interaction and consequently would lead to reactivated cell apoptosis through the caspases pathway.

  14. A review on PARP1 inhibitors: Pharmacophore modeling, virtual and biological screening studies to identify novel PARP1 inhibitors.

    PubMed

    Singh, Sardar Shamshair; Sarma, Jagarlapudi A R P; Narasu, Lakshmi; Dayam, Raveendra; Xu, Shili; Neamati, Nouri

    2014-01-01

    A tremendous research on Poly (ADP-ribose) polymerase (PARP) pertaining to cancer and ischemia is in very rapid progress. PARP's are a specific class of enzymes that repairs the damaged DNA. Recent findings suggest also that PARP-1 is the most abundantly expressed nuclear enzyme which involves in various therapeutic areas like inflammation, stroke, cardiac ischemia, cancer and diabetes. The current review describes the overview on clinical candidates of PARP1 and its current status in clinical trials. This paper also covers identification of potent PARP1 inhibitors using structure and ligand based pharmacophore models. Finally 36 potential hits were identified from the virtual screening of pharmacophore models and screened for PARP1 activity. 15 actives were identified as potent PARP1 inhibitors and further optimization of these analogues are in progress.

  15. A Simple Double-Source Model for Interference of Capillaries

    ERIC Educational Resources Information Center

    Hou, Zhibo; Zhao, Xiaohong; Xiao, Jinghua

    2012-01-01

    A simple but physically intuitive double-source model is proposed to explain the interferogram of a laser-capillary system, where two effective virtual sources are used to describe the rays reflected by and transmitted through the capillary. The locations of the two virtual sources are functions of the observing positions on the target screen. An…

  16. Target specific proteochemometric model development for BACE1 - protein flexibility and structural water are critical in virtual screening.

    PubMed

    Manoharan, Prabu; Chennoju, Kiranmai; Ghoshal, Nanda

    2015-07-01

    BACE1 is an attractive target in Alzheimer's disease (AD) treatment. A rational drug design effort for the inhibition of BACE1 is actively pursued by researchers in both academic and pharmaceutical industries. This continued effort led to the steady accumulation of BACE1 crystal structures, co-complexed with different classes of inhibitors. This wealth of information is used in this study to develop target specific proteochemometric models and these models are exploited for predicting the prospective BACE1 inhibitors. The models developed in this study have performed excellently in predicting the computationally generated poses, separately obtained from single and ensemble docking approaches. The simple protein-ligand contact (SPLC) model outperforms other sophisticated high end models, in virtual screening performance, developed during this study. In an attempt to account for BACE1 protein active site flexibility information in predictive models, we included the change in the area of solvent accessible surface and the change in the volume of solvent accessible surface in our models. The ensemble and single receptor docking results obtained from this study indicate that the structural water mediated interactions improve the virtual screening results. Also, these waters are essential for recapitulating bioactive conformation during docking study. The proteochemometric models developed in this study can be used for the prediction of BACE1 inhibitors, during the early stage of AD drug discovery.

  17. A ranking method for the concurrent learning of compounds with various activity profiles.

    PubMed

    Dörr, Alexander; Rosenbaum, Lars; Zell, Andreas

    2015-01-01

    In this study, we present a SVM-based ranking algorithm for the concurrent learning of compounds with different activity profiles and their varying prioritization. To this end, a specific labeling of each compound was elaborated in order to infer virtual screening models against multiple targets. We compared the method with several state-of-the-art SVM classification techniques that are capable of inferring multi-target screening models on three chemical data sets (cytochrome P450s, dehydrogenases, and a trypsin-like protease data set) containing three different biological targets each. The experiments show that ranking-based algorithms show an increased performance for single- and multi-target virtual screening. Moreover, compounds that do not completely fulfill the desired activity profile are still ranked higher than decoys or compounds with an entirely undesired profile, compared to other multi-target SVM methods. SVM-based ranking methods constitute a valuable approach for virtual screening in multi-target drug design. The utilization of such methods is most helpful when dealing with compounds with various activity profiles and the finding of many ligands with an already perfectly matching activity profile is not to be expected.

  18. Automated recycling of chemistry for virtual screening and library design.

    PubMed

    Vainio, Mikko J; Kogej, Thierry; Raubacher, Florian

    2012-07-23

    An early stage drug discovery project needs to identify a number of chemically diverse and attractive compounds. These hit compounds are typically found through high-throughput screening campaigns. The diversity of the chemical libraries used in screening is therefore important. In this study, we describe a virtual high-throughput screening system called Virtual Library. The system automatically "recycles" validated synthetic protocols and available starting materials to generate a large number of virtual compound libraries, and allows for fast searches in the generated libraries using a 2D fingerprint based screening method. Virtual Library links the returned virtual hit compounds back to experimental protocols to quickly assess the synthetic accessibility of the hits. The system can be used as an idea generator for library design to enrich the screening collection and to explore the structure-activity landscape around a specific active compound.

  19. Identification of novel antitubulin agents by using a virtual screening approach based on a 7-point pharmacophore model of the tubulin colchi-site.

    PubMed

    Massarotti, Alberto; Theeramunkong, Sewan; Mesenzani, Ornella; Caldarelli, Antonio; Genazzani, Armando A; Tron, Gian Cesare

    2011-12-01

    Tubulin inhibition represents an established target in the field of anticancer research, and over the last 20 years, an intensive search for new antimicrotubule agents has occurred. Indeed, in silico models have been presented that might aid the discovery of novel agents. Among these, a 7-point pharmacophore model has been recently proposed. As a formal proof of this model, we carried out a ligand-based virtual screening on the colchicine-binding site. In vitro testing demonstrated that two compounds displayed a cytotoxic profile on neuroblastoma cancer cells (SH-SY5H) and one had an antitubulinic profile. © 2011 John Wiley & Sons A/S.

  20. Exhaustive search and solvated interaction energy (SIE) for virtual screening and affinity prediction

    NASA Astrophysics Data System (ADS)

    Sulea, Traian; Hogues, Hervé; Purisima, Enrico O.

    2012-05-01

    We carried out a prospective evaluation of the utility of the SIE (solvation interaction energy) scoring function for virtual screening and binding affinity prediction. Since experimental structures of the complexes were not provided, this was an exercise in virtual docking as well. We used our exhaustive docking program, Wilma, to provide high-quality poses that were rescored using SIE to provide binding affinity predictions. We also tested the combination of SIE with our latest solvation model, first shell of hydration (FiSH), which captures some of the discrete properties of water within a continuum model. We achieved good enrichment in virtual screening of fragments against trypsin, with an area under the curve of about 0.7 for the receiver operating characteristic curve. Moreover, the early enrichment performance was quite good with 50% of true actives recovered with a 15% false positive rate in a prospective calculation and with a 3% false positive rate in a retrospective application of SIE with FiSH. Binding affinity predictions for both trypsin and host-guest complexes were generally within 2 kcal/mol of the experimental values. However, the rank ordering of affinities differing by 2 kcal/mol or less was not well predicted. On the other hand, it was encouraging that the incorporation of a more sophisticated solvation model into SIE resulted in better discrimination of true binders from binders. This suggests that the inclusion of proper Physics in our models is a fruitful strategy for improving the reliability of our binding affinity predictions.

  1. Virtual Screening and Pharmacophore Design for a Novel Theoretical Inhibitor of Macrophage Stimulating Factor as a Metastatic Agent

    PubMed Central

    Torktaz, Ibrahim; Mohamadhashem, Faezeh; Esmaeili, Abolghasem; Behjati, Mohaddeseh; Sharifzadeh, Sara

    2013-01-01

    Introduction: Metastasis is a crucial aspect of cancer. Macrophage stimulating protein (MSP) is a single chain protein and can be cleaved by serum proteases. MSP has several roles in metastasis. In this in silico study, MSP as a metastatic agent was considered as a drug target. Methods: Crystallographic structure of MSP was retrieved from protein data bank. To find a chemical inhibitor of MSP, a library of KEGG compounds was screened and 1000 shape complemented ligands were retrieved with FindSite algorithm. Molegro Virtual Docker (MVD) software was used for docking simulation of shape complemented ligands against MSP. Moldock score was used as scoring function for virtual screening and potential inhibitors with more negative binding energy were obtained. PLANS scoring function was used for revaluation of virtual screening data. Results: The top found chemical had binding affinity of -183.55 based on MolDock score and equal to -66.733 PLANTs score to MSP structure. Conclusion: Based on pharmacophore model of potential inhibitor, this study suggests that the chemical which was found in this research and its derivate can be used for subsequent laboratory studies. PMID:24163807

  2. Hierarchical virtual screening of the dual MMP-2/HDAC-6 inhibitors from natural products based on pharmacophore models and molecular docking.

    PubMed

    Wang, Yijun; Yang, Limei; Hou, Jiaying; Zou, Qing; Gao, Qi; Yao, Wenhui; Yao, Qizheng; Zhang, Ji

    2018-02-12

    The dual-target inhibitors tend to improve the response rate in treating tumors, comparing with the single-target inhibitors. Matrix metalloproteinase-2 (MMP-2) and histone deacetylase-6 (HDAC-6) are attractive targets for cancer therapy. In this study, the hierarchical virtual screening of dual MMP-2/HDAC-6 inhibitors from natural products is investigated. The pharmacophore model of MMP-2 inhibitors is built based on ligands, but the pharmacophore model of HDAC-6 inhibitors is built based on the experimental crystal structures of multiple receptor-ligand complexes. The reliability of these two pharmacophore models is validated subsequently. The hierarchical virtual screening, combining these two different pharmacophore models of MMP-2 and HDAC-6 inhibitors with molecular docking, is carried out to identify the dual MMP-2/HDAC-6 inhibitors from a database of natural products. The four potential dual MMP-2/HDAC-6 inhibitors of natural products, STOCK1 N-46177, STOCK1 N-52245, STOCK1 N-55477, and STOCK1 N-69706, are found. The studies of binding modes show that the screened four natural products can simultaneously well bind with the MMP-2 and HDAC-6 active sites by different kinds of interactions, to inhibit the MMP-2 and HDAC-6 activities. In addition, the ADMET properties of screened four natural products are assessed. These found dual MMP-2/HDAC-6 inhibitors of natural products could serve as the lead compounds for designing the new dual MMP-2/HDAC-6 inhibitors having higher biological activities by carrying out structural modifications and optimizations in the future studies.

  3. Knowledge-driven lead discovery.

    PubMed

    Pirard, Bernard

    2005-11-01

    Virtual screening encompasses several computational approaches which have proven valuable for identifying novel leads. These approaches rely on available information. Herein, we review recent successful applications of virtual screening. The extension of virtual screening methodologies to target families is also briefly discussed.

  4. Prospective performance evaluation of selected common virtual screening tools. Case study: Cyclooxygenase (COX) 1 and 2.

    PubMed

    Kaserer, Teresa; Temml, Veronika; Kutil, Zsofia; Vanek, Tomas; Landa, Premysl; Schuster, Daniela

    2015-01-01

    Computational methods can be applied in drug development for the identification of novel lead candidates, but also for the prediction of pharmacokinetic properties and potential adverse effects, thereby aiding to prioritize and identify the most promising compounds. In principle, several techniques are available for this purpose, however, which one is the most suitable for a specific research objective still requires further investigation. Within this study, the performance of several programs, representing common virtual screening methods, was compared in a prospective manner. First, we selected top-ranked virtual screening hits from the three methods pharmacophore modeling, shape-based modeling, and docking. For comparison, these hits were then additionally predicted by external pharmacophore- and 2D similarity-based bioactivity profiling tools. Subsequently, the biological activities of the selected hits were assessed in vitro, which allowed for evaluating and comparing the prospective performance of the applied tools. Although all methods performed well, considerable differences were observed concerning hit rates, true positive and true negative hits, and hitlist composition. Our results suggest that a rational selection of the applied method represents a powerful strategy to maximize the success of a research project, tightly linked to its aims. We employed cyclooxygenase as application example, however, the focus of this study lied on highlighting the differences in the virtual screening tool performances and not in the identification of novel COX-inhibitors. Copyright © 2015 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  5. Docking and Virtual Screening Strategies for GPCR Drug Discovery.

    PubMed

    Beuming, Thijs; Lenselink, Bart; Pala, Daniele; McRobb, Fiona; Repasky, Matt; Sherman, Woody

    2015-01-01

    Progress in structure determination of G protein-coupled receptors (GPCRs) has made it possible to apply structure-based drug design (SBDD) methods to this pharmaceutically important target class. The quality of GPCR structures available for SBDD projects fall on a spectrum ranging from high resolution crystal structures (<2 Å), where all water molecules in the binding pocket are resolved, to lower resolution (>3 Å) where some protein residues are not resolved, and finally to homology models that are built using distantly related templates. Each GPCR project involves a distinct set of opportunities and challenges, and requires different approaches to model the interaction between the receptor and the ligands. In this review we will discuss docking and virtual screening to GPCRs, and highlight several refinement and post-processing steps that can be used to improve the accuracy of these calculations. Several examples are discussed that illustrate specific steps that can be taken to improve upon the docking and virtual screening accuracy. While GPCRs are a unique target class, many of the methods and strategies outlined in this review are general and therefore applicable to other protein families.

  6. Discovery of nonsteroidal 17beta-hydroxysteroid dehydrogenase 1 inhibitors by pharmacophore-based screening of virtual compound libraries.

    PubMed

    Schuster, Daniela; Nashev, Lyubomir G; Kirchmair, Johannes; Laggner, Christian; Wolber, Gerhard; Langer, Thierry; Odermatt, Alex

    2008-07-24

    17Beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) plays a pivotal role in the local synthesis of the most potent estrogen estradiol. Its expression is a prognostic marker for the outcome of patients with breast cancer and inhibition of 17beta-HSD1 is currently under consideration for breast cancer prevention and treatment. We aimed to identify nonsteroidal 17beta-HSD1 inhibitor scaffolds by virtual screening with pharmacophore models built from crystal structures containing steroidal compounds. The most promising model was validated by comparing predicted and experimentally determined inhibitory activities of several flavonoids. Subsequently, a virtual library of nonsteroidal compounds was screened against the 3D pharmacophore. Analysis of 14 selected compounds yielded four that inhibited the activity of human 17beta-HSD1 (IC 50 below 50 microM). Specificity assessment of identified 17beta-HSD1 inhibitors emphasized the importance of including related short-chain dehydrogenase/reductase (SDR) members to analyze off-target effects. Compound 29 displayed at least 10-fold selectivity over the related SDR enzymes tested.

  7. Discovery of novel mGluR1 antagonists: a multistep virtual screening approach based on an SVM model and a pharmacophore hypothesis significantly increases the hit rate and enrichment factor.

    PubMed

    Li, Guo-Bo; Yang, Ling-Ling; Feng, Shan; Zhou, Jian-Ping; Huang, Qi; Xie, Huan-Zhang; Li, Lin-Li; Yang, Sheng-Yong

    2011-03-15

    Development of glutamate non-competitive antagonists of mGluR1 (Metabotropic glutamate receptor subtype 1) has increasingly attracted much attention in recent years due to their potential therapeutic application for various nervous disorders. Since there is no crystal structure reported for mGluR1, ligand-based virtual screening (VS) methods, typically pharmacophore-based VS (PB-VS), are often used for the discovery of mGluR1 antagonists. Nevertheless, PB-VS usually suffers a lower hit rate and enrichment factor. In this investigation, we established a multistep ligand-based VS approach that is based on a support vector machine (SVM) classification model and a pharmacophore model. Performance evaluation of these methods in virtual screening against a large independent test set, M-MDDR, show that the multistep VS approach significantly increases the hit rate and enrichment factor compared with the individual SB-VS and PB-VS methods. The multistep VS approach was then used to screen several large chemical libraries including PubChem, Specs, and Enamine. Finally a total of 20 compounds were selected from the top ranking compounds, and shifted to the subsequent in vitro and in vivo studies, which results will be reported in the near future. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Identification of DNA primase inhibitors via a combined fragment-based and virtual screening

    NASA Astrophysics Data System (ADS)

    Ilic, Stefan; Akabayov, Sabine R.; Arthanari, Haribabu; Wagner, Gerhard; Richardson, Charles C.; Akabayov, Barak

    2016-11-01

    The structural differences between bacterial and human primases render the former an excellent target for drug design. Here we describe a technique for selecting small molecule inhibitors of the activity of T7 DNA primase, an ideal model for bacterial primases due to their common structural and functional features. Using NMR screening, fragment molecules that bind T7 primase were identified and then exploited in virtual filtration to select larger molecules from the ZINC database. The molecules were docked to the primase active site using the available primase crystal structure and ranked based on their predicted binding energies to identify the best candidates for functional and structural investigations. Biochemical assays revealed that some of the molecules inhibit T7 primase-dependent DNA replication. The binding mechanism was delineated via NMR spectroscopy. Our approach, which combines fragment based and virtual screening, is rapid and cost effective and can be applied to other targets.

  9. Pharmacophore-Map-Pick: A Method to Generate Pharmacophore Models for All Human GPCRs.

    PubMed

    Dai, Shao-Xing; Li, Gong-Hua; Gao, Yue-Dong; Huang, Jing-Fei

    2016-02-01

    GPCR-based drug discovery is hindered by a lack of effective screening methods for most GPCRs that have neither ligands nor high-quality structures. With the aim to identify lead molecules for these GPCRs, we developed a new method called Pharmacophore-Map-Pick to generate pharmacophore models for all human GPCRs. The model of ADRB2 generated using this method not only predicts the binding mode of ADRB2-ligands correctly but also performs well in virtual screening. Findings also demonstrate that this method is powerful for generating high-quality pharmacophore models. The average enrichment for the pharmacophore models of the 15 targets in different GPCR families reached 15-fold at 0.5 % false-positive rate. Therefore, the pharmacophore models can be applied in virtual screening directly with no requirement for any ligand information or shape constraints. A total of 2386 pharmacophore models for 819 different GPCRs (99 % coverage (819/825)) were generated and are available at http://bsb.kiz.ac.cn/GPCRPMD. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Shape-Based Virtual Screening with Volumetric Aligned Molecular Shapes

    PubMed Central

    Koes, David Ryan; Camacho, Carlos J.

    2014-01-01

    Shape-based virtual screening is an established and effective method for identifying small molecules that are similar in shape and function to a reference ligand. We describe a new method of shape-based virtual screening, volumetric aligned molecular shapes (VAMS). VAMS uses efficient data structures to encode and search molecular shapes. We demonstrate that VAMS is an effective method for shape-based virtual screening and that it can be successfully used as a pre-filter to accelerate more computationally demanding search algorithms. Unique to VAMS is a novel minimum/maximum shape constraint query for precisely specifying the desired molecular shape. Shape constraint searches in VAMS are particularly efficient and millions of shapes can be searched in a fraction of a second. We compare the performance of VAMS with two other shape-based virtual screening algorithms a benchmark of 102 protein targets consisting of more than 32 million molecular shapes and find that VAMS provides a competitive trade-off between run-time performance and virtual screening performance. PMID:25049193

  11. A desirability-based multi objective approach for the virtual screening discovery of broad-spectrum anti-gastric cancer agents

    PubMed Central

    Sánchez-Rodríguez, Aminael; Tejera, Eduardo; Cruz-Monteagudo, Maykel; Borges, Fernanda; Cordeiro, M. Natália D. S.; Le-Thi-Thu, Huong; Pham-The, Hai

    2018-01-01

    Gastric cancer is the third leading cause of cancer-related mortality worldwide and despite advances in prevention, diagnosis and therapy, it is still regarded as a global health concern. The efficacy of the therapies for gastric cancer is limited by a poor response to currently available therapeutic regimens. One of the reasons that may explain these poor clinical outcomes is the highly heterogeneous nature of this disease. In this sense, it is essential to discover new molecular agents capable of targeting various gastric cancer subtypes simultaneously. Here, we present a multi-objective approach for the ligand-based virtual screening discovery of chemical compounds simultaneously active against the gastric cancer cell lines AGS, NCI-N87 and SNU-1. The proposed approach relays in a novel methodology based on the development of ensemble models for the bioactivity prediction against each individual gastric cancer cell line. The methodology includes the aggregation of one ensemble per cell line using a desirability-based algorithm into virtual screening protocols. Our research leads to the proposal of a multi-targeted virtual screening protocol able to achieve high enrichment of known chemicals with anti-gastric cancer activity. Specifically, our results indicate that, using the proposed protocol, it is possible to retrieve almost 20 more times multi-targeted compounds in the first 1% of the ranked list than what is expected from a uniform distribution of the active ones in the virtual screening database. More importantly, the proposed protocol attains an outstanding initial enrichment of known multi-targeted anti-gastric cancer agents. PMID:29420638

  12. [Chemical databases and virtual screening].

    PubMed

    Rognan, Didier; Bonnet, Pascal

    2014-12-01

    A prerequisite to any virtual screening is the definition of compound libraries to be screened. As we describe here, various sources are available. The selection of the proper library is usually project-dependent but at least as important as the screening method itself. This review details the main compound libraries that are available for virtual screening and guide the reader to the best possible selection according to its needs. © 2014 médecine/sciences – Inserm.

  13. 3D Pharmacophore-Based Virtual Screening and Docking Approaches toward the Discovery of Novel HPPD Inhibitors.

    PubMed

    Fu, Ying; Sun, Yi-Na; Yi, Ke-Han; Li, Ming-Qiang; Cao, Hai-Feng; Li, Jia-Zhong; Ye, Fei

    2017-06-09

    p -Hydroxyphenylpyruvate dioxygenase (HPPD) is not only the useful molecular target in treating life-threatening tyrosinemia type I, but also an important target for chemical herbicides. A combined in silico structure-based pharmacophore and molecular docking-based virtual screening were performed to identify novel potential HPPD inhibitors. The complex-based pharmacophore model (CBP) with 0.721 of ROC used for screening compounds showed remarkable ability to retrieve known active ligands from among decoy molecules. The ChemDiv database was screened using CBP-Hypo2 as a 3D query, and the best-fit hits subjected to molecular docking with two methods of LibDock and CDOCKER in Accelrys Discovery Studio 2.5 (DS 2.5) to discern interactions with key residues at the active site of HPPD. Four compounds with top rankings in the HipHop model and well-known binding model were finally chosen as lead compounds with potential inhibitory effects on the active site of target. The results provided powerful insight into the development of novel HPPD inhibitors herbicides using computational techniques.

  14. Simultaneous virtual prediction of anti-Escherichia coli activities and ADMET profiles: A chemoinformatic complementary approach for high-throughput screening.

    PubMed

    Speck-Planche, Alejandro; Cordeiro, M N D S

    2014-02-10

    Escherichia coli remains one of the principal pathogens that cause nosocomial infections, medical conditions that are increasingly common in healthcare facilities. E. coli is intrinsically resistant to many antibiotics, and multidrug-resistant strains have emerged recently. Chemoinformatics has been a great ally of experimental methodologies such as high-throughput screening, playing an important role in the discovery of effective antibacterial agents. However, there is no approach that can design safer anti-E. coli agents, because of the multifactorial nature and complexity of bacterial diseases and the lack of desirable ADMET (absorption, distribution, metabolism, elimination, and toxicity) profiles as a major cause of disapproval of drugs. In this work, we introduce the first multitasking model based on quantitative-structure biological effect relationships (mtk-QSBER) for simultaneous virtual prediction of anti-E. coli activities and ADMET properties of drugs and/or chemicals under many experimental conditions. The mtk-QSBER model was developed from a large and heterogeneous data set of more than 37800 cases, exhibiting overall accuracies of >95% in both training and prediction (validation) sets. The utility of our mtk-QSBER model was demonstrated by performing virtual prediction of properties for the investigational drug avarofloxacin (AVX) under 260 different experimental conditions. Results converged with the experimental evidence, confirming the remarkable anti-E. coli activities and safety of AVX. Predictions also showed that our mtk-QSBER model can be a promising computational tool for virtual screening of desirable anti-E. coli agents, and this chemoinformatic approach could be extended to the search for safer drugs with defined pharmacological activities.

  15. Design checkpoint kinase 2 inhibitors by pharmacophore modeling and virtual screening techniques.

    PubMed

    Wang, Yen-Ling; Lin, Chun-Yuan; Shih, Kuei-Chung; Huang, Jui-Wen; Tang, Chuan-Yi

    2013-12-01

    Damage to DNA is caused by ionizing radiation, genotoxic chemicals or collapsed replication forks. When DNA is damaged or cells fail to respond, a mutation that is associated with breast or ovarian cancer may occur. Mammalian cells control and stabilize the genome using a cell cycle checkpoint to prevent damage to DNA or to repair damaged DNA. Checkpoint kinase 2 (Chk2) is one of the important kinases, which strongly affects DNA-damage and plays an important role in the response to the breakage of DNA double-strands and related lesions. Therefore, this study concerns Chk2. Its purpose is to find potential inhibitors using the pharmacophore hypotheses (PhModels) and virtual screening techniques. PhModels can identify inhibitors with high biological activities and virtual screening techniques are used to screen the database of the National Cancer Institute (NCI) to retrieve compounds that exhibit all of the pharmacophoric features of potential inhibitors with high interaction energy. Ten PhModels were generated using the HypoGen best algorithm. The established PhModel, Hypo01, was evaluated by performing a cost function analysis of its correlation coefficient (r), root mean square deviation (RMSD), cost difference, and configuration cost, with the values 0.955, 1.28, 192.51, and 16.07, respectively. The result of Fischer's cross-validation test for the Hypo01 model yielded a 95% confidence level, and the correlation coefficient of the testing set (rtest) had a best value of 0.81. The potential inhibitors were then chosen from the NCI database by Hypo01 model screening and molecular docking using the cdocker docking program. Finally, the selected compounds exhibited the identified pharmacophoric features and had a high interaction energy between the ligand and the receptor. Eighty-three potential inhibitors for Chk2 are retrieved for further study. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Identification of critical chemical features for Aurora kinase-B inhibitors using Hip-Hop, virtual screening and molecular docking

    NASA Astrophysics Data System (ADS)

    Sakkiah, Sugunadevi; Thangapandian, Sundarapandian; John, Shalini; Lee, Keun Woo

    2011-01-01

    This study was performed to find the selective chemical features for Aurora kinase-B inhibitors using the potent methods like Hip-Hop, virtual screening, homology modeling, molecular dynamics and docking. The best hypothesis, Hypo1 was validated toward a wide range of test set containing the selective inhibitors of Aurora kinase-B. Homology modeling and molecular dynamics studies were carried out to perform the molecular docking studies. The best hypothesis Hypo1 was used as a 3D query to screen the chemical databases. The screened molecules from the databases were sorted based on ADME and drug like properties. The selective hit compounds were docked and the hydrogen bond interactions with the critical amino acids present in Aurora kinase-B were compared with the chemical features present in the Hypo1. Finally, we suggest that the chemical features present in the Hypo1 are vital for a molecule to inhibit the Aurora kinase-B activity.

  17. Role of Chemical Reactivity and Transition State Modeling for Virtual Screening.

    PubMed

    Karthikeyan, Muthukumarasamy; Vyas, Renu; Tambe, Sanjeev S; Radhamohan, Deepthi; Kulkarni, Bhaskar D

    2015-01-01

    Every drug discovery research program involves synthesis of a novel and potential drug molecule utilizing atom efficient, economical and environment friendly synthetic strategies. The current work focuses on the role of the reactivity based fingerprints of compounds as filters for virtual screening using a tool ChemScore. A reactant-like (RLS) and a product- like (PLS) score can be predicted for a given compound using the binary fingerprints derived from the numerous known organic reactions which capture the molecule-molecule interactions in the form of addition, substitution, rearrangement, elimination and isomerization reactions. The reaction fingerprints were applied to large databases in biology and chemistry, namely ChEMBL, KEGG, HMDB, DSSTox, and the Drug Bank database. A large network of 1113 synthetic reactions was constructed to visualize and ascertain the reactant product mappings in the chemical reaction space. The cumulative reaction fingerprints were computed for 4000 molecules belonging to 29 therapeutic classes of compounds, and these were found capable of discriminating between the cognition disorder related and anti-allergy compounds with reasonable accuracy of 75% and AUC 0.8. In this study, the transition state based fingerprints were also developed and used effectively for virtual screening in drug related databases. The methodology presented here provides an efficient handle for the rapid scoring of molecular libraries for virtual screening.

  18. Building a virtual ligand screening pipeline using free software: a survey.

    PubMed

    Glaab, Enrico

    2016-03-01

    Virtual screening, the search for bioactive compounds via computational methods, provides a wide range of opportunities to speed up drug development and reduce the associated risks and costs. While virtual screening is already a standard practice in pharmaceutical companies, its applications in preclinical academic research still remain under-exploited, in spite of an increasing availability of dedicated free databases and software tools. In this survey, an overview of recent developments in this field is presented, focusing on free software and data repositories for screening as alternatives to their commercial counterparts, and outlining how available resources can be interlinked into a comprehensive virtual screening pipeline using typical academic computing facilities. Finally, to facilitate the set-up of corresponding pipelines, a downloadable software system is provided, using platform virtualization to integrate pre-installed screening tools and scripts for reproducible application across different operating systems. © The Author 2015. Published by Oxford University Press.

  19. Building a virtual ligand screening pipeline using free software: a survey

    PubMed Central

    2016-01-01

    Virtual screening, the search for bioactive compounds via computational methods, provides a wide range of opportunities to speed up drug development and reduce the associated risks and costs. While virtual screening is already a standard practice in pharmaceutical companies, its applications in preclinical academic research still remain under-exploited, in spite of an increasing availability of dedicated free databases and software tools. In this survey, an overview of recent developments in this field is presented, focusing on free software and data repositories for screening as alternatives to their commercial counterparts, and outlining how available resources can be interlinked into a comprehensive virtual screening pipeline using typical academic computing facilities. Finally, to facilitate the set-up of corresponding pipelines, a downloadable software system is provided, using platform virtualization to integrate pre-installed screening tools and scripts for reproducible application across different operating systems. PMID:26094053

  20. Structure Based Virtual Screening Studies to Identify Novel Potential Compounds for GPR142 and Their Relative Dynamic Analysis for Study of Type 2 Diabetes

    NASA Astrophysics Data System (ADS)

    Kaushik, Aman C.; Kumar, Sanjay; Wei, Dong Q.; Sahi, Shakti

    2018-02-01

    GPR142 (G protein receptor 142) is a novel orphan GPCR (G protein coupled receptor) belonging to ‘Class A’ of GPCR family and expressed in beta cells of pancreas. In this study, we reported the structure based virtual screening to identify the hit compounds which can be developed as leads for potential agonists. The results were validated through induced fit docking, pharmacophore modeling and system biology approaches. Since, there is no solved crystal structure of GPR142, we attempted to predict the 3D structure followed by validation and then identification of active site using threading and ab initio methods. Also, structure based virtual screening was performed against a total of 1171519 compounds from different libraries and only top 20 best hit compounds were screened and analyzed. Moreover, the biochemical pathway of GPR142 complex with screened compound2 was also designed and compared with experimental data. Interestingly, compound2 showed an increase in insulin production via Gq mediated signaling pathway suggesting the possible role of novel GPR142 agonists in therapy against type 2 diabetes.

  1. Conformation guides molecular efficacy in docking screens of activated β-2 adrenergic G protein coupled receptor.

    PubMed

    Weiss, Dahlia R; Ahn, SeungKirl; Sassano, Maria F; Kleist, Andrew; Zhu, Xiao; Strachan, Ryan; Roth, Bryan L; Lefkowitz, Robert J; Shoichet, Brian K

    2013-05-17

    A prospective, large library virtual screen against an activated β2-adrenergic receptor (β2AR) structure returned potent agonists to the exclusion of inverse-agonists, providing the first complement to the previous virtual screening campaigns against inverse-agonist-bound G protein coupled receptor (GPCR) structures, which predicted only inverse-agonists. In addition, two hits recapitulated the signaling profile of the co-crystal ligand with respect to the G protein and arrestin mediated signaling. This functional fidelity has important implications in drug design, as the ability to predict ligands with predefined signaling properties is highly desirable. However, the agonist-bound state provides an uncertain template for modeling the activated conformation of other GPCRs, as a dopamine D2 receptor (DRD2) activated model templated on the activated β2AR structure returned few hits of only marginal potency.

  2. Pharmacophore modeling, virtual screening and molecular docking of ATPase inhibitors of HSP70.

    PubMed

    Sangeetha, K; Sasikala, R P; Meena, K S

    2017-10-01

    Heat shock protein 70 is an effective anticancer target as it influences many signaling pathways. Hence the study investigated the important pharmacophore feature required for ATPase inhibitors of HSP70 by generating a ligand based pharmacophore model followed by virtual based screening and subsequent validation by molecular docking in Discovery studio V4.0. The most extrapolative pharmacophore model (hypotheses 8) consisted of four hydrogen bond acceptors. Further validation by external test set prediction identified 200 hits from Mini Maybridge, Drug Diverse, SCPDB compounds and Phytochemicals. Consequently, the screened compounds were refined by rule of five, ADMET and molecular docking to retain the best competitive hits. Finally Phytochemical compounds Muricatetrocin B, Diacetylphiladelphicalactone C, Eleutheroside B and 5-(3-{[1-(benzylsulfonyl)piperidin-4-yl]amino}phenyl)- 4-bromo-3-(carboxymethoxy)thiophene-2-carboxylic acid were obtained as leads to inhibit the ATPase activity of HSP70 in our findings and thus can be proposed for further in vitro and in vivo evaluation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Human responses to augmented virtual scaffolding models.

    PubMed

    Hsiao, Hongwei; Simeonov, Peter; Dotson, Brian; Ammons, Douglas; Kau, Tsui-Ying; Chiou, Sharon

    2005-08-15

    This study investigated the effect of adding real planks, in virtual scaffolding models of elevation, on human performance in a surround-screen virtual reality (SSVR) system. Twenty-four construction workers and 24 inexperienced controls performed walking tasks on real and virtual planks at three virtual heights (0, 6 m, 12 m) and two scaffolding-platform-width conditions (30, 60 cm). Gait patterns, walking instability measurements and cardiovascular reactivity were assessed. The results showed differences in human responses to real vs. virtual planks in walking patterns, instability score and heart-rate inter-beat intervals; it appeared that adding real planks in the SSVR virtual scaffolding model enhanced the quality of SSVR as a human - environment interface research tool. In addition, there were significant differences in performance between construction workers and the control group. The inexperienced participants were more unstable as compared to construction workers. Both groups increased their stride length with repetitions of the task, indicating a possibly confidence- or habit-related learning effect. The practical implications of this study are in the adoption of augmented virtual models of elevated construction environments for injury prevention research, and the development of programme for balance-control training to reduce the risk of falls at elevation before workers enter a construction job.

  4. Molecular modeling, simulation and virtual screening of MurD ligase protein from Salmonella typhimurium LT2.

    PubMed

    Samal, Himanshu Bhusan; Das, Jugal Kishore; Mahapatra, Rajani Kanta; Suar, Mrutyunjay

    2015-01-01

    The Mur enzymes of the peptidoglycan biosynthesis pathway constitute ideal targets for the design of new classes of antimicrobial inhibitors in Gram-negative bacteria. We built a homology model of MurD of Salmonella typhimurium LT2 using MODELLER (9v12) software. 'The homology model was subjected to energy minimization by molecular dynamics (MD) simulation study with GROMACS software for a simulation time of 20 ns in water environment. The model was subjected for virtual screening study from the Zinc Database using Dockblaster software. Inhibition assay for the best inhibitor, 3-(amino methyl)-n-(4-methoxyphenyl) aniline, by flow cytometric analysis revealed the effective inhibition of peptidoglycan biosynthesis. Results from this study provide new insights for the molecular understanding and development of new antibacterial drugs against the pathogen. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Ligand-Based Pharmacophore Modeling and Virtual Screening for the Discovery of Novel 17β-Hydroxysteroid Dehydrogenase 2 Inhibitors

    PubMed Central

    2014-01-01

    17β-Hydroxysteroid dehydrogenase 2 (17β-HSD2) catalyzes the inactivation of estradiol into estrone. This enzyme is expressed only in a few tissues, and therefore its inhibition is considered as a treatment option for osteoporosis to ameliorate estrogen deficiency. In this study, ligand-based pharmacophore models for 17β-HSD2 inhibitors were constructed and employed for virtual screening. From the virtual screening hits, 29 substances were evaluated in vitro for 17β-HSD2 inhibition. Seven compounds inhibited 17β-HSD2 with low micromolar IC50 values. To investigate structure–activity relationships (SAR), 30 more derivatives of the original hits were tested. The three most potent hits, 12, 22, and 15, had IC50 values of 240 nM, 1 μM, and 1.5 μM, respectively. All but 1 of the 13 identified inhibitors were selective over 17β-HSD1, the enzyme catalyzing conversion of estrone into estradiol. Three of the new, small, synthetic 17β-HSD2 inhibitors showed acceptable selectivity over other related HSDs, and six of them did not affect other HSDs. PMID:24960438

  6. Enhancing the Sensitivity of Pharmacophore-Based Virtual Screening by Incorporating Customized ZBG Features: A Case Study Using Histone Deacetylase 8.

    PubMed

    Hou, Xuben; Du, Jintong; Liu, Renshuai; Zhou, Yi; Li, Minyong; Xu, Wenfang; Fang, Hao

    2015-04-27

    As key regulators of epigenetic regulation, human histone deacetylases (HDACs) have been identified as drug targets for the treatment of several cancers. The proper recognition of zinc-binding groups (ZBGs) will help improve the accuracy of virtual screening for novel HDAC inhibitors. Here, we developed a high-specificity ZBG-based pharmacophore model for HDAC8 inhibitors by incorporating customized ZBG features. Subsequently, pharmacophore-based virtual screening led to the discovery of three novel HDAC8 inhibitors with low micromole IC50 values (1.8-1.9 μM). Further studies demonstrated that compound H8-A5 was selective for HDAC8 over HDAC 1/4 and showed antiproliferation activity in MDA-MB-231 cancer cells. Molecular docking and molecular dynamic studies suggested a possible binding mode for H8-A5, which provides a good starting point for the development of HDAC8 inhibitors in cancer treatment.

  7. MOLA: a bootable, self-configuring system for virtual screening using AutoDock4/Vina on computer clusters.

    PubMed

    Abreu, Rui Mv; Froufe, Hugo Jc; Queiroz, Maria João Rp; Ferreira, Isabel Cfr

    2010-10-28

    Virtual screening of small molecules using molecular docking has become an important tool in drug discovery. However, large scale virtual screening is time demanding and usually requires dedicated computer clusters. There are a number of software tools that perform virtual screening using AutoDock4 but they require access to dedicated Linux computer clusters. Also no software is available for performing virtual screening with Vina using computer clusters. In this paper we present MOLA, an easy-to-use graphical user interface tool that automates parallel virtual screening using AutoDock4 and/or Vina in bootable non-dedicated computer clusters. MOLA automates several tasks including: ligand preparation, parallel AutoDock4/Vina jobs distribution and result analysis. When the virtual screening project finishes, an open-office spreadsheet file opens with the ligands ranked by binding energy and distance to the active site. All results files can automatically be recorded on an USB-flash drive or on the hard-disk drive using VirtualBox. MOLA works inside a customized Live CD GNU/Linux operating system, developed by us, that bypass the original operating system installed on the computers used in the cluster. This operating system boots from a CD on the master node and then clusters other computers as slave nodes via ethernet connections. MOLA is an ideal virtual screening tool for non-experienced users, with a limited number of multi-platform heterogeneous computers available and no access to dedicated Linux computer clusters. When a virtual screening project finishes, the computers can just be restarted to their original operating system. The originality of MOLA lies on the fact that, any platform-independent computer available can he added to the cluster, without ever using the computer hard-disk drive and without interfering with the installed operating system. With a cluster of 10 processors, and a potential maximum speed-up of 10x, the parallel algorithm of MOLA performed with a speed-up of 8,64× using AutoDock4 and 8,60× using Vina.

  8. Trainable structure-activity relationship model for virtual screening of CYP3A4 inhibition.

    PubMed

    Didziapetris, Remigijus; Dapkunas, Justas; Sazonovas, Andrius; Japertas, Pranas

    2010-11-01

    A new structure-activity relationship model predicting the probability for a compound to inhibit human cytochrome P450 3A4 has been developed using data for >800 compounds from various literature sources and tested on PubChem screening data. Novel GALAS (Global, Adjusted Locally According to Similarity) modeling methodology has been used, which is a combination of baseline global QSAR model and local similarity based corrections. GALAS modeling method allows forecasting the reliability of prediction thus defining the model applicability domain. For compounds within this domain the statistical results of the final model approach the data consistency between experimental data from literature and PubChem datasets with the overall accuracy of 89%. However, the original model is applicable only for less than a half of PubChem database. Since the similarity correction procedure of GALAS modeling method allows straightforward model training, the possibility to expand the applicability domain has been investigated. Experimental data from PubChem dataset served as an example of in-house high-throughput screening data. The model successfully adapted itself to both data classified using the same and different IC₅₀ threshold compared with the training set. In addition, adjustment of the CYP3A4 inhibition model to compounds with a novel chemical scaffold has been demonstrated. The reported GALAS model is proposed as a useful tool for virtual screening of compounds for possible drug-drug interactions even prior to the actual synthesis.

  9. Performance evaluation of structure based and ligand based virtual screening methods on ten selected anti-cancer targets.

    PubMed

    Ramasamy, Thilagavathi; Selvam, Chelliah

    2015-10-15

    Virtual screening has become an important tool in drug discovery process. Structure based and ligand based approaches are generally used in virtual screening process. To date, several benchmark sets for evaluating the performance of the virtual screening tool are available. In this study, our aim is to compare the performance of both structure based and ligand based virtual screening methods. Ten anti-cancer targets and their corresponding benchmark sets from 'Demanding Evaluation Kits for Objective In silico Screening' (DEKOIS) library were selected. X-ray crystal structures of protein-ligand complexes were selected based on their resolution. Openeye tools such as FRED, vROCS were used and the results were carefully analyzed. At EF1%, vROCS produced better results but at EF5% and EF10%, both FRED and ROCS produced almost similar results. It was noticed that the enrichment factor values were decreased while going from EF1% to EF5% and EF10% in many cases. Published by Elsevier Ltd.

  10. Homology modeling and virtual screening of inhibitors against TEM- and SHV-type-resistant mutants: A multilayer filtering approach.

    PubMed

    Baig, Mohammad H; Balaramnavar, Vishal M; Wadhwa, Gulshan; Khan, Asad U

    2015-01-01

    TEM and SHV are class-A-type β-lactamases commonly found in Escherichia coli and Klebsiella pneumoniae. Previous studies reported S130G and K234R mutations in SHVs to be 41- and 10-fold more resistant toward clavulanic acid than SHV-1, respectively, whereas TEM S130G and R244S also showed the same level of resistance. These selected mutants confer higher level of resistance against clavulanic acid. They also show little susceptibility against other commercially available β-lactamase inhibitors. In this study, we have used docking-based virtual screening approach in order to screen potential inhibitors against some of the major resistant mutants of SHV and TEM types β-lactamase. Two different inhibitor-resistant mutants from SHV and TEM were selected. Moreover, we have retained the active site water molecules within each enzyme. Active site water molecules were placed within modeled structure of the mutant whose structure was unavailable with protein databank. The novelty of this work lies in the use of multilayer virtual screening approach for the prediction of best and accurate results. We are reporting five inhibitors on the basis of their efficacy against all the selected resistant mutants. These inhibitors were selected on the basis of their binding efficacies and pharmacophore features. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  11. μ Opioid receptor: novel antagonists and structural modeling

    NASA Astrophysics Data System (ADS)

    Kaserer, Teresa; Lantero, Aquilino; Schmidhammer, Helmut; Spetea, Mariana; Schuster, Daniela

    2016-02-01

    The μ opioid receptor (MOR) is a prominent member of the G protein-coupled receptor family and the molecular target of morphine and other opioid drugs. Despite the long tradition of MOR-targeting drugs, still little is known about the ligand-receptor interactions and structure-function relationships underlying the distinct biological effects upon receptor activation or inhibition. With the resolved crystal structure of the β-funaltrexamine-MOR complex, we aimed at the discovery of novel agonists and antagonists using virtual screening tools, i.e. docking, pharmacophore- and shape-based modeling. We suggest important molecular interactions, which active molecules share and distinguish agonists and antagonists. These results allowed for the generation of theoretically validated in silico workflows that were employed for prospective virtual screening. Out of 18 virtual hits evaluated in in vitro pharmacological assays, three displayed antagonist activity and the most active compound significantly inhibited morphine-induced antinociception. The new identified chemotypes hold promise for further development into neurochemical tools for studying the MOR or as potential therapeutic lead candidates.

  12. Virtual screening of compound libraries.

    PubMed

    Cerqueira, Nuno M F S A; Sousa, Sérgio F; Fernandes, Pedro A; Ramos, Maria João

    2009-01-01

    During the last decade, Virtual Screening (VS) has definitively established itself as an important part of the drug discovery and development process. VS involves the selection of likely drug candidates from large libraries of chemical structures by using computational methodologies, but the generic definition of VS encompasses many different methodologies. This chapter provides an introduction to the field by reviewing a variety of important aspects, including the different types of virtual screening methods, and the several steps required for a successful virtual screening campaign within a state-of-the-art approach, from target selection to postfilter application. This analysis is further complemented with a small collection important VS success stories.

  13. Open challenges in structure-based virtual screening: Receptor modeling, target flexibility consideration and active site water molecules description.

    PubMed

    Spyrakis, Francesca; Cavasotto, Claudio N

    2015-10-01

    Structure-based virtual screening is currently an established tool in drug lead discovery projects. Although in the last years the field saw an impressive progress in terms of algorithm development, computational performance, and retrospective and prospective applications in ligand identification, there are still long-standing challenges where further improvement is needed. In this review, we consider the conceptual frame, state-of-the-art and recent developments of three critical "structural" issues in structure-based drug lead discovery: the use of homology modeling to accurately model the binding site when no experimental structures are available, the necessity of accounting for the dynamics of intrinsically flexible systems as proteins, and the importance of considering active site water molecules in lead identification and optimization campaigns. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Protein tyrosine phosphatases: Ligand interaction analysis and optimisation of virtual screening.

    PubMed

    Ghattas, Mohammad A; Atatreh, Noor; Bichenkova, Elena V; Bryce, Richard A

    2014-07-01

    Docking-based virtual screening is an established component of structure-based drug discovery. Nevertheless, scoring and ranking of computationally docked ligand libraries still suffer from many false positives. Identifying optimal docking parameters for a target protein prior to virtual screening can improve experimental hit rates. Here, we examine protocols for virtual screening against the important but challenging class of drug target, protein tyrosine phosphatases. In this study, common interaction features were identified from analysis of protein-ligand binding geometries of more than 50 complexed phosphatase crystal structures. It was found that two interactions were consistently formed across all phosphatase inhibitors: (1) a polar contact with the conserved arginine residue, and (2) at least one interaction with the P-loop backbone amide. In order to investigate the significance of these features on phosphatase-ligand binding, a series of seeded virtual screening experiments were conducted on three phosphatase enzymes, PTP1B, Cdc25b and IF2. It was observed that when the conserved arginine and P-loop amide interactions were used as pharmacophoric constraints during docking, enrichment of the virtual screen significantly increased in the three studied phosphatases, by up to a factor of two in some cases. Additionally, the use of such pharmacophoric constraints considerably improved the ability of docking to predict the inhibitor's bound pose, decreasing RMSD to the crystallographic geometry by 43% on average. Constrained docking improved enrichment of screens against both open and closed conformations of PTP1B. Incorporation of an ordered water molecule in PTP1B screening was also found to generally improve enrichment. The knowledge-based computational strategies explored here can potentially inform structure-based design of new phosphatase inhibitors using docking-based virtual screening. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Virtual Liver: Estimating Proliferation and Apoptosis of Hepatocytes Exposed to Environmental Chemicals Using ToxCastTM Data

    EPA Science Inventory

    The U.S. EPA’s ToxCastTM program has screened over a thousand chemicals for potential toxicity using hundreds of high-throughput, in vitro assays. The U.S. EPA’s Virtual Liver (v-Liver™) is a cellular systems model of hepatic tissues that enables the estimation of in vivo effects...

  16. Virtual screening methods as tools for drug lead discovery from large chemical libraries.

    PubMed

    Ma, X H; Zhu, F; Liu, X; Shi, Z; Zhang, J X; Yang, S Y; Wei, Y Q; Chen, Y Z

    2012-01-01

    Virtual screening methods have been developed and explored as useful tools for searching drug lead compounds from chemical libraries, including large libraries that have become publically available. In this review, we discussed the new developments in exploring virtual screening methods for enhanced performance in searching large chemical libraries, their applications in screening libraries of ~ 1 million or more compounds in the last five years, the difficulties in their applications, and the strategies for further improving these methods.

  17. Virtual screening of mandelate racemase mutants with enhanced activity based on binding energy in the transition state.

    PubMed

    Gu, Jiali; Liu, Min; Guo, Fei; Xie, Wenping; Lu, Wenqiang; Ye, Lidan; Chen, Zhirong; Yuan, Shenfeng; Yu, Hongwei

    2014-02-05

    Mandelate racemase (MR) is a promising candidate for the dynamic kinetic resolution of racemates. However, the poor activity of MR towards most of its non-natural substrates limits its widespread application. In this work, a virtual screening method based on the binding energy in the transition state was established to assist in the screening of MR mutants with enhanced catalytic efficiency. Using R-3-chloromandelic acid as a model substrate, a total of 53 mutants were constructed based on rational design in the two rounds of screening. The number of mutants for experimental validation was brought down to 17 by the virtual screening method, among which 14 variants turned out to possess improved catalytic efficiency. The variant V26I/Y54V showed 5.2-fold higher catalytic efficiency (k(cat)/K(m)) towards R-3-chloromandelic acid than that observed for the wild-type enzyme. Using this strategy, mutants were successfully obtained for two other substrates, R-mandelamide and R-2-naphthylglycolate (V26I and V29L, respectively), both with a 2-fold improvement in catalytic efficiency. These results demonstrated that this method could effectively predict the trend of mutational effects on catalysis. Analysis from the energetic and structural assays indicated that the enhanced interactions between the active sites and the substrate in the transition state led to improved catalytic efficiency. It was concluded that this virtual screening method based on the binding energy in the transition state was beneficial in enzyme rational redesign and helped to better understand the catalytic properties of the enzyme. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Searching for new leads to treat epilepsy. Target-based virtual screening for the discovery of anticonvulsant agents.

    PubMed

    Palestro, Pablo; Enrique, Nicolas; Goicoechea, Sofia; Villalba, María Luisa; Sabatier, Laureano Leonel; Martin, Pedro; Milesi, Veronica; Bruno-Blanch, Luis E; Gavernet, Luciana

    2018-06-05

    The purpose of this investigation is to contribute to the development of new anticonvulsant drugs to treat patients with refractory epilepsy. We applied a virtual screening protocol that involved the search into molecular databases of new compounds and known drugs to find small molecules that interact with the open conformation of the Nav1.2 pore. As the 3D structure of human Nav1.2 is not available, we first assembled 3D models of the target, in closed and open conformations. After the virtual screening, the resulting candidates were submitted to a second virtual filter, to find compounds with better chances of being effective for the treatment of P-glycoprotein (P-gp) mediated resistant epilepsy. Again, we built a model of the 3D structure of human P-gp and we validated the docking methodology selected to propose the best candidates, which were experimentally tested on Nav1.2 channels by patch clamp techniques and in vivo by MES-test. Patch clamp studies allowed us to corroborate that our candidates, drugs used for the treatment of other pathologies like Ciprofloxacin, Losartan and Valsartan, exhibit inhibitory effects on Nav1.2 channel activity. Additionally, a compound synthesized in our lab, N,N´-diphenethylsulfamide, interacts with the target and also triggers significant Na1.2 channel inhibitory action. Finally, in-vivo studies confirmed the anticonvulsant action of Valsartan, Ciprofloxacin and N.N´-diphenethylsulfamide.

  19. Identification of New Human Malaria Parasite Plasmodium Falciparum Dihydroorotate Dehydrogenase Inhibitors by Pharmacophore and Structure-Based Virtual Screening

    PubMed Central

    Pavadai, Elumalai; El Mazouni, Farah; Wittlin, Sergio; de Kock, Carmen; Phillips, Margaret A.; Chibale, Kelly

    2016-01-01

    Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH), a key enzyme in the de novo pyrimidine biosynthesis pathway, which the Plasmodium falciparum relies on exclusively for survival, has emerged as a promising target for antimalarial drugs. In an effort to discover new and potent PfDHODH inhibitors, 3D-QSAR pharmacophore models were developed based on the structures of known PfDHODH inhibitors and the validated Hypo1 model was used as a 3D search query for virtual screening of the National Cancer Institute database. The virtual hit compounds were further filtered based on molecular docking and Molecular Mechanics/Generalized Born Surface Area binding energy calculations. The combination of the pharmacophore and structure-based virtual screening resulted in the identification of nine new compounds that showed >25% inhibition of PfDHODH at a concentration of 10 μM, three of which exhibited IC50 values in the range of 0.38–20 μM. The most active compound, NSC336047, displayed species-selectivity for PfDHODH over human DHODH and inhibited parasite growth with an IC50 of 26 μM. In addition to this, thirteen compounds inhibited parasite growth with IC50 values of ≤ 50 μM, four of which showed IC50 values in the range of 5–12 μM. These compounds could be further explored in the identification and development of more potent PfDHODH and parasite growth inhibitors. PMID:26915022

  20. A virtual screening method for inhibitory peptides of Angiotensin I-converting enzyme.

    PubMed

    Wu, Hongxi; Liu, Yalan; Guo, Mingrong; Xie, Jingli; Jiang, XiaMin

    2014-09-01

    Natural small peptides from foods have been proven to be efficient inhibitors of Angiotensin I-converting enzyme (ACE) for the regulation of blood pressure. The traditional ACE inhibitory peptides screening method is both time consuming and money costing, to the contrary, virtual screening method by computation can break these limitations. We establish a virtual screening method to obtain ACE inhibitory peptides with the help of Libdock module of Discovery Studio 3.5 software. A significant relationship between Libdock score and experimental IC(50) was found, Libdock score = 10.063 log(1/IC(50)) + 68.08 (R(2) = 0.62). The credibility of the relationship was confirmed by testing the coincidence of the estimated log(1/IC(50)) and measured log(1/IC(50)) (IC(50) is 50% inhibitory concentration toward ACE, in μmol/L) of 5 synthetic ACE inhibitory peptides, which was virtual hydrolyzed and screened from a kind of seafood, Phascolosoma esculenta. Accordingly, Libdock method is a valid IC(50) estimation tool and virtual screening method for small ACE inhibitory peptides. © 2014 Institute of Food Technologists®

  1. Molecular dynamics, flexible docking, virtual screening, ADMET predictions, and molecular interaction field studies to design novel potential MAO-B inhibitors.

    PubMed

    Braun, Glaucia H; Jorge, Daniel M M; Ramos, Henrique P; Alves, Raquel M; da Silva, Vinicius B; Giuliatti, Silvana; Sampaio, Suley Vilela; Taft, Carlton A; Silva, Carlos H T P

    2008-02-01

    Monoamine oxidase is a flavoenzyme bound to the mitochondrial outer membranes of the cells, which is responsible for the oxidative deamination of neurotransmitter and dietary amines. It has two distinct isozymic forms, designated MAO-A and MAO-B, each displaying different substrate and inhibitor specificities. They are the well-known targets for antidepressant, Parkinson's disease, and neuroprotective drugs. Elucidation of the x-ray crystallographic structure of MAO-B has opened the way for the molecular modeling studies. In this work we have used molecular modeling, density functional theory with correlation, virtual screening, flexible docking, molecular dynamics, ADMET predictions, and molecular interaction field studies in order to design new molecules with potential higher selectivity and enzymatic inhibitory activity over MAO-B.

  2. Object Creation and Human Factors Evaluation for Virtual Environments

    NASA Technical Reports Server (NTRS)

    Lindsey, Patricia F.

    1998-01-01

    The main objective of this project is to provide test objects for simulated environments utilized by the recently established Army/NASA Virtual Innovations Lab (ANVIL) at Marshall Space Flight Center, Huntsville, Al. The objective of the ANVIL lab is to provide virtual reality (VR) models and environments and to provide visualization and manipulation methods for the purpose of training and testing. Visualization equipment used in the ANVIL lab includes head-mounted and boom-mounted immersive virtual reality display devices. Objects in the environment are manipulated using data glove, hand controller, or mouse. These simulated objects are solid or surfaced three dimensional models. They may be viewed or manipulated from any location within the environment and may be viewed on-screen or via immersive VR. The objects are created using various CAD modeling packages and are converted into the virtual environment using dVise. This enables the object or environment to be viewed from any angle or distance for training or testing purposes.

  3. Adapting Document Similarity Measures for Ligand-Based Virtual Screening.

    PubMed

    Himmat, Mubarak; Salim, Naomie; Al-Dabbagh, Mohammed Mumtaz; Saeed, Faisal; Ahmed, Ali

    2016-04-13

    Quantifying the similarity of molecules is considered one of the major tasks in virtual screening. There are many similarity measures that have been proposed for this purpose, some of which have been derived from document and text retrieving areas as most often these similarity methods give good results in document retrieval and can achieve good results in virtual screening. In this work, we propose a similarity measure for ligand-based virtual screening, which has been derived from a text processing similarity measure. It has been adopted to be suitable for virtual screening; we called this proposed measure the Adapted Similarity Measure of Text Processing (ASMTP). For evaluating and testing the proposed ASMTP we conducted several experiments on two different benchmark datasets: the Maximum Unbiased Validation (MUV) and the MDL Drug Data Report (MDDR). The experiments have been conducted by choosing 10 reference structures from each class randomly as queries and evaluate them in the recall of cut-offs at 1% and 5%. The overall obtained results are compared with some similarity methods including the Tanimoto coefficient, which are considered to be the conventional and standard similarity coefficients for fingerprint-based similarity calculations. The achieved results show that the performance of ligand-based virtual screening is better and outperforms the Tanimoto coefficients and other methods.

  4. Evaluating the Predictivity of Virtual Screening for Abl Kinase Inhibitors to Hinder Drug Resistance

    PubMed Central

    Gani, Osman A B S M; Narayanan, Dilip; Engh, Richard A

    2013-01-01

    Virtual screening methods are now widely used in early stages of drug discovery, aiming to rank potential inhibitors. However, any practical ligand set (of active or inactive compounds) chosen for deriving new virtual screening approaches cannot fully represent all relevant chemical space for potential new compounds. In this study, we have taken a retrospective approach to evaluate virtual screening methods for the leukemia target kinase ABL1 and its drug-resistant mutant ABL1-T315I. ‘Dual active’ inhibitors against both targets were grouped together with inactive ligands chosen from different decoy sets and tested with virtual screening approaches with and without explicit use of target structures (docking). We show how various scoring functions and choice of inactive ligand sets influence overall and early enrichment of the libraries. Although ligand-based methods, for example principal component analyses of chemical properties, can distinguish some decoy sets from active compounds, the addition of target structural information via docking improves enrichment, and explicit consideration of multiple target conformations (i.e. types I and II) achieves best enrichment of active versus inactive ligands, even without assuming knowledge of the binding mode. We believe that this study can be extended to other therapeutically important kinases in prospective virtual screening studies. PMID:23746052

  5. Virtual Screening of Phytochemicals to Novel Target (HAT) Rtt109 in Pneumocystis Jirovecii using Bioinformatics Tools.

    PubMed

    Sugumar, Ramya; Adithavarman, Abhinand Ponneri; Dakshinamoorthi, Anusha; David, Darling Chellathai; Ragunath, Padmavathi Kannan

    2016-03-01

    Pneumocystis jirovecii is a fungus that causes Pneumocystis pneumonia in HIV and other immunosuppressed patients. Treatment of Pneumocystis pneumonia with the currently available antifungals is challenging and associated with considerable adverse effects. There is a need to develop drugs against novel targets with minimal human toxicities. Histone Acetyl Transferase (HAT) Rtt109 is a potential therapeutic target in Pneumocystis jirovecii species. HAT is linked to transcription and is required to acetylate conserved lysine residues on histone proteins by transferring an acetyl group from acetyl CoA to form e-N-acetyl lysine. Therefore, inhibitors of HAT can be useful therapeutic options in Pneumocystis pneumonia. To screen phytochemicals against (HAT) Rtt109 using bioinformatics tool. The tertiary structure of Pneumocystis jirovecii (HAT) Rtt109 was modeled by Homology Modeling. The ideal template for modeling was obtained by performing Psi BLAST of the protein sequence. Rtt109-AcCoA/Vps75 protein from Saccharomyces cerevisiae (PDB structure 3Q35) was chosen as the template. The target protein was modeled using Swiss Modeler and validated using Ramachandran plot and Errat 2. Comprehensive text mining was performed to identify phytochemical compounds with antipneumonia and fungicidal properties and these compounds were filtered based on Lipinski's Rule of 5. The chosen compounds were subjected to virtual screening against the target protein (HAT) Rtt109 using Molegro Virtual Docker 4.5. Osiris Property Explorer and Open Tox Server were used to predict ADME-T properties of the chosen phytochemicals. Tertiary structure model of HAT Rtt 109 had a ProSA score of -6.57 and Errat 2 score of 87.34. Structure validation analysis by Ramachandran plot for the model revealed 97% of amino acids were in the favoured region. Of all the phytochemicals subjected to virtual screening against the target protein (HAT) Rtt109, baicalin exhibited highest binding affinity towards the target protein as indicated by the Molegro score of 130.68 and formed 16 H-bonds. The ADME-T property prediction revealed that baicalin was non-mutagenic, non-tumorigenic and had a drug likeness score of 0.87. Baicalin has good binding with Rtt 109 in Pneumocystis jirovecii and can be considered as a novel and valuable treatment option for Pneumocystis pneumonia patients after subjecting it to invivo and invitro studies.

  6. Virtual Screening of Phytochemicals to Novel Target (HAT) Rtt109 in Pneumocystis Jirovecii using Bioinformatics Tools

    PubMed Central

    Adithavarman, Abhinand Ponneri; Dakshinamoorthi, Anusha; David, Darling Chellathai; Ragunath, Padmavathi Kannan

    2016-01-01

    Introduction Pneumocystis jirovecii is a fungus that causes Pneumocystis pneumonia in HIV and other immunosuppressed patients. Treatment of Pneumocystis pneumonia with the currently available antifungals is challenging and associated with considerable adverse effects. There is a need to develop drugs against novel targets with minimal human toxicities. Histone Acetyl Transferase (HAT) Rtt109 is a potential therapeutic target in Pneumocystis jirovecii species. HAT is linked to transcription and is required to acetylate conserved lysine residues on histone proteins by transferring an acetyl group from acetyl CoA to form e-N-acetyl lysine. Therefore, inhibitors of HAT can be useful therapeutic options in Pneumocystis pneumonia. Aim To screen phytochemicals against (HAT) Rtt109 using bioinformatics tool. Materials and Methods The tertiary structure of Pneumocystis jirovecii (HAT) Rtt109 was modeled by Homology Modeling. The ideal template for modeling was obtained by performing Psi BLAST of the protein sequence. Rtt109-AcCoA/Vps75 protein from Saccharomyces cerevisiae (PDB structure 3Q35) was chosen as the template. The target protein was modeled using Swiss Modeler and validated using Ramachandran plot and Errat 2. Comprehensive text mining was performed to identify phytochemical compounds with antipneumonia and fungicidal properties and these compounds were filtered based on Lipinski’s Rule of 5. The chosen compounds were subjected to virtual screening against the target protein (HAT) Rtt109 using Molegro Virtual Docker 4.5. Osiris Property Explorer and Open Tox Server were used to predict ADME-T properties of the chosen phytochemicals. Results Tertiary structure model of HAT Rtt 109 had a ProSA score of -6.57 and Errat 2 score of 87.34. Structure validation analysis by Ramachandran plot for the model revealed 97% of amino acids were in the favoured region. Of all the phytochemicals subjected to virtual screening against the target protein (HAT) Rtt109, baicalin exhibited highest binding affinity towards the target protein as indicated by the Molegro score of 130.68 and formed 16 H-bonds. The ADME-T property prediction revealed that baicalin was non-mutagenic, non-tumorigenic and had a drug likeness score of 0.87. Conclusion Baicalin has good binding with Rtt 109 in Pneumocystis jirovecii and can be considered as a novel and valuable treatment option for Pneumocystis pneumonia patients after subjecting it to invivo and invitro studies. PMID:27134887

  7. Graph wavelet alignment kernels for drug virtual screening.

    PubMed

    Smalter, Aaron; Huan, Jun; Lushington, Gerald

    2009-06-01

    In this paper, we introduce a novel statistical modeling technique for target property prediction, with applications to virtual screening and drug design. In our method, we use graphs to model chemical structures and apply a wavelet analysis of graphs to summarize features capturing graph local topology. We design a novel graph kernel function to utilize the topology features to build predictive models for chemicals via Support Vector Machine classifier. We call the new graph kernel a graph wavelet-alignment kernel. We have evaluated the efficacy of the wavelet-alignment kernel using a set of chemical structure-activity prediction benchmarks. Our results indicate that the use of the kernel function yields performance profiles comparable to, and sometimes exceeding that of the existing state-of-the-art chemical classification approaches. In addition, our results also show that the use of wavelet functions significantly decreases the computational costs for graph kernel computation with more than ten fold speedup.

  8. Comparative analysis of machine learning methods in ligand-based virtual screening of large compound libraries.

    PubMed

    Ma, Xiao H; Jia, Jia; Zhu, Feng; Xue, Ying; Li, Ze R; Chen, Yu Z

    2009-05-01

    Machine learning methods have been explored as ligand-based virtual screening tools for facilitating drug lead discovery. These methods predict compounds of specific pharmacodynamic, pharmacokinetic or toxicological properties based on their structure-derived structural and physicochemical properties. Increasing attention has been directed at these methods because of their capability in predicting compounds of diverse structures and complex structure-activity relationships without requiring the knowledge of target 3D structure. This article reviews current progresses in using machine learning methods for virtual screening of pharmacodynamically active compounds from large compound libraries, and analyzes and compares the reported performances of machine learning tools with those of structure-based and other ligand-based (such as pharmacophore and clustering) virtual screening methods. The feasibility to improve the performance of machine learning methods in screening large libraries is discussed.

  9. Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR- and structure-based virtual screening approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Liying; Sedykh, Alexander; Tripathi, Ashutosh

    2013-10-01

    Identification of endocrine disrupting chemicals is one of the important goals of environmental chemical hazard screening. We report on the development of validated in silico predictors of chemicals likely to cause estrogen receptor (ER)-mediated endocrine disruption to facilitate their prioritization for future screening. A database of relative binding affinity of a large number of ERα and/or ERβ ligands was assembled (546 for ERα and 137 for ERβ). Both single-task learning (STL) and multi-task learning (MTL) continuous quantitative structure–activity relationship (QSAR) models were developed for predicting ligand binding affinity to ERα or ERβ. High predictive accuracy was achieved for ERα bindingmore » affinity (MTL R{sup 2} = 0.71, STL R{sup 2} = 0.73). For ERβ binding affinity, MTL models were significantly more predictive (R{sup 2} = 0.53, p < 0.05) than STL models. In addition, docking studies were performed on a set of ER agonists/antagonists (67 agonists and 39 antagonists for ERα, 48 agonists and 32 antagonists for ERβ, supplemented by putative decoys/non-binders) using the following ER structures (in complexes with respective ligands) retrieved from the Protein Data Bank: ERα agonist (PDB ID: 1L2I), ERα antagonist (PDB ID: 3DT3), ERβ agonist (PDB ID: 2NV7), and ERβ antagonist (PDB ID: 1L2J). We found that all four ER conformations discriminated their corresponding ligands from presumed non-binders. Finally, both QSAR models and ER structures were employed in parallel to virtually screen several large libraries of environmental chemicals to derive a ligand- and structure-based prioritized list of putative estrogenic compounds to be used for in vitro and in vivo experimental validation. - Highlights: • This is the largest curated dataset inclusive of ERα and β (the latter is unique). • New methodology that for the first time affords acceptable ERβ models. • A combination of QSAR and docking enables prediction of affinity and function. • The results have potential applications to green chemistry. • Models are publicly available for virtual screening via a web portal.« less

  10. AutoClickChem: click chemistry in silico.

    PubMed

    Durrant, Jacob D; McCammon, J Andrew

    2012-01-01

    Academic researchers and many in industry often lack the financial resources available to scientists working in "big pharma." High costs include those associated with high-throughput screening and chemical synthesis. In order to address these challenges, many researchers have in part turned to alternate methodologies. Virtual screening, for example, often substitutes for high-throughput screening, and click chemistry ensures that chemical synthesis is fast, cheap, and comparatively easy. Though both in silico screening and click chemistry seek to make drug discovery more feasible, it is not yet routine to couple these two methodologies. We here present a novel computer algorithm, called AutoClickChem, capable of performing many click-chemistry reactions in silico. AutoClickChem can be used to produce large combinatorial libraries of compound models for use in virtual screens. As the compounds of these libraries are constructed according to the reactions of click chemistry, they can be easily synthesized for subsequent testing in biochemical assays. Additionally, in silico modeling of click-chemistry products may prove useful in rational drug design and drug optimization. AutoClickChem is based on the pymolecule toolbox, a framework that may facilitate the development of future python-based programs that require the manipulation of molecular models. Both the pymolecule toolbox and AutoClickChem are released under the GNU General Public License version 3 and are available for download from http://autoclickchem.ucsd.edu.

  11. AutoClickChem: Click Chemistry in Silico

    PubMed Central

    Durrant, Jacob D.; McCammon, J. Andrew

    2012-01-01

    Academic researchers and many in industry often lack the financial resources available to scientists working in “big pharma.” High costs include those associated with high-throughput screening and chemical synthesis. In order to address these challenges, many researchers have in part turned to alternate methodologies. Virtual screening, for example, often substitutes for high-throughput screening, and click chemistry ensures that chemical synthesis is fast, cheap, and comparatively easy. Though both in silico screening and click chemistry seek to make drug discovery more feasible, it is not yet routine to couple these two methodologies. We here present a novel computer algorithm, called AutoClickChem, capable of performing many click-chemistry reactions in silico. AutoClickChem can be used to produce large combinatorial libraries of compound models for use in virtual screens. As the compounds of these libraries are constructed according to the reactions of click chemistry, they can be easily synthesized for subsequent testing in biochemical assays. Additionally, in silico modeling of click-chemistry products may prove useful in rational drug design and drug optimization. AutoClickChem is based on the pymolecule toolbox, a framework that may facilitate the development of future python-based programs that require the manipulation of molecular models. Both the pymolecule toolbox and AutoClickChem are released under the GNU General Public License version 3 and are available for download from http://autoclickchem.ucsd.edu. PMID:22438795

  12. Discovery of thienoquinolone derivatives as selective and ATP non-competitive CDK5/p25 inhibitors by structure-based virtual screening

    PubMed Central

    Chatterjee, Arindam; Doerksen, Robert J.; Khan, Ikhlas A.

    2014-01-01

    Calpain mediated cleavage of CDK5 natural precursor p35 causes a stable complex formation of CDK5/p25, which leads to hyperphosphorylation of tau. Thus inhibition of this complex is a viable target for numerous acute and chronic neurodegenerative diseases involving tau protein, including Alzheimer’s disease. Since CDK5 has the highest sequence homology with its mitotic counterpart CDK2, our primary goal was to design selective CDK5/p25 inhibitors targeting neurodegeneration. A novel structure-based virtual screening protocol comprised of e-pharmacophore models and virtual screening work-flow was used to identify nine compounds from a commercial database containing 2.84 million compounds. An ATP non-competitive and selective thieno[3,2-c]quinolin-4(5H)-one inhibitor (10) with ligand efficiency (LE) of 0.3 was identified as the lead molecule. Further SAR optimization led to the discovery of several low micromolar inhibitors with good selectivity. The research represents a new class of potent ATP non-competitive CDK5/p25 inhibitors with good CDK2/E selectivity. PMID:25438765

  13. An enantiomer-based virtual screening approach: Discovery of chiral organophosphates as acetyl cholinesterase inhibitors.

    PubMed

    Zhang, Aiqian; Mu, Yunsong; Wu, Fengchang

    2017-04-01

    Chiral organophosphates (OPs) have been used widely around the world, very little is known about binding mechanisms with biological macromolecules. An in-depth understanding of the stereo selectivity of human AChE and discovering bioactive enantiomers of OPs can decrease health risks of these chiral chemicals. In the present study, a flexible molecular docking approach was conducted to investigate different binding modes of twelve phosphorus enantiomers. A pharmacophore model was then developed on basis of the bioactive conformations of these compounds. After virtual screening, twenty-four potential bioactive compounds were found, of which three compounds (Ethyl p-nitrophenyl phenylphosphonate (EPN), 1-naphthaleneacetic anhydride and N,4-dimethyl-N-phenyl-benzenesulfonamide) were tested by use of different in vitro assays. S-isomer of EPN was also found to exhibit greater inhibitory activity towards human AChE than the corresponding R-isomer. These findings affirm that stereochemistry plays a crucial role in virtual screening, and provide a new insight into designing safer organ phosphorus pesticides on human health. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Virtual Reality Exploration and Planning for Precision Colorectal Surgery.

    PubMed

    Guerriero, Ludovica; Quero, Giuseppe; Diana, Michele; Soler, Luc; Agnus, Vincent; Marescaux, Jacques; Corcione, Francesco

    2018-06-01

    Medical software can build a digital clone of the patient with 3-dimensional reconstruction of Digital Imaging and Communication in Medicine images. The virtual clone can be manipulated (rotations, zooms, etc), and the various organs can be selectively displayed or hidden to facilitate a virtual reality preoperative surgical exploration and planning. We present preliminary cases showing the potential interest of virtual reality in colorectal surgery for both cases of diverticular disease and colonic neoplasms. This was a single-center feasibility study. The study was conducted at a tertiary care institution. Two patients underwent a laparoscopic left hemicolectomy for diverticular disease, and 1 patient underwent a laparoscopic right hemicolectomy for cancer. The 3-dimensional virtual models were obtained from preoperative CT scans. The virtual model was used to perform preoperative exploration and planning. Intraoperatively, one of the surgeons was manipulating the virtual reality model, using the touch screen of a tablet, which was interactively displayed to the surgical team. The main outcome was evaluation of the precision of virtual reality in colorectal surgery planning and exploration. In 1 patient undergoing laparoscopic left hemicolectomy, an abnormal origin of the left colic artery beginning as an extremely short common trunk from the inferior mesenteric artery was clearly seen in the virtual reality model. This finding was missed by the radiologist on CT scan. The precise identification of this vascular variant granted a safe and adequate surgery. In the remaining cases, the virtual reality model helped to precisely estimate the vascular anatomy, providing key landmarks for a safer dissection. A larger sample size would be necessary to definitively assess the efficacy of virtual reality in colorectal surgery. Virtual reality can provide an enhanced understanding of crucial anatomical details, both preoperatively and intraoperatively, which could contribute to improve safety in colorectal surgery.

  15. An Integrated In Silico Method to Discover Novel Rock1 Inhibitors: Multi- Complex-Based Pharmacophore, Molecular Dynamics Simulation and Hybrid Protocol Virtual Screening.

    PubMed

    Chen, Haining; Li, Sijia; Hu, Yajiao; Chen, Guo; Jiang, Qinglin; Tong, Rongsheng; Zang, Zhihe; Cai, Lulu

    2016-01-01

    Rho-associated, coiled-coil containing protein kinase 1 (ROCK1) is an important regulator of focal adhesion, actomyosin contraction and cell motility. In this manuscript, a combination of the multi-complex-based pharmacophore (MCBP), molecular dynamics simulation and a hybrid protocol of a virtual screening method, comprised of multipharmacophore- based virtual screening (PBVS) and ensemble docking-based virtual screening (DBVS) methods were used for retrieving novel ROCK1 inhibitors from the natural products database embedded in the ZINC database. Ten hit compounds were selected from the hit compounds, and five compounds were tested experimentally. Thus, these results may provide valuable information for further discovery of more novel ROCK1 inhibitors.

  16. Electrophysiological characterization of 14-benzoyltalatisamine, a selective blocker of the delayed rectifier K+ channel found in virtual screening.

    PubMed

    Song, Ming-Ke; Liu, Hong; Jiang, Hua-Liang; Yue, Jian-Min; Hu, Guo-Yuan

    2006-02-15

    14-Benzoyltalatisamine is a potent and selective blocker of the delayed rectifier K+ channel found in a computational virtual screening study. The compound was found to block the K+ channel from the extracellular side. However, it is unclear whether 14-benzoyltalatisamine shares the same block mechanism with tetraethylammonium (TEA). In order to elucidate how the hit compound found by the virtual screening interacts with the outer vestibule of the K+ channel, the effects of 14-benzoyltalatisamine and TEA on the delayed rectifier K+ current of rat dissociated hippocampal neurons were compared using whole-cell voltage-clamp recording. External application of 14-benzoyltalatisamine and TEA reversibly inhibited the current with IC50 values of 10.1+/-2.2 microM and 1.05+/-0.21 mM, respectively. 14-Benzoyltalatisamine exerted voltage-dependent inhibition, markedly accelerated the decay of the current, and caused a significant hyperpolarizing shift of the steady-state activation curve, whereas TEA caused voltage-independent inhibition, without affecting the kinetic parameters of the current. The blockade by 14-benzoyltalatisamine, but not by TEA, was significantly diminished in a high K+ (60 mM) external solution. The potency of 14-benzoyltalatisamine was markedly reduced in the presence of 15 mM TEA. The results suggest that 14-benzoyltalatisamine bind to the external pore entry of the delayed rectifier K+ channel with partial insertion into the selectivity filter, which is in conformity with that predicted by the molecular docking model in the virtual screening.

  17. Virtual screening for novel Staphylococcus Aureus NorA efflux pump inhibitors from natural products.

    PubMed

    Thai, Khac-Minh; Ngo, Trieu-Du; Phan, Thien-Vy; Tran, Thanh-Dao; Nguyen, Ngoc-Vinh; Nguyen, Thien-Hai; Le, Minh-Tri

    2015-01-01

    NorA is a member of the Major Facilitator Superfamily (MFS) drug efflux pumps that have been shown to mediate antibiotic resistance in Staphylococcus aureus (SA). In this study, QSAR analysis, virtual screening and molecular docking were implemented in an effort to discover novel SA NorA efflux pump inhibitors. Originally, a set of 47 structurally diverse compounds compiled from the literature was used to develop linear QSAR models and another set of 15 different compounds were chosen for extra validation. The final model which was estimated by statistical values for the full data set (n = 45, Q(2) = 0.80, RMSE = 0.20) and for the external test set (n = 15, R(2) = 0.60, |res|max = 0.75, |res|min = 0.02) was applied on the collection of 182 flavonoides and the traditional Chinese medicine (TCM) database to screen for novel NorA inhibitors. Finally, 33 lead compounds that met the Lipinski's rules of five/three and had good predicted pIC50 values from in silico screening process were employed to analyze the binding ability by docking studies on NorA homology model in place of its unavailable crystal structures at two active sites, the central channel and the Walker B.

  18. Creating and virtually screening databases of fluorescently-labelled compounds for the discovery of target-specific molecular probes

    NASA Astrophysics Data System (ADS)

    Kamstra, Rhiannon L.; Dadgar, Saedeh; Wigg, John; Chowdhury, Morshed A.; Phenix, Christopher P.; Floriano, Wely B.

    2014-11-01

    Our group has recently demonstrated that virtual screening is a useful technique for the identification of target-specific molecular probes. In this paper, we discuss some of our proof-of-concept results involving two biologically relevant target proteins, and report the development of a computational script to generate large databases of fluorescence-labelled compounds for computer-assisted molecular design. The virtual screening of a small library of 1,153 fluorescently-labelled compounds against two targets, and the experimental testing of selected hits reveal that this approach is efficient at identifying molecular probes, and that the screening of a labelled library is preferred over the screening of base compounds followed by conjugation of confirmed hits. The automated script for library generation explores the known reactivity of commercially available dyes, such as NHS-esters, to create large virtual databases of fluorescence-tagged small molecules that can be easily synthesized in a laboratory. A database of 14,862 compounds, each tagged with the ATTO680 fluorophore was generated with the automated script reported here. This library is available for downloading and it is suitable for virtual ligand screening aiming at the identification of target-specific fluorescent molecular probes.

  19. Spherical harmonics coefficients for ligand-based virtual screening of cyclooxygenase inhibitors.

    PubMed

    Wang, Quan; Birod, Kerstin; Angioni, Carlo; Grösch, Sabine; Geppert, Tim; Schneider, Petra; Rupp, Matthias; Schneider, Gisbert

    2011-01-01

    Molecular descriptors are essential for many applications in computational chemistry, such as ligand-based similarity searching. Spherical harmonics have previously been suggested as comprehensive descriptors of molecular structure and properties. We investigate a spherical harmonics descriptor for shape-based virtual screening. We introduce and validate a partially rotation-invariant three-dimensional molecular shape descriptor based on the norm of spherical harmonics expansion coefficients. Using this molecular representation, we parameterize molecular surfaces, i.e., isosurfaces of spatial molecular property distributions. We validate the shape descriptor in a comprehensive retrospective virtual screening experiment. In a prospective study, we virtually screen a large compound library for cyclooxygenase inhibitors, using a self-organizing map as a pre-filter and the shape descriptor for candidate prioritization. 12 compounds were tested in vitro for direct enzyme inhibition and in a whole blood assay. Active compounds containing a triazole scaffold were identified as direct cyclooxygenase-1 inhibitors. This outcome corroborates the usefulness of spherical harmonics for representation of molecular shape in virtual screening of large compound collections. The combination of pharmacophore and shape-based filtering of screening candidates proved to be a straightforward approach to finding novel bioactive chemotypes with minimal experimental effort.

  20. Scaffold-Focused Virtual Screening: Prospective Application to the Discovery of TTK Inhibitors

    PubMed Central

    2013-01-01

    We describe and apply a scaffold-focused virtual screen based upon scaffold trees to the mitotic kinase TTK (MPS1). Using level 1 of the scaffold tree, we perform both 2D and 3D similarity searches between a query scaffold and a level 1 scaffold library derived from a 2 million compound library; 98 compounds from 27 unique top-ranked level 1 scaffolds are selected for biochemical screening. We show that this scaffold-focused virtual screen prospectively identifies eight confirmed active compounds that are structurally differentiated from the query compound. In comparison, 100 compounds were selected for biochemical screening using a virtual screen based upon whole molecule similarity resulting in 12 confirmed active compounds that are structurally similar to the query compound. We elucidated the binding mode for four of the eight confirmed scaffold hops to TTK by determining their protein–ligand crystal structures; each represents a ligand-efficient scaffold for inhibitor design. PMID:23672464

  1. HPPD: ligand- and target-based virtual screening on a herbicide target.

    PubMed

    López-Ramos, Miriam; Perruccio, Francesca

    2010-05-24

    Hydroxyphenylpyruvate dioxygenase (HPPD) has proven to be a very successful target for the development of herbicides with bleaching properties, and today HPPD inhibitors are well established in the agrochemical market. Syngenta has a long history of HPPD-inhibitor research, and HPPD was chosen as a case study for the validation of diverse ligand- and target-based virtual screening approaches to identify compounds with inhibitory properties. Two-dimensional extended connectivity fingerprints, three-dimensional shape-based tools (ROCS, EON, and Phase-shape) and a pharmacophore approach (Phase) were used as ligand-based methods; Glide and Gold were used as target-based. Both the virtual screening utility and the scaffold-hopping ability of the screening tools were assessed. Particular emphasis was put on the specific pitfalls to take into account for the design of a virtual screening campaign in an agrochemical context, as compared to a pharmaceutical environment.

  2. Pharmacophore-based virtual screening, biological evaluation and binding mode analysis of a novel protease-activated receptor 2 antagonist

    NASA Astrophysics Data System (ADS)

    Cho, Nam-Chul; Seo, Seoung-Hwan; Kim, Dohee; Shin, Ji-Sun; Ju, Jeongmin; Seong, Jihye; Seo, Seon Hee; Lee, Iiyoun; Lee, Kyung-Tae; Kim, Yun Kyung; No, Kyoung Tai; Pae, Ae Nim

    2016-08-01

    Protease-activated receptor 2 (PAR2) is a G protein-coupled receptor, mediating inflammation and pain signaling in neurons, thus it is considered to be a potential therapeutic target for inflammatory diseases. In this study, we performed a ligand-based virtual screening of 1.6 million compounds by employing a common-feature pharmacophore model and two-dimensional similarity search to identify a new PAR2 antagonist. The common-feature pharmacophore model was established based on the biological screening results of our in-house library. The initial virtual screening yielded a total number of 47 hits, and additional biological activity tests including PAR2 antagonism and anti-inflammatory effects resulted in a promising candidate, compound 43, which demonstrated an IC50 value of 8.22 µM against PAR2. In next step, a PAR2 homology model was constructed using the crystal structure of the PAR1 as a template to explore the binding mode of the identified ligands. A molecular docking method was optimized by comparing the binding modes of a known PAR2 agonist GB110 and antagonist GB83, and applied to predict the binding mode of our hit compound 43. In-depth docking analyses revealed that the hydrophobic interaction with Phe2435.39 is crucial for PAR2 ligands to exert antagonistic activity. MD simulation results supported the predicted docking poses that PAR2 antagonist blocked a conformational rearrangement of Na+ allosteric site in contrast to PAR2 agonist that showed Na+ relocation upon GPCR activation. In conclusion, we identified new a PAR2 antagonist together with its binding mode, which provides useful insights for the design and development of PAR2 ligands.

  3. Evaluation of the performance of 3D virtual screening protocols: RMSD comparisons, enrichment assessments, and decoy selection--what can we learn from earlier mistakes?

    PubMed

    Kirchmair, Johannes; Markt, Patrick; Distinto, Simona; Wolber, Gerhard; Langer, Thierry

    2008-01-01

    Within the last few years a considerable amount of evaluative studies has been published that investigate the performance of 3D virtual screening approaches. Thereby, in particular assessments of protein-ligand docking are facing remarkable interest in the scientific community. However, comparing virtual screening approaches is a non-trivial task. Several publications, especially in the field of molecular docking, suffer from shortcomings that are likely to affect the significance of the results considerably. These quality issues often arise from poor study design, biasing, by using improper or inexpressive enrichment descriptors, and from errors in interpretation of the data output. In this review we analyze recent literature evaluating 3D virtual screening methods, with focus on molecular docking. We highlight problematic issues and provide guidelines on how to improve the quality of computational studies. Since 3D virtual screening protocols are in general assessed by their ability to discriminate between active and inactive compounds, we summarize the impact of the composition and preparation of test sets on the outcome of evaluations. Moreover, we investigate the significance of both classic enrichment parameters and advanced descriptors for the performance of 3D virtual screening methods. Furthermore, we review the significance and suitability of RMSD as a measure for the accuracy of protein-ligand docking algorithms and of conformational space sub sampling algorithms.

  4. When drug discovery meets web search: Learning to Rank for ligand-based virtual screening.

    PubMed

    Zhang, Wei; Ji, Lijuan; Chen, Yanan; Tang, Kailin; Wang, Haiping; Zhu, Ruixin; Jia, Wei; Cao, Zhiwei; Liu, Qi

    2015-01-01

    The rapid increase in the emergence of novel chemical substances presents a substantial demands for more sophisticated computational methodologies for drug discovery. In this study, the idea of Learning to Rank in web search was presented in drug virtual screening, which has the following unique capabilities of 1). Applicable of identifying compounds on novel targets when there is not enough training data available for these targets, and 2). Integration of heterogeneous data when compound affinities are measured in different platforms. A standard pipeline was designed to carry out Learning to Rank in virtual screening. Six Learning to Rank algorithms were investigated based on two public datasets collected from Binding Database and the newly-published Community Structure-Activity Resource benchmark dataset. The results have demonstrated that Learning to rank is an efficient computational strategy for drug virtual screening, particularly due to its novel use in cross-target virtual screening and heterogeneous data integration. To the best of our knowledge, we have introduced here the first application of Learning to Rank in virtual screening. The experiment workflow and algorithm assessment designed in this study will provide a standard protocol for other similar studies. All the datasets as well as the implementations of Learning to Rank algorithms are available at http://www.tongji.edu.cn/~qiliu/lor_vs.html. Graphical AbstractThe analogy between web search and ligand-based drug discovery.

  5. Novel Mycosin Protease MycP1 Inhibitors Identified by Virtual Screening and 4D Fingerprints

    PubMed Central

    2015-01-01

    The rise of drug-resistant Mycobacterium tuberculosis lends urgency to the need for new drugs for the treatment of tuberculosis (TB). The identification of a serine protease, mycosin protease-1 (MycP1), as the crucial agent in hydrolyzing the virulence factor, ESX-secretion-associated protein B (EspB), potentially opens the door to new tuberculosis treatment options. Using the crystal structure of mycobacterial MycP1 in the apo form, we performed an iterative ligand- and structure-based virtual screening (VS) strategy to identify novel, nonpeptide, small-molecule inhibitors against MycP1 protease. Screening of ∼485 000 ligands from databases at the Genomics Research Institute (GRI) at the University of Cincinnati and the National Cancer Institute (NCI) using our VS approach, which integrated a pharmacophore model and consensus molecular shape patterns of active ligands (4D fingerprints), identified 81 putative inhibitors, and in vitro testing subsequently confirmed two of them as active inhibitors. Thereafter, the lead structures of each VS round were used to generate a new 4D fingerprint that enabled virtual rescreening of the chemical libraries. Finally, the iterative process identified a number of diverse scaffolds as lead compounds that were tested and found to have micromolar IC50 values against the MycP1 target. This study validated the efficiency of the SABRE 4D fingerprints as a means of identifying novel lead compounds in each screening round of the databases. Together, these results underscored the value of using a combination of in silico iterative ligand- and structure-based virtual screening of chemical libraries with experimental validation for the identification of promising structural scaffolds, such as the MycP1 inhibitors. PMID:24628123

  6. Modeling limb-bud dysmorphogenesis in a predictive virtual embryo model

    EPA Science Inventory

    ToxCast is profiling the bioactivity of thousands of chemicals based on high-throughput screening (HTS) and computational methods that integrate knowledge of biological systems and in vivo toxicities (www.epa.gov/ncct/toxcast/). Many ToxCast assays assess signaling pathways and c...

  7. Discovery of novel EGFR tyrosine kinase inhibitors by structure-based virtual screening.

    PubMed

    Li, Siyuan; Sun, Xianqiang; Zhao, Hongli; Tang, Yun; Lan, Minbo

    2012-06-15

    By using of structure-based virtual screening, 13 novel epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors were discovered from 197,116 compounds in the SPECS database here. Among them, 8 compounds significantly inhibited EGFR kinase activity with IC(50) values lower than 10 μM. 3-{[1-(3-Chloro-4-fluorophenyl)-3,5-dioxo-4-pyrazolidinylidene]methyl}phenyl 2-thiophenecarboxylate (13), particularly, was the most potent inhibitor possessing the IC(50) value of 3.5 μM. The docking studies also provide some useful information that the docking models of the 13 compounds are beneficial to find a new path for designing novel EGFR inhibitors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Stereo 3D vision adapter using commercial DIY goods

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kunio; Ohara, Takashi

    2009-10-01

    The conventional display can show only one screen, but it is impossible to enlarge the size of a screen, for example twice. Meanwhile the mirror supplies us with the same image but this mirror image is usually upside down. Assume that the images on an original screen and a virtual screen in the mirror are completely different and both images can be displayed independently. It would be possible to enlarge a screen area twice. This extension method enables the observers to show the virtual image plane and to enlarge a screen area twice. Although the displaying region is doubled, this virtual display could not produce 3D images. In this paper, we present an extension method using a unidirectional diffusing image screen and an improvement for displaying a 3D image using orthogonal polarized image projection.

  9. A combination of 2D similarity search, pharmacophore, and molecular docking techniques for the identification of vascular endothelial growth factor receptor-2 inhibitors.

    PubMed

    Ai, Guanhua; Tian, Caiping; Deng, Dawei; Fida, Guissi; Chen, Haiyan; Ma, Yuxiang; Ding, Li; Gu, Yueqing

    2015-04-01

    The human vascular endothelial growth factor receptor-2 (VEGFR-2) has been an attractive target for the inhibition of angiogenesis. In the current study, we used a hybrid protocol of virtual screening methods to retrieve new VEGFR-2 inhibitors from the Zinc-Specs Database (441 574 compounds). The hybrid protocol included the initial screening of candidates by comparing the 2D similarity to five reported top active inhibitors of 13 VEGFR-2 X-ray crystallography structures, followed by the pharmacophore modeling of virtual screening on the basis of receptor-ligand interactions and further narrowing by LibDOCK to obtain the final hits. Two compounds (AN-919/41439526 and AK-968/40939851) with a high libscore were selected as the final hits for a subsequent cell cytotoxicity study. The two compounds screened exerted significant inhibitory effects on the proliferation of cancer cells (U87 and MCF-7). The results indicated that the hybrid procedure is an effective approach for screening specific receptor inhibitors.

  10. Computational fragment-based screening using RosettaLigand: the SAMPL3 challenge

    NASA Astrophysics Data System (ADS)

    Kumar, Ashutosh; Zhang, Kam Y. J.

    2012-05-01

    SAMPL3 fragment based virtual screening challenge provides a valuable opportunity for researchers to test their programs, methods and screening protocols in a blind testing environment. We participated in SAMPL3 challenge and evaluated our virtual fragment screening protocol, which involves RosettaLigand as the core component by screening a 500 fragments Maybridge library against bovine pancreatic trypsin. Our study reaffirmed that the real test for any virtual screening approach would be in a blind testing environment. The analyses presented in this paper also showed that virtual screening performance can be improved, if a set of known active compounds is available and parameters and methods that yield better enrichment are selected. Our study also highlighted that to achieve accurate orientation and conformation of ligands within a binding site, selecting an appropriate method to calculate partial charges is important. Another finding is that using multiple receptor ensembles in docking does not always yield better enrichment than individual receptors. On the basis of our results and retrospective analyses from SAMPL3 fragment screening challenge we anticipate that chances of success in a fragment screening process could be increased significantly with careful selection of receptor structures, protein flexibility, sufficient conformational sampling within binding pocket and accurate assignment of ligand and protein partial charges.

  11. Performance of machine-learning scoring functions in structure-based virtual screening.

    PubMed

    Wójcikowski, Maciej; Ballester, Pedro J; Siedlecki, Pawel

    2017-04-25

    Classical scoring functions have reached a plateau in their performance in virtual screening and binding affinity prediction. Recently, machine-learning scoring functions trained on protein-ligand complexes have shown great promise in small tailored studies. They have also raised controversy, specifically concerning model overfitting and applicability to novel targets. Here we provide a new ready-to-use scoring function (RF-Score-VS) trained on 15 426 active and 893 897 inactive molecules docked to a set of 102 targets. We use the full DUD-E data sets along with three docking tools, five classical and three machine-learning scoring functions for model building and performance assessment. Our results show RF-Score-VS can substantially improve virtual screening performance: RF-Score-VS top 1% provides 55.6% hit rate, whereas that of Vina only 16.2% (for smaller percent the difference is even more encouraging: RF-Score-VS top 0.1% achieves 88.6% hit rate for 27.5% using Vina). In addition, RF-Score-VS provides much better prediction of measured binding affinity than Vina (Pearson correlation of 0.56 and -0.18, respectively). Lastly, we test RF-Score-VS on an independent test set from the DEKOIS benchmark and observed comparable results. We provide full data sets to facilitate further research in this area (http://github.com/oddt/rfscorevs) as well as ready-to-use RF-Score-VS (http://github.com/oddt/rfscorevs_binary).

  12. The rational search for PDE10A inhibitors from Sophora flavescens roots using pharmacophore‑ and docking‑based virtual screening.

    PubMed

    Fan, Han-Tian; Guo, Jun-Fang; Zhang, Yu-Xin; Gu, Yu-Xi; Ning, Zhong-Qi; Qiao, Yan-Jiang; Wang, Xing

    2018-01-01

    Phosphodiesterase 10A (PDE10A) has been confirmed to be an important target for the treatment of central nervous system (CNS) disorders. The purpose of the present study was to identify PDE10A inhibitors from herbs used in traditional Chinese medicine. Pharmacophore and molecular docking techniques were used to virtually screen the chemical molecule database of Sophora flavescens, a well‑known Chinese herb that has been used for improving mental health and regulating the CNS. The pharmacophore model generated recognized the common functional groups of known PDE10A inhibitors. In addition, molecular docking was used to calculate the binding affinity of ligand‑PDE10A interactions and to investigate the possible binding pattern. Virtual screening based on the pharmacophore model and molecular docking was performed to identify potential PDE10A inhibitors from S. flavescens. The results demonstrated that nine hits from S. flavescens were potential PDE10A inhibitors, and their biological activity was further validated using literature mining. A total of two compounds were reported to inhibit cyclic adenosine monophosphate phosphodiesterase, and one protected against glutamate‑induced oxidative stress in the CNS. The remaining six compounds require further bioactivity validation. The results of the present study demonstrated that this method was a time‑ and cost‑saving strategy for the identification of bioactive compounds from traditional Chinese medicine.

  13. A new insight into mushroom tyrosinase inhibitors: docking, pharmacophore-based virtual screening, and molecular modeling studies.

    PubMed

    Bagherzadeh, Kowsar; Shirgahi Talari, Faezeh; Sharifi, Amirhossein; Ganjali, Mohammad Reza; Saboury, Ali Akbar; Amanlou, Massoud

    2015-01-01

    Tyrosinase, a widely spread enzyme in micro-organisms, animals, and plants, participates in two rate-limiting steps in melanin formation pathway which is responsible for skin protection against UV lights' harm whose functional deficiency result in serious dermatological diseases. This enzyme seems to be responsible for neuromelanin formation in human brain as well. In plants, the enzyme leads the browning pathway which is commonly observed in injured tissues that is economically very unfavorable. Among different types of tyrosinase, mushroom tyrosinase has the highest homology with the mammalian tyrosinase and the only commercial tyrosinase available. In this study, ligand-based pharmacophore drug discovery method was applied to rapidly identify mushroom tyrosinase enzyme inhibitors using virtual screening. The model pharmacophore of essential interactions was developed and refined studying already experimentally discovered potent inhibitors employing Docking analysis methodology. After pharmacophore virtual screening and binding modes prediction, 14 compounds from ZINC database were identified as potent inhibitors of mushroom tyrosinase which were classified into five groups according to their chemical structures. The inhibition behavior of the discovered compounds was further studied through Classical Molecular Dynamic Simulations and the conformational changes induced by the presence of the studied ligands were discussed and compared to those of the substrate, tyrosine. According to the obtained results, five novel leads are introduced to be further optimized or directly used as potent inhibitors of mushroom tyrosinase.

  14. A rational workflow for sequential virtual screening of chemical libraries on searching for new tyrosinase inhibitors.

    PubMed

    Le-Thi-Thu, Huong; Casanola-Martín, Gerardo M; Marrero-Ponce, Yovani; Rescigno, Antonio; Abad, Concepcion; Khan, Mahmud Tareq Hassan

    2014-01-01

    The tyrosinase is a bifunctional, copper-containing enzyme widely distributed in the phylogenetic tree. This enzyme is involved in the production of melanin and some other pigments in humans, animals and plants, including skin pigmentations in mammals, and browning process in plants and vegetables. Therefore, enzyme inhibitors has been under the attention of the scientist community, due to its broad applications in food, cosmetic, agricultural and medicinal fields, to avoid the undesirable effects of abnormal melanin overproduction. However, the research of novel chemical with antityrosinase activity demands the use of more efficient tools to speed up the tyrosinase inhibitors discovery process. This chapter is focused in the different components of a predictive modeling workflow for the identification and prioritization of potential new compounds with activity against the tyrosinase enzyme. In this case, two structure chemical libraries Spectrum Collection and Drugbank are used in this attempt to combine different virtual screening data mining techniques, in a sequential manner helping to avoid the usually expensive and time consuming traditional methods. Some of the sequential steps summarize here comprise the use of drug-likeness filters, similarity searching, classification and potency QSAR multiclassifier systems, modeling molecular interactions systems, and similarity/diversity analysis. Finally, the methodologies showed here provide a rational workflow for virtual screening hit analysis and selection as a promissory drug discovery strategy for use in target identification phase.

  15. Sense of presence and anxiety during virtual social interactions between a human and virtual humans.

    PubMed

    Morina, Nexhmedin; Brinkman, Willem-Paul; Hartanto, Dwi; Emmelkamp, Paul M G

    2014-01-01

    Virtual reality exposure therapy (VRET) has been shown to be effective in treatment of anxiety disorders. Yet, there is lack of research on the extent to which interaction between the individual and virtual humans can be successfully implanted to increase levels of anxiety for therapeutic purposes. This proof-of-concept pilot study aimed at examining levels of the sense of presence and anxiety during exposure to virtual environments involving social interaction with virtual humans and using different virtual reality displays. A non-clinical sample of 38 participants was randomly assigned to either a head-mounted display (HMD) with motion tracker and sterescopic view condition or a one-screen projection-based virtual reality display condition. Participants in both conditions engaged in free speech dialogues with virtual humans controlled by research assistants. It was hypothesized that exposure to virtual social interactions will elicit moderate levels of sense of presence and anxiety in both groups. Further it was expected that participants in the HMD condition will report higher scores of sense of presence and anxiety than participants in the one-screen projection-based display condition. Results revealed that in both conditions virtual social interactions were associated with moderate levels of sense of presence and anxiety. Additionally, participants in the HMD condition reported significantly higher levels of presence than those in the one-screen projection-based display condition (p = .001). However, contrary to the expectations neither the average level of anxiety nor the highest level of anxiety during exposure to social virtual environments differed between the groups (p = .97 and p = .75, respectively). The findings suggest that virtual social interactions can be successfully applied in VRET to enhance sense of presence and anxiety. Furthermore, our results indicate that one-screen projection-based displays can successfully activate levels of anxiety in social virtual environments. The outcome can prove helpful in using low-cost projection-based virtual reality environments for treating individuals with social phobia.

  16. Classification and virtual screening of androgen receptor antagonists.

    PubMed

    Li, Jiazhong; Gramatica, Paola

    2010-05-24

    Computational tools, such as quantitative structure-activity relationship (QSAR), are highly useful as screening support for prioritization of substances of very high concern (SVHC). From the practical point of view, QSAR models should be effective to pick out more active rather than inactive compounds, expressed as sensitivity in classification works. This research investigates the classification of a big data set of endocrine-disrupting chemicals (EDCs)-androgen receptor (AR) antagonists, mainly aiming to improve the external sensitivity and to screen for potential AR binders. The kNN, lazy IB1, and ADTree methods and the consensus approach were used to build different models, which improve the sensitivity on external chemicals from 57.1% (literature) to 76.4%. Additionally, the models' predictive abilities were further validated on a blind collected data set (sensitivity: 85.7%). Then the proposed classifiers were used: (i) to distinguish a set of AR binders into antagonists and agonists; (ii) to screen a combined estrogen receptor binder database to find out possible chemicals that can bind to both AR and ER; and (iii) to virtually screen our in-house environmental chemical database. The in silico screening results suggest: (i) that some compounds can affect the normal endocrine system through a complex mechanism binding both to ER and AR; (ii) new EDCs, which are nonER binders, but can in silico bind to AR, are recognized; and (iii) about 20% of compounds in a big data set of environmental chemicals are predicted as new AR antagonists. The priority should be given to them to experimentally test the binding activities with AR.

  17. 1001 Ways to run AutoDock Vina for virtual screening

    NASA Astrophysics Data System (ADS)

    Jaghoori, Mohammad Mahdi; Bleijlevens, Boris; Olabarriaga, Silvia D.

    2016-03-01

    Large-scale computing technologies have enabled high-throughput virtual screening involving thousands to millions of drug candidates. It is not trivial, however, for biochemical scientists to evaluate the technical alternatives and their implications for running such large experiments. Besides experience with the molecular docking tool itself, the scientist needs to learn how to run it on high-performance computing (HPC) infrastructures, and understand the impact of the choices made. Here, we review such considerations for a specific tool, AutoDock Vina, and use experimental data to illustrate the following points: (1) an additional level of parallelization increases virtual screening throughput on a multi-core machine; (2) capturing of the random seed is not enough (though necessary) for reproducibility on heterogeneous distributed computing systems; (3) the overall time spent on the screening of a ligand library can be improved by analysis of factors affecting execution time per ligand, including number of active torsions, heavy atoms and exhaustiveness. We also illustrate differences among four common HPC infrastructures: grid, Hadoop, small cluster and multi-core (virtual machine on the cloud). Our analysis shows that these platforms are suitable for screening experiments of different sizes. These considerations can guide scientists when choosing the best computing platform and set-up for their future large virtual screening experiments.

  18. 1001 Ways to run AutoDock Vina for virtual screening.

    PubMed

    Jaghoori, Mohammad Mahdi; Bleijlevens, Boris; Olabarriaga, Silvia D

    2016-03-01

    Large-scale computing technologies have enabled high-throughput virtual screening involving thousands to millions of drug candidates. It is not trivial, however, for biochemical scientists to evaluate the technical alternatives and their implications for running such large experiments. Besides experience with the molecular docking tool itself, the scientist needs to learn how to run it on high-performance computing (HPC) infrastructures, and understand the impact of the choices made. Here, we review such considerations for a specific tool, AutoDock Vina, and use experimental data to illustrate the following points: (1) an additional level of parallelization increases virtual screening throughput on a multi-core machine; (2) capturing of the random seed is not enough (though necessary) for reproducibility on heterogeneous distributed computing systems; (3) the overall time spent on the screening of a ligand library can be improved by analysis of factors affecting execution time per ligand, including number of active torsions, heavy atoms and exhaustiveness. We also illustrate differences among four common HPC infrastructures: grid, Hadoop, small cluster and multi-core (virtual machine on the cloud). Our analysis shows that these platforms are suitable for screening experiments of different sizes. These considerations can guide scientists when choosing the best computing platform and set-up for their future large virtual screening experiments.

  19. Colon cancer screening

    MedlinePlus

    Screening for colon cancer; Colonoscopy - screening; Sigmoidoscopy - screening; Virtual colonoscopy - screening; Fecal immunochemical test; Stool DNA test; sDNA test; Colorectal cancer - screening; Rectal ...

  20. Discovery of novel SERCA inhibitors by virtual screening of a large compound library.

    PubMed

    Elam, Christopher; Lape, Michael; Deye, Joel; Zultowsky, Jodie; Stanton, David T; Paula, Stefan

    2011-05-01

    Two screening protocols based on recursive partitioning and computational ligand docking methodologies, respectively, were employed for virtual screens of a compound library with 345,000 entries for novel inhibitors of the enzyme sarco/endoplasmic reticulum calcium ATPase (SERCA), a potential target for cancer chemotherapy. A total of 72 compounds that were predicted to be potential inhibitors of SERCA were tested in bioassays and 17 displayed inhibitory potencies at concentrations below 100 μM. The majority of these inhibitors were composed of two phenyl rings tethered to each other by a short link of one to three atoms. Putative interactions between SERCA and the inhibitors were identified by inspection of docking-predicted poses and some of the structural features required for effective SERCA inhibition were determined by analysis of the classification pattern employed by the recursive partitioning models. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  1. SPOT-ligand 2: improving structure-based virtual screening by binding-homology search on an expanded structural template library.

    PubMed

    Litfin, Thomas; Zhou, Yaoqi; Yang, Yuedong

    2017-04-15

    The high cost of drug discovery motivates the development of accurate virtual screening tools. Binding-homology, which takes advantage of known protein-ligand binding pairs, has emerged as a powerful discrimination technique. In order to exploit all available binding data, modelled structures of ligand-binding sequences may be used to create an expanded structural binding template library. SPOT-Ligand 2 has demonstrated significantly improved screening performance over its previous version by expanding the template library 15 times over the previous one. It also performed better than or similar to other binding-homology approaches on the DUD and DUD-E benchmarks. The server is available online at http://sparks-lab.org . yaoqi.zhou@griffith.edu.au or yuedong.yang@griffith.edu.au. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  2. Fragment virtual screening based on Bayesian categorization for discovering novel VEGFR-2 scaffolds.

    PubMed

    Zhang, Yanmin; Jiao, Yu; Xiong, Xiao; Liu, Haichun; Ran, Ting; Xu, Jinxing; Lu, Shuai; Xu, Anyang; Pan, Jing; Qiao, Xin; Shi, Zhihao; Lu, Tao; Chen, Yadong

    2015-11-01

    The discovery of novel scaffolds against a specific target has long been one of the most significant but challengeable goals in discovering lead compounds. A scaffold that binds in important regions of the active pocket is more favorable as a starting point because scaffolds generally possess greater optimization possibilities. However, due to the lack of sufficient chemical space diversity of the databases and the ineffectiveness of the screening methods, it still remains a great challenge to discover novel active scaffolds. Since the strengths and weaknesses of both fragment-based drug design and traditional virtual screening (VS), we proposed a fragment VS concept based on Bayesian categorization for the discovery of novel scaffolds. This work investigated the proposal through an application on VEGFR-2 target. Firstly, scaffold and structural diversity of chemical space for 10 compound databases were explicitly evaluated. Simultaneously, a robust Bayesian classification model was constructed for screening not only compound databases but also their corresponding fragment databases. Although analysis of the scaffold diversity demonstrated a very unevenly distribution of scaffolds over molecules, results showed that our Bayesian model behaved better in screening fragments than molecules. Through a literature retrospective research, several generated fragments with relatively high Bayesian scores indeed exhibit VEGFR-2 biological activity, which strongly proved the effectiveness of fragment VS based on Bayesian categorization models. This investigation of Bayesian-based fragment VS can further emphasize the necessity for enrichment of compound databases employed in lead discovery by amplifying the diversity of databases with novel structures.

  3. [Selection of a melanine concentrating hormone receptor-1 (MCHR1) antagonists' focused library and its biological screening with AequoScreen].

    PubMed

    Flachner, Beáta; Hajdú, István; Dobi, Krisztina; Lorincz, Zsolt; Cseh, Sándor; Dormán, György

    2013-01-01

    Target focused libraries can be rapidly selected by 2D virtual screening methods from multimillion compounds' repositories if structures of active compounds are available. In the present study a multi-step virtual and in vitro screening cascade is reported to select Melanin Concentrating Hormone Receptor-1 (MCHR1) antagonists. The 2D similarity search combined with physicochemical parameter filtering is suitable for selecting candidates from multimillion compounds' repository. The seeds of the first round virtual screening were collected from the literature and commercial databases, while the seeds of the second round were the hits of the first round. In vitro screening underlined the efficiency of our approach, as in the second screening round the hit rate (8.6 %) significantly improved compared to the first round (1.9%), reaching the antagonist activity even below 10 nM.

  4. ToxAlerts: a Web server of structural alerts for toxic chemicals and compounds with potential adverse reactions.

    PubMed

    Sushko, Iurii; Salmina, Elena; Potemkin, Vladimir A; Poda, Gennadiy; Tetko, Igor V

    2012-08-27

    The article presents a Web-based platform for collecting and storing toxicological structural alerts from literature and for virtual screening of chemical libraries to flag potentially toxic chemicals and compounds that can cause adverse side effects. An alert is uniquely identified by a SMARTS template, a toxicological endpoint, and a publication where the alert was described. Additionally, the system allows storing complementary information such as name, comments, and mechanism of action, as well as other data. Most importantly, the platform can be easily used for fast virtual screening of large chemical datasets, focused libraries, or newly designed compounds against the toxicological alerts, providing a detailed profile of the chemicals grouped by structural alerts and endpoints. Such a facility can be used for decision making regarding whether a compound should be tested experimentally, validated with available QSAR models, or eliminated from consideration altogether. The alert-based screening can also be helpful for an easier interpretation of more complex QSAR models. The system is publicly accessible and tightly integrated with the Online Chemical Modeling Environment (OCHEM, http://ochem.eu). The system is open and expandable: any registered OCHEM user can introduce new alerts, browse, edit alerts introduced by other users, and virtually screen his/her data sets against all or selected alerts. The user sets being passed through the structural alerts can be used at OCHEM for other typical tasks: exporting in a wide variety of formats, development of QSAR models, additional filtering by other criteria, etc. The database already contains almost 600 structural alerts for such endpoints as mutagenicity, carcinogenicity, skin sensitization, compounds that undergo metabolic activation, and compounds that form reactive metabolites and, thus, can cause adverse reactions. The ToxAlerts platform is accessible on the Web at http://ochem.eu/alerts, and it is constantly growing.

  5. ToxAlerts: A Web Server of Structural Alerts for Toxic Chemicals and Compounds with Potential Adverse Reactions

    PubMed Central

    2012-01-01

    The article presents a Web-based platform for collecting and storing toxicological structural alerts from literature and for virtual screening of chemical libraries to flag potentially toxic chemicals and compounds that can cause adverse side effects. An alert is uniquely identified by a SMARTS template, a toxicological endpoint, and a publication where the alert was described. Additionally, the system allows storing complementary information such as name, comments, and mechanism of action, as well as other data. Most importantly, the platform can be easily used for fast virtual screening of large chemical datasets, focused libraries, or newly designed compounds against the toxicological alerts, providing a detailed profile of the chemicals grouped by structural alerts and endpoints. Such a facility can be used for decision making regarding whether a compound should be tested experimentally, validated with available QSAR models, or eliminated from consideration altogether. The alert-based screening can also be helpful for an easier interpretation of more complex QSAR models. The system is publicly accessible and tightly integrated with the Online Chemical Modeling Environment (OCHEM, http://ochem.eu). The system is open and expandable: any registered OCHEM user can introduce new alerts, browse, edit alerts introduced by other users, and virtually screen his/her data sets against all or selected alerts. The user sets being passed through the structural alerts can be used at OCHEM for other typical tasks: exporting in a wide variety of formats, development of QSAR models, additional filtering by other criteria, etc. The database already contains almost 600 structural alerts for such endpoints as mutagenicity, carcinogenicity, skin sensitization, compounds that undergo metabolic activation, and compounds that form reactive metabolites and, thus, can cause adverse reactions. The ToxAlerts platform is accessible on the Web at http://ochem.eu/alerts, and it is constantly growing. PMID:22876798

  6. Ultrafast protein structure-based virtual screening with Panther

    NASA Astrophysics Data System (ADS)

    Niinivehmas, Sanna P.; Salokas, Kari; Lätti, Sakari; Raunio, Hannu; Pentikäinen, Olli T.

    2015-10-01

    Molecular docking is by far the most common method used in protein structure-based virtual screening. This paper presents Panther, a novel ultrafast multipurpose docking tool. In Panther, a simple shape-electrostatic model of the ligand-binding area of the protein is created by utilizing the protein crystal structure. The features of the possible ligands are then compared to the model by using a similarity search algorithm. On average, one ligand can be processed in a few minutes by using classical docking methods, whereas using Panther processing takes <1 s. The presented Panther protocol can be used in several applications, such as speeding up the early phases of drug discovery projects, reducing the number of failures in the clinical phase of the drug development process, and estimating the environmental toxicity of chemicals. Panther-code is available in our web pages (http://www.jyu.fi/panther) free of charge after registration.

  7. Ultrafast protein structure-based virtual screening with Panther.

    PubMed

    Niinivehmas, Sanna P; Salokas, Kari; Lätti, Sakari; Raunio, Hannu; Pentikäinen, Olli T

    2015-10-01

    Molecular docking is by far the most common method used in protein structure-based virtual screening. This paper presents Panther, a novel ultrafast multipurpose docking tool. In Panther, a simple shape-electrostatic model of the ligand-binding area of the protein is created by utilizing the protein crystal structure. The features of the possible ligands are then compared to the model by using a similarity search algorithm. On average, one ligand can be processed in a few minutes by using classical docking methods, whereas using Panther processing takes <1 s. The presented Panther protocol can be used in several applications, such as speeding up the early phases of drug discovery projects, reducing the number of failures in the clinical phase of the drug development process, and estimating the environmental toxicity of chemicals. Panther-code is available in our web pages (http://www.jyu.fi/panther) free of charge after registration.

  8. What do we know and when do we know it?

    NASA Astrophysics Data System (ADS)

    Nicholls, Anthony

    2008-03-01

    Two essential aspects of virtual screening are considered: experimental design and performance metrics. In the design of any retrospective virtual screen, choices have to be made as to the purpose of the exercise. Is the goal to compare methods? Is the interest in a particular type of target or all targets? Are we simulating a `real-world' setting, or teasing out distinguishing features of a method? What are the confidence limits for the results? What should be reported in a publication? In particular, what criteria should be used to decide between different performance metrics? Comparing the field of molecular modeling to other endeavors, such as medical statistics, criminology, or computer hardware evaluation indicates some clear directions. Taken together these suggest the modeling field has a long way to go to provide effective assessment of its approaches, either to itself or to a broader audience, but that there are no technical reasons why progress cannot be made.

  9. Identification of novel Trypanosoma cruzi prolyl oligopeptidase inhibitors by structure-based virtual screening

    NASA Astrophysics Data System (ADS)

    de Almeida, Hugo; Leroux, Vincent; Motta, Flávia Nader; Grellier, Philippe; Maigret, Bernard; Santana, Jaime M.; Bastos, Izabela Marques Dourado

    2016-12-01

    We have previously demonstrated that the secreted prolyl oligopeptidase of Trypanosoma cruzi (POPTc80) is involved in the infection process by facilitating parasite migration through the extracellular matrix. We have built a 3D structural model where POPTc80 is formed by a catalytic α/β-hydrolase domain and a β-propeller domain, and in which the substrate docks at the inter-domain interface, suggesting a "jaw opening" gating access mechanism. This preliminary model was refined by molecular dynamics simulations and next used for a virtual screening campaign, whose predictions were tested by standard binding assays. This strategy was successful as all 13 tested molecules suggested from the in silico calculations were found out to be active POPTc80 inhibitors in the micromolar range (lowest K i at 667 nM). This work paves the way for future development of innovative drugs against Chagas disease.

  10. Gravitational anti-screening as an alternative to dark matter

    NASA Astrophysics Data System (ADS)

    Penner, A. Raymond

    2016-04-01

    A semiclassical model of the screening of electric charge by virtual electric dipoles, as found in electrodynamic theory, will be presented. This model is then applied to the hypothetical case of an electric force where like charges attract. The resulting anti-screening of the electric charge is found to have the same functional dependence on the field source and observation distance that is found with the Baryonic Tully-Fisher Relationship. This leads to an anti-screening model for the gravitational force which is then used to determine the theoretical rotational curve of the Galaxy and the theoretical velocity dispersions and shear values for the Coma cluster. These theoretical results are found to be in good agreement with the corresponding astronomical observations. The screening of electric charge as found in QED and the larger apparent masses of galaxies and galactic clusters therefore appears to be two sides of the same coin.

  11. Ligand-guided optimization of CXCR4 homology models for virtual screening using a multiple chemotype approach

    NASA Astrophysics Data System (ADS)

    Neves, Marco A. C.; Simões, Sérgio; Sá e Melo, M. Luisa

    2010-12-01

    CXCR4 is a G-protein coupled receptor for CXCL12 that plays an important role in human immunodeficiency virus infection, cancer growth and metastasization, immune cell trafficking and WHIM syndrome. In the absence of an X-ray crystal structure, theoretical modeling of the CXCR4 receptor remains an important tool for structure-function analysis and to guide the discovery of new antagonists with potential clinical use. In this study, the combination of experimental data and molecular modeling approaches allowed the development of optimized ligand-receptor models useful for elucidation of the molecular determinants of small molecule binding and functional antagonism. The ligand-guided homology modeling approach used in this study explicitly re-shaped the CXCR4 binding pocket in order to improve discrimination between known CXCR4 antagonists and random decoys. Refinement based on multiple test-sets with small compounds from single chemotypes provided the best early enrichment performance. These results provide an important tool for structure-based drug design and virtual ligand screening of new CXCR4 antagonists.

  12. Getting the Most out of PubChem for Virtual Screening

    PubMed Central

    Kim, Sunghwan

    2016-01-01

    Introduction With the emergence of the “big data” era, the biomedical research community has great interest in exploiting publicly available chemical information for drug discovery. PubChem is an example of public databases that provide a large amount of chemical information free of charge. Areas covered This article provides an overview of how PubChem’s data, tools, and services can be used for virtual screening and reviews recent publications that discuss important aspects of exploiting PubChem for drug discovery. Expert opinion PubChem offers comprehensive chemical information useful for drug discovery. It also provides multiple programmatic access routes, which are essential to build automated virtual screening pipelines that exploit PubChem data. In addition, PubChemRDF allows users to download PubChem data and load them into a local computing facility, facilitating data integration between PubChem and other resources. PubChem resources have been used in many studies for developing bioactivity and toxicity prediction models, discovering polypharmacologic (multi-target) ligands, and identifying new macromolecule targets of compounds (for drug-repurposing or off-target side effect prediction). These studies demonstrate the usefulness of PubChem as a key resource for computer-aided drug discovery and related area. PMID:27454129

  13. Constructing and Validating High-Performance MIEC-SVM Models in Virtual Screening for Kinases: A Better Way for Actives Discovery

    PubMed Central

    Sun, Huiyong; Pan, Peichen; Tian, Sheng; Xu, Lei; Kong, Xiaotian; Li, Youyong; Dan Li; Hou, Tingjun

    2016-01-01

    The MIEC-SVM approach, which combines molecular interaction energy components (MIEC) derived from free energy decomposition and support vector machine (SVM), has been found effective in capturing the energetic patterns of protein-peptide recognition. However, the performance of this approach in identifying small molecule inhibitors of drug targets has not been well assessed and validated by experiments. Thereafter, by combining different model construction protocols, the issues related to developing best MIEC-SVM models were firstly discussed upon three kinase targets (ABL, ALK, and BRAF). As for the investigated targets, the optimized MIEC-SVM models performed much better than the models based on the default SVM parameters and Autodock for the tested datasets. Then, the proposed strategy was utilized to screen the Specs database for discovering potential inhibitors of the ALK kinase. The experimental results showed that the optimized MIEC-SVM model, which identified 7 actives with IC50 < 10 μM from 50 purchased compounds (namely hit rate of 14%, and 4 in nM level) and performed much better than Autodock (3 actives with IC50 < 10 μM from 50 purchased compounds, namely hit rate of 6%, and 2 in nM level), suggesting that the proposed strategy is a powerful tool in structure-based virtual screening. PMID:27102549

  14. Constructing and Validating High-Performance MIEC-SVM Models in Virtual Screening for Kinases: A Better Way for Actives Discovery.

    PubMed

    Sun, Huiyong; Pan, Peichen; Tian, Sheng; Xu, Lei; Kong, Xiaotian; Li, Youyong; Dan Li; Hou, Tingjun

    2016-04-22

    The MIEC-SVM approach, which combines molecular interaction energy components (MIEC) derived from free energy decomposition and support vector machine (SVM), has been found effective in capturing the energetic patterns of protein-peptide recognition. However, the performance of this approach in identifying small molecule inhibitors of drug targets has not been well assessed and validated by experiments. Thereafter, by combining different model construction protocols, the issues related to developing best MIEC-SVM models were firstly discussed upon three kinase targets (ABL, ALK, and BRAF). As for the investigated targets, the optimized MIEC-SVM models performed much better than the models based on the default SVM parameters and Autodock for the tested datasets. Then, the proposed strategy was utilized to screen the Specs database for discovering potential inhibitors of the ALK kinase. The experimental results showed that the optimized MIEC-SVM model, which identified 7 actives with IC50 < 10 μM from 50 purchased compounds (namely hit rate of 14%, and 4 in nM level) and performed much better than Autodock (3 actives with IC50 < 10 μM from 50 purchased compounds, namely hit rate of 6%, and 2 in nM level), suggesting that the proposed strategy is a powerful tool in structure-based virtual screening.

  15. Knowledge based identification of MAO-B selective inhibitors using pharmacophore and structure based virtual screening models.

    PubMed

    Boppana, Kiran; Dubey, P K; Jagarlapudi, Sarma A R P; Vadivelan, S; Rambabu, G

    2009-09-01

    Monoamine Oxidase B interaction with known ligands was investigated using combined pharmacophore and structure based modeling approach. The docking results suggested that the pharmacophore and docking models are in good agreement and are used to identify the selective MAO-B inhibitors. The best model, Hypo2 consists of three pharmacophore features, i.e., one hydrogen bond acceptor, one hydrogen bond donor and one ring aromatic. The Hypo2 model was used to screen an in-house database of 80,000 molecules and have resulted in 5500 compounds. Docking studies were performed, subsequently, on the cluster representatives of 530 hits from 5500 compounds. Based on the structural novelty and selectivity index, we have suggested 15 selective MAO-B inhibitors for further synthesis and pharmacological screening.

  16. Structure-Guided Screening for Functionally Selective D2 Dopamine Receptor Ligands from a Virtual Chemical Library.

    PubMed

    Männel, Barbara; Jaiteh, Mariama; Zeifman, Alexey; Randakova, Alena; Möller, Dorothee; Hübner, Harald; Gmeiner, Peter; Carlsson, Jens

    2017-10-20

    Functionally selective ligands stabilize conformations of G protein-coupled receptors (GPCRs) that induce a preference for signaling via a subset of the intracellular pathways activated by the endogenous agonists. The possibility to fine-tune the functional activity of a receptor provides opportunities to develop drugs that selectively signal via pathways associated with a therapeutic effect and avoid those causing side effects. Animal studies have indicated that ligands displaying functional selectivity at the D 2 dopamine receptor (D 2 R) could be safer and more efficacious drugs against neuropsychiatric diseases. In this work, computational design of functionally selective D 2 R ligands was explored using structure-based virtual screening. Molecular docking of known functionally selective ligands to a D 2 R homology model indicated that such compounds were anchored by interactions with the orthosteric site and extended into a common secondary pocket. A tailored virtual library with close to 13 000 compounds bearing 2,3-dichlorophenylpiperazine, a privileged orthosteric scaffold, connected to diverse chemical moieties via a linker was docked to the D 2 R model. Eighteen top-ranked compounds that occupied both the orthosteric and allosteric site were synthesized, leading to the discovery of 16 partial agonists. A majority of the ligands had comparable maximum effects in the G protein and β-arrestin recruitment assays, but a subset displayed preference for a single pathway. In particular, compound 4 stimulated β-arrestin recruitment (EC 50 = 320 nM, E max = 16%) but had no detectable G protein signaling. The use of structure-based screening and virtual libraries to discover GPCR ligands with tailored functional properties will be discussed.

  17. Guided exploration in virtual environments

    NASA Astrophysics Data System (ADS)

    Beckhaus, Steffi; Eckel, Gerhard; Strothotte, Thomas

    2001-06-01

    We describe an application supporting alternating interaction and animation for the purpose of exploration in a surround- screen projection-based virtual reality system. The exploration of an environment is a highly interactive and dynamic process in which the presentation of objects of interest can give the user guidance while exploring the scene. Previous systems for automatic presentation of models or scenes need either cinematographic rules, direct human interaction, framesets or precalculation (e.g. precalculation of paths to a predefined goal). We report on the development of a system that can deal with rapidly changing user interest in objects of a scene or model as well as with dynamic models and changes of the camera position introduced interactively by the user. It is implemented as a potential-field based camera data generating system. In this paper we describe the implementation of our approach in a virtual art museum on the CyberStage, our surround-screen projection-based stereoscopic display. The paradigm of guided exploration is introduced describing the freedom of the user to explore the museum autonomously. At the same time, if requested by the user, guided exploration provides just-in-time navigational support. The user controls this support by specifying the current field of interest in high-level search criteria. We also present an informal user study evaluating this approach.

  18. Discovery of novel human acrosin inhibitors by virtual screening

    NASA Astrophysics Data System (ADS)

    Liu, Xuefei; Dong, Guoqiang; Zhang, Jue; Qi, Jingjing; Zheng, Canhui; Zhou, Youjun; Zhu, Ju; Sheng, Chunquan; Lü, Jiaguo

    2011-10-01

    Human acrosin is an attractive target for the discovery of male contraceptive drugs. For the first time, structure-based drug design was applied to discover structurally diverse human acrosin inhibitors. A parallel virtual screening strategy in combination with pharmacophore-based and docking-based techniques was used to screen the SPECS database. From 16 compounds selected by virtual screening, a total of 10 compounds were found to be human acrosin inhibitors. Compound 2 was found to be the most potent hit (IC50 = 14 μM) and its binding mode was investigated by molecular dynamics simulations. The hit interacted with human acrosin mainly through hydrophobic and hydrogen-bonding interactions, which provided a good starting structure for further optimization studies.

  19. ChemScreener: A Distributed Computing Tool for Scaffold based Virtual Screening.

    PubMed

    Karthikeyan, Muthukumarasamy; Pandit, Deepak; Vyas, Renu

    2015-01-01

    In this work we present ChemScreener, a Java-based application to perform virtual library generation combined with virtual screening in a platform-independent distributed computing environment. ChemScreener comprises a scaffold identifier, a distinct scaffold extractor, an interactive virtual library generator as well as a virtual screening module for subsequently selecting putative bioactive molecules. The virtual libraries are annotated with chemophore-, pharmacophore- and toxicophore-based information for compound prioritization. The hits selected can then be further processed using QSAR, docking and other in silico approaches which can all be interfaced within the ChemScreener framework. As a sample application, in this work scaffold selectivity, diversity, connectivity and promiscuity towards six important therapeutic classes have been studied. In order to illustrate the computational power of the application, 55 scaffolds extracted from 161 anti-psychotic compounds were enumerated to produce a virtual library comprising 118 million compounds (17 GB) and annotated with chemophore, pharmacophore and toxicophore based features in a single step which would be non-trivial to perform with many standard software tools today on libraries of this size.

  20. Combinatorially-generated library of 6-fluoroquinolone analogs as potential novel antitubercular agents: a chemometric and molecular modeling assessment.

    PubMed

    Minovski, Nikola; Perdih, Andrej; Solmajer, Tom

    2012-05-01

    The virtual combinatorial chemistry approach as a methodology for generating chemical libraries of structurally-similar analogs in a virtual environment was employed for building a general mixed virtual combinatorial library with a total of 53.871 6-FQ structural analogs, introducing the real synthetic pathways of three well known 6-FQ inhibitors. The druggability properties of the generated combinatorial 6-FQs were assessed using an in-house developed drug-likeness filter integrating the Lipinski/Veber rule-sets. The compounds recognized as drug-like were used as an external set for prediction of the biological activity values using a neural-networks (NN) model based on an experimentally-determined set of active 6-FQs. Furthermore, a subset of compounds was extracted from the pool of drug-like 6-FQs, with predicted biological activity, and subsequently used in virtual screening (VS) campaign combining pharmacophore modeling and molecular docking studies. This complex scheme, a powerful combination of chemometric and molecular modeling approaches provided novel QSAR guidelines that could aid in the further lead development of 6-FQs agents.

  1. How to benchmark methods for structure-based virtual screening of large compound libraries.

    PubMed

    Christofferson, Andrew J; Huang, Niu

    2012-01-01

    Structure-based virtual screening is a useful computational technique for ligand discovery. To systematically evaluate different docking approaches, it is important to have a consistent benchmarking protocol that is both relevant and unbiased. Here, we describe the designing of a benchmarking data set for docking screen assessment, a standard docking screening process, and the analysis and presentation of the enrichment of annotated ligands among a background decoy database.

  2. Virtual environments for scene of crime reconstruction and analysis

    NASA Astrophysics Data System (ADS)

    Howard, Toby L. J.; Murta, Alan D.; Gibson, Simon

    2000-02-01

    This paper describes research conducted in collaboration with Greater Manchester Police (UK), to evalute the utility of Virtual Environments for scene of crime analysis, forensic investigation, and law enforcement briefing and training. We present an illustrated case study of the construction of a high-fidelity virtual environment, intended to match a particular real-life crime scene as closely as possible. We describe and evaluate the combination of several approaches including: the use of the Manchester Scene Description Language for constructing complex geometrical models; the application of a radiosity rendering algorithm with several novel features based on human perceptual consideration; texture extraction from forensic photography; and experiments with interactive walkthroughs and large-screen stereoscopic display of the virtual environment implemented using the MAVERIK system. We also discuss the potential applications of Virtual Environment techniques in the Law Enforcement and Forensic communities.

  3. DPubChem: a web tool for QSAR modeling and high-throughput virtual screening.

    PubMed

    Soufan, Othman; Ba-Alawi, Wail; Magana-Mora, Arturo; Essack, Magbubah; Bajic, Vladimir B

    2018-06-14

    High-throughput screening (HTS) performs the experimental testing of a large number of chemical compounds aiming to identify those active in the considered assay. Alternatively, faster and cheaper methods of large-scale virtual screening are performed computationally through quantitative structure-activity relationship (QSAR) models. However, the vast amount of available HTS heterogeneous data and the imbalanced ratio of active to inactive compounds in an assay make this a challenging problem. Although different QSAR models have been proposed, they have certain limitations, e.g., high false positive rates, complicated user interface, and limited utilization options. Therefore, we developed DPubChem, a novel web tool for deriving QSAR models that implement the state-of-the-art machine-learning techniques to enhance the precision of the models and enable efficient analyses of experiments from PubChem BioAssay database. DPubChem also has a simple interface that provides various options to users. DPubChem predicted active compounds for 300 datasets with an average geometric mean and F 1 score of 76.68% and 76.53%, respectively. Furthermore, DPubChem builds interaction networks that highlight novel predicted links between chemical compounds and biological assays. Using such a network, DPubChem successfully suggested a novel drug for the Niemann-Pick type C disease. DPubChem is freely available at www.cbrc.kaust.edu.sa/dpubchem .

  4. Stepping into the virtual unknown: feasibility study of a virtual reality-based test of ocular misalignment.

    PubMed

    Nesaratnam, N; Thomas, P; Vivian, A

    2017-10-01

    IntroductionDissociated tests of strabismus provide valuable information for diagnosis and monitoring of ocular misalignment in patients with normal retinal correspondence. However, they are vulnerable to operator error and rely on a fixed head position. Virtual reality headsets obviate the need for head fixation, while providing other clear theoretical advantages, including complete control over the illumination and targets presented for the patient's interaction.PurposeWe compared the performance of a virtual reality-based test of ocular misalignment to that of the traditional Lees screen, to establish the feasibility of using virtual reality technology in ophthalmic settings in the future.MethodsThree patients underwent a traditional Lees screen test, and a virtual reality headset-based test of ocular motility. The virtual reality headset-based programme consisted of an initial test to measure horizontal and vertical deviation, followed by a test for torsion.ResultsThe pattern of deviation obtained using the virtual reality-based test showed agreement with that obtained from the Lees screen for patients with a fourth nerve palsy, comitant esotropia, and restrictive thyroid eye disease.ConclusionsThis study reports the first use of a virtual reality headset in assessing ocular misalignment, and demonstrates that it is a feasible dissociative test of strabismus.

  5. A Combined Pharmacophore Modeling, 3D QSAR and Virtual Screening Studies on Imidazopyridines as B-Raf Inhibitors

    PubMed Central

    Xie, Huiding; Chen, Lijun; Zhang, Jianqiang; Xie, Xiaoguang; Qiu, Kaixiong; Fu, Jijun

    2015-01-01

    B-Raf kinase is an important target in treatment of cancers. In order to design and find potent B-Raf inhibitors (BRIs), 3D pharmacophore models were created using the Genetic Algorithm with Linear Assignment of Hypermolecular Alignment of Database (GALAHAD). The best pharmacophore model obtained which was used in effective alignment of the data set contains two acceptor atoms, three donor atoms and three hydrophobes. In succession, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on 39 imidazopyridine BRIs to build three dimensional quantitative structure-activity relationship (3D QSAR) models based on both pharmacophore and docking alignments. The CoMSIA model based on the pharmacophore alignment shows the best result (q2 = 0.621, r2pred = 0.885). This 3D QSAR approach provides significant insights that are useful for designing potent BRIs. In addition, the obtained best pharmacophore model was used for virtual screening against the NCI2000 database. The hit compounds were further filtered with molecular docking, and their biological activities were predicted using the CoMSIA model, and three potential BRIs with new skeletons were obtained. PMID:26035757

  6. A Combined Pharmacophore Modeling, 3D QSAR and Virtual Screening Studies on Imidazopyridines as B-Raf Inhibitors.

    PubMed

    Xie, Huiding; Chen, Lijun; Zhang, Jianqiang; Xie, Xiaoguang; Qiu, Kaixiong; Fu, Jijun

    2015-05-29

    B-Raf kinase is an important target in treatment of cancers. In order to design and find potent B-Raf inhibitors (BRIs), 3D pharmacophore models were created using the Genetic Algorithm with Linear Assignment of Hypermolecular Alignment of Database (GALAHAD). The best pharmacophore model obtained which was used in effective alignment of the data set contains two acceptor atoms, three donor atoms and three hydrophobes. In succession, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on 39 imidazopyridine BRIs to build three dimensional quantitative structure-activity relationship (3D QSAR) models based on both pharmacophore and docking alignments. The CoMSIA model based on the pharmacophore alignment shows the best result (q(2) = 0.621, r(2)(pred) = 0.885). This 3D QSAR approach provides significant insights that are useful for designing potent BRIs. In addition, the obtained best pharmacophore model was used for virtual screening against the NCI2000 database. The hit compounds were further filtered with molecular docking, and their biological activities were predicted using the CoMSIA model, and three potential BRIs with new skeletons were obtained.

  7. Domain-Specific QSAR Models for Identifying Potential Estrogenic Activity of Phenols (FutureTox III)

    EPA Science Inventory

    Computational tools can be used for efficient evaluation of untested chemicals for their ability to disrupt the endocrine system. We have employed previously developed global QSAR models that were trained and validated on the ToxCast/Tox21 ER assay data for virtual screening of a...

  8. Self-Observation Model Employing an Instinctive Interface for Classroom Active Learning

    ERIC Educational Resources Information Center

    Chen, Gwo-Dong; Nurkhamid; Wang, Chin-Yeh; Yang, Shu-Han; Chao, Po-Yao

    2014-01-01

    In a classroom, obtaining active, whole-focused, and engaging learning results from a design is often difficult. In this study, we propose a self-observation model that employs an instinctive interface for classroom active learning. Students can communicate with virtual avatars in the vertical screen and can react naturally according to the…

  9. Virtual Screening Approaches towards the Discovery of Toll-Like Receptor Modulators

    PubMed Central

    Pérez-Regidor, Lucía; Zarioh, Malik; Ortega, Laura; Martín-Santamaría, Sonsoles

    2016-01-01

    This review aims to summarize the latest efforts performed in the search for novel chemical entities such as Toll-like receptor (TLR) modulators by means of virtual screening techniques. This is an emergent research field with only very recent (and successful) contributions. Identification of drug-like molecules with potential therapeutic applications for the treatment of a variety of TLR-regulated diseases has attracted considerable interest due to the clinical potential. Additionally, the virtual screening databases and computational tools employed have been overviewed in a descriptive way, widening the scope for researchers interested in the field. PMID:27618029

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markidis, S.; Rizwan, U.

    The use of virtual nuclear control room can be an effective and powerful tool for training personnel working in the nuclear power plants. Operators could experience and simulate the functioning of the plant, even in critical situations, without being in a real power plant or running any risk. 3D models can be exported to Virtual Reality formats and then displayed in the Virtual Reality environment providing an immersive 3D experience. However, two major limitations of this approach are that 3D models exhibit static textures, and they are not fully interactive and therefore cannot be used effectively in training personnel. Inmore » this paper we first describe a possible solution for embedding the output of a computer application in a 3D virtual scene, coupling real-world applications and VR systems. The VR system reported here grabs the output of an application running on an X server; creates a texture with the output and then displays it on a screen or a wall in the virtual reality environment. We then propose a simple model for providing interaction between the user in the VR system and the running simulator. This approach is based on the use of internet-based application that can be commanded by a laptop or tablet-pc added to the virtual environment. (authors)« less

  11. Performance of machine-learning scoring functions in structure-based virtual screening

    PubMed Central

    Wójcikowski, Maciej; Ballester, Pedro J.; Siedlecki, Pawel

    2017-01-01

    Classical scoring functions have reached a plateau in their performance in virtual screening and binding affinity prediction. Recently, machine-learning scoring functions trained on protein-ligand complexes have shown great promise in small tailored studies. They have also raised controversy, specifically concerning model overfitting and applicability to novel targets. Here we provide a new ready-to-use scoring function (RF-Score-VS) trained on 15 426 active and 893 897 inactive molecules docked to a set of 102 targets. We use the full DUD-E data sets along with three docking tools, five classical and three machine-learning scoring functions for model building and performance assessment. Our results show RF-Score-VS can substantially improve virtual screening performance: RF-Score-VS top 1% provides 55.6% hit rate, whereas that of Vina only 16.2% (for smaller percent the difference is even more encouraging: RF-Score-VS top 0.1% achieves 88.6% hit rate for 27.5% using Vina). In addition, RF-Score-VS provides much better prediction of measured binding affinity than Vina (Pearson correlation of 0.56 and −0.18, respectively). Lastly, we test RF-Score-VS on an independent test set from the DEKOIS benchmark and observed comparable results. We provide full data sets to facilitate further research in this area (http://github.com/oddt/rfscorevs) as well as ready-to-use RF-Score-VS (http://github.com/oddt/rfscorevs_binary). PMID:28440302

  12. Virtual Embryo: Systems Modeling in Developmental Toxicity

    EPA Science Inventory

    High-throughput screening (HTS) studies are providing a rich source of data that can be applied to chemical profiling to address sensitivity and specificity of molecular targets, biological pathways, cellular and developmental processes. EPA’s ToxCast project is testing 960 uniq...

  13. Applications of SHAPES screening in drug discovery.

    PubMed

    Lepre, Christopher A; Peng, Jeffrey; Fejzo, Jasna; Abdul-Manan, Norzehan; Pocas, Jennifer; Jacobs, Marc; Xie, Xiaoling; Moore, Jonathan M

    2002-12-01

    The SHAPES strategy combines nuclear magnetic resonance (NMR) screening of a library of small drug-like molecules with a variety of complementary methods, such as virtual screening, high throughput enzymatic assays, combinatorial chemistry, X-ray crystallography, and molecular modeling, in a directed search for new medicinal chemistry leads. In the past few years, the SHAPES strategy has found widespread utility in pharmaceutical research. To illustrate a variety of different implementations of the method, we will focus in this review on recent applications of the SHAPES strategy in several drug discovery programs at Vertex Pharmaceuticals.

  14. Enrichment assessment of multiple virtual screening strategies for Toll-like receptor 8 agonists based on a maximal unbiased benchmarking data set.

    PubMed

    Pei, Fen; Jin, Hongwei; Zhou, Xin; Xia, Jie; Sun, Lidan; Liu, Zhenming; Zhang, Liangren

    2015-11-01

    Toll-like receptor 8 agonists, which activate adaptive immune responses by inducing robust production of T-helper 1-polarizing cytokines, are promising candidates for vaccine adjuvants. As the binding site of toll-like receptor 8 is large and highly flexible, virtual screening by individual method has inevitable limitations; thus, a comprehensive comparison of different methods may provide insights into seeking effective strategy for the discovery of novel toll-like receptor 8 agonists. In this study, the performance of knowledge-based pharmacophore, shape-based 3D screening, and combined strategies was assessed against a maximum unbiased benchmarking data set containing 13 actives and 1302 decoys specialized for toll-like receptor 8 agonists. Prior structure-activity relationship knowledge was involved in knowledge-based pharmacophore generation, and a set of antagonists was innovatively used to verify the selectivity of the selected knowledge-based pharmacophore. The benchmarking data set was generated from our recently developed 'mubd-decoymaker' protocol. The enrichment assessment demonstrated a considerable performance through our selected three-layer virtual screening strategy: knowledge-based pharmacophore (Phar1) screening, shape-based 3D similarity search (Q4_combo), and then a Gold docking screening. This virtual screening strategy could be further employed to perform large-scale database screening and to discover novel toll-like receptor 8 agonists. © 2015 John Wiley & Sons A/S.

  15. Applying DEKOIS 2.0 in structure-based virtual screening to probe the impact of preparation procedures and score normalization.

    PubMed

    Ibrahim, Tamer M; Bauer, Matthias R; Boeckler, Frank M

    2015-01-01

    Structure-based virtual screening techniques can help to identify new lead structures and complement other screening approaches in drug discovery. Prior to docking, the data (protein crystal structures and ligands) should be prepared with great attention to molecular and chemical details. Using a subset of 18 diverse targets from the recently introduced DEKOIS 2.0 benchmark set library, we found differences in the virtual screening performance of two popular docking tools (GOLD and Glide) when employing two different commercial packages (e.g. MOE and Maestro) for preparing input data. We systematically investigated the possible factors that can be responsible for the found differences in selected sets. For the Angiotensin-I-converting enzyme dataset, preparation of the bioactive molecules clearly exerted the highest influence on VS performance compared to preparation of the decoys or the target structure. The major contributing factors were different protonation states, molecular flexibility, and differences in the input conformation (particularly for cyclic moieties) of bioactives. In addition, score normalization strategies eliminated the biased docking scores shown by GOLD (ChemPLP) for the larger bioactives and produced a better performance. Generalizing these normalization strategies on the 18 DEKOIS 2.0 sets, improved the performances for the majority of GOLD (ChemPLP) docking, while it showed detrimental performances for the majority of Glide (SP) docking. In conclusion, we exemplify herein possible issues particularly during the preparation stage of molecular data and demonstrate to which extent these issues can cause perturbations in the virtual screening performance. We provide insights into what problems can occur and should be avoided, when generating benchmarks to characterize the virtual screening performance. Particularly, careful selection of an appropriate molecular preparation setup for the bioactive set and the use of score normalization for docking with GOLD (ChemPLP) appear to have a great importance for the screening performance. For virtual screening campaigns, we recommend to invest time and effort into including alternative preparation workflows into the generation of the master library, even at the cost of including multiple representations of each molecule. Graphical AbstractUsing DEKOIS 2.0 benchmark sets in structure-based virtual screening to probe the impact of molecular preparation and score normalization.

  16. GPCRs from fusarium graminearum detection, modeling and virtual screening - the search for new routes to control head blight disease.

    PubMed

    Bresso, Emmanuel; Togawa, Roberto; Hammond-Kosack, Kim; Urban, Martin; Maigret, Bernard; Martins, Natalia Florencio

    2016-12-15

    Fusarium graminearum (FG) is one of the major cereal infecting pathogens causing high economic losses worldwide and resulting in adverse effects on human and animal health. Therefore, the development of new fungicides against FG is an important issue to reduce cereal infection and economic impact. In the strategy for developing new fungicides, a critical step is the identification of new targets against which innovative chemicals weapons can be designed. As several G-protein coupled receptors (GPCRs) are implicated in signaling pathways critical for the fungi development and survival, such proteins could be valuable efficient targets to reduce Fusarium growth and therefore to prevent food contamination. In this study, GPCRs were predicted in the FG proteome using a manually curated pipeline dedicated to the identification of GPCRs. Based on several successive filters, the most appropriate GPCR candidate target for developing new fungicides was selected. Searching for new compounds blocking this particular target requires the knowledge of its 3D-structure. As no experimental X-Ray structure of the selected protein was available, a 3D model was built by homology modeling. The model quality and stability was checked by 100 ns of molecular dynamics simulations. Two stable conformations representative of the conformational families of the protein were extracted from the 100 ns simulation and were used for an ensemble docking campaign. The model quality and stability was checked by 100 ns of molecular dynamics simulations previously to the virtual screening step. The virtual screening step comprised the exploration of a chemical library with 11,000 compounds that were docked to the GPCR model. Among these compounds, we selected the ten top-ranked nontoxic molecules proposed to be experimentally tested to validate the in silico simulation. This study provides an integrated process merging genomics, structural bioinformatics and drug design for proposing innovative solutions to a world wide threat to grain producers and consumers.

  17. Pharmacophore modeling and virtual screening studies to design some potential histone deacetylase inhibitors as new leads.

    PubMed

    Vadivelan, S; Sinha, B N; Rambabu, G; Boppana, Kiran; Jagarlapudi, Sarma A R P

    2008-02-01

    Histone deacetylase is one of the important targets in the treatment of solid tumors and hematological cancers. A total of 20 well-defined inhibitors were used to generate Pharmacophore models using and HypoGen module of Catalyst. These 20 molecules broadly represent 3 different chemotypes. The best HypoGen model consists of four-pharmacophore features--one hydrogen bond acceptor, one hydrophobic aliphatic and two ring aromatic centers. This model was validated against 378 known HDAC inhibitors with a correlation of 0.897 as well as enrichment factor of 2.68 against a maximum value of 3. This model was further used to retrieve molecules from NCI database with 238,819 molecules. A total of 4638 molecules from a pool of 238,819 molecules were identified as hits while 297 molecules were indicated as highly active. Also, a Similarity analysis has been carried out for set of 4638 hits with respect to most active molecule of each chemotypes which validated not only the Virtual Screening potential of the model but also identified the possible new Chemotypes. This type of Similarity analysis would prove to be efficient not only for lead generation but also for lead optimization.

  18. Missing depth cues in virtual reality limit performance and quality of three dimensional reaching movements

    PubMed Central

    Mayo, Johnathan; Baur, Kilian; Wittmann, Frieder; Riener, Robert; Wolf, Peter

    2018-01-01

    Background Goal-directed reaching for real-world objects by humans is enabled through visual depth cues. In virtual environments, the number and quality of available visual depth cues is limited, which may affect reaching performance and quality of reaching movements. Methods We assessed three-dimensional reaching movements in five experimental groups each with ten healthy volunteers. Three groups used a two-dimensional computer screen and two groups used a head-mounted display. The first screen group received the typically recreated visual depth cues, such as aerial and linear perspective, occlusion, shadows, and texture gradients. The second screen group received an abstract minimal rendering lacking those. The third screen group received the cues of the first screen group and absolute depth cues enabled by retinal image size of a known object, which realized with visual renderings of the handheld device and a ghost handheld at the target location. The two head-mounted display groups received the same virtually recreated visual depth cues as the second or the third screen group respectively. Additionally, they could rely on stereopsis and motion parallax due to head-movements. Results and conclusion All groups using the screen performed significantly worse than both groups using the head-mounted display in terms of completion time normalized by the straight-line distance to the target. Both groups using the head-mounted display achieved the optimal minimum in number of speed peaks and in hand path ratio, indicating that our subjects performed natural movements when using a head-mounted display. Virtually recreated visual depth cues had a minor impact on reaching performance. Only the screen group with rendered handhelds could outperform the other screen groups. Thus, if reaching performance in virtual environments is in the main scope of a study, we suggest applying a head-mounted display. Otherwise, when two-dimensional screens are used, achievable performance is likely limited by the reduced depth perception and not just by subjects’ motor skills. PMID:29293512

  19. Application of advanced virtual reality and 3D computer assisted technologies in tele-3D-computer assisted surgery in rhinology.

    PubMed

    Klapan, Ivica; Vranjes, Zeljko; Prgomet, Drago; Lukinović, Juraj

    2008-03-01

    The real-time requirement means that the simulation should be able to follow the actions of the user that may be moving in the virtual environment. The computer system should also store in its memory a three-dimensional (3D) model of the virtual environment. In that case a real-time virtual reality system will update the 3D graphic visualization as the user moves, so that up-to-date visualization is always shown on the computer screen. Upon completion of the tele-operation, the surgeon compares the preoperative and postoperative images and models of the operative field, and studies video records of the procedure itself Using intraoperative records, animated images of the real tele-procedure performed can be designed. Virtual surgery offers the possibility of preoperative planning in rhinology. The intraoperative use of computer in real time requires development of appropriate hardware and software to connect medical instrumentarium with the computer and to operate the computer by thus connected instrumentarium and sophisticated multimedia interfaces.

  20. Screening strategies to identify new chemical diversity for drug development to treat kinetoplastid infections.

    PubMed

    Don, Rob; Ioset, Jean-Robert

    2014-01-01

    The Drugs for Neglected Diseases initiative (DNDi) has defined and implemented an early discovery strategy over the last few years, in fitting with its virtual R&D business model. This strategy relies on a medium- to high-throughput phenotypic assay platform to expedite the screening of compound libraries accessed through its collaborations with partners from the pharmaceutical industry. We review the pragmatic approaches used to select compound libraries for screening against kinetoplastids, taking into account screening capacity. The advantages, limitations and current achievements in identifying new quality series for further development into preclinical candidates are critically discussed, together with attractive new approaches currently under investigation.

  1. Ligand and structure based virtual screening strategies for hit-finding and optimization of hepatitis C virus (HCV) inhibitors.

    PubMed

    Melagraki, G; Afantitis, A

    2011-01-01

    Virtual Screening (VS) has experienced increased attention into the recent years due to the large datasets made available, the development of advanced VS techniques and the encouraging fact that VS has contributed to the discovery of several compounds that have either reached the market or entered clinical trials. Hepatitis C Virus (HCV) nonstructural protein 5B (NS5B) has become an attractive target for the development of antiviral drugs and many small molecules have been explored as possible HCV NS5B inhibitors. In parallel with experimental practices, VS can serve as a valuable tool in the identification of novel effective inhibitors. Different techniques and workflows have been reported in literature with the goal to prioritize possible potent hits. In this context, different virtual screening strategies have been deployed for the identification of novel Hepatitis C Virus (HCV) inhibitors. This work reviews recent applications of virtual screening in an effort to identify novel potent HCV inhibitors.

  2. Maximum unbiased validation (MUV) data sets for virtual screening based on PubChem bioactivity data.

    PubMed

    Rohrer, Sebastian G; Baumann, Knut

    2009-02-01

    Refined nearest neighbor analysis was recently introduced for the analysis of virtual screening benchmark data sets. It constitutes a technique from the field of spatial statistics and provides a mathematical framework for the nonparametric analysis of mapped point patterns. Here, refined nearest neighbor analysis is used to design benchmark data sets for virtual screening based on PubChem bioactivity data. A workflow is devised that purges data sets of compounds active against pharmaceutically relevant targets from unselective hits. Topological optimization using experimental design strategies monitored by refined nearest neighbor analysis functions is applied to generate corresponding data sets of actives and decoys that are unbiased with regard to analogue bias and artificial enrichment. These data sets provide a tool for Maximum Unbiased Validation (MUV) of virtual screening methods. The data sets and a software package implementing the MUV design workflow are freely available at http://www.pharmchem.tu-bs.de/lehre/baumann/MUV.html.

  3. Identification of some novel pyrazolo[1,5-a]pyrimidine derivatives as InhA inhibitors through pharmacophore-based virtual screening and molecular docking.

    PubMed

    Modi, Palmi; Patel, Shivani; Chhabria, Mahesh T

    2018-05-04

    The InhA inhibitors play key role in mycolic acid synthesis by preventing the fatty acid biosynthesis pathway. In this present article, Pharmacophore modelling and molecular docking study followed by in silico virtual screening could be considered as effective strategy to identify newer enoyl-ACP reductase inhibitors. Pyrrolidine carboxamide derivatives were opted to generate pharmacophore models using HypoGen algorithm in Discovery studio 2.1. Further it was employed to screen Zinc and Minimaybridge databases to identify and design newer potent hit molecules. The retrieved newer hits were further evaluated for their drug likeliness and docked against enoyl acyl carrier protein reductase. Here, novel pyrazolo[1,5-a]pyrimidine analogues were designed and synthesized with good yields. Structural elucidation of synthesized final molecules was perform through IR, MASS, 1 H-NMR, 13 C-NMR spectroscopy and further tested for its in vitro anti-tubercular activity against H37Rv strain using Microplate Alamar blue assay (MABA) method. Most of the synthesized compounds displayed strong anti-tubercular activities. Further, these potent compounds were gauged for MDR-TB, XDR-TB and cytotoxic study.

  4. Application of Quantitative Structure–Activity Relationship Models of 5-HT1A Receptor Binding to Virtual Screening Identifies Novel and Potent 5-HT1A Ligands

    PubMed Central

    2015-01-01

    The 5-hydroxytryptamine 1A (5-HT1A) serotonin receptor has been an attractive target for treating mood and anxiety disorders such as schizophrenia. We have developed binary classification quantitative structure–activity relationship (QSAR) models of 5-HT1A receptor binding activity using data retrieved from the PDSP Ki database. The prediction accuracy of these models was estimated by external 5-fold cross-validation as well as using an additional validation set comprising 66 structurally distinct compounds from the World of Molecular Bioactivity database. These validated models were then used to mine three major types of chemical screening libraries, i.e., drug-like libraries, GPCR targeted libraries, and diversity libraries, to identify novel computational hits. The five best hits from each class of libraries were chosen for further experimental testing in radioligand binding assays, and nine of the 15 hits were confirmed to be active experimentally with binding affinity better than 10 μM. The most active compound, Lysergol, from the diversity library showed very high binding affinity (Ki) of 2.3 nM against 5-HT1A receptor. The novel 5-HT1A actives identified with the QSAR-based virtual screening approach could be potentially developed as novel anxiolytics or potential antischizophrenic drugs. PMID:24410373

  5. Ligand- and structure-based in silico studies to identify kinesin spindle protein (KSP) inhibitors as potential anticancer agents.

    PubMed

    Balakumar, Chandrasekaran; Ramesh, Muthusamy; Tham, Chuin Lean; Khathi, Samukelisiwe Pretty; Kozielski, Frank; Srinivasulu, Cherukupalli; Hampannavar, Girish A; Sayyad, Nisar; Soliman, Mahmoud E; Karpoormath, Rajshekhar

    2017-11-29

    Kinesin spindle protein (KSP) belongs to the kinesin superfamily of microtubule-based motor proteins. KSP is responsible for the establishment of the bipolar mitotic spindle which mediates cell division. Inhibition of KSP expedites the blockade of the normal cell cycle during mitosis through the generation of monoastral MT arrays that finally cause apoptotic cell death. As KSP is highly expressed in proliferating/cancer cells, it has gained considerable attention as a potential drug target for cancer chemotherapy. Therefore, this study envisaged to design novel KSP inhibitors by employing computational techniques/tools such as pharmacophore modelling, virtual database screening, molecular docking and molecular dynamics. Initially, the pharmacophore models were generated from the data-set of highly potent KSP inhibitors and the pharmacophore models were validated against in house test set ligands. The validated pharmacophore model was then taken for database screening (Maybridge and ChemBridge) to yield hits, which were further filtered for their drug-likeliness. The potential hits retrieved from virtual database screening were docked using CDOCKER to identify the ligand binding landscape. The top-ranked hits obtained from molecular docking were progressed to molecular dynamics (AMBER) simulations to deduce the ligand binding affinity. This study identified MB-41570 and CB-10358 as potential hits and evaluated these experimentally using in vitro KSP ATPase inhibition assays.

  6. Detection of the antiviral activity of epicatechin isolated from Salacia crassifolia (Celastraceae) against Mayaro virus based on protein C homology modelling and virtual screening.

    PubMed

    Ferreira, P G; Ferraz, A C; Figueiredo, J E; Lima, C F; Rodrigues, V G; Taranto, A G; Ferreira, J M S; Brandão, G C; Vieira-Filho, S A; Duarte, L P; de Brito Magalhães, C L; de Magalhães, J C

    2018-06-01

    Mayaro fever, caused by Mayaro virus (MAYV) is a sub-lethal disease with symptoms that are easily confused with those of dengue fever, except for polyarthralgia, which may culminate in physical incapacitation. Recently, outbreaks of MAYV have been documented in metropolitan areas, and to date, there is no therapy or vaccine available. Moreover, there is no information regarding the three-dimensional structure of the viral proteins of MAYV, which is important in the search for antivirals. In this work, we constructed a three-dimensional model of protein C of MAYV by homology modelling, and this was employed in a manner similar to that of receptors in virtual screening studies to evaluate 590 molecules as prospective antiviral agents. In vitro bioassays were utilized to confirm the potential antiviral activity of the flavonoid epicatechin isolated from Salacia crassifolia (Celastraceae). The virtual screening showed that six flavonoids were promising ligands for protein C. The bioassays showed potent antiviral action of epicatechin, which protected the cells from almost all of the effects of viral infection. An effective concentration (EC 50 ) of 0.247 μmol/mL was observed with a selectivity index (SI) of 7. The cytotoxicity assay showed that epicatechin has low toxicity, with a 50% cytotoxic concentration (CC 50 ) greater than 1.723 µmol/mL. Epicatechin was found to be twice as potent as the reference antiviral ribavirin. Furthermore, a replication kinetics assay showed a strong inhibitory effect of epicatechin on MAYV growth, with a reduction of at least four logs in virus production. Our results indicate that epicatechin is a promising candidate for further testing as an antiviral agent against Mayaro virus and other alphaviruses.

  7. Selection, application, and validation of a set of molecular descriptors for nuclear receptor ligands.

    PubMed

    Stewart, Eugene L; Brown, Peter J; Bentley, James A; Willson, Timothy M

    2004-08-01

    A methodology for the selection and validation of nuclear receptor ligand chemical descriptors is described. After descriptors for a targeted chemical space were selected, a virtual screening methodology utilizing this space was formulated for the identification of potential NR ligands from our corporate collection. Using simple descriptors and our virtual screening method, we are able to quickly identify potential NR ligands from a large collection of compounds. As validation of the virtual screening procedure, an 8, 000-membered NR targeted set and a 24, 000-membered diverse control set of compounds were selected from our in-house general screening collection and screened in parallel across a number of orphan NR FRET assays. For the two assays that provided at least one hit per set by the established minimum pEC(50) for activity, the results showed a 2-fold increase in the hit-rate of the targeted compound set over the diverse set.

  8. Design, synthesis and screening studies of potent thiazol-2-amine derivatives as fibroblast growth factor receptor 1 inhibitors.

    PubMed

    Kumar, B V S Suneel; Lakshmi, Narasu; Kumar, M Ravi; Rambabu, Gundla; Manjashetty, Thimmappa H; Arunasree, Kalle M; Sriram, Dharmarajan; Ramkumar, Kavya; Neamati, Nouri; Dayam, Raveendra; Sarma, J A R P

    2014-01-01

    Fibroblast growth factor receptor 1 (FGFR1) a tyrosine kinase receptor, plays important roles in angiogenesis, embryonic development, cell proliferation, cell differentiation, and wound healing. The FGFR isoforms and their receptors (FGFRs) considered as a potential targets and under intense research to design potential anticancer agents. Fibroblast growth factors (FGF's) and its growth factor receptors (FGFR) plays vital role in one of the critical pathway in monitoring angiogenesis. In the current study, quantitative pharmacophore models were generated and validated using known FGFR1 inhibitors. The pharmacophore models were generated using a set of 28 compounds (training). The top pharmacophore model was selected and validated using a set of 126 compounds (test set) and also using external validation. The validated pharmacophore was considered as a virtual screening query to screen a database of 400,000 virtual molecules and pharmacophore model retrieved 2800 hits. The retrieved hits were subsequently filtered based on the fit value. The selected hits were subjected for docking studies to observe the binding modes of the retrieved hits and also to reduce the false positives. One of the potential hits (thiazole-2-amine derivative) was selected based the pharmacophore fit value, dock score, and synthetic feasibility. A few analogues of the thiazole-2-amine derivative were synthesized. These compounds were screened for FGFR1 activity and anti-proliferative studies. The top active compound showed 56.87% inhibition of FGFR1 activity at 50 µM and also showed good cellular activity. Further optimization of thiazole-2-amine derivatives is in progress.

  9. A large scale virtual screen of DprE1.

    PubMed

    Wilsey, Claire; Gurka, Jessica; Toth, David; Franco, Jimmy

    2013-12-01

    Tuberculosis continues to plague the world with the World Health Organization estimating that about one third of the world's population is infected. Due to the emergence of MDR and XDR strains of TB, the need for novel therapeutics has become increasing urgent. Herein we report the results of a virtual screen of 4.1 million compounds against a promising drug target, DrpE1. The virtual compounds were obtained from the Zinc docking site and screened using the molecular docking program, AutoDock Vina. The computational hits have led to the identification of several promising lead compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Cognitive evaluation for the diagnosis of Alzheimer's disease based on Turing Test and Virtual Environments.

    PubMed

    Fernandez Montenegro, Juan Manuel; Argyriou, Vasileios

    2017-05-01

    Alzheimer's screening tests are commonly used by doctors to diagnose the patient's condition and stage as early as possible. Most of these tests are based on pen-paper interaction and do not embrace the advantages provided by new technologies. This paper proposes novel Alzheimer's screening tests based on virtual environments and game principles using new immersive technologies combined with advanced Human Computer Interaction (HCI) systems. These new tests are focused on the immersion of the patient in a virtual room, in order to mislead and deceive the patient's mind. In addition, we propose two novel variations of Turing Test proposed by Alan Turing as a method to detect dementia. As a result, four tests are introduced demonstrating the wide range of screening mechanisms that could be designed using virtual environments and game concepts. The proposed tests are focused on the evaluation of memory loss related to common objects, recent conversations and events; the diagnosis of problems in expressing and understanding language; the ability to recognize abnormalities; and to differentiate between virtual worlds and reality, or humans and machines. The proposed screening tests were evaluated and tested using both patients and healthy adults in a comparative study with state-of-the-art Alzheimer's screening tests. The results show the capacity of the new tests to distinguish healthy people from Alzheimer's patients. Copyright © 2017. Published by Elsevier Inc.

  11. Identification of Human IKK-2 Inhibitors of Natural Origin (Part I): Modeling of the IKK-2 Kinase Domain, Virtual Screening and Activity Assays

    PubMed Central

    Sala, Esther; Guasch, Laura; Iwaszkiewicz, Justyna; Mulero, Miquel; Salvadó, Maria-Josepa; Pinent, Montserrat; Zoete, Vincent; Grosdidier, Aurélien; Garcia-Vallvé, Santiago; Michielin, Olivier; Pujadas, Gerard

    2011-01-01

    Background Their large scaffold diversity and properties, such as structural complexity and drug similarity, form the basis of claims that natural products are ideal starting points for drug design and development. Consequently, there has been great interest in determining whether such molecules show biological activity toward protein targets of pharmacological relevance. One target of particular interest is hIKK-2, a serine-threonine protein kinase belonging to the IKK complex that is the primary component responsible for activating NF-κB in response to various inflammatory stimuli. Indeed, this has led to the development of synthetic ATP-competitive inhibitors for hIKK-2. Therefore, the main goals of this study were (a) to use virtual screening to identify potential hIKK-2 inhibitors of natural origin that compete with ATP and (b) to evaluate the reliability of our virtual-screening protocol by experimentally testing the in vitro activity of selected natural-product hits. Methodology/Principal Findings We thus predicted that 1,061 out of the 89,425 natural products present in the studied database would inhibit hIKK-2 with good ADMET properties. Notably, when these 1,061 molecules were merged with the 98 synthetic hIKK-2 inhibitors used in this study and the resulting set was classified into ten clusters according to chemical similarity, there were three clusters that contained only natural products. Five molecules from these three clusters (for which no anti-inflammatory activity has been previously described) were then selected for in vitro activity testing, in which three out of the five molecules were shown to inhibit hIKK-2. Conclusions/Significance We demonstrated that our virtual-screening protocol was successful in identifying lead compounds for developing new inhibitors for hIKK-2, a target of great interest in medicinal chemistry. Additionally, all the tools developed during the current study (i.e., the homology model for the hIKK-2 kinase domain and the pharmacophore) will be made available to interested readers upon request. PMID:21390216

  12. What do we know and when do we know it?

    PubMed Central

    2008-01-01

    Two essential aspects of virtual screening are considered: experimental design and performance metrics. In the design of any retrospective virtual screen, choices have to be made as to the purpose of the exercise. Is the goal to compare methods? Is the interest in a particular type of target or all targets? Are we simulating a ‘real-world’ setting, or teasing out distinguishing features of a method? What are the confidence limits for the results? What should be reported in a publication? In particular, what criteria should be used to decide between different performance metrics? Comparing the field of molecular modeling to other endeavors, such as medical statistics, criminology, or computer hardware evaluation indicates some clear directions. Taken together these suggest the modeling field has a long way to go to provide effective assessment of its approaches, either to itself or to a broader audience, but that there are no technical reasons why progress cannot be made. PMID:18253702

  13. In silico study toward the identification of new and safe potential inhibitors of photosynthetic electron transport.

    PubMed

    Ribeiro, Taisa Pereira Piacentini; Manarin, Flávia Giovana; Borges de Melo, Eduardo

    2018-05-30

    To address the rising global demand for food, it is necessary to search for new herbicides that can control resistant weeds. We performed a 2D-quantitative structure-activity relationship (QSAR) study to predict compounds with photosynthesis-inhibitory activity. A data set of 44 compounds (quinolines and naphthalenes), which are described as photosynthetic electron transport (PET) inhibitors, was used. The obtained model was approved in internal and external validation tests. 2D Similarity-based virtual screening was performed and 64 compounds were selected from the ZINC database. By using the VEGA QSAR software, 48 compounds were shown to have potential toxic effects (mutagenicity and carcinogenicity). Therefore, the model was also tested using a set of 16 molecules obtained by a similarity search of the ZINC database. Six compounds showed good predicted inhibition of PET. The obtained model shows potential utility in the design of new PET inhibitors, and the hit compounds found by virtual screening are novel bicyclic scaffolds of this class. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Identifying Novel Molecular Structures for Advanced Melanoma by Ligand-Based Virtual Screening

    PubMed Central

    Wang, Zhao; Lu, Yan; Seibel, William; Miller, Duane D.; Li, Wei

    2009-01-01

    We recently discovered a new class of thiazole analogs that are highly potent against melanoma cells. To expand the structure-activity relationship study and to explore potential new molecular scaffolds, we performed extensive ligand-based virtual screening against a compound library containing 342,910 small molecules. Two different approaches of virtual screening were carried out using the structure of our lead molecule: 1) connectivity-based search using Scitegic Pipeline Pilot from Accelerys and 2) molecular shape similarity search using Schrodinger software. Using a testing compound library, both approaches can rank similar compounds very high and rank dissimilar compounds very low, thus validating our screening methods. Structures identified from these searches were analyzed, and selected compounds were tested in vitro to assess their activity against melanoma cancer cell lines. Several molecules showed good anticancer activity. While none of the identified compounds showed better activity than our lead compound, they provided important insight into structural modifications for our lead compound and also provided novel platforms on which we can optimize new classes of anticancer compounds. One of the newly synthesized analogs based on this virtual screening has improved potency and selectivity against melanoma. PMID:19445498

  15. Curcumin Based Drug Screening for Inhibitors of NF kappa B in a Cell Model of Prostate Cancer Progression

    DTIC Science & Technology

    2008-02-01

    West Society of Toxicology in Breckenridge, CO in September 2007: “Identification of Curcumin Analogs Toxic against Prostate Cancer Cells Through...quantitative structure-activity relationship ( QSAR ) and ligand-based virtual screening (LBVS) to explore the possibility of improving their efficacy...Student in my laboratory has presented part of this data at the 25th Annual Meeting of the Mountain West Society of Toxicology in Breckenridge, CO in

  16. CycloPs: generating virtual libraries of cyclized and constrained peptides including nonnatural amino acids.

    PubMed

    Duffy, Fergal J; Verniere, Mélanie; Devocelle, Marc; Bernard, Elise; Shields, Denis C; Chubb, Anthony J

    2011-04-25

    We introduce CycloPs, software for the generation of virtual libraries of constrained peptides including natural and nonnatural commercially available amino acids. The software is written in the cross-platform Python programming language, and features include generating virtual libraries in one-dimensional SMILES and three-dimensional SDF formats, suitable for virtual screening. The stand-alone software is capable of filtering the virtual libraries using empirical measurements, including peptide synthesizability by standard peptide synthesis techniques, stability, and the druglike properties of the peptide. The software and accompanying Web interface is designed to enable the rapid generation of large, structurally diverse, synthesizable virtual libraries of constrained peptides quickly and conveniently, for use in virtual screening experiments. The stand-alone software, and the Web interface for evaluating these empirical properties of a single peptide, are available at http://bioware.ucd.ie .

  17. Probing voltage sensing domain of KCNQ2 channel as a potential target to combat epilepsy: a comparative study.

    PubMed

    Mehta, Pakhuri; Srivastava, Shubham; Choudhary, Bhanwar Singh; Sharma, Manish; Malik, Ruchi

    2017-12-01

    Multidrug resistance along with side-effects of available anti-epileptic drugs and unavailability of potent and effective agents in submicromolar quantities presents the biggest therapeutic challenges in anti-epileptic drug discovery. The molecular modeling techniques allow us to identify agents with novel structures to match the continuous urge for its discovery. KCNQ2 channel represents one of the validated targets for its therapy. The present study involves identification of newer anti-epileptic agents by means of a computer-aided drug design adaptive protocol involving both structure-based virtual screening of Asinex library using homology model of KCNQ2 and 3D-QSAR based virtual screening with docking analysis, followed by dG bind and ligand efficiency calculations with ADMET studies, of which 20 hits qualified all the criterions. The best ligands of both screenings with least potential for toxicity predicted computationally were then taken for molecular dynamic simulations. All the crucial amino acid interactions were observed in hits of both screenings such as Glu130, Arg207, Arg210 and Phe137. Robustness of docking protocol was analyzed through Receiver operating characteristic (ROC) curve values 0.88 (Area under curve AUC = 0.87) in Standard Precision and 0.84 (AUC = 0.82) in Extra Precision modes. Novelty analysis indicates that these compounds have not been reported previously as anti-epileptic agents.

  18. Pharmacophore based approach to design inhibitors in crustaceans: an insight into the molt inhibition response to the receptor guanylyl cyclase.

    PubMed

    Shrivastava, Sajal; Princy, S Adline

    2014-04-01

    The first set of competitive inhibitors of molt inhibiting hormone (MIH) has been developed using the effective approaches such as Hip-Hop, virtual screening and manual alterations. Moreover, the conserved residues at 71 and 72 positions in the molt inhibiting hormone is known to be significant for selective inhibition of ecdysteroidogenesis; thus, the information from mutation and solution structure were used to generate common pharmacophore features. The geometry of the final six-feature pharmacophore was also found to be consistent with the homology-modeled MIH structures from various other decapod crustaceans. The Hypo-1, comprising six features hypothesis was carefully selected as a best pharmacophore model for virtual screening created on the basis of rank score and cluster processes. The hypothesis was validated and the database was virtually screened using this 3D query and the compounds were then manually altered to enhance the fit value. The hits obtained were further filtered for drug-likeness, which is expressed as physicochemical properties that contribute to favorable ADME/Tox profiles to eliminate the molecules exhibit toxicity and poor pharmacokinetics. In conclusion, the higher fit values of CI-1 (4.6), CI-4 (4.9) and CI-7 (4.2) in conjunction with better pharmacokinetic profile made these molecules practically helpful tool to increase production by accelerating molt in crustaceans. The use of feeding sub-therapeutic dosages of these growth enhancers can be very effectively implemented and certainly turn out to be a vital part of emerging nutritional strategies for economically important crustacean livestock.

  19. VIRTUAL EMBRYO: SYSTEMS MODELING IN DEVELOPMENTAL TOXICITY - Symposium: SOT 2012

    EPA Science Inventory

    High-throughput screening (HTS) studies are providing a rich source of data that can be applied to in vitro profiling of chemical compounds for biological activity and potential toxicity. Chemical profiling in ToxCast covered 965 drugs-chemicals in over 500 diverse assays testing...

  20. Virtual Embryo: Systems Modeling in Developmental Toxicity

    EPA Science Inventory

    High-throughput and high-content screening (HTS-HCS) studies are providing a rich source of data that can be applied to in vitro profiling of chemical compounds for biological activity and potential toxicity. EPA’s ToxCast™ project, and the broader Tox21 consortium, in addition t...

  1. The New Realm of 3-D Vision

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Dimension Technologies Inc., developed a line of 2-D/3-D Liquid Crystal Display (LCD) screens, including a 15-inch model priced at consumer levels. DTI's family of flat panel LCD displays, called the Virtual Window(TM), provide real-time 3-D images without the use of glasses, head trackers, helmets, or other viewing aids. Most of the company initial 3-D display research was funded through NASA's Small Business Innovation Research (SBIR) program. The images on DTI's displays appear to leap off the screen and hang in space. The display accepts input from computers or stereo video sources, and can be switched from 3-D to full-resolution 2-D viewing with the push of a button. The Virtual Window displays have applications in data visualization, medicine, architecture, business, real estate, entertainment, and other research, design, military, and consumer applications. Displays are currently used for computer games, protein analysis, and surgical imaging. The technology greatly benefits the medical field, as surgical simulators are helping to increase the skills of surgical residents. Virtual Window(TM) is a trademark of Dimension Technologies Inc.

  2. Virtual screening of cocrystal formers for CL-20

    NASA Astrophysics Data System (ADS)

    Zhou, Jun-Hong; Chen, Min-Bo; Chen, Wei-Ming; Shi, Liang-Wei; Zhang, Chao-Yang; Li, Hong-Zhen

    2014-08-01

    According to the structure characteristics of 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20) and the kinetic mechanism of the cocrystal formation, the method of virtual screening CL-20 cocrystal formers by the criterion of the strongest intermolecular site pairing energy (ISPE) was proposed. In this method the strongest ISPE was thought to determine the first step of the cocrystal formation. The prediction results for four sets of common drug molecule cocrystals by this method were compared with those by the total ISPE method from the reference (Musumeci et al., 2011), and the experimental results. This method was then applied to virtually screen the CL-20 cocrystal formers, and the prediction results were compared with the experimental results.

  3. Virtual Screening of Receptor Sites for Molecularly Imprinted Polymers.

    PubMed

    Bates, Ferdia; Cela-Pérez, María Concepción; Karim, Kal; Piletsky, Sergey; López-Vilariño, José Manuel

    2016-08-01

    Molecularly Imprinted Polymers (MIPs) are highly advantageous in the field of analytical chemistry. However, interference from secondary molecules can also impede capture of a target by a MIP receptor. This greatly complicates the design process and often requires extensive laboratory screening which is time consuming, costly, and creates substantial waste products. Herein, is presented a new technique for screening of "virtually imprinted receptors" for rebinding of the molecular template as well as secondary structures, correlating the virtual predictions with experimentally acquired data in three case studies. This novel technique is particularly applicable to the evaluation and prediction of MIP receptor specificity and efficiency in complex aqueous systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. DOVIS 2.0: an efficient and easy to use parallel virtual screening tool based on AutoDock 4.0.

    PubMed

    Jiang, Xiaohui; Kumar, Kamal; Hu, Xin; Wallqvist, Anders; Reifman, Jaques

    2008-09-08

    Small-molecule docking is an important tool in studying receptor-ligand interactions and in identifying potential drug candidates. Previously, we developed a software tool (DOVIS) to perform large-scale virtual screening of small molecules in parallel on Linux clusters, using AutoDock 3.05 as the docking engine. DOVIS enables the seamless screening of millions of compounds on high-performance computing platforms. In this paper, we report significant advances in the software implementation of DOVIS 2.0, including enhanced screening capability, improved file system efficiency, and extended usability. To keep DOVIS up-to-date, we upgraded the software's docking engine to the more accurate AutoDock 4.0 code. We developed a new parallelization scheme to improve runtime efficiency and modified the AutoDock code to reduce excessive file operations during large-scale virtual screening jobs. We also implemented an algorithm to output docked ligands in an industry standard format, sd-file format, which can be easily interfaced with other modeling programs. Finally, we constructed a wrapper-script interface to enable automatic rescoring of docked ligands by arbitrarily selected third-party scoring programs. The significance of the new DOVIS 2.0 software compared with the previous version lies in its improved performance and usability. The new version makes the computation highly efficient by automating load balancing, significantly reducing excessive file operations by more than 95%, providing outputs that conform to industry standard sd-file format, and providing a general wrapper-script interface for rescoring of docked ligands. The new DOVIS 2.0 package is freely available to the public under the GNU General Public License.

  5. Hit identification and optimization in virtual screening: practical recommendations based on a critical literature analysis.

    PubMed

    Zhu, Tian; Cao, Shuyi; Su, Pin-Chih; Patel, Ram; Shah, Darshan; Chokshi, Heta B; Szukala, Richard; Johnson, Michael E; Hevener, Kirk E

    2013-09-12

    A critical analysis of virtual screening results published between 2007 and 2011 was performed. The activity of reported hit compounds from over 400 studies was compared to their hit identification criteria. Hit rates and ligand efficiencies were calculated to assist in these analyses, and the results were compared with factors such as the size of the virtual library and the number of compounds tested. A series of promiscuity, druglike, and ADMET filters were applied to the reported hits to assess the quality of compounds reported, and a careful analysis of a subset of the studies that presented hit optimization was performed. These data allowed us to make several practical recommendations with respect to selection of compounds for experimental testing, definition of hit identification criteria, and general virtual screening hit criteria to allow for realistic hit optimization. A key recommendation is the use of size-targeted ligand efficiency values as hit identification criteria.

  6. Design and Development of ChemInfoCloud: An Integrated Cloud Enabled Platform for Virtual Screening.

    PubMed

    Karthikeyan, Muthukumarasamy; Pandit, Deepak; Bhavasar, Arvind; Vyas, Renu

    2015-01-01

    The power of cloud computing and distributed computing has been harnessed to handle vast and heterogeneous data required to be processed in any virtual screening protocol. A cloud computing platorm ChemInfoCloud was built and integrated with several chemoinformatics and bioinformatics tools. The robust engine performs the core chemoinformatics tasks of lead generation, lead optimisation and property prediction in a fast and efficient manner. It has also been provided with some of the bioinformatics functionalities including sequence alignment, active site pose prediction and protein ligand docking. Text mining, NMR chemical shift (1H, 13C) prediction and reaction fingerprint generation modules for efficient lead discovery are also implemented in this platform. We have developed an integrated problem solving cloud environment for virtual screening studies that also provides workflow management, better usability and interaction with end users using container based virtualization, OpenVz.

  7. Identification of a Novel Class of BRD4 Inhibitors by Computational Screening and Binding Simulations

    PubMed Central

    2017-01-01

    Computational screening is a method to prioritize small-molecule compounds based on the structural and biochemical attributes built from ligand and target information. Previously, we have developed a scalable virtual screening workflow to identify novel multitarget kinase/bromodomain inhibitors. In the current study, we identified several novel N-[3-(2-oxo-pyrrolidinyl)phenyl]-benzenesulfonamide derivatives that scored highly in our ensemble docking protocol. We quantified the binding affinity of these compounds for BRD4(BD1) biochemically and generated cocrystal structures, which were deposited in the Protein Data Bank. As the docking poses obtained in the virtual screening pipeline did not align with the experimental cocrystal structures, we evaluated the predictions of their precise binding modes by performing molecular dynamics (MD) simulations. The MD simulations closely reproduced the experimentally observed protein–ligand cocrystal binding conformations and interactions for all compounds. These results suggest a computational workflow to generate experimental-quality protein–ligand binding models, overcoming limitations of docking results due to receptor flexibility and incomplete sampling, as a useful starting point for the structure-based lead optimization of novel BRD4(BD1) inhibitors. PMID:28884163

  8. Discovery of covalent inhibitors for MIF tautomerase via cocrystal structures with phantom hits from virtual screening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLean, Larry R.; Zhang, Ying; Li, Hua

    Biochemical and X-ray crystallographic studies confirmed that hydroxyquinoline derivatives identified by virtual screening were actually covalent inhibitors of the MIF tautomerase. Adducts were formed by N-alkylation of the Pro-1 at the catalytic site with a loss of an amino group of the inhibitor.

  9. Encompassing receptor flexibility in virtual screening using ensemble docking-based hybrid QSAR: discovery of novel phytochemicals for BACE1 inhibition.

    PubMed

    Chakraborty, Sandipan; Ramachandran, Balaji; Basu, Soumalee

    2014-10-01

    Mimicking receptor flexibility during receptor-ligand binding is a challenging task in computational drug design since it is associated with a large increase in the conformational search space. In the present study, we have devised an in silico design strategy incorporating receptor flexibility in virtual screening to identify potential lead compounds as inhibitors for flexible proteins. We have considered BACE1 (β-secretase), a key target protease from a therapeutic perspective for Alzheimer's disease, as the highly flexible receptor. The protein undergoes significant conformational transitions from open to closed form upon ligand binding, which makes it a difficult target for inhibitor design. We have designed a hybrid structure-activity model containing both ligand based descriptors and energetic descriptors obtained from molecular docking based on a dataset of structurally diverse BACE1 inhibitors. An ensemble of receptor conformations have been used in the docking study, further improving the prediction ability of the model. The designed model that shows significant prediction ability judged by several statistical parameters has been used to screen an in house developed 3-D structural library of 731 phytochemicals. 24 highly potent, novel BACE1 inhibitors with predicted activity (Ki) ≤ 50 nM have been identified. Detailed analysis reveals pharmacophoric features of these novel inhibitors required to inhibit BACE1.

  10. Pharmacophore Modeling and in Silico/in Vitro Screening for Human Cytochrome P450 11B1 and Cytochrome P450 11B2 Inhibitors.

    PubMed

    Akram, Muhammad; Waratchareeyakul, Watcharee; Haupenthal, Joerg; Hartmann, Rolf W; Schuster, Daniela

    2017-01-01

    Cortisol synthase (CYP11B1) is the main enzyme for the endogenous synthesis of cortisol and its inhibition is a potential way for the treatment of diseases associated with increased cortisol levels, such as Cushing's syndrome, metabolic diseases, and delayed wound healing. Aldosterone synthase (CYP11B2) is the key enzyme for aldosterone biosynthesis and its inhibition is a promising approach for the treatment of congestive heart failure, cardiac fibrosis, and certain forms of hypertension. Both CYP11B1 and CYP11B2 are structurally very similar and expressed in the adrenal cortex. To facilitate the identification of novel inhibitors of these enzymes, ligand-based pharmacophore models of CYP11B1 and CYP11B2 inhibition were developed. A virtual screening of the SPECS database was performed with our pharmacophore queries. Biological evaluation of the selected hits lead to the discovery of three potent novel inhibitors of both CYP11B1 and CYP11B2 in the submicromolar range (compounds 8 - 10 ), one selective CYP11B1 inhibitor (Compound 11 , IC 50 = 2.5 μM), and one selective CYP11B2 inhibitor (compound 12 , IC 50 = 1.1 μM), respectively. The overall success rate of this prospective virtual screening experiment is 20.8% indicating good predictive power of the pharmacophore models.

  11. Identification of New Antifungal Compounds Targeting Thioredoxin Reductase of Paracoccidioides Genus

    PubMed Central

    Abadio, Ana Karina Rodrigues; Kioshima, Erika Seki; Leroux, Vincent; Martins, Natalia Florêncio; Maigret, Bernard; Felipe, Maria Sueli Soares

    2015-01-01

    The prevalence of invasive fungal infections worldwide has increased in the last decades. The development of specific drugs targeting pathogenic fungi without producing collateral damage to mammalian cells is a daunting pharmacological challenge. Indeed, many of the toxicities and drug interactions observed with contemporary antifungal therapies can be attributed to “nonselective” interactions with enzymes or cell membrane systems found in mammalian host cells. A computer-aided screening strategy against the TRR1 protein of Paracoccidioides lutzii is presented here. Initially, a bank of commercially available compounds from Life Chemicals provider was docked to model by virtual screening simulations. The small molecules that interact with the model were ranked and, among the best hits, twelve compounds out of 3,000 commercially-available candidates were selected. These molecules were synthesized for validation and in vitro antifungal activity assays for Paracoccidioides lutzii and P. brasiliensis were performed. From 12 molecules tested, 3 harbor inhibitory activity in antifungal assays against the two pathogenic fungi. Corroborating these findings, the molecules have inhibitory activity against the purified recombinant enzyme TRR1 in biochemical assays. Therefore, a rational combination of molecular modeling simulations and virtual screening of new drugs has provided a cost-effective solution to an early-stage medicinal challenge. These results provide a promising technique to the development of new and innovative drugs. PMID:26569405

  12. Pharmacophore modeling and in silico / in vitro screening for human cytochrome P450 11B1 & cytochrome P450 11B2 inhibitors

    NASA Astrophysics Data System (ADS)

    Akram, Muhammad; Waratchareeyakul, Watcharee; Haupenthal, Joerg; Hartmann, Rolf W.; Schuster, Daniela

    2017-12-01

    Cortisol synthase (CYP11B1) is the main enzyme for the endogenous synthesis of cortisol and its inhibition is a potential way for the treatment of diseases associated with increased cortisol levels, such as Cushing’s syndrome, metabolic diseases, and delayed wound healing. Aldosterone synthase (CYP11B2) is the key enzyme for aldosterone biosynthesis and its inhibition is a promising approach for the treatment of congestive heart failure, cardiac fibrosis, and certain forms of hypertension. Both CYP11B1 and CYP11B2 are structurally very similar and expressed in the adrenal cortex. To facilitate the identification of novel inhibitors of these enzymes, ligand-based pharmacophore models of CYP11B1 and CYP11B2 inhibition were developed. A virtual screening of the SPECS database was performed with our pharmacophore queries. Biological evaluation of the selected hits lead to the discovery of three potent novel inhibitors of both CYP11B1 and CYP11B2 in the submicromolar range (compounds 8-10), one selective CYP11B1 inhibitor (Compound 11, IC50 = 2.5 µM), and one selective CYP11B2 inhibitor (compound 12, IC50 = 1.1 µM), respectively. The overall success rate of this prospective virtual screening experiment is 20.8% indicating good predictive power of the pharmacophore models.

  13. Large-scale virtual screening on public cloud resources with Apache Spark.

    PubMed

    Capuccini, Marco; Ahmed, Laeeq; Schaal, Wesley; Laure, Erwin; Spjuth, Ola

    2017-01-01

    Structure-based virtual screening is an in-silico method to screen a target receptor against a virtual molecular library. Applying docking-based screening to large molecular libraries can be computationally expensive, however it constitutes a trivially parallelizable task. Most of the available parallel implementations are based on message passing interface, relying on low failure rate hardware and fast network connection. Google's MapReduce revolutionized large-scale analysis, enabling the processing of massive datasets on commodity hardware and cloud resources, providing transparent scalability and fault tolerance at the software level. Open source implementations of MapReduce include Apache Hadoop and the more recent Apache Spark. We developed a method to run existing docking-based screening software on distributed cloud resources, utilizing the MapReduce approach. We benchmarked our method, which is implemented in Apache Spark, docking a publicly available target receptor against [Formula: see text]2.2 M compounds. The performance experiments show a good parallel efficiency (87%) when running in a public cloud environment. Our method enables parallel Structure-based virtual screening on public cloud resources or commodity computer clusters. The degree of scalability that we achieve allows for trying out our method on relatively small libraries first and then to scale to larger libraries. Our implementation is named Spark-VS and it is freely available as open source from GitHub (https://github.com/mcapuccini/spark-vs).Graphical abstract.

  14. Methods for Effective Virtual Screening and Scaffold-Hopping in Chemical Compounds

    DTIC Science & Technology

    2007-04-04

    contains color images. 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 12 19a...Opterons with 4 GB of memory . We used the descriptor- spaces GF, ECZ3, and ErG (described in Section 4) for the evaluating the methods introduced in...screening: Use of data fusion and machine learning to enchance the effectiveness of sim- ilarity searching. J. Chem. Info. Model., (46):462–470, 2006. [18] J

  15. Discovery of Novel Human Epidermal Growth Factor Receptor-2 Inhibitors by Structure-based Virtual Screening.

    PubMed

    Shi, Zheng; Yu, Tian; Sun, Rong; Wang, Shan; Chen, Xiao-Qian; Cheng, Li-Jia; Liu, Rong

    2016-01-01

    Human epidermal growth factor receptor-2 (HER2) is a trans-membrane receptor like protein, and aberrant signaling of HER2 is implicated in many human cancers, such as ovarian cancer, gastric cancer, and prostate cancer, most notably breast cancer. Moreover, it has been in the spotlight in the recent years as a promising new target for therapy of breast cancer. Since virtual screening has become an integral part of the drug discovery process, it is of great significant to identify novel HER2 inhibitors by structure-based virtual screening. In this study, we carried out a series of elegant bioinformatics approaches, such as virtual screening and molecular dynamics (MD) simulations to identify HER2 inhibitors from Food and Drug Administration-approved small molecule drug as potential "new use" drugs. Molecular docking identified top 10 potential drugs which showed spectrum affinity to HER2. Moreover, MD simulations suggested that ZINC08214629 (Nonoxynol-9) and ZINC03830276 (Benzonatate) might exert potential inhibitory effects against HER2-targeted anti-breast cancer therapeutics. Together, our findings may provide successful application of virtual screening studies in the lead discovery process, and suggest that our discovered small molecules could be effective HER2 inhibitor candidates for further study. A series of elegant bioinformatics approaches, including virtual screening and molecular dynamics (MD) simulations were took advantage to identify human epidermal growth factor receptor-2 (HER2) inhibitors. Molecular docking recognized top 10 candidate compounds, which showed spectrum affinity to HER2. Further, MD simulations suggested that ZINC08214629 (Nonoxynol-9) and ZINC03830276 (Benzonatate) in candidate compounds were identified as potential "new use" drugs against HER2-targeted anti-breast cancer therapeutics. Abbreviations used: HER2: Human epidermal growth factor receptor-2, FDA: Food and Drug Administration, PDB: Protein Database Bank, RMSDs: Root mean square deviations, SPC: Single point charge, PME: Particle mesh Ewald, NVT: Constant volume, NPT: Constant pressure, RMSF: Root-mean-square fluctuation.

  16. Computational Modeling and Simulation of Developmental Toxicity. What can we learn from a virtual embryo? (FDA-CFSAN workshop)

    EPA Science Inventory

    SYNOPSIS: The question of how tissues and organs are shaped during development is crucial for understanding human birth defects. Data from high-throughput screening assays on human stem cells may be utilized predict developmental toxicity with reasonable accuracy. Other types of ...

  17. QSAR Classification Model for Antibacterial Compounds and Its Use in Virtual Screening

    DTIC Science & Technology

    2012-09-26

    test set molecules that were not used to train the models . This allowed us to more accurately estimate the prediction power of the models . As...pathogens and deposited in PubChem Bioassays. Ultimately, the main purpose of this model is to make predictions , based on known antibacterial and non...the model built form the remaining compounds is used to predict the left out compound. Once all the compounds pass through this cycle of prediction , a

  18. Impact of a Virtual Clinic in a Paediatric Cardiology Network on Northeast Brazil.

    PubMed

    de Araújo, Juliana Sousa Soares; Dias Filho, Adalberto Vieira; Silva Gomes, Renata Grigório; Regis, Cláudio Teixeira; Rodrigues, Klecida Nunes; Siqueira, Nicoly Negreiros; Albuquerque, Fernanda Cruz de Lira; Mourato, Felipe Alves; Mattos, Sandra da Silva

    2015-01-01

    Introduction. Congenital heart diseases (CHD) affect approximately 1% of live births and is an important cause of neonatal morbidity and mortality. Despite that, there is a shortage of paediatric cardiologists in Brazil, mainly in the northern and northeastern regions. In this context, the implementation of virtual outpatient clinics with the aid of different telemedicine resources may help in the care of children with heart defects. Methods. Patients under 18 years of age treated in virtual outpatient clinics between January 2013 and May 2014 were selected. They were divided into 2 groups: those who had and those who had not undergone a screening process for CHD in the neonatal period. Clinical and demographic characteristics were collected for further statistical analysis. Results. A total of 653 children and teenagers were treated in the virtual outpatient clinics. From these, 229 had undergone a neonatal screening process. Fewer abnormalities were observed on the physical examination of the screened patients. Conclusion. The implementation of pediatric cardiology virtual outpatient clinics can have a positive impact in the care provided to people in areas with lack of skilled professionals.

  19. Identification of novel drug scaffolds for inhibition of SARS-CoV 3-Chymotrypsin-like protease using virtual and high-throughput screenings.

    PubMed

    Lee, Hyun; Mittal, Anuradha; Patel, Kavankumar; Gatuz, Joseph L; Truong, Lena; Torres, Jaime; Mulhearn, Debbie C; Johnson, Michael E

    2014-01-01

    We have used a combination of virtual screening (VS) and high-throughput screening (HTS) techniques to identify novel, non-peptidic small molecule inhibitors against human SARS-CoV 3CLpro. A structure-based VS approach integrating docking and pharmacophore based methods was employed to computationally screen 621,000 compounds from the ZINC library. The screening protocol was validated using known 3CLpro inhibitors and was optimized for speed, improved selectivity, and for accommodating receptor flexibility. Subsequently, a fluorescence-based enzymatic HTS assay was developed and optimized to experimentally screen approximately 41,000 compounds from four structurally diverse libraries chosen mainly based on the VS results. False positives from initial HTS hits were eliminated by a secondary orthogonal binding analysis using surface plasmon resonance (SPR). The campaign identified a reversible small molecule inhibitor exhibiting mixed-type inhibition with a K(i) value of 11.1 μM. Together, these results validate our protocols as suitable approaches to screen virtual and chemical libraries, and the newly identified compound reported in our study represents a promising structural scaffold to pursue for further SARS-CoV 3CLpro inhibitor development. Copyright © 2013. Published by Elsevier Ltd.

  20. Identification of Potent Chloride Intracellular Channel Protein 1 Inhibitors from Traditional Chinese Medicine through Structure-Based Virtual Screening and Molecular Dynamics Analysis

    PubMed Central

    Wan, Minghui; Liao, Dongjiang; Peng, Guilin; Xu, Xin; Yin, Weiqiang; Guo, Guixin; Jiang, Funeng; Zhong, Weide

    2017-01-01

    Chloride intracellular channel 1 (CLIC1) is involved in the development of most aggressive human tumors, including gastric, colon, lung, liver, and glioblastoma cancers. It has become an attractive new therapeutic target for several types of cancer. In this work, we aim to identify natural products as potent CLIC1 inhibitors from Traditional Chinese Medicine (TCM) database using structure-based virtual screening and molecular dynamics (MD) simulation. First, structure-based docking was employed to screen the refined TCM database and the top 500 TCM compounds were obtained and reranked by X-Score. Then, 30 potent hits were achieved from the top 500 TCM compounds using cluster and ligand-protein interaction analysis. Finally, MD simulation was employed to validate the stability of interactions between each hit and CLIC1 protein from docking simulation, and Molecular Mechanics/Generalized Born Surface Area (MM-GBSA) analysis was used to refine the virtual hits. Six TCM compounds with top MM-GBSA scores and ideal-binding models were confirmed as the final hits. Our study provides information about the interaction between TCM compounds and CLIC1 protein, which may be helpful for further experimental investigations. In addition, the top 6 natural products structural scaffolds could serve as building blocks in designing drug-like molecules for CLIC1 inhibition. PMID:29147652

  1. Rational approach to identify newer caspase-1 inhibitors using pharmacophore based virtual screening, docking and molecular dynamic simulation studies.

    PubMed

    Patel, Shivani; Modi, Palmi; Chhabria, Mahesh

    2018-05-01

    Caspase-1 is a key endoprotease responsible for the post-translational processing of pro-inflammatory cytokines IL-1β, 18 & 33. Excessive secretion of IL-1β leads to numerous inflammatory and autoimmune diseases. Thus caspase-1 inhibition would be considered as an important therapeutic strategy for development of newer anti-inflammatory agents. Here we have employed an integrated virtual screening by combining pharmacophore mapping and docking to identify small molecules as caspase-1 inhibitors. The ligand based 3D pharmacophore model was generated having the essential structural features of (HBA, HY & RA) using a data set of 27 compounds. A validated pharmacophore hypothesis (Hypo 1) was used to screen ZINC and Minimaybridge chemical databases. The retrieved virtual hits were filtered by ADMET properties and molecular docking analysis. Subsequently, the cross-docking study was also carried out using crystal structure of caspase-1, 3, 7 and 8 to identify the key residual interaction for specific caspase-1 inhibition. Finally, the best mapped and top scored (ZINC00885612, ZINC72003647, BTB04175 and BTB04410) molecules were subjected to molecular dynamics simulation for accessing the dynamic structure of protein after ligand binding. This study identifies the most promising hits, which can be leads for the development of novel caspase-1 inhibitors as anti-inflammatory agents. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Virtual screening on an α-helix to β-strand switchable region of the FGFR2 extracellular domain revealed positive and negative modulators.

    PubMed

    Diaz, Constantino; Corentin, Herbert; Thierry, Vermat; Chantal, Alcouffe; Tanguy, Bozec; David, Sibrac; Jean-Marc, Herbert; Pascual, Ferrara; Françoise, Bono; Edgardo, Ferran

    2014-11-01

    The secondary structure of some protein segments may vary between α-helix and β-strand. To predict these switchable segments, we have developed an algorithm, Switch-P, based solely on the protein sequence. This algorithm was used on the extracellular parts of FGF receptors. For FGFR2, it predicted that β4 and β5 strands of the third Ig-like domain were highly switchable. These two strands possess a high number of somatic mutations associated with cancer. Analysis of PDB structures of FGF receptors confirmed the switchability prediction for β5. We thus evaluated if compound-driven α-helix/β-strand switching of β5 could modulate FGFR2 signaling. We performed the virtual screening of a library containing 1.4 million of chemical compounds with two models of the third Ig-like domain of FGFR2 showing different secondary structures for β5, and we selected 32 compounds. Experimental testing using proliferation assays with FGF7-stimulated SNU-16 cells and a FGFR2-dependent Erk1/2 phosphorylation assay with FGFR2-transfected L6 cells, revealed activators and inhibitors of FGFR2. Our method for the identification of switchable proteinic regions, associated with our virtual screening approach, provides an opportunity to discover new generation of drugs with under-explored mechanism of action. © 2014 Wiley Periodicals, Inc.

  3. PyGOLD: a python based API for docking based virtual screening workflow generation.

    PubMed

    Patel, Hitesh; Brinkjost, Tobias; Koch, Oliver

    2017-08-15

    Molecular docking is one of the successful approaches in structure based discovery and development of bioactive molecules in chemical biology and medicinal chemistry. Due to the huge amount of computational time that is still required, docking is often the last step in a virtual screening approach. Such screenings are set as workflows spanned over many steps, each aiming at different filtering task. These workflows can be automatized in large parts using python based toolkits except for docking using the docking software GOLD. However, within an automated virtual screening workflow it is not feasible to use the GUI in between every step to change the GOLD configuration file. Thus, a python module called PyGOLD was developed, to parse, edit and write the GOLD configuration file and to automate docking based virtual screening workflows. The latest version of PyGOLD, its documentation and example scripts are available at: http://www.ccb.tu-dortmund.de/koch or http://www.agkoch.de. PyGOLD is implemented in Python and can be imported as a standard python module without any further dependencies. oliver.koch@agkoch.de, oliver.koch@tu-dortmund.de. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  4. Virtual screening applications: a study of ligand-based methods and different structure representations in four different scenarios.

    PubMed

    Hristozov, Dimitar P; Oprea, Tudor I; Gasteiger, Johann

    2007-01-01

    Four different ligand-based virtual screening scenarios are studied: (1) prioritizing compounds for subsequent high-throughput screening (HTS); (2) selecting a predefined (small) number of potentially active compounds from a large chemical database; (3) assessing the probability that a given structure will exhibit a given activity; (4) selecting the most active structure(s) for a biological assay. Each of the four scenarios is exemplified by performing retrospective ligand-based virtual screening for eight different biological targets using two large databases--MDDR and WOMBAT. A comparison between the chemical spaces covered by these two databases is presented. The performance of two techniques for ligand--based virtual screening--similarity search with subsequent data fusion (SSDF) and novelty detection with Self-Organizing Maps (ndSOM) is investigated. Three different structure representations--2,048-dimensional Daylight fingerprints, topological autocorrelation weighted by atomic physicochemical properties (sigma electronegativity, polarizability, partial charge, and identity) and radial distribution functions weighted by the same atomic physicochemical properties--are compared. Both methods were found applicable in scenario one. The similarity search was found to perform slightly better in scenario two while the SOM novelty detection is preferred in scenario three. No method/descriptor combination achieved significant success in scenario four.

  5. Discovery of new inhibitors of the bacterial peptidoglycan biosynthesis enzymes MurD and MurF by structure-based virtual screening.

    PubMed

    Turk, Samo; Kovac, Andreja; Boniface, Audrey; Bostock, Julieanne M; Chopra, Ian; Blanot, Didier; Gobec, Stanislav

    2009-03-01

    The ATP-dependent Mur ligases (MurC, MurD, MurE and MurF) successively add L-Ala, D-Glu, meso-A(2)pm or L-Lys, and D-Ala-D-Ala to the nucleotide precursor UDP-MurNAc, and they represent promising targets for antibacterial drug discovery. We have used the molecular docking programme eHiTS for the virtual screening of 1990 compounds from the National Cancer Institute 'Diversity Set' on MurD and MurF. The 50 top-scoring compounds from screening on each enzyme were selected for experimental biochemical evaluation. Our approach of virtual screening and subsequent in vitro biochemical evaluation of the best ranked compounds has provided four novel MurD inhibitors (best IC(50)=10 microM) and one novel MurF inhibitor (IC(50)=63 microM).

  6. Identification of a New Isoindole-2-yl Scaffold as a Qo and Qi Dual Inhibitor of Cytochrome bc 1 Complex: Virtual Screening, Synthesis, and Biochemical Assay.

    PubMed

    Azizian, Homa; Bagherzadeh, Kowsar; Shahbazi, Sophia; Sharifi, Niusha; Amanlou, Massoud

    2017-09-18

    Respiratory chain ubiquinol-cytochrome (cyt) c oxidoreductase (cyt bc 1 or complex III) has been demonstrated as a promising target for numerous antibiotics and fungicide applications. In this study, a virtual screening of NCI diversity database was carried out in order to find novel Qo/Qi cyt bc 1 complex inhibitors. Structure-based virtual screening and molecular docking methodology were employed to further screen compounds with inhibition activity against cyt bc 1 complex after extensive reliability validation protocol with cross-docking method and identification of the best score functions. Subsequently, the application of rational filtering procedure over the target database resulted in the elucidation of a novel class of cyt bc 1 complex potent inhibitors with comparable binding energies and biological activities to those of the standard inhibitor, antimycin.

  7. Structure-Based Virtual Screening for Dopamine D2 Receptor Ligands as Potential Antipsychotics.

    PubMed

    Kaczor, Agnieszka A; Silva, Andrea G; Loza, María I; Kolb, Peter; Castro, Marián; Poso, Antti

    2016-04-05

    Structure-based virtual screening using a D2 receptor homology model was performed to identify dopamine D2 receptor ligands as potential antipsychotics. From screening a library of 6.5 million compounds, 21 were selected and were subjected to experimental validation. From these 21 compounds tested, ten D2 ligands were identified (47.6% success rate, among them D2 receptor antagonists, as expected) that have additional affinity for other receptors tested, in particular 5-HT2A receptors. The affinity (Ki values) of the compounds ranged from 58 nm to about 24 μM. Similarity and fragment analysis indicated a significant degree of structural novelty among the identified compounds. We found one D2 receptor antagonist that did not have a protonatable nitrogen atom, which is a key structural element of the classical D2 pharmacophore model necessary for interaction with the conserved Asp(3.32) residue. This compound exhibited greater than 20-fold binding selectivity for the D2 receptor over the D3 receptor. We provide additional evidence that the amide hydrogen atom of this compound forms a hydrogen bond with Asp(3.32), as determined by tests of its derivatives that cannot maintain this interaction. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. PoLi: A Virtual Screening Pipeline Based On Template Pocket And Ligand Similarity

    PubMed Central

    Roy, Ambrish; Srinivasan, Bharath; Skolnick, Jeffrey

    2015-01-01

    Often in pharmaceutical research, the goal is to identify small molecules that can interact with and appropriately modify the biological behavior of a new protein target. Unfortunately, most proteins lack both known structures and small molecule binders, prerequisites of many virtual screening, VS, approaches. For such proteins, ligand homology modeling, LHM, that copies ligands from homologous and perhaps evolutionarily distant template proteins, has been shown to be a powerful VS approach to identify possible binding ligands. However, if we want to target a specific pocket for which there is no homologous holo template protein structure, then LHM will not work. To address this issue, in a new pocket based approach, PoLi, we generalize LHM by exploiting the fact that the number of distinct small molecule ligand binding pockets in proteins is small. PoLi identifies similar ligand binding pockets in a holo-template protein library, selectively copies relevant parts of template ligands and uses them for VS. In practice, PoLi is a hybrid structure and ligand based VS algorithm that integrates 2D fingerprint-based and 3D shape-based similarity metrics for improved virtual screening performance. On standard DUD and DUD-E benchmark databases, using modeled receptor structures, PoLi achieves an average enrichment factor of 13.4 and 9.6 respectively, in the top 1% of the screened library. In contrast, traditional docking based VS using AutoDock Vina and homology-based VS using FINDSITEfilt have an average enrichment of 1.6 (3.0) and 9.0 (7.9) on the DUD (DUD-E) sets respectively. Experimental validation of PoLi predictions on dihydrofolate reductase, DHFR, using differential scanning fluorimetry, DSF, identifies multiple ligands with diverse molecular scaffolds, thus demonstrating the advantage of PoLi over current state-of-the-art VS methods. PMID:26225536

  9. Thoracic, Lumbar, and Sacral Pedicle Screw Placement Using Stryker-Ziehm Virtual Screw Technology and Navigated Stryker Cordless Driver 3: Technical Note.

    PubMed

    Satarasinghe, Praveen; Hamilton, Kojo D; Tarver, Michael J; Buchanan, Robert J; Koltz, Michael T

    2018-04-17

    Utilization of pedicle screws (PS) for spine stabilization is common in spinal surgery. With reliance on visual inspection of anatomical landmarks prior to screw placement, the free-hand technique requires a high level of surgeon skill and precision. Three-dimensional (3D), computer-assisted virtual neuronavigation improves the precision of PS placement and minimization steps. Twenty-three patients with degenerative, traumatic, or neoplastic pathologies received treatment via a novel three-step PS technique that utilizes a navigated power driver in combination with virtual screw technology. (1) Following visualization of neuroanatomy using intraoperative CT, a navigated 3-mm match stick drill bit was inserted at an anatomical entry point with a screen projection showing a virtual screw. (2) A Navigated Stryker Cordless Driver with an appropriate tap was used to access the vertebral body through a pedicle with a screen projection again showing a virtual screw. (3) A Navigated Stryker Cordless Driver with an actual screw was used with a screen projection showing the same virtual screw. One hundred and forty-four consecutive screws were inserted using this three-step, navigated driver, virtual screw technique. Only 1 screw needed intraoperative revision after insertion using the three-step, navigated driver, virtual PS technique. This amounts to a 0.69% revision rate. One hundred percent of patients had intraoperative CT reconstructed images taken to confirm hardware placement. Pedicle screw placement utilizing the Stryker-Ziehm neuronavigation virtual screw technology with a three step, navigated power drill technique is safe and effective.

  10. Structure-based virtual screening and characterization of a novel IL-6 antagonistic compound from synthetic compound database.

    PubMed

    Wang, Jing; Qiao, Chunxia; Xiao, He; Lin, Zhou; Li, Yan; Zhang, Jiyan; Shen, Beifen; Fu, Tinghuan; Feng, Jiannan

    2016-01-01

    According to the three-dimensional (3D) complex structure of (hIL-6⋅hIL-6R⋅gp 130) 2 and the binding orientation of hIL-6, three compounds with high affinity to hIL-6R and bioactivity to block hIL-6 in vitro were screened theoretically from the chemical databases, including 3D-Available Chemicals Directory (ACD) and MDL Drug Data Report (MDDR), by means of the computer-guided virtual screening method. Using distance geometry, molecular modeling and molecular dynamics trajectory analysis methods, the binding mode and binding energy of the three compounds were evaluated theoretically. Enzyme-linked immunosorbent assay analysis demonstrated that all the three compounds could block IL-6 binding to IL-6R specifically. However, only compound 1 could effectively antagonize the function of hIL-6 and inhibit the proliferation of XG-7 cells in a dose-dependent manner, whereas it showed no cytotoxicity to SP2/0 or L929 cells. These data demonstrated that the compound 1 could be a promising candidate of hIL-6 antagonist.

  11. Structure-Based Virtual Screening and Biochemical Evaluation for the Identification of Novel Trypanosoma Brucei Aldolase Inhibitors.

    PubMed

    Ferreira, Leonardo L G; Ferreira, Rafaela S; Palomino, David L; Andricopulo, Adriano D

    2018-04-27

    The glycolytic enzyme fructose-1,6-bisphosphate aldolase is a validated molecular target in human African trypanosomiasis (HAT) drug discovery, a neglected tropical disease (NTD) caused by the protozoan Trypanosoma brucei. Herein, a structure-based virtual screening (SBVS) approach to the identification of novel T. brucei aldolase inhibitors is described. Distinct molecular docking algorithms were used to screen more than 500,000 compounds against the X-ray structure of the enzyme. This SBVS strategy led to the selection of a series of molecules which were evaluated for their activity on recombinant T. brucei aldolase. The effort led to the discovery of structurally new ligands able to inhibit the catalytic activity the enzyme. The predicted binding conformations were additionally investigated in molecular dynamics simulations, which provided useful insights into the enzyme-inhibitor intermolecular interactions. The molecular modeling results along with the enzyme inhibition data generated practical knowledge to be explored in further structure-based drug design efforts in HAT drug discovery. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. The assessment of virtual reality for human anatomy instruction

    NASA Technical Reports Server (NTRS)

    Benn, Karen P.

    1994-01-01

    This research project seeks to meet the objective of science training by developing, assessing, and validating virtual reality as a human anatomy training medium. In ideal situations, anatomic models, computer-based instruction, and cadaver dissection are utilized to augment the traditional methods of instruction. At many institutions, lack of financial resources limits anatomy instruction to textbooks and lectures. However, human anatomy is three dimensional, unlike the one dimensional depiction found in textbooks and the two dimensional depiction found on the computer. Virtual reality is a breakthrough technology that allows one to step through the computer screen into a three dimensional world. This technology offers many opportunities to enhance science education. Therefore, a virtual testing environment of the abdominopelvic region of a human cadaver was created to study the placement of body parts within the nine anatomical divisions of the abdominopelvic region and the four abdominal quadrants.

  13. Discovery of novel inhibitors of Mycobacterium tuberculosis MurG: homology modelling, structure based pharmacophore, molecular docking, and molecular dynamics simulations.

    PubMed

    Saxena, Shalini; Abdullah, Maaged; Sriram, Dharmarajan; Guruprasad, Lalitha

    2017-10-17

    MurG (Rv2153c) is a key player in the biosynthesis of the peptidoglycan layer in Mycobacterium tuberculosis (Mtb). This work is an attempt to highlight the structural and functional relationship of Mtb MurG, the three-dimensional (3D) structure of protein was constructed by homology modelling using Discovery Studio 3.5 software. The quality and consistency of generated model was assessed by PROCHECK, ProSA and ERRAT. Later, the model was optimized by molecular dynamics (MD) simulations and the optimized model complex with substrate Uridine-diphosphate-N-acetylglucosamine (UD1) facilitated us to employ structure-based virtual screening approach to obtain new hits from Asinex database using energy-optimized pharmacophore modelling (e-pharmacophore). The pharmacophore model was validated using enrichment calculations, and finally, validated model was employed for high-throughput virtual screening and molecular docking to identify novel Mtb MurG inhibitors. This study led to the identification of 10 potential compounds with good fitness, docking score, which make important interactions with the protein active site. The 25 ns MD simulations of three potential lead compounds with protein confirmed that the structure was stable and make several non-bonding interactions with amino acids, such as Leu290, Met310 and Asn167. Hence, we concluded that the identified compounds may act as new leads for the design of Mtb MurG inhibitors.

  14. Discovery of a quorum-sensing inhibitor of drug-resistant staphylococcal infections by structure-based virtual screening.

    PubMed

    Kiran, Madanahally D; Adikesavan, Nallini Vijayarangan; Cirioni, Oscar; Giacometti, Andrea; Silvestri, Carmela; Scalise, Giorgio; Ghiselli, Roberto; Saba, Vittorio; Orlando, Fiorenza; Shoham, Menachem; Balaban, Naomi

    2008-05-01

    Staphylococci are a major health threat because of increasing resistance to antibiotics. An alternative to antibiotic treatment is preventing virulence by inhibition of bacterial cell-to-cell communication using the quorum-sensing inhibitor RNAIII-inhibiting peptide (RIP). In this work, we identified 2',5-di-O-galloyl-d-hamamelose (hamamelitannin) as a nonpeptide analog of RIP by virtual screening of a RIP-based pharmacophore against a database of commercially available small-molecule compounds. Hamamelitannin is a natural product found in the bark of Hamamelis virginiana (witch hazel), and it has no effect on staphylococcal growth in vitro; but like RIP, it does inhibit the quorum-sensing regulator RNAIII. In a rat graft model, hamamelitannin prevented device-associated infections in vivo, including infections caused by methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis strains. These findings suggest that hamamelitannin may be used as a suppressor to staphylococcal infections.

  15. Target-specific support vector machine scoring in structure-based virtual screening: computational validation, in vitro testing in kinases, and effects on lung cancer cell proliferation.

    PubMed

    Li, Liwei; Khanna, May; Jo, Inha; Wang, Fang; Ashpole, Nicole M; Hudmon, Andy; Meroueh, Samy O

    2011-04-25

    We assess the performance of our previously reported structure-based support vector machine target-specific scoring function across 41 targets, 40 among them from the Directory of Useful Decoys (DUD). The area under the curve of receiver operating characteristic plots (ROC-AUC) revealed that scoring with SVM-SP resulted in consistently better enrichment over all target families, outperforming Glide and other scoring functions, most notably among kinases. In addition, SVM-SP performance showed little variation among protein classes, exhibited excellent performance in a test case using a homology model, and in some cases showed high enrichment even with few structures used to train a model. We put SVM-SP to the test by virtual screening 1125 compounds against two kinases, EGFR and CaMKII. Among the top 25 EGFR compounds, three compounds (1-3) inhibited kinase activity in vitro with IC₅₀ of 58, 2, and 10 μM. In cell cultures, compounds 1-3 inhibited nonsmall cell lung carcinoma (H1299) cancer cell proliferation with similar IC₅₀ values for compound 3. For CaMKII, one compound inhibited kinase activity in a dose-dependent manner among 20 tested with an IC₅₀ of 48 μM. These results are encouraging given that our in-house library consists of compounds that emerged from virtual screening of other targets with pockets that are different from typical ATP binding sites found in kinases. In light of the importance of kinases in chemical biology, these findings could have implications in future efforts to identify chemical probes of kinases within the human kinome.

  16. Application of Shape Similarity in Pose Selection and Virtual Screening in CSARdock2014 Exercise.

    PubMed

    Kumar, Ashutosh; Zhang, Kam Y J

    2016-06-27

    To evaluate the applicability of shape similarity in docking-based pose selection and virtual screening, we participated in the CSARdock2014 benchmark exercise for identifying the correct docking pose of inhibitors targeting factor XA, spleen tyrosine kinase, and tRNA methyltransferase. This exercise provides a valuable opportunity for researchers to test their docking programs, methods, and protocols in a blind testing environment. In the CSARdock2014 benchmark exercise, we have implemented an approach that uses ligand 3D shape similarity to facilitate docking-based pose selection and virtual screening. We showed here that ligand 3D shape similarity between bound poses could be used to identify the native-like pose from an ensemble of docking-generated poses. Our method correctly identified the native pose as the top-ranking pose for 73% of test cases in a blind testing environment. Moreover, the pose selection results also revealed an excellent correlation between ligand 3D shape similarity scores and RMSD to X-ray crystal structure ligand. In the virtual screening exercise, the average RMSD for our pose prediction was found to be 1.02 Å, and it was one of the top performances achieved in CSARdock2014 benchmark exercise. Furthermore, the inclusion of shape similarity improved virtual screening performance of docking-based scoring and ranking. The coefficient of determination (r(2)) between experimental activities and docking scores for 276 spleen tyrosine kinase inhibitors was found to be 0.365 but reached 0.614 when the ligand 3D shape similarity was included.

  17. Pharmacophore Identification, Molecular Docking, Virtual Screening, and In Silico ADME Studies of Non-Nucleoside Reverse Transcriptase Inhibitors.

    PubMed

    Pirhadi, Somayeh; Ghasemi, Jahan B

    2012-12-01

    Non-nucleoside reverse transcriptase inhibitors (NNRTIs) have gained a definitive place due to their unique antiviral potency, high specificity and low toxicity in antiretroviral combination therapies used to treat HIV. In this study, chemical feature based pharmacophore models of different classes of NNRT inhibitors of HIV-1 have been developed. The best HypoRefine pharmacophore model, Hypo 1, which has the best correlation coefficient (0.95) and the lowest RMS (0.97), contains two hydrogen bond acceptors, one hydrophobic and one ring aromatic feature, as well as four excluded volumes. Hypo 1 was further validated by test set and Fischer validation method. The best pharmacophore model was then utilized as a 3D search query to perform a virtual screening to retrieve potential inhibitors. The hit compounds were subsequently subjected to filtering by Lipinski's rule of five and docking studies by Libdock and Gold methods to refine the retrieved hits. Finally, 7 top ranked compounds based on Gold score fitness function were subjected to in silico ADME studies to investigate for compliance with the standard ranges. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Manually locating physical and virtual reality objects.

    PubMed

    Chen, Karen B; Kimmel, Ryan A; Bartholomew, Aaron; Ponto, Kevin; Gleicher, Michael L; Radwin, Robert G

    2014-09-01

    In this study, we compared how users locate physical and equivalent three-dimensional images of virtual objects in a cave automatic virtual environment (CAVE) using the hand to examine how human performance (accuracy, time, and approach) is affected by object size, location, and distance. Virtual reality (VR) offers the promise to flexibly simulate arbitrary environments for studying human performance. Previously, VR researchers primarily considered differences between virtual and physical distance estimation rather than reaching for close-up objects. Fourteen participants completed manual targeting tasks that involved reaching for corners on equivalent physical and virtual boxes of three different sizes. Predicted errors were calculated from a geometric model based on user interpupillary distance, eye location, distance from the eyes to the projector screen, and object. Users were 1.64 times less accurate (p < .001) and spent 1.49 times more time (p = .01) targeting virtual versus physical box corners using the hands. Predicted virtual targeting errors were on average 1.53 times (p < .05) greater than the observed errors for farther virtual targets but not significantly different for close-up virtual targets. Target size, location, and distance, in addition to binocular disparity, affected virtual object targeting inaccuracy. Observed virtual box inaccuracy was less than predicted for farther locations, suggesting possible influence of cues other than binocular vision. Human physical interaction with objects in VR for simulation, training, and prototyping involving reaching and manually handling virtual objects in a CAVE are more accurate than predicted when locating farther objects.

  19. The Role of Affordances in Children's Learning Performance and Efficiency When Using Virtual Manipulative Mathematics Touch-Screen Apps

    ERIC Educational Resources Information Center

    Moyer-Packenham, Patricia S.; Bullock, Emma K.; Shumway, Jessica F.; Tucker, Stephen I.; Watts, Christina M.; Westenskow, Arla; Anderson-Pence, Katie L.; Maahs-Fladung, Cathy; Boyer-Thurgood, Jennifer; Gulkilik, Hilal; Jordan, Kerry

    2016-01-01

    This paper focuses on understanding the role that affordances played in children's learning performance and efficiency during clinical interviews of their interactions with mathematics apps on touch-screen devices. One hundred children, ages 3 to 8, each used six different virtual manipulative mathematics apps during 30-40-min interviews. The…

  20. Combining in silico and in cerebro approaches for virtual screening and pose prediction in SAMPL4.

    PubMed

    Voet, Arnout R D; Kumar, Ashutosh; Berenger, Francois; Zhang, Kam Y J

    2014-04-01

    The SAMPL challenges provide an ideal opportunity for unbiased evaluation and comparison of different approaches used in computational drug design. During the fourth round of this SAMPL challenge, we participated in the virtual screening and binding pose prediction on inhibitors targeting the HIV-1 integrase enzyme. For virtual screening, we used well known and widely used in silico methods combined with personal in cerebro insights and experience. Regular docking only performed slightly better than random selection, but the performance was significantly improved upon incorporation of additional filters based on pharmacophore queries and electrostatic similarities. The best performance was achieved when logical selection was added. For the pose prediction, we utilized a similar consensus approach that amalgamated the results of the Glide-XP docking with structural knowledge and rescoring. The pose prediction results revealed that docking displayed reasonable performance in predicting the binding poses. However, prediction performance can be improved utilizing scientific experience and rescoring approaches. In both the virtual screening and pose prediction challenges, the top performance was achieved by our approaches. Here we describe the methods and strategies used in our approaches and discuss the rationale of their performances.

  1. Combining in silico and in cerebro approaches for virtual screening and pose prediction in SAMPL4

    NASA Astrophysics Data System (ADS)

    Voet, Arnout R. D.; Kumar, Ashutosh; Berenger, Francois; Zhang, Kam Y. J.

    2014-04-01

    The SAMPL challenges provide an ideal opportunity for unbiased evaluation and comparison of different approaches used in computational drug design. During the fourth round of this SAMPL challenge, we participated in the virtual screening and binding pose prediction on inhibitors targeting the HIV-1 integrase enzyme. For virtual screening, we used well known and widely used in silico methods combined with personal in cerebro insights and experience. Regular docking only performed slightly better than random selection, but the performance was significantly improved upon incorporation of additional filters based on pharmacophore queries and electrostatic similarities. The best performance was achieved when logical selection was added. For the pose prediction, we utilized a similar consensus approach that amalgamated the results of the Glide-XP docking with structural knowledge and rescoring. The pose prediction results revealed that docking displayed reasonable performance in predicting the binding poses. However, prediction performance can be improved utilizing scientific experience and rescoring approaches. In both the virtual screening and pose prediction challenges, the top performance was achieved by our approaches. Here we describe the methods and strategies used in our approaches and discuss the rationale of their performances.

  2. QSAR models of human data can enrich or replace LLNA testing for human skin sensitization

    PubMed Central

    Alves, Vinicius M.; Capuzzi, Stephen J.; Muratov, Eugene; Braga, Rodolpho C.; Thornton, Thomas; Fourches, Denis; Strickland, Judy; Kleinstreuer, Nicole; Andrade, Carolina H.; Tropsha, Alexander

    2016-01-01

    Skin sensitization is a major environmental and occupational health hazard. Although many chemicals have been evaluated in humans, there have been no efforts to model these data to date. We have compiled, curated, analyzed, and compared the available human and LLNA data. Using these data, we have developed reliable computational models and applied them for virtual screening of chemical libraries to identify putative skin sensitizers. The overall concordance between murine LLNA and human skin sensitization responses for a set of 135 unique chemicals was low (R = 28-43%), although several chemical classes had high concordance. We have succeeded to develop predictive QSAR models of all available human data with the external correct classification rate of 71%. A consensus model integrating concordant QSAR predictions and LLNA results afforded a higher CCR of 82% but at the expense of the reduced external dataset coverage (52%). We used the developed QSAR models for virtual screening of CosIng database and identified 1061 putative skin sensitizers; for seventeen of these compounds, we found published evidence of their skin sensitization effects. Models reported herein provide more accurate alternative to LLNA testing for human skin sensitization assessment across diverse chemical data. In addition, they can also be used to guide the structural optimization of toxic compounds to reduce their skin sensitization potential. PMID:28630595

  3. Applicability of three-dimensional imaging techniques in fetal medicine*

    PubMed Central

    Werner Júnior, Heron; dos Santos, Jorge Lopes; Belmonte, Simone; Ribeiro, Gerson; Daltro, Pedro; Gasparetto, Emerson Leandro; Marchiori, Edson

    2016-01-01

    Objective To generate physical models of fetuses from images obtained with three-dimensional ultrasound (3D-US), magnetic resonance imaging (MRI), and, occasionally, computed tomography (CT), in order to guide additive manufacturing technology. Materials and Methods We used 3D-US images of 31 pregnant women, including 5 who were carrying twins. If abnormalities were detected by 3D-US, both MRI and in some cases CT scans were then immediately performed. The images were then exported to a workstation in DICOM format. A single observer performed slice-by-slice manual segmentation using a digital high resolution screen. Virtual 3D models were obtained from software that converts medical images into numerical models. Those models were then generated in physical form through the use of additive manufacturing techniques. Results Physical models based upon 3D-US, MRI, and CT images were successfully generated. The postnatal appearance of either the aborted fetus or the neonate closely resembled the physical models, particularly in cases of malformations. Conclusion The combined use of 3D-US, MRI, and CT could help improve our understanding of fetal anatomy. These three screening modalities can be used for educational purposes and as tools to enable parents to visualize their unborn baby. The images can be segmented and then applied, separately or jointly, in order to construct virtual and physical 3D models. PMID:27818540

  4. Hit Identification and Optimization in Virtual Screening: Practical Recommendations Based Upon a Critical Literature Analysis

    PubMed Central

    Zhu, Tian; Cao, Shuyi; Su, Pin-Chih; Patel, Ram; Shah, Darshan; Chokshi, Heta B.; Szukala, Richard; Johnson, Michael E.; Hevener, Kirk E.

    2013-01-01

    A critical analysis of virtual screening results published between 2007 and 2011 was performed. The activity of reported hit compounds from over 400 studies was compared to their hit identification criteria. Hit rates and ligand efficiencies were calculated to assist in these analyses and the results were compared with factors such as the size of the virtual library and the number of compounds tested. A series of promiscuity, drug-like, and ADMET filters were applied to the reported hits to assess the quality of compounds reported and a careful analysis of a subset of the studies which presented hit optimization was performed. This data allowed us to make several practical recommendations with respect to selection of compounds for experimental testing, defining hit identification criteria, and general virtual screening hit criteria to allow for realistic hit optimization. A key recommendation is the use of size-targeted ligand efficiency values as hit identification criteria. PMID:23688234

  5. Discovery of new GSK-3β inhibitors through structure-based virtual screening.

    PubMed

    Dou, Xiaodong; Jiang, Lan; Wang, Yanxing; Jin, Hongwei; Liu, Zhenming; Zhang, Liangren

    2018-01-15

    Glycogen synthase kinase-3β (GSK-3β) is an attractive therapeutic target for human diseases, such as diabetes, cancer, neurodegenerative diseases, and inflammation. Thus, structure-based virtual screening was performed to identify novel scaffolds of GSK-3β inhibitors, and we observed that conserved water molecules of GSK-3β were suitable for virtual screening. We found 14 hits and D1 (IC 50 of 0.71 μM) were identified. Furthermore, the neuroprotection activity of D1-D3 was validated on a cellular level. 2D similarity searches were used to find derivatives of high inhibitory compounds and an enriched structure-activity relationship suggested that these skeletons were worthy of study as potent GSK-3β inhibitors. Copyright © 2017. Published by Elsevier Ltd.

  6. 4D Flexible Atom-Pairs: An efficient probabilistic conformational space comparison for ligand-based virtual screening

    PubMed Central

    2011-01-01

    Background The performance of 3D-based virtual screening similarity functions is affected by the applied conformations of compounds. Therefore, the results of 3D approaches are often less robust than 2D approaches. The application of 3D methods on multiple conformer data sets normally reduces this weakness, but entails a significant computational overhead. Therefore, we developed a special conformational space encoding by means of Gaussian mixture models and a similarity function that operates on these models. The application of a model-based encoding allows an efficient comparison of the conformational space of compounds. Results Comparisons of our 4D flexible atom-pair approach with over 15 state-of-the-art 2D- and 3D-based virtual screening similarity functions on the 40 data sets of the Directory of Useful Decoys show a robust performance of our approach. Even 3D-based approaches that operate on multiple conformers yield inferior results. The 4D flexible atom-pair method achieves an averaged AUC value of 0.78 on the filtered Directory of Useful Decoys data sets. The best 2D- and 3D-based approaches of this study yield an AUC value of 0.74 and 0.72, respectively. As a result, the 4D flexible atom-pair approach achieves an average rank of 1.25 with respect to 15 other state-of-the-art similarity functions and four different evaluation metrics. Conclusions Our 4D method yields a robust performance on 40 pharmaceutically relevant targets. The conformational space encoding enables an efficient comparison of the conformational space. Therefore, the weakness of the 3D-based approaches on single conformations is circumvented. With over 100,000 similarity calculations on a single desktop CPU, the utilization of the 4D flexible atom-pair in real-world applications is feasible. PMID:21733172

  7. Development of α-glucosidase inhibitors by room temperature C-C cross couplings of quinazolinones.

    PubMed

    Garlapati, Ramesh; Pottabathini, Narender; Gurram, Venkateshwarlu; Kasani, Kumara Swamy; Gundla, Rambabu; Thulluri, Chiranjeevi; Machiraju, Pavan Kumar; Chaudhary, Avinash B; Addepally, Uma; Dayam, Raveendra; Chunduri, Venkata Rao; Patro, Balaram

    2013-08-07

    Novel quinazolinone based α-glucosidase inhibitors have been developed. For this purpose a virtual screening model has been generated and validated utilizing acarbose as a α-glucosidase inhibitor. Homology modeling, docking, and virtual screening were successfully employed to discover a set of structurally diverse compounds active against α-glucosidase. A search of a 3D database containing 22,500 small molecules using the structure based virtual model yielded ten possible candidates. All ten candidates were N-3-pyridyl-2-cyclopropyl quinazolinone-4-one derivatives, varying at the 6 position. This position was modified by Suzuki-Miyaura cross coupling with aryl, heteroaryl, and alkyl boronic acids. A catalyst screen was performed, and using the best optimal conditions, a series of twenty five compounds was synthesized. Notably, the C-C cross coupling reactions of the 6-bromo-2-cyclopropyl-3-(pyridyl-3-ylmethyl)quinazolin-4(3H)-one precursor have been accomplished at room temperature. A comparison of the relative reactivities of 6-bromo and 6-chloro-2,3-disubstituted quinazolinones with phenyl boronic acid was conducted. An investigation of pre-catalyst loading for the reaction of the 6-bromo-2-cyclopropyl-3-(pyridyl-3-ylmethyl)quinazolin-4(3H)-one substrate was also carried out. Finally, we submitted our compounds to biological assays against α-glucosidase inhibitors. Of these, three hits (compounds 4a, 4t and 4r) were potentially active as α-glucosidase inhibitors and showed activity with IC50 values <20 μM. Based on structural novelty and desirable drug-like properties, 4a was selected for structure-activity relationship study, and thirteen analogs were synthesized. Nine out of thirteen analogs acted as α-glucosidase inhibitors with IC50 values <10 μM. These lead compounds have desirable physicochemical properties and are excellent candidates for further optimization.

  8. A method for evaluating the performance of computer-aided detection of pulmonary nodules in lung cancer CT screening: detection limit for nodule size and density

    PubMed Central

    Kobayashi, Hajime; Ohkubo, Masaki; Narita, Akihiro; Marasinghe, Janaka C; Murao, Kohei; Matsumoto, Toru; Sone, Shusuke

    2017-01-01

    Objective: We propose the application of virtual nodules to evaluate the performance of computer-aided detection (CAD) of lung nodules in cancer screening using low-dose CT. Methods: The virtual nodules were generated based on the spatial resolution measured for a CT system used in an institution providing cancer screening and were fused into clinical lung images obtained at that institution, allowing site specificity. First, we validated virtual nodules as an alternative to artificial nodules inserted into a phantom. In addition, we compared the results of CAD analysis between the real nodules (n = 6) and the corresponding virtual nodules. Subsequently, virtual nodules of various sizes and contrasts between nodule density and background density (ΔCT) were inserted into clinical images (n = 10) and submitted for CAD analysis. Results: In the validation study, 46 of 48 virtual nodules had the same CAD results as artificial nodules (kappa coefficient = 0.913). Real nodules and the corresponding virtual nodules showed the same CAD results. The detection limits of the tested CAD system were determined in terms of size and density of peripheral lung nodules; we demonstrated that a nodule with a 5-mm diameter was detected when the nodule had a ΔCT > 220 HU. Conclusion: Virtual nodules are effective in evaluating CAD performance using site-specific scan/reconstruction conditions. Advances in knowledge: Virtual nodules can be an effective means of evaluating site-specific CAD performance. The methodology for guiding the detection limit for nodule size/density might be a useful evaluation strategy. PMID:27897029

  9. Computer-Aided Drug Design in Epigenetics

    NASA Astrophysics Data System (ADS)

    Lu, Wenchao; Zhang, Rukang; Jiang, Hao; Zhang, Huimin; Luo, Cheng

    2018-03-01

    Epigenetic dysfunction has been widely implicated in several diseases especially cancers thus highlights the therapeutic potential for chemical interventions in this field. With rapid development of computational methodologies and high-performance computational resources, computer-aided drug design has emerged as a promising strategy to speed up epigenetic drug discovery. Herein, we make a brief overview of major computational methods reported in the literature including druggability prediction, virtual screening, homology modeling, scaffold hopping, pharmacophore modeling, molecular dynamics simulations, quantum chemistry calculation and 3D quantitative structure activity relationship that have been successfully applied in the design and discovery of epi-drugs and epi-probes. Finally, we discuss about major limitations of current virtual drug design strategies in epigenetics drug discovery and future directions in this field.

  10. Computer-Aided Drug Design in Epigenetics

    PubMed Central

    Lu, Wenchao; Zhang, Rukang; Jiang, Hao; Zhang, Huimin; Luo, Cheng

    2018-01-01

    Epigenetic dysfunction has been widely implicated in several diseases especially cancers thus highlights the therapeutic potential for chemical interventions in this field. With rapid development of computational methodologies and high-performance computational resources, computer-aided drug design has emerged as a promising strategy to speed up epigenetic drug discovery. Herein, we make a brief overview of major computational methods reported in the literature including druggability prediction, virtual screening, homology modeling, scaffold hopping, pharmacophore modeling, molecular dynamics simulations, quantum chemistry calculation, and 3D quantitative structure activity relationship that have been successfully applied in the design and discovery of epi-drugs and epi-probes. Finally, we discuss about major limitations of current virtual drug design strategies in epigenetics drug discovery and future directions in this field. PMID:29594101

  11. Probing the structure of Leishmania major DHFR TS and structure based virtual screening of peptide library for the identification of anti-leishmanial leads.

    PubMed

    Rajasekaran, Rajalakshmi; Chen, Yi-Ping Phoebe

    2012-09-01

    Leishmaniasis, a multi-faceted ethereal disease is considered to be one of the World's major communicable diseases that demands exhaustive research and control measures. The substantial data on these protozoan parasites has not been utilized completely to develop potential therapeutic strategies against Leishmaniasis. Dihydrofolate reductase thymidylate synthase (DHFR-TS) plays a major role in the infective state of the parasite and hence the DHFR-TS based drugs remains of much interest to researchers working on Leishmaniasis. Although, crystal structures of DHFR-TS from different species including Plasmodium falciparum and Trypanosoma cruzi are available, the experimentally determined structure of the Leishmania major DHFR-TS has not yet been reported in the Protein Data Bank. A high quality three dimensional structure of L.major DHFR-TS has been modeled through the homology modeling approach. Carefully refined and the energy minimized structure of the modeled protein was validated using a number of structure validation programs to confirm its structure quality. The modeled protein structure was used in the process of structure based virtual screening to figure out a potential lead structure against DHFR TS. The lead molecule identified has a binding affinity of 0.51 nM and clearly follows drug like properties.

  12. Computational Toxicology at the US EPA | Science Inventory ...

    EPA Pesticide Factsheets

    Computational toxicology is the application of mathematical and computer models to help assess chemical hazards and risks to human health and the environment. Supported by advances in informatics, high-throughput screening (HTS) technologies, and systems biology, EPA is developing robust and flexible computational tools that can be applied to the thousands of chemicals in commerce, and contaminant mixtures found in America’s air, water, and hazardous-waste sites. The ORD Computational Toxicology Research Program (CTRP) is composed of three main elements. The largest component is the National Center for Computational Toxicology (NCCT), which was established in 2005 to coordinate research on chemical screening and prioritization, informatics, and systems modeling. The second element consists of related activities in the National Health and Environmental Effects Research Laboratory (NHEERL) and the National Exposure Research Laboratory (NERL). The third and final component consists of academic centers working on various aspects of computational toxicology and funded by the EPA Science to Achieve Results (STAR) program. Key intramural projects of the CTRP include digitizing legacy toxicity testing information toxicity reference database (ToxRefDB), predicting toxicity (ToxCast™) and exposure (ExpoCast™), and creating virtual liver (v-Liver™) and virtual embryo (v-Embryo™) systems models. The models and underlying data are being made publicly available t

  13. Screening of synthetic and natural product databases: Identification of novel androgens and antiandrogens.

    PubMed

    Bobach, Claudia; Tennstedt, Stephanie; Palberg, Kristin; Denkert, Annika; Brandt, Wolfgang; de Meijere, Armin; Seliger, Barbara; Wessjohann, Ludger A

    2015-01-27

    The androgen receptor is an important pharmaceutical target for a variety of diseases. This paper presents an in silico/in vitro screening procedure to identify new androgen receptor ligands. The two-step virtual screening procedure uses a three-dimensional pharmacophore model and a docking/scoring routine. About 39,000 filtered compounds were docked with PLANTS and scored by Chemplp. Subsequent to virtual screening, 94 compounds, including 28 steroidal and 66 nonsteroidal compounds, were tested by an androgen receptor fluorescence polarization ligand displacement assay. As a result, 30 compounds were identified that show a relative binding affinity of more than 50% in comparison to 100 nM dihydrotestosterone and were classified as androgen receptor binders. For 11 androgen receptor binders of interest IC50 and Ki values were determined. The compound with the highest affinity exhibits a Ki value of 10.8 nM. Subsequent testing of the 11 compounds in a PC-3 and LNCaP multi readout proliferation assay provides insights into the potential mode of action. Further steroid receptor ligand displacement assays and docking studies on estrogen receptors α and β, glucocorticoid receptor, and progesterone receptor gave information about the specificity of the 11 most active compounds. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. Discovery of novel Pim-1 kinase inhibitors by a hierarchical multistage virtual screening approach based on SVM model, pharmacophore, and molecular docking.

    PubMed

    Ren, Ji-Xia; Li, Lin-Li; Zheng, Ren-Lin; Xie, Huan-Zhang; Cao, Zhi-Xing; Feng, Shan; Pan, You-Li; Chen, Xin; Wei, Yu-Quan; Yang, Sheng-Yong

    2011-06-27

    In this investigation, we describe the discovery of novel potent Pim-1 inhibitors by employing a proposed hierarchical multistage virtual screening (VS) approach, which is based on support vector machine-based (SVM-based VS or SB-VS), pharmacophore-based VS (PB-VS), and docking-based VS (DB-VS) methods. In this approach, the three VS methods are applied in an increasing order of complexity so that the first filter (SB-VS) is fast and simple, while successive ones (PB-VS and DB-VS) are more time-consuming but are applied only to a small subset of the entire database. Evaluation of this approach indicates that it can be used to screen a large chemical library rapidly with a high hit rate and a high enrichment factor. This approach was then applied to screen several large chemical libraries, including PubChem, Specs, and Enamine as well as an in-house database. From the final hits, 47 compounds were selected for further in vitro Pim-1 inhibitory assay, and 15 compounds show nanomolar level or low micromolar inhibition potency against Pim-1. In particular, four of them were found to have new scaffolds which have potential for the chemical development of Pim-1 inhibitors.

  15. Discovery of Novel Hepatitis C Virus NS5B Polymerase Inhibitors by Combining Random Forest, Multiple e-Pharmacophore Modeling and Docking

    PubMed Central

    Wei, Yu; Li, Jinlong; Qing, Jie; Huang, Mingjie; Wu, Ming; Gao, Fenghua; Li, Dongmei; Hong, Zhangyong; Kong, Lingbao; Huang, Weiqiang; Lin, Jianping

    2016-01-01

    The NS5B polymerase is one of the most attractive targets for developing new drugs to block Hepatitis C virus (HCV) infection. We describe the discovery of novel potent HCV NS5B polymerase inhibitors by employing a virtual screening (VS) approach, which is based on random forest (RB-VS), e-pharmacophore (PB-VS), and docking (DB-VS) methods. In the RB-VS stage, after feature selection, a model with 16 descriptors was used. In the PB-VS stage, six energy-based pharmacophore (e-pharmacophore) models from different crystal structures of the NS5B polymerase with ligands binding at the palm I, thumb I and thumb II regions were used. In the DB-VS stage, the Glide SP and XP docking protocols with default parameters were employed. In the virtual screening approach, the RB-VS, PB-VS and DB-VS methods were applied in increasing order of complexity to screen the InterBioScreen database. From the final hits, we selected 5 compounds for further anti-HCV activity and cellular cytotoxicity assay. All 5 compounds were found to inhibit NS5B polymerase with IC50 values of 2.01–23.84 μM and displayed anti-HCV activities with EC50 values ranging from 1.61 to 21.88 μM, and all compounds displayed no cellular cytotoxicity (CC50 > 100 μM) except compound N2, which displayed weak cytotoxicity with a CC50 value of 51.3 μM. The hit compound N2 had the best antiviral activity against HCV, with a selective index of 32.1. The 5 hit compounds with new scaffolds could potentially serve as NS5B polymerase inhibitors through further optimization and development. PMID:26845440

  16. Pharmacophore Modeling and in Silico/in Vitro Screening for Human Cytochrome P450 11B1 and Cytochrome P450 11B2 Inhibitors

    PubMed Central

    Akram, Muhammad; Waratchareeyakul, Watcharee; Haupenthal, Joerg; Hartmann, Rolf W.; Schuster, Daniela

    2017-01-01

    Cortisol synthase (CYP11B1) is the main enzyme for the endogenous synthesis of cortisol and its inhibition is a potential way for the treatment of diseases associated with increased cortisol levels, such as Cushing's syndrome, metabolic diseases, and delayed wound healing. Aldosterone synthase (CYP11B2) is the key enzyme for aldosterone biosynthesis and its inhibition is a promising approach for the treatment of congestive heart failure, cardiac fibrosis, and certain forms of hypertension. Both CYP11B1 and CYP11B2 are structurally very similar and expressed in the adrenal cortex. To facilitate the identification of novel inhibitors of these enzymes, ligand-based pharmacophore models of CYP11B1 and CYP11B2 inhibition were developed. A virtual screening of the SPECS database was performed with our pharmacophore queries. Biological evaluation of the selected hits lead to the discovery of three potent novel inhibitors of both CYP11B1 and CYP11B2 in the submicromolar range (compounds 8–10), one selective CYP11B1 inhibitor (Compound 11, IC50 = 2.5 μM), and one selective CYP11B2 inhibitor (compound 12, IC50 = 1.1 μM), respectively. The overall success rate of this prospective virtual screening experiment is 20.8% indicating good predictive power of the pharmacophore models. PMID:29312923

  17. Grid heterogeneity in in-silico experiments: an exploration of drug screening using DOCK on cloud environments.

    PubMed

    Yim, Wen-Wai; Chien, Shu; Kusumoto, Yasuyuki; Date, Susumu; Haga, Jason

    2010-01-01

    Large-scale in-silico screening is a necessary part of drug discovery and Grid computing is one answer to this demand. A disadvantage of using Grid computing is the heterogeneous computational environments characteristic of a Grid. In our study, we have found that for the molecular docking simulation program DOCK, different clusters within a Grid organization can yield inconsistent results. Because DOCK in-silico virtual screening (VS) is currently used to help select chemical compounds to test with in-vitro experiments, such differences have little effect on the validity of using virtual screening before subsequent steps in the drug discovery process. However, it is difficult to predict whether the accumulation of these discrepancies over sequentially repeated VS experiments will significantly alter the results if VS is used as the primary means for identifying potential drugs. Moreover, such discrepancies may be unacceptable for other applications requiring more stringent thresholds. This highlights the need for establishing a more complete solution to provide the best scientific accuracy when executing an application across Grids. One possible solution to platform heterogeneity in DOCK performance explored in our study involved the use of virtual machines as a layer of abstraction. This study investigated the feasibility and practicality of using virtual machine and recent cloud computing technologies in a biological research application. We examined the differences and variations of DOCK VS variables, across a Grid environment composed of different clusters, with and without virtualization. The uniform computer environment provided by virtual machines eliminated inconsistent DOCK VS results caused by heterogeneous clusters, however, the execution time for the DOCK VS increased. In our particular experiments, overhead costs were found to be an average of 41% and 2% in execution time for two different clusters, while the actual magnitudes of the execution time costs were minimal. Despite the increase in overhead, virtual clusters are an ideal solution for Grid heterogeneity. With greater development of virtual cluster technology in Grid environments, the problem of platform heterogeneity may be eliminated through virtualization, allowing greater usage of VS, and will benefit all Grid applications in general.

  18. Combinatorial Pharmacophore-Based 3D-QSAR Analysis and Virtual Screening of FGFR1 Inhibitors

    PubMed Central

    Zhou, Nannan; Xu, Yuan; Liu, Xian; Wang, Yulan; Peng, Jianlong; Luo, Xiaomin; Zheng, Mingyue; Chen, Kaixian; Jiang, Hualiang

    2015-01-01

    The fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) signaling pathway plays crucial roles in cell proliferation, angiogenesis, migration, and survival. Aberration in FGFRs correlates with several malignancies and disorders. FGFRs have proved to be attractive targets for therapeutic intervention in cancer, and it is of high interest to find FGFR inhibitors with novel scaffolds. In this study, a combinatorial three-dimensional quantitative structure-activity relationship (3D-QSAR) model was developed based on previously reported FGFR1 inhibitors with diverse structural skeletons. This model was evaluated for its prediction performance on a diverse test set containing 232 FGFR inhibitors, and it yielded a SD value of 0.75 pIC50 units from measured inhibition affinities and a Pearson’s correlation coefficient R2 of 0.53. This result suggests that the combinatorial 3D-QSAR model could be used to search for new FGFR1 hit structures and predict their potential activity. To further evaluate the performance of the model, a decoy set validation was used to measure the efficiency of the model by calculating EF (enrichment factor). Based on the combinatorial pharmacophore model, a virtual screening against SPECS database was performed. Nineteen novel active compounds were successfully identified, which provide new chemical starting points for further structural optimization of FGFR1 inhibitors. PMID:26110383

  19. Automated Protocol for Large-Scale Modeling of Gene Expression Data.

    PubMed

    Hall, Michelle Lynn; Calkins, David; Sherman, Woody

    2016-11-28

    With the continued rise of phenotypic- and genotypic-based screening projects, computational methods to analyze, process, and ultimately make predictions in this field take on growing importance. Here we show how automated machine learning workflows can produce models that are predictive of differential gene expression as a function of a compound structure using data from A673 cells as a proof of principle. In particular, we present predictive models with an average accuracy of greater than 70% across a highly diverse ∼1000 gene expression profile. In contrast to the usual in silico design paradigm, where one interrogates a particular target-based response, this work opens the opportunity for virtual screening and lead optimization for desired multitarget gene expression profiles.

  20. Human intestinal transporter database: QSAR modeling and virtual profiling of drug uptake, efflux and interactions.

    PubMed

    Sedykh, Alexander; Fourches, Denis; Duan, Jianmin; Hucke, Oliver; Garneau, Michel; Zhu, Hao; Bonneau, Pierre; Tropsha, Alexander

    2013-04-01

    Membrane transporters mediate many biological effects of chemicals and play a major role in pharmacokinetics and drug resistance. The selection of viable drug candidates among biologically active compounds requires the assessment of their transporter interaction profiles. Using public sources, we have assembled and curated the largest, to our knowledge, human intestinal transporter database (>5,000 interaction entries for >3,700 molecules). This data was used to develop thoroughly validated classification Quantitative Structure-Activity Relationship (QSAR) models of transport and/or inhibition of several major transporters including MDR1, BCRP, MRP1-4, PEPT1, ASBT, OATP2B1, OCT1, and MCT1. QSAR models have been developed with advanced machine learning techniques such as Support Vector Machines, Random Forest, and k Nearest Neighbors using Dragon and MOE chemical descriptors. These models afforded high external prediction accuracies of 71-100% estimated by 5-fold external validation, and showed hit retrieval rates with up to 20-fold enrichment in the virtual screening of DrugBank compounds. The compendium of predictive QSAR models developed in this study can be used for virtual profiling of drug candidates and/or environmental agents with the optimal transporter profiles.

  1. Discovery of potential ZAP-70 kinase inhibitors: pharmacophore design, database screening and docking studies.

    PubMed

    Sanam, Ramadevi; Vadivelan, S; Tajne, Sunita; Narasu, Lakshmi; Rambabu, G; Jagarlapudi, Sarma A R P

    2009-12-01

    The best ZAP-70 inhibitor model consists of four-pharmacophore features, (1) one hydrogen bond acceptor, (2) one hydrogen bond donor (3) one hydrophobic aliphatic and (4) one hydrophobic aromatic features. This model was validated against 110 known ZAP-70 inhibitors with a correlation of 0.902 as well as enrichment factor of 1.61 against a maximum value of 2. This model picked 4094 hits from a database of 238,819 molecules while 358 molecules were indicated as highly active. Subsequently, docking studies were performed on the hits and novel series of potent leads were suggested based on the interactions energy between ZAP-70 and the putative inhibitors which validated not only the virtual screening potential of the model but also identified the possible new Chemotypes.

  2. Performance Studies on Distributed Virtual Screening

    PubMed Central

    Krüger, Jens; de la Garza, Luis; Kohlbacher, Oliver; Nagel, Wolfgang E.

    2014-01-01

    Virtual high-throughput screening (vHTS) is an invaluable method in modern drug discovery. It permits screening large datasets or databases of chemical structures for those structures binding possibly to a drug target. Virtual screening is typically performed by docking code, which often runs sequentially. Processing of huge vHTS datasets can be parallelized by chunking the data because individual docking runs are independent of each other. The goal of this work is to find an optimal splitting maximizing the speedup while considering overhead and available cores on Distributed Computing Infrastructures (DCIs). We have conducted thorough performance studies accounting not only for the runtime of the docking itself, but also for structure preparation. Performance studies were conducted via the workflow-enabled science gateway MoSGrid (Molecular Simulation Grid). As input we used benchmark datasets for protein kinases. Our performance studies show that docking workflows can be made to scale almost linearly up to 500 concurrent processes distributed even over large DCIs, thus accelerating vHTS campaigns significantly. PMID:25032219

  3. Evaluation of a novel virtual screening strategy using receptor decoy binding sites.

    PubMed

    Patel, Hershna; Kukol, Andreas

    2016-08-23

    Virtual screening is used in biomedical research to predict the binding affinity of a large set of small organic molecules to protein receptor targets. This report shows the development and evaluation of a novel yet straightforward attempt to improve this ranking in receptor-based molecular docking using a receptor-decoy strategy. This strategy includes defining a decoy binding site on the receptor and adjusting the ranking of the true binding-site virtual screen based on the decoy-site screen. The results show that by docking against a receptor-decoy site with Autodock Vina, improved Receiver Operator Characteristic Enrichment (ROCE) was achieved for 5 out of fifteen receptor targets investigated, when up to 15 % of a decoy site rank list was considered. No improved enrichment was seen for 7 targets, while for 3 targets the ROCE was reduced. The extent to which this strategy can effectively improve ligand prediction is dependent on the target receptor investigated.

  4. Novel Inhibitors of Mycobacterium tuberculosis dTDP-6-deoxy-L-lyxo-4-hexulose Reductase (RmlD) Identified by Virtual Screening

    PubMed Central

    Wang, Yi; Hess, Tamara Noelle; Jones, Victoria; Zhou, Joe Zhongxiang; McNeil, Michael R.; McCammon, J. Andrew

    2011-01-01

    The complex and highly impermeable cell wall of Mycobacterium tuberculosis (Mtb) is largely responsible for the ability of the mycobacterium to resist the action of chemical therapeutics. An L-rhamnosyl residue, which occupies an important anchoring position in the Mtb cell wall, is an attractive target for novel anti-tuberculosis drugs. In this work, we report a virtual screening (VS) study targeting Mtb dTDP-deoxy-L-lyxo-4-hexulose reductase (RmlD), the last enzyme in the L-rhamnosyl synthesis pathway. Through two rounds of VS, we have identified four RmlD inhibitors with half inhibitory concentrations of 0.9-25 μM, and whole-cell minimum inhibitory concentrations of 20-200 μg/ml. Compared with our previous high throughput screening targeting another enzyme involved in L-rhamnosyl synthesis, virtual screening produced higher hit rates, supporting the use of computational methods in future anti-tuberculosis drug discovery efforts. PMID:22014548

  5. A cross docking pipeline for improving pose prediction and virtual screening performance

    NASA Astrophysics Data System (ADS)

    Kumar, Ashutosh; Zhang, Kam Y. J.

    2018-01-01

    Pose prediction and virtual screening performance of a molecular docking method depend on the choice of protein structures used for docking. Multiple structures for a target protein are often used to take into account the receptor flexibility and problems associated with a single receptor structure. However, the use of multiple receptor structures is computationally expensive when docking a large library of small molecules. Here, we propose a new cross-docking pipeline suitable to dock a large library of molecules while taking advantage of multiple target protein structures. Our method involves the selection of a suitable receptor for each ligand in a screening library utilizing ligand 3D shape similarity with crystallographic ligands. We have prospectively evaluated our method in D3R Grand Challenge 2 and demonstrated that our cross-docking pipeline can achieve similar or better performance than using either single or multiple-receptor structures. Moreover, our method displayed not only decent pose prediction performance but also better virtual screening performance over several other methods.

  6. Search for β2 Adrenergic Receptor Ligands by Virtual Screening via Grid Computing and Investigation of Binding Modes by Docking and Molecular Dynamics Simulations

    PubMed Central

    Bai, Qifeng; Shao, Yonghua; Pan, Dabo; Zhang, Yang; Liu, Huanxiang; Yao, Xiaojun

    2014-01-01

    We designed a program called MolGridCal that can be used to screen small molecule database in grid computing on basis of JPPF grid environment. Based on MolGridCal program, we proposed an integrated strategy for virtual screening and binding mode investigation by combining molecular docking, molecular dynamics (MD) simulations and free energy calculations. To test the effectiveness of MolGridCal, we screened potential ligands for β2 adrenergic receptor (β2AR) from a database containing 50,000 small molecules. MolGridCal can not only send tasks to the grid server automatically, but also can distribute tasks using the screensaver function. As for the results of virtual screening, the known agonist BI-167107 of β2AR is ranked among the top 2% of the screened candidates, indicating MolGridCal program can give reasonable results. To further study the binding mode and refine the results of MolGridCal, more accurate docking and scoring methods are used to estimate the binding affinity for the top three molecules (agonist BI-167107, neutral antagonist alprenolol and inverse agonist ICI 118,551). The results indicate agonist BI-167107 has the best binding affinity. MD simulation and free energy calculation are employed to investigate the dynamic interaction mechanism between the ligands and β2AR. The results show that the agonist BI-167107 also has the lowest binding free energy. This study can provide a new way to perform virtual screening effectively through integrating molecular docking based on grid computing, MD simulations and free energy calculations. The source codes of MolGridCal are freely available at http://molgridcal.codeplex.com. PMID:25229694

  7. Virtual screening filters for the design of type II p38 MAP kinase inhibitors: a fragment based library generation approach.

    PubMed

    Badrinarayan, Preethi; Sastry, G Narahari

    2012-04-01

    In this work, we introduce the development and application of a three-step scoring and filtering procedure for the design of type II p38 MAP kinase leads using allosteric fragments extracted from virtual screening hits. The design of the virtual screening filters is based on a thorough evaluation of docking methods, DFG-loop conformation, binding interactions and chemotype specificity of the 138 p38 MAP kinase inhibitors from Protein Data Bank bound to DFG-in and DFG-out conformations using Glide, GOLD and CDOCKER. A 40 ns molecular dynamics simulation with the apo, type I with DFG-in and type II with DFG-out forms was carried out to delineate the effects of structural variations on inhibitor binding. The designed docking-score and sub-structure filters were first tested on a dataset of 249 potent p38 MAP kinase inhibitors from seven diverse series and 18,842 kinase inhibitors from PDB, to gauge their capacity to discriminate between kinase and non-kinase inhibitors and likewise to selectively filter-in target-specific inhibitors. The designed filters were then applied in the virtual screening of a database of ten million (10⁷) compounds resulting in the identification of 100 hits. Based on their binding modes, 98 allosteric fragments were extracted from the hits and a fragment library was generated. New type II p38 MAP kinase leads were designed by tailoring the existing type I ATP site binders with allosteric fragments using a common urea linker. Target specific virtual screening filters can thus be easily developed for other kinases based on this strategy to retrieve target selective compounds. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Colorectal Cancer Screening

    MedlinePlus

    ... blood test Sigmoidoscopy Colonoscopy Virtual colonoscopy DNA stool test Studies have shown that screening for colorectal cancer using ... decrease the risk of dying from cancer. Scientists study screening tests to find those with the fewest risks and ...

  9. A kinase-focused compound collection: compilation and screening strategy.

    PubMed

    Sun, Dongyu; Chuaqui, Claudio; Deng, Zhan; Bowes, Scott; Chin, Donovan; Singh, Juswinder; Cullen, Patrick; Hankins, Gretchen; Lee, Wen-Cherng; Donnelly, Jason; Friedman, Jessica; Josiah, Serene

    2006-06-01

    Lead identification by high-throughput screening of large compound libraries has been supplemented with virtual screening and focused compound libraries. To complement existing approaches for lead identification at Biogen Idec, a kinase-focused compound collection was designed, developed and validated. Two strategies were adopted to populate the compound collection: a ligand shape-based virtual screening and a receptor-based approach (structural interaction fingerprint). Compounds selected with the two approaches were cherry-picked from an existing high-throughput screening compound library, ordered from suppliers and supplemented with specific medicinal compounds from internal programs. Promising hits and leads have been generated from the kinase-focused compound collection against multiple kinase targets. The principle of the collection design and screening strategy was validated and the use of the kinase-focused compound collection for lead identification has been added to existing strategies.

  10. High-immersion three-dimensional display of the numerical computer model

    NASA Astrophysics Data System (ADS)

    Xing, Shujun; Yu, Xunbo; Zhao, Tianqi; Cai, Yuanfa; Chen, Duo; Chen, Zhidong; Sang, Xinzhu

    2013-08-01

    High-immersion three-dimensional (3D) displays making them valuable tools for many applications, such as designing and constructing desired building houses, industrial architecture design, aeronautics, scientific research, entertainment, media advertisement, military areas and so on. However, most technologies provide 3D display in the front of screens which are in parallel with the walls, and the sense of immersion is decreased. To get the right multi-view stereo ground image, cameras' photosensitive surface should be parallax to the public focus plane and the cameras' optical axes should be offset to the center of public focus plane both atvertical direction and horizontal direction. It is very common to use virtual cameras, which is an ideal pinhole camera to display 3D model in computer system. We can use virtual cameras to simulate the shooting method of multi-view ground based stereo image. Here, two virtual shooting methods for ground based high-immersion 3D display are presented. The position of virtual camera is determined by the people's eye position in the real world. When the observer stand in the circumcircle of 3D ground display, offset perspective projection virtual cameras is used. If the observer stands out the circumcircle of 3D ground display, offset perspective projection virtual cameras and the orthogonal projection virtual cameras are adopted. In this paper, we mainly discussed the parameter setting of virtual cameras. The Near Clip Plane parameter setting is the main point in the first method, while the rotation angle of virtual cameras is the main point in the second method. In order to validate the results, we use the D3D and OpenGL to render scenes of different viewpoints and generate a stereoscopic image. A realistic visualization system for 3D models is constructed and demonstrated for viewing horizontally, which provides high-immersion 3D visualization. The displayed 3D scenes are compared with the real objects in the real world.

  11. 3D Flow visualization in virtual reality

    NASA Astrophysics Data System (ADS)

    Pietraszewski, Noah; Dhillon, Ranbir; Green, Melissa

    2017-11-01

    By viewing fluid dynamic isosurfaces in virtual reality (VR), many of the issues associated with the rendering of three-dimensional objects on a two-dimensional screen can be addressed. In addition, viewing a variety of unsteady 3D data sets in VR opens up novel opportunities for education and community outreach. In this work, the vortex wake of a bio-inspired pitching panel was visualized using a three-dimensional structural model of Q-criterion isosurfaces rendered in virtual reality using the HTC Vive. Utilizing the Unity cross-platform gaming engine, a program was developed to allow the user to control and change this model's position and orientation in three-dimensional space. In addition to controlling the model's position and orientation, the user can ``scroll'' forward and backward in time to analyze the formation and shedding of vortices in the wake. Finally, the user can toggle between different quantities, while keeping the time step constant, to analyze flow parameter relationships at specific times during flow development. The information, data, or work presented herein was funded in part by an award from NYS Department of Economic Development (DED) through the Syracuse Center of Excellence.

  12. Virtual High-Throughput Screening for Matrix Metalloproteinase Inhibitors.

    PubMed

    Choi, Jun Yong; Fuerst, Rita

    2017-01-01

    Structure-based virtual screening (SBVS) is a common method for the fast identification of hit structures at the beginning of a medicinal chemistry program in drug discovery. The SBVS, described in this manuscript, is focused on finding small molecule hits that can be further utilized as a starting point for the development of inhibitors of matrix metalloproteinase 13 (MMP-13) via structure-based molecular design. We intended to identify a set of structurally diverse hits, which occupy all subsites (S1'-S3', S2, and S3) centering the zinc containing binding site of MMP-13, by the virtual screening of a chemical library comprising more than ten million commercially available compounds. In total, 23 compounds were found as potential MMP-13 inhibitors using Glide docking followed by the analysis of the structural interaction fingerprints (SIFt) of the docked structures.

  13. Optical 3D surface digitizing in forensic medicine: 3D documentation of skin and bone injuries.

    PubMed

    Thali, Michael J; Braun, Marcel; Dirnhofer, Richard

    2003-11-26

    Photography process reduces a three-dimensional (3D) wound to a two-dimensional level. If there is a need for a high-resolution 3D dataset of an object, it needs to be three-dimensionally scanned. No-contact optical 3D digitizing surface scanners can be used as a powerful tool for wound and injury-causing instrument analysis in trauma cases. The 3D skin wound and a bone injury documentation using the optical scanner Advanced TOpometric Sensor (ATOS II, GOM International, Switzerland) will be demonstrated using two illustrative cases. Using this 3D optical digitizing method the wounds (the virtual 3D computer model of the skin and the bone injuries) and the virtual 3D model of the injury-causing tool are graphically documented in 3D in real-life size and shape and can be rotated in the CAD program on the computer screen. In addition, the virtual 3D models of the bone injuries and tool can now be compared in a 3D CAD program against one another in virtual space, to see if there are matching areas. Further steps in forensic medicine will be a full 3D surface documentation of the human body and all the forensic relevant injuries using optical 3D scanners.

  14. Bayesian models trained with HTS data for predicting β-haematin inhibition and in vitro antimalarial activity.

    PubMed

    Wicht, Kathryn J; Combrinck, Jill M; Smith, Peter J; Egan, Timothy J

    2015-08-15

    A large quantity of high throughput screening (HTS) data for antimalarial activity has become available in recent years. This includes both phenotypic and target-based activity. Realising the maximum value of these data remains a challenge. In this respect, methods that allow such data to be used for virtual screening maximise efficiency and reduce costs. In this study both in vitro antimalarial activity and inhibitory data for β-haematin formation, largely obtained from publically available sources, has been used to develop Bayesian models for inhibitors of β-haematin formation and in vitro antimalarial activity. These models were used to screen two in silico compound libraries. In the first, the 1510 U.S. Food and Drug Administration approved drugs available on PubChem were ranked from highest to lowest Bayesian score based on a training set of β-haematin inhibiting compounds active against Plasmodium falciparum that did not include any of the clinical antimalarials or close analogues. The six known clinical antimalarials that inhibit β-haematin formation were ranked in the top 2.1% of compounds. Furthermore, the in vitro antimalarial hit-rate for this prioritised set of compounds was found to be 81% in the case of the subset where activity data are available in PubChem. In the second, a library of about 5000 commercially available compounds (Aldrich(CPR)) was virtually screened for ability to inhibit β-haematin formation and then for in vitro antimalarial activity. A selection of 34 compounds was purchased and tested, of which 24 were predicted to be β-haematin inhibitors. The hit rate for inhibition of β-haematin formation was found to be 25% and a third of these were active against P. falciparum, corresponding to enrichments estimated at about 25- and 140-fold relative to random screening, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Pharmacophore modeling, docking, and principal component analysis based clustering: combined computer-assisted approaches to identify new inhibitors of the human rhinovirus coat protein.

    PubMed

    Steindl, Theodora M; Crump, Carolyn E; Hayden, Frederick G; Langer, Thierry

    2005-10-06

    The development and application of a sophisticated virtual screening and selection protocol to identify potential, novel inhibitors of the human rhinovirus coat protein employing various computer-assisted strategies are described. A large commercially available database of compounds was screened using a highly selective, structure-based pharmacophore model generated with the program Catalyst. A docking study and a principal component analysis were carried out within the software package Cerius and served to validate and further refine the obtained results. These combined efforts led to the selection of six candidate structures, for which in vitro anti-rhinoviral activity could be shown in a biological assay.

  16. Risks of Colorectal Cancer Screening

    MedlinePlus

    ... blood test Sigmoidoscopy Colonoscopy Virtual colonoscopy DNA stool test Studies have shown that screening for colorectal cancer using ... decrease the risk of dying from cancer. Scientists study screening tests to find those with the fewest risks and ...

  17. gWEGA: GPU-accelerated WEGA for molecular superposition and shape comparison.

    PubMed

    Yan, Xin; Li, Jiabo; Gu, Qiong; Xu, Jun

    2014-06-05

    Virtual screening of a large chemical library for drug lead identification requires searching/superimposing a large number of three-dimensional (3D) chemical structures. This article reports a graphic processing unit (GPU)-accelerated weighted Gaussian algorithm (gWEGA) that expedites shape or shape-feature similarity score-based virtual screening. With 86 GPU nodes (each node has one GPU card), gWEGA can screen 110 million conformations derived from an entire ZINC drug-like database with diverse antidiabetic agents as query structures within 2 s (i.e., screening more than 55 million conformations per second). The rapid screening speed was accomplished through the massive parallelization on multiple GPU nodes and rapid prescreening of 3D structures (based on their shape descriptors and pharmacophore feature compositions). Copyright © 2014 Wiley Periodicals, Inc.

  18. Library fingerprints: a novel approach to the screening of virtual libraries.

    PubMed

    Klon, Anthony E; Diller, David J

    2007-01-01

    We propose a novel method to prioritize libraries for combinatorial synthesis and high-throughput screening that assesses the viability of a particular library on the basis of the aggregate physical-chemical properties of the compounds using a naïve Bayesian classifier. This approach prioritizes collections of related compounds according to the aggregate values of their physical-chemical parameters in contrast to single-compound screening. The method is also shown to be useful in screening existing noncombinatorial libraries when the compounds in these libraries have been previously clustered according to their molecular graphs. We show that the method used here is comparable or superior to the single-compound virtual screening of combinatorial libraries and noncombinatorial libraries and is superior to the pairwise Tanimoto similarity searching of a collection of combinatorial libraries.

  19. Role of Open Source Tools and Resources in Virtual Screening for Drug Discovery.

    PubMed

    Karthikeyan, Muthukumarasamy; Vyas, Renu

    2015-01-01

    Advancement in chemoinformatics research in parallel with availability of high performance computing platform has made handling of large scale multi-dimensional scientific data for high throughput drug discovery easier. In this study we have explored publicly available molecular databases with the help of open-source based integrated in-house molecular informatics tools for virtual screening. The virtual screening literature for past decade has been extensively investigated and thoroughly analyzed to reveal interesting patterns with respect to the drug, target, scaffold and disease space. The review also focuses on the integrated chemoinformatics tools that are capable of harvesting chemical data from textual literature information and transform them into truly computable chemical structures, identification of unique fragments and scaffolds from a class of compounds, automatic generation of focused virtual libraries, computation of molecular descriptors for structure-activity relationship studies, application of conventional filters used in lead discovery along with in-house developed exhaustive PTC (Pharmacophore, Toxicophores and Chemophores) filters and machine learning tools for the design of potential disease specific inhibitors. A case study on kinase inhibitors is provided as an example.

  20. Screening and identification of novel compounds with potential anti-proliferative effects on gallium-resistant lung cancer through an AXL kinase pathway.

    PubMed

    Oyewumi, Moses O; Alazizi, Adnan; Liva, Sophia; Lin, Li; Geldenhuys, Werner J

    2014-09-15

    The clinical application of gallium compounds as anticancer agents is hampered by development of resistance. As a potential strategy to overcome the limitation, eight series of compounds were identified through virtual screening of AXL kinase homology model. Anti-proliferative studies were carried using gallium-sensitive (S) and gallium-resistant (R) human lung adenocarcinoma (A549) cells. Compounds 5476423 and 7919469 were identified as leads. The IC50 values from treating R-cells showed compounds 5476423 and 7919469 had 80 fold and 13 fold increased potency, respectively, compared to gallium acetylacetonate (GaAcAc). The efficacy of GaAcAc against R-cells was increased 2 fold and 1.2 fold when combined with compounds 5476423 and 7919469, respectively. Compared with S-cells, R-cells showed elevated expression of AXL protein, which was significantly suppressed through treatments with the lead compounds. It is anticipated that the lead compounds could be applied in virtual screening programs to identify novel scaffolds for new therapeutic agents as well as combinatorial therapy agents in gallium resistant lung cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Accelerating Virtual High-Throughput Ligand Docking: current technology and case study on a petascale supercomputer.

    PubMed

    Ellingson, Sally R; Dakshanamurthy, Sivanesan; Brown, Milton; Smith, Jeremy C; Baudry, Jerome

    2014-04-25

    In this paper we give the current state of high-throughput virtual screening. We describe a case study of using a task-parallel MPI (Message Passing Interface) version of Autodock4 [1], [2] to run a virtual high-throughput screen of one-million compounds on the Jaguar Cray XK6 Supercomputer at Oak Ridge National Laboratory. We include a description of scripts developed to increase the efficiency of the predocking file preparation and postdocking analysis. A detailed tutorial, scripts, and source code for this MPI version of Autodock4 are available online at http://www.bio.utk.edu/baudrylab/autodockmpi.htm.

  2. Hybrid 3D visualization of the chest and virtual endoscopy of the tracheobronchial system: possibilities and limitations of clinical application.

    PubMed

    Seemann, M D; Claussen, C D

    2001-06-01

    A hybrid rendering method which combines a color-coded surface rendering method and a volume rendering method is described, which enables virtual endoscopic examinations using different representation models. 14 patients with malignancies of the lung and mediastinum (n=11) and lung transplantation (n=3) underwent thin-section spiral computed tomography. The tracheobronchial system and anatomical and pathological features of the chest were segmented using an interactive threshold interval volume-growing segmentation algorithm and visualized with a color-coded surface rendering method. The structures of interest were then superimposed on a volume rendering of the other thoracic structures. For the virtual endoscopy of the tracheobronchial system, a shaded-surface model without color coding, a transparent color-coded shaded-surface model and a triangle-surface model were tested and compared. The hybrid rendering technique exploit the advantages of both rendering methods, provides an excellent overview of the tracheobronchial system and allows a clear depiction of the complex spatial relationships of anatomical and pathological features. Virtual bronchoscopy with a transparent color-coded shaded-surface model allows both a simultaneous visualization of an airway, an airway lesion and mediastinal structures and a quantitative assessment of the spatial relationship between these structures, thus improving confidence in the diagnosis of endotracheal and endobronchial diseases. Hybrid rendering and virtual endoscopy obviate the need for time consuming detailed analysis and presentation of axial source images. Virtual bronchoscopy with a transparent color-coded shaded-surface model offers a practical alternative to fiberoptic bronchoscopy and is particularly promising for patients in whom fiberoptic bronchoscopy is not feasible, contraindicated or refused. Furthermore, it can be used as a complementary procedure to fiberoptic bronchoscopy in evaluating airway stenosis and guiding bronchoscopic biopsy, surgical intervention and palliative therapy and is likely to be increasingly accepted as a screening method for people with suspected endobronchial malignancy and as control examination in the aftercare of patients with malignant diseases.

  3. Surflex-Dock: Docking benchmarks and real-world application

    NASA Astrophysics Data System (ADS)

    Spitzer, Russell; Jain, Ajay N.

    2012-06-01

    Benchmarks for molecular docking have historically focused on re-docking the cognate ligand of a well-determined protein-ligand complex to measure geometric pose prediction accuracy, and measurement of virtual screening performance has been focused on increasingly large and diverse sets of target protein structures, cognate ligands, and various types of decoy sets. Here, pose prediction is reported on the Astex Diverse set of 85 protein ligand complexes, and virtual screening performance is reported on the DUD set of 40 protein targets. In both cases, prepared structures of targets and ligands were provided by symposium organizers. The re-prepared data sets yielded results not significantly different than previous reports of Surflex-Dock on the two benchmarks. Minor changes to protein coordinates resulting from complex pre-optimization had large effects on observed performance, highlighting the limitations of cognate ligand re-docking for pose prediction assessment. Docking protocols developed for cross-docking, which address protein flexibility and produce discrete families of predicted poses, produced substantially better performance for pose prediction. Performance on virtual screening performance was shown to benefit by employing and combining multiple screening methods: docking, 2D molecular similarity, and 3D molecular similarity. In addition, use of multiple protein conformations significantly improved screening enrichment.

  4. Ligand efficiency based approach for efficient virtual screening of compound libraries.

    PubMed

    Ke, Yi-Yu; Coumar, Mohane Selvaraj; Shiao, Hui-Yi; Wang, Wen-Chieh; Chen, Chieh-Wen; Song, Jen-Shin; Chen, Chun-Hwa; Lin, Wen-Hsing; Wu, Szu-Huei; Hsu, John T A; Chang, Chung-Ming; Hsieh, Hsing-Pang

    2014-08-18

    Here we report for the first time the use of fit quality (FQ), a ligand efficiency (LE) based measure for virtual screening (VS) of compound libraries. The LE based VS protocol was used to screen an in-house database of 125,000 compounds to identify aurora kinase A inhibitors. First, 20 known aurora kinase inhibitors were docked to aurora kinase A crystal structure (PDB ID: 2W1C); and the conformations of docked ligand were used to create a pharmacophore (PH) model. The PH model was used to screen the database compounds, and rank (PH rank) them based on the predicted IC50 values. Next, LE_Scale, a weight-dependant LE function, was derived from 294 known aurora kinase inhibitors. Using the fit quality (FQ = LE/LE_Scale) score derived from the LE_Scale function, the database compounds were reranked (PH_FQ rank) and the top 151 (0.12% of database) compounds were assessed for aurora kinase A inhibition biochemically. This VS protocol led to the identification of 7 novel hits, with compound 5 showing aurora kinase A IC50 = 1.29 μM. Furthermore, testing of 5 against a panel of 31 kinase reveals that it is selective toward aurora kinase A & B, with <50% inhibition for other kinases at 10 μM concentrations and is a suitable candidate for further development. Incorporation of FQ score in the VS protocol not only helped identify a novel aurora kinase inhibitor, 5, but also increased the hit rate of the VS protocol by improving the enrichment factor (EF) for FQ based screening (EF = 828), compared to PH based screening (EF = 237) alone. The LE based VS protocol disclosed here could be applied to other targets for hit identification in an efficient manner. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. Stereoscopic vascular models of the head and neck: A computed tomography angiography visualization.

    PubMed

    Cui, Dongmei; Lynch, James C; Smith, Andrew D; Wilson, Timothy D; Lehman, Michael N

    2016-01-01

    Computer-assisted 3D models are used in some medical and allied health science schools; however, they are often limited to online use and 2D flat screen-based imaging. Few schools take advantage of 3D stereoscopic learning tools in anatomy education and clinically relevant anatomical variations when teaching anatomy. A new approach to teaching anatomy includes use of computed tomography angiography (CTA) images of the head and neck to create clinically relevant 3D stereoscopic virtual models. These high resolution images of the arteries can be used in unique and innovative ways to create 3D virtual models of the vasculature as a tool for teaching anatomy. Blood vessel 3D models are presented stereoscopically in a virtual reality environment, can be rotated 360° in all axes, and magnified according to need. In addition, flexible views of internal structures are possible. Images are displayed in a stereoscopic mode, and students view images in a small theater-like classroom while wearing polarized 3D glasses. Reconstructed 3D models enable students to visualize vascular structures with clinically relevant anatomical variations in the head and neck and appreciate spatial relationships among the blood vessels, the skull and the skin. © 2015 American Association of Anatomists.

  6. An infrastructure to mine molecular descriptors for ligand selection on virtual screening.

    PubMed

    Seus, Vinicius Rosa; Perazzo, Giovanni Xavier; Winck, Ana T; Werhli, Adriano V; Machado, Karina S

    2014-01-01

    The receptor-ligand interaction evaluation is one important step in rational drug design. The databases that provide the structures of the ligands are growing on a daily basis. This makes it impossible to test all the ligands for a target receptor. Hence, a ligand selection before testing the ligands is needed. One possible approach is to evaluate a set of molecular descriptors. With the aim of describing the characteristics of promising compounds for a specific receptor we introduce a data warehouse-based infrastructure to mine molecular descriptors for virtual screening (VS). We performed experiments that consider as target the receptor HIV-1 protease and different compounds for this protein. A set of 9 molecular descriptors are taken as the predictive attributes and the free energy of binding is taken as a target attribute. By applying the J48 algorithm over the data we obtain decision tree models that achieved up to 84% of accuracy. The models indicate which molecular descriptors and their respective values are relevant to influence good FEB results. Using their rules we performed ligand selection on ZINC database. Our results show important reduction in ligands selection to be applied in VS experiments; for instance, the best selection model picked only 0.21% of the total amount of drug-like ligands.

  7. Molecular modeling and identification of novel glucokinase activators through stepwise virtual screening.

    PubMed

    Behera, Pabitra Mohan; Behera, Deepak Kumar; Satpati, Suresh; Agnihotri, Geetanjali; Nayak, Sanghamitra; Padhi, Payodhar; Dixit, Anshuman

    2015-04-01

    The glucose phosphorylating enzyme glucokinase (GK) is a 50kD monomeric protein having 465 amino acids. It maintains glucose homeostasis inside cells, acts as a glucose sensor in pancreatic β-cells and as a rate controlling enzyme for hepatic glucose clearance and glycogen synthesis. It has two binding sites, one for binding d-glucose and the other for a putative allosteric activator named glucokinase activator (GKA). The GKAs interact with the same region of the GK enzyme that is commonly affected by naturally occurring mutations in humans. However, many GKAs do not bind to GK in the absence of glucose. Recently, it has been reported that GKAs are highly effective in patients with type 2 diabetes mellitus. In this milieu a molecular modeling study has been carried out on three natural variants of GK that lie in the GKA binding site and are known to cause maturity onset diabetes of young (MODY). Additionally, a 10ns molecular dynamics simulation was done on each of the modeled variant in order to explore the flexibility of this site. Subsequently, a systematic virtual screening study was done to identify compounds which can bind with high affinity at GKA binding site of mutant GK. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. A Thoroughly Validated Virtual Screening Strategy for Discovery of Novel HDAC3 Inhibitors.

    PubMed

    Hu, Huabin; Xia, Jie; Wang, Dongmei; Wang, Xiang Simon; Wu, Song

    2017-01-18

    Histone deacetylase 3 (HDAC3) has been recently identified as a potential target for the treatment of cancer and other diseases, such as chronic inflammation, neurodegenerative diseases, and diabetes. Virtual screening (VS) is currently a routine technique for hit identification, but its success depends on rational development of VS strategies. To facilitate this process, we applied our previously released benchmarking dataset, i.e., MUBD-HDAC3 to the evaluation of structure-based VS (SBVS) and ligand-based VS (LBVS) combinatorial approaches. We have identified FRED (Chemgauss4) docking against a structural model of HDAC3, i.e., SAHA-3 generated by a computationally inexpensive "flexible docking", as the best SBVS approach and a common feature pharmacophore model, i.e., Hypo1 generated by Catalyst/HipHop as the optimal model for LBVS. We then developed a pipeline that was composed of Hypo1, FRED (Chemgauss4), and SAHA-3 sequentially, and demonstrated that it was superior to other combinations in terms of ligand enrichment. In summary, we present the first highly-validated, rationally-designed VS strategy specific to HDAC3 inhibitor discovery. The constructed pipeline is publicly accessible for the scientific community to identify novel HDAC3 inhibitors in a time-efficient and cost-effective way.

  9. A Thoroughly Validated Virtual Screening Strategy for Discovery of Novel HDAC3 Inhibitors

    PubMed Central

    Hu, Huabin; Xia, Jie; Wang, Dongmei; Wang, Xiang Simon; Wu, Song

    2017-01-01

    Histone deacetylase 3 (HDAC3) has been recently identified as a potential target for the treatment of cancer and other diseases, such as chronic inflammation, neurodegenerative diseases, and diabetes. Virtual screening (VS) is currently a routine technique for hit identification, but its success depends on rational development of VS strategies. To facilitate this process, we applied our previously released benchmarking dataset, i.e., MUBD-HDAC3 to the evaluation of structure-based VS (SBVS) and ligand-based VS (LBVS) combinatorial approaches. We have identified FRED (Chemgauss4) docking against a structural model of HDAC3, i.e., SAHA-3 generated by a computationally inexpensive “flexible docking”, as the best SBVS approach and a common feature pharmacophore model, i.e., Hypo1 generated by Catalyst/HipHop as the optimal model for LBVS. We then developed a pipeline that was composed of Hypo1, FRED (Chemgauss4), and SAHA-3 sequentially, and demonstrated that it was superior to other combinations in terms of ligand enrichment. In summary, we present the first highly-validated, rationally-designed VS strategy specific to HDAC3 inhibitor discovery. The constructed pipeline is publicly accessible for the scientific community to identify novel HDAC3 inhibitors in a time-efficient and cost-effective way. PMID:28106794

  10. Discovery of a fluorene class of compounds as inhibitors of botulinum neurotoxin serotype E by virtual screening.

    PubMed

    Kumar, Gyanendra; Agarwal, Rakhi; Swaminathan, Subramanyam

    2012-02-28

    Botulinum neurotoxins are one of the most poisonous biological substances known to humans and present a potential bioterrorism threat. There are no therapeutic interventions developed so far. Here, we report the first small molecule non-peptide inhibitor for botulinum neurotoxin serotype E discovered by structure-based virtual screening and propose a mechanism for its inhibitory activity. This journal is © The Royal Society of Chemistry 2012

  11. Ligand-based virtual screening and inductive learning for identification of SIRT1 inhibitors in natural products.

    PubMed

    Sun, Yunan; Zhou, Hui; Zhu, Hongmei; Leung, Siu-wai

    2016-01-25

    Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide-dependent deacetylase, and its dysregulation can lead to ageing, diabetes, and cancer. From 346 experimentally confirmed SIRT1 inhibitors, an inhibitor structure pattern was generated by inductive logic programming (ILP) with DMax Chemistry Assistant software. The pattern contained amide, amine, and hetero-aromatic five-membered rings, each of which had a hetero-atom and an unsubstituted atom at a distance of 2. According to this pattern, a ligand-based virtual screening of 1 444 880 active compounds from Chinese herbs identified 12 compounds as inhibitors of SIRT1. Three compounds (ZINC08790006, ZINC08792229, and ZINC08792355) had high affinity (-7.3, -7.8, and -8.6 kcal/mol, respectively) for SIRT1 as estimated by molecular docking software AutoDock Vina. This study demonstrated a use of ILP and background knowledge in machine learning to facilitate virtual screening.

  12. Ligand-based virtual screening and inductive learning for identification of SIRT1 inhibitors in natural products

    NASA Astrophysics Data System (ADS)

    Sun, Yunan; Zhou, Hui; Zhu, Hongmei; Leung, Siu-Wai

    2016-01-01

    Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide-dependent deacetylase, and its dysregulation can lead to ageing, diabetes, and cancer. From 346 experimentally confirmed SIRT1 inhibitors, an inhibitor structure pattern was generated by inductive logic programming (ILP) with DMax Chemistry Assistant software. The pattern contained amide, amine, and hetero-aromatic five-membered rings, each of which had a hetero-atom and an unsubstituted atom at a distance of 2. According to this pattern, a ligand-based virtual screening of 1 444 880 active compounds from Chinese herbs identified 12 compounds as inhibitors of SIRT1. Three compounds (ZINC08790006, ZINC08792229, and ZINC08792355) had high affinity (-7.3, -7.8, and -8.6 kcal/mol, respectively) for SIRT1 as estimated by molecular docking software AutoDock Vina. This study demonstrated a use of ILP and background knowledge in machine learning to facilitate virtual screening.

  13. Discovery of potent inhibitors of soluble epoxide hydrolase by combinatorial library design and structure-based virtual screening.

    PubMed

    Xing, Li; McDonald, Joseph J; Kolodziej, Steve A; Kurumbail, Ravi G; Williams, Jennifer M; Warren, Chad J; O'Neal, Janet M; Skepner, Jill E; Roberds, Steven L

    2011-03-10

    Structure-based virtual screening was applied to design combinatorial libraries to discover novel and potent soluble epoxide hydrolase (sEH) inhibitors. X-ray crystal structures revealed unique interactions for a benzoxazole template in addition to the conserved hydrogen bonds with the catalytic machinery of sEH. By exploitation of the favorable binding elements, two iterations of library design based on amide coupling were employed, guided principally by the docking results of the enumerated virtual products. Biological screening of the libraries demonstrated as high as 90% hit rate, of which over two dozen compounds were single digit nanomolar sEH inhibitors by IC(50) determination. In total the library design and synthesis produced more than 300 submicromolar sEH inhibitors. In cellular systems consistent activities were demonstrated with biochemical measurements. The SAR understanding of the benzoxazole template provides valuable insights into discovery of novel sEH inhibitors as therapeutic agents.

  14. Development of purely structure-based pharmacophores for the topoisomerase I-DNA-ligand binding pocket

    NASA Astrophysics Data System (ADS)

    Drwal, Malgorzata N.; Agama, Keli; Pommier, Yves; Griffith, Renate

    2013-12-01

    Purely structure-based pharmacophores (SBPs) are an alternative method to ligand-based approaches and have the advantage of describing the entire interaction capability of a binding pocket. Here, we present the development of SBPs for topoisomerase I, an anticancer target with an unusual ligand binding pocket consisting of protein and DNA atoms. Different approaches to cluster and select pharmacophore features are investigated, including hierarchical clustering and energy calculations. In addition, the performance of SBPs is evaluated retrospectively and compared to the performance of ligand- and complex-based pharmacophores. SBPs emerge as a valid method in virtual screening and a complementary approach to ligand-focussed methods. The study further reveals that the choice of pharmacophore feature clustering and selection methods has a large impact on the virtual screening hit lists. A prospective application of the SBPs in virtual screening reveals that they can be used successfully to identify novel topoisomerase inhibitors.

  15. Three-dimensional compound comparison methods and their application in drug discovery.

    PubMed

    Shin, Woong-Hee; Zhu, Xiaolei; Bures, Mark Gregory; Kihara, Daisuke

    2015-07-16

    Virtual screening has been widely used in the drug discovery process. Ligand-based virtual screening (LBVS) methods compare a library of compounds with a known active ligand. Two notable advantages of LBVS methods are that they do not require structural information of a target receptor and that they are faster than structure-based methods. LBVS methods can be classified based on the complexity of ligand structure information utilized: one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D). Unlike 1D and 2D methods, 3D methods can have enhanced performance since they treat the conformational flexibility of compounds. In this paper, a number of 3D methods will be reviewed. In addition, four representative 3D methods were benchmarked to understand their performance in virtual screening. Specifically, we tested overall performance in key aspects including the ability to find dissimilar active compounds, and computational speed.

  16. Differentiation of AmpC beta-lactamase binders vs. decoys using classification kNN QSAR modeling and application of the QSAR classifier to virtual screening

    NASA Astrophysics Data System (ADS)

    Hsieh, Jui-Hua; Wang, Xiang S.; Teotico, Denise; Golbraikh, Alexander; Tropsha, Alexander

    2008-09-01

    The use of inaccurate scoring functions in docking algorithms may result in the selection of compounds with high predicted binding affinity that nevertheless are known experimentally not to bind to the target receptor. Such falsely predicted binders have been termed `binding decoys'. We posed a question as to whether true binders and decoys could be distinguished based only on their structural chemical descriptors using approaches commonly used in ligand based drug design. We have applied the k-Nearest Neighbor ( kNN) classification QSAR approach to a dataset of compounds characterized as binders or binding decoys of AmpC beta-lactamase. Models were subjected to rigorous internal and external validation as part of our standard workflow and a special QSAR modeling scheme was employed that took into account the imbalanced ratio of inhibitors to non-binders (1:4) in this dataset. 342 predictive models were obtained with correct classification rate (CCR) for both training and test sets as high as 0.90 or higher. The prediction accuracy was as high as 100% (CCR = 1.00) for the external validation set composed of 10 compounds (5 true binders and 5 decoys) selected randomly from the original dataset. For an additional external set of 50 known non-binders, we have achieved the CCR of 0.87 using very conservative model applicability domain threshold. The validated binary kNN QSAR models were further employed for mining the NCGC AmpC screening dataset (69653 compounds). The consensus prediction of 64 compounds identified as screening hits in the AmpC PubChem assay disagreed with their annotation in PubChem but was in agreement with the results of secondary assays. At the same time, 15 compounds were identified as potential binders contrary to their annotation in PubChem. Five of them were tested experimentally and showed inhibitory activities in millimolar range with the highest binding constant Ki of 135 μM. Our studies suggest that validated QSAR models could complement structure based docking and scoring approaches in identifying promising hits by virtual screening of molecular libraries.

  17. Identification of novel monoamine oxidase B inhibitors by structure-based virtual screening.

    PubMed

    Geldenhuys, Werner J; Darvesh, Altaf S; Funk, Max O; Van der Schyf, Cornelis J; Carroll, Richard T

    2010-09-01

    Parkinson's disease is a severe debilitating neurodegenerative disorder. Recently, it was shown that the peroxisome proliferating-activator receptor-gamma agonist pioglitazone protected mice from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity due to its ability to inhibit monoamine oxidase B (MAO-B). Docking studies were initiated to investigate pioglitazone's interactions within the substrate cavity of MAO-B. Modeling studies indicated that the thiazolidinedione (TZD) moiety was a likely candidate for its specificity to MAO-B. To explore this potential novel MAO-B scaffold, we performed a structure-based virtual screen to identify additional MAO-B inhibitors. Our search identified eight novel compounds containing the TZD-moiety that allowed for a limited study to identify structural requirements for binding to MAO-B. Inhibition assays identified two TZDs (A6355 and L136662) which were found to inhibit recombinant human MAO-B with IC(50) values of 82 and 195 nM, respectively. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Pharmacophore modeling and virtual screening to identify potential RET kinase inhibitors.

    PubMed

    Shih, Kuei-Chung; Shiau, Chung-Wai; Chen, Ting-Shou; Ko, Ching-Huai; Lin, Chih-Lung; Lin, Chun-Yuan; Hwang, Chrong-Shiong; Tang, Chuan-Yi; Chen, Wan-Ru; Huang, Jui-Wen

    2011-08-01

    Chemical features based 3D pharmacophore model for REarranged during Transfection (RET) tyrosine kinase were developed by using a training set of 26 structurally diverse known RET inhibitors. The best pharmacophore hypothesis, which identified inhibitors with an associated correlation coefficient of 0.90 between their experimental and estimated anti-RET values, contained one hydrogen-bond acceptor, one hydrogen-bond donor, one hydrophobic, and one ring aromatic features. The model was further validated by a testing set, Fischer's randomization test, and goodness of hit (GH) test. We applied this pharmacophore model to screen NCI database for potential RET inhibitors. The hits were docked to RET with GOLD and CDOCKER after filtering by Lipinski's rules. Ultimately, 24 molecules were selected as potential RET inhibitors for further investigation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. The virtual lover: variable and easily guided 3D fish animations as an innovative tool in mate-choice experiments with sailfin mollies-I. Design and implementation

    PubMed Central

    Smielik, Ievgen; Hütwohl, Jan-Marco; Gierszewski, Stefanie; Witte, Klaudia; Kuhnert, Klaus-Dieter

    2017-01-01

    Abstract Animal behavior researchers often face problems regarding standardization and reproducibility of their experiments. This has led to the partial substitution of live animals with artificial virtual stimuli. In addition to standardization and reproducibility, virtual stimuli open new options for researchers since they are easily changeable in morphology and appearance, and their behavior can be defined. In this article, a novel toolchain to conduct behavior experiments with fish is presented by a case study in sailfin mollies Poecilia latipinna. As the toolchain holds many different and novel features, it offers new possibilities for studies in behavioral animal research and promotes the standardization of experiments. The presented method includes options to design, animate, and present virtual stimuli to live fish. The designing tool offers an easy and user-friendly way to define size, coloration, and morphology of stimuli and moreover it is able to configure virtual stimuli randomly without any user influence. Furthermore, the toolchain brings a novel method to animate stimuli in a semiautomatic way with the help of a game controller. These created swimming paths can be applied to different stimuli in real time. A presentation tool combines models and swimming paths regarding formerly defined playlists, and presents the stimuli onto 2 screens. Experiments with live sailfin mollies validated the usage of the created virtual 3D fish models in mate-choice experiments. PMID:29491963

  20. The virtual lover: variable and easily guided 3D fish animations as an innovative tool in mate-choice experiments with sailfin mollies-I. Design and implementation.

    PubMed

    Müller, Klaus; Smielik, Ievgen; Hütwohl, Jan-Marco; Gierszewski, Stefanie; Witte, Klaudia; Kuhnert, Klaus-Dieter

    2017-02-01

    Animal behavior researchers often face problems regarding standardization and reproducibility of their experiments. This has led to the partial substitution of live animals with artificial virtual stimuli. In addition to standardization and reproducibility, virtual stimuli open new options for researchers since they are easily changeable in morphology and appearance, and their behavior can be defined. In this article, a novel toolchain to conduct behavior experiments with fish is presented by a case study in sailfin mollies Poecilia latipinna . As the toolchain holds many different and novel features, it offers new possibilities for studies in behavioral animal research and promotes the standardization of experiments. The presented method includes options to design, animate, and present virtual stimuli to live fish. The designing tool offers an easy and user-friendly way to define size, coloration, and morphology of stimuli and moreover it is able to configure virtual stimuli randomly without any user influence. Furthermore, the toolchain brings a novel method to animate stimuli in a semiautomatic way with the help of a game controller. These created swimming paths can be applied to different stimuli in real time. A presentation tool combines models and swimming paths regarding formerly defined playlists, and presents the stimuli onto 2 screens. Experiments with live sailfin mollies validated the usage of the created virtual 3D fish models in mate-choice experiments.

  1. Monocular display unit for 3D display with correct depth perception

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kunio; Hosomi, Takashi

    2009-11-01

    A study of virtual-reality system has been popular and its technology has been applied to medical engineering, educational engineering, a CAD/CAM system and so on. The 3D imaging display system has two types in the presentation method; one is a 3-D display system using a special glasses and the other is the monitor system requiring no special glasses. A liquid crystal display (LCD) recently comes into common use. It is possible for this display unit to provide the same size of displaying area as the image screen on the panel. A display system requiring no special glasses is useful for a 3D TV monitor, but this system has demerit such that the size of a monitor restricts the visual field for displaying images. Thus the conventional display can show only one screen, but it is impossible to enlarge the size of a screen, for example twice. To enlarge the display area, the authors have developed an enlarging method of display area using a mirror. Our extension method enables the observers to show the virtual image plane and to enlarge a screen area twice. In the developed display unit, we made use of an image separating technique using polarized glasses, a parallax barrier or a lenticular lens screen for 3D imaging. The mirror can generate the virtual image plane and it enlarges a screen area twice. Meanwhile the 3D display system using special glasses can also display virtual images over a wide area. In this paper, we present a monocular 3D vision system with accommodation mechanism, which is useful function for perceiving depth.

  2. Structure-Based Virtual Screening of Commercially Available Compound Libraries.

    PubMed

    Kireev, Dmitri

    2016-01-01

    Virtual screening (VS) is an efficient hit-finding tool. Its distinctive strength is that it allows one to screen compound libraries that are not available in the lab. Moreover, structure-based (SB) VS also enables an understanding of how the hit compounds bind the protein target, thus laying ground work for the rational hit-to-lead progression. SBVS requires a very limited experimental effort and is particularly well suited for academic labs and small biotech companies that, unlike pharmaceutical companies, do not have physical access to quality small-molecule libraries. Here, we describe SBVS of commercial compound libraries for Mer kinase inhibitors. The screening protocol relies on the docking algorithm Glide complemented by a post-docking filter based on structural protein-ligand interaction fingerprints (SPLIF).

  3. Pharmacophore Modelling and Synthesis of Quinoline-3-Carbohydrazide as Antioxidants

    PubMed Central

    El Bakkali, Mustapha; Ismaili, Lhassane; Tomassoli, Isabelle; Nicod, Laurence; Pudlo, Marc; Refouvelet, Bernard

    2011-01-01

    From well-known antioxidants agents, we developed a first pharmacophore model containing four common chemical features: one aromatic ring and three hydrogen bond acceptors. This model served as a template in virtual screening of Maybridge and NCI databases that resulted in selection of sixteen compounds. The selected compounds showed a good antioxidant activity measured by three chemical tests: DPPH radical, OH° radical, and superoxide radical scavenging. New synthetic compounds with a good correlation with the model were prepared, and some of them presented a good antioxidant activity. PMID:25954520

  4. Virtual daily living test to screen for mild cognitive impairment using kinematic movement analysis

    PubMed Central

    Seo, Kyoungwon; Kim, Jae-kwan; Oh, Dong Hoon

    2017-01-01

    Questionnaires or computer-based tests for assessing activities of daily living are well-known approaches to screen for mild cognitive impairment (MCI). However, questionnaires are subjective and computerized tests only collect simple performance data with conventional input devices such as a mouse and keyboard. This study explored the validity and discriminative power of a virtual daily living test as a new diagnostic approach to assess MCI. Twenty-two healthy controls and 20 patients with MCI were recruited. The virtual daily living test presents two complex daily living tasks in an immersive virtual reality environment. The tasks were conducted based on subject body movements and detailed behavioral data (i.e., kinematic measures) were collected. Performance in both the proposed virtual daily living test and conventional neuropsychological tests for patients with MCI was compared to healthy controls. Kinematic measures considered in this study, such as body movement trajectory, time to completion, and speed, classified patients with MCI from healthy controls, F(8, 33) = 5.648, p < 0.001, η2 = 0.578. When both hand and head speed were employed in conjunction with the immediate free-recall test, a conventional neuropsychological test, the discrimination power for screening MCI was significantly improved to 90% sensitivity and 95.5% specificity (cf. the immediate free-recall test alone has 80% sensitivity and 77.3% specificity). Inclusion of the kinematic measures in screening for MCI significantly improved the classification of patients with MCI compared to the healthy control group, Wilks’ Lambda = 0.451, p < 0.001. PMID:28738088

  5. Multiple target drug cocktail design for attacking the core network markers of four cancers using ligand-based and structure-based virtual screening methods

    PubMed Central

    2015-01-01

    Background Computer-aided drug design has a long history of being applied to discover new molecules to treat various cancers, but it has always been focused on single targets. The development of systems biology has let scientists reveal more hidden mechanisms of cancers, but attempts to apply systems biology to cancer therapies remain at preliminary stages. Our lab has successfully developed various systems biology models for several cancers. Based on these achievements, we present the first attempt to combine multiple-target therapy with systems biology. Methods In our previous study, we identified 28 significant proteins--i.e., common core network markers--of four types of cancers as house-keeping proteins of these cancers. In this study, we ranked these proteins by summing their carcinogenesis relevance values (CRVs) across the four cancers, and then performed docking and pharmacophore modeling to do virtual screening on the NCI database for anti-cancer drugs. We also performed pathway analysis on these proteins using Panther and MetaCore to reveal more mechanisms of these cancer house-keeping proteins. Results We designed several approaches to discover targets for multiple-target cocktail therapies. In the first one, we identified the top 20 drugs for each of the 28 cancer house-keeping proteins, and analyzed the docking pose to further understand the interaction mechanisms of these drugs. After screening for duplicates, we found that 13 of these drugs could target 11 proteins simultaneously. In the second approach, we chose the top 5 proteins with the highest summed CRVs and used them as the drug targets. We built a pharmacophore and applied it to do virtual screening against the Life-Chemical library for anti-cancer drugs. Based on these results, wet-lab bio-scientists could freely investigate combinations of these drugs for multiple-target therapy for cancers, in contrast to the traditional single target therapy. Conclusions Combination of systems biology with computer-aided drug design could help us develop novel drug cocktails with multiple targets. We believe this will enhance the efficiency of therapeutic practice and lead to new directions for cancer therapy. PMID:26680552

  6. From genome to drug lead: identification of a small-molecule inhibitor of the SARS virus.

    PubMed

    Dooley, Andrea J; Shindo, Nice; Taggart, Barbara; Park, Jewn-Giew; Pang, Yuan-Ping

    2006-02-15

    Virtual screening, a fast, computational approach to identify drug leads [Perola, E.; Xu, K.; Kollmeyer, T. M.; Kaufmann, S. H.; Prendergast, F. G. J. Med. Chem.2000, 43, 401; Miller, M. A. Nat. Rev. Drug Disc.2002, 1 220], is limited by a known challenge in crystallographically determining flexible regions of proteins. This approach has not been able to identify active inhibitors of the severe acute respiratory syndrome-associated coronavirus (SARS-CoV) using solely the crystal structures of a SARS-CoV cysteine proteinase with a flexible loop in the active site [Yang, H. T.; Yang, M. J.; Ding, Y.; Liu, Y. W.; Lou, Z. Y. Proc. Natl. Acad. Sci. U.S.A.2003, 100, 13190; Jenwitheesuk, E.; Samudrala, R. Bioorg. Med. Chem. Lett.2003, 13, 3989; Rajnarayanan, R. V.; Dakshanamurthy, S.; Pattabiraman, N. Biochem. Biophys. Res. Commun.2004, 321, 370; Du, Q.; Wang, S.; Wei, D.; Sirois, S.; Chou, K. Anal. Biochem.2005, 337, 262; Du, Q.; Wang, S.; Zhu, Y.; Wei, D.; Guo, H. Peptides2004, 25, 1857; Lee, V.; Wittayanarakul, K.; Remsungenen, T.; Parasuk, V.; Sompornpisut, P. Science (Asia)2003, 29, 181; Toney, J.; Navas-Martin, S.; Weiss, S.; Koeller, A. J. Med. Chem.2004, 47, 1079; Zhang, X. W.; Yap, Y. L. Bioorg. Med. Chem.2004, 12, 2517]. This article demonstrates a genome-to-drug-lead approach that uses terascale computing to model flexible regions of proteins, thus permitting the utilization of genetic information to identify drug leads expeditiously. A small-molecule inhibitor of SARS-CoV, exhibiting an effective concentration (EC50) of 23 microM in cell-based assays, was identified through virtual screening against a computer-predicted model of the cysteine proteinase. Screening against two crystal structures of the same proteinase failed to identify the 23-microM inhibitor. This study suggests that terascale computing can complement crystallography, broaden the scope of virtual screening, and accelerate the development of therapeutics to treat emerging infectious diseases such as SARS and Bird Flu.

  7. Identification of potential hit compounds for Dengue virus NS2B/NS3 protease inhibitors by combining virtual screening and binding free energy calculations.

    PubMed

    Wichapong, K; Nueangaudom, A; Pianwanit, S; Sippl, W; Kokpol, S

    2013-09-01

    Dengue virus (DV) infections are a serious public health problem and there is currently no vaccine or drug treatment. NS2B/NS3 protease, an essential enzyme for viral replication, is one of the promising targets in the search for drugs against DV. In this research work, virtual screening (VS) was carried out on four multi-conformational databases using several criteria. Firstly, molecular dynamics simulations of the NS2B/NS3 protease and four known inhibitors, which reveal an importance of both electrostatic and van der Waals interactions in stabilizing the ligand-enzyme interaction, were used to generate three different pharmacophore models (a structure-based, a static and a dynamic). Subsequently, these three models were employed for pharmacophore search in the VS. Secondly, compounds passing the first criterion were further reduced using the Lipinski's rule of five to keep only compounds with drug-like properties. Thirdly, molecular docking calculations were performed to remove compounds with unsuitable ligand-enzyme interactions. Finally, binding free energy of each compound was calculated. Compounds having better energy than the known inhibitors were selected and thus 20 potential hits were obtained.

  8. Designer drugs: the evolving science of drug discovery.

    PubMed

    Wanke, L A; DuBose, R F

    1998-07-01

    Drug discovery and design are fundamental to drug development. Until recently, most drugs were discovered through random screening or developed through molecular modification. New technologies are revolutionizing this phase of drug development. Rational drug design, using powerful computers and computational chemistry and employing X-ray crystallography, nuclear magnetic resonance spectroscopy, and three-dimensional quantitative structure activity relationship analysis, is creating highly specific, biologically active molecules by virtual reality modeling. Sophisticated screening technologies are eliminating all but the most active lead compounds. These new technologies promise more efficacious, safe, and cost-effective medications, while minimizing drug development time and maximizing profits.

  9. Virtual gastrointestinal colonoscopy in combination with large bowel endoscopy: Clinical application

    PubMed Central

    He, Qing; Rao, Ting; Guan, Yong-Song

    2014-01-01

    Although colorectal cancer (CRC) has no longer been the leading cancer killer worldwide for years with the exponential development in computed tomography (CT) or magnetic resonance imaging, and positron emission tomography/CT as well as virtual colonoscopy for early detection, the CRC related mortality is still high. The objective of CRC screening is to reduce the burden of CRC and thereby the morbidity and mortality rates of the disease. It is believed that this goal can be achieved by regularly screening the average-risk population, enabling the detection of cancer at early, curable stages, and polyps before they become cancerous. Large-scale screening with multimodality imaging approaches plays an important role in reaching that goal to detect polyps, Crohn’s disease, ulcerative colitis and CRC in early stage. This article reviews kinds of presentative imaging procedures for various screening options and updates detecting, staging and re-staging of CRC patients for determining the optimal therapeutic method and forecasting the risk of CRC recurrence and the overall prognosis. The combination use of virtual colonoscopy and conventional endoscopy, advantages and limitations of these modalities are also discussed. PMID:25320519

  10. Screening for lead compounds and herbal extracts with potential anti-influenza viral activity.

    PubMed

    Klaywong, Konrapob; Khutrakul, Gachagorn; Choowongkomon, Kiattawee; Lekcharoensuk, Chalermpol; Petcharat, Nantawan; Leckcharoensuk, Porntippa; Ramasoota, Pongrama

    2014-01-01

    Nonstructural protein 1 (NS1) of the highly pathogenic avian influenza virus (H5N1) contains a conserved RNA binding domain (RBD) that inhibits antiviral functions of host-innate immune response. Dimerization of NS1 forms a central groove and binds to double stranded (ds) RNA. This region might serve as a potential drug target. In this study, three dimensional structure model of NS1 RBD protein was constructed and virtual screening was performed to identify lead compounds that bound within and around the central groove. The virtual screening showed that 5 compounds bound within the central groove with binding energy ranging between -16.05 and -17.36 Kcal/mol. Two commercially available compounds, estradiol and veratridine, were selected for using in an in vitro screening assay. The results showed that neither of the compounds could inhibit the association between dsRNA and NS1 RBD protein. In addition, 34 herbal extracts were examined for their inhibitory effects. Five of them were able to inhibit association between NS1 RBD and dsRNA in electrophoresis mobility shift assay. Four herbs, Terminalia belirica, Salacia chinensis, Zingiber montanum and Peltophorum pterocarpum, could reduce > 50% of infectivity of H5N1 in a cell-based assay, and it is worth further studying their potential use as source of antiviral drugs.

  11. ChemHTPS - A virtual high-throughput screening program suite for the chemical and materials sciences

    NASA Astrophysics Data System (ADS)

    Afzal, Mohammad Atif Faiz; Evangelista, William; Hachmann, Johannes

    The discovery of new compounds, materials, and chemical reactions with exceptional properties is the key for the grand challenges in innovation, energy and sustainability. This process can be dramatically accelerated by means of the virtual high-throughput screening (HTPS) of large-scale candidate libraries. The resulting data can further be used to study the underlying structure-property relationships and thus facilitate rational design capability. This approach has been extensively used for many years in the drug discovery community. However, the lack of openly available virtual HTPS tools is limiting the use of these techniques in various other applications such as photovoltaics, optoelectronics, and catalysis. Thus, we developed ChemHTPS, a general-purpose, comprehensive and user-friendly suite, that will allow users to efficiently perform large in silico modeling studies and high-throughput analyses in these applications. ChemHTPS also includes a massively parallel molecular library generator which offers a multitude of options to customize and restrict the scope of the enumerated chemical space and thus tailor it for the demands of specific applications. To streamline the non-combinatorial exploration of chemical space, we incorporate genetic algorithms into the framework. In addition to implementing smarter algorithms, we also focus on the ease of use, workflow, and code integration to make this technology more accessible to the community.

  12. Complete genome-wide screening and subtractive genomic approach revealed new virulence factors, potential drug targets against bio-war pathogen Brucella melitensis 16M

    PubMed Central

    Pradeepkiran, Jangampalli Adi; Sainath, Sri Bhashyam; Kumar, Konidala Kranthi; Bhaskar, Matcha

    2015-01-01

    Brucella melitensis 16M is a Gram-negative coccobacillus that infects both animals and humans. It causes a disease known as brucellosis, which is characterized by acute febrile illness in humans and causes abortions in livestock. To prevent and control brucellosis, identification of putative drug targets is crucial. The present study aimed to identify drug targets in B. melitensis 16M by using a subtractive genomic approach. We used available database repositories (Database of Essential Genes, Kyoto Encyclopedia of Genes and Genomes Automatic Annotation Server, and Kyoto Encyclopedia of Genes and Genomes) to identify putative genes that are nonhomologous to humans and essential for pathogen B. melitensis 16M. The results revealed that among 3 Mb genome size of pathogen, 53 putative characterized and 13 uncharacterized hypothetical genes were identified; further, from Basic Local Alignment Search Tool protein analysis, one hypothetical protein showed a close resemblance (50%) to Silicibacter pomeroyi DUF1285 family protein (2RE3). A further homology model of the target was constructed using MODELLER 9.12 and optimized through variable target function method by molecular dynamics optimization with simulating annealing. The stereochemical quality of the restrained model was evaluated by PROCHECK, VERIFY-3D, ERRAT, and WHATIF servers. Furthermore, structure-based virtual screening was carried out against the predicted active site of the respective protein using the glycerol structural analogs from the PubChem database. We identified five best inhibitors with strong affinities, stable interactions, and also with reliable drug-like properties. Hence, these leads might be used as the most effective inhibitors of modeled protein. The outcome of the present work of virtual screening of putative gene targets might facilitate design of potential drugs for better treatment against brucellosis. PMID:25834405

  13. Identification of novel PfDHODH inhibitors as antimalarial agents via pharmacophore-based virtual screening followed by molecular docking and in vivo antimalarial activity.

    PubMed

    Vyas, V K; Qureshi, G; Ghate, M; Patel, H; Dalai, S

    2016-06-01

    Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) catalyses the fourth reaction of de novo pyrimidine biosynthesis in parasites, and represents an important target for the treatment of malaria. In this study, we describe pharmacophore-based virtual screening combined with docking study and biological evaluation as a rational strategy for identification of novel hits as antimalarial agents. Pharmacophore models were established from known PfDHODH inhibitors using the GALAHAD module with IC50 values ranging from 0.033 μM to 142 μM. The best pharmacophore model consisted of three hydrogen bond acceptor, one hydrogen bond donor and one hydrophobic features. The pharmacophore models were validated through receiver operating characteristic and Günere-Henry scoring methods. The best pharmacophore model as a 3D search query was searched against the IBS database. Several compounds with different structures (scaffolds) were retrieved as hit molecules. Among these compounds, those with a QFIT value of more than 81 were docked in the PfDHODH enzyme to further explore the binding modes of these compounds. In silico pharmacokinetic and toxicities were predicted for the best docked molecules. Finally, the identified hits were evaluated in vivo for their antimalarial activity in a parasite inhibition assay. The hits reported here showed good potential to become novel antimalarial agents.

  14. Computer-aided discovery in antimicrobial research: In silico model for virtual screening of potent and safe anti-pseudomonas agents.

    PubMed

    Speck-Planche, Alejandro; Cordeiro, Maria N D S

    2015-01-01

    Resistance of bacteria to current antibiotics is an alarming health problem. In this sense, Pseudomonas represents a genus of Gram-negative pathogens, which has emerged as one of the most dangerous species causing nosocomial infections. Despite the effort of the scientific community, drug resistant strains of bacteria belonging to Pseudomonas spp. prevail. The high costs associated to drug discovery and the urgent need for more efficient antimicrobial chemotherapies envisage the fact that computeraided methods can rationalize several stages involved in the development of a new drug. In this work, we introduce a chemoinformatic methodology devoted to the construction of a multitasking model for quantitative-structure biological effect relationships (mtk-QSBER). The purpose of this model was to perform simultaneous predictions of anti-Pseudomonas activities and ADMET (absorption, distribution, metabolism, elimination, and toxicity) properties of organic compounds. The mtk-QSBER model was created from a large and heterogeneous dataset (more than 54000 cases) and displayed accuracies higher than 90% in both training and prediction sets. In order to demonstrate the applicability of our mtk-QSBER model, we used the investigational antibacterial drug delafloxacin as a case of study, for which experimental results were recently reported. The predictions performed for many biological effects of this drug exhibited a remarkable convergence with the experimental assays, confirming that our model can serve as useful tool for virtual screening of potent and safer anti-Pseudomonas agents.

  15. DockoMatic 2.0: high throughput inverse virtual screening and homology modeling.

    PubMed

    Bullock, Casey; Cornia, Nic; Jacob, Reed; Remm, Andrew; Peavey, Thomas; Weekes, Ken; Mallory, Chris; Oxford, Julia T; McDougal, Owen M; Andersen, Timothy L

    2013-08-26

    DockoMatic is a free and open source application that unifies a suite of software programs within a user-friendly graphical user interface (GUI) to facilitate molecular docking experiments. Here we describe the release of DockoMatic 2.0; significant software advances include the ability to (1) conduct high throughput inverse virtual screening (IVS); (2) construct 3D homology models; and (3) customize the user interface. Users can now efficiently setup, start, and manage IVS experiments through the DockoMatic GUI by specifying receptor(s), ligand(s), grid parameter file(s), and docking engine (either AutoDock or AutoDock Vina). DockoMatic automatically generates the needed experiment input files and output directories and allows the user to manage and monitor job progress. Upon job completion, a summary of results is generated by Dockomatic to facilitate interpretation by the user. DockoMatic functionality has also been expanded to facilitate the construction of 3D protein homology models using the Timely Integrated Modeler (TIM) wizard. The wizard TIM provides an interface that accesses the basic local alignment search tool (BLAST) and MODELER programs and guides the user through the necessary steps to easily and efficiently create 3D homology models for biomacromolecular structures. The DockoMatic GUI can be customized by the user, and the software design makes it relatively easy to integrate additional docking engines, scoring functions, or third party programs. DockoMatic is a free comprehensive molecular docking software program for all levels of scientists in both research and education.

  16. Human stem cells and drug screening: opportunities and challenges.

    PubMed

    Ebert, Allison D; Svendsen, Clive N

    2010-05-01

    High-throughput screening technologies are widely used in the early stages of drug discovery to rapidly evaluate the properties of thousands of compounds. However, they generally rely on testing compound libraries on highly proliferative immortalized or cancerous cell lines, which do not necessarily provide an accurate indication of the effects of compounds in normal human cells or the specific cell type under study. Recent advances in stem cell technology have the potential to allow production of a virtually limitless supply of normal human cells that can be differentiated into any specific cell type. Moreover, using induced pluripotent stem cell technology, they can also be generated from patients with specific disease traits, enabling more relevant modelling and drug screens. This article discusses the opportunities and challenges for the use of stem cells in drug screening with a focus on induced pluripotent stem cells.

  17. Identification of potential influenza virus endonuclease inhibitors through virtual screening based on the 3D-QSAR model.

    PubMed

    Kim, J; Lee, C; Chong, Y

    2009-01-01

    Influenza endonucleases have appeared as an attractive target of antiviral therapy for influenza infection. With the purpose of designing a novel antiviral agent with enhanced biological activities against influenza endonuclease, a three-dimensional quantitative structure-activity relationships (3D-QSAR) model was generated based on 34 influenza endonuclease inhibitors. The comparative molecular similarity index analysis (CoMSIA) with a steric, electrostatic and hydrophobic (SEH) model showed the best correlative and predictive capability (q(2) = 0.763, r(2) = 0.969 and F = 174.785), which provided a pharmacophore composed of the electronegative moiety as well as the bulky hydrophobic group. The CoMSIA model was used as a pharmacophore query in the UNITY search of the ChemDiv compound library to give virtual active compounds. The 3D-QSAR model was then used to predict the activity of the selected compounds, which identified three compounds as the most likely inhibitor candidates.

  18. 3D-Lab: a collaborative web-based platform for molecular modeling.

    PubMed

    Grebner, Christoph; Norrby, Magnus; Enström, Jonatan; Nilsson, Ingemar; Hogner, Anders; Henriksson, Jonas; Westin, Johan; Faramarzi, Farzad; Werner, Philip; Boström, Jonas

    2016-09-01

    The use of 3D information has shown impact in numerous applications in drug design. However, it is often under-utilized and traditionally limited to specialists. We want to change that, and present an approach making 3D information and molecular modeling accessible and easy-to-use 'for the people'. A user-friendly and collaborative web-based platform (3D-Lab) for 3D modeling, including a blazingly fast virtual screening capability, was developed. 3D-Lab provides an interface to automatic molecular modeling, like conformer generation, ligand alignments, molecular dockings and simple quantum chemistry protocols. 3D-Lab is designed to be modular, and to facilitate sharing of 3D-information to promote interactions between drug designers. Recent enhancements to our open-source virtual reality tool Molecular Rift are described. The integrated drug-design platform allows drug designers to instantaneously access 3D information and readily apply advanced and automated 3D molecular modeling tasks, with the aim to improve decision-making in drug design projects.

  19. The influence of negative training set size on machine learning-based virtual screening.

    PubMed

    Kurczab, Rafał; Smusz, Sabina; Bojarski, Andrzej J

    2014-01-01

    The paper presents a thorough analysis of the influence of the number of negative training examples on the performance of machine learning methods. The impact of this rather neglected aspect of machine learning methods application was examined for sets containing a fixed number of positive and a varying number of negative examples randomly selected from the ZINC database. An increase in the ratio of positive to negative training instances was found to greatly influence most of the investigated evaluating parameters of ML methods in simulated virtual screening experiments. In a majority of cases, substantial increases in precision and MCC were observed in conjunction with some decreases in hit recall. The analysis of dynamics of those variations let us recommend an optimal composition of training data. The study was performed on several protein targets, 5 machine learning algorithms (SMO, Naïve Bayes, Ibk, J48 and Random Forest) and 2 types of molecular fingerprints (MACCS and CDK FP). The most effective classification was provided by the combination of CDK FP with SMO or Random Forest algorithms. The Naïve Bayes models appeared to be hardly sensitive to changes in the number of negative instances in the training set. In conclusion, the ratio of positive to negative training instances should be taken into account during the preparation of machine learning experiments, as it might significantly influence the performance of particular classifier. What is more, the optimization of negative training set size can be applied as a boosting-like approach in machine learning-based virtual screening.

  20. The influence of negative training set size on machine learning-based virtual screening

    PubMed Central

    2014-01-01

    Background The paper presents a thorough analysis of the influence of the number of negative training examples on the performance of machine learning methods. Results The impact of this rather neglected aspect of machine learning methods application was examined for sets containing a fixed number of positive and a varying number of negative examples randomly selected from the ZINC database. An increase in the ratio of positive to negative training instances was found to greatly influence most of the investigated evaluating parameters of ML methods in simulated virtual screening experiments. In a majority of cases, substantial increases in precision and MCC were observed in conjunction with some decreases in hit recall. The analysis of dynamics of those variations let us recommend an optimal composition of training data. The study was performed on several protein targets, 5 machine learning algorithms (SMO, Naïve Bayes, Ibk, J48 and Random Forest) and 2 types of molecular fingerprints (MACCS and CDK FP). The most effective classification was provided by the combination of CDK FP with SMO or Random Forest algorithms. The Naïve Bayes models appeared to be hardly sensitive to changes in the number of negative instances in the training set. Conclusions In conclusion, the ratio of positive to negative training instances should be taken into account during the preparation of machine learning experiments, as it might significantly influence the performance of particular classifier. What is more, the optimization of negative training set size can be applied as a boosting-like approach in machine learning-based virtual screening. PMID:24976867

  1. Augmented reality and photogrammetry: A synergy to visualize physical and virtual city environments

    NASA Astrophysics Data System (ADS)

    Portalés, Cristina; Lerma, José Luis; Navarro, Santiago

    2010-01-01

    Close-range photogrammetry is based on the acquisition of imagery to make accurate measurements and, eventually, three-dimensional (3D) photo-realistic models. These models are a photogrammetric product per se. They are usually integrated into virtual reality scenarios where additional data such as sound, text or video can be introduced, leading to multimedia virtual environments. These environments allow users both to navigate and interact on different platforms such as desktop PCs, laptops and small hand-held devices (mobile phones or PDAs). In very recent years, a new technology derived from virtual reality has emerged: Augmented Reality (AR), which is based on mixing real and virtual environments to boost human interactions and real-life navigations. The synergy of AR and photogrammetry opens up new possibilities in the field of 3D data visualization, navigation and interaction far beyond the traditional static navigation and interaction in front of a computer screen. In this paper we introduce a low-cost outdoor mobile AR application to integrate buildings of different urban spaces. High-accuracy 3D photo-models derived from close-range photogrammetry are integrated in real (physical) urban worlds. The augmented environment that is presented herein requires for visualization a see-through video head mounted display (HMD), whereas user's movement navigation is achieved in the real world with the help of an inertial navigation sensor. After introducing the basics of AR technology, the paper will deal with real-time orientation and tracking in combined physical and virtual city environments, merging close-range photogrammetry and AR. There are, however, some software and complex issues, which are discussed in the paper.

  2. Evolution of catalytic centers of antibodies by virtual screening of broad repertoire of mutants using supercomputer.

    PubMed

    Golovin, A V; Smirnov, I V; Stepanova, A V; Zalevskiy, A O; Zlobin, A S; Ponomarenko, N A; Belogurov, A A; Knorre, V D; Hurs, E N; Chatziefthimiou, S D; Wilmanns, M; Blackburn, G M; Khomutov, R M; Gabibov, A G

    2017-07-01

    It is proposed to perform quantum mechanical/molecular dynamics calculations of chemical reactions that are planned to be catalyzed by antibodies and then conduct a virtual screening of the library of potential antibody mutants to select an optimal biocatalyst. We tested the effectiveness of this approach by the example of hydrolysis of organophosphorus toxicant paraoxon using kinetic approaches and X-ray analysis of the antibody biocatalyst designed de novo.

  3. Identification of PPARgamma Partial Agonists of Natural Origin (I): Development of a Virtual Screening Procedure and In Vitro Validation

    PubMed Central

    Guasch, Laura; Sala, Esther; Castell-Auví, Anna; Cedó, Lidia; Liedl, Klaus R.; Wolber, Gerhard; Muehlbacher, Markus; Mulero, Miquel; Pinent, Montserrat; Ardévol, Anna; Valls, Cristina; Pujadas, Gerard; Garcia-Vallvé, Santiago

    2012-01-01

    Background Although there are successful examples of the discovery of new PPARγ agonists, it has recently been of great interest to identify new PPARγ partial agonists that do not present the adverse side effects caused by PPARγ full agonists. Consequently, the goal of this work was to design, apply and validate a virtual screening workflow to identify novel PPARγ partial agonists among natural products. Methodology/Principal Findings We have developed a virtual screening procedure based on structure-based pharmacophore construction, protein-ligand docking and electrostatic/shape similarity to discover novel scaffolds of PPARγ partial agonists. From an initial set of 89,165 natural products and natural product derivatives, 135 compounds were identified as potential PPARγ partial agonists with good ADME properties. Ten compounds that represent ten new chemical scaffolds for PPARγ partial agonists were selected for in vitro biological testing, but two of them were not assayed due to solubility problems. Five out of the remaining eight compounds were confirmed as PPARγ partial agonists: they bind to PPARγ, do not or only moderately stimulate the transactivation activity of PPARγ, do not induce adipogenesis of preadipocyte cells and stimulate the insulin-induced glucose uptake of adipocytes. Conclusions/Significance We have demonstrated that our virtual screening protocol was successful in identifying novel scaffolds for PPARγ partial agonists. PMID:23226391

  4. Evaluation of a focused virtual library of heterobifunctional ligands for Clostridium difficile toxins.

    PubMed

    Sanhueza, Carlos A; Cartmell, Jonathan; El-Hawiet, Amr; Szpacenko, Adam; Kitova, Elena N; Daneshfar, Rambod; Klassen, John S; Lang, Dean E; Eugenio, Luiz; Ng, Kenneth K-S; Kitov, Pavel I; Bundle, David R

    2015-01-07

    A focused library of virtual heterobifunctional ligands was generated in silico and a set of ligands with recombined fragments was synthesized and evaluated for binding to Clostridium difficile toxins. The position of the trisaccharide fragment was used as a reference for filtering docked poses during virtual screening to match the trisaccharide ligand in a crystal structure. The peptoid, a diversity fragment probing the protein surface area adjacent to a known binding site, was generated by a multi-component Ugi reaction. Our approach combines modular fragment-based design with in silico screening of synthetically feasible compounds and lays the groundwork for future efforts in development of composite bifunctional ligands for large clostridial toxins.

  5. Virtual reality skills training for health care professionals in alcohol screening and brief intervention.

    PubMed

    Fleming, Michael; Olsen, Dale; Stathes, Hilary; Boteler, Laura; Grossberg, Paul; Pfeifer, Judie; Schiro, Stephanie; Banning, Jane; Skochelak, Susan

    2009-01-01

    Educating physicians and other health care professionals about the identification and treatment of patients who drink more than recommended limits is an ongoing challenge. An educational randomized controlled trial was conducted to test the ability of a stand-alone training simulation to improve the clinical skills of health care professionals in alcohol screening and intervention. The "virtual reality simulation" combined video, voice recognition, and nonbranching logic to create an interactive environment that allowed trainees to encounter complex social cues and realistic interpersonal exchanges. The simulation included 707 questions and statements and 1207 simulated patient responses. A sample of 102 health care professionals (10 physicians; 30 physician assistants or nurse practitioners; 36 medical students; 26 pharmacy, physican assistant, or nurse practitioner students) were randomly assigned to a no training group (n = 51) or a computer-based virtual reality intervention (n = 51). Professionals in both groups had similar pretest standardized patient alcohol screening skill scores: 53.2 (experimental) vs 54.4 (controls), 52.2 vs 53.7 alcohol brief intervention skills, and 42.9 vs 43.5 alcohol referral skills. After repeated practice with the simulation there were significant increases in the scores of the experimental group at 6 months after randomization compared with the control group for the screening (67.7 vs 58.1; P < .001) and brief intervention (58.3 vs 51.6; P < .04) scenarios. The technology tested in this trial is the first virtual reality simulation to demonstrate an increase in the alcohol screening and brief intervention skills of health care professionals.

  6. Virtual Reality Skills Training for Health Care Professionals in Alcohol Screening and Brief Intervention

    PubMed Central

    Fleming, Michael; Olsen, Dale; Stathes, Hilary; Boteler, Laura; Grossberg, Paul; Pfeifer, Judie; Schiro, Stephanie; Banning, Jane; Skochelak, Susan

    2009-01-01

    Background Educating physicians and other health care professionals to identify and treat patients who drink above recommended limits is an ongoing challenge. Methods An educational Randomized Control Trial (RCT) was conducted to test the ability of a stand alone training simulation to improve the clinical skills of health care professionals in alcohol screening and intervention. The “virtual reality simulation” combines video, voice recognition and non branching logic to create an interactive environment that allows trainees to encounter complex social cues and realistic interpersonal exchanges. The simulation includes 707 questions and statements and 1207 simulated patient responses. Results A sample of 102 health care professionals (10 physicians; 30 physician assistants [PAs] or nurse practitioners [NPs]; 36 medical students; 26 pharmacy, PA or NP students) were randomly assigned to no training (n=51) or a computer based virtual reality intervention (n=51). Subjects in both groups had similar pre-test standardized patient alcohol screening skill scores – 53.2 (experimental) vs. 54.4 (controls), 52.2 vs. 53.7 alcohol brief intervention skills, and 42.9 vs. 43.5 alcohol referral skills. Following repeated practice with the simulation there were significant increases in the scores of the experimental group at 6 months post-randomization compared to the control group for the screening (67.7 vs. 58.1, p<.001) and brief intervention (58.3 vs. 51.6, p<.04) scenarios. Conclusions The technology tested in this trial is the first virtual reality simulation to demonstrate an increase in the alcohol screening and brief intervention skills of health care professionals. PMID:19587253

  7. Can a virtual reality cognitive training application fulfill a dual role? Using the virtual supermarket cognitive training application as a screening tool for mild cognitive impairment.

    PubMed

    Zygouris, Stelios; Giakoumis, Dimitrios; Votis, Konstantinos; Doumpoulakis, Stefanos; Ntovas, Konstantinos; Segkouli, Sofia; Karagiannidis, Charalampos; Tzovaras, Dimitrios; Tsolaki, Magda

    2015-01-01

    Recent research advocates the potential of virtual reality (VR) applications in assessing cognitive functions highlighting the possibility of using a VR application for mild cognitive impairment (MCI) screening. The aim of this study is to investigate whether a VR cognitive training application, the virtual supermarket (VSM), can be used as a screening tool for MCI. Two groups, one of healthy older adults (n = 21) and one of MCI patients (n = 34), were recruited from day centers for cognitive disorders and administered the VSM and a neuropsychological test battery. The performance of the two groups in the VSM was compared and correlated with performance in established neuropsychological tests. At the same time, the effectiveness of a combination of traditional neuropsychological tests and the VSM was examined. VSM displayed a correct classification rate (CCR) of 87.30% when differentiating between MCI patients and healthy older adults, while it was unable to differentiate between MCI subtypes. At the same time, the VSM correlates with various established neuropsychological tests. A limited number of tests were able to improve the CCR of the VSM when combined with the VSM for screening purposes. VSM appears to be a valid method of screening for MCI in an older adult population though it cannot be used for MCI subtype assessment. VSM's concurrent validity is supported by the large number of correlations between the VSM and established tests. It is considered a robust test on its own as the inclusion of other tests failed to improve its CCR significantly.

  8. Uniqueness of Experience and Virtual Playworlds: Playing Is Not Just for Fun

    ERIC Educational Resources Information Center

    Talamo, Alessandra; Pozzi, Simone; Mellini, Barbara

    2010-01-01

    Social interactions within virtual communities are often described solely as being online experiences. Such descriptions are limited, for they fail to reference life external to the screen. The terms "virtual" and "real" have a negative connotation for many people and can even be interpreted to mean that something is "false" or "inauthentic."…

  9. How to Achieve Better Results Using Pass-Based Virtual Screening: Case Study for Kinase Inhibitors

    NASA Astrophysics Data System (ADS)

    Pogodin, Pavel V.; Lagunin, Alexey A.; Rudik, Anastasia V.; Filimonov, Dmitry A.; Druzhilovskiy, Dmitry S.; Nicklaus, Mark C.; Poroikov, Vladimir V.

    2018-04-01

    Discovery of new pharmaceutical substances is currently boosted by the possibility of utilization of the Synthetically Accessible Virtual Inventory (SAVI) library, which includes about 283 million molecules, each annotated with a proposed synthetic one-step route from commercially available starting materials. The SAVI database is well-suited for ligand-based methods of virtual screening to select molecules for experimental testing. In this study, we compare the performance of three approaches for the analysis of structure-activity relationships that differ in their criteria for selecting of “active” and “inactive” compounds included in the training sets. PASS (Prediction of Activity Spectra for Substances), which is based on a modified Naïve Bayes algorithm, was applied since it had been shown to be robust and to provide good predictions of many biological activities based on just the structural formula of a compound even if the information in the training set is incomplete. We used different subsets of kinase inhibitors for this case study because many data are currently available on this important class of drug-like molecules. Based on the subsets of kinase inhibitors extracted from the ChEMBL 20 database we performed the PASS training, and then applied the model to ChEMBL 23 compounds not yet present in ChEMBL 20 to identify novel kinase inhibitors. As one may expect, the best prediction accuracy was obtained if only the experimentally confirmed active and inactive compounds for distinct kinases in the training procedure were used. However, for some kinases, reasonable results were obtained even if we used merged training sets, in which we designated as inactives the compounds not tested against the particular kinase. Thus, depending on the availability of data for a particular biological activity, one may choose the first or the second approach for creating ligand-based computational tools to achieve the best possible results in virtual screening.

  10. Fate of SO2 and Particulate SO4 Based on Airborne Measurements in the Oil Sands Region of Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Hayden, K. L.; Li, S. M.; McLaren, R.; Liu, P.; O'brien, J.; Gordon, M.; Darlington, A.; Liggio, J.; Mittermeier, R. L.; Staebler, R. M.; Makar, P.; Stroud, C.; Akingunola, A.; Leithead, A.; Moussa, S.

    2016-12-01

    An intensive airborne measurement campaign was undertaken in August to September 2013 to support the objectives of the Joint Oil Sands Monitoring (JOSM) program. The overarching objectives of the study were to characterize air pollutants being emitted, to determine the extent of atmospheric transport and chemical transformation, to support air quality model prediction capabilities, and to compare measurements with satellite column retrievals. Sulphur dioxide (SO2) and particulate sulphate (p-SO4) were among the pollutants studied. SO2 is emitted from elevated stacks within the oil sands facilities and undergoes atmospheric transformation into p-SO4. Deposition of these species from the atmosphere to the surface can lead to impacts on ecosystems downwind of the facilities. The processes of emission, transformation, transport, and deposition of SO2 and p-SO4 were investigated in detail using data collected during aircraft flights that were designed to study pollution transformation. The aircraft was flown at increasing distances downwind of the oil sands facilities, sampling the same plume at different times as it was transported away from the sources. Flight tracks were perpendicular to the wind direction at multiple altitudes to create virtual flight screens that encompassed the entire plume. Fluxes across each of the virtual screens were determined using the wind speed vector normal to the screen and the pollutant concentrations; the flux integration across the two-dimensional plume transect on the screen yielded the pollutant transfer rates at that particular screen location. Transformation of SO2 to p-SO4 between screens was determined based on OH radical levels estimated using concurrently measured concentrations of a suite of hydrocarbons. Based on mass balance between screens using the transfer rates, SO2 oxidation rates and p-SO4 formation rates, the deposition rates of both species are estimated along the plume transport path downwind of the oil sands operations. These observation-derived estimates are compared to corresponding predicted results from a nested air-quality model (GEM-MACH) operating for the same time period.

  11. Spectrophores as one-dimensional descriptors calculated from three-dimensional atomic properties: applications ranging from scaffold hopping to multi-target virtual screening.

    PubMed

    Gladysz, Rafaela; Dos Santos, Fabio Mendes; Langenaeker, Wilfried; Thijs, Gert; Augustyns, Koen; De Winter, Hans

    2018-03-07

    Spectrophores are novel descriptors that are calculated from the three-dimensional atomic properties of molecules. In our current implementation, the atomic properties that were used to calculate spectrophores include atomic partial charges, atomic lipophilicity indices, atomic shape deviations and atomic softness properties. This approach can easily be widened to also include additional atomic properties. Our novel methodology finds its roots in the experimental affinity fingerprinting technology developed in the 1990's by Terrapin Technologies. Here we have translated it into a purely virtual approach using artificial affinity cages and a simplified metric to calculate the interaction between these cages and the atomic properties. A typical spectrophore consists of a vector of 48 real numbers. This makes it highly suitable for the calculation of a wide range of similarity measures for use in virtual screening and for the investigation of quantitative structure-activity relationships in combination with advanced statistical approaches such as self-organizing maps, support vector machines and neural networks. In our present report we demonstrate the applicability of our novel methodology for scaffold hopping as well as virtual screening.

  12. Optimal affinity ranking for automated virtual screening validated in prospective D3R grand challenges

    NASA Astrophysics Data System (ADS)

    Wingert, Bentley M.; Oerlemans, Rick; Camacho, Carlos J.

    2018-01-01

    The goal of virtual screening is to generate a substantially reduced and enriched subset of compounds from a large virtual chemistry space. Critical in these efforts are methods to properly rank the binding affinity of compounds. Prospective evaluations of ranking strategies in the D3R grand challenges show that for targets with deep pockets the best correlations (Spearman ρ 0.5) were obtained by our submissions that docked compounds to the holo-receptors with the most chemically similar ligand. On the other hand, for targets with open pockets using multiple receptor structures is not a good strategy. Instead, docking to a single optimal receptor led to the best correlations (Spearman ρ 0.5), and overall performs better than any other method. Yet, choosing a suboptimal receptor for crossdocking can significantly undermine the affinity rankings. Our submissions that evaluated the free energy of congeneric compounds were also among the best in the community experiment. Error bars of around 1 kcal/mol are still too large to significantly improve the overall rankings. Collectively, our top of the line predictions show that automated virtual screening with rigid receptors perform better than flexible docking and other more complex methods.

  13. Discovery of Novel New Delhi Metallo-β-Lactamases-1 Inhibitors by Multistep Virtual Screening

    PubMed Central

    Wang, Xuequan; Lu, Meiling; Shi, Yang; Ou, Yu; Cheng, Xiaodong

    2015-01-01

    The emergence of NDM-1 containing multi-antibiotic resistant "Superbugs" necessitates the needs of developing of novel NDM-1inhibitors. In this study, we report the discovery of novel NDM-1 inhibitors by multi-step virtual screening. From a 2,800,000 virtual drug-like compound library selected from the ZINC database, we generated a focused NDM-1 inhibitor library containing 298 compounds of which 44 chemical compounds were purchased and evaluated experimentally for their ability to inhibit NDM-1 in vitro. Three novel NDM-1 inhibitors with micromolar IC50 values were validated. The most potent inhibitor, VNI-41, inhibited NDM-1 with an IC50 of 29.6 ± 1.3 μM. Molecular dynamic simulation revealed that VNI-41 interacted extensively with the active site. In particular, the sulfonamide group of VNI-41 interacts directly with the metal ion Zn1 that is critical for the catalysis. These results demonstrate the feasibility of applying virtual screening methodologies in identifying novel inhibitors for NDM-1, a metallo-β-lactamase with a malleable active site and provide a mechanism base for rational design of NDM-1 inhibitors using sulfonamide as a functional scaffold. PMID:25734558

  14. DOVIS: an implementation for high-throughput virtual screening using AutoDock.

    PubMed

    Zhang, Shuxing; Kumar, Kamal; Jiang, Xiaohui; Wallqvist, Anders; Reifman, Jaques

    2008-02-27

    Molecular-docking-based virtual screening is an important tool in drug discovery that is used to significantly reduce the number of possible chemical compounds to be investigated. In addition to the selection of a sound docking strategy with appropriate scoring functions, another technical challenge is to in silico screen millions of compounds in a reasonable time. To meet this challenge, it is necessary to use high performance computing (HPC) platforms and techniques. However, the development of an integrated HPC system that makes efficient use of its elements is not trivial. We have developed an application termed DOVIS that uses AutoDock (version 3) as the docking engine and runs in parallel on a Linux cluster. DOVIS can efficiently dock large numbers (millions) of small molecules (ligands) to a receptor, screening 500 to 1,000 compounds per processor per day. Furthermore, in DOVIS, the docking session is fully integrated and automated in that the inputs are specified via a graphical user interface, the calculations are fully integrated with a Linux cluster queuing system for parallel processing, and the results can be visualized and queried. DOVIS removes most of the complexities and organizational problems associated with large-scale high-throughput virtual screening, and provides a convenient and efficient solution for AutoDock users to use this software in a Linux cluster platform.

  15. Serious games for screening pre-dementia conditions: from virtuality to reality? A pilot project.

    PubMed

    Zucchella, Chiara; Sinforiani, Elena; Tassorelli, Cristina; Cavallini, Elena; Tost-Pardell, Daniela; Grau, Sergi; Pazzi, Stefania; Puricelli, Stefano; Bernini, Sara; Bottiroli, Sara; Vecchi, Tomaso; Sandrini, Giorgio; Nappi, Giuseppe

    2014-01-01

    Conventional cognitive assessment is based on a pencil-and-paper neuropsychological evaluation, which is time consuming, expensive and requires the involvement of several professionals. Information and communication technology could be exploited to allow the development of tools that are easy to use, reduce the amount of data processing, and provide controllable test conditions. Serious games (SGs) have the potential to be new and effective tools in the management and treatment of cognitive impairments Serious games for screening pre-dementia conditions: from virtuality to reality? A pilot project in the elderly. Moreover, by adopting SGs in 3D virtual reality settings, cognitive functions might be evaluated using tasks that simulate daily activities, increasing the "ecological validity" of the assessment. In this commentary we report our experience in the creation of the Smart Aging platform, a 3D SGand virtual environment-based platform for the early identification and characterization of mild cognitive impairment.

  16. Virtual Reality Glasses and "Eye-Hands Blind Technique" for Microsurgical Training in Neurosurgery.

    PubMed

    Choque-Velasquez, Joham; Colasanti, Roberto; Collan, Juhani; Kinnunen, Riina; Rezai Jahromi, Behnam; Hernesniemi, Juha

    2018-04-01

    Microsurgical skills and eye-hand coordination need continuous training to be developed and refined. However, well-equipped microsurgical laboratories are not so widespread as their setup is expensive. Herein, we present a novel microsurgical training system that requires a high-resolution personal computer screen, smartphones, and virtual reality glasses. A smartphone placed on a holder at a height of about 15-20 cm from the surgical target field is used as the webcam of the computer. A specific software is used to duplicate the video camera image. The video may be transferred from the computer to another smartphone, which may be connected to virtual reality glasses. Using the previously described training model, we progressively performed more and more complex microsurgical exercises. It did not take long to set up our system, thus saving time for the training sessions. Our proposed training model may represent an affordable and efficient system to improve eye-hand coordination and dexterity in using not only the operating microscope but also endoscopes and exoscopes. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. vSDC: a method to improve early recognition in virtual screening when limited experimental resources are available.

    PubMed

    Chaput, Ludovic; Martinez-Sanz, Juan; Quiniou, Eric; Rigolet, Pascal; Saettel, Nicolas; Mouawad, Liliane

    2016-01-01

    In drug design, one may be confronted to the problem of finding hits for targets for which no small inhibiting molecules are known and only low-throughput experiments are available (like ITC or NMR studies), two common difficulties encountered in a typical academic setting. Using a virtual screening strategy like docking can alleviate some of the problems and save a considerable amount of time by selecting only top-ranking molecules, but only if the method is very efficient, i.e. when a good proportion of actives are found in the 1-10 % best ranked molecules. The use of several programs (in our study, Gold, Surflex, FlexX and Glide were considered) shows a divergence of the results, which presents a difficulty in guiding the experiments. To overcome this divergence and increase the yield of the virtual screening, we created the standard deviation consensus (SDC) and variable SDC (vSDC) methods, consisting of the intersection of molecule sets from several virtual screening programs, based on the standard deviations of their ranking distributions. SDC allowed us to find hits for two new protein targets by testing only 9 and 11 small molecules from a chemical library of circa 15,000 compounds. Furthermore, vSDC, when applied to the 102 proteins of the DUD-E benchmarking database, succeeded in finding more hits than any of the four isolated programs for 13-60 % of the targets. In addition, when only 10 molecules of each of the 102 chemical libraries were considered, vSDC performed better in the number of hits found, with an improvement of 6-24 % over the 10 best-ranked molecules given by the individual docking programs.Graphical abstractIn drug design, for a given target and a given chemical library, the results obtained with different virtual screening programs are divergent. So how to rationally guide the experimental tests, especially when only a few number of experiments can be made? The variable Standard Deviation Consensus (vSDC) method was developed to answer this issue. Left panel the vSDC principle consists of intersecting molecule sets, chosen on the basis of the standard deviations of their ranking distributions, obtained from various virtual screening programs. In this study Glide, Gold, FlexX and Surflex were used and tested on the 102 targets of the DUD-E database. Right panel Comparison of the average percentage of hits found with vSDC and each of the four programs, when only 10 molecules from each of the 102 chemical libraries of the DUD-E database were considered. On average, vSDC was capable of finding 38 % of the findable hits, against 34 % for Glide, 32 % for Gold, 16 % for FlexX and 14 % for Surflex, showing that with vSDC, it was possible to overcome the unpredictability of the virtual screening results and to improve them.

  18. Virtual screening studies to design potent CDK2-cyclin A inhibitors.

    PubMed

    Vadivelan, S; Sinha, Barij Nayan; Irudayam, Sheeba Jem; Jagarlapudi, Sarma A R P

    2007-01-01

    The cell division cycle is controlled by cyclin-dependent kinases (CDK), which consist of a catalytic subunit (CDK1-CDK8) and a regulatory subunit (cyclin A-H). Pharmacophore analysis indicates that the best inhibitor model consists of (1) two hydrogen bond acceptors, (2) one hydrogen bond donor, and (3) one hydrophobic feature. The HypoRefine pharmacophore model gave an enrichment factor of 1.31 and goodness of fit score of 0.76. Docking studies were carried out to explore the structural requirements for the CDK2-cyclin A inhibitors and to construct highly predictive models for the design of new inhibitors. Docking studies demonstrate the important role of hydrogen bond and hydrophobic interactions in determining the inhibitor-receptor binding affinity. The validated pharmacophore model is further used for retrieving the most active hits/lead from a virtual library of molecules. Subsequently, docking studies were performed on the hits, and novel series of potent leads were suggested based on the interaction energy between CDK2-cyclin A and the putative inhibitors.

  19. [Crystal structure of SMU.2055 protein from Streptococcus mutans and its small molecule inhibitors design and selection].

    PubMed

    Xiaodan, Chen; Xiurong, Zhan; Xinyu, Wu; Chunyan, Zhao; Wanghong, Zhao

    2015-04-01

    The aim of this study is to analyze the three-dimensional crystal structure of SMU.2055 protein, a putative acetyltransferase from the major caries pathogen Streptococcus mutans (S. mutans). The design and selection of the structure-based small molecule inhibitors are also studied. The three-dimensional crystal structure of SMU.2055 protein was obtained by structural genomics research methods of gene cloning and expression, protein purification with Ni²⁺-chelating affinity chromatography, crystal screening, and X-ray diffraction data collection. An inhibitor virtual model matching with its target protein structure was set up using computer-aided drug design methods, virtual screening and fine docking, and Libdock and Autodock procedures. The crystal of SMU.2055 protein was obtained, and its three-dimensional crystal structure was analyzed. This crystal was diffracted to a resolution of 0.23 nm. It belongs to orthorhombic space group C222(1), with unit cell parameters of a = 9.20 nm, b = 9.46 nm, and c = 19.39 nm. The asymmetric unit contained four molecules, with a solvent content of 56.7%. Moreover, five small molecule compounds, whose structure matched with that of the target protein in high degree, were designed and selected. Protein crystallography research of S. mutans SMU.2055 helps to understand the structures and functions of proteins from S. mutans at the atomic level. These five compounds may be considered as effective inhibitors to SMU.2055. The virtual model of small molecule inhibitors we built will lay a foundation to the anticaries research based on the crystal structure of proteins.

  20. A technician-delivered 'virtual clinic' for triaging low-risk glaucoma referrals.

    PubMed

    Kotecha, A; Brookes, J; Foster, P J

    2017-06-01

    PurposeThe purpose of this study is to describe the outcomes of a technician-delivered glaucoma referral triaging service with 'virtual review' of resultant data by a consultant ophthalmologist.Patients and methodsThe Glaucoma Screening Clinic reviewed new optometrist or GP-initiated glaucoma suspect referrals into a specialist ophthalmic hospital. Patients underwent testing by three ophthalmic technicians in a dedicated clinical facility. Data were reviewed at a different time and date by a consultant glaucoma ophthalmologist. Approximately 10% of discharged patients were reviewed in a face-to-face consultant-led clinic to examine the false-negative rate of the service.ResultsBetween 1 March 2014 and 31 March 2016, 1380 patients were seen in the clinic. The number of patients discharged following consultant virtual review was 855 (62%). The positive predictive value of onward referrals was 84%. Three of the 82 patients brought back for face-to-face review were deemed to require treatment, equating to negative predictive value of 96%.ConclusionsOur technician-delivered glaucoma referral triaging clinic incorporates consultant 'virtual review' to provide a service model that significantly reduces the number of onward referrals into the glaucoma outpatient department. This model may be an alternative to departments where there are difficulties in implementing optometrist-led community-based referral refinement schemes.

  1. The Effect of Treatment Advances on the Mortality Results of Breast Cancer Screening Trials: A Microsimulation Model.

    PubMed

    Birnbaum, Jeanette; Gadi, Vijayakrishna K; Markowitz, Elan; Etzioni, Ruth

    2016-02-16

    Mammography trials, which are the primary sources of evidence for screening benefit, were conducted decades ago. Whether advances in systemic therapies have rendered previously observed benefits of screening less significant is unknown. To compare the outcomes of breast cancer screening trials had they been conducted using contemporary systemic treatments with outcomes of trials conducted with previously used treatments. Computer simulation model of 3 virtual screening trials with similar reductions in advanced-stage cancer cases but reflecting treatment patterns in 1975 (prechemotherapy era), 1999, or 2015 (treatment according to receptor status). Meta-analyses of screening and treatment trials; study of dissemination of primary systemic treatments; SEER (Surveillance, Epidemiology, and End Results) registry. U.S. women aged 50 to 74 years. 10 and 25 years. Population. Mammography, chemotherapy, tamoxifen, aromatase inhibitors, and trastuzumab. Breast cancer mortality rate ratio (MRR) and absolute risk reduction (ARR) obtained by the difference in cumulative breast cancer mortality between control and screening groups. At 10 years, screening in a 1975 trial yielded an MRR of 90% and an ARR of 5 deaths per 10,000 women. A 2015 screening trial yielded a 10-year MRR of 90% and an ARR of 3 deaths per 10,000 women. Greater reductions in advanced-stage disease yielded a greater screening effect, but MRRs remained similar across trials. However, ARRs were consistently lower under contemporary treatments. When contemporary treatments were available only for early-stage cases, the MRR was 88%. Disease models simplify reality and cannot capture all breast cancer subtypes. Advances in systemic therapies for breast cancer have not substantively reduced the relative benefits of screening but have likely reduced the absolute benefits because of their positive effect on breast cancer survival. University of Washington and National Cancer Institute.

  2. Identification of Natural Compound Inhibitors for Multidrug Efflux Pumps of Escherichia coli and Pseudomonas aeruginosa Using In Silico High-Throughput Virtual Screening and In Vitro Validation

    PubMed Central

    Aparna, Vasudevan; Dineshkumar, Kesavan; Mohanalakshmi, Narasumani; Velmurugan, Devadasan; Hopper, Waheeta

    2014-01-01

    Pseudomonas aeruginosa and Escherichia coli are resistant to wide range of antibiotics rendering the treatment of infections very difficult. A main mechanism attributed to the resistance is the function of efflux pumps. MexAB-OprM and AcrAB-TolC are the tripartite efflux pump assemblies, responsible for multidrug resistance in P. aeruginosa and E. coli respectively. Substrates that are more susceptible for efflux are predicted to have a common pharmacophore feature map. In this study, a new criterion of excluding compounds with efflux substrate-like features was used, thereby refining the selection process and enriching the inhibitor identification process. An in-house database of phytochemicals was created and screened using high-throughput virtual screening against AcrB and MexB proteins and filtered by matching with the common pharmacophore models (AADHR, ADHNR, AAHNR, AADHN, AADNR, AAADN, AAADR, AAANR, AAAHN, AAADD and AAADH) generated using known efflux substrates. Phytochemical hits that matched with any one or more of the efflux substrate models were excluded from the study. Hits that do not have features similar to the efflux substrate models were docked using XP docking against the AcrB and MexB proteins. The best hits of the XP docking were validated by checkerboard synergy assay and ethidium bromide accumulation assay for their efflux inhibition potency. Lanatoside C and diadzein were filtered based on the synergistic potential and validated for their efflux inhibition potency using ethidium bromide accumulation study. These compounds exhibited the ability to increase the accumulation of ethidium bromide inside the bacterial cell as evidenced by these increase in fluorescence in the presence of the compounds. With this good correlation between in silico screening and positive efflux inhibitory activity in vitro, the two compounds, lanatoside C and diadzein could be promising efflux pump inhibitors and effective to use in combination therapy against drug resistant strains of P. aeruginosa and E. coli. PMID:25025665

  3. Identification of natural compound inhibitors for multidrug efflux pumps of Escherichia coli and Pseudomonas aeruginosa using in silico high-throughput virtual screening and in vitro validation.

    PubMed

    Aparna, Vasudevan; Dineshkumar, Kesavan; Mohanalakshmi, Narasumani; Velmurugan, Devadasan; Hopper, Waheeta

    2014-01-01

    Pseudomonas aeruginosa and Escherichia coli are resistant to wide range of antibiotics rendering the treatment of infections very difficult. A main mechanism attributed to the resistance is the function of efflux pumps. MexAB-OprM and AcrAB-TolC are the tripartite efflux pump assemblies, responsible for multidrug resistance in P. aeruginosa and E. coli respectively. Substrates that are more susceptible for efflux are predicted to have a common pharmacophore feature map. In this study, a new criterion of excluding compounds with efflux substrate-like features was used, thereby refining the selection process and enriching the inhibitor identification process. An in-house database of phytochemicals was created and screened using high-throughput virtual screening against AcrB and MexB proteins and filtered by matching with the common pharmacophore models (AADHR, ADHNR, AAHNR, AADHN, AADNR, AAADN, AAADR, AAANR, AAAHN, AAADD and AAADH) generated using known efflux substrates. Phytochemical hits that matched with any one or more of the efflux substrate models were excluded from the study. Hits that do not have features similar to the efflux substrate models were docked using XP docking against the AcrB and MexB proteins. The best hits of the XP docking were validated by checkerboard synergy assay and ethidium bromide accumulation assay for their efflux inhibition potency. Lanatoside C and diadzein were filtered based on the synergistic potential and validated for their efflux inhibition potency using ethidium bromide accumulation study. These compounds exhibited the ability to increase the accumulation of ethidium bromide inside the bacterial cell as evidenced by these increase in fluorescence in the presence of the compounds. With this good correlation between in silico screening and positive efflux inhibitory activity in vitro, the two compounds, lanatoside C and diadzein could be promising efflux pump inhibitors and effective to use in combination therapy against drug resistant strains of P. aeruginosa and E. coli.

  4. Construction of a 3-D anatomical model for teaching temporal lobectomy.

    PubMed

    de Ribaupierre, Sandrine; Wilson, Timothy D

    2012-06-01

    Although we live and work in 3 dimensional space, most of the anatomical teaching during medical school is done on 2-D (books, TV and computer screens, etc). 3-D spatial abilities are essential for a surgeon but teaching spatial skills in a non-threatening and safe educational environment is a much more difficult pedagogical task. Currently, initial anatomical knowledge formation or specific surgical anatomy techniques, are taught either in the OR itself, or in cadaveric labs; which means that the trainee has only limited exposure. 3-D computer models incorporated into virtual learning environments may provide an intermediate and key step in a blended learning approach for spatially challenging anatomical knowledge formation. Specific anatomical structures and their spatial orientation can be further clinically contextualized through demonstrations of surgical procedures in the 3-D digital environments. Recordings of digital models enable learner reviews, taking as much time as they want, stopping the demonstration, and/or exploring the model to understand the anatomical relation of each structure. We present here how a temporal lobectomy virtual model has been developed to aid residents and fellows conceptualization of the anatomical relationships between different cerebral structures during that procedure. We suggest in comparison to cadaveric dissection, such virtual models represent a cost effective pedagogical methodology providing excellent support for anatomical learning and surgical technique training. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Exploring 4D Flow Data in an Immersive Virtual Environment

    NASA Astrophysics Data System (ADS)

    Stevens, A. H.; Butkiewicz, T.

    2017-12-01

    Ocean models help us to understand and predict a wide range of intricate physical processes which comprise the atmospheric and oceanic systems of the Earth. Because these models output an abundance of complex time-varying three-dimensional (i.e., 4D) data, effectively conveying the myriad information from a given model poses a significant visualization challenge. The majority of the research effort into this problem has concentrated around synthesizing and examining methods for representing the data itself; by comparison, relatively few studies have looked into the potential merits of various viewing conditions and virtual environments. We seek to improve our understanding of the benefits offered by current consumer-grade virtual reality (VR) systems through an immersive, interactive 4D flow visualization system. Our dataset is a Regional Ocean Modeling System (ROMS) model representing a 12-hour tidal cycle of the currents within New Hampshire's Great Bay estuary. The model data was loaded into a custom VR particle system application using the OpenVR software library and the HTC Vive hardware, which tracks a headset and two six-degree-of-freedom (6DOF) controllers within a 5m-by-5m area. The resulting visualization system allows the user to coexist in the same virtual space as the data, enabling rapid and intuitive analysis of the flow model through natural interactions with the dataset and within the virtual environment. Whereas a traditional computer screen typically requires the user to reposition a virtual camera in the scene to obtain the desired view of the data, in virtual reality the user can simply move their head to the desired viewpoint, completely eliminating the mental context switches from data exploration/analysis to view adjustment and back. The tracked controllers become tools to quickly manipulate (reposition, reorient, and rescale) the dataset and to interrogate it by, e.g., releasing dye particles into the flow field, probing scalar velocities, placing a cutting plane through a region of interest, etc. It is hypothesized that the advantages afforded by head-tracked viewing and 6DOF interaction devices will lead to faster and more efficient examination of 4D flow data. A human factors study is currently being prepared to empirically evaluate this method of visualization and interaction.

  6. Discovery of d-amino acid oxidase inhibitors based on virtual screening against the lid-open enzyme conformation.

    PubMed

    Szilágyi, Bence; Skok, Žiga; Rácz, Anita; Frlan, Rok; Ferenczy, György G; Ilaš, Janez; Keserű, György M

    2018-06-01

    d-Amino acid oxidase (DAAO) inhibitors are typically small polar compounds with often suboptimal pharmacokinetic properties. Features of the native binding site limit the operational freedom of further medicinal chemistry efforts. We therefore initiated a structure based virtual screening campaign based on the X-ray structures of DAAO complexes where larger ligands shifted the loop (lid opening) covering the native binding site. The virtual screening of our in-house collection followed by the in vitro test of the best ranked compounds led to the identification of a new scaffold with micromolar IC 50 . Subsequent SAR explorations enabled us to identify submicromolar inhibitors. Docking studies supported by in vitro activity measurements suggest that compounds bind to the active site with a salt-bridge characteristic to DAAO inhibitor binding. In addition, displacement of and interaction with the loop covering the active site contributes significantly to the activity of the most potent compounds. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Docking and scoring with ICM: the benchmarking results and strategies for improvement

    PubMed Central

    Neves, Marco A. C.; Totrov, Maxim; Abagyan, Ruben

    2012-01-01

    Flexible docking and scoring using the Internal Coordinate Mechanics software (ICM) was benchmarked for ligand binding mode prediction against the 85 co-crystal structures in the modified Astex data set. The ICM virtual ligand screening was tested against the 40 DUD target benchmarks and 11-target WOMBAT sets. The self-docking accuracy was evaluated for the top 1 and top 3 scoring poses at each ligand binding site with near native conformations below 2 Å RMSD found in 91% and 95% of the predictions, respectively. The virtual ligand screening using single rigid pocket conformations provided the median area under the ROC curves equal to 69.4 with 22.0% true positives recovered at 2% false positive rate. Significant improvements up to ROC AUC= 82.2 and ROC(2%)= 45.2 were achieved following our best practices for flexible pocket refinement and out-of-pocket binding rescore. The virtual screening can be further improved by considering multiple conformations of the target. PMID:22569591

  8. Discovery of new erbB4 inhibitors: Repositioning an orphan chemical library by inverse virtual screening.

    PubMed

    Giordano, Assunta; Forte, Giovanni; Massimo, Luigia; Riccio, Raffaele; Bifulco, Giuseppe; Di Micco, Simone

    2018-04-12

    Inverse Virtual Screening (IVS) is a docking based approach aimed to the evaluation of the virtual ability of a single compound to interact with a library of proteins. For the first time, we applied this methodology to a library of synthetic compounds, which proved to be inactive towards the target they were initially designed for. Trifluoromethyl-benzenesulfonamides 3-21 were repositioned by means of IVS identifying new lead compounds (14-16, 19 and 20) for the inhibition of erbB4 in the low micromolar range. Among these, compound 20 exhibited an interesting value of IC 50 on MCF7 cell lines, thus validating IVS in lead repurposing. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Statistical analysis of EGFR structures' performance in virtual screening

    NASA Astrophysics Data System (ADS)

    Li, Yan; Li, Xiang; Dong, Zigang

    2015-11-01

    In this work the ability of EGFR structures to distinguish true inhibitors from decoys in docking and MM-PBSA is assessed by statistical procedures. The docking performance depends critically on the receptor conformation and bound state. The enrichment of known inhibitors is well correlated with the difference between EGFR structures rather than the bound-ligand property. The optimal structures for virtual screening can be selected based purely on the complex information. And the mixed combination of distinct EGFR conformations is recommended for ensemble docking. In MM-PBSA, a variety of EGFR structures have identically good performance in the scoring and ranking of known inhibitors, indicating that the choice of the receptor structure has little effect on the screening.

  10. Prospective virtual screening for novel p53-MDM2 inhibitors using ultrafast shape recognition

    NASA Astrophysics Data System (ADS)

    Patil, Sachin P.; Ballester, Pedro J.; Kerezsi, Cassidy R.

    2014-02-01

    The p53 protein, known as the guardian of genome, is mutated or deleted in approximately 50 % of human tumors. In the rest of the cancers, p53 is expressed in its wild-type form, but its function is inhibited by direct binding with the murine double minute 2 (MDM2) protein. Therefore, inhibition of the p53-MDM2 interaction, leading to the activation of tumor suppressor p53 protein presents a fundamentally novel therapeutic strategy against several types of cancers. The present study utilized ultrafast shape recognition (USR), a virtual screening technique based on ligand-receptor 3D shape complementarity, to screen DrugBank database for novel p53-MDM2 inhibitors. Specifically, using 3D shape of one of the most potent crystal ligands of MDM2, MI-63, as the query molecule, six compounds were identified as potential p53-MDM2 inhibitors. These six USR hits were then subjected to molecular modeling investigations through flexible receptor docking followed by comparative binding energy analysis. These studies suggested a potential role of the USR-selected molecules as p53-MDM2 inhibitors. This was further supported by experimental tests showing that the treatment of human colon tumor cells with the top USR hit, telmisartan, led to a dose-dependent cell growth inhibition in a p53-dependent manner. It is noteworthy that telmisartan has a long history of safe human use as an approved anti-hypertension drug and thus may present an immediate clinical potential as a cancer therapeutic. Furthermore, it could also serve as a structurally-novel lead molecule for the development of more potent, small-molecule p53-MDM2 inhibitors against variety of cancers. Importantly, the present study demonstrates that the adopted USR-based virtual screening protocol is a useful tool for hit identification in the domain of small molecule p53-MDM2 inhibitors.

  11. Validation studies of the site-directed docking program LibDock.

    PubMed

    Rao, Shashidhar N; Head, Martha S; Kulkarni, Amit; LaLonde, Judith M

    2007-01-01

    The performance of the site-features docking algorithm LibDock has been evaluated across eight GlaxoSmithKline targets as a follow-up to a broad validation study of docking and scoring software (Warren, G. L.; Andrews, W. C.; Capelli, A.; Clarke, B.; Lalonde, J.; Lambert, M. H.; Lindvall, M.; Nevins, N.; Semus, S. F.; Senger, S.; Tedesco, G.; Walls, I. D.; Woolven, J. M.; Peishoff, C. E.; Head, M. S. J. Med. Chem. 2006, 49, 5912-5931). Docking experiments were performed to assess both the accuracy in reproducing the binding mode of the ligand and the retrieval of active compounds in a virtual screening protocol using both the DJD (Diller, D. J.; Merz, K. M., Jr. Proteins 2001, 43, 113-124) and LigScore2 (Krammer, A. K.; Kirchoff, P. D.; Jiang, X.; Venkatachalam, C. M.; Waldman, M. J. Mol. Graphics Modell. 2005, 23, 395-407) scoring functions. This study was conducted using DJD scoring, and poses were rescored using all available scoring functions in the Accelrys LigandFit module, including LigScore2. For six out of eight targets at least 30% of the ligands were docked within a root-mean-square difference (RMSD) of 2.0 A for the crystallographic poses when the LigScore2 scoring function was used. LibDock retrieved at least 20% of active compounds in the top 10% of screened ligands for four of the eight targets in the virtual screening protocol. In both studies the LigScore2 scoring function enhanced the retrieval of crystallographic poses or active compounds in comparison with the results obtained using the DJD scoring function. The results for LibDock accuracy and ligand retrieval in virtual screening are compared to 10 other docking and scoring programs. These studies demonstrate the utility of the LigScore2 scoring function and that LibDock as a feature directed docking method performs as well as docking programs that use genetic/growing and Monte Carlo driven algorithms.

  12. Discovery of Novel ROCK1 Inhibitors via Integrated Virtual Screening Strategy and Bioassays

    PubMed Central

    Shen, Mingyun; Tian, Sheng; Pan, Peichen; Sun, Huiyong; Li, Dan; Li, Youyong; Zhou, Hefeng; Li, Chuwen; Lee, Simon Ming-Yuen; Hou, Tingjun

    2015-01-01

    Rho-associated kinases (ROCKs) have been regarded as promising drug targets for the treatment of cardiovascular diseases, nervous system diseases and cancers. In this study, a novel integrated virtual screening protocol by combining molecular docking and pharmacophore mapping based on multiple ROCK1 crystal structures was utilized to screen the ChemBridge database for discovering potential inhibitors of ROCK1. Among the 38 tested compounds, seven of them exhibited significant inhibitory activities of ROCK1 (IC50 < 10 μM) and the most potent one (compound TS-f22) with the novel scaffold of 4-Phenyl-1H-pyrrolo [2,3-b] pyridine had an IC50 of 480 nM. Then, the structure-activity relationships of 41 analogues of TS-f22 were examined. Two potent inhibitors were proven effective in inhibiting the phosphorylation of the downstream target in the ROCK signaling pathway in vitro and protecting atorvastatin-induced cerebral hemorrhage in vivo. The high hit rate (28.95%) suggested that the integrated virtual screening strategy was quite reliable and could be used as a powerful tool for identifying promising active compounds for targets of interest. PMID:26568382

  13. Discovery of Novel ROCK1 Inhibitors via Integrated Virtual Screening Strategy and Bioassays.

    PubMed

    Shen, Mingyun; Tian, Sheng; Pan, Peichen; Sun, Huiyong; Li, Dan; Li, Youyong; Zhou, Hefeng; Li, Chuwen; Lee, Simon Ming-Yuen; Hou, Tingjun

    2015-11-16

    Rho-associated kinases (ROCKs) have been regarded as promising drug targets for the treatment of cardiovascular diseases, nervous system diseases and cancers. In this study, a novel integrated virtual screening protocol by combining molecular docking and pharmacophore mapping based on multiple ROCK1 crystal structures was utilized to screen the ChemBridge database for discovering potential inhibitors of ROCK1. Among the 38 tested compounds, seven of them exhibited significant inhibitory activities of ROCK1 (IC50 < 10 μM) and the most potent one (compound TS-f22) with the novel scaffold of 4-Phenyl-1H-pyrrolo [2,3-b] pyridine had an IC50 of 480 nM. Then, the structure-activity relationships of 41 analogues of TS-f22 were examined. Two potent inhibitors were proven effective in inhibiting the phosphorylation of the downstream target in the ROCK signaling pathway in vitro and protecting atorvastatin-induced cerebral hemorrhage in vivo. The high hit rate (28.95%) suggested that the integrated virtual screening strategy was quite reliable and could be used as a powerful tool for identifying promising active compounds for targets of interest.

  14. Systematic Exploitation of Multiple Receptor Conformations for Virtual Ligand Screening

    PubMed Central

    Bottegoni, Giovanni; Rocchia, Walter; Rueda, Manuel; Abagyan, Ruben; Cavalli, Andrea

    2011-01-01

    The role of virtual ligand screening in modern drug discovery is to mine large chemical collections and to prioritize for experimental testing a comparatively small and diverse set of compounds with expected activity against a target. Several studies have pointed out that the performance of virtual ligand screening can be improved by taking into account receptor flexibility. Here, we systematically assess how multiple crystallographic receptor conformations, a powerful way of discretely representing protein plasticity, can be exploited in screening protocols to separate binders from non-binders. Our analyses encompass 36 targets of pharmaceutical relevance and are based on actual molecules with reported activity against those targets. The results suggest that an ensemble receptor-based protocol displays a stronger discriminating power between active and inactive molecules as compared to its standard single rigid receptor counterpart. Moreover, such a protocol can be engineered not only to enrich a higher number of active compounds, but also to enhance their chemical diversity. Finally, some clear indications can be gathered on how to select a subset of receptor conformations that is most likely to provide the best performance in a real life scenario. PMID:21625529

  15. Large-scale systematic analysis of 2D fingerprint methods and parameters to improve virtual screening enrichments.

    PubMed

    Sastry, Madhavi; Lowrie, Jeffrey F; Dixon, Steven L; Sherman, Woody

    2010-05-24

    A systematic virtual screening study on 11 pharmaceutically relevant targets has been conducted to investigate the interrelation between 8 two-dimensional (2D) fingerprinting methods, 13 atom-typing schemes, 13 bit scaling rules, and 12 similarity metrics using the new cheminformatics package Canvas. In total, 157 872 virtual screens were performed to assess the ability of each combination of parameters to identify actives in a database screen. In general, fingerprint methods, such as MOLPRINT2D, Radial, and Dendritic that encode information about local environment beyond simple linear paths outperformed other fingerprint methods. Atom-typing schemes with more specific information, such as Daylight, Mol2, and Carhart were generally superior to more generic atom-typing schemes. Enrichment factors across all targets were improved considerably with the best settings, although no single set of parameters performed optimally on all targets. The size of the addressable bit space for the fingerprints was also explored, and it was found to have a substantial impact on enrichments. Small bit spaces, such as 1024, resulted in many collisions and in a significant degradation in enrichments compared to larger bit spaces that avoid collisions.

  16. Consensus Induced Fit Docking (cIFD): methodology, validation, and application to the discovery of novel Crm1 inhibitors

    NASA Astrophysics Data System (ADS)

    Kalid, Ori; Toledo Warshaviak, Dora; Shechter, Sharon; Sherman, Woody; Shacham, Sharon

    2012-11-01

    We present the Consensus Induced Fit Docking (cIFD) approach for adapting a protein binding site to accommodate multiple diverse ligands for virtual screening. This novel approach results in a single binding site structure that can bind diverse chemotypes and is thus highly useful for efficient structure-based virtual screening. We first describe the cIFD method and its validation on three targets that were previously shown to be challenging for docking programs (COX-2, estrogen receptor, and HIV reverse transcriptase). We then demonstrate the application of cIFD to the challenging discovery of irreversible Crm1 inhibitors. We report the identification of 33 novel Crm1 inhibitors, which resulted from the testing of 402 purchased compounds selected from a screening set containing 261,680 compounds. This corresponds to a hit rate of 8.2 %. The novel Crm1 inhibitors reveal diverse chemical structures, validating the utility of the cIFD method in a real-world drug discovery project. This approach offers a pragmatic way to implicitly account for protein flexibility without the additional computational costs of ensemble docking or including full protein flexibility during virtual screening.

  17. Computational discovery of putative quorum sensing inhibitors against LasR and RhlR receptor proteins of Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Annapoorani, Angusamy; Umamageswaran, Venugopal; Parameswari, Radhakrishnan; Pandian, Shunmugiah Karutha; Ravi, Arumugam Veera

    2012-09-01

    Drugs have been discovered in the past mainly either by identification of active components from traditional remedies or by unpredicted discovery. A key motivation for the study of structure based virtual screening is the exploitation of such information to design targeted drugs. In this study, structure based virtual screening was used in search for putative quorum sensing inhibitors (QSI) of Pseudomonas aeruginosa. The virtual screening programme Glide version 5.5 was applied to screen 1,920 natural compounds/drugs against LasR and RhlR receptor proteins of P. aeruginosa. Based on the results of in silico docking analysis, five top ranking compounds namely rosmarinic acid, naringin, chlorogenic acid, morin and mangiferin were subjected to in vitro bioassays against laboratory strain PAO1 and two more antibiotic resistant clinical isolates, P. aeruginosa AS1 (GU447237) and P. aeruginosa AS2 (GU447238). Among the five compounds studied, except mangiferin other four compounds showed significant inhibition in the production of protease, elastase and hemolysin. Further, all the five compounds potentially inhibited the biofilm related behaviours. This interaction study provided promising ligands to inhibit the quorum sensing (QS) mediated virulence factors production in P. aeruginosa.

  18. Vitual screening and binding mode elucidation of curcumin analogues on Cyclooxygenase-2 using AYO_COX2_V1.1 protocol

    NASA Astrophysics Data System (ADS)

    Mulatsari, E.; Mumpuni, E.; Herfian, A.

    2017-05-01

    Curcumin is yellow colored phenolic compounds contained in Curcuma longa. Curcumin is known to have biological activities as anti-inflammatory, antiviral, antioxidant, and anti-infective agent [1]. Synthesis of curcumin analogue compounds has been done and some of them had biological activity like curcumin. In this research, the virtual screening of curcumin analogue compounds has been conducted. The purpose of this research was to determine the activity of these compounds as selective Cyclooxygenase-2inhibitors in in-silico. Binding mode elucidation was made by active and inactive representative compounds to see the interaction of the amino acids in the binding site of the compounds. This research used AYO_COX2_V.1.1, a structure-based virtual screening protocol (SBVS) that has been validated by Mumpuni E et al, 2014 [2]. AYO_COX2_V.1.1 protocol using a variety of integrated applications such as SPORES, PLANTS, BKchem, OpenBabel and PyMOL. The results of virtual screening conducted on 49 curcumin analogue compounds obtained 8 compounds with 4 active amino acid residues (GLY340, ILE503, PHE343, and PHE367) that were considered active as COX-2 inhibitor.

  19. iScreen: world's first cloud-computing web server for virtual screening and de novo drug design based on TCM database@Taiwan

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Ying; Chang, Kai-Wei; Chen, Calvin Yu-Chian

    2011-06-01

    The rapidly advancing researches on traditional Chinese medicine (TCM) have greatly intrigued pharmaceutical industries worldwide. To take initiative in the next generation of drug development, we constructed a cloud-computing system for TCM intelligent screening system (iScreen) based on TCM Database@Taiwan. iScreen is compacted web server for TCM docking and followed by customized de novo drug design. We further implemented a protein preparation tool that both extract protein of interest from a raw input file and estimate the size of ligand bind site. In addition, iScreen is designed in user-friendly graphic interface for users who have less experience with the command line systems. For customized docking, multiple docking services, including standard, in-water, pH environment, and flexible docking modes are implemented. Users can download first 200 TCM compounds of best docking results. For TCM de novo drug design, iScreen provides multiple molecular descriptors for a user's interest. iScreen is the world's first web server that employs world's largest TCM database for virtual screening and de novo drug design. We believe our web server can lead TCM research to a new era of drug development. The TCM docking and screening server is available at http://iScreen.cmu.edu.tw/.

  20. iScreen: world's first cloud-computing web server for virtual screening and de novo drug design based on TCM database@Taiwan.

    PubMed

    Tsai, Tsung-Ying; Chang, Kai-Wei; Chen, Calvin Yu-Chian

    2011-06-01

    The rapidly advancing researches on traditional Chinese medicine (TCM) have greatly intrigued pharmaceutical industries worldwide. To take initiative in the next generation of drug development, we constructed a cloud-computing system for TCM intelligent screening system (iScreen) based on TCM Database@Taiwan. iScreen is compacted web server for TCM docking and followed by customized de novo drug design. We further implemented a protein preparation tool that both extract protein of interest from a raw input file and estimate the size of ligand bind site. In addition, iScreen is designed in user-friendly graphic interface for users who have less experience with the command line systems. For customized docking, multiple docking services, including standard, in-water, pH environment, and flexible docking modes are implemented. Users can download first 200 TCM compounds of best docking results. For TCM de novo drug design, iScreen provides multiple molecular descriptors for a user's interest. iScreen is the world's first web server that employs world's largest TCM database for virtual screening and de novo drug design. We believe our web server can lead TCM research to a new era of drug development. The TCM docking and screening server is available at http://iScreen.cmu.edu.tw/.

  1. Using Hierarchical Virtual Screening To Combat Drug Resistance of the HIV-1 Protease.

    PubMed

    Li, Nan; Ainsworth, Richard I; Ding, Bo; Hou, Tingjun; Wang, Wei

    2015-07-27

    Human immunodeficiency virus (HIV) protease inhibitors (PIs) are important components of highly active anti-retroviral therapy (HAART) that block the catalytic site of HIV protease, thus preventing maturation of the HIV virion. However, with two decades of PI prescriptions in clinical practice, drug-resistant HIV mutants have now been found for all of the PI drugs. Therefore, the continuous development of new PI drugs is crucial both to combat the existing drug-resistant HIV strains and to provide treatments for future patients. Here we purpose an HIV PI drug design strategy to select candidate PIs with binding energy distributions dominated by interactions with conserved protease residues in both wild-type and various drug-resistant mutants. On the basis of this strategy, we have constructed a virtual screening pipeline including combinatorial library construction, combinatorial docking, MM/GBSA-based rescoring, and reranking on the basis of the binding energy distribution. We have tested our strategy on lopinavir by modifying its two functional groups. From an initial 751 689 candidate molecules, 18 candidate inhibitors were selected using the pipeline for experimental validation. IC50 measurements and drug resistance predictions successfully identified two ligands with both HIV protease inhibitor activity and an improved drug resistance profile on 2382 HIV mutants. This study provides a proof of concept for the integration of MM/GBSA energy analysis and drug resistance information at the stage of virtual screening and sheds light on future HIV drug design and the use of virtual screening to combat drug resistance.

  2. A Pipeline To Enhance Ligand Virtual Screening: Integrating Molecular Dynamics and Fingerprints for Ligand and Proteins.

    PubMed

    Spyrakis, Francesca; Benedetti, Paolo; Decherchi, Sergio; Rocchia, Walter; Cavalli, Andrea; Alcaro, Stefano; Ortuso, Francesco; Baroni, Massimo; Cruciani, Gabriele

    2015-10-26

    The importance of taking into account protein flexibility in drug design and virtual ligand screening (VS) has been widely debated in the literature, and molecular dynamics (MD) has been recognized as one of the most powerful tools for investigating intrinsic protein dynamics. Nevertheless, deciphering the amount of information hidden in MD simulations and recognizing a significant minimal set of states to be used in virtual screening experiments can be quite complicated. Here we present an integrated MD-FLAP (molecular dynamics-fingerprints for ligand and proteins) approach, comprising a pipeline of molecular dynamics, clustering and linear discriminant analysis, for enhancing accuracy and efficacy in VS campaigns. We first extracted a limited number of representative structures from tens of nanoseconds of MD trajectories by means of the k-medoids clustering algorithm as implemented in the BiKi Life Science Suite ( http://www.bikitech.com [accessed July 21, 2015]). Then, instead of applying arbitrary selection criteria, that is, RMSD, pharmacophore properties, or enrichment performances, we allowed the linear discriminant analysis algorithm implemented in FLAP ( http://www.moldiscovery.com [accessed July 21, 2015]) to automatically choose the best performing conformational states among medoids and X-ray structures. Retrospective virtual screenings confirmed that ensemble receptor protocols outperform single rigid receptor approaches, proved that computationally generated conformations comprise the same quantity/quality of information included in X-ray structures, and pointed to the MD-FLAP approach as a valuable tool for improving VS performances.

  3. Investigation of tracking systems properties in CAVE-type virtual reality systems

    NASA Astrophysics Data System (ADS)

    Szymaniak, Magda; Mazikowski, Adam; Meironke, Michał

    2017-08-01

    In recent years, many scientific and industrial centers in the world developed a virtual reality systems or laboratories. One of the most advanced solutions are Immersive 3D Visualization Lab (I3DVL), a CAVE-type (Cave Automatic Virtual Environment) laboratory. It contains two CAVE-type installations: six-screen installation arranged in a form of a cube, and four-screen installation, a simplified version of the previous one. The user feeling of "immersion" and interaction with virtual world depend on many factors, in particular on the accuracy of the tracking system of the user. In this paper properties of the tracking systems applied in I3DVL was investigated. For analysis two parameters were selected: the accuracy of the tracking system and the range of detection of markers by the tracking system in space of the CAVE. Measurements of system accuracy were performed for six-screen installation, equipped with four tracking cameras for three axes: X, Y, Z. Rotation around the Y axis was also analyzed. Measured tracking system shows good linear and rotating accuracy. The biggest issue was the range of the monitoring of markers inside the CAVE. It turned out, that the tracking system lose sight of the markers in the corners of the installation. For comparison, for a simplified version of CAVE (four-screen installation), equipped with eight tracking cameras, this problem was not occur. Obtained results will allow for improvement of cave quality.

  4. Condorcet and borda count fusion method for ligand-based virtual screening.

    PubMed

    Ahmed, Ali; Saeed, Faisal; Salim, Naomie; Abdo, Ammar

    2014-01-01

    It is known that any individual similarity measure will not always give the best recall of active molecule structure for all types of activity classes. Recently, the effectiveness of ligand-based virtual screening approaches can be enhanced by using data fusion. Data fusion can be implemented using two different approaches: group fusion and similarity fusion. Similarity fusion involves searching using multiple similarity measures. The similarity scores, or ranking, for each similarity measure are combined to obtain the final ranking of the compounds in the database. The Condorcet fusion method was examined. This approach combines the outputs of similarity searches from eleven association and distance similarity coefficients, and then the winner measure for each class of molecules, based on Condorcet fusion, was chosen to be the best method of searching. The recall of retrieved active molecules at top 5% and significant test are used to evaluate our proposed method. The MDL drug data report (MDDR), maximum unbiased validation (MUV) and Directory of Useful Decoys (DUD) data sets were used for experiments and were represented by 2D fingerprints. Simulated virtual screening experiments with the standard two data sets show that the use of Condorcet fusion provides a very simple way of improving the ligand-based virtual screening, especially when the active molecules being sought have a lowest degree of structural heterogeneity. However, the effectiveness of the Condorcet fusion was increased slightly when structural sets of high diversity activities were being sought.

  5. Condorcet and borda count fusion method for ligand-based virtual screening

    PubMed Central

    2014-01-01

    Background It is known that any individual similarity measure will not always give the best recall of active molecule structure for all types of activity classes. Recently, the effectiveness of ligand-based virtual screening approaches can be enhanced by using data fusion. Data fusion can be implemented using two different approaches: group fusion and similarity fusion. Similarity fusion involves searching using multiple similarity measures. The similarity scores, or ranking, for each similarity measure are combined to obtain the final ranking of the compounds in the database. Results The Condorcet fusion method was examined. This approach combines the outputs of similarity searches from eleven association and distance similarity coefficients, and then the winner measure for each class of molecules, based on Condorcet fusion, was chosen to be the best method of searching. The recall of retrieved active molecules at top 5% and significant test are used to evaluate our proposed method. The MDL drug data report (MDDR), maximum unbiased validation (MUV) and Directory of Useful Decoys (DUD) data sets were used for experiments and were represented by 2D fingerprints. Conclusions Simulated virtual screening experiments with the standard two data sets show that the use of Condorcet fusion provides a very simple way of improving the ligand-based virtual screening, especially when the active molecules being sought have a lowest degree of structural heterogeneity. However, the effectiveness of the Condorcet fusion was increased slightly when structural sets of high diversity activities were being sought. PMID:24883114

  6. Structure-based virtual screening of hypothetical inhibitors of the enzyme longiborneol synthase-a potential target to reduce Fusarium head blight disease.

    PubMed

    Bresso, E; Leroux, V; Urban, M; Hammond-Kosack, K E; Maigret, B; Martins, N F

    2016-07-01

    Fusarium head blight (FHB) is one of the most destructive diseases of wheat and other cereals worldwide. During infection, the Fusarium fungi produce mycotoxins that represent a high risk to human and animal health. Developing small-molecule inhibitors to specifically reduce mycotoxin levels would be highly beneficial since current treatments unspecifically target the Fusarium pathogen. Culmorin possesses a well-known important synergistically virulence role among mycotoxins, and longiborneol synthase appears to be a key enzyme for its synthesis, thus making longiborneol synthase a particularly interesting target. This study aims to discover potent and less toxic agrochemicals against FHB. These compounds would hamper culmorin synthesis by inhibiting longiborneol synthase. In order to select starting molecules for further investigation, we have conducted a structure-based virtual screening investigation. A longiborneol synthase structural model is first built using homology modeling, followed by molecular dynamics simulations that provided the required input for a protein-ligand ensemble docking procedure. From this strategy, the three most interesting compounds (hits) were selected among the 25 top-ranked docked compounds from a library of 15,000 drug-like compounds. These putative inhibitors of longiborneol synthase provide a sound starting point for further studies involving molecular modeling coupled to biochemical experiments. This process could eventually lead to the development of novel approaches to reduce mycotoxin contamination in harvested grain.

  7. Homology modeling and virtual screening to discover potent inhibitors targeting the imidazole glycerophosphate dehydratase protein in Staphylococcus xylosus

    NASA Astrophysics Data System (ADS)

    Chen, Xing-Ru; Wang, Xiao-Ting; Hao, Mei-Qi; Zhou, Yong-Hui; Cui, Wen-Qiang; Xing, Xiao-Xu; Xu, Chang-Geng; Bai, Jing-Wen; Li, Yan-Hua

    2017-11-01

    The imidazole glycerophosphate dehydratase (IGPD) protein is a therapeutic target for herbicide discovery. It is also regarded as a possible target in Staphylococcus xylosus (S. xylosus) for solving mastitis in the dairy cow. The 3D structure of IGPD protein is essential for discovering novel inhibitors during high-throughput virtual screening. However, to date, the 3D structure of IGPD protein of S. xylosus has not been solved. In this study, a series of computational techniques including homology modeling, Ramachandran Plots, and Verify 3D were performed in order to construct an appropriate 3D model of IGPD protein of S. xylosus. Nine hits were identified from 2500 compounds by docking studies. Then, these 9 compounds were first tested in vitro in S. xylosus biofilm formation using crystal violet staining. One of the potential compounds, baicalin was shown to significantly inhibit S. xylosus biofilm formation. Finally, the baicalin was further evaluated, which showed better inhibition of biofilm formation capability in S. xylosus by scanning electron microscopy. Hence, we have predicted the structure of IGPD protein of S. xylosus using computational techniques. We further discovered the IGPD protein was targeted by baicalin compound which inhibited the biofilm formation in S. xylosus. Our findings here would provide implications for the further development of novel IGPD inhibitors for the treatment of dairy mastitis.

  8. Homology Modeling and Virtual Screening to Discover Potent Inhibitors Targeting the Imidazole Glycerophosphate Dehydratase Protein in Staphylococcus xylosus.

    PubMed

    Chen, Xing-Ru; Wang, Xiao-Ting; Hao, Mei-Qi; Zhou, Yong-Hui; Cui, Wen-Qiang; Xing, Xiao-Xu; Xu, Chang-Geng; Bai, Jing-Wen; Li, Yan-Hua

    2017-01-01

    The imidazole glycerophosphate dehydratase (IGPD) protein is a therapeutic target for herbicide discovery. It is also regarded as a possible target in Staphylococcus xylosus ( S. xylosus ) for solving mastitis in the dairy cow. The 3D structure of IGPD protein is essential for discovering novel inhibitors during high-throughput virtual screening. However, to date, the 3D structure of IGPD protein of S. xylosus has not been solved. In this study, a series of computational techniques including homology modeling, Ramachandran Plots, and Verify 3D were performed in order to construct an appropriate 3D model of IGPD protein of S. xylosus . Nine hits were identified from 2,500 compounds by docking studies. Then, these nine compounds were first tested in vitro in S. xylosus biofilm formation using crystal violet staining. One of the potential compounds, baicalin was shown to significantly inhibit S. xylosus biofilm formation. Finally, the baicalin was further evaluated, which showed better inhibition of biofilm formation capability in S. xylosus by scanning electron microscopy. Hence, we have predicted the structure of IGPD protein of S. xylosus using computational techniques. We further discovered the IGPD protein was targeted by baicalin compound which inhibited the biofilm formation in S. xylosus . Our findings here would provide implications for the further development of novel IGPD inhibitors for the treatment of dairy mastitis.

  9. Virtual environment architecture for rapid application development

    NASA Technical Reports Server (NTRS)

    Grinstein, Georges G.; Southard, David A.; Lee, J. P.

    1993-01-01

    We describe the MITRE Virtual Environment Architecture (VEA), a product of nearly two years of investigations and prototypes of virtual environment technology. This paper discusses the requirements for rapid prototyping, and an architecture we are developing to support virtual environment construction. VEA supports rapid application development by providing a variety of pre-built modules that can be reconfigured for each application session. The modules supply interfaces for several types of interactive I/O devices, in addition to large-screen or head-mounted displays.

  10. Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets.

    PubMed

    Feinstein, Wei P; Brylinski, Michal

    2015-01-01

    Computational approaches have emerged as an instrumental methodology in modern research. For example, virtual screening by molecular docking is routinely used in computer-aided drug discovery. One of the critical parameters for ligand docking is the size of a search space used to identify low-energy binding poses of drug candidates. Currently available docking packages often come with a default protocol for calculating the box size, however, many of these procedures have not been systematically evaluated. In this study, we investigate how the docking accuracy of AutoDock Vina is affected by the selection of a search space. We propose a new procedure for calculating the optimal docking box size that maximizes the accuracy of binding pose prediction against a non-redundant and representative dataset of 3,659 protein-ligand complexes selected from the Protein Data Bank. Subsequently, we use the Directory of Useful Decoys, Enhanced to demonstrate that the optimized docking box size also yields an improved ranking in virtual screening. Binding pockets in both datasets are derived from the experimental complex structures and, additionally, predicted by eFindSite. A systematic analysis of ligand binding poses generated by AutoDock Vina shows that the highest accuracy is achieved when the dimensions of the search space are 2.9 times larger than the radius of gyration of a docking compound. Subsequent virtual screening benchmarks demonstrate that this optimized docking box size also improves compound ranking. For instance, using predicted ligand binding sites, the average enrichment factor calculated for the top 1 % (10 %) of the screening library is 8.20 (3.28) for the optimized protocol, compared to 7.67 (3.19) for the default procedure. Depending on the evaluation metric, the optimal docking box size gives better ranking in virtual screening for about two-thirds of target proteins. This fully automated procedure can be used to optimize docking protocols in order to improve the ranking accuracy in production virtual screening simulations. Importantly, the optimized search space systematically yields better results than the default method not only for experimental pockets, but also for those predicted from protein structures. A script for calculating the optimal docking box size is freely available at www.brylinski.org/content/docking-box-size. Graphical AbstractWe developed a procedure to optimize the box size in molecular docking calculations. Left panel shows the predicted binding pose of NADP (green sticks) compared to the experimental complex structure of human aldose reductase (blue sticks) using a default protocol. Right panel shows the docking accuracy using an optimized box size.

  11. Benchmark of four popular virtual screening programs: construction of the active/decoy dataset remains a major determinant of measured performance.

    PubMed

    Chaput, Ludovic; Martinez-Sanz, Juan; Saettel, Nicolas; Mouawad, Liliane

    2016-01-01

    In a structure-based virtual screening, the choice of the docking program is essential for the success of a hit identification. Benchmarks are meant to help in guiding this choice, especially when undertaken on a large variety of protein targets. Here, the performance of four popular virtual screening programs, Gold, Glide, Surflex and FlexX, is compared using the Directory of Useful Decoys-Enhanced database (DUD-E), which includes 102 targets with an average of 224 ligands per target and 50 decoys per ligand, generated to avoid biases in the benchmarking. Then, a relationship between these program performances and the properties of the targets or the small molecules was investigated. The comparison was based on two metrics, with three different parameters each. The BEDROC scores with α = 80.5, indicated that, on the overall database, Glide succeeded (score > 0.5) for 30 targets, Gold for 27, FlexX for 14 and Surflex for 11. The performance did not depend on the hydrophobicity nor the openness of the protein cavities, neither on the families to which the proteins belong. However, despite the care in the construction of the DUD-E database, the small differences that remain between the actives and the decoys likely explain the successes of Gold, Surflex and FlexX. Moreover, the similarity between the actives of a target and its crystal structure ligand seems to be at the basis of the good performance of Glide. When all targets with significant biases are removed from the benchmarking, a subset of 47 targets remains, for which Glide succeeded for only 5 targets, Gold for 4 and FlexX and Surflex for 2. The performance dramatic drop of all four programs when the biases are removed shows that we should beware of virtual screening benchmarks, because good performances may be due to wrong reasons. Therefore, benchmarking would hardly provide guidelines for virtual screening experiments, despite the tendency that is maintained, i.e., Glide and Gold display better performance than FlexX and Surflex. We recommend to always use several programs and combine their results. Graphical AbstractSummary of the results obtained by virtual screening with the four programs, Glide, Gold, Surflex and FlexX, on the 102 targets of the DUD-E database. The percentage of targets with successful results, i.e., with BDEROC(α = 80.5) > 0.5, when the entire database is considered are in Blue, and when targets with biased chemical libraries are removed are in Red.

  12. Screening of broad spectrum natural pesticides against conserved target arginine kinase in cotton pests by molecular modeling.

    PubMed

    Sakthivel, Seethalakshmi; Habeeb, S K M; Raman, Chandrasekar

    2018-03-12

    Cotton is an economically important crop and its production is challenged by the diversity of pests and related insecticide resistance. Identification of the conserved target across the cotton pest will help to design broad spectrum insecticide. In this study, we have identified conserved sequences by Expressed Sequence Tag profiling from three cotton pests namely Aphis gossypii, Helicoverpa armigera, and Spodoptera exigua. One target protein arginine kinase having a key role in insect physiology and energy metabolism was studied further using homology modeling, virtual screening, molecular docking, and molecular dynamics simulation to identify potential biopesticide compounds from the Zinc natural database. We have identified four compounds having excellent inhibitor potential against the identified broad spectrum target which are highly specific to invertebrates.

  13. Cefminox, a Dual Agonist of Prostacyclin Receptor and Peroxisome Proliferator-Activated Receptor-Gamma Identified by Virtual Screening, Has Therapeutic Efficacy against Hypoxia-Induced Pulmonary Hypertension in Rats

    PubMed Central

    Xia, Jingwen; Yang, Li; Dong, Liang; Niu, Mengjie; Zhang, Shengli; Yang, Zhiwei; Wumaier, Gulinuer; Li, Ying; Wei, Xiaomin; Gong, Yi; Zhu, Ning; Li, Shengqing

    2018-01-01

    Prostacyclin receptor (IP) and peroxisome proliferator-activated receptor-gamma (PPARγ) are both potential targets for treatment of pulmonary arterial hypertension (PAH). Expression of IP and PPARγ decreases in PAH, suggesting that screening of dual agonists of IP and PPARγ might be an efficient method for drug discovery. Virtual screening (VS) of potential IP–PPARγ dual-targeting agonists was performed in the ZINC database. Ten of the identified compounds were further screened, and cefminox was found to dramatically inhibit growth of PASMCs with no obvious cytotoxicity. Growth inhibition by cefminox was partially reversed by both the IP antagonist RO113842 and the PPARγ antagonist GW9662. Investigation of the underlying mechanisms of action demonstrated that cefminox inhibits the protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway through up-regulation of the expression of phosphatase and tensin homolog (PTEN, which is inhibited by GW9662), and enhances cyclic adenosine monophosphate (cAMP) production in PASMCs (which is inhibited by RO113842). In a rat model of hypoxia-induced pulmonary hypertension, cefminox displayed therapeutic efficacy not inferior to that of the prostacyclin analog iloprost or the PPARγ agonist rosiglitazone. Our results identified cefminox as a dual agonist of IP and PPARγ that significantly inhibits PASMC proliferation by up-regulation of PTEN and cAMP, suggesting that it has potential for treatment of PAH. PMID:29527168

  14. DockoMatic 2.0: High Throughput Inverse Virtual Screening and Homology Modeling

    PubMed Central

    Bullock, Casey; Cornia, Nic; Jacob, Reed; Remm, Andrew; Peavey, Thomas; Weekes, Ken; Mallory, Chris; Oxford, Julia T.; McDougal, Owen M.; Andersen, Timothy L.

    2013-01-01

    DockoMatic is a free and open source application that unifies a suite of software programs within a user-friendly Graphical User Interface (GUI) to facilitate molecular docking experiments. Here we describe the release of DockoMatic 2.0; significant software advances include the ability to: (1) conduct high throughput Inverse Virtual Screening (IVS); (2) construct 3D homology models; and (3) customize the user interface. Users can now efficiently setup, start, and manage IVS experiments through the DockoMatic GUI by specifying a receptor(s), ligand(s), grid parameter file(s), and docking engine (either AutoDock or AutoDock Vina). DockoMatic automatically generates the needed experiment input files and output directories, and allows the user to manage and monitor job progress. Upon job completion, a summary of results is generated by Dockomatic to facilitate interpretation by the user. DockoMatic functionality has also been expanded to facilitate the construction of 3D protein homology models using the Timely Integrated Modeler (TIM) wizard. The wizard TIM provides an interface that accesses the basic local alignment search tool (BLAST) and MODELLER programs, and guides the user through the necessary steps to easily and efficiently create 3D homology models for biomacromolecular structures. The DockoMatic GUI can be customized by the user, and the software design makes it relatively easy to integrate additional docking engines, scoring functions, or third party programs. DockoMatic is a free comprehensive molecular docking software program for all levels of scientists in both research and education. PMID:23808933

  15. Learning Relative Motion Concepts in Immersive and Non-immersive Virtual Environments

    NASA Astrophysics Data System (ADS)

    Kozhevnikov, Michael; Gurlitt, Johannes; Kozhevnikov, Maria

    2013-12-01

    The focus of the current study is to understand which unique features of an immersive virtual reality environment have the potential to improve learning relative motion concepts. Thirty-seven undergraduate students learned relative motion concepts using computer simulation either in immersive virtual environment (IVE) or non-immersive desktop virtual environment (DVE) conditions. Our results show that after the simulation activities, both IVE and DVE groups exhibited a significant shift toward a scientific understanding in their conceptual models and epistemological beliefs about the nature of relative motion, and also a significant improvement on relative motion problem-solving tests. In addition, we analyzed students' performance on one-dimensional and two-dimensional questions in the relative motion problem-solving test separately and found that after training in the simulation, the IVE group performed significantly better than the DVE group on solving two-dimensional relative motion problems. We suggest that egocentric encoding of the scene in IVE (where the learner constitutes a part of a scene they are immersed in), as compared to allocentric encoding on a computer screen in DVE (where the learner is looking at the scene from "outside"), is more beneficial than DVE for studying more complex (two-dimensional) relative motion problems. Overall, our findings suggest that such aspects of virtual realities as immersivity, first-hand experience, and the possibility of changing different frames of reference can facilitate understanding abstract scientific phenomena and help in displacing intuitive misconceptions with more accurate mental models.

  16. MegaMiner: A Tool for Lead Identification Through Text Mining Using Chemoinformatics Tools and Cloud Computing Environment.

    PubMed

    Karthikeyan, Muthukumarasamy; Pandit, Yogesh; Pandit, Deepak; Vyas, Renu

    2015-01-01

    Virtual screening is an indispensable tool to cope with the massive amount of data being tossed by the high throughput omics technologies. With the objective of enhancing the automation capability of virtual screening process a robust portal termed MegaMiner has been built using the cloud computing platform wherein the user submits a text query and directly accesses the proposed lead molecules along with their drug-like, lead-like and docking scores. Textual chemical structural data representation is fraught with ambiguity in the absence of a global identifier. We have used a combination of statistical models, chemical dictionary and regular expression for building a disease specific dictionary. To demonstrate the effectiveness of this approach, a case study on malaria has been carried out in the present work. MegaMiner offered superior results compared to other text mining search engines, as established by F score analysis. A single query term 'malaria' in the portlet led to retrieval of related PubMed records, protein classes, drug classes and 8000 scaffolds which were internally processed and filtered to suggest new molecules as potential anti-malarials. The results obtained were validated by docking the virtual molecules into relevant protein targets. It is hoped that MegaMiner will serve as an indispensable tool for not only identifying hidden relationships between various biological and chemical entities but also for building better corpus and ontologies.

  17. A Role for Fragment-Based Drug Design in Developing Novel Lead Compounds for Central Nervous System Targets.

    PubMed

    Wasko, Michael J; Pellegrene, Kendy A; Madura, Jeffry D; Surratt, Christopher K

    2015-01-01

    Hundreds of millions of U.S. dollars are invested in the research and development of a single drug. Lead compound development is an area ripe for new design strategies. Therapeutic lead candidates have been traditionally found using high-throughput in vitro pharmacological screening, a costly method for assaying thousands of compounds. This approach has recently been augmented by virtual screening (VS), which employs computer models of the target protein to narrow the search for possible leads. A variant of VS is fragment-based drug design (FBDD), an emerging in silico lead discovery method that introduces low-molecular weight fragments, rather than intact compounds, into the binding pocket of the receptor model. These fragments serve as starting points for "growing" the lead candidate. Current efforts in virtual FBDD within central nervous system (CNS) targets are reviewed, as is a recent rule-based optimization strategy in which new molecules are generated within a 3D receptor-binding pocket using the fragment as a scaffold. This process not only places special emphasis on creating synthesizable molecules but also exposes computational questions worth addressing. Fragment-based methods provide a viable, relatively low-cost alternative for therapeutic lead discovery and optimization that can be applied to CNS targets to augment current design strategies.

  18. A Role for Fragment-Based Drug Design in Developing Novel Lead Compounds for Central Nervous System Targets

    PubMed Central

    Wasko, Michael J.; Pellegrene, Kendy A.; Madura, Jeffry D.; Surratt, Christopher K.

    2015-01-01

    Hundreds of millions of U.S. dollars are invested in the research and development of a single drug. Lead compound development is an area ripe for new design strategies. Therapeutic lead candidates have been traditionally found using high-throughput in vitro pharmacological screening, a costly method for assaying thousands of compounds. This approach has recently been augmented by virtual screening (VS), which employs computer models of the target protein to narrow the search for possible leads. A variant of VS is fragment-based drug design (FBDD), an emerging in silico lead discovery method that introduces low-molecular weight fragments, rather than intact compounds, into the binding pocket of the receptor model. These fragments serve as starting points for “growing” the lead candidate. Current efforts in virtual FBDD within central nervous system (CNS) targets are reviewed, as is a recent rule-based optimization strategy in which new molecules are generated within a 3D receptor-binding pocket using the fragment as a scaffold. This process not only places special emphasis on creating synthesizable molecules but also exposes computational questions worth addressing. Fragment-based methods provide a viable, relatively low-cost alternative for therapeutic lead discovery and optimization that can be applied to CNS targets to augment current design strategies. PMID:26441817

  19. A successful virtual screening application: prediction of anticonvulsant activity in MES test of widely used pharmaceutical and food preservatives methylparaben and propylparaben.

    PubMed

    Talevi, Alan; Bellera, Carolina L; Castro, Eduardo A; Bruno-Blanch, Luis E

    2007-09-01

    A discriminant function based on topological descriptors was derived from a training set composed by anticonvulsants of clinical use or in clinical phase of development and compounds with other therapeutic uses. This model was internally and externally validated and applied in the virtual screening of chemical compounds from the Merck Index 13th. Methylparaben (Nipagin), a preservative widely used in food, cosmetics and pharmaceutics, was signaled as active by the discriminant function and tested in mice in the Maximal Electroshock (MES) test (i.p. administration), according to the NIH Program for Anticonvulsant Drug Development. Based on the results of Methylparaben, Propylparaben (Nipasol), another preservative usually used in association with the former, was also tested. Both methyl and propylparaben were found active in mice at doses of 30, 100, and 300 mg/kg. The discovery of the anticonvulsant activities in the MES test of methylparaben and propylparaben might be useful for the development of new anticonvulsant medications, specially considering the well-known toxicological profile of these drugs.

  20. SAMPL4 & DOCK3.7: lessons for automated docking procedures

    NASA Astrophysics Data System (ADS)

    Coleman, Ryan G.; Sterling, Teague; Weiss, Dahlia R.

    2014-03-01

    The SAMPL4 challenges were used to test current automated methods for solvation energy, virtual screening, pose and affinity prediction of the molecular docking pipeline DOCK 3.7. Additionally, first-order models of binding affinity were proposed as milestones for any method predicting binding affinity. Several important discoveries about the molecular docking software were made during the challenge: (1) Solvation energies of ligands were five-fold worse than any other method used in SAMPL4, including methods that were similarly fast, (2) HIV Integrase is a challenging target, but automated docking on the correct allosteric site performed well in terms of virtual screening and pose prediction (compared to other methods) but affinity prediction, as expected, was very poor, (3) Molecular docking grid sizes can be very important, serious errors were discovered with default settings that have been adjusted for all future work. Overall, lessons from SAMPL4 suggest many changes to molecular docking tools, not just DOCK 3.7, that could improve the state of the art. Future difficulties and projects will be discussed.

  1. In Silico Identification of a Novel Hinge-Binding Scaffold for Kinase Inhibitor Discovery.

    PubMed

    Wang, Yanli; Sun, Yuze; Cao, Ran; Liu, Dan; Xie, Yuting; Li, Li; Qi, Xiangbing; Huang, Niu

    2017-10-26

    To explore novel kinase hinge-binding scaffolds, we carried out structure-based virtual screening against p38α MAPK as a model system. With the assistance of developed kinase-specific structural filters, we identify a novel lead compound that selectively inhibits a panel of kinases with threonine as the gatekeeper residue, including BTK and LCK. These kinases play important roles in lymphocyte activation, which encouraged us to design novel kinase inhibitors as drug candidates for ameliorating inflammatory diseases and cancers. Therefore, we chemically modified our substituted triazole-class lead compound to improve the binding affinity and selectivity via a "minimal decoration" strategy, which resulted in potent and selective kinase inhibitors against LCK (18 nM) and BTK (8 nM). Subsequent crystallographic experiments validated our design. These rationally designed compounds exhibit potent on-target inhibition against BTK in B cells or LCK in T cells, respectively. Our work demonstrates that structure-based virtual screening can be applied to facilitate the development of novel chemical entities in crowded chemical space in the field of kinase inhibitor discovery.

  2. Fragment-Based Docking: Development of the CHARMMing Web User Interface as a Platform for Computer-Aided Drug Design

    PubMed Central

    2015-01-01

    Web-based user interfaces to scientific applications are important tools that allow researchers to utilize a broad range of software packages with just an Internet connection and a browser.1 One such interface, CHARMMing (CHARMM interface and graphics), facilitates access to the powerful and widely used molecular software package CHARMM. CHARMMing incorporates tasks such as molecular structure analysis, dynamics, multiscale modeling, and other techniques commonly used by computational life scientists. We have extended CHARMMing’s capabilities to include a fragment-based docking protocol that allows users to perform molecular docking and virtual screening calculations either directly via the CHARMMing Web server or on computing resources using the self-contained job scripts generated via the Web interface. The docking protocol was evaluated by performing a series of “re-dockings” with direct comparison to top commercial docking software. Results of this evaluation showed that CHARMMing’s docking implementation is comparable to many widely used software packages and validates the use of the new CHARMM generalized force field for docking and virtual screening. PMID:25151852

  3. Fragment-based docking: development of the CHARMMing Web user interface as a platform for computer-aided drug design.

    PubMed

    Pevzner, Yuri; Frugier, Emilie; Schalk, Vinushka; Caflisch, Amedeo; Woodcock, H Lee

    2014-09-22

    Web-based user interfaces to scientific applications are important tools that allow researchers to utilize a broad range of software packages with just an Internet connection and a browser. One such interface, CHARMMing (CHARMM interface and graphics), facilitates access to the powerful and widely used molecular software package CHARMM. CHARMMing incorporates tasks such as molecular structure analysis, dynamics, multiscale modeling, and other techniques commonly used by computational life scientists. We have extended CHARMMing's capabilities to include a fragment-based docking protocol that allows users to perform molecular docking and virtual screening calculations either directly via the CHARMMing Web server or on computing resources using the self-contained job scripts generated via the Web interface. The docking protocol was evaluated by performing a series of "re-dockings" with direct comparison to top commercial docking software. Results of this evaluation showed that CHARMMing's docking implementation is comparable to many widely used software packages and validates the use of the new CHARMM generalized force field for docking and virtual screening.

  4. A successful virtual screening application: prediction of anticonvulsant activity in MES test of widely used pharmaceutical and food preservatives methylparaben and propylparaben

    NASA Astrophysics Data System (ADS)

    Talevi, Alan; Bellera, Carolina L.; Castro, Eduardo A.; Bruno-Blanch, Luis E.

    2007-09-01

    A discriminant function based on topological descriptors was derived from a training set composed by anticonvulsants of clinical use or in clinical phase of development and compounds with other therapeutic uses. This model was internally and externally validated and applied in the virtual screening of chemical compounds from the Merck Index 13th. Methylparaben (Nipagin), a preservative widely used in food, cosmetics and pharmaceutics, was signaled as active by the discriminant function and tested in mice in the Maximal Electroshock (MES) test (i.p. administration), according to the NIH Program for Anticonvulsant Drug Development. Based on the results of Methylparaben, Propylparaben (Nipasol), another preservative usually used in association with the former, was also tested. Both methyl and propylparaben were found active in mice at doses of 30, 100, and 300 mg/kg. The discovery of the anticonvulsant activities in the MES test of methylparaben and propylparaben might be useful for the development of new anticonvulsant medications, specially considering the well-known toxicological profile of these drugs.

  5. bcl::Cluster : A method for clustering biological molecules coupled with visualization in the Pymol Molecular Graphics System.

    PubMed

    Alexander, Nathan; Woetzel, Nils; Meiler, Jens

    2011-02-01

    Clustering algorithms are used as data analysis tools in a wide variety of applications in Biology. Clustering has become especially important in protein structure prediction and virtual high throughput screening methods. In protein structure prediction, clustering is used to structure the conformational space of thousands of protein models. In virtual high throughput screening, databases with millions of drug-like molecules are organized by structural similarity, e.g. common scaffolds. The tree-like dendrogram structure obtained from hierarchical clustering can provide a qualitative overview of the results, which is important for focusing detailed analysis. However, in practice it is difficult to relate specific components of the dendrogram directly back to the objects of which it is comprised and to display all desired information within the two dimensions of the dendrogram. The current work presents a hierarchical agglomerative clustering method termed bcl::Cluster. bcl::Cluster utilizes the Pymol Molecular Graphics System to graphically depict dendrograms in three dimensions. This allows simultaneous display of relevant biological molecules as well as additional information about the clusters and the members comprising them.

  6. Human recombinant beta-secretase immobilized enzyme reactor for fast hits' selection and characterization from a virtual screening library.

    PubMed

    De Simone, Angela; Mancini, Francesca; Cosconati, Sandro; Marinelli, Luciana; La Pietra, Valeria; Novellino, Ettore; Andrisano, Vincenza

    2013-01-25

    In the present work, a human recombinant BACE1 immobilized enzyme reactor (hrBACE1-IMER) has been applied for the sensitive fast screening of 38 compounds selected through a virtual screening approach. HrBACE1-IMER was inserted into a liquid chromatograph coupled with a fluorescent detector. A fluorogenic peptide substrate (M-2420), containing the β-secretase site of the Swedish mutation of APP, was injected and cleaved in the on-line HPLC-hrBACE1-IMER system, giving rise to the fluorescent product. The compounds of the library were tested for their ability to inhibit BACE1 in the immobilized format and to reduce the area related to the chromatographic peak of the fluorescent enzymatic product. The results were validated in solution by using two different FRET methods. Due to the efficient virtual screening methodology, more than fifty percent of the selected compounds showed a measurable inhibitory activity. One of the most active compound (a bis-indanone derivative) was characterized in terms of IC(50) and K(i) determination on the hrBACE1-IMER. Thus, the hrBACE1-IMER has been confirmed as a valid tool for the throughput screening of different chemical entities with potency lower than 30μM for the fast hits' selection and for mode of action determination. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Virtual screening for potential inhibitors of bacterial MurC and MurD ligases.

    PubMed

    Tomašić, Tihomir; Kovač, Andreja; Klebe, Gerhard; Blanot, Didier; Gobec, Stanislav; Kikelj, Danijel; Mašič, Lucija Peterlin

    2012-03-01

    Mur ligases are bacterial enzymes involved in the cytoplasmic steps of peptidoglycan biosynthesis and are viable targets for antibacterial drug discovery. We have performed virtual screening for potential ATP-competitive inhibitors targeting MurC and MurD ligases, using a protocol of consecutive hierarchical filters. Selected compounds were evaluated for inhibition of MurC and MurD ligases, and weak inhibitors possessing dual inhibitory activity have been identified. These compounds represent new scaffolds for further optimisation towards multiple Mur ligase inhibitors with improved inhibitory potency.

  8. Rapid identification of Keap1-Nrf2 small-molecule inhibitors through structure-based virtual screening and hit-based substructure search.

    PubMed

    Zhuang, Chunlin; Narayanapillai, Sreekanth; Zhang, Wannian; Sham, Yuk Yin; Xing, Chengguo

    2014-02-13

    In this study, rapid structure-based virtual screening and hit-based substructure search were utilized to identify small molecules that disrupt the interaction of Keap1-Nrf2. Special emphasis was placed toward maximizing the exploration of chemical diversity of the initial hits while economically establishing informative structure-activity relationship (SAR) of novel scaffolds. Our most potent noncovalent inhibitor exhibits three times improved cellular activation in Nrf2 activation than the most active noncovalent Keap1 inhibitor known to date.

  9. Journey to the centre of the cell: Virtual reality immersion into scientific data.

    PubMed

    Johnston, Angus P R; Rae, James; Ariotti, Nicholas; Bailey, Benjamin; Lilja, Andrew; Webb, Robyn; Ferguson, Charles; Maher, Sheryl; Davis, Thomas P; Webb, Richard I; McGhee, John; Parton, Robert G

    2018-02-01

    Visualization of scientific data is crucial not only for scientific discovery but also to communicate science and medicine to both experts and a general audience. Until recently, we have been limited to visualizing the three-dimensional (3D) world of biology in 2 dimensions. Renderings of 3D cells are still traditionally displayed using two-dimensional (2D) media, such as on a computer screen or paper. However, the advent of consumer grade virtual reality (VR) headsets such as Oculus Rift and HTC Vive means it is now possible to visualize and interact with scientific data in a 3D virtual world. In addition, new microscopic methods provide an unprecedented opportunity to obtain new 3D data sets. In this perspective article, we highlight how we have used cutting edge imaging techniques to build a 3D virtual model of a cell from serial block-face scanning electron microscope (SBEM) imaging data. This model allows scientists, students and members of the public to explore and interact with a "real" cell. Early testing of this immersive environment indicates a significant improvement in students' understanding of cellular processes and points to a new future of learning and public engagement. In addition, we speculate that VR can become a new tool for researchers studying cellular architecture and processes by populating VR models with molecular data. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Virtual screening of Indonesian flavonoid as neuraminidase inhibitor of influenza a subtype H5N1

    NASA Astrophysics Data System (ADS)

    Parikesit, A. A.; Ardiansah, B.; Handayani, D. M.; Tambunan, U. S. F.; Kerami, D.

    2016-02-01

    Highly Pathogenic Avian Influenza (HPAI) H5N1 poses a significant threat to animal and human health worldwide. The number of H5N1 infection in Indonesia is the highest during 2005-2013, with a mortality rate up to 83%. A mutation that occurred in H5N1 strain made it resistant to commercial antiviral agents such as oseltamivir and zanamivir, so the more potent antiviral agent is needed. In this study, virtual screening of Indonesian flavonoid as neuraminidase inhibitor of H5N1 was conducted. Total 491 flavonoid compound obtained from HerbalDB were screened. Molecular docking was performed using MOE 2008.10. This research resulted in Guajavin B as the best ligand.

  11. Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution

    NASA Astrophysics Data System (ADS)

    Greenwood, Jeremy R.; Calkins, David; Sullivan, Arron P.; Shelley, John C.

    2010-06-01

    Generating the appropriate protonation states of drug-like molecules in solution is important for success in both ligand- and structure-based virtual screening. Screening collections of millions of compounds requires a method for determining tautomers and their energies that is sufficiently rapid, accurate, and comprehensive. To maximise enrichment, the lowest energy tautomers must be determined from heterogeneous input, without over-enumerating unfavourable states. While computationally expensive, the density functional theory (DFT) method M06-2X/aug-cc-pVTZ(-f) [PB-SCRF] provides accurate energies for enumerated model tautomeric systems. The empirical Hammett-Taft methodology can very rapidly extrapolate substituent effects from model systems to drug-like molecules via the relationship between pKT and pKa. Combining the two complementary approaches transforms the tautomer problem from a scientific challenge to one of engineering scale-up, and avoids issues that arise due to the very limited number of measured pKT values, especially for the complicated heterocycles often favoured by medicinal chemists for their novelty and versatility. Several hundreds of pre-calculated tautomer energies and substituent pKa effects are tabulated in databases for use in structural adjustment by the program Epik, which treats tautomers as a subset of the larger problem of the protonation states in aqueous ensembles and their energy penalties. Accuracy and coverage is continually improved and expanded by parameterizing new systems of interest using DFT and experimental data. Recommendations are made for how to best incorporate tautomers in molecular design and virtual screening workflows.

  12. Virtual screening using combinatorial cyclic peptide libraries reveals protein interfaces readily targetable by cyclic peptides.

    PubMed

    Duffy, Fergal J; O'Donovan, Darragh; Devocelle, Marc; Moran, Niamh; O'Connell, David J; Shields, Denis C

    2015-03-23

    Protein-protein and protein-peptide interactions are responsible for the vast majority of biological functions in vivo, but targeting these interactions with small molecules has historically been difficult. What is required are efficient combined computational and experimental screening methods to choose among a number of potential protein interfaces worthy of targeting lead macrocyclic compounds for further investigation. To achieve this, we have generated combinatorial 3D virtual libraries of short disulfide-bonded peptides and compared them to pharmacophore models of important protein-protein and protein-peptide structures, including short linear motifs (SLiMs), protein-binding peptides, and turn structures at protein-protein interfaces, built from 3D models available in the Protein Data Bank. We prepared a total of 372 reference pharmacophores, which were matched against 108,659 multiconformer cyclic peptides. After normalization to exclude nonspecific cyclic peptides, the top hits notably are enriched for mimetics of turn structures, including a turn at the interaction surface of human α thrombin, and also feature several protein-binding peptides. The top cyclic peptide hits also cover the critical "hot spot" interaction sites predicted from the interaction crystal structure. We have validated our method by testing cyclic peptides predicted to inhibit thrombin, a key protein in the blood coagulation pathway of important therapeutic interest, identifying a cyclic peptide inhibitor with lead-like activity. We conclude that protein interfaces most readily targetable by cyclic peptides and related macrocyclic drugs may be identified computationally among a set of candidate interfaces, accelerating the choice of interfaces against which lead compounds may be screened.

  13. Using Virtual Patient Simulations to Prepare Primary Health Care Professionals to Conduct Substance Use and Mental Health Screening and Brief Intervention.

    PubMed

    Albright, Glenn; Bryan, Craig; Adam, Cyrille; McMillan, Jeremiah; Shockley, Kristen

    Primary health care professionals are in an excellent position to identify, screen, and conduct brief interventions for patients with mental health and substance use disorders. However, discomfort in initiating conversations about behavioral health, time concerns, lack of knowledge about screening tools, and treatment resources are barriers. This study examines the impact of an online simulation where users practice role-playing with emotionally responsive virtual patients to learn motivational interviewing strategies to better manage screening, brief interventions, and referral conversations. Baseline data were collected from 227 participants who were then randomly assigned into the treatment or wait-list control groups. Treatment group participants then completed the simulation, postsimulation survey, and 3-month follow-up survey. Results showed significant increases in knowledge/skill to identify and engage in collaborative decision making with patients. Results strongly suggest that role-play simulation experiences can be an effective means of teaching screening and brief intervention.

  14. Pharmacoinformatics exploration of polyphenol oxidases leading to novel inhibitors by virtual screening and molecular dynamic simulation study.

    PubMed

    Hassan, Mubashir; Abbas, Qamar; Ashraf, Zaman; Moustafa, Ahmed A; Seo, Sung-Yum

    2017-06-01

    Polyphenol oxidases (PPOs)/tyrosinases are metal-dependent enzymes and known as important targets for melanogenesis. Although considerable attempts have been conducted to control the melanin-associated diseases by using various inhibitors. However, the exploration of the best anti-melanin inhibitor without side effect still remains a challenge in drug discovery. In present study, protein structure prediction, ligand-based pharmacophore modeling, virtual screening, molecular docking and dynamic simulation study were used to screen the strong novel inhibitor to cure melanogenesis. The 3D structures of PPO1 and PPO2 were built through homology modeling, while the 3D crystal structures of PPO3 and PPO4 were retrieved from PDB. Pharmacophore modeling was performed using LigandScout 3.1 software and top five models were selected to screen the libraries (2601 of Aurora and 727, 842 of ZINC). Top 10 hit compounds (C1-10) were short-listed having strong binding affinities for PPO1-4. Drug and synthetic accessibility (SA) scores along with absorption, distribution, metabolism, excretion and toxicity (ADMET) assessment were employed to scrutinize the best lead hit. C4 (name) hit showed the best predicted SA score (5.75), ADMET properties and drug-likeness behavior among the short-listed compounds. Furthermore, docking simulations were performed to check the binding affinity of C1-C10 compounds against target proteins (PPOs). The binding affinity values of complex between C4 and PPOs were higher than those of other complexes (-11.70, -12.1, -9.90 and -11.20kcal/mol with PPO1, PPO2, PPO3, or PPO4, respectively). From comparative docking energy and binding analyses, PPO2 may be considered as better target for melanogenesis than others. The potential binding modes of C4, C8 and C10 against PPO2 were explored using molecular dynamics simulations. The root mean square deviation and fluctuation (RMSD/RMSF) graphs results depict the significance of C4 over the other compounds. Overall, bioactivity and ligand efficiency profiles suggested that the proposed hit may be more effective inhibitors for melanogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Reverse total shoulder arthroplasty: research models

    PubMed Central

    PETRILLO, STEFANO; LONGO, UMILE GIUSEPPE; GULOTTA, LAWRENCE V.; BERTON, ALESSANDRA; KONTAXIS, ANDREAS; WRIGHT, TIMOTHY; DENARO, VINCENZO

    2016-01-01

    Purpose the past decade has seen a considerable increase in the use of research models to study reverse total shoulder arthroplasty (RTSA). Nevertheless, none of these models has been shown to completely reflect real in vivo conditions. Methods we performed a systematic review of the literature matching the following key words: “reverse total shoulder arthroplasty” or “reverse total shoulder replacement” or “reverse total shoulder prosthesis” and “research models” or “biomechanical models” or “physical simulators” or “virtual simulators”. The following databases were screened: Medline, Google Scholar, EMBASE, CINAHIL and Ovid. We identified and included all articles reporting research models of any kind, such as physical or virtual simulators, in which RTSA and the glenohumeral joint were reproduced. Results computer models and cadaveric models are the most commonly used, and they were shown to be reliable in simulating in vivo conditions. Bone substitute models have been used in a few studies. Mechanical testing machines provided useful information on stability factors in RTSA. Conclusion because of the limitations of each individual model, additional research is required to develop a research model of RTSA that may reduce the limitations of those presently available, and increase the reproducibility of this technique in the clinical setting. PMID:28217660

  16. Pharmacophore screening of the protein data bank for specific binding site chemistry.

    PubMed

    Campagna-Slater, Valérie; Arrowsmith, Andrew G; Zhao, Yong; Schapira, Matthieu

    2010-03-22

    A simple computational approach was developed to screen the Protein Data Bank (PDB) for putative pockets possessing a specific binding site chemistry and geometry. The method employs two commonly used 3D screening technologies, namely identification of cavities in protein structures and pharmacophore screening of chemical libraries. For each protein structure, a pocket finding algorithm is used to extract potential binding sites containing the correct types of residues, which are then stored in a large SDF-formatted virtual library; pharmacophore filters describing the desired binding site chemistry and geometry are then applied to screen this virtual library and identify pockets matching the specified structural chemistry. As an example, this approach was used to screen all human protein structures in the PDB and identify sites having chemistry similar to that of known methyl-lysine binding domains that recognize chromatin methylation marks. The selected genes include known readers of the histone code as well as novel binding pockets that may be involved in epigenetic signaling. Putative allosteric sites were identified on the structures of TP53BP1, L3MBTL3, CHEK1, KDM4A, and CREBBP.

  17. Colorectal Cancer Screening (PDQ®)—Patient Version

    Cancer.gov

    There are five types of tests that are used to screen for colorectal cancer: fecal occult blood test, sigmoidoscopy, colonoscopy, virtual colonoscopy, and DNA stool test. Learn more about these and other tests in this expert-reviewed summary.

  18. SABRE: ligand/structure-based virtual screening approach using consensus molecular-shape pattern recognition.

    PubMed

    Wei, Ning-Ning; Hamza, Adel

    2014-01-27

    We present an efficient and rational ligand/structure shape-based virtual screening approach combining our previous ligand shape-based similarity SABRE (shape-approach-based routines enhanced) and the 3D shape of the receptor binding site. Our approach exploits the pharmacological preferences of a number of known active ligands to take advantage of the structural diversities and chemical similarities, using a linear combination of weighted molecular shape density. Furthermore, the algorithm generates a consensus molecular-shape pattern recognition that is used to filter and place the candidate structure into the binding pocket. The descriptor pool used to construct the consensus molecular-shape pattern consists of four dimensional (4D) fingerprints generated from the distribution of conformer states available to a molecule and the 3D shapes of a set of active ligands computed using SABRE software. The virtual screening efficiency of SABRE was validated using the Database of Useful Decoys (DUD) and the filtered version (WOMBAT) of 10 DUD targets. The ligand/structure shape-based similarity SABRE algorithm outperforms several other widely used virtual screening methods which uses the data fusion of multiscreening tools (2D and 3D fingerprints) and demonstrates a superior early retrieval rate of active compounds (EF(0.1%) = 69.0% and EF(1%) = 98.7%) from a large size of ligand database (∼95,000 structures). Therefore, our developed similarity approach can be of particular use for identifying active compounds that are similar to reference molecules and predicting activity against other targets (chemogenomics). An academic license of the SABRE program is available on request.

  19. Comparing Dimensional Accuracy Between a Polyvinyl Chloride Skull and Its Virtually Constructed Counterpart

    DTIC Science & Technology

    2015-06-01

    exposure settings…………………...26 Table 4. Kodak 9500 Cone Beam 3D System exposure settings…………..….27 Table 5. Average and statistical analysis results...42 Figure 6 Image of Mounted PVC Skull Model on the Kodak 9500……….…......43 Figure 7 Screen image of Reconstructed CBCT Digital...replica was taken with the Kodak 9500 Cone Beam 3D System. To create the digital dental models fifteen type IV maxillary dental casts were made on the

  20. QSAR-Driven Design and Discovery of Novel Compounds With Antiplasmodial and Transmission Blocking Activities.

    PubMed

    Lima, Marilia N N; Melo-Filho, Cleber C; Cassiano, Gustavo C; Neves, Bruno J; Alves, Vinicius M; Braga, Rodolpho C; Cravo, Pedro V L; Muratov, Eugene N; Calit, Juliana; Bargieri, Daniel Y; Costa, Fabio T M; Andrade, Carolina H

    2018-01-01

    Malaria is a life-threatening infectious disease caused by parasites of the genus Plasmodium , affecting more than 200 million people worldwide every year and leading to about a half million deaths. Malaria parasites of humans have evolved resistance to all current antimalarial drugs, urging for the discovery of new effective compounds. Given that the inhibition of deoxyuridine triphosphatase of Plasmodium falciparum ( Pf dUTPase) induces wrong insertions in plasmodial DNA and consequently leading the parasite to death, this enzyme is considered an attractive antimalarial drug target. Using a combi-QSAR (quantitative structure-activity relationship) approach followed by virtual screening and in vitro experimental evaluation, we report herein the discovery of novel chemical scaffolds with in vitro potency against asexual blood stages of both P. falciparum multidrug-resistant and sensitive strains and against sporogonic development of P. berghei . We developed 2D- and 3D-QSAR models using a series of nucleosides reported in the literature as Pf dUTPase inhibitors. The best models were combined in a consensus approach and used for virtual screening of the ChemBridge database, leading to the identification of five new virtual Pf dUTPase inhibitors. Further in vitro testing on P. falciparum multidrug-resistant (W2) and sensitive (3D7) parasites showed that compounds LabMol-144 and LabMol-146 demonstrated fair activity against both strains and presented good selectivity versus mammalian cells. In addition, LabMol-144 showed good in vitro inhibition of P. berghei ookinete formation, demonstrating that hit-to-lead optimization based on this compound may also lead to new antimalarials with transmission blocking activity.

  1. Virtual Environment Training: Auxiliary Machinery Room (AMR) Watchstation Trainer.

    ERIC Educational Resources Information Center

    Hriber, Dennis C.; And Others

    1993-01-01

    Describes a project implemented at Newport News Shipbuilding that used Virtual Environment Training to improve the performance of submarine crewmen. Highlights include development of the Auxiliary Machine Room (AMR) Watchstation Trainer; Digital Video Interactive (DVI); screen layout; test design and evaluation; user reactions; authoring language;…

  2. Virtual reality interventions for rehabilitation: considerations for developing protocols.

    PubMed

    Boechler, Patricia; Krol, Andrea; Raso, Jim; Blois, Terry

    2009-01-01

    This paper is a preliminary report on a work in progress that explores the existence of practice effects in early use of virtual reality environments for rehabilitation purposes and the effects of increases in level of difficulty as defined by rate of on-screen objects.

  3. November 6, 2017, Virtual Meeting on the Charge Questions for the Federal Insecticide, Fungicide, and Rodenticide Act Scientific Advisory Panel (FIFRA SAP) Meeting on Endocrine Disruption

    EPA Pesticide Factsheets

    This virtual FIFRA SAP meeting will be discus questions on Continuing Development of Alternative High-Throughput Screens to Determine Endocrine Disruption, focusing on Androgen Receptor, Steroidogenesis, and Thyroid Pathways

  4. Exploration of natural product ingredients as inhibitors of human HMG-CoA reductase through structure-based virtual screening.

    PubMed

    Lin, Shih-Hung; Huang, Kao-Jean; Weng, Ching-Feng; Shiuan, David

    2015-01-01

    Cholesterol plays an important role in living cells. However, a very high level of cholesterol may lead to atherosclerosis. HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase is the key enzyme in the cholesterol biosynthesis pathway, and the statin-like drugs are inhibitors of human HMG-CoA reductase (hHMGR). The present study aimed to virtually screen for potential hHMGR inhibitors from natural product to discover hypolipidemic drug candidates with fewer side effects and lesser toxicities. We used the 3D structure 1HWK from the PDB (Protein Data Bank) database of hHMGR as the target to screen for the strongly bound compounds from the traditional Chinese medicine database. Many interesting molecules including polyphenolic compounds, polisubstituted heterocyclics, and linear lipophilic alcohols were identified and their ADMET (absorption, disrtibution, metabolism, excretion, toxicity) properties were predicted. Finally, four compounds were obtained for the in vitro validation experiments. The results indicated that curcumin and salvianolic acid C can effectively inhibit hHMGR, with IC50 (half maximal inhibitory concentration) values of 4.3 µM and 8 µM, respectively. The present study also demonstrated the feasibility of discovering new drug candidates through structure-based virtual screening.

  5. Ranking targets in structure-based virtual screening of three-dimensional protein libraries: methods and problems.

    PubMed

    Kellenberger, Esther; Foata, Nicolas; Rognan, Didier

    2008-05-01

    Structure-based virtual screening is a promising tool to identify putative targets for a specific ligand. Instead of docking multiple ligands into a single protein cavity, a single ligand is docked in a collection of binding sites. In inverse screening, hits are in fact targets which have been prioritized within the pool of best ranked proteins. The target rate depends on specificity and promiscuity in protein-ligand interactions and, to a considerable extent, on the effectiveness of the scoring function, which still is the Achilles' heel of molecular docking. In the present retrospective study, virtual screening of the sc-PDB target library by GOLD docking was carried out for four compounds (biotin, 4-hydroxy-tamoxifen, 6-hydroxy-1,6-dihydropurine ribonucleoside, and methotrexate) of known sc-PDB targets and, several ranking protocols based on GOLD fitness score and topological molecular interaction fingerprint (IFP) comparison were evaluated. For the four investigated ligands, the fusion of GOLD fitness and two IFP scores allowed the recovery of most targets, including the rare proteins which are not readily suitable for statistical analysis, while significantly filtering out most false positive entries. The current survey suggests that selecting a small number of targets (<20) for experimental evaluation is achievable with a pure structure-based approach.

  6. Virtual reality hardware for use in interactive 3D data fusion and visualization

    NASA Astrophysics Data System (ADS)

    Gourley, Christopher S.; Abidi, Mongi A.

    1997-09-01

    Virtual reality has become a tool for use in many areas of research. We have designed and built a VR system for use in range data fusion and visualization. One major VR tool is the CAVE. This is the ultimate visualization tool, but comes with a large price tag. Our design uses a unique CAVE whose graphics are powered by a desktop computer instead of a larger rack machine making it much less costly. The system consists of a screen eight feet tall by twenty-seven feet wide giving a variable field-of-view currently set at 160 degrees. A silicon graphics Indigo2 MaxImpact with the impact channel option is used for display. This gives the capability to drive three projectors at a resolution of 640 by 480 for use in displaying the virtual environment and one 640 by 480 display for a user control interface. This machine is also the first desktop package which has built-in hardware texture mapping. This feature allows us to quickly fuse the range and intensity data and other multi-sensory data. The final goal is a complete 3D texture mapped model of the environment. A dataglove, magnetic tracker, and spaceball are to be used for manipulation of the data and navigation through the virtual environment. This system gives several users the ability to interactively create 3D models from multiple range images.

  7. Image-based path planning for automated virtual colonoscopy navigation

    NASA Astrophysics Data System (ADS)

    Hong, Wei

    2008-03-01

    Virtual colonoscopy (VC) is a noninvasive method for colonic polyp screening, by reconstructing three-dimensional models of the colon using computerized tomography (CT). In virtual colonoscopy fly-through navigation, it is crucial to generate an optimal camera path for efficient clinical examination. In conventional methods, the centerline of the colon lumen is usually used as the camera path. In order to extract colon centerline, some time consuming pre-processing algorithms must be performed before the fly-through navigation, such as colon segmentation, distance transformation, or topological thinning. In this paper, we present an efficient image-based path planning algorithm for automated virtual colonoscopy fly-through navigation without the requirement of any pre-processing. Our algorithm only needs the physician to provide a seed point as the starting camera position using 2D axial CT images. A wide angle fisheye camera model is used to generate a depth image from the current camera position. Two types of navigational landmarks, safe regions and target regions are extracted from the depth images. Camera position and its corresponding view direction are then determined using these landmarks. The experimental results show that the generated paths are accurate and increase the user comfort during the fly-through navigation. Moreover, because of the efficiency of our path planning algorithm and rendering algorithm, our VC fly-through navigation system can still guarantee 30 FPS.

  8. Collaborative Workspaces within Distributed Virtual Environments.

    DTIC Science & Technology

    1996-12-01

    such as a text document, a 3D model, or a captured image using a collaborative workspace called the InPerson Whiteboard . The Whiteboard contains a...commands for editing objects drawn on the screen. Finally, when the call is completed, the Whiteboard can be saved to a file for future use . IRIS Annotator... use , and a shared whiteboard that includes a number of multimedia annotation tools. Both systems are also mindful of bandwidth limitations and can

  9. Fragment-based virtual screening approach and molecular dynamics simulation studies for identification of BACE1 inhibitor leads.

    PubMed

    Manoharan, Prabu; Ghoshal, Nanda

    2018-05-01

    Traditional structure-based virtual screening method to identify drug-like small molecules for BACE1 is so far unsuccessful. Location of BACE1, poor Blood Brain Barrier permeability and P-glycoprotein (Pgp) susceptibility of the inhibitors make it even more difficult. Fragment-based drug design method is suitable for efficient optimization of initial hit molecules for target like BACE1. We have developed a fragment-based virtual screening approach to identify/optimize the fragment molecules as a starting point. This method combines the shape, electrostatic, and pharmacophoric features of known fragment molecules, bound to protein conjugate crystal structure, and aims to identify both chemically and energetically feasible small fragment ligands that bind to BACE1 active site. The two top-ranked fragment hits were subjected for a 53 ns MD simulation. Principle component analysis and free energy landscape analysis reveal that the new ligands show the characteristic features of established BACE1 inhibitors. The potent method employed in this study may serve for the development of potential lead molecules for BACE1-directed Alzheimer's disease therapeutics.

  10. Multiple search methods for similarity-based virtual screening: analysis of search overlap and precision

    PubMed Central

    2011-01-01

    Background Data fusion methods are widely used in virtual screening, and make the implicit assumption that the more often a molecule is retrieved in multiple similarity searches, the more likely it is to be active. This paper tests the correctness of this assumption. Results Sets of 25 searches using either the same reference structure and 25 different similarity measures (similarity fusion) or 25 different reference structures and the same similarity measure (group fusion) show that large numbers of unique molecules are retrieved by just a single search, but that the numbers of unique molecules decrease very rapidly as more searches are considered. This rapid decrease is accompanied by a rapid increase in the fraction of those retrieved molecules that are active. There is an approximately log-log relationship between the numbers of different molecules retrieved and the number of searches carried out, and a rationale for this power-law behaviour is provided. Conclusions Using multiple searches provides a simple way of increasing the precision of a similarity search, and thus provides a justification for the use of data fusion methods in virtual screening. PMID:21824430

  11. Development of a novel class of B-RafV600E-selective inhibitors through virtual screening and hierarchical hit optimization

    PubMed Central

    Kong, Xiangqian; Qin, Jie; Li, Zeng; Vultur, Adina; Tong, Linjiang; Feng, Enguang; Rajan, Geena; Liu, Shien; Lu, Junyan; Liang, Zhongjie; Zheng, Mingyue; Zhu, Weiliang; Jiang, Hualiang; Herlyn, Meenhard; Liu, Hong; Marmorstein, Ronen; Luo, Cheng

    2012-01-01

    Oncogenic mutations in critical nodes of cellular signaling pathways have been associated with tumorigenesis and progression. The B-Raf protein kinase, a key hub in the canonical MAPK signaling cascade, is mutated in a broad range of human cancers and especially in malignant melanoma. The most prevalent B-RafV600E mutant exhibits elevated kinase activity and results in constitutive activation of the MAPK pathway, thus making it a promising drug target for cancer therapy. Herein, we described the development of novel B-RafV600E selective inhibitors via multi-step virtual screening and hierarchical hit optimization. Nine hit compounds with low micromolar IC50 values were identified as B-RafV600E inhibitors through virtual screening. Subsequent scaffold-based analogue searching and medicinal chemistry efforts significantly improved both the inhibitor potency and oncogene selectivity. In particular, compounds 22f and 22q possess nanomolar IC50 values with selectivity for B-RafV600E in vitro and exclusive cytotoxicity against B-RafV600E harboring cancer cells. PMID:22875039

  12. Development of a novel class of B-Raf(V600E)-selective inhibitors through virtual screening and hierarchical hit optimization.

    PubMed

    Kong, Xiangqian; Qin, Jie; Li, Zeng; Vultur, Adina; Tong, Linjiang; Feng, Enguang; Rajan, Geena; Liu, Shien; Lu, Junyan; Liang, Zhongjie; Zheng, Mingyue; Zhu, Weiliang; Jiang, Hualiang; Herlyn, Meenhard; Liu, Hong; Marmorstein, Ronen; Luo, Cheng

    2012-09-28

    Oncogenic mutations in critical nodes of cellular signaling pathways have been associated with tumorigenesis and progression. The B-Raf protein kinase, a key hub in the canonical MAPK signaling cascade, is mutated in a broad range of human cancers and especially in malignant melanoma. The most prevalent B-Raf(V600E) mutant exhibits elevated kinase activity and results in constitutive activation of the MAPK pathway, thus making it a promising drug target for cancer therapy. Herein, we describe the development of novel B-Raf(V600E) selective inhibitors via multi-step virtual screening and hierarchical hit optimization. Nine hit compounds with low micromolar IC(50) values were identified as B-Raf(V600E) inhibitors through virtual screening. Subsequent scaffold-based analogue searching and medicinal chemistry efforts significantly improved both the inhibitor potency and oncogene selectivity. In particular, compounds 22f and 22q possess nanomolar IC(50) values with selectivity for B-Raf(V600E)in vitro and exclusive cytotoxicity against B-Raf(V600E) harboring cancer cells.

  13. Virtual Screening Approach of Bacterial Peptide Deformylase Inhibitors Results in New Antibiotics.

    PubMed

    Merzoug, Amina; Chikhi, Abdelouahab; Bensegueni, Abderrahmane; Boucherit, Hanane; Okay, Sezer

    2018-03-01

    The increasing resistance of bacteria to antibacterial therapy poses an enormous health problem, it renders the development of new antibacterial agents with novel mechanism of action an urgent need. Peptide deformylase, a metalloenzyme which catalytically removes N-formyl group from N-terminal methionine of newly synthesized polypeptides, is an important target in antibacterial drug discovery. In this study, we report the structure-based virtual screening of ZINC database in order to discover potential hits as bacterial peptide deformylase enzyme inhibitors with more affinity as compared to GSK1322322, previously known inhibitor. After virtual screening, fifteen compounds of the top hits predicted were purchased and evaluated in vitro for their antibacterial activities against one Gram positive (Staphylococcus aureus) and three Gram negative (Escherichia coli, Pseudomonas aeruginosa and Klebsiella. pneumoniae) bacteria in different concentrations by disc diffusion method. Out of these, three compounds, ZINC00039650, ZINC03872971 and ZINC00126407, exhibited significant zone of inhibition. The results obtained were confirmed using the dilution method. Thus, these proposed compounds may aid the development of more efficient antibacterial agents. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Teaching Basic Field Skills Using Screen-Based Virtual Reality Landscapes

    NASA Astrophysics Data System (ADS)

    Houghton, J.; Robinson, A.; Gordon, C.; Lloyd, G. E. E.; Morgan, D. J.

    2016-12-01

    We are using screen-based virtual reality landscapes, created using the Unity 3D game engine, to augment the training geoscience students receive in preparing for fieldwork. Students explore these landscapes as they would real ones, interacting with virtual outcrops to collect data, determine location, and map the geology. Skills for conducting field geological surveys - collecting, plotting and interpreting data; time management and decision making - are introduced interactively and intuitively. As with real landscapes, the virtual landscapes are open-ended terrains with embedded data. This means the game does not structure student interaction with the information as it is through experience the student learns the best methods to work successfully and efficiently. These virtual landscapes are not replacements for geological fieldwork rather virtual spaces between classroom and field in which to train and reinforcement essential skills. Importantly, these virtual landscapes offer accessible parallel provision for students unable to visit, or fully partake in visiting, the field. The project has received positive feedback from both staff and students. Results show students find it easier to focus on learning these basic field skills in a classroom, rather than field setting, and make the same mistakes as when learning in the field, validating the realistic nature of the virtual experience and providing opportunity to learn from these mistakes. The approach also saves time, and therefore resources, in the field as basic skills are already embedded. 70% of students report increased confidence with how to map boundaries and 80% have found the virtual training a useful experience. We are also developing landscapes based on real places with 3D photogrammetric outcrops, and a virtual urban landscape in which Engineering Geology students can conduct a site investigation. This project is a collaboration between the University of Leeds and Leeds College of Art, UK, and all our virtual landscapes are freely available online at www.see.leeds.ac.uk/virtual-landscapes/.

  15. Searching Fragment Spaces with feature trees.

    PubMed

    Lessel, Uta; Wellenzohn, Bernd; Lilienthal, Markus; Claussen, Holger

    2009-02-01

    Virtual combinatorial chemistry easily produces billions of compounds, for which conventional virtual screening cannot be performed even with the fastest methods available. An efficient solution for such a scenario is the generation of Fragment Spaces, which encode huge numbers of virtual compounds by their fragments/reagents and rules of how to combine them. Similarity-based searches can be performed in such spaces without ever fully enumerating all virtual products. Here we describe the generation of a huge Fragment Space encoding about 5 * 10(11) compounds based on established in-house synthesis protocols for combinatorial libraries, i.e., we encode practically evaluated combinatorial chemistry protocols in a machine readable form, rendering them accessible to in silico search methods. We show how such searches in this Fragment Space can be integrated as a first step in an overall workflow. It reduces the extremely huge number of virtual products by several orders of magnitude so that the resulting list of molecules becomes more manageable for further more elaborated and time-consuming analysis steps. Results of a case study are presented and discussed, which lead to some general conclusions for an efficient expansion of the chemical space to be screened in pharmaceutical companies.

  16. Identification of hepta-histidine as a candidate drug for Huntington’s disease by in silico-in vitro- in vivo-integrated screens of chemical libraries

    NASA Astrophysics Data System (ADS)

    Imamura, Tomomi; Fujita, Kyota; Tagawa, Kazuhiko; Ikura, Teikichi; Chen, Xigui; Homma, Hidenori; Tamura, Takuya; Mao, Ying; Taniguchi, Juliana Bosso; Motoki, Kazumi; Nakabayashi, Makoto; Ito, Nobutoshi; Yamada, Kazunori; Tomii, Kentaro; Okano, Hideyuki; Kaye, Julia; Finkbeiner, Steven; Okazawa, Hitoshi

    2016-09-01

    We identified drug seeds for treating Huntington’s disease (HD) by combining in vitro single molecule fluorescence spectroscopy, in silico molecular docking simulations, and in vivo fly and mouse HD models to screen for inhibitors of abnormal interactions between mutant Htt and physiological Ku70, an essential DNA damage repair protein in neurons whose function is known to be impaired by mutant Htt. From 19,468 and 3,010,321 chemicals in actual and virtual libraries, fifty-six chemicals were selected from combined in vitro-in silico screens; six of these were further confirmed to have an in vivo effect on lifespan in a fly HD model, and two chemicals exerted an in vivo effect on the lifespan, body weight and motor function in a mouse HD model. Two oligopeptides, hepta-histidine (7H) and Angiotensin III, rescued the morphological abnormalities of primary neurons differentiated from iPS cells of human HD patients. For these selected drug seeds, we proposed a possible common structure. Unexpectedly, the selected chemicals enhanced rather than inhibited Htt aggregation, as indicated by dynamic light scattering analysis. Taken together, these integrated screens revealed a new pathway for the molecular targeted therapy of HD.

  17. Identification of hepta-histidine as a candidate drug for Huntington’s disease by in silico-in vitro- in vivo-integrated screens of chemical libraries

    PubMed Central

    Imamura, Tomomi; Fujita, Kyota; Tagawa, Kazuhiko; Ikura, Teikichi; Chen, Xigui; Homma, Hidenori; Tamura, Takuya; Mao, Ying; Taniguchi, Juliana Bosso; Motoki, Kazumi; Nakabayashi, Makoto; Ito, Nobutoshi; Yamada, Kazunori; Tomii, Kentaro; Okano, Hideyuki; Kaye, Julia; Finkbeiner, Steven; Okazawa, Hitoshi

    2016-01-01

    We identified drug seeds for treating Huntington’s disease (HD) by combining in vitro single molecule fluorescence spectroscopy, in silico molecular docking simulations, and in vivo fly and mouse HD models to screen for inhibitors of abnormal interactions between mutant Htt and physiological Ku70, an essential DNA damage repair protein in neurons whose function is known to be impaired by mutant Htt. From 19,468 and 3,010,321 chemicals in actual and virtual libraries, fifty-six chemicals were selected from combined in vitro-in silico screens; six of these were further confirmed to have an in vivo effect on lifespan in a fly HD model, and two chemicals exerted an in vivo effect on the lifespan, body weight and motor function in a mouse HD model. Two oligopeptides, hepta-histidine (7H) and Angiotensin III, rescued the morphological abnormalities of primary neurons differentiated from iPS cells of human HD patients. For these selected drug seeds, we proposed a possible common structure. Unexpectedly, the selected chemicals enhanced rather than inhibited Htt aggregation, as indicated by dynamic light scattering analysis. Taken together, these integrated screens revealed a new pathway for the molecular targeted therapy of HD. PMID:27653664

  18. Pharmacophore Based Virtual Screening Approach to Identify Selective PDE4B Inhibitors

    PubMed Central

    Gaurav, Anand; Gautam, Vertika

    2017-01-01

    Phosphodiesterase 4 (PDE4) has been established as a promising target in asthma and chronic obstructive pulmonary disease. PDE4B subtype selective inhibitors are known to reduce the dose limiting adverse effect associated with non-selective PDE4B inhibitors. This makes the development of PDE4B subtype selective inhibitors a desirable research goal. To achieve this goal, ligand based pharmacophore modeling approach is employed. Separate pharmacophore hypotheses for PDE4B and PDE4D inhibitors were generated using HypoGen algorithm and 106 PDE4 inhibitors from literature having thiopyrano [3,2-d] Pyrimidines, 2-arylpyrimidines, and triazines skeleton. Suitable training and test sets were created using the molecules as per the guidelines available for HypoGen program. Training set was used for hypothesis development while test set was used for validation purpose. Fisher validation was also used to test the significance of the developed hypothesis. The validated pharmacophore hypotheses for PDE4B and PDE4D inhibitors were used in sequential virtual screening of zinc database of drug like molecules to identify selective PDE4B inhibitors. The hits were screened for their estimated activity and fit value. The top hit was subjected to docking into the active sites of PDE4B and PDE4D to confirm its selectivity for PDE4B. The hits are proposed to be evaluated further using in-vitro assays. PMID:29201082

  19. Special Section: New Ways to Detect Colon Cancer 3-D virtual screening now being used

    MedlinePlus

    ... two together," recalls Arie Kaufman, chairman of the computer science department at New York's Stony Brook University. Dr. Kaufman is one of the world's leading researchers in the high-tech medical fields of biomedical visualization, computer graphics, virtual reality, and multimedia. The year was ...

  20. Promising Aedes aegypti repellent chemotypes identified through integrated QSAE, virtual screening, synthesis, and bioassay

    USDA-ARS?s Scientific Manuscript database

    Molecular field topology analysis, scaffold hopping, and molecular docking were used as complementary computational tools for the design of repellents for Aedes aegypti, the insect vector for yellow fever, West Nile fever, and dengue fever. A large number of analogues were evaluated by virtual scree...

  1. Benchmarking Data Sets for the Evaluation of Virtual Ligand Screening Methods: Review and Perspectives.

    PubMed

    Lagarde, Nathalie; Zagury, Jean-François; Montes, Matthieu

    2015-07-27

    Virtual screening methods are commonly used nowadays in drug discovery processes. However, to ensure their reliability, they have to be carefully evaluated. The evaluation of these methods is often realized in a retrospective way, notably by studying the enrichment of benchmarking data sets. To this purpose, numerous benchmarking data sets were developed over the years, and the resulting improvements led to the availability of high quality benchmarking data sets. However, some points still have to be considered in the selection of the active compounds, decoys, and protein structures to obtain optimal benchmarking data sets.

  2. Low-cost, smartphone based frequency doubling technology visual field testing using virtual reality (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Alawa, Karam A.; Sayed, Mohamed; Arboleda, Alejandro; Durkee, Heather A.; Aguilar, Mariela C.; Lee, Richard K.

    2017-02-01

    Glaucoma is the leading cause of irreversible blindness worldwide. Due to its wide prevalence, effective screening tools are necessary. The purpose of this project is to design and evaluate a system that enables portable, cost effective, smartphone based visual field screening based on frequency doubling technology. The system is comprised of an Android smartphone to display frequency doubling stimuli and handle processing, a Bluetooth remote for user input, and a virtual reality headset to simulate the exam. The LG Nexus 5 smartphone and BoboVR Z3 virtual reality headset were used for their screen size and lens configuration, respectively. The system is capable of running the C-20, N-30, 24-2, and 30-2 testing patterns. Unlike the existing system, the smartphone FDT tests both eyes concurrently by showing the same background to both eyes but only displaying the stimulus to one eye at a time. Both the Humphrey Zeiss FDT and the smartphone FDT were tested on five subjects without a history of ocular disease with the C-20 testing pattern. The smartphone FDT successfully produced frequency doubling stimuli at the correct spatial and temporal frequency. Subjects could not tell which eye was being tested. All five subjects preferred the smartphone FDT to the Humphrey Zeiss FDT due to comfort and ease of use. The smartphone FDT is a low-cost, portable visual field screening device that can be used as a screening tool for glaucoma.

  3. Detection of flat colorectal polyps at screening CT colonography in comparison with conventional polypoid lesions.

    PubMed

    Sakamoto, Takashi; Mitsuzaki, Katsuhiko; Utsunomiya, Daisuke; Matsuda, Katsuhiko; Yamamura, Sadahiro; Urata, Joji; Kawakami, Megumi; Yamashita, Yasuyuki

    2012-09-01

    Although the screening of small, flat polyps is clinically important, the role of CT colonography (CTC) screening in their detection has not been thoroughly investigated. To evaluate the detection capability and usefulness of CTC in the screening of flat and polypoid lesions by comparing CTC with optic colonoscopy findings as the gold standard. We evaluated the CTC detection capability for flat colorectal polyps with a flat surface and a height not exceeding 3 mm (n = 42) by comparing to conventional polypoid lesions (n = 418) according to the polyp diameter. Four types of reconstruction images including multiplanar reconstruction, volume rendering, virtual gross pathology, and virtual endoscopic images were used for visual analysis. We compared the abilities of the four reconstructions for polyp visualization. Detection sensitivity for flat polyps was 31.3%, 44.4%, and 87.5% for lesions measuring 2-3 mm, 4-5 mm, and ≥6 mm, respectively; the corresponding sensitivity for polypoid lesions was 47.6%, 79.0%, and 91.7%. The overall sensitivity for flat lesions (47.6%) was significantly lower than polypoid lesions (64.1%). Virtual endoscopic imaging showed best visualization among the four reconstructions. Colon cancers were detected in eight patients by optic colonoscopy, and CTC detected colon cancers in all eight patients. CTC using 64-row multidetector CT is useful for colon cancer screening to detect colorectal polyps while the detection of small, flat lesions is still challenging.

  4. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach.

    PubMed

    Gómez-Bombarelli, Rafael; Aguilera-Iparraguirre, Jorge; Hirzel, Timothy D; Duvenaud, David; Maclaurin, Dougal; Blood-Forsythe, Martin A; Chae, Hyun Sik; Einzinger, Markus; Ha, Dong-Gwang; Wu, Tony; Markopoulos, Georgios; Jeon, Soonok; Kang, Hosuk; Miyazaki, Hiroshi; Numata, Masaki; Kim, Sunghan; Huang, Wenliang; Hong, Seong Ik; Baldo, Marc; Adams, Ryan P; Aspuru-Guzik, Alán

    2016-10-01

    Virtual screening is becoming a ground-breaking tool for molecular discovery due to the exponential growth of available computer time and constant improvement of simulation and machine learning techniques. We report an integrated organic functional material design process that incorporates theoretical insight, quantum chemistry, cheminformatics, machine learning, industrial expertise, organic synthesis, molecular characterization, device fabrication and optoelectronic testing. After exploring a search space of 1.6 million molecules and screening over 400,000 of them using time-dependent density functional theory, we identified thousands of promising novel organic light-emitting diode molecules across the visible spectrum. Our team collaboratively selected the best candidates from this set. The experimentally determined external quantum efficiencies for these synthesized candidates were as large as 22%.

  5. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach

    NASA Astrophysics Data System (ADS)

    Gómez-Bombarelli, Rafael; Aguilera-Iparraguirre, Jorge; Hirzel, Timothy D.; Duvenaud, David; MacLaurin, Dougal; Blood-Forsythe, Martin A.; Chae, Hyun Sik; Einzinger, Markus; Ha, Dong-Gwang; Wu, Tony; Markopoulos, Georgios; Jeon, Soonok; Kang, Hosuk; Miyazaki, Hiroshi; Numata, Masaki; Kim, Sunghan; Huang, Wenliang; Hong, Seong Ik; Baldo, Marc; Adams, Ryan P.; Aspuru-Guzik, Alán

    2016-10-01

    Virtual screening is becoming a ground-breaking tool for molecular discovery due to the exponential growth of available computer time and constant improvement of simulation and machine learning techniques. We report an integrated organic functional material design process that incorporates theoretical insight, quantum chemistry, cheminformatics, machine learning, industrial expertise, organic synthesis, molecular characterization, device fabrication and optoelectronic testing. After exploring a search space of 1.6 million molecules and screening over 400,000 of them using time-dependent density functional theory, we identified thousands of promising novel organic light-emitting diode molecules across the visible spectrum. Our team collaboratively selected the best candidates from this set. The experimentally determined external quantum efficiencies for these synthesized candidates were as large as 22%.

  6. Combination of Pharmacophore Matching, 2D Similarity Search, and In Vitro Biological Assays in the Selection of Potential 5-HT6 Antagonists from Large Commercial Repositories.

    PubMed

    Dobi, Krisztina; Flachner, Beáta; Pukáncsik, Mária; Máthé, Enikő; Bognár, Melinda; Szaszkó, Mária; Magyar, Csaba; Hajdú, István; Lőrincz, Zsolt; Simon, István; Fülöp, Ferenc; Cseh, Sándor; Dormán, György

    2015-10-01

    Rapid in silico selection of target-focused libraries from commercial repositories is an attractive and cost-effective approach. If structures of active compounds are available, rapid 2D similarity search can be performed on multimillion compound databases, but the generated library requires further focusing. We report here a combination of the 2D approach with pharmacophore matching which was used for selecting 5-HT6 antagonists. In the first screening round, 12 compounds showed >85% antagonist efficacy of the 91 screened. For the second-round (hit validation) screening phase, pharmacophore models were built, applied, and compared with the routine 2D similarity search. Three pharmacophore models were created based on the structure of the reference compounds and the first-round hit compounds. The pharmacophore search resulted in a high hit rate (40%) and led to novel chemotypes, while 2D similarity search had slightly better hit rate (51%), but lacking the novelty. To demonstrate the power of the virtual screening cascade, ligand efficiency indices were also calculated and their steady improvement was confirmed. © 2015 John Wiley & Sons A/S.

  7. Improving virtual screening of G protein-coupled receptors via ligand-directed modeling

    PubMed Central

    Simms, John; Christopoulos, Arthur; Wootten, Denise

    2017-01-01

    G protein-coupled receptors (GPCRs) play crucial roles in cell physiology and pathophysiology. There is increasing interest in using structural information for virtual screening (VS) of libraries and for structure-based drug design to identify novel agonist or antagonist leads. However, the sparse availability of experimentally determined GPCR/ligand complex structures with diverse ligands impedes the application of structure-based drug design (SBDD) programs directed to identifying new molecules with a select pharmacology. In this study, we apply ligand-directed modeling (LDM) to available GPCR X-ray structures to improve VS performance and selectivity towards molecules of specific pharmacological profile. The described method refines a GPCR binding pocket conformation using a single known ligand for that GPCR. The LDM method is a computationally efficient, iterative workflow consisting of protein sampling and ligand docking. We developed an extensive benchmark comparing LDM-refined binding pockets to GPCR X-ray crystal structures across seven different GPCRs bound to a range of ligands of different chemotypes and pharmacological profiles. LDM-refined models showed improvement in VS performance over origin X-ray crystal structures in 21 out of 24 cases. In all cases, the LDM-refined models had superior performance in enriching for the chemotype of the refinement ligand. This likely contributes to the LDM success in all cases of inhibitor-bound to agonist-bound binding pocket refinement, a key task for GPCR SBDD programs. Indeed, agonist ligands are required for a plethora of GPCRs for therapeutic intervention, however GPCR X-ray structures are mostly restricted to their inactive inhibitor-bound state. PMID:29131821

  8. A high-throughput screening approach for the optoelectronic properties of conjugated polymers.

    PubMed

    Wilbraham, Liam; Berardo, Enrico; Turcani, Lukas; Jelfs, Kim E; Zwijnenburg, Martijn A

    2018-06-25

    We propose a general high-throughput virtual screening approach for the optical and electronic properties of conjugated polymers. This approach makes use of the recently developed xTB family of low-computational-cost density functional tight-binding methods from Grimme and co-workers, calibrated here to (TD-)DFT data computed for a representative diverse set of (co-)polymers. Parameters drawn from the resulting calibration using a linear model can then be applied to the xTB derived results for new polymers, thus generating near DFT-quality data with orders of magnitude reduction in computational cost. As a result, after an initial computational investment for calibration, this approach can be used to quickly and accurately screen on the order of thousands of polymers for target applications. We also demonstrate that the (opto)electronic properties of the conjugated polymers show only a very minor variation when considering different conformers and that the results of high-throughput screening are therefore expected to be relatively insensitive with respect to the conformer search methodology applied.

  9. Training software using virtual-reality technology and pre-calculated effective dose data.

    PubMed

    Ding, Aiping; Zhang, Di; Xu, X George

    2009-05-01

    This paper describes the development of a software package, called VR Dose Simulator, which aims to provide interactive radiation safety and ALARA training to radiation workers using virtual-reality (VR) simulations. Combined with a pre-calculated effective dose equivalent (EDE) database, a virtual radiation environment was constructed in VR authoring software, EON Studio, using 3-D models of a real nuclear power plant building. Models of avatars representing two workers were adopted with arms and legs of the avatar being controlled in the software to simulate walking and other postures. Collision detection algorithms were developed for various parts of the 3-D power plant building and avatars to confine the avatars to certain regions of the virtual environment. Ten different camera viewpoints were assigned to conveniently cover the entire virtual scenery in different viewing angles. A user can control the avatar to carry out radiological engineering tasks using two modes of avatar navigation. A user can also specify two types of radiation source: Cs and Co. The location of the avatar inside the virtual environment during the course of the avatar's movement is linked to the EDE database. The accumulative dose is calculated and displayed on the screen in real-time. Based on the final accumulated dose and the completion status of all virtual tasks, a score is given to evaluate the performance of the user. The paper concludes that VR-based simulation technologies are interactive and engaging, thus potentially useful in improving the quality of radiation safety training. The paper also summarizes several challenges: more streamlined data conversion, realistic avatar movement and posture, more intuitive implementation of the data communication between EON Studio and VB.NET, and more versatile utilization of EDE data such as a source near the body, etc., all of which needs to be addressed in future efforts to develop this type of software.

  10. Real and virtual explorations of the environment and interactive tracking of movable objects for the blind on the basis of tactile-acoustical maps and 3D environment models.

    PubMed

    Hub, Andreas; Hartter, Tim; Kombrink, Stefan; Ertl, Thomas

    2008-01-01

    PURPOSE.: This study describes the development of a multi-functional assistant system for the blind which combines localisation, real and virtual navigation within modelled environments and the identification and tracking of fixed and movable objects. The approximate position of buildings is determined with a global positioning sensor (GPS), then the user establishes exact position at a specific landmark, like a door. This location initialises indoor navigation, based on an inertial sensor, a step recognition algorithm and map. Tracking of movable objects is provided by another inertial sensor and a head-mounted stereo camera, combined with 3D environmental models. This study developed an algorithm based on shape and colour to identify objects and used a common face detection algorithm to inform the user of the presence and position of others. The system allows blind people to determine their position with approximately 1 metre accuracy. Virtual exploration of the environment can be accomplished by moving one's finger on a touch screen of a small portable tablet PC. The name of rooms, building features and hazards, modelled objects and their positions are presented acoustically or in Braille. Given adequate environmental models, this system offers blind people the opportunity to navigate independently and safely, even within unknown environments. Additionally, the system facilitates education and rehabilitation by providing, in several languages, object names, features and relative positions.

  11. Virtual Laboratories and Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Hut, Piet

    2008-05-01

    Since we cannot put stars in a laboratory, astrophysicists had to wait till the invention of computers before becoming laboratory scientists. For half a century now, we have been conducting experiments in our virtual laboratories. However, we ourselves have remained behind the keyboard, with the screen of the monitor separating us from the world we are simulating. Recently, 3D on-line technology, developed first for games but now deployed in virtual worlds like Second Life, is beginning to make it possible for astrophysicists to enter their virtual labs themselves, in virtual form as avatars. This has several advantages, from new possibilities to explore the results of the simulations to a shared presence in a virtual lab with remote collaborators on different continents. I will report my experiences with the use of Qwaq Forums, a virtual world developed by a new company (see http://www.qwaq.com).

  12. [Virtual microscopy in pathology teaching and postgraduate training (continuing education)].

    PubMed

    Sinn, H P; Andrulis, M; Mogler, C; Schirmacher, P

    2008-11-01

    As with conventional microscopy, virtual microscopy permits histological tissue sections to be viewed on a computer screen with a free choice of viewing areas and a wide range of magnifications. This, combined with the possibility of linking virtual microscopy to E-Learning courses, make virtual microscopy an ideal tool for teaching and postgraduate training in pathology. Uses of virtual microscopy in pathology teaching include blended learning with the presentation of digital teaching slides in the internet parallel to presentation in the histology lab, extending student access to histology slides beyond the lab. Other uses are student self-learning in the Internet, as well as the presentation of virtual slides in the classroom with or without replacing real microscopes. Successful integration of virtual microscopy depends on its embedding in the virtual classroom and the creation of interactive E-learning content. Applications derived from this include the use of virtual microscopy in video clips, podcasts, SCORM modules and the presentation of virtual microscopy using interactive whiteboards in the classroom.

  13. Virtual screening of ABCC1 transporter nucleotidebinding domains as a therapeutic target in multidrug resistant cancer

    PubMed Central

    Rungsardthong, Kanin; Mares- Sámano, Sergio; Penny, Jeffrey

    2012-01-01

    ABCC1 is a member of the ATP-binding Cassette super family of transporters, actively effluxes xenobiotics from cells. Clinically, ABCC1 expression is linked to cancer multidrug resistance. Substrate efflux is energised by ATP binding and hydrolysis at the nucleotide-binding domains (NBDs) and inhibition of these events may help combat drug resistance. The aim of this study is to identify potential inhibitors of ABCC1 through virtual screening of National Cancer Institute (NCI) compounds. A threedimensional model of ABCC1 NBD2 was generated using MODELLER whilst the X-ray crystal structure of ABCC1 NBD1 was retrieved from the Protein Data Bank. A pharmacophore hypothesis was generated based on flavonoids known to bind at the NBDs using PHASE, and used to screen the NCI database. GLIDE was employed in molecular docking studies for all hit compounds identified by pharmacophore screening. The best potential inhibitors were identified as compounds possessing predicted binding affinities greater than ATP. Approximately 5% (13/265) of the hit compounds possessed lower docking scores than ATP in ABCC1 NBD1 (NSC93033, NSC662377, NSC319661, NSC333748, NSC683893, NSC226639, NSC94231, NSC55979, NSC169121, NSC166574, NSC73380, NSC127738, NSC115534), whereas approximately 7% (7/104) of docked NCI compounds were predicted to possess lower docking scores than ATP in ABCC1 NBD2 (NSC91789, NSC529483, NSC211168, NSC318214, NSC116519, NSC372332, NSC526974). Analyses of docking orientations revealed P-loop residues of each NBD and the aromatic amino acids Trp653 (NBD1) and Tyr1302 (NBD2) were key in interacting with high-affinity compounds. On the basis of docked orientation and docking score the compounds identified may be potential inhibitors of ABCC1 and require further pharmacological analysis. Abbreviations ABC - ATP-binding cassette, DHS - dehydrosilybin, MDR - multidrug resistance, NBD - nucleotide-binding domain, PDB - protein data bank. PMID:23144549

  14. [Screen potential CYP450 2E1 inhibitors from Chinese herbal medicine based on support vector regression and molecular docking method].

    PubMed

    Chen, Xi; Lu, Fang; Jiang, Lu-di; Cai, Yi-Lian; Li, Gong-Yu; Zhang, Yan-Ling

    2016-07-01

    Inhibition of cytochrome P450 (CYP450) enzymes is the most common reasons for drug interactions, so the study on early prediction of CYPs inhibitors can help to decrease the incidence of adverse reactions caused by drug interactions.CYP450 2E1(CYP2E1), as a key role in drug metabolism process, has broad spectrum of drug metabolism substrate. In this study, 32 CYP2E1 inhibitors were collected for the construction of support vector regression (SVR) model. The test set data were used to verify CYP2E1 quantitative models and obtain the optimal prediction model of CYP2E1 inhibitor. Meanwhile, one molecular docking program, CDOCKER, was utilized to analyze the interaction pattern between positive compounds and active pocket to establish the optimal screening model of CYP2E1 inhibitors.SVR model and molecular docking prediction model were combined to screen traditional Chinese medicine database (TCMD), which could improve the calculation efficiency and prediction accuracy. 6 376 traditional Chinese medicine (TCM) compounds predicted by SVR model were obtained, and in further verification by using molecular docking model, 247 TCM compounds with potential inhibitory activities against CYP2E1 were finally retained. Some of them have been verified by experiments. The results demonstrated that this study could provide guidance for the virtual screening of CYP450 inhibitors and the prediction of CYPs-mediated DDIs, and also provide references for clinical rational drug use. Copyright© by the Chinese Pharmaceutical Association.

  15. iConnect CKD - Virtual Medical Consulting: a web-based Chronic Kidney Disease, Hypertension and Diabetes Integrated Care Program.

    PubMed

    Katz, Ivor J; Pirabhahar, Saiyini; Williamson, Paula; Raghunath, Vishwas; Brennan, Frank; O'Sullivan, Anthony; Youssef, George; Lane, Cathie; Jacobson, Gary; Feldman, Peter; Kelly, John

    2017-05-04

    Chronic kidney disease (CKD) patients overwhelm specialist services and can potentially be managed in the primary care (PC). Opportunistic screening of high risk (HR) patients and follow-up in PC is the most sustainable model of care. A 'virtual consultation' (VC) model instead of traditional face to face (F2F) consultations was used, aiming to assess efficacy and safety of the model. Seventy patients were recruited from PC sites and hospital clinics, and followed for one year. The HR patients (eGFR < 30 ml/min/1.73 m 2 +/- albuminuria >30 mg/mmol/L) were randomised to either VC or F2F. Patients were monitored 6 monthly by a Clinical Nurse Specialist (CNS). The specialist team provided virtual or clinical support and included a Nephrologist, Endocrinologist, Cardiologist and Renal 'Palliative' Supportive Care. Sixty one (87%) patients were virtually tracked or consulted with 14 (23%) being HR. At 12 months there was no difference in outcomes between VC and F2F patients. All patients were successfully monitored. GPs reported high level of satisfaction and supported the model, but found software integration challenging. Patients found the system attractive and felt well managed. Specialist consults occurred within a week and if a second specialist opinion was required it took another two weeks. The program demonstrated safe, expedited and efficient follow up with a clinical and web based program. Support from the GPs and patients was encouraging, despite logistical issues. Ongoing evaluation of VC services will continue and feasibility to larger networks and more chronic diseases remains the long term goal. This article is protected by copyright. All rights reserved.

  16. Seamless 3D interaction for virtual tables, projection planes, and CAVEs

    NASA Astrophysics Data System (ADS)

    Encarnacao, L. M.; Bimber, Oliver; Schmalstieg, Dieter; Barton, Robert J., III

    2000-08-01

    The Virtual Table presents stereoscopic graphics to a user in a workbench-like setting. This device shares with other large- screen display technologies (such as data walls and surround- screen projection systems) the lack of human-centered unencumbered user interfaces and 3D interaction technologies. Such shortcomings present severe limitations to the application of virtual reality (VR) technology to time- critical applications as well as employment scenarios that involve heterogeneous groups of end-users without high levels of computer familiarity and expertise. Traditionally such employment scenarios are common in planning-related application areas such as mission rehearsal and command and control. For these applications, a high grade of flexibility with respect to the system requirements (display and I/O devices) as well as to the ability to seamlessly and intuitively switch between different interaction modalities and interaction are sought. Conventional VR techniques may be insufficient to meet this challenge. This paper presents novel approaches for human-centered interfaces to Virtual Environments focusing on the Virtual Table visual input device. It introduces new paradigms for 3D interaction in virtual environments (VE) for a variety of application areas based on pen-and-clipboard, mirror-in-hand, and magic-lens metaphors, and introduces new concepts for combining VR and augmented reality (AR) techniques. It finally describes approaches toward hybrid and distributed multi-user interaction environments and concludes by hypothesizing on possible use cases for defense applications.

  17. A more detailed picture of the interactions between virtual screening-derived hits and the DNA G-quadruplex: NMR, molecular modelling and ITC studies.

    PubMed

    Trotta, Roberta; De Tito, Stefano; Lauri, Ilaria; La Pietra, Valeria; Marinelli, Luciana; Cosconati, Sandro; Martino, Luigi; Conte, Maria R; Mayol, Luciano; Novellino, Ettore; Randazzo, Antonio

    2011-08-01

    The growing amount of literature about G-quadruplex DNA clearly demonstrates that such a structure is no longer viewed as just a biophysical strangeness but it is instead being considered as an important target for the treatment of various human disorders such as cancers or venous thrombosis. In this scenario, with the aim of finding brand new molecular scaffolds able to interact with the groove of the DNA quadruplex [d(TGGGGT)](4), we recently performed a successful structure-based virtual screening (VS) campaign. As a result, six molecules were found to be somehow groove binders. Herein, we report the results of novel NMR titration experiments of these VS-derived ligands with modified quadruplexes, namely [d(TGG(Br)GGT)](4) and [d(TGGGG(Br)T)](4). The novel NMR spectroscopy experiments combined with molecular modelling studies, allow for a more detailed picture of the interaction between each binder and the quadruplex DNA. Noteworthy, isothermal titration calorimetry (ITC) measurements on the above-mentioned compounds revealed that 2, 4, and 6 besides their relatively small dimensions bind the DNA quadruplex [d(TGGGGT)](4) with higher affinity than distamycin A, to the best of our knowledge, the most potent groove binder identified thus far. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  18. An Unbiased Method To Build Benchmarking Sets for Ligand-Based Virtual Screening and its Application To GPCRs

    PubMed Central

    2015-01-01

    Benchmarking data sets have become common in recent years for the purpose of virtual screening, though the main focus had been placed on the structure-based virtual screening (SBVS) approaches. Due to the lack of crystal structures, there is great need for unbiased benchmarking sets to evaluate various ligand-based virtual screening (LBVS) methods for important drug targets such as G protein-coupled receptors (GPCRs). To date these ready-to-apply data sets for LBVS are fairly limited, and the direct usage of benchmarking sets designed for SBVS could bring the biases to the evaluation of LBVS. Herein, we propose an unbiased method to build benchmarking sets for LBVS and validate it on a multitude of GPCRs targets. To be more specific, our methods can (1) ensure chemical diversity of ligands, (2) maintain the physicochemical similarity between ligands and decoys, (3) make the decoys dissimilar in chemical topology to all ligands to avoid false negatives, and (4) maximize spatial random distribution of ligands and decoys. We evaluated the quality of our Unbiased Ligand Set (ULS) and Unbiased Decoy Set (UDS) using three common LBVS approaches, with Leave-One-Out (LOO) Cross-Validation (CV) and a metric of average AUC of the ROC curves. Our method has greatly reduced the “artificial enrichment” and “analogue bias” of a published GPCRs benchmarking set, i.e., GPCR Ligand Library (GLL)/GPCR Decoy Database (GDD). In addition, we addressed an important issue about the ratio of decoys per ligand and found that for a range of 30 to 100 it does not affect the quality of the benchmarking set, so we kept the original ratio of 39 from the GLL/GDD. PMID:24749745

  19. Structure Based Library Design (SBLD) for new 1,4-dihydropyrimidine scaffold as simultaneous COX-1/COX-2 and 5-LOX inhibitors.

    PubMed

    Lokwani, Deepak; Azad, Rajaram; Sarkate, Aniket; Reddanna, Pallu; Shinde, Devanand

    2015-08-01

    The various scaffolds containing 1,4-dihydropyrimidine ring were designed by considering the environment of the active site of COX-1/COX-2 and 5-LOX enzymes. The structure-based library design approach, including the focused library design (Virtual Combinatorial Library Design) and virtual screening was used to select the 1,4-dihydropyrimidine scaffold for simultaneous inhibition of both enzyme pathways (COX-1/COX-2 and 5-LOX). The virtual library on each 1,4-dihydropyrimidine scaffold was enumerated in two alternative ways. In first way, the chemical reagents at R groups were filtered by docking of scaffold with single position substitution, that is, only at R1, or R2, or R3, … Rn on COX-2 enzyme using Glide XP docking mode. The structures that do not dock well were removed and the library was enumerated with filtered chemical reagents. In second alternative way, the single position docking stage was bypassed, and the entire library was enumerated using all chemical reagents by docking on the COX-2 enzyme. The entire library of approximately 15,629 compounds obtained from both ways after screening for drug like properties, were further screened for their binding affinity against COX-1 and 5-LOX enzymes using Virtual Screening Workflow. Finally, 142 hits were obtained and divided into two groups based on their binding affinity for COX-1/COX-2 and for both enzyme pathways (COX-1/COX-2 and 5-LOX). The ten molecules were selected, synthesized and evaluated for their COX-1, COX-2 and 5-LOX inhibiting activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. An unbiased method to build benchmarking sets for ligand-based virtual screening and its application to GPCRs.

    PubMed

    Xia, Jie; Jin, Hongwei; Liu, Zhenming; Zhang, Liangren; Wang, Xiang Simon

    2014-05-27

    Benchmarking data sets have become common in recent years for the purpose of virtual screening, though the main focus had been placed on the structure-based virtual screening (SBVS) approaches. Due to the lack of crystal structures, there is great need for unbiased benchmarking sets to evaluate various ligand-based virtual screening (LBVS) methods for important drug targets such as G protein-coupled receptors (GPCRs). To date these ready-to-apply data sets for LBVS are fairly limited, and the direct usage of benchmarking sets designed for SBVS could bring the biases to the evaluation of LBVS. Herein, we propose an unbiased method to build benchmarking sets for LBVS and validate it on a multitude of GPCRs targets. To be more specific, our methods can (1) ensure chemical diversity of ligands, (2) maintain the physicochemical similarity between ligands and decoys, (3) make the decoys dissimilar in chemical topology to all ligands to avoid false negatives, and (4) maximize spatial random distribution of ligands and decoys. We evaluated the quality of our Unbiased Ligand Set (ULS) and Unbiased Decoy Set (UDS) using three common LBVS approaches, with Leave-One-Out (LOO) Cross-Validation (CV) and a metric of average AUC of the ROC curves. Our method has greatly reduced the "artificial enrichment" and "analogue bias" of a published GPCRs benchmarking set, i.e., GPCR Ligand Library (GLL)/GPCR Decoy Database (GDD). In addition, we addressed an important issue about the ratio of decoys per ligand and found that for a range of 30 to 100 it does not affect the quality of the benchmarking set, so we kept the original ratio of 39 from the GLL/GDD.

  1. Structural insights into pharmacophore-assisted in silico identification of protein-protein interaction inhibitors for inhibition of human toll-like receptor 4 - myeloid differentiation factor-2 (hTLR4-MD-2) complex.

    PubMed

    Mishra, Vinita; Pathak, Chandramani

    2018-05-29

    Toll-like receptor 4 (TLR4) is a member of Toll-Like Receptors (TLRs) family that serves as a receptor for bacterial lipopolysaccharide (LPS). TLR4 alone cannot recognize LPS without aid of co-receptor myeloid differentiation factor-2 (MD-2). Binding of LPS with TLR4 forms a LPS-TLR4-MD-2 complex and directs downstream signaling for activation of immune response, inflammation and NF-κB activation. Activation of TLR4 signaling is associated with various pathophysiological consequences. Therefore, targeting protein-protein interaction (PPI) in TLR4-MD-2 complex formation could be an attractive therapeutic approach for targeting inflammatory disorders. The aim of present study was directed to identify small molecule PPI inhibitors (SMPPIIs) using pharmacophore mapping-based approach of computational drug discovery. Here, we had retrieved the information about the hot spot residues and their pharmacophoric features at both primary (TLR4-MD-2) and dimerization (MD-2-TLR4*) protein-protein interaction interfaces in TLR4-MD-2 homo-dimer complex using in silico methods. Promising candidates were identified after virtual screening, which may restrict TLR4-MD-2 protein-protein interaction. In silico off-target profiling over the virtually screened compounds revealed other possible molecular targets. Two of the virtually screened compounds (C11 and C15) were predicted to have an inhibitory concentration in μM range after HYDE assessment. Molecular dynamics simulation study performed for these two compounds in complex with target protein confirms the stability of the complex. After virtual high throughput screening we found selective hTLR4-MD-2 inhibitors, which may have therapeutic potential to target chronic inflammatory diseases.

  2. Outcomes of Screening Mammography in Elderly Women

    DTIC Science & Technology

    2004-10-01

    program run by the National Health Service (NHS) provides virtually all mammographic screening for women aged 50 or older . 2,3 There are differences also...government-funded National Health Service Breast Screening Program provides free breast cancer screening in the U.K. for women 50 or older . 3, 10 Women aged ...for Public Release; Distribution Unlimited 13. ABSTRACT (Maximum 200 Words) There is uncertainty about whether women older than age 65 should undergo

  3. Virtual Environment TBI Screen (VETS)

    DTIC Science & Technology

    2014-10-01

    balance challenges performed on a modified Wii Balance Board . Implementation of this device will enhance current approaches in TBI and mild TBI (i.e...TBI) screen (VETS) device in measuring standing balance . This system consists of software, a Wii balance board , and a large screen television that...Validate Wii ™ Balance Board relative to NeuroCom forceplate ! Running Wii Balance Board validation protocol. ! Milestone Achieved:

  4. Efficient hit-finding approaches for histone methyltransferases: the key parameters.

    PubMed

    Ahrens, Thomas; Bergner, Andreas; Sheppard, David; Hafenbradl, Doris

    2012-01-01

    For many novel epigenetics targets the chemical ligand space and structural information were limited until recently and are still largely unknown for some targets. Hit-finding campaigns are therefore dependent on large and chemically diverse libraries. In the specific case of the histone methyltransferase G9a, the authors have been able to apply an efficient process of intelligent selection of compounds for primary screening, rather than screening the full diverse deck of 900 000 compounds to identify hit compounds. A number of different virtual screening methods have been applied for the compound selection, and the results have been analyzed in the context of their individual success rates. For the primary screening of 2112 compounds, a FlashPlate assay format and full-length histone H3.1 substrate were employed. Validation of hit compounds was performed using the orthogonal fluorescence lifetime technology. Rated by purity and IC(50) value, 18 compounds (0.9% of compound screening deck) were finally considered validated primary G9a hits. The hit-finding approach has led to novel chemotypes being identified, which can facilitate hit-to-lead projects. This study demonstrates the power of virtual screening technologies for novel, therapeutically relevant epigenetics protein targets.

  5. Third-Graders Learn about Fractions Using Virtual Manipulatives: A Classroom Study

    ERIC Educational Resources Information Center

    Reimer, Kelly; Moyer, Patricia S.

    2005-01-01

    With recent advances in computer technology, it is no surprise that the manipulation of objects in mathematics classrooms now includes the manipulation of objects on the computer screen. These objects, referred to as "virtual manipulatives," are essentially replicas of physical manipulatives placed on the World Wide Web in the form of computer…

  6. Active Learning Environments with Robotic Tangibles: Children's Physical and Virtual Spatial Programming Experiences

    ERIC Educational Resources Information Center

    Burleson, Winslow S.; Harlow, Danielle B.; Nilsen, Katherine J.; Perlin, Ken; Freed, Natalie; Jensen, Camilla Nørgaard; Lahey, Byron; Lu, Patrick; Muldner, Kasia

    2018-01-01

    As computational thinking becomes increasingly important for children to learn, we must develop interfaces that leverage the ways that young children learn to provide opportunities for them to develop these skills. Active Learning Environments with Robotic Tangibles (ALERT) and Robopad, an analogous on-screen virtual spatial programming…

  7. Screening of Potential Inhibitor against Coat Protein of Apple Chlorotic Leaf Spot Virus.

    PubMed

    Purohit, Rituraj; Kumar, Sachin; Hallan, Vipin

    2018-06-01

    In this study, we analyzed Coat protein (CP) of Apple chlorotic leaf spot virus (ACLSV), an important latent virus on Apple. Incidence of the virus is upto 60% in various apple cultivars, affecting yield losses of the order of 10-40% (depending upon the cultivar). CP plays an important role as the sole building block of the viral capsid. Homology approach was used to model 193 amino acid sequence of the coat protein. We used various servers such as ConSurf, TargetS, OSML, COACH, COFACTOR for the prediction of active site residues in coat protein. Virtual screening strategy was employed to search potential inhibitors for CP. Top twenty screened molecules considered for drugability, and toxicity analysis and one potential molecule was further analyzed by docking analysis. Here, we reported a potent molecule which could inhibit the formation of viron assembly by targeting the CP protein of virus.

  8. Identification of STAT1 and STAT3 Specific Inhibitors Using Comparative Virtual Screening and Docking Validation

    PubMed Central

    Szelag, Malgorzata; Czerwoniec, Anna; Wesoly, Joanna; Bluyssen, Hans A. R.

    2015-01-01

    Signal transducers and activators of transcription (STATs) facilitate action of cytokines, growth factors and pathogens. STAT activation is mediated by a highly conserved SH2 domain, which interacts with phosphotyrosine motifs for specific STAT-receptor contacts and STAT dimerization. The active dimers induce gene transcription in the nucleus by binding to a specific DNA-response element in the promoter of target genes. Abnormal activation of STAT signaling pathways is implicated in many human diseases, like cancer, inflammation and auto-immunity. Searches for STAT-targeting compounds, exploring the phosphotyrosine (pTyr)-SH2 interaction site, yielded many small molecules for STAT3 but sparsely for other STATs. However, many of these inhibitors seem not STAT3-specific, thereby questioning the present modeling and selection strategies of SH2 domain-based STAT inhibitors. We generated new 3D structure models for all human (h)STATs and developed a comparative in silico docking strategy to obtain further insight into STAT-SH2 cross-binding specificity of a selection of previously identified STAT3 inhibitors. Indeed, by primarily targeting the highly conserved pTyr-SH2 binding pocket the majority of these compounds exhibited similar binding affinity and tendency scores for all STATs. By comparative screening of a natural product library we provided initial proof for the possibility to identify STAT1 as well as STAT3-specific inhibitors, introducing the ‘STAT-comparative binding affinity value’ and ‘ligand binding pose variation’ as selection criteria. In silico screening of a multi-million clean leads (CL) compound library for binding of all STATs, likewise identified potential specific inhibitors for STAT1 and STAT3 after docking validation. Based on comparative virtual screening and docking validation, we developed a novel STAT inhibitor screening tool that allows identification of specific STAT1 and STAT3 inhibitory compounds. This could increase our understanding of the functional role of these STATs in different diseases and benefit the clinical need for more drugable STAT inhibitors with high specificity, potency and excellent bioavailability. PMID:25710482

  9. The Development of Target-Specific Pose Filter Ensembles To Boost Ligand Enrichment for Structure-Based Virtual Screening.

    PubMed

    Xia, Jie; Hsieh, Jui-Hua; Hu, Huabin; Wu, Song; Wang, Xiang Simon

    2017-06-26

    Structure-based virtual screening (SBVS) has become an indispensable technique for hit identification at the early stage of drug discovery. However, the accuracy of current scoring functions is not high enough to confer success to every target and thus remains to be improved. Previously, we had developed binary pose filters (PFs) using knowledge derived from the protein-ligand interface of a single X-ray structure of a specific target. This novel approach had been validated as an effective way to improve ligand enrichment. Continuing from it, in the present work we attempted to incorporate knowledge collected from diverse protein-ligand interfaces of multiple crystal structures of the same target to build PF ensembles (PFEs). Toward this end, we first constructed a comprehensive data set to meet the requirements of ensemble modeling and validation. This set contains 10 diverse targets, 118 well-prepared X-ray structures of protein-ligand complexes, and large benchmarking actives/decoys sets. Notably, we designed a unique workflow of two-layer classifiers based on the concept of ensemble learning and applied it to the construction of PFEs for all of the targets. Through extensive benchmarking studies, we demonstrated that (1) coupling PFE with Chemgauss4 significantly improves the early enrichment of Chemgauss4 itself and (2) PFEs show greater consistency in boosting early enrichment and larger overall enrichment than our prior PFs. In addition, we analyzed the pairwise topological similarities among cognate ligands used to construct PFEs and found that it is the higher chemical diversity of the cognate ligands that leads to the improved performance of PFEs. Taken together, the results so far prove that the incorporation of knowledge from diverse protein-ligand interfaces by ensemble modeling is able to enhance the screening competence of SBVS scoring functions.

  10. Distance underestimation in virtual space is sensitive to gender but not activity-passivity or mode of interaction.

    PubMed

    Foreman, Nigel; Sandamas, George; Newson, David

    2004-08-01

    Four groups of undergraduates (half of each gender) experienced a movement along a corridor containing three distinctive objects, in a virtual environment (VE) with wide-screen projection. One group simulated walking along the virtual corridor using a proprietary step-exercise device. A second group moved along the corridor in conventional flying mode, depressing a keyboard key to initiate continuous forward motion. Two further groups observed the walking and flying participants, by viewing their progress on the screen. Participants then had to walk along a real equivalent but empty corridor, and indicate the positions of the three objects. All groups underestimated distances in the real corridor, the greatest underestimates occurring for the middle distance object. Males' underestimations were significantly lower than females' at all distances. However, there was no difference between the active participants and passive observers, nor between walking and flying conditions.

  11. Multiple e-pharmacophore modelling pooled with high-throughput virtual screening, docking and molecular dynamics simulations to discover potential inhibitors of Plasmodium falciparum lactate dehydrogenase (PfLDH).

    PubMed

    Saxena, Shalini; Durgam, Laxman; Guruprasad, Lalitha

    2018-05-14

    Development of new antimalarial drugs continues to be of huge importance because of the resistance of malarial parasite towards currently used drugs. Due to the reliance of parasite on glycolysis for energy generation, glycolytic enzymes have played important role as potential targets for the development of new drugs. Plasmodium falciparum lactate dehydrogenase (PfLDH) is a key enzyme for energy generation of malarial parasites and is considered to be a potential antimalarial target. Presently, there are nearly 15 crystal structures bound with inhibitors and substrate that are available in the protein data bank (PDB). In the present work, we attempted to consider multiple crystal structures with bound inhibitors showing affinity in the range of 1.4 × 10 2 -1.3 × 10 6  nM efficacy and optimized the pharmacophore based on the energy involved in binding termed as e-pharmacophore mapping. A high throughput virtual screening (HTVS) combined with molecular docking, ADME predictions and molecular dynamics simulation led to the identification of 20 potential compounds which could be further developed as novel inhibitors for PfLDH.

  12. Discovery of N6-phenyl-1H-pyrazolo[3,4-d]pyrimidine-3,6-diamine derivatives as novel CK1 inhibitors using common-feature pharmacophore model based virtual screening and hit-to-lead optimization.

    PubMed

    Yang, Ling-Ling; Li, Guo-Bo; Yan, Heng-Xiu; Sun, Qi-Zheng; Ma, Shuang; Ji, Pan; Wang, Ze-Rong; Feng, Shan; Zou, Jun; Yang, Sheng-Yong

    2012-10-01

    Aberrant activation of casein kinase 1 (CK1) has been demonstrated to be implicated in the pathogenesis of cancer and various central nervous system disorders. Discovery of CK1 inhibitors has thus attracted much attention in recent years. In this account, we describe the discovery of N6-phenyl-1H-pyrazolo[3,4-d]pyrimidine-3,6-diamine derivatives as novel CK1 inhibitors. An optimal common-feature pharmacophore hypothesis, termed Hypo2, was firstly generated, followed by virtual screening using Hypo2 against several chemical databases. One of the best hit compounds, N6-(4-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidine-3,6-diamine, was chosen for the subsequent hit-to-lead optimization under the guide of Hypo2, which led to the discovery of a new lead compound (1-(3-(3-amino-1H-pyrazolo[3,4-d]pyrimidin-6-ylamino)phenyl)-3-(3-chloro-4-fluorophenyl)urea) that potently inhibits CK1 with an IC(50) value of 78 nM. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  13. The BRIGHTEN program: implementation and evaluation of a program to bridge resources of an interdisciplinary geriatric health team via electronic networking.

    PubMed

    Emery, Erin E; Lapidos, Stan; Eisenstein, Amy R; Ivan, Iulia I; Golden, Robyn L

    2012-12-01

    To demonstrate the feasibility of the BRIGHTEN Program (Bridging Resources of an Interdisciplinary Geriatric Health Team via Electronic Networking), an interdisciplinary team intervention for assessing and treating older adults for depression in outpatient primary and specialty medical clinics. The BRIGHTEN team collaborates "virtually" to review patient assessment results, develop a treatment plan, and refer to appropriate team members for follow-up care. Older adults in 9 academic medical center clinics and 2 community-based clinics completed screening forms for symptoms of depression and anxiety. Those with positive screens engaged in comprehensive assessment with the BRIGHTEN Program Coordinator; the BRIGHTEN virtual team provided treatment recommendations based on the results of assessment. A collaborative treatment plan was developed with each participant, who was then connected to appropriate services. Two thousand four hundred twenty-two older adults were screened in participating clinics over a 40-month period. Eight hundred fifty-nine older adults screened positive, and 150 elected to enroll in BRIGHTEN. From baseline to 6 months, significant improvements were found in depression symptoms (Geriatric Depression Scale, p < .01) and general mental health (SF-12 Mental Component, p < .01). The BRIGHTEN Program demonstrated that an interdisciplinary virtual team linked with outpatient medical clinics can be an effective, nonthreatening, and seamless approach to enable older adults to access treatment for depression.

  14. Identification of novel malarial cysteine protease inhibitors using structure-based virtual screening of a focused cysteine protease inhibitor library.

    PubMed

    Shah, Falgun; Mukherjee, Prasenjit; Gut, Jiri; Legac, Jennifer; Rosenthal, Philip J; Tekwani, Babu L; Avery, Mitchell A

    2011-04-25

    Malaria, in particular that caused by Plasmodium falciparum , is prevalent across the tropics, and its medicinal control is limited by widespread drug resistance. Cysteine proteases of P. falciparum , falcipain-2 (FP-2) and falcipain-3 (FP-3), are major hemoglobinases, validated as potential antimalarial drug targets. Structure-based virtual screening of a focused cysteine protease inhibitor library built with soft rather than hard electrophiles was performed against an X-ray crystal structure of FP-2 using the Glide docking program. An enrichment study was performed to select a suitable scoring function and to retrieve potential candidates against FP-2 from a large chemical database. Biological evaluation of 50 selected compounds identified 21 diverse nonpeptidic inhibitors of FP-2 with a hit rate of 42%. Atomic Fukui indices were used to predict the most electrophilic center and its electrophilicity in the identified hits. Comparison of predicted electrophilicity of electrophiles in identified hits with those in known irreversible inhibitors suggested the soft-nature of electrophiles in the selected target compounds. The present study highlights the importance of focused libraries and enrichment studies in structure-based virtual screening. In addition, few compounds were screened against homologous human cysteine proteases for selectivity analysis. Further evaluation of structure-activity relationships around these nonpeptidic scaffolds could help in the development of selective leads for antimalarial chemotherapy.

  15. Novel inhibitors to Taenia solium Cu/Zn superoxide dismutase identified by virtual screening

    NASA Astrophysics Data System (ADS)

    García-Gutiérrez, P.; Landa-Piedra, A.; Rodríguez-Romero, A.; Parra-Unda, R.; Rojo-Domínguez, A.

    2011-12-01

    We describe in this work a successful virtual screening and experimental testing aimed to the identification of novel inhibitors of superoxide dismutase of the worm Taenia solium ( TsCu/Zn-SOD), a human parasite. Conformers from LeadQuest® database of drug-like compounds were selected and then docked on the surface of TsCu/Zn-SOD. Results were screened looking for ligand contacts with receptor side-chains not conserved in the human homologue, with a subsequent development of a score optimization by a set of energy minimization steps, aimed to identify lead compounds for in vitro experiments. Six out of fifty experimentally tested compounds showed μM inhibitory activity toward TsCu/Zn-SOD. Two of them showed species selectivity since did not inhibit the homologous human enzyme when assayed in vitro.

  16. Immersive Virtual Moon Scene System Based on Panoramic Camera Data of Chang'E-3

    NASA Astrophysics Data System (ADS)

    Gao, X.; Liu, J.; Mu, L.; Yan, W.; Zeng, X.; Zhang, X.; Li, C.

    2014-12-01

    The system "Immersive Virtual Moon Scene" is used to show the virtual environment of Moon surface in immersive environment. Utilizing stereo 360-degree imagery from panoramic camera of Yutu rover, the system enables the operator to visualize the terrain and the celestial background from the rover's point of view in 3D. To avoid image distortion, stereo 360-degree panorama stitched by 112 images is projected onto inside surface of sphere according to panorama orientation coordinates and camera parameters to build the virtual scene. Stars can be seen from the Moon at any time. So we render the sun, planets and stars according to time and rover's location based on Hipparcos catalogue as the background on the sphere. Immersing in the stereo virtual environment created by this imaged-based rendering technique, the operator can zoom, pan to interact with the virtual Moon scene and mark interesting objects. Hardware of the immersive virtual Moon system is made up of four high lumen projectors and a huge curve screen which is 31 meters long and 5.5 meters high. This system which take all panoramic camera data available and use it to create an immersive environment, enable operator to interact with the environment and mark interesting objects contributed heavily to establishment of science mission goals in Chang'E-3 mission. After Chang'E-3 mission, the lab with this system will be open to public. Besides this application, Moon terrain stereo animations based on Chang'E-1 and Chang'E-2 data will be showed to public on the huge screen in the lab. Based on the data of lunar exploration,we will made more immersive virtual moon scenes and animations to help the public understand more about the Moon in the future.

  17. Discrete Fourier Transform-Based Multivariate Image Analysis: Application to Modeling of Aromatase Inhibitory Activity.

    PubMed

    Barigye, Stephen J; Freitas, Matheus P; Ausina, Priscila; Zancan, Patricia; Sola-Penna, Mauro; Castillo-Garit, Juan A

    2018-02-12

    We recently generalized the formerly alignment-dependent multivariate image analysis applied to quantitative structure-activity relationships (MIA-QSAR) method through the application of the discrete Fourier transform (DFT), allowing for its application to noncongruent and structurally diverse chemical compound data sets. Here we report the first practical application of this method in the screening of molecular entities of therapeutic interest, with human aromatase inhibitory activity as the case study. We developed an ensemble classification model based on the two-dimensional (2D) DFT MIA-QSAR descriptors, with which we screened the NCI Diversity Set V (1593 compounds) and obtained 34 chemical compounds with possible aromatase inhibitory activity. These compounds were docked into the aromatase active site, and the 10 most promising compounds were selected for in vitro experimental validation. Of these compounds, 7419 (nonsteroidal) and 89 201 (steroidal) demonstrated satisfactory antiproliferative and aromatase inhibitory activities. The obtained results suggest that the 2D-DFT MIA-QSAR method may be useful in ligand-based virtual screening of new molecular entities of therapeutic utility.

  18. Graph-based similarity concepts in virtual screening.

    PubMed

    Hutter, Michael C

    2011-03-01

    Applying similarity for finding new promising compounds is a key issue in drug design. Conversely, quantifying similarity between molecules has remained a difficult task despite the numerous approaches. Here, some general aspects along with recent developments regarding similarity criteria are collected. For the purpose of virtual screening, the compounds have to be encoded into a computer-readable format that permits a comparison, according to given similarity criteria, comprising the use of the 3D structure, fingerprints, graph-based and alignment-based approaches. Whereas finding the most common substructures is the most obvious method, more recent approaches take into account chemical modifications that appear throughout existing drugs, from various therapeutic categories and targets.

  19. TS-Chemscore, a Target-Specific Scoring Function, Significantly Improves the Performance of Scoring in Virtual Screening.

    PubMed

    Wang, Wen-Jing; Huang, Qi; Zou, Jun; Li, Lin-Li; Yang, Sheng-Yong

    2015-07-01

    Most of the scoring functions currently used in structure-based drug design belong to 'universal' scoring functions, which often give a poor correlation between the calculated scores and experimental binding affinities. In this investigation, we proposed a simple strategy to construct target-specific scoring functions based on known 'universal' scoring functions. This strategy was applied to Chemscore, a widely used empirical scoring function, which led to a new scoring function, termed TS-Chemscore. TS-Chemscore was validated on 14 protein targets, which cover a wide range of biological target categories. The results showed that TS-Chemscore significantly improved the correlation between the calculated scores and experimental binding affinities compared with the original Chemscore. TS-Chemscore was then applied in virtual screening to retrieve novel JAK3 and YopH inhibitors. Top 30 compounds for each target were selected for experimental validation. Six active compounds for JAK3 and four for YopH were obtained. These compounds were out of the lists of top 30 compounds sorted by Chemscore. Collectively, TS-Chemscore established in this study showed a better performance in virtual screening than its counterpart Chemscore. © 2014 John Wiley & Sons A/S.

  20. New leads for selective GSK-3 inhibition: pharmacophore mapping and virtual screening studies.

    PubMed

    Patel, Dhilon S; Bharatam, Prasad V

    2006-01-01

    Glycogen Synthase Kinase-3 is a regulatory serine/threonine kinase, which is being targeted for the treatment of a number of human diseases including type-2 diabetes mellitus, neurodegenerative diseases, cancer and chronic inflammation. Selective GSK-3 inhibition is an important requirement owing to the possibility of side effects arising from other kinases. A pharmacophore mapping strategy is employed in this work to identify new leads for selective GSK-3 inhibition. Ligands known to show selective GSK-3 inhibition were employed in generating a pharmacophore map using distance comparison method (DISCO). The derived pharmacophore map was validated using (i) important interactions involved in selective GSK-3 inhibitions, and (ii) an in-house database containing different classes of GSK-3 selective, non-selective and inactive molecules. New Lead identification was carried out by performing virtual screening using validated pharmacophoric query and three chemical databases namely NCI, Maybridge and Leadquest. Further data reduction was carried out by employing virtual filters based on (i) Lipinski's rule of 5 (ii) van der Waals bumps and (iii) restricting the number of rotatable bonds to seven. Final screening was carried out using FlexX based molecular docking study.

  1. Avalanche for shape and feature-based virtual screening with 3D alignment

    NASA Astrophysics Data System (ADS)

    Diller, David J.; Connell, Nancy D.; Welsh, William J.

    2015-11-01

    This report introduces a new ligand-based virtual screening tool called Avalanche that incorporates both shape- and feature-based comparison with three-dimensional (3D) alignment between the query molecule and test compounds residing in a chemical database. Avalanche proceeds in two steps. The first step is an extremely rapid shape/feature based comparison which is used to narrow the focus from potentially millions or billions of candidate molecules and conformations to a more manageable number that are then passed to the second step. The second step is a detailed yet still rapid 3D alignment of the remaining candidate conformations to the query conformation. Using the 3D alignment, these remaining candidate conformations are scored, re-ranked and presented to the user as the top hits for further visualization and evaluation. To provide further insight into the method, the results from two prospective virtual screens are presented which show the ability of Avalanche to identify hits from chemical databases that would likely be missed by common substructure-based or fingerprint-based search methods. The Avalanche method is extended to enable patent landscaping, i.e., structural refinements to improve the patentability of hits for deployment in drug discovery campaigns.

  2. New leads for selective GSK-3 inhibition: pharmacophore mapping and virtual screening studies

    NASA Astrophysics Data System (ADS)

    Patel, Dhilon S.; Bharatam, Prasad V.

    2006-01-01

    Glycogen Synthase Kinase-3 is a regulatory serine/threonine kinase, which is being targeted for the treatment of a number of human diseases including type-2 diabetes mellitus, neurodegenerative diseases, cancer and chronic inflammation. Selective GSK-3 inhibition is an important requirement owing to the possibility of side effects arising from other kinases. A pharmacophore mapping strategy is employed in this work to identify new leads for selective GSK-3 inhibition. Ligands known to show selective GSK-3 inhibition were employed in generating a pharmacophore map using distance comparison method (DISCO). The derived pharmacophore map was validated using (i) important interactions involved in selective GSK-3 inhibitions, and (ii) an in-house database containing different classes of GSK-3 selective, non-selective and inactive molecules. New Lead identification was carried out by performing virtual screening using validated pharmacophoric query and three chemical databases namely NCI, Maybridge and Leadquest. Further data reduction was carried out by employing virtual filters based on (i) Lipinski's rule of 5 (ii) van der Waals bumps and (iii) restricting the number of rotatable bonds to seven. Final screening was carried out using FlexX based molecular docking study.

  3. A Quantum-Based Similarity Method in Virtual Screening.

    PubMed

    Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal

    2015-10-02

    One of the most widely-used techniques for ligand-based virtual screening is similarity searching. This study adopted the concepts of quantum mechanics to present as state-of-the-art similarity method of molecules inspired from quantum theory. The representation of molecular compounds in mathematical quantum space plays a vital role in the development of quantum-based similarity approach. One of the key concepts of quantum theory is the use of complex numbers. Hence, this study proposed three various techniques to embed and to re-represent the molecular compounds to correspond with complex numbers format. The quantum-based similarity method that developed in this study depending on complex pure Hilbert space of molecules called Standard Quantum-Based (SQB). The recall of retrieved active molecules were at top 1% and top 5%, and significant test is used to evaluate our proposed methods. The MDL drug data report (MDDR), maximum unbiased validation (MUV) and Directory of Useful Decoys (DUD) data sets were used for experiments and were represented by 2D fingerprints. Simulated virtual screening experiment show that the effectiveness of SQB method was significantly increased due to the role of representational power of molecular compounds in complex numbers forms compared to Tanimoto benchmark similarity measure.

  4. Effects of 3D Virtual Simulators in the Introductory Wind Energy Course: A Tool for Teaching Engineering Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Do, Phuong T.; Moreland, John R.; Delgado, Catherine

    Our research provides an innovative solution for optimizing learning effectiveness and improving postsecondary education through the development of virtual simulators that can be easily used and integrated into existing wind energy curriculum. Two 3D virtual simulators are developed in our laboratory for use in an immersive 3D virtual reality (VR) system or for 3D display on a 2D screen. Our goal is to apply these prototypical simulators to train postsecondary students and professionals in wind energy education; and to offer experiential learning opportunities in 3D modeling, simulation, and visualization. The issue of transferring learned concepts to practical applications is amore » widespread problem in postsecondary education. Related to this issue is a critical demand to educate and train a generation of professionals for the wind energy industry. With initiatives such as the U.S. Department of Energy's “20% Wind Energy by 2030” outlining an exponential increase of wind energy capacity over the coming years, revolutionary educational reform is needed to meet the demand for education in the field of wind energy. These developments and implementation of Virtual Simulators and accompanying curriculum will propel national reforms, meeting the needs of the wind energy industrial movement and addressing broader educational issues that affect a number of disciplines.« less

  5. Effects of 3D Virtual Simulators in the Introductory Wind Energy Course: A Tool for Teaching Engineering Concepts

    DOE PAGES

    Do, Phuong T.; Moreland, John R.; Delgado, Catherine; ...

    2013-01-01

    Our research provides an innovative solution for optimizing learning effectiveness and improving postsecondary education through the development of virtual simulators that can be easily used and integrated into existing wind energy curriculum. Two 3D virtual simulators are developed in our laboratory for use in an immersive 3D virtual reality (VR) system or for 3D display on a 2D screen. Our goal is to apply these prototypical simulators to train postsecondary students and professionals in wind energy education; and to offer experiential learning opportunities in 3D modeling, simulation, and visualization. The issue of transferring learned concepts to practical applications is amore » widespread problem in postsecondary education. Related to this issue is a critical demand to educate and train a generation of professionals for the wind energy industry. With initiatives such as the U.S. Department of Energy's “20% Wind Energy by 2030” outlining an exponential increase of wind energy capacity over the coming years, revolutionary educational reform is needed to meet the demand for education in the field of wind energy. These developments and implementation of Virtual Simulators and accompanying curriculum will propel national reforms, meeting the needs of the wind energy industrial movement and addressing broader educational issues that affect a number of disciplines.« less

  6. Computational Modeling and Simulation of Developmental ...

    EPA Pesticide Factsheets

    SYNOPSIS: The question of how tissues and organs are shaped during development is crucial for understanding human birth defects. Data from high-throughput screening assays on human stem cells may be utilized predict developmental toxicity with reasonable accuracy. Other types of models are necessary, however, for mechanism-specific analysis because embryogenesis requires precise timing and control. Agent-based modeling and simulation (ABMS) is an approach to virtually reconstruct these dynamics, cell-by-cell and interaction-by-interaction. Using ABMS, HTS lesions from ToxCast can be integrated with patterning systems heuristically to propagate key events This presentation to FDA-CFSAN will update progress on the applications of in silico modeling tools and approaches for assessing developmental toxicity.

  7. Colonoscopy procedure simulation: virtual reality training based on a real time computational approach.

    PubMed

    Wen, Tingxi; Medveczky, David; Wu, Jackie; Wu, Jianhuang

    2018-01-25

    Colonoscopy plays an important role in the clinical screening and management of colorectal cancer. The traditional 'see one, do one, teach one' training style for such invasive procedure is resource intensive and ineffective. Given that colonoscopy is difficult, and time-consuming to master, the use of virtual reality simulators to train gastroenterologists in colonoscopy operations offers a promising alternative. In this paper, a realistic and real-time interactive simulator for training colonoscopy procedure is presented, which can even include polypectomy simulation. Our approach models the colonoscopy as thick flexible elastic rods with different resolutions which are dynamically adaptive to the curvature of the colon. More material characteristics of this deformable material are integrated into our discrete model to realistically simulate the behavior of the colonoscope. We present a simulator for training colonoscopy procedure. In addition, we propose a set of key aspects of our simulator that give fast, high fidelity feedback to trainees. We also conducted an initial validation of this colonoscopic simulator to determine its clinical utility and efficacy.

  8. An investigation of the efficacy of collaborative virtual reality systems for moderated remote usability testing.

    PubMed

    Chalil Madathil, Kapil; Greenstein, Joel S

    2017-11-01

    Collaborative virtual reality-based systems have integrated high fidelity voice-based communication, immersive audio and screen-sharing tools into virtual environments. Such three-dimensional collaborative virtual environments can mirror the collaboration among usability test participants and facilitators when they are physically collocated, potentially enabling moderated usability tests to be conducted effectively when the facilitator and participant are located in different places. We developed a virtual collaborative three-dimensional remote moderated usability testing laboratory and employed it in a controlled study to evaluate the effectiveness of moderated usability testing in a collaborative virtual reality-based environment with two other moderated usability testing methods: the traditional lab approach and Cisco WebEx, a web-based conferencing and screen sharing approach. Using a mixed methods experimental design, 36 test participants and 12 test facilitators were asked to complete representative tasks on a simulated online shopping website. The dependent variables included the time taken to complete the tasks; the usability defects identified and their severity; and the subjective ratings on the workload index, presence and satisfaction questionnaires. Remote moderated usability testing methodology using a collaborative virtual reality system performed similarly in terms of the total number of defects identified, the number of high severity defects identified and the time taken to complete the tasks with the other two methodologies. The overall workload experienced by the test participants and facilitators was the least with the traditional lab condition. No significant differences were identified for the workload experienced with the virtual reality and the WebEx conditions. However, test participants experienced greater involvement and a more immersive experience in the virtual environment than in the WebEx condition. The ratings for the virtual environment condition were not significantly different from those for the traditional lab condition. The results of this study suggest that participants were productive and enjoyed the virtual lab condition, indicating the potential of a virtual world based approach as an alternative to conventional approaches for synchronous usability testing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. [Virtual reality in neurosurgery].

    PubMed

    Tronnier, V M; Staubert, A; Bonsanto, M M; Wirtz, C R; Kunze, S

    2000-03-01

    Virtual reality enables users to immerse themselves in a virtual three-dimensional world and to interact in this world. The simulation is different from the kind in computer games, in which the viewer is active but acts in a nonrealistic world, or on the TV screen, where we are passively driven in an active world. In virtual reality elements look realistic, they change their characteristics and have almost real-world unpredictability. Virtual reality is not only implemented in gambling dens and the entertainment industry but also in manufacturing processes (cars, furniture etc.), military applications and medicine. Especially the last two areas are strongly correlated, because telemedicine or telesurgery was originated for military reasons to operate on war victims from a secure distance or to perform surgery on astronauts in an orbiting space station. In medicine and especially neurosurgery virtual-reality methods are used for education, surgical planning and simulation on a virtual patient.

  10. Multiple receptor-ligand based pharmacophore modeling and molecular docking to screen the selective inhibitors of matrix metalloproteinase-9 from natural products.

    PubMed

    Gao, Qi; Wang, Yijun; Hou, Jiaying; Yao, Qizheng; Zhang, Ji

    2017-07-01

    Matrix metalloproteinase-9 (MMP-9) is an attractive target for cancer therapy. In this study, the pharmacophore model of MMP-9 inhibitors is built based on the experimental binding structures of multiple receptor-ligand complexes. It is found that the pharmacophore model consists of six chemical features, including two hydrogen bond acceptors, one hydrogen bond donor, one ring aromatic regions, and two hydrophobic (HY) features. Among them, the two HY features are especially important because they can enter the S1' pocket of MMP-9 which determines the selectivity of MMP-9 inhibitors. The reliability of pharmacophore model is validated based on the two different decoy sets and relevant experimental data. The virtual screening, combining pharmacophore model with molecular docking, is performed to identify the selective MMP-9 inhibitors from a database of natural products. The four novel MMP-9 inhibitors of natural products, NP-000686, NP-001752, NP-014331, and NP-015905, are found; one of them, NP-000686, is used to perform the experiment of in vitro bioassay inhibiting MMP-9, and the IC 50 value was estimated to be only 13.4 µM, showing the strongly inhibitory activity of NP-000686 against MMP-9, which suggests that our screening results should be reliable. The binding modes of screened inhibitors with MMP-9 active sites were discussed. In addition, the ADMET properties and physicochemical properties of screened four compounds were assessed. The found MMP-9 inhibitors of natural products could serve as the lead compounds for designing the new MMP-9 inhibitors by carrying out structural modifications in the future.

  11. How Do Students Learn to See Concepts in Visualizations? Social Learning Mechanisms with Physical and Virtual Representations

    ERIC Educational Resources Information Center

    Rau, Martina A.

    2017-01-01

    STEM instruction often uses visual representations. To benefit from these, students need to understand how representations show domain-relevant concepts. Yet, this is difficult for students. Prior research shows that physical representations (objects that students manipulate by hand) and virtual representations (objects on a computer screen that…

  12. Working Memory in Wayfinding--A Dual Task Experiment in a Virtual City

    ERIC Educational Resources Information Center

    Meilinger, Tobias; Knauff, Markus; Bulthoff, Heinrich H.

    2008-01-01

    This study examines the working memory systems involved in human wayfinding. In the learning phase, 24 participants learned two routes in a novel photorealistic virtual environment displayed on a 220 degrees screen while they were disrupted by a visual, a spatial, a verbal, or--in a control group--no secondary task. In the following wayfinding…

  13. Screening of a virtual mirror-image library of natural products.

    PubMed

    Noguchi, Taro; Oishi, Shinya; Honda, Kaori; Kondoh, Yasumitsu; Saito, Tamio; Ohno, Hiroaki; Osada, Hiroyuki; Fujii, Nobutaka

    2016-06-08

    We established a facile access to an unexplored mirror-image library of chiral natural product derivatives using d-protein technology. In this process, two chemical syntheses of mirror-image substances including a target protein and hit compound(s) allow the lead discovery from a virtual mirror-image library without the synthesis of numerous mirror-image compounds.

  14. Developing and validating predictive decision tree models from mining chemical structural fingerprints and high-throughput screening data in PubChem.

    PubMed

    Han, Lianyi; Wang, Yanli; Bryant, Stephen H

    2008-09-25

    Recent advances in high-throughput screening (HTS) techniques and readily available compound libraries generated using combinatorial chemistry or derived from natural products enable the testing of millions of compounds in a matter of days. Due to the amount of information produced by HTS assays, it is a very challenging task to mine the HTS data for potential interest in drug development research. Computational approaches for the analysis of HTS results face great challenges due to the large quantity of information and significant amounts of erroneous data produced. In this study, Decision Trees (DT) based models were developed to discriminate compound bioactivities by using their chemical structure fingerprints provided in the PubChem system http://pubchem.ncbi.nlm.nih.gov. The DT models were examined for filtering biological activity data contained in four assays deposited in the PubChem Bioassay Database including assays tested for 5HT1a agonists, antagonists, and HIV-1 RT-RNase H inhibitors. The 10-fold Cross Validation (CV) sensitivity, specificity and Matthews Correlation Coefficient (MCC) for the models are 57.2 approximately 80.5%, 97.3 approximately 99.0%, 0.4 approximately 0.5 respectively. A further evaluation was also performed for DT models built for two independent bioassays, where inhibitors for the same HIV RNase target were screened using different compound libraries, this experiment yields enrichment factor of 4.4 and 9.7. Our results suggest that the designed DT models can be used as a virtual screening technique as well as a complement to traditional approaches for hits selection.

  15. 3D-QSAR and virtual screening studies of thiazolidine-2,4-dione analogs: Validation of experimental inhibitory potencies towards PIM-1 kinase

    NASA Astrophysics Data System (ADS)

    Asati, Vivek; Bharti, Sanjay Kumar; Budhwani, Ashok Kumar

    2017-04-01

    The proviral insertion site in moloney murine leukemia virus (PIM) is a family of serine/threonine kinase of Ca2+-calmodulin-dependent protein kinase (CAMK) group which is responsible for the activation and regulation of cellular transcription and translation. The three isoforms of PIM kinase (PIM-1, PIM-2 and PIM-3) share high homology and functional idleness are widely expressed and involved in a variety of biological processes including cell survival, proliferation, differentiation and apoptosis. Altered expression of PIM-1 kinase correlated with hematologic malignancies and solid tumors. In the present study, atom-based 3D-QSAR, docking and virtual screening studies have been performed on a series of thiazolidine-2,4-dione derivatives as PIM-1 kinase inhibitors. 3D-QSAR and docking approach has shortlisted the most active thiazolidine-2,4-dione derivatives such as 28, 31, 33 and 35 with the incorporation of more than one structural feature in a single molecule. External validations by various parameters and molecular docking studies at the active site of PIM-1 kinase have proved the reliability of the developed 3D-QSAR model. The generated pharmacophore (AADHR.33) from 3D-QSAR study was used for screening of drug like compounds from ZINC database, where ZINC15056464 and ZINC83292944 showed potential binding affinities at the active site amino acid residues (LYS67, GLU171, ASP128 and ASP186) of PIM-1 kinase.

  16. Structure-based Virtual Screening and Identification of a Novel Androgen Receptor Antagonist*

    PubMed Central

    Song, Chin-Hee; Yang, Su Hui; Park, Eunsook; Cho, Suk Hee; Gong, Eun-Yeung; Khadka, Daulat Bikram; Cho, Won-Jea; Lee, Keesook

    2012-01-01

    Hormonal therapies, mainly combinations of anti-androgens and androgen deprivation, have been the mainstay treatment for advanced prostate cancer because the androgen-androgen receptor (AR) system plays a pivotal role in the development and progression of prostate cancers. However, the emergence of androgen resistance, largely due to inefficient anti-hormone action, limits the therapeutic usefulness of these therapies. Here, we report that 6-(3,4-dihydro-1H-isoquinolin-2-yl)-N-(6-methylpyridin-2-yl)nicotinamide (DIMN) acts as a novel anti-androgenic compound that may be effective in the treatment of both androgen-dependent and androgen-independent prostate cancers. Through AR structure-based virtual screening using the FlexX docking model, fifty-four compounds were selected and further screened for AR antagonism via cell-based tests. One compound, DIMN, showed an antagonistic effect specific to AR with comparable potency to that of the classical AR antagonists, hydroxyflutamide and bicalutamide. Consistent with their anti-androgenic activity, DIMN inhibited the growth of androgen-dependent LNCaP prostate cancer cells. Interestingly, the compound also suppressed the growth of androgen-independent C4–2 and CWR22rv prostate cancer cells, which express a functional AR, but did not suppress the growth of the AR-negative prostate cancer cells PPC-1, DU145, and R3327-AT3.1. Taken together, the results suggest that the synthetic compound DIMN is a novel anti-androgen and strong candidate for useful therapeutic agent against early stage to advanced prostate cancer. PMID:22798067

  17. Inhibitor candidates's identification of HCV's RNA polymerase NS5B using virtual screening against iPPI-library

    NASA Astrophysics Data System (ADS)

    Sulistyawati, Indah; Sulistyo Dwi K., P.; Ichsan, Mochammad

    2016-03-01

    Hepatitis C is one of the major causes of chronic liver failure that caused by Hepatitis C Virus (HCV). Preventing the progression of HCV's replication through the inhibition of The RNA polymerase NS5B of Hepatitis C virus (NS5B) can be achieved via 4 binding regions: Site I (Thumb I), Site II (Thumb II), Site III (Palm I), and Site IV (Palm II). The aim of this research is to identify a candidate of NS5B inhibitor as an alternative for Hepatitis C treatment. An NS5B's 3D structure (PDB ID = 3D5M) used in this study has met some criteria of a good model to be used in virtual screening againts iPPI-lib using MTiOpenScreen webserver. The top two natural compounds resulted here then docked using Pyrix 0.8 and discovered trans-6-Benzamido-2-methyldecahydroisoquinoline (-9,1kcal/mol) and 2,4-dichloro-5-[4-(2 methoxyphenyl) piperazine-1-carbonyl]-N-[3-(trifluoromethyl)phenyl] benzenesulfonamide (9,4 kcal/mol) can bind to Tyr448 similar with all three established inhibitors, such as setrobuvir (-11,4 kcal/mol; site 3 inhibitor), CHEMBL379677 (-9,1 kcal/mol; site 1 inhibitor), and nesbuvir (-7,7 kcal/mol; site 4 inhibitor). The results of this study are relatively still needs to be tested, both in vitro and in vivo, in order to obtain more comprehensive knowledges as a follow-up of this predictive study.

  18. Structure-based discovery of inhibitors of the YycG histidine kinase: New chemical leads to combat Staphylococcus epidermidis infections

    PubMed Central

    Qin, Zhiqiang; Zhang, Jian; Xu, Bin; Chen, Lili; Wu, Yang; Yang, Xiaomei; Shen, Xu; Molin, Soeren; Danchin, Antoine; Jiang, Hualiang; Qu, Di

    2006-01-01

    Background Coagulase-negative Staphylococcus epidermidis has become a major frequent cause of infections in relation to the use of implanted medical devices. The pathogenicity of S. epidermidis has been attributed to its capacity to form biofilms on surfaces of medical devices, which greatly increases its resistance to many conventional antibiotics and often results in chronic infection. It has an urgent need to design novel antibiotics against staphylococci infections, especially those can kill cells embedded in biofilm. Results In this report, a series of novel inhibitors of the histidine kinase (HK) YycG protein of S. epidermidis were discovered first using structure-based virtual screening (SBVS) from a small molecular lead-compound library, followed by experimental validation. Of the 76 candidates derived by SBVS targeting of the homolog model of the YycG HATPase_c domain of S. epidermidis, seven compounds displayed significant activity in inhibiting S. epidermidis growth. Furthermore, five of them displayed bactericidal effects on both planktonic and biofilm cells of S. epidermidis. Except for one, the compounds were found to bind to the YycG protein and to inhibit its auto-phosphorylation in vitro, indicating that they are potential inhibitors of the YycG/YycF two-component system (TCS), which is essential in S. epidermidis. Importantly, all these compounds did not affect the stability of mammalian cells nor hemolytic activities at the concentrations used in our study. Conclusion These novel inhibitors of YycG histidine kinase thus are of potential value as leads for developing new antibiotics against infecting staphylococci. The structure-based virtual screening (SBVS) technology can be widely used in screening potential inhibitors of other bacterial TCSs, since it is more rapid and efficacious than traditional screening technology. PMID:17094812

  19. Plasma effect on fast-electron-impact-ionization from 2p state of hydrogen-like ions

    NASA Astrophysics Data System (ADS)

    Qi, Y. Y.; Ning, L. N.; Wang, J. G.; Qu, Y. Z.

    2013-12-01

    Plasma effects on the high-energy electron-impact ionization process from 2p orbital of Hydrogen-like ions embedded in weakly coupled plasmas are investigated in the first Born approximation. The plasma screening of the Coulomb interaction between charged particles is represented by the Debye Hückel model. The screening of Coulomb interactions decreases the ionization energies and varies the wave functions for not only the bound orbital but also the continuum; the number of the summation for the angular-momentum states in the generalized oscillator strength densities is reduced with the plasma screening stronger when the ratio of ɛ /I2p (I2p is the ionization energy of 2p state and ɛ is the energy of the continuum electron) is kept, and then the contribution from the lower-angular-momentum states dominates the generalized oscillator strength densities, so the threshold phenomenon in the generalized oscillator strength densities and the double differential cross sections are remarkable: The accessional minima, the outstanding enhancement, and the resonance peaks emerge a certain energy region, whose energy position and width are related to the vicinity between δ and the critical value δnlc, corresponding to the special plasma condition when the bound state |nl⟩ just enters the continuum; the multiple virtual-state enhancement and the multiple shape resonances in a certain energy domain also appear in the single differential cross section whenever the plasma screening parameter passes through a critical value δnlc, which is similar to the photo-ionization process but different from it, where the dipole transition only happens, but multi-pole transition will occur in the electron-impact ionization process, so its multiple virtual-state enhancements and the multiple shape resonances appear more frequently than the photo-ionization process.

  20. Virtual Screening Techniques to Probe the Antimalarial Activity of some Traditionally Used Phytochemicals.

    PubMed

    Shibi, Indira G; Aswathy, Lilly; Jisha, Radhakrishnan S; Masand, Vijay H; Gajbhiye, Jayant M

    2016-01-01

    Malaria parasites show resistance to most of the antimalarial drugs and hence developing antimalarials which can act on multitargets rather than a single target will be a promising strategy of drug design. Here we report a new approach by which virtual screening of 292 unique phytochemicals present in 72 traditionally important herbs is used for finding out inhibitors of plasmepsin-2 and falcipain-2 for antimalarial activity against P. falciparum. Initial screenings of the selected molecules by Random Forest algorithm model of Weka using the bioassay datasets AID 504850 and AID 2302 screened 120 out of the total 292 phytochemicals to be active against the targets. Toxtree scan cautioned 21 compounds to be either carcinogenic or mutagenic and were thus removed for further analysis. Out of the remaining 99 compounds, only 46 compounds offered drug-likeness as per the 'rule of five' criteria. Out of ten antimalarial drug targets, only two target proteins such as 3BPF and 3PNR of falcipain-2 and 1PFZ and 2BJU of plasmepsin-2 are selected as targets. The potential binding of the selected 46 compounds to the active sites of these four targets was analyzed using MOE software. The docked conformations and the interactions with the binding pocket residues of the target proteins were understood by 'Ligplot' analysis. It has been found that 8 compounds are dual inhibitors of falcipain-2 and plasmepsin-2, with the best binding energies. Compound 117 (6aR, 12aS)-12a-Hydroxy-9-methoxy-2,3-dimethylenedioxy-8-prenylrotenone (Usaratenoid C) present in the plant Millettia usaramensis showed maximum molecular docking score.

  1. Validation of virtual learning object to support the teaching of nursing care systematization.

    PubMed

    Salvador, Pétala Tuani Candido de Oliveira; Mariz, Camila Maria Dos Santos; Vítor, Allyne Fortes; Ferreira Júnior, Marcos Antônio; Fernandes, Maria Isabel Domingues; Martins, José Carlos Amado; Santos, Viviane Euzébia Pereira

    2018-01-01

    to describe the content validation process of a Virtual Learning Object to support the teaching of nursing care systematization to nursing professionals. methodological study, with quantitative approach, developed according to the methodological reference of Pasquali's psychometry and conducted from March to July 2016, from two-stage Delphi procedure. in the Delphi 1 stage, eight judges evaluated the Virtual Object; in Delphi 2 stage, seven judges evaluated it. The seven screens of the Virtual Object were analyzed as to the suitability of its contents. The Virtual Learning Object to support the teaching of nursing care systematization was considered valid in its content, with a Total Content Validity Coefficient of 0.96. it is expected that the Virtual Object can support the teaching of nursing care systematization in light of appropriate and effective pedagogical approaches.

  2. Benefits, harms, and costs for breast cancer screening after US implementation of digital mammography.

    PubMed

    Stout, Natasha K; Lee, Sandra J; Schechter, Clyde B; Kerlikowske, Karla; Alagoz, Oguzhan; Berry, Donald; Buist, Diana S M; Cevik, Mucahit; Chisholm, Gary; de Koning, Harry J; Huang, Hui; Hubbard, Rebecca A; Miglioretti, Diana L; Munsell, Mark F; Trentham-Dietz, Amy; van Ravesteyn, Nicolien T; Tosteson, Anna N A; Mandelblatt, Jeanne S

    2014-06-01

    Compared with film, digital mammography has superior sensitivity but lower specificity for women aged 40 to 49 years and women with dense breasts. Digital has replaced film in virtually all US facilities, but overall population health and cost from use of this technology are unclear. Using five independent models, we compared digital screening strategies starting at age 40 or 50 years applied annually, biennially, or based on density with biennial film screening from ages 50 to 74 years and with no screening. Common data elements included cancer incidence and test performance, both modified by breast density. Lifetime outcomes included mortality, quality-adjusted life-years, and screening and treatment costs. For every 1000 women screened biennially from age 50 to 74 years, switching to digital from film yielded a median within-model improvement of 2 life-years, 0.27 additional deaths averted, 220 additional false-positive results, and $0.35 million more in costs. For an individual woman, this translates to a health gain of 0.73 days. Extending biennial digital screening to women ages 40 to 49 years was cost-effective, although results were sensitive to quality-of-life decrements related to screening and false positives. Targeting annual screening by density yielded similar outcomes to targeting by age. Annual screening approaches could increase costs to $5.26 million per 1000 women, in part because of higher numbers of screens and false positives, and were not efficient or cost-effective. The transition to digital breast cancer screening in the United States increased total costs for small added health benefits. The value of digital mammography screening among women aged 40 to 49 years depends on women's preferences regarding false positives. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Expeditious illustration of layer-cake models on and above a tactile surface

    NASA Astrophysics Data System (ADS)

    Lopes, Daniel Simões; Mendes, Daniel; Sousa, Maurício; Jorge, Joaquim

    2016-05-01

    Too often illustrating and visualizing 3D geological concepts are performed by sketching in 2D mediums, which may limit drawing performance of initial concepts. Here, the potential of expeditious geological modeling brought by hand gestures is explored. A spatial interaction system was developed to enable rapid modeling, editing, and exploration of 3D layer-cake objects. User interactions are acquired with motion capture and touch screen technologies. Virtual immersion is guaranteed by using stereoscopic technology. The novelty consists of performing expeditious modeling of coarse geological features with only a limited set of hand gestures. Results from usability-studies show that the proposed system is more efficient when compared to a windows-icon-menu-pointer modeling application.

  4. Options in virtual 3D, optical-impression-based planning of dental implants.

    PubMed

    Reich, Sven; Kern, Thomas; Ritter, Lutz

    2014-01-01

    If a 3D radiograph, which in today's dentistry often consists of a CBCT dataset, is available for computerized implant planning, the 3D planning should also consider functional prosthetic aspects. In a conventional workflow, the CBCT is done with a specially produced radiopaque prosthetic setup that makes the desired prosthetic situation visible during virtual implant planning. If an exclusively digital workflow is chosen, intraoral digital impressions are taken. On these digital models, the desired prosthetic suprastructures are designed. The entire datasets are virtually superimposed by a "registration" process on the corresponding structures (teeth) in the CBCTs. Thus, both the osseous and prosthetic structures are visible in one single 3D application and make it possible to consider surgical and prosthetic aspects. After having determined the implant positions on the computer screen, a drilling template is designed digitally. According to this design (CAD), a template is printed or milled in CAM process. This template is the first physically extant product in the entire workflow. The article discusses the options and limitations of this workflow.

  5. The development, assessment and validation of virtual reality for human anatomy instruction

    NASA Technical Reports Server (NTRS)

    Marshall, Karen Benn

    1996-01-01

    This research project seeks to meet the objective of science training by developing, assessing, validating and utilizing VR as a human anatomy training medium. Current anatomy instruction is primarily in the form of lectures and usage of textbooks. In ideal situations, anatomic models, computer-based instruction, and cadaver dissection are utilized to augment traditional methods of instruction. At many institutions, lack of financial resources limits anatomy instruction to textbooks and lectures. However, human anatomy is three-dimensional, unlike the one-dimensional depiction found in textbooks and the two-dimensional depiction found on the computer. Virtual reality allows one to step through the computer screen into a 3-D artificial world. The primary objective of this project is to produce a virtual reality application of the abdominopelvic region of a human cadaver that can be taken back to the classroom. The hypothesis is that an immersive learning environment affords quicker anatomic recognition and orientation and a greater level of retention in human anatomy instruction. The goal is to augment not replace traditional modes of instruction.

  6. Dark Energy and Dark Matter as w = -1 Virtual Particles and the World Hologram Model

    NASA Astrophysics Data System (ADS)

    Sarfatti, Jack

    2011-04-01

    The elementary physics battle-tested principles of Lorentz invariance, Einstein equivalence principle and the boson commutation and fermion anti-commutation rules of quantum field theory explain gravitationally repulsive dark energy as virtual bosons and gravitationally attractive dark matter as virtual fermion-antifermion pairs. The small dark energy density in our past light cone is the reciprocal entropy-area of our future light cone's 2D future event horizon in a Novikov consistent loop in time in our accelerating universe. Yakir Aharonov's "back-from-the-future" post-selected final boundary condition is set at our observer-dependent future horizon that also explains why the irreversible thermodynamic arrow of time of is aligned with the accelerating dark energy expansion of the bulk 3D space interior to our future 2D horizon surrounding it as the hologram screen. Seth Lloyd has argued that all 2D horizon surrounding surfaces are pixelated quantum computers projecting interior bulk 3D quanta of volume (Planck area)Sqrt(area of future horizon) as their hologram images in 1-1 correspondence.

  7. Computational modeling-based discovery of novel classes of anti-inflammatory drugs that target lanthionine synthetase C-like protein 2.

    PubMed

    Lu, Pinyi; Hontecillas, Raquel; Horne, William T; Carbo, Adria; Viladomiu, Monica; Pedragosa, Mireia; Bevan, David R; Lewis, Stephanie N; Bassaganya-Riera, Josep

    2012-01-01

    Lanthionine synthetase component C-like protein 2 (LANCL2) is a member of the eukaryotic lanthionine synthetase component C-Like protein family involved in signal transduction and insulin sensitization. Recently, LANCL2 is a target for the binding and signaling of abscisic acid (ABA), a plant hormone with anti-diabetic and anti-inflammatory effects. The goal of this study was to determine the role of LANCL2 as a potential therapeutic target for developing novel drugs and nutraceuticals against inflammatory diseases. Previously, we performed homology modeling to construct a three-dimensional structure of LANCL2 using the crystal structure of lanthionine synthetase component C-like protein 1 (LANCL1) as a template. Using this model, structure-based virtual screening was performed using compounds from NCI (National Cancer Institute) Diversity Set II, ChemBridge, ZINC natural products, and FDA-approved drugs databases. Several potential ligands were identified using molecular docking. In order to validate the anti-inflammatory efficacy of the top ranked compound (NSC61610) in the NCI Diversity Set II, a series of in vitro and pre-clinical efficacy studies were performed using a mouse model of dextran sodium sulfate (DSS)-induced colitis. Our findings showed that the lead compound, NSC61610, activated peroxisome proliferator-activated receptor gamma in a LANCL2- and adenylate cyclase/cAMP dependent manner in vitro and ameliorated experimental colitis by down-modulating colonic inflammatory gene expression and favoring regulatory T cell responses. LANCL2 is a novel therapeutic target for inflammatory diseases. High-throughput, structure-based virtual screening is an effective computational-based drug design method for discovering anti-inflammatory LANCL2-based drug candidates.

  8. Computational Modeling-Based Discovery of Novel Classes of Anti-Inflammatory Drugs That Target Lanthionine Synthetase C-Like Protein 2

    PubMed Central

    Lu, Pinyi; Hontecillas, Raquel; Horne, William T.; Carbo, Adria; Viladomiu, Monica; Pedragosa, Mireia; Bevan, David R.; Lewis, Stephanie N.; Bassaganya-Riera, Josep

    2012-01-01

    Background Lanthionine synthetase component C-like protein 2 (LANCL2) is a member of the eukaryotic lanthionine synthetase component C-Like protein family involved in signal transduction and insulin sensitization. Recently, LANCL2 is a target for the binding and signaling of abscisic acid (ABA), a plant hormone with anti-diabetic and anti-inflammatory effects. Methodology/Principal Findings The goal of this study was to determine the role of LANCL2 as a potential therapeutic target for developing novel drugs and nutraceuticals against inflammatory diseases. Previously, we performed homology modeling to construct a three-dimensional structure of LANCL2 using the crystal structure of lanthionine synthetase component C-like protein 1 (LANCL1) as a template. Using this model, structure-based virtual screening was performed using compounds from NCI (National Cancer Institute) Diversity Set II, ChemBridge, ZINC natural products, and FDA-approved drugs databases. Several potential ligands were identified using molecular docking. In order to validate the anti-inflammatory efficacy of the top ranked compound (NSC61610) in the NCI Diversity Set II, a series of in vitro and pre-clinical efficacy studies were performed using a mouse model of dextran sodium sulfate (DSS)-induced colitis. Our findings showed that the lead compound, NSC61610, activated peroxisome proliferator-activated receptor gamma in a LANCL2- and adenylate cyclase/cAMP dependent manner in vitro and ameliorated experimental colitis by down-modulating colonic inflammatory gene expression and favoring regulatory T cell responses. Conclusions/Significance LANCL2 is a novel therapeutic target for inflammatory diseases. High-throughput, structure-based virtual screening is an effective computational-based drug design method for discovering anti-inflammatory LANCL2-based drug candidates. PMID:22509338

  9. DOCKTITE-a highly versatile step-by-step workflow for covalent docking and virtual screening in the molecular operating environment.

    PubMed

    Scholz, Christoph; Knorr, Sabine; Hamacher, Kay; Schmidt, Boris

    2015-02-23

    The formation of a covalent bond with the target is essential for a number of successful drugs, yet tools for covalent docking without significant restrictions regarding warhead or receptor classes are rare and limited in use. In this work we present DOCKTITE, a highly versatile workflow for covalent docking in the Molecular Operating Environment (MOE) combining automated warhead screening, nucleophilic side chain attachment, pharmacophore-based docking, and a novel consensus scoring approach. The comprehensive validation study includes pose predictions of 35 protein/ligand complexes which resulted in a mean RMSD of 1.74 Å and a prediction rate of 71.4% with an RMSD below 2 Å, a virtual screening with an area under the curve (AUC) for the receiver operating characteristics (ROC) of 0.81, and a significant correlation between predicted and experimental binding affinities (ρ = 0.806, R(2) = 0.649, p < 0.005).

  10. In silico identification of novel ligands for G-quadruplex in the c- MYC promoter

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Jin; Park, Hyun-Ju

    2015-04-01

    G-quadruplex DNA formed in NHEIII1 region of oncogene promoter inhibits transcription of the genes. In this study, virtual screening combining pharmacophore-based search and structure-based docking screening was conducted to discover ligands binding to G-quadruplex in promoter region of c- MYC. Several hit ligands showed the selective PCR-arresting effects for oligonucleotide containing c- MYC G-quadruplex forming sequence. Among them, three hits selectively inhibited cell proliferation and decreased c- MYC mRNA level in Ramos cells, where NHEIII1 is included in translocated c- MYC gene for overexpression. Promoter assay using two kinds of constructs with wild-type and mutant sequences showed that interaction of these ligands with the G-quadruplex resulted in turning-off of the reporter gene. In conclusion, combined virtual screening methods were successfully used for discovery of selective c- MYC promoter G-quadruplex binders with anticancer activity.

  11. Improving the accuracy of ultrafast ligand-based screening: incorporating lipophilicity into ElectroShape as an extra dimension.

    PubMed

    Armstrong, M Stuart; Finn, Paul W; Morris, Garrett M; Richards, W Graham

    2011-08-01

    In a previous paper, we presented the ElectroShape method, which we used to achieve successful ligand-based virtual screening. It extended classical shape-based methods by applying them to the four-dimensional shape of the molecule where partial charge was used as the fourth dimension to capture electrostatic information. This paper extends the approach by using atomic lipophilicity (alogP) as an additional molecular property and validates it using the improved release 2 of the Directory of Useful Decoys (DUD). When alogP replaced partial charge, the enrichment results were slightly below those of ElectroShape, though still far better than purely shape-based methods. However, when alogP was added as a complement to partial charge, the resulting five-dimensional enrichments shows a clear improvement in performance. This demonstrates the utility of extending the ElectroShape virtual screening method by adding other atom-based descriptors.

  12. PhAST: pharmacophore alignment search tool.

    PubMed

    Hähnke, Volker; Hofmann, Bettina; Grgat, Tomislav; Proschak, Ewgenij; Steinhilber, Dieter; Schneider, Gisbert

    2009-04-15

    We present a ligand-based virtual screening technique (PhAST) for rapid hit and lead structure searching in large compound databases. Molecules are represented as strings encoding the distribution of pharmacophoric features on the molecular graph. In contrast to other text-based methods using SMILES strings, we introduce a new form of text representation that describes the pharmacophore of molecules. This string representation opens the opportunity for revealing functional similarity between molecules by sequence alignment techniques in analogy to homology searching in protein or nucleic acid sequence databases. We favorably compared PhAST with other current ligand-based virtual screening methods in a retrospective analysis using the BEDROC metric. In a prospective application, PhAST identified two novel inhibitors of 5-lipoxygenase product formation with minimal experimental effort. This outcome demonstrates the applicability of PhAST to drug discovery projects and provides an innovative concept of sequence-based compound screening with substantial scaffold hopping potential. 2008 Wiley Periodicals, Inc.

  13. Navigation system for robot-assisted intra-articular lower-limb fracture surgery.

    PubMed

    Dagnino, Giulio; Georgilas, Ioannis; Köhler, Paul; Morad, Samir; Atkins, Roger; Dogramadzi, Sanja

    2016-10-01

    In the surgical treatment for lower-leg intra-articular fractures, the fragments have to be positioned and aligned to reconstruct the fractured bone as precisely as possible, to allow the joint to function correctly again. Standard procedures use 2D radiographs to estimate the desired reduction position of bone fragments. However, optimal correction in a 3D space requires 3D imaging. This paper introduces a new navigation system that uses pre-operative planning based on 3D CT data and intra-operative 3D guidance to virtually reduce lower-limb intra-articular fractures. Physical reduction in the fractures is then performed by our robotic system based on the virtual reduction. 3D models of bone fragments are segmented from CT scan. Fragments are pre-operatively visualized on the screen and virtually manipulated by the surgeon through a dedicated GUI to achieve the virtual reduction in the fracture. Intra-operatively, the actual position of the bone fragments is provided by an optical tracker enabling real-time 3D guidance. The motion commands for the robot connected to the bone fragment are generated, and the fracture physically reduced based on the surgeon's virtual reduction. To test the system, four femur models were fractured to obtain four different distal femur fracture types. Each one of them was subsequently reduced 20 times by a surgeon using our system. The navigation system allowed an orthopaedic surgeon to virtually reduce the fracture with a maximum residual positioning error of [Formula: see text] (translational) and [Formula: see text] (rotational). Correspondent physical reductions resulted in an accuracy of 1.03 ± 0.2 mm and [Formula: see text], when the robot reduced the fracture. Experimental outcome demonstrates the accuracy and effectiveness of the proposed navigation system, presenting a fracture reduction accuracy of about 1 mm and [Formula: see text], and meeting the clinical requirements for distal femur fracture reduction procedures.

  14. Design of a Generic Questionnaire for Reflective Evaluation of a Virtual Reality-Based Intervention Using Virtual Dolphins for Children with Autism

    ERIC Educational Resources Information Center

    Chia, Noel Kok Hwee; Li, Jenyi

    2012-01-01

    There is an alarming increase in more Singaporean children diagnosed with special needs and it could be attributed to higher awareness and better screening procedure. However, research and development on various intervention strategies for children with special needs is still very lacking. With the introduction of information and communication…

  15. 2D and 3D Traveling Salesman Problem

    ERIC Educational Resources Information Center

    Haxhimusa, Yll; Carpenter, Edward; Catrambone, Joseph; Foldes, David; Stefanov, Emil; Arns, Laura; Pizlo, Zygmunt

    2011-01-01

    When a two-dimensional (2D) traveling salesman problem (TSP) is presented on a computer screen, human subjects can produce near-optimal tours in linear time. In this study we tested human performance on a real and virtual floor, as well as in a three-dimensional (3D) virtual space. Human performance on the real floor is as good as that on a…

  16. Virtual Screening of compounds to 1-deoxy-Dxylulose 5-phosphate reductoisomerase (DXR) from Plasmodium falciparum.

    PubMed

    Chaudhary, Kamal Kumar; Prasad, C V S Siva

    2014-01-01

    The 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) protein (Gen Bank ID AAN37254.1) from Plasmodium falciparum is a potential drug target. Therefore, it is of interest to screen DXR against a virtual library of compounds (at the ZINC database) for potential binders as possible inhibitors. This exercise helped to choose 10 top ranking molecules with ZINC00200163 [N-(2,2di methoxy ethyl)-6-methyl-2, 3, 4, 9-tetrahydro-1H-carbazol-1-amine] a having good fit (-6.43 KJ/mol binding energy) with the target protein. Thus, ZINC00200163 is identified as a potential molecule for further comprehensive characterization and in-depth analysis.

  17. Virtual Screening and X-ray Crystallography for Human Kallikrein 6 Inhibitors with an Amidinothiophene P1 Group.

    PubMed

    Liang, Guyan; Chen, Xin; Aldous, Suzanne; Pu, Su-Fen; Mehdi, Shujaath; Powers, Elaine; Giovanni, Andrew; Kongsamut, Sathapana; Xia, Tianhui; Zhang, Ying; Wang, Rachel; Gao, Zhongli; Merriman, Gregory; McLean, Larry R; Morize, Isabelle

    2012-02-09

    A series of compounds with an amidinothiophene P1 group and a pyrrolidinone-sulphonamide scaffold linker was identified as potent inhibitors of human kallikrein 6 by structure-based virtual screening based on the union accessible binding space of serine proteases. As the first series of potent nonmechanism-based hK6 inhibitors, they may be used as tool compounds for target validation. An X-ray structure of a representative compound complexed with hK6, resolved at a resolution of 1.88 Å, revealed that the amidinothiophene moiety bound in the S1 pocket and the pyrrolidinone-sulphonamide linker projected the aromatic tail into the S' pocket.

  18. Development and Application of a Virtual Screening Protocol for the Identification of Multitarget Fragments.

    PubMed

    Bottegoni, Giovanni; Veronesi, Marina; Bisignano, Paola; Kacker, Puneet; Favia, Angelo D; Cavalli, Andrea

    2016-06-20

    In this study, we report on a virtual ligand screening protocol optimized to identify fragments endowed with activity at multiple targets. Thanks to this protocol, we were able to identify a fragment that displays activity in the low-micromolar range at both β-secretase 1 (BACE-1) and glycogen synthase kinase 3β (GSK-3β). These two structurally and physiologically unrelated enzymes likely contribute, through different pathways, to the onset of Alzheimer's disease (AD). Therefore, their simultaneous inhibition holds great potential in exerting a profound effect on AD. In perspective, the strategy outlined herein can be adapted to other target combinations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ligand-based virtual screening and in silico design of new antimalarial compounds using nonstochastic and stochastic total and atom-type quadratic maps.

    PubMed

    Marrero-Ponce, Yovani; Iyarreta-Veitía, Maité; Montero-Torres, Alina; Romero-Zaldivar, Carlos; Brandt, Carlos A; Avila, Priscilla E; Kirchgatter, Karin; Machado, Yanetsy

    2005-01-01

    Malaria has been one of the most significant public health problems for centuries. It affects many tropical and subtropical regions of the world. The increasing resistance of Plasmodium spp. to existing therapies has heightened alarms about malaria in the international health community. Nowadays, there is a pressing need for identifying and developing new drug-based antimalarial therapies. In an effort to overcome this problem, the main purpose of this study is to develop simple linear discriminant-based quantitative structure-activity relationship (QSAR) models for the classification and prediction of antimalarial activity using some of the TOMOCOMD-CARDD (TOpological MOlecular COMputer Design-Computer Aided "Rational" Drug Design) fingerprints, so as to enable computational screening from virtual combinatorial datasets. In this sense, a database of 1562 organic chemicals having great structural variability, 597 of them antimalarial agents and 965 compounds having other clinical uses, was analyzed and presented as a helpful tool, not only for theoretical chemists but also for other researchers in this area. This series of compounds was processed by a k-means cluster analysis in order to design training and predicting sets. Afterward, two linear classification functions were derived in order to discriminate between antimalarial and nonantimalarial compounds. The models (including nonstochastic and stochastic indices) correctly classify more than 93% of the compound set, in both training and external prediction datasets. They showed high Matthews' correlation coefficients, 0.889 and 0.866 for the training set and 0.855 and 0.857 for the test one. The models' predictivity was also assessed and validated by the random removal of 10% of the compounds to form a new test set, for which predictions were made using the models. The overall means of the correct classification for this process (leave group 10% full-out cross validation) using the equations with nonstochastic and stochastic atom-based quadratic fingerprints were 93.93% and 92.77%, respectively. The quadratic maps-based TOMOCOMD-CARDD approach implemented in this work was successfully compared with four of the most useful models for antimalarials selection reported to date. The developed models were then used in a simulation of a virtual search for Ras FTase (FTase = farnesyltransferase) inhibitors with antimalarial activity; 70% and 100% of the 10 inhibitors used in this virtual search were correctly classified, showing the ability of the models to identify new lead antimalarials. Finally, these two QSAR models were used in the identification of previously unknown antimalarials. In this sense, three synthetic intermediaries of quinolinic compounds were evaluated as active/inactive ones using the developed models. The synthesis and biological evaluation of these chemicals against two malaria strains, using chloroquine as a reference, was performed. An accuracy of 100% with the theoretical predictions was observed. Compound 3 showed antimalarial activity, being the first report of an arylaminomethylenemalonate having such behavior. This result opens a door to a virtual study considering a higher variability of the structural core already evaluated, as well as of other chemicals not included in this study. We conclude that the approach described here seems to be a promising QSAR tool for the molecular discovery of novel classes of antimalarial drugs, which may meet the dual challenges posed by drug-resistant parasites and the rapid progression of malaria illnesses.

  20. Identifying potential selective fluorescent probes for cancer-associated protein carbonic anhydrase IX using a computational approach.

    PubMed

    Kamstra, Rhiannon L; Floriano, Wely B

    2014-11-01

    Carbonic anhydrase IX (CAIX) is a biomarker for tumor hypoxia. Fluorescent inhibitors of CAIX have been used to study hypoxic tumor cell lines. However, these inhibitor-based fluorescent probes may have a therapeutic effect that is not appropriate for monitoring treatment efficacy. In the search for novel fluorescent probes that are not based on known inhibitors, a database of 20,860 fluorescent compounds was virtually screened against CAIX using hierarchical virtual ligand screening (HierVLS). The screening database contained 14,862 compounds tagged with the ATTO680 fluorophore plus an additional 5998 intrinsically fluorescent compounds. Overall ranking of compounds to identify hit molecular probe candidates utilized a principal component analysis (PCA) approach. Four potential binding sites, including the catalytic site, were identified within the structure of the protein and targeted for virtual screening. Available sequence information for 23 carbonic anhydrase isoforms was used to prioritize the four sites based on the estimated "uniqueness" of each site in CAIX relative to the other isoforms. A database of 32 known inhibitors and 478 decoy compounds was used to validate the methodology. A receiver-operating characteristic (ROC) analysis using the first principal component (PC1) as predictive score for the validation database yielded an area under the curve (AUC) of 0.92. AUC is interpreted as the probability that a binder will have a better score than a non-binder. The use of first component analysis of binding energies for multiple sites is a novel approach for hit selection. The very high prediction power for this approach increases confidence in the outcome from the fluorescent library screening. Ten of the top scoring candidates for isoform-selective putative binding sites are suggested for future testing as fluorescent molecular probe candidates. Copyright © 2014 Elsevier Inc. All rights reserved.

Top