A Novel BA Complex Network Model on Color Template Matching
Han, Risheng; Yue, Guangxue; Ding, Hui
2014-01-01
A novel BA complex network model of color space is proposed based on two fundamental rules of BA scale-free network model: growth and preferential attachment. The scale-free characteristic of color space is discovered by analyzing evolving process of template's color distribution. And then the template's BA complex network model can be used to select important color pixels which have much larger effects than other color pixels in matching process. The proposed BA complex network model of color space can be easily integrated into many traditional template matching algorithms, such as SSD based matching and SAD based matching. Experiments show the performance of color template matching results can be improved based on the proposed algorithm. To the best of our knowledge, this is the first study about how to model the color space of images using a proper complex network model and apply the complex network model to template matching. PMID:25243235
A novel BA complex network model on color template matching.
Han, Risheng; Shen, Shigen; Yue, Guangxue; Ding, Hui
2014-01-01
A novel BA complex network model of color space is proposed based on two fundamental rules of BA scale-free network model: growth and preferential attachment. The scale-free characteristic of color space is discovered by analyzing evolving process of template's color distribution. And then the template's BA complex network model can be used to select important color pixels which have much larger effects than other color pixels in matching process. The proposed BA complex network model of color space can be easily integrated into many traditional template matching algorithms, such as SSD based matching and SAD based matching. Experiments show the performance of color template matching results can be improved based on the proposed algorithm. To the best of our knowledge, this is the first study about how to model the color space of images using a proper complex network model and apply the complex network model to template matching.
A simple model clarifies the complicated relationships of complex networks
Zheng, Bojin; Wu, Hongrun; Kuang, Li; Qin, Jun; Du, Wenhua; Wang, Jianmin; Li, Deyi
2014-01-01
Real-world networks such as the Internet and WWW have many common traits. Until now, hundreds of models were proposed to characterize these traits for understanding the networks. Because different models used very different mechanisms, it is widely believed that these traits origin from different causes. However, we find that a simple model based on optimisation can produce many traits, including scale-free, small-world, ultra small-world, Delta-distribution, compact, fractal, regular and random networks. Moreover, by revising the proposed model, the community-structure networks are generated. By this model and the revised versions, the complicated relationships of complex networks are illustrated. The model brings a new universal perspective to the understanding of complex networks and provide a universal method to model complex networks from the viewpoint of optimisation. PMID:25160506
Dense power-law networks and simplicial complexes
NASA Astrophysics Data System (ADS)
Courtney, Owen T.; Bianconi, Ginestra
2018-05-01
There is increasing evidence that dense networks occur in on-line social networks, recommendation networks and in the brain. In addition to being dense, these networks are often also scale-free, i.e., their degree distributions follow P (k ) ∝k-γ with γ ∈(1 ,2 ] . Models of growing networks have been successfully employed to produce scale-free networks using preferential attachment, however these models can only produce sparse networks as the numbers of links and nodes being added at each time step is constant. Here we present a modeling framework which produces networks that are both dense and scale-free. The mechanism by which the networks grow in this model is based on the Pitman-Yor process. Variations on the model are able to produce undirected scale-free networks with exponent γ =2 or directed networks with power-law out-degree distribution with tunable exponent γ ∈(1 ,2 ) . We also extend the model to that of directed two-dimensional simplicial complexes. Simplicial complexes are generalization of networks that can encode the many body interactions between the parts of a complex system and as such are becoming increasingly popular to characterize different data sets ranging from social interacting systems to the brain. Our model produces dense directed simplicial complexes with power-law distribution of the generalized out-degrees of the nodes.
Evolving Scale-Free Networks by Poisson Process: Modeling and Degree Distribution.
Feng, Minyu; Qu, Hong; Yi, Zhang; Xie, Xiurui; Kurths, Jurgen
2016-05-01
Since the great mathematician Leonhard Euler initiated the study of graph theory, the network has been one of the most significant research subject in multidisciplinary. In recent years, the proposition of the small-world and scale-free properties of complex networks in statistical physics made the network science intriguing again for many researchers. One of the challenges of the network science is to propose rational models for complex networks. In this paper, in order to reveal the influence of the vertex generating mechanism of complex networks, we propose three novel models based on the homogeneous Poisson, nonhomogeneous Poisson and birth death process, respectively, which can be regarded as typical scale-free networks and utilized to simulate practical networks. The degree distribution and exponent are analyzed and explained in mathematics by different approaches. In the simulation, we display the modeling process, the degree distribution of empirical data by statistical methods, and reliability of proposed networks, results show our models follow the features of typical complex networks. Finally, some future challenges for complex systems are discussed.
Small-time Scale Network Traffic Prediction Based on Complex-valued Neural Network
NASA Astrophysics Data System (ADS)
Yang, Bin
2017-07-01
Accurate models play an important role in capturing the significant characteristics of the network traffic, analyzing the network dynamic, and improving the forecasting accuracy for system dynamics. In this study, complex-valued neural network (CVNN) model is proposed to further improve the accuracy of small-time scale network traffic forecasting. Artificial bee colony (ABC) algorithm is proposed to optimize the complex-valued and real-valued parameters of CVNN model. Small-scale traffic measurements data namely the TCP traffic data is used to test the performance of CVNN model. Experimental results reveal that CVNN model forecasts the small-time scale network traffic measurement data very accurately
Li, Zhenping; Zhang, Xiang-Sun; Wang, Rui-Sheng; Liu, Hongwei; Zhang, Shihua
2013-01-01
Identification of communities in complex networks is an important topic and issue in many fields such as sociology, biology, and computer science. Communities are often defined as groups of related nodes or links that correspond to functional subunits in the corresponding complex systems. While most conventional approaches have focused on discovering communities of nodes, some recent studies start partitioning links to find overlapping communities straightforwardly. In this paper, we propose a new quantity function for link community identification in complex networks. Based on this quantity function we formulate the link community partition problem into an integer programming model which allows us to partition a complex network into overlapping communities. We further propose a genetic algorithm for link community detection which can partition a network into overlapping communities without knowing the number of communities. We test our model and algorithm on both artificial networks and real-world networks. The results demonstrate that the model and algorithm are efficient in detecting overlapping community structure in complex networks. PMID:24386268
Epidemic threshold of the susceptible-infected-susceptible model on complex networks
NASA Astrophysics Data System (ADS)
Lee, Hyun Keun; Shim, Pyoung-Seop; Noh, Jae Dong
2013-06-01
We demonstrate that the susceptible-infected-susceptible (SIS) model on complex networks can have an inactive Griffiths phase characterized by a slow relaxation dynamics. It contrasts with the mean-field theoretical prediction that the SIS model on complex networks is active at any nonzero infection rate. The dynamic fluctuation of infected nodes, ignored in the mean field approach, is responsible for the inactive phase. It is proposed that the question whether the epidemic threshold of the SIS model on complex networks is zero or not can be resolved by the percolation threshold in a model where nodes are occupied in degree-descending order. Our arguments are supported by the numerical studies on scale-free network models.
Network model of bilateral power markets based on complex networks
NASA Astrophysics Data System (ADS)
Wu, Yang; Liu, Junyong; Li, Furong; Yan, Zhanxin; Zhang, Li
2014-06-01
The bilateral power transaction (BPT) mode becomes a typical market organization with the restructuring of electric power industry, the proper model which could capture its characteristics is in urgent need. However, the model is lacking because of this market organization's complexity. As a promising approach to modeling complex systems, complex networks could provide a sound theoretical framework for developing proper simulation model. In this paper, a complex network model of the BPT market is proposed. In this model, price advantage mechanism is a precondition. Unlike other general commodity transactions, both of the financial layer and the physical layer are considered in the model. Through simulation analysis, the feasibility and validity of the model are verified. At same time, some typical statistical features of BPT network are identified. Namely, the degree distribution follows the power law, the clustering coefficient is low and the average path length is a bit long. Moreover, the topological stability of the BPT network is tested. The results show that the network displays a topological robustness to random market member's failures while it is fragile against deliberate attacks, and the network could resist cascading failure to some extent. These features are helpful for making decisions and risk management in BPT markets.
NASA Astrophysics Data System (ADS)
Yasami, Yasser; Safaei, Farshad
2018-02-01
The traditional complex network theory is particularly focused on network models in which all network constituents are dealt with equivalently, while fail to consider the supplementary information related to the dynamic properties of the network interactions. This is a main constraint leading to incorrect descriptions of some real-world phenomena or incomplete capturing the details of certain real-life problems. To cope with the problem, this paper addresses the multilayer aspects of dynamic complex networks by analyzing the properties of intrinsically multilayered co-authorship networks, DBLP and Astro Physics, and presenting a novel multilayer model of dynamic complex networks. The model examines the layers evolution (layers birth/death process and lifetime) throughout the network evolution. Particularly, this paper models the evolution of each node's membership in different layers by an Infinite Factorial Hidden Markov Model considering feature cascade, and thereby formulates the link generation process for intra-layer and inter-layer links. Although adjacency matrixes are useful to describe the traditional single-layer networks, such a representation is not sufficient to describe and analyze the multilayer dynamic networks. This paper also extends a generalized mathematical infrastructure to address the problems issued by multilayer complex networks. The model inference is performed using some Markov Chain Monte Carlo sampling strategies, given synthetic and real complex networks data. Experimental results indicate a tremendous improvement in the performance of the proposed multilayer model in terms of sensitivity, specificity, positive and negative predictive values, positive and negative likelihood ratios, F1-score, Matthews correlation coefficient, and accuracy for two important applications of missing link prediction and future link forecasting. The experimental results also indicate the strong predictivepower of the proposed model for the application of cascade prediction in terms of accuracy.
Turing instability in reaction-diffusion models on complex networks
NASA Astrophysics Data System (ADS)
Ide, Yusuke; Izuhara, Hirofumi; Machida, Takuya
2016-09-01
In this paper, the Turing instability in reaction-diffusion models defined on complex networks is studied. Here, we focus on three types of models which generate complex networks, i.e. the Erdős-Rényi, the Watts-Strogatz, and the threshold network models. From analysis of the Laplacian matrices of graphs generated by these models, we numerically reveal that stable and unstable regions of a homogeneous steady state on the parameter space of two diffusion coefficients completely differ, depending on the network architecture. In addition, we theoretically discuss the stable and unstable regions in the cases of regular enhanced ring lattices which include regular circles, and networks generated by the threshold network model when the number of vertices is large enough.
Modeling complexity in engineered infrastructure system: Water distribution network as an example
NASA Astrophysics Data System (ADS)
Zeng, Fang; Li, Xiang; Li, Ke
2017-02-01
The complex topology and adaptive behavior of infrastructure systems are driven by both self-organization of the demand and rigid engineering solutions. Therefore, engineering complex systems requires a method balancing holism and reductionism. To model the growth of water distribution networks, a complex network model was developed following the combination of local optimization rules and engineering considerations. The demand node generation is dynamic and follows the scaling law of urban growth. The proposed model can generate a water distribution network (WDN) similar to reported real-world WDNs on some structural properties. Comparison with different modeling approaches indicates that a realistic demand node distribution and co-evolvement of demand node and network are important for the simulation of real complex networks. The simulation results indicate that the efficiency of water distribution networks is exponentially affected by the urban growth pattern. On the contrary, the improvement of efficiency by engineering optimization is limited and relatively insignificant. The redundancy and robustness, on another aspect, can be significantly improved through engineering methods.
Deterministic ripple-spreading model for complex networks.
Hu, Xiao-Bing; Wang, Ming; Leeson, Mark S; Hines, Evor L; Di Paolo, Ezequiel
2011-04-01
This paper proposes a deterministic complex network model, which is inspired by the natural ripple-spreading phenomenon. The motivations and main advantages of the model are the following: (i) The establishment of many real-world networks is a dynamic process, where it is often observed that the influence of a few local events spreads out through nodes, and then largely determines the final network topology. Obviously, this dynamic process involves many spatial and temporal factors. By simulating the natural ripple-spreading process, this paper reports a very natural way to set up a spatial and temporal model for such complex networks. (ii) Existing relevant network models are all stochastic models, i.e., with a given input, they cannot output a unique topology. Differently, the proposed ripple-spreading model can uniquely determine the final network topology, and at the same time, the stochastic feature of complex networks is captured by randomly initializing ripple-spreading related parameters. (iii) The proposed model can use an easily manageable number of ripple-spreading related parameters to precisely describe a network topology, which is more memory efficient when compared with traditional adjacency matrix or similar memory-expensive data structures. (iv) The ripple-spreading model has a very good potential for both extensions and applications.
Laghari, Samreen; Niazi, Muaz A
2016-01-01
Computer Networks have a tendency to grow at an unprecedented scale. Modern networks involve not only computers but also a wide variety of other interconnected devices ranging from mobile phones to other household items fitted with sensors. This vision of the "Internet of Things" (IoT) implies an inherent difficulty in modeling problems. It is practically impossible to implement and test all scenarios for large-scale and complex adaptive communication networks as part of Complex Adaptive Communication Networks and Environments (CACOONS). The goal of this study is to explore the use of Agent-based Modeling as part of the Cognitive Agent-based Computing (CABC) framework to model a Complex communication network problem. We use Exploratory Agent-based Modeling (EABM), as part of the CABC framework, to develop an autonomous multi-agent architecture for managing carbon footprint in a corporate network. To evaluate the application of complexity in practical scenarios, we have also introduced a company-defined computer usage policy. The conducted experiments demonstrated two important results: Primarily CABC-based modeling approach such as using Agent-based Modeling can be an effective approach to modeling complex problems in the domain of IoT. Secondly, the specific problem of managing the Carbon footprint can be solved using a multiagent system approach.
Structural Behavioral Study on the General Aviation Network Based on Complex Network
NASA Astrophysics Data System (ADS)
Zhang, Liang; Lu, Na
2017-12-01
The general aviation system is an open and dissipative system with complex structures and behavioral features. This paper has established the system model and network model for general aviation. We have analyzed integral attributes and individual attributes by applying the complex network theory and concluded that the general aviation network has influential enterprise factors and node relations. We have checked whether the network has small world effect, scale-free property and network centrality property which a complex network should have by applying degree distribution of functions and proved that the general aviation network system is a complex network. Therefore, we propose to achieve the evolution process of the general aviation industrial chain to collaborative innovation cluster of advanced-form industries by strengthening network multiplication effect, stimulating innovation performance and spanning the structural hole path.
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia (Technical Monitor); Kuby, Michael; Tierney, Sean; Roberts, Tyler; Upchurch, Christopher
2005-01-01
This report reviews six classes of models that are used for studying transportation network topologies. The report is motivated by two main questions. First, what can the "new science" of complex networks (scale-free, small-world networks) contribute to our understanding of transport network structure, compared to more traditional methods? Second, how can geographic information systems (GIS) contribute to studying transport networks? The report defines terms that can be used to classify different kinds of models by their function, composition, mechanism, spatial and temporal dimensions, certainty, linearity, and resolution. Six broad classes of models for analyzing transport network topologies are then explored: GIS; static graph theory; complex networks; mathematical programming; simulation; and agent-based modeling. Each class of models is defined and classified according to the attributes introduced earlier. The paper identifies some typical types of research questions about network structure that have been addressed by each class of model in the literature.
NASA Astrophysics Data System (ADS)
Wang, Guanghui; Wang, Yufei; Liu, Yijun; Chi, Yuxue
2018-05-01
As the transmission of public opinion on the Internet in the “We the Media” era tends to be supraterritorial, concealed and complex, the traditional “point-to-surface” transmission of information has been transformed into “point-to-point” reciprocal transmission. A foundation for studies of the evolution of public opinion and its transmission on the Internet in the “We the Media” era can be laid by converting the massive amounts of fragmented information on public opinion that exists on “We the Media” platforms into structurally complex networks of information. This paper describes studies of structurally complex network-based modeling of public opinion on the Internet in the “We the Media” era from the perspective of the development and evolution of complex networks. The progress that has been made in research projects relevant to the structural modeling of public opinion on the Internet is comprehensively summarized. The review considers aspects such as regular grid-based modeling of the rules that describe the propagation of public opinion on the Internet in the “We the Media” era, social network modeling, dynamic network modeling, and supernetwork modeling. Moreover, an outlook for future studies that address complex network-based modeling of public opinion on the Internet is put forward as a summary from the perspective of modeling conducted using the techniques mentioned above.
Sampling from complex networks using distributed learning automata
NASA Astrophysics Data System (ADS)
Rezvanian, Alireza; Rahmati, Mohammad; Meybodi, Mohammad Reza
2014-02-01
A complex network provides a framework for modeling many real-world phenomena in the form of a network. In general, a complex network is considered as a graph of real world phenomena such as biological networks, ecological networks, technological networks, information networks and particularly social networks. Recently, major studies are reported for the characterization of social networks due to a growing trend in analysis of online social networks as dynamic complex large-scale graphs. Due to the large scale and limited access of real networks, the network model is characterized using an appropriate part of a network by sampling approaches. In this paper, a new sampling algorithm based on distributed learning automata has been proposed for sampling from complex networks. In the proposed algorithm, a set of distributed learning automata cooperate with each other in order to take appropriate samples from the given network. To investigate the performance of the proposed algorithm, several simulation experiments are conducted on well-known complex networks. Experimental results are compared with several sampling methods in terms of different measures. The experimental results demonstrate the superiority of the proposed algorithm over the others.
Cui, Yiqian; Shi, Junyou; Wang, Zili
2015-11-01
Quantum Neural Networks (QNN) models have attracted great attention since it innovates a new neural computing manner based on quantum entanglement. However, the existing QNN models are mainly based on the real quantum operations, and the potential of quantum entanglement is not fully exploited. In this paper, we proposes a novel quantum neuron model called Complex Quantum Neuron (CQN) that realizes a deep quantum entanglement. Also, a novel hybrid networks model Complex Rotation Quantum Dynamic Neural Networks (CRQDNN) is proposed based on Complex Quantum Neuron (CQN). CRQDNN is a three layer model with both CQN and classical neurons. An infinite impulse response (IIR) filter is embedded in the Networks model to enable the memory function to process time series inputs. The Levenberg-Marquardt (LM) algorithm is used for fast parameter learning. The networks model is developed to conduct time series predictions. Two application studies are done in this paper, including the chaotic time series prediction and electronic remaining useful life (RUL) prediction. Copyright © 2015 Elsevier Ltd. All rights reserved.
2016-01-01
Background Computer Networks have a tendency to grow at an unprecedented scale. Modern networks involve not only computers but also a wide variety of other interconnected devices ranging from mobile phones to other household items fitted with sensors. This vision of the "Internet of Things" (IoT) implies an inherent difficulty in modeling problems. Purpose It is practically impossible to implement and test all scenarios for large-scale and complex adaptive communication networks as part of Complex Adaptive Communication Networks and Environments (CACOONS). The goal of this study is to explore the use of Agent-based Modeling as part of the Cognitive Agent-based Computing (CABC) framework to model a Complex communication network problem. Method We use Exploratory Agent-based Modeling (EABM), as part of the CABC framework, to develop an autonomous multi-agent architecture for managing carbon footprint in a corporate network. To evaluate the application of complexity in practical scenarios, we have also introduced a company-defined computer usage policy. Results The conducted experiments demonstrated two important results: Primarily CABC-based modeling approach such as using Agent-based Modeling can be an effective approach to modeling complex problems in the domain of IoT. Secondly, the specific problem of managing the Carbon footprint can be solved using a multiagent system approach. PMID:26812235
NASA Astrophysics Data System (ADS)
Li, Chunguang; Maini, Philip K.
2005-10-01
The Penna bit-string model successfully encompasses many phenomena of population evolution, including inheritance, mutation, evolution, and aging. If we consider social interactions among individuals in the Penna model, the population will form a complex network. In this paper, we first modify the Verhulst factor to control only the birth rate, and introduce activity-based preferential reproduction of offspring in the Penna model. The social interactions among individuals are generated by both inheritance and activity-based preferential increase. Then we study the properties of the complex network generated by the modified Penna model. We find that the resulting complex network has a small-world effect and the assortative mixing property.
Modeling the propagation of mobile malware on complex networks
NASA Astrophysics Data System (ADS)
Liu, Wanping; Liu, Chao; Yang, Zheng; Liu, Xiaoyang; Zhang, Yihao; Wei, Zuxue
2016-08-01
In this paper, the spreading behavior of malware across mobile devices is addressed. By introducing complex networks to model mobile networks, which follows the power-law degree distribution, a novel epidemic model for mobile malware propagation is proposed. The spreading threshold that guarantees the dynamics of the model is calculated. Theoretically, the asymptotic stability of the malware-free equilibrium is confirmed when the threshold is below the unity, and the global stability is further proved under some sufficient conditions. The influences of different model parameters as well as the network topology on malware propagation are also analyzed. Our theoretical studies and numerical simulations show that networks with higher heterogeneity conduce to the diffusion of malware, and complex networks with lower power-law exponents benefit malware spreading.
A study of the electrical properties of complex resistor network based on NW model
NASA Astrophysics Data System (ADS)
Chang, Yunfeng; Li, Yunting; Yang, Liu; Guo, Lu; Liu, Gaochao
2015-04-01
The power and resistance of two-port complex resistor network based on NW small world network model are studied in this paper. Mainly, we study the dependence of the network power and resistance on the degree of port vertices, the connection probability and the shortest distance. Qualitative analysis and a simplified formula for network resistance are given out. Finally, we define a branching parameter and give out its physical meaning in the analysis of complex resistor network.
A density-based clustering model for community detection in complex networks
NASA Astrophysics Data System (ADS)
Zhao, Xiang; Li, Yantao; Qu, Zehui
2018-04-01
Network clustering (or graph partitioning) is an important technique for uncovering the underlying community structures in complex networks, which has been widely applied in various fields including astronomy, bioinformatics, sociology, and bibliometric. In this paper, we propose a density-based clustering model for community detection in complex networks (DCCN). The key idea is to find group centers with a higher density than their neighbors and a relatively large integrated-distance from nodes with higher density. The experimental results indicate that our approach is efficient and effective for community detection of complex networks.
Modeling fluctuations in default-mode brain network using a spiking neural network.
Yamanishi, Teruya; Liu, Jian-Qin; Nishimura, Haruhiko
2012-08-01
Recently, numerous attempts have been made to understand the dynamic behavior of complex brain systems using neural network models. The fluctuations in blood-oxygen-level-dependent (BOLD) brain signals at less than 0.1 Hz have been observed by functional magnetic resonance imaging (fMRI) for subjects in a resting state. This phenomenon is referred to as a "default-mode brain network." In this study, we model the default-mode brain network by functionally connecting neural communities composed of spiking neurons in a complex network. Through computational simulations of the model, including transmission delays and complex connectivity, the network dynamics of the neural system and its behavior are discussed. The results show that the power spectrum of the modeled fluctuations in the neuron firing patterns is consistent with the default-mode brain network's BOLD signals when transmission delays, a characteristic property of the brain, have finite values in a given range.
On the robustness of complex heterogeneous gene expression networks.
Gómez-Gardeñes, Jesús; Moreno, Yamir; Floría, Luis M
2005-04-01
We analyze a continuous gene expression model on the underlying topology of a complex heterogeneous network. Numerical simulations aimed at studying the chaotic and periodic dynamics of the model are performed. The results clearly indicate that there is a region in which the dynamical and structural complexity of the system avoid chaotic attractors. However, contrary to what has been reported for Random Boolean Networks, the chaotic phase cannot be completely suppressed, which has important bearings on network robustness and gene expression modeling.
A growth model for directed complex networks with power-law shape in the out-degree distribution
Esquivel-Gómez, J.; Stevens-Navarro, E.; Pineda-Rico, U.; Acosta-Elias, J.
2015-01-01
Many growth models have been published to model the behavior of real complex networks. These models are able to reproduce several of the topological properties of such networks. However, in most of these growth models, the number of outgoing links (i.e., out-degree) of nodes added to the network is constant, that is all nodes in the network are born with the same number of outgoing links. In other models, the resultant out-degree distribution decays as a poisson or an exponential distribution. However, it has been found that in real complex networks, the out-degree distribution decays as a power-law. In order to obtain out-degree distribution with power-law behavior some models have been proposed. This work introduces a new model that allows to obtain out-degree distributions that decay as a power-law with an exponent in the range from 0 to 1. PMID:25567141
Approaching human language with complex networks
NASA Astrophysics Data System (ADS)
Cong, Jin; Liu, Haitao
2014-12-01
The interest in modeling and analyzing human language with complex networks is on the rise in recent years and a considerable body of research in this area has already been accumulated. We survey three major lines of linguistic research from the complex network approach: 1) characterization of human language as a multi-level system with complex network analysis; 2) linguistic typological research with the application of linguistic networks and their quantitative measures; and 3) relationships between the system-level complexity of human language (determined by the topology of linguistic networks) and microscopic linguistic (e.g., syntactic) features (as the traditional concern of linguistics). We show that the models and quantitative tools of complex networks, when exploited properly, can constitute an operational methodology for linguistic inquiry, which contributes to the understanding of human language and the development of linguistics. We conclude our review with suggestions for future linguistic research from the complex network approach: 1) relationships between the system-level complexity of human language and microscopic linguistic features; 2) expansion of research scope from the global properties to other levels of granularity of linguistic networks; and 3) combination of linguistic network analysis with other quantitative studies of language (such as quantitative linguistics).
NASA Astrophysics Data System (ADS)
Amancio, Diego Raphael
2014-12-01
Concepts and methods of complex networks have been applied to probe the properties of a myriad of real systems [1]. The finding that written texts modeled as graphs share several properties of other completely different real systems has inspired the study of language as a complex system [2]. Actually, language can be represented as a complex network in its several levels of complexity. As a consequence, morphological, syntactical and semantical properties have been employed in the construction of linguistic networks [3]. Even the character level has been useful to unfold particular patterns [4,5]. In the review by Cong and Liu [6], the authors emphasize the need to use the topological information of complex networks modeling the various spheres of the language to better understand its origins, evolution and organization. In addition, the authors cite the use of networks in applications aiming at holistic typology and stylistic variations. In this context, I will discuss some possible directions that could be followed in future research directed towards the understanding of language via topological characterization of complex linguistic networks. In addition, I will comment the use of network models for language processing applications. Additional prospects for future practical research lines will also be discussed in this comment.
Deformable complex network for refining low-resolution X-ray structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chong; Wang, Qinghua; Ma, Jianpeng, E-mail: jpma@bcm.edu
2015-10-27
A new refinement algorithm called the deformable complex network that combines a novel angular network-based restraint with a deformable elastic network model in the target function has been developed to aid in structural refinement in macromolecular X-ray crystallography. In macromolecular X-ray crystallography, building more accurate atomic models based on lower resolution experimental diffraction data remains a great challenge. Previous studies have used a deformable elastic network (DEN) model to aid in low-resolution structural refinement. In this study, the development of a new refinement algorithm called the deformable complex network (DCN) is reported that combines a novel angular network-based restraint withmore » the DEN model in the target function. Testing of DCN on a wide range of low-resolution structures demonstrated that it constantly leads to significantly improved structural models as judged by multiple refinement criteria, thus representing a new effective refinement tool for low-resolution structural determination.« less
Investigation of a protein complex network
NASA Astrophysics Data System (ADS)
Mashaghi, A. R.; Ramezanpour, A.; Karimipour, V.
2004-09-01
The budding yeast Saccharomyces cerevisiae is the first eukaryote whose genome has been completely sequenced. It is also the first eukaryotic cell whose proteome (the set of all proteins) and interactome (the network of all mutual interactions between proteins) has been analyzed. In this paper we study the structure of the yeast protein complex network in which weighted edges between complexes represent the number of shared proteins. It is found that the network of protein complexes is a small world network with scale free behavior for many of its distributions. However we find that there are no strong correlations between the weights and degrees of neighboring complexes. To reveal non-random features of the network we also compare it with a null model in which the complexes randomly select their proteins. Finally we propose a simple evolutionary model based on duplication and divergence of proteins.
Hybrid modeling and empirical analysis of automobile supply chain network
NASA Astrophysics Data System (ADS)
Sun, Jun-yan; Tang, Jian-ming; Fu, Wei-ping; Wu, Bing-ying
2017-05-01
Based on the connection mechanism of nodes which automatically select upstream and downstream agents, a simulation model for dynamic evolutionary process of consumer-driven automobile supply chain is established by integrating ABM and discrete modeling in the GIS-based map. Firstly, the rationality is proved by analyzing the consistency of sales and changes in various agent parameters between the simulation model and a real automobile supply chain. Second, through complex network theory, hierarchical structures of the model and relationships of networks at different levels are analyzed to calculate various characteristic parameters such as mean distance, mean clustering coefficients, and degree distributions. By doing so, it verifies that the model is a typical scale-free network and small-world network. Finally, the motion law of this model is analyzed from the perspective of complex self-adaptive systems. The chaotic state of the simulation system is verified, which suggests that this system has typical nonlinear characteristics. This model not only macroscopically illustrates the dynamic evolution of complex networks of automobile supply chain but also microcosmically reflects the business process of each agent. Moreover, the model construction and simulation of the system by means of combining CAS theory and complex networks supplies a novel method for supply chain analysis, as well as theory bases and experience for supply chain analysis of auto companies.
Generative model selection using a scalable and size-independent complex network classifier
NASA Astrophysics Data System (ADS)
Motallebi, Sadegh; Aliakbary, Sadegh; Habibi, Jafar
2013-12-01
Real networks exhibit nontrivial topological features, such as heavy-tailed degree distribution, high clustering, and small-worldness. Researchers have developed several generative models for synthesizing artificial networks that are structurally similar to real networks. An important research problem is to identify the generative model that best fits to a target network. In this paper, we investigate this problem and our goal is to select the model that is able to generate graphs similar to a given network instance. By the means of generating synthetic networks with seven outstanding generative models, we have utilized machine learning methods to develop a decision tree for model selection. Our proposed method, which is named "Generative Model Selection for Complex Networks," outperforms existing methods with respect to accuracy, scalability, and size-independence.
Overlapping community detection in weighted networks via a Bayesian approach
NASA Astrophysics Data System (ADS)
Chen, Yi; Wang, Xiaolong; Xiang, Xin; Tang, Buzhou; Chen, Qingcai; Fan, Shixi; Bu, Junzhao
2017-02-01
Complex networks as a powerful way to represent complex systems have been widely studied during the past several years. One of the most important tasks of complex network analysis is to detect communities embedded in networks. In the real world, weighted networks are very common and may contain overlapping communities where a node is allowed to belong to multiple communities. In this paper, we propose a novel Bayesian approach, called the Bayesian mixture network (BMN) model, to detect overlapping communities in weighted networks. The advantages of our method are (i) providing soft-partition solutions in weighted networks; (ii) providing soft memberships, which quantify 'how strongly' a node belongs to a community. Experiments on a large number of real and synthetic networks show that our model has the ability in detecting overlapping communities in weighted networks and is competitive with other state-of-the-art models at shedding light on community partition.
Lewis, Brian A
2010-01-15
The regulation of transcription and of many other cellular processes involves large multi-subunit protein complexes. In the context of transcription, it is known that these complexes serve as regulatory platforms that connect activator DNA-binding proteins to a target promoter. However, there is still a lack of understanding regarding the function of these complexes. Why do multi-subunit complexes exist? What is the molecular basis of the function of their constituent subunits, and how are these subunits organized within a complex? What is the reason for physical connections between certain subunits and not others? In this article, I address these issues through a model of network allostery and its application to the eukaryotic RNA polymerase II Mediator transcription complex. The multiple allosteric networks model (MANM) suggests that protein complexes such as Mediator exist not only as physical but also as functional networks of interconnected proteins through which information is transferred from subunit to subunit by the propagation of an allosteric state known as conformational spread. Additionally, there are multiple distinct sub-networks within the Mediator complex that can be defined by their connections to different subunits; these sub-networks have discrete functions that are activated when specific subunits interact with other activator proteins.
Complex networks under dynamic repair model
NASA Astrophysics Data System (ADS)
Chaoqi, Fu; Ying, Wang; Kun, Zhao; Yangjun, Gao
2018-01-01
Invulnerability is not the only factor of importance when considering complex networks' security. It is also critical to have an effective and reasonable repair strategy. Existing research on network repair is confined to the static model. The dynamic model makes better use of the redundant capacity of repaired nodes and repairs the damaged network more efficiently than the static model; however, the dynamic repair model is complex and polytropic. In this paper, we construct a dynamic repair model and systematically describe the energy-transfer relationships between nodes in the repair process of the failure network. Nodes are divided into three types, corresponding to three structures. We find that the strong coupling structure is responsible for secondary failure of the repaired nodes and propose an algorithm that can select the most suitable targets (nodes or links) to repair the failure network with minimal cost. Two types of repair strategies are identified, with different effects under the two energy-transfer rules. The research results enable a more flexible approach to network repair.
NASA Astrophysics Data System (ADS)
Donges, Jonathan F.; Heitzig, Jobst; Beronov, Boyan; Wiedermann, Marc; Runge, Jakob; Feng, Qing Yi; Tupikina, Liubov; Stolbova, Veronika; Donner, Reik V.; Marwan, Norbert; Dijkstra, Henk A.; Kurths, Jürgen
2015-11-01
We introduce the pyunicorn (Pythonic unified complex network and recurrence analysis toolbox) open source software package for applying and combining modern methods of data analysis and modeling from complex network theory and nonlinear time series analysis. pyunicorn is a fully object-oriented and easily parallelizable package written in the language Python. It allows for the construction of functional networks such as climate networks in climatology or functional brain networks in neuroscience representing the structure of statistical interrelationships in large data sets of time series and, subsequently, investigating this structure using advanced methods of complex network theory such as measures and models for spatial networks, networks of interacting networks, node-weighted statistics, or network surrogates. Additionally, pyunicorn provides insights into the nonlinear dynamics of complex systems as recorded in uni- and multivariate time series from a non-traditional perspective by means of recurrence quantification analysis, recurrence networks, visibility graphs, and construction of surrogate time series. The range of possible applications of the library is outlined, drawing on several examples mainly from the field of climatology.
An Adaptive Complex Network Model for Brain Functional Networks
Gomez Portillo, Ignacio J.; Gleiser, Pablo M.
2009-01-01
Brain functional networks are graph representations of activity in the brain, where the vertices represent anatomical regions and the edges their functional connectivity. These networks present a robust small world topological structure, characterized by highly integrated modules connected sparsely by long range links. Recent studies showed that other topological properties such as the degree distribution and the presence (or absence) of a hierarchical structure are not robust, and show different intriguing behaviors. In order to understand the basic ingredients necessary for the emergence of these complex network structures we present an adaptive complex network model for human brain functional networks. The microscopic units of the model are dynamical nodes that represent active regions of the brain, whose interaction gives rise to complex network structures. The links between the nodes are chosen following an adaptive algorithm that establishes connections between dynamical elements with similar internal states. We show that the model is able to describe topological characteristics of human brain networks obtained from functional magnetic resonance imaging studies. In particular, when the dynamical rules of the model allow for integrated processing over the entire network scale-free non-hierarchical networks with well defined communities emerge. On the other hand, when the dynamical rules restrict the information to a local neighborhood, communities cluster together into larger ones, giving rise to a hierarchical structure, with a truncated power law degree distribution. PMID:19738902
Approaching human language with complex networks.
Cong, Jin; Liu, Haitao
2014-12-01
The interest in modeling and analyzing human language with complex networks is on the rise in recent years and a considerable body of research in this area has already been accumulated. We survey three major lines of linguistic research from the complex network approach: 1) characterization of human language as a multi-level system with complex network analysis; 2) linguistic typological research with the application of linguistic networks and their quantitative measures; and 3) relationships between the system-level complexity of human language (determined by the topology of linguistic networks) and microscopic linguistic (e.g., syntactic) features (as the traditional concern of linguistics). We show that the models and quantitative tools of complex networks, when exploited properly, can constitute an operational methodology for linguistic inquiry, which contributes to the understanding of human language and the development of linguistics. We conclude our review with suggestions for future linguistic research from the complex network approach: 1) relationships between the system-level complexity of human language and microscopic linguistic features; 2) expansion of research scope from the global properties to other levels of granularity of linguistic networks; and 3) combination of linguistic network analysis with other quantitative studies of language (such as quantitative linguistics). Copyright © 2014 Elsevier B.V. All rights reserved.
Sparse dynamical Boltzmann machine for reconstructing complex networks with binary dynamics
NASA Astrophysics Data System (ADS)
Chen, Yu-Zhong; Lai, Ying-Cheng
2018-03-01
Revealing the structure and dynamics of complex networked systems from observed data is a problem of current interest. Is it possible to develop a completely data-driven framework to decipher the network structure and different types of dynamical processes on complex networks? We develop a model named sparse dynamical Boltzmann machine (SDBM) as a structural estimator for complex networks that host binary dynamical processes. The SDBM attains its topology according to that of the original system and is capable of simulating the original binary dynamical process. We develop a fully automated method based on compressive sensing and a clustering algorithm to construct the SDBM. We demonstrate, for a variety of representative dynamical processes on model and real world complex networks, that the equivalent SDBM can recover the network structure of the original system and simulates its dynamical behavior with high precision.
Sparse dynamical Boltzmann machine for reconstructing complex networks with binary dynamics.
Chen, Yu-Zhong; Lai, Ying-Cheng
2018-03-01
Revealing the structure and dynamics of complex networked systems from observed data is a problem of current interest. Is it possible to develop a completely data-driven framework to decipher the network structure and different types of dynamical processes on complex networks? We develop a model named sparse dynamical Boltzmann machine (SDBM) as a structural estimator for complex networks that host binary dynamical processes. The SDBM attains its topology according to that of the original system and is capable of simulating the original binary dynamical process. We develop a fully automated method based on compressive sensing and a clustering algorithm to construct the SDBM. We demonstrate, for a variety of representative dynamical processes on model and real world complex networks, that the equivalent SDBM can recover the network structure of the original system and simulates its dynamical behavior with high precision.
Blower, Sally; Go, Myong-Hyun
2011-07-19
Mathematical models are useful tools for understanding and predicting epidemics. A recent innovative modeling study by Stehle and colleagues addressed the issue of how complex models need to be to ensure accuracy. The authors collected data on face-to-face contacts during a two-day conference. They then constructed a series of dynamic social contact networks, each of which was used to model an epidemic generated by a fast-spreading airborne pathogen. Intriguingly, Stehle and colleagues found that increasing model complexity did not always increase accuracy. Specifically, the most detailed contact network and a simplified version of this network generated very similar results. These results are extremely interesting and require further exploration to determine their generalizability.
Generative model selection using a scalable and size-independent complex network classifier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motallebi, Sadegh, E-mail: motallebi@ce.sharif.edu; Aliakbary, Sadegh, E-mail: aliakbary@ce.sharif.edu; Habibi, Jafar, E-mail: jhabibi@sharif.edu
2013-12-15
Real networks exhibit nontrivial topological features, such as heavy-tailed degree distribution, high clustering, and small-worldness. Researchers have developed several generative models for synthesizing artificial networks that are structurally similar to real networks. An important research problem is to identify the generative model that best fits to a target network. In this paper, we investigate this problem and our goal is to select the model that is able to generate graphs similar to a given network instance. By the means of generating synthetic networks with seven outstanding generative models, we have utilized machine learning methods to develop a decision tree formore » model selection. Our proposed method, which is named “Generative Model Selection for Complex Networks,” outperforms existing methods with respect to accuracy, scalability, and size-independence.« less
A Complex Network Perspective on Clinical Science
Hofmann, Stefan G.; Curtiss, Joshua; McNally, Richard J.
2016-01-01
Contemporary classification systems for mental disorders assume that abnormal behaviors are expressions of latent disease entities. An alternative to the latent disease model is the complex network approach. Instead of assuming that symptoms arise from an underlying disease entity, the complex network approach holds that disorders exist as systems of interrelated elements of a network. This approach also provides a framework for the understanding of therapeutic change. Depending on the structure of the network, change can occur abruptly once the network reaches a critical threshold (the tipping point). Homogeneous and highly connected networks often recover more slowly from local perturbations when the network approaches the tipping point, allowing for the possibility to predict treatment change, relapse, and recovery. In this article we discuss the complex network approach as an alternative to the latent disease model, and we discuss its implications for classification, therapy, relapse, and recovery. PMID:27694457
Identifying protein complexes in PPI network using non-cooperative sequential game.
Maulik, Ujjwal; Basu, Srinka; Ray, Sumanta
2017-08-21
Identifying protein complexes from protein-protein interaction (PPI) network is an important and challenging task in computational biology as it helps in better understanding of cellular mechanisms in various organisms. In this paper we propose a noncooperative sequential game based model for protein complex detection from PPI network. The key hypothesis is that protein complex formation is driven by mechanism that eventually optimizes the number of interactions within the complex leading to dense subgraph. The hypothesis is drawn from the observed network property named small world. The proposed multi-player game model translates the hypothesis into the game strategies. The Nash equilibrium of the game corresponds to a network partition where each protein either belong to a complex or form a singleton cluster. We further propose an algorithm to find the Nash equilibrium of the sequential game. The exhaustive experiment on synthetic benchmark and real life yeast networks evaluates the structural as well as biological significance of the network partitions.
Esquivel-Gómez, J.; Arjona-Villicaña, P. D.; Stevens-Navarro, E.; Pineda-Rico, U.; Balderas-Navarro, R. E.; Acosta-Elias, J.
2015-01-01
The out-degree distribution is one of the most reported topological properties to characterize real complex networks. This property describes the probability that a node in the network has a particular number of outgoing links. It has been found that in many real complex networks the out-degree has a behavior similar to a power-law distribution, therefore some network growth models have been proposed to approximate this behavior. This paper introduces a new growth model that allows to produce out-degree distributions that decay as a power-law with an exponent in the range from 1 to ∞. PMID:25765763
Towards a Framework for Evolvable Network Design
NASA Astrophysics Data System (ADS)
Hassan, Hoda; Eltarras, Ramy; Eltoweissy, Mohamed
The layered Internet architecture that had long guided network design and protocol engineering was an “interconnection architecture” defining a framework for interconnecting networks rather than a model for generic network structuring and engineering. We claim that the approach of abstracting the network in terms of an internetwork hinders the thorough understanding of the network salient characteristics and emergent behavior resulting in impeding design evolution required to address extreme scale, heterogeneity, and complexity. This paper reports on our work in progress that aims to: 1) Investigate the problem space in terms of the factors and decisions that influenced the design and development of computer networks; 2) Sketch the core principles for designing complex computer networks; and 3) Propose a model and related framework for building evolvable, adaptable and self organizing networks We will adopt a bottom up strategy primarily focusing on the building unit of the network model, which we call the “network cell”. The model is inspired by natural complex systems. A network cell is intrinsically capable of specialization, adaptation and evolution. Subsequently, we propose CellNet; a framework for evolvable network design. We outline scenarios for using the CellNet framework to enhance legacy Internet protocol stack.
NASA Astrophysics Data System (ADS)
Li, Shu-Bin; Cao, Dan-Ni; Dang, Wen-Xiu; Zhang, Lin
As a new cross-discipline, the complexity science has penetrated into every field of economy and society. With the arrival of big data, the research of the complexity science has reached its summit again. In recent years, it offers a new perspective for traffic control by using complex networks theory. The interaction course of various kinds of information in traffic system forms a huge complex system. A new mesoscopic traffic flow model is improved with variable speed limit (VSL), and the simulation process is designed, which is based on the complex networks theory combined with the proposed model. This paper studies effect of VSL on the dynamic traffic flow, and then analyzes the optimal control strategy of VSL in different network topologies. The conclusion of this research is meaningful to put forward some reasonable transportation plan and develop effective traffic management and control measures to help the department of traffic management.
Autoscoring Essays Based on Complex Networks
ERIC Educational Resources Information Center
Ke, Xiaohua; Zeng, Yongqiang; Luo, Haijiao
2016-01-01
This article presents a novel method, the Complex Dynamics Essay Scorer (CDES), for automated essay scoring using complex network features. Texts produced by college students in China were represented as scale-free networks (e.g., a word adjacency model) from which typical network features, such as the in-/out-degrees, clustering coefficient (CC),…
NASA Astrophysics Data System (ADS)
Zhang, Lin; Lu, Jian; Zhou, Jialin; Zhu, Jinqing; Li, Yunxuan; Wan, Qian
2018-03-01
Didi Dache is the most popular taxi order mobile app in China, which provides online taxi-hailing service. The obtained big database from this app could be used to analyze the complexities’ day-to-day dynamic evolution of Didi taxi trip network (DTTN) from the level of complex network dynamics. First, this paper proposes the data cleaning and modeling methods for expressing Nanjing’s DTTN as a complex network. Second, the three consecutive weeks’ data are cleaned to establish 21 DTTNs based on the proposed big data processing technology. Then, multiple topology measures that characterize the complexities’ day-to-day dynamic evolution of these networks are provided. Third, these measures of 21 DTTNs are calculated and subsequently explained with actual implications. They are used as a training set for modeling the BP neural network which is designed for predicting DTTN complexities evolution. Finally, the reliability of the designed BP neural network is verified by comparing with the actual data and the results obtained from ARIMA method simultaneously. Because network complexities are the basis for modeling cascading failures and conducting link prediction in complex system, this proposed research framework not only provides a novel perspective for analyzing DTTN from the level of system aggregated behavior, but can also be used to improve the DTTN management level.
Network structure exploration in networks with node attributes
NASA Astrophysics Data System (ADS)
Chen, Yi; Wang, Xiaolong; Bu, Junzhao; Tang, Buzhou; Xiang, Xin
2016-05-01
Complex networks provide a powerful way to represent complex systems and have been widely studied during the past several years. One of the most important tasks of network analysis is to detect structures (also called structural regularities) embedded in networks by determining group number and group partition. Most of network structure exploration models only consider network links. However, in real world networks, nodes may have attributes that are useful for network structure exploration. In this paper, we propose a novel Bayesian nonparametric (BNP) model to explore structural regularities in networks with node attributes, called Bayesian nonparametric attribute (BNPA) model. This model does not only take full advantage of both links between nodes and node attributes for group partition via shared hidden variables, but also determine group number automatically via the Bayesian nonparametric theory. Experiments conducted on a number of real and synthetic networks show that our BNPA model is able to automatically explore structural regularities in networks with node attributes and is competitive with other state-of-the-art models.
NASA Astrophysics Data System (ADS)
Zhang, Chuan; Wang, Xingyuan; Luo, Chao; Li, Junqiu; Wang, Chunpeng
2018-03-01
In this paper, we focus on the robust outer synchronization problem between two nonlinear complex networks with parametric disturbances and mixed time-varying delays. Firstly, a general complex network model is proposed. Besides the nonlinear couplings, the network model in this paper can possess parametric disturbances, internal time-varying delay, discrete time-varying delay and distributed time-varying delay. Then, according to the robust control strategy, linear matrix inequality and Lyapunov stability theory, several outer synchronization protocols are strictly derived. Simple linear matrix controllers are designed to driver the response network synchronize to the drive network. Additionally, our results can be applied on the complex networks without parametric disturbances. Finally, by utilizing the delayed Lorenz chaotic system as the dynamics of all nodes, simulation examples are given to demonstrate the effectiveness of our theoretical results.
The new challenges of multiplex networks: Measures and models
NASA Astrophysics Data System (ADS)
Battiston, Federico; Nicosia, Vincenzo; Latora, Vito
2017-02-01
What do societies, the Internet, and the human brain have in common? They are all examples of complex relational systems, whose emerging behaviours are largely determined by the non-trivial networks of interactions among their constituents, namely individuals, computers, or neurons, rather than only by the properties of the units themselves. In the last two decades, network scientists have proposed models of increasing complexity to better understand real-world systems. Only recently we have realised that multiplexity, i.e. the coexistence of several types of interactions among the constituents of a complex system, is responsible for substantial qualitative and quantitative differences in the type and variety of behaviours that a complex system can exhibit. As a consequence, multilayer and multiplex networks have become a hot topic in complexity science. Here we provide an overview of some of the measures proposed so far to characterise the structure of multiplex networks, and a selection of models aiming at reproducing those structural properties and quantifying their statistical significance. Focusing on a subset of relevant topics, this brief review is a quite comprehensive introduction to the most basic tools for the analysis of multiplex networks observed in the real-world. The wide applicability of multiplex networks as a framework to model complex systems in different fields, from biology to social sciences, and the colloquial tone of the paper will make it an interesting read for researchers working on both theoretical and experimental analysis of networked systems.
Spectral Entropies as Information-Theoretic Tools for Complex Network Comparison
NASA Astrophysics Data System (ADS)
De Domenico, Manlio; Biamonte, Jacob
2016-10-01
Any physical system can be viewed from the perspective that information is implicitly represented in its state. However, the quantification of this information when it comes to complex networks has remained largely elusive. In this work, we use techniques inspired by quantum statistical mechanics to define an entropy measure for complex networks and to develop a set of information-theoretic tools, based on network spectral properties, such as Rényi q entropy, generalized Kullback-Leibler and Jensen-Shannon divergences, the latter allowing us to define a natural distance measure between complex networks. First, we show that by minimizing the Kullback-Leibler divergence between an observed network and a parametric network model, inference of model parameter(s) by means of maximum-likelihood estimation can be achieved and model selection can be performed with appropriate information criteria. Second, we show that the information-theoretic metric quantifies the distance between pairs of networks and we can use it, for instance, to cluster the layers of a multilayer system. By applying this framework to networks corresponding to sites of the human microbiome, we perform hierarchical cluster analysis and recover with high accuracy existing community-based associations. Our results imply that spectral-based statistical inference in complex networks results in demonstrably superior performance as well as a conceptual backbone, filling a gap towards a network information theory.
Mathematical modelling of complex contagion on clustered networks
NASA Astrophysics Data System (ADS)
O'sullivan, David J.; O'Keeffe, Gary; Fennell, Peter; Gleeson, James
2015-09-01
The spreading of behavior, such as the adoption of a new innovation, is influenced bythe structure of social networks that interconnect the population. In the experiments of Centola (Science, 2010), adoption of new behavior was shown to spread further and faster across clustered-lattice networks than across corresponding random networks. This implies that the “complex contagion” effects of social reinforcement are important in such diffusion, in contrast to “simple” contagion models of disease-spread which predict that epidemics would grow more efficiently on random networks than on clustered networks. To accurately model complex contagion on clustered networks remains a challenge because the usual assumptions (e.g. of mean-field theory) regarding tree-like networks are invalidated by the presence of triangles in the network; the triangles are, however, crucial to the social reinforcement mechanism, which posits an increased probability of a person adopting behavior that has been adopted by two or more neighbors. In this paper we modify the analytical approach that was introduced by Hebert-Dufresne et al. (Phys. Rev. E, 2010), to study disease-spread on clustered networks. We show how the approximation method can be adapted to a complex contagion model, and confirm the accuracy of the method with numerical simulations. The analytical results of the model enable us to quantify the level of social reinforcement that is required to observe—as in Centola’s experiments—faster diffusion on clustered topologies than on random networks.
Guyon, Hervé; Falissard, Bruno; Kop, Jean-Luc
2017-01-01
Network Analysis is considered as a new method that challenges Latent Variable models in inferring psychological attributes. With Network Analysis, psychological attributes are derived from a complex system of components without the need to call on any latent variables. But the ontological status of psychological attributes is not adequately defined with Network Analysis, because a psychological attribute is both a complex system and a property emerging from this complex system. The aim of this article is to reappraise the legitimacy of latent variable models by engaging in an ontological and epistemological discussion on psychological attributes. Psychological attributes relate to the mental equilibrium of individuals embedded in their social interactions, as robust attractors within complex dynamic processes with emergent properties, distinct from physical entities located in precise areas of the brain. Latent variables thus possess legitimacy, because the emergent properties can be conceptualized and analyzed on the sole basis of their manifestations, without exploring the upstream complex system. However, in opposition with the usual Latent Variable models, this article is in favor of the integration of a dynamic system of manifestations. Latent Variables models and Network Analysis thus appear as complementary approaches. New approaches combining Latent Network Models and Network Residuals are certainly a promising new way to infer psychological attributes, placing psychological attributes in an inter-subjective dynamic approach. Pragmatism-realism appears as the epistemological framework required if we are to use latent variables as representations of psychological attributes. PMID:28572780
Drewes, Rich; Zou, Quan; Goodman, Philip H
2009-01-01
Neuroscience modeling experiments often involve multiple complex neural network and cell model variants, complex input stimuli and input protocols, followed by complex data analysis. Coordinating all this complexity becomes a central difficulty for the experimenter. The Python programming language, along with its extensive library packages, has emerged as a leading "glue" tool for managing all sorts of complex programmatic tasks. This paper describes a toolkit called Brainlab, written in Python, that leverages Python's strengths for the task of managing the general complexity of neuroscience modeling experiments. Brainlab was also designed to overcome the major difficulties of working with the NCS (NeoCortical Simulator) environment in particular. Brainlab is an integrated model-building, experimentation, and data analysis environment for the powerful parallel spiking neural network simulator system NCS.
Drewes, Rich; Zou, Quan; Goodman, Philip H.
2008-01-01
Neuroscience modeling experiments often involve multiple complex neural network and cell model variants, complex input stimuli and input protocols, followed by complex data analysis. Coordinating all this complexity becomes a central difficulty for the experimenter. The Python programming language, along with its extensive library packages, has emerged as a leading “glue” tool for managing all sorts of complex programmatic tasks. This paper describes a toolkit called Brainlab, written in Python, that leverages Python's strengths for the task of managing the general complexity of neuroscience modeling experiments. Brainlab was also designed to overcome the major difficulties of working with the NCS (NeoCortical Simulator) environment in particular. Brainlab is an integrated model-building, experimentation, and data analysis environment for the powerful parallel spiking neural network simulator system NCS. PMID:19506707
Optimization of controllability and robustness of complex networks by edge directionality
NASA Astrophysics Data System (ADS)
Liang, Man; Jin, Suoqin; Wang, Dingjie; Zou, Xiufen
2016-09-01
Recently, controllability of complex networks has attracted enormous attention in various fields of science and engineering. How to optimize structural controllability has also become a significant issue. Previous studies have shown that an appropriate directional assignment can improve structural controllability; however, the evolution of the structural controllability of complex networks under attacks and cascading has always been ignored. To address this problem, this study proposes a new edge orientation method (NEOM) based on residual degree that changes the link direction while conserving topology and directionality. By comparing the results with those of previous methods in two random graph models and several realistic networks, our proposed approach is demonstrated to be an effective and competitive method for improving the structural controllability of complex networks. Moreover, numerical simulations show that our method is near-optimal in optimizing structural controllability. Strikingly, compared to the original network, our method maintains the structural controllability of the network under attacks and cascading, indicating that the NEOM can also enhance the robustness of controllability of networks. These results alter the view of the nature of controllability in complex networks, change the understanding of structural controllability and affect the design of network models to control such networks.
NASA Astrophysics Data System (ADS)
Wiedermann, Marc; Donges, Jonathan F.; Kurths, Jürgen; Donner, Reik V.
2016-04-01
Networks with nodes embedded in a metric space have gained increasing interest in recent years. The effects of spatial embedding on the networks' structural characteristics, however, are rarely taken into account when studying their macroscopic properties. Here, we propose a hierarchy of null models to generate random surrogates from a given spatially embedded network that can preserve certain global and local statistics associated with the nodes' embedding in a metric space. Comparing the original network's and the resulting surrogates' global characteristics allows one to quantify to what extent these characteristics are already predetermined by the spatial embedding of the nodes and links. We apply our framework to various real-world spatial networks and show that the proposed models capture macroscopic properties of the networks under study much better than standard random network models that do not account for the nodes' spatial embedding. Depending on the actual performance of the proposed null models, the networks are categorized into different classes. Since many real-world complex networks are in fact spatial networks, the proposed approach is relevant for disentangling the underlying complex system structure from spatial embedding of nodes in many fields, ranging from social systems over infrastructure and neurophysiology to climatology.
NASA Astrophysics Data System (ADS)
Zamora-López, Gorka; Chen, Yuhan; Deco, Gustavo; Kringelbach, Morten L.; Zhou, Changsong
2016-12-01
The large-scale structural ingredients of the brain and neural connectomes have been identified in recent years. These are, similar to the features found in many other real networks: the arrangement of brain regions into modules and the presence of highly connected regions (hubs) forming rich-clubs. Here, we examine how modules and hubs shape the collective dynamics on networks and we find that both ingredients lead to the emergence of complex dynamics. Comparing the connectomes of C. elegans, cats, macaques and humans to surrogate networks in which either modules or hubs are destroyed, we find that functional complexity always decreases in the perturbed networks. A comparison between simulated and empirically obtained resting-state functional connectivity indicates that the human brain, at rest, lies in a dynamical state that reflects the largest complexity its anatomical connectome can host. Last, we generalise the topology of neural connectomes into a new hierarchical network model that successfully combines modular organisation with rich-club forming hubs. This is achieved by centralising the cross-modular connections through a preferential attachment rule. Our network model hosts more complex dynamics than other hierarchical models widely used as benchmarks.
Zamora-López, Gorka; Chen, Yuhan; Deco, Gustavo; Kringelbach, Morten L.; Zhou, Changsong
2016-01-01
The large-scale structural ingredients of the brain and neural connectomes have been identified in recent years. These are, similar to the features found in many other real networks: the arrangement of brain regions into modules and the presence of highly connected regions (hubs) forming rich-clubs. Here, we examine how modules and hubs shape the collective dynamics on networks and we find that both ingredients lead to the emergence of complex dynamics. Comparing the connectomes of C. elegans, cats, macaques and humans to surrogate networks in which either modules or hubs are destroyed, we find that functional complexity always decreases in the perturbed networks. A comparison between simulated and empirically obtained resting-state functional connectivity indicates that the human brain, at rest, lies in a dynamical state that reflects the largest complexity its anatomical connectome can host. Last, we generalise the topology of neural connectomes into a new hierarchical network model that successfully combines modular organisation with rich-club forming hubs. This is achieved by centralising the cross-modular connections through a preferential attachment rule. Our network model hosts more complex dynamics than other hierarchical models widely used as benchmarks. PMID:27917958
Efficient embedding of complex networks to hyperbolic space via their Laplacian
Alanis-Lobato, Gregorio; Mier, Pablo; Andrade-Navarro, Miguel A.
2016-01-01
The different factors involved in the growth process of complex networks imprint valuable information in their observable topologies. How to exploit this information to accurately predict structural network changes is the subject of active research. A recent model of network growth sustains that the emergence of properties common to most complex systems is the result of certain trade-offs between node birth-time and similarity. This model has a geometric interpretation in hyperbolic space, where distances between nodes abstract this optimisation process. Current methods for network hyperbolic embedding search for node coordinates that maximise the likelihood that the network was produced by the afore-mentioned model. Here, a different strategy is followed in the form of the Laplacian-based Network Embedding, a simple yet accurate, efficient and data driven manifold learning approach, which allows for the quick geometric analysis of big networks. Comparisons against existing embedding and prediction techniques highlight its applicability to network evolution and link prediction. PMID:27445157
Efficient embedding of complex networks to hyperbolic space via their Laplacian
NASA Astrophysics Data System (ADS)
Alanis-Lobato, Gregorio; Mier, Pablo; Andrade-Navarro, Miguel A.
2016-07-01
The different factors involved in the growth process of complex networks imprint valuable information in their observable topologies. How to exploit this information to accurately predict structural network changes is the subject of active research. A recent model of network growth sustains that the emergence of properties common to most complex systems is the result of certain trade-offs between node birth-time and similarity. This model has a geometric interpretation in hyperbolic space, where distances between nodes abstract this optimisation process. Current methods for network hyperbolic embedding search for node coordinates that maximise the likelihood that the network was produced by the afore-mentioned model. Here, a different strategy is followed in the form of the Laplacian-based Network Embedding, a simple yet accurate, efficient and data driven manifold learning approach, which allows for the quick geometric analysis of big networks. Comparisons against existing embedding and prediction techniques highlight its applicability to network evolution and link prediction.
NASA Astrophysics Data System (ADS)
Muscoloni, Alessandro; Vittorio Cannistraci, Carlo
2018-05-01
The investigation of the hidden metric space behind complex network topologies is a fervid topic in current network science and the hyperbolic space is one of the most studied, because it seems associated to the structural organization of many real complex systems. The popularity-similarity-optimization (PSO) model simulates how random geometric graphs grow in the hyperbolic space, generating realistic networks with clustering, small-worldness, scale-freeness and rich-clubness. However, it misses to reproduce an important feature of real complex networks, which is the community organization. The geometrical-preferential-attachment (GPA) model was recently developed in order to confer to the PSO also a soft community structure, which is obtained by forcing different angular regions of the hyperbolic disk to have a variable level of attractiveness. However, the number and size of the communities cannot be explicitly controlled in the GPA, which is a clear limitation for real applications. Here, we introduce the nonuniform PSO (nPSO) model. Differently from GPA, the nPSO generates synthetic networks in the hyperbolic space where heterogeneous angular node attractiveness is forced by sampling the angular coordinates from a tailored nonuniform probability distribution (for instance a mixture of Gaussians). The nPSO differs from GPA in other three aspects: it allows one to explicitly fix the number and size of communities; it allows one to tune their mixing property by means of the network temperature; it is efficient to generate networks with high clustering. Several tests on the detectability of the community structure in nPSO synthetic networks and wide investigations on their structural properties confirm that the nPSO is a valid and efficient model to generate realistic complex networks with communities.
On Connectivity of Wireless Sensor Networks with Directional Antennas
Wang, Qiu; Dai, Hong-Ning; Zheng, Zibin; Imran, Muhammad; Vasilakos, Athanasios V.
2017-01-01
In this paper, we investigate the network connectivity of wireless sensor networks with directional antennas. In particular, we establish a general framework to analyze the network connectivity while considering various antenna models and the channel randomness. Since existing directional antenna models have their pros and cons in the accuracy of reflecting realistic antennas and the computational complexity, we propose a new analytical directional antenna model called the iris model to balance the accuracy against the complexity. We conduct extensive simulations to evaluate the analytical framework. Our results show that our proposed analytical model on the network connectivity is accurate, and our iris antenna model can provide a better approximation to realistic directional antennas than other existing antenna models. PMID:28085081
AST: Activity-Security-Trust driven modeling of time varying networks.
Wang, Jian; Xu, Jiake; Liu, Yanheng; Deng, Weiwen
2016-02-18
Network modeling is a flexible mathematical structure that enables to identify statistical regularities and structural principles hidden in complex systems. The majority of recent driving forces in modeling complex networks are originated from activity, in which an activity potential of a time invariant function is introduced to identify agents' interactions and to construct an activity-driven model. However, the new-emerging network evolutions are already deeply coupled with not only the explicit factors (e.g. activity) but also the implicit considerations (e.g. security and trust), so more intrinsic driving forces behind should be integrated into the modeling of time varying networks. The agents undoubtedly seek to build a time-dependent trade-off among activity, security, and trust in generating a new connection to another. Thus, we reasonably propose the Activity-Security-Trust (AST) driven model through synthetically considering the explicit and implicit driving forces (e.g. activity, security, and trust) underlying the decision process. AST-driven model facilitates to more accurately capture highly dynamical network behaviors and figure out the complex evolution process, allowing a profound understanding of the effects of security and trust in driving network evolution, and improving the biases induced by only involving activity representations in analyzing the dynamical processes.
Stability and structural properties of gene regulation networks with coregulation rules.
Warrell, Jonathan; Mhlanga, Musa
2017-05-07
Coregulation of the expression of groups of genes has been extensively demonstrated empirically in bacterial and eukaryotic systems. Such coregulation can arise through the use of shared regulatory motifs, which allow the coordinated expression of modules (and module groups) of functionally related genes across the genome. Coregulation can also arise through the physical association of multi-gene complexes through chromosomal looping, which are then transcribed together. We present a general formalism for modeling coregulation rules in the framework of Random Boolean Networks (RBN), and develop specific models for transcription factor networks with modular structure (including module groups, and multi-input modules (MIM) with autoregulation) and multi-gene complexes (including hierarchical differentiation between multi-gene complex members). We develop a mean-field approach to analyse the dynamical stability of large networks incorporating coregulation, and show that autoregulated MIM and hierarchical gene-complex models can achieve greater stability than networks without coregulation whose rules have matching activation frequency. We provide further analysis of the stability of small networks of both kinds through simulations. We also characterize several general properties of the transients and attractors in the hierarchical coregulation model, and show using simulations that the steady-state distribution factorizes hierarchically as a Bayesian network in a Markov Jump Process analogue of the RBN model. Copyright © 2017. Published by Elsevier Ltd.
SISL and SIRL: Two knowledge dissemination models with leader nodes on cooperative learning networks
NASA Astrophysics Data System (ADS)
Li, Jingjing; Zhang, Yumei; Man, Jiayu; Zhou, Yun; Wu, Xiaojun
2017-02-01
Cooperative learning is one of the most effective teaching methods, which has been widely used. Students' mutual contact forms a cooperative learning network in this process. Our previous research demonstrated that the cooperative learning network has complex characteristics. This study aims to investigating the dynamic spreading process of the knowledge in the cooperative learning network and the inspiration of leaders in this process. To this end, complex network transmission dynamics theory is utilized to construct the knowledge dissemination model of a cooperative learning network. Based on the existing epidemic models, we propose a new susceptible-infected-susceptible-leader (SISL) model that considers both students' forgetting and leaders' inspiration, and a susceptible-infected-removed-leader (SIRL) model that considers students' interest in spreading and leaders' inspiration. The spreading threshold λcand its impact factors are analyzed. Then, numerical simulation and analysis are delivered to reveal the dynamic transmission mechanism of knowledge and leaders' role. This work is of great significance to cooperative learning theory and teaching practice. It also enriches the theory of complex network transmission dynamics.
A study of the spreading scheme for viral marketing based on a complex network model
NASA Astrophysics Data System (ADS)
Yang, Jianmei; Yao, Canzhong; Ma, Weicheng; Chen, Guanrong
2010-02-01
Buzzword-based viral marketing, known also as digital word-of-mouth marketing, is a marketing mode attached to some carriers on the Internet, which can rapidly copy marketing information at a low cost. Viral marketing actually uses a pre-existing social network where, however, the scale of the pre-existing network is believed to be so large and so random, so that its theoretical analysis is intractable and unmanageable. There are very few reports in the literature on how to design a spreading scheme for viral marketing on real social networks according to the traditional marketing theory or the relatively new network marketing theory. Complex network theory provides a new model for the study of large-scale complex systems, using the latest developments of graph theory and computing techniques. From this perspective, the present paper extends the complex network theory and modeling into the research of general viral marketing and develops a specific spreading scheme for viral marking and an approach to design the scheme based on a real complex network on the QQ instant messaging system. This approach is shown to be rather universal and can be further extended to the design of various spreading schemes for viral marketing based on different instant messaging systems.
NASA Astrophysics Data System (ADS)
De Domenico, Manlio
2018-03-01
Biological systems, from a cell to the human brain, are inherently complex. A powerful representation of such systems, described by an intricate web of relationships across multiple scales, is provided by complex networks. Recently, several studies are highlighting how simple networks - obtained by aggregating or neglecting temporal or categorical description of biological data - are not able to account for the richness of information characterizing biological systems. More complex models, namely multilayer networks, are needed to account for interdependencies, often varying across time, of biological interacting units within a cell, a tissue or parts of an organism.
Food-web complexity emerging from ecological dynamics on adaptive networks.
Garcia-Domingo, Josep L; Saldaña, Joan
2007-08-21
Food webs are complex networks describing trophic interactions in ecological communities. Since Robert May's seminal work on random structured food webs, the complexity-stability debate is a central issue in ecology: does network complexity increase or decrease food-web persistence? A multi-species predator-prey model incorporating adaptive predation shows that the action of ecological dynamics on the topology of a food web (whose initial configuration is generated either by the cascade model or by the niche model) render, when a significant fraction of adaptive predators is present, similar hyperbolic complexity-persistence relationships as those observed in empirical food webs. It is also shown that the apparent positive relation between complexity and persistence in food webs generated under the cascade model, which has been pointed out in previous papers, disappears when the final connection is used instead of the initial one to explain species persistence.
A Unified Framework for Complex Networks with Degree Trichotomy Based on Markov Chains.
Hui, David Shui Wing; Chen, Yi-Chao; Zhang, Gong; Wu, Weijie; Chen, Guanrong; Lui, John C S; Li, Yingtao
2017-06-16
This paper establishes a Markov chain model as a unified framework for describing the evolution processes in complex networks. The unique feature of the proposed model is its capability in addressing the formation mechanism that can reflect the "trichotomy" observed in degree distributions, based on which closed-form solutions can be derived. Important special cases of the proposed unified framework are those classical models, including Poisson, Exponential, Power-law distributed networks. Both simulation and experimental results demonstrate a good match of the proposed model with real datasets, showing its superiority over the classical models. Implications of the model to various applications including citation analysis, online social networks, and vehicular networks design, are also discussed in the paper.
Network theory and its applications in economic systems
NASA Astrophysics Data System (ADS)
Huang, Xuqing
This dissertation covers the two major parts of my Ph.D. research: i) developing theoretical framework of complex networks; and ii) applying complex networks models to quantitatively analyze economics systems. In part I, we focus on developing theories of interdependent networks, which includes two chapters: 1) We develop a mathematical framework to study the percolation of interdependent networks under targeted-attack and find that when the highly connected nodes are protected and have lower probability to fail, in contrast to single scale-free (SF) networks where the percolation threshold pc = 0, coupled SF networks are significantly more vulnerable with pc significantly larger than zero. 2) We analytically demonstrates that clustering, which quantifies the propensity for two neighbors of the same vertex to also be neighbors of each other, significantly increases the vulnerability of the system. In part II, we apply the complex networks models to study economics systems, which also includes two chapters: 1) We study the US corporate governance network, in which nodes representing directors and links between two directors representing their service on common company boards, and propose a quantitative measure of information and influence transformation in the network. Thus we are able to identify the most influential directors in the network. 2) We propose a bipartite networks model to simulate the risk propagation process among commercial banks during financial crisis. With empirical bank's balance sheet data in 2007 as input to the model, we find that our model efficiently identifies a significant portion of the actual failed banks reported by Federal Deposit Insurance Corporation during the financial crisis between 2008 and 2011. The results suggest that complex networks model could be useful for systemic risk stress testing for financial systems. The model also identifies that commercial rather than residential real estate assets are major culprits for the failure of over 350 US commercial banks during 2008 - 2011.
Reliability analysis in interdependent smart grid systems
NASA Astrophysics Data System (ADS)
Peng, Hao; Kan, Zhe; Zhao, Dandan; Han, Jianmin; Lu, Jianfeng; Hu, Zhaolong
2018-06-01
Complex network theory is a useful way to study many real complex systems. In this paper, a reliability analysis model based on complex network theory is introduced in interdependent smart grid systems. In this paper, we focus on understanding the structure of smart grid systems and studying the underlying network model, their interactions, and relationships and how cascading failures occur in the interdependent smart grid systems. We propose a practical model for interdependent smart grid systems using complex theory. Besides, based on percolation theory, we also study the effect of cascading failures effect and reveal detailed mathematical analysis of failure propagation in such systems. We analyze the reliability of our proposed model caused by random attacks or failures by calculating the size of giant functioning components in interdependent smart grid systems. Our simulation results also show that there exists a threshold for the proportion of faulty nodes, beyond which the smart grid systems collapse. Also we determine the critical values for different system parameters. In this way, the reliability analysis model based on complex network theory can be effectively utilized for anti-attack and protection purposes in interdependent smart grid systems.
Self-organization of network dynamics into local quantized states.
Nicolaides, Christos; Juanes, Ruben; Cueto-Felgueroso, Luis
2016-02-17
Self-organization and pattern formation in network-organized systems emerges from the collective activation and interaction of many interconnected units. A striking feature of these non-equilibrium structures is that they are often localized and robust: only a small subset of the nodes, or cell assembly, is activated. Understanding the role of cell assemblies as basic functional units in neural networks and socio-technical systems emerges as a fundamental challenge in network theory. A key open question is how these elementary building blocks emerge, and how they operate, linking structure and function in complex networks. Here we show that a network analogue of the Swift-Hohenberg continuum model-a minimal-ingredients model of nodal activation and interaction within a complex network-is able to produce a complex suite of localized patterns. Hence, the spontaneous formation of robust operational cell assemblies in complex networks can be explained as the result of self-organization, even in the absence of synaptic reinforcements.
Synchronization of networked chaotic oscillators under external periodic driving.
Yang, Wenchao; Lin, Weijie; Wang, Xingang; Huang, Liang
2015-03-01
The dynamical responses of a complex system to external perturbations are of both fundamental interest and practical significance. Here, by the model of networked chaotic oscillators, we investigate how the synchronization behavior of a complex network is influenced by an externally added periodic driving. Interestingly, it is found that by a slight change of the properties of the external driving, e.g., the frequency or phase lag between its intrinsic oscillation and external driving, the network synchronizability could be significantly modified. We demonstrate this phenomenon by different network models and, based on the method of master stability function, give an analysis on the underlying mechanisms. Our studies highlight the importance of external perturbations on the collective behaviors of complex networks, and also provide an alternate approach for controlling network synchronization.
Tracking trade transactions in water resource systems: A node-arc optimization formulation
NASA Astrophysics Data System (ADS)
Erfani, Tohid; Huskova, Ivana; Harou, Julien J.
2013-05-01
We formulate and apply a multicommodity network flow node-arc optimization model capable of tracking trade transactions in complex water resource systems. The model uses a simple node to node network connectivity matrix and does not require preprocessing of all possible flow paths in the network. We compare the proposed node-arc formulation with an existing arc-path (flow path) formulation and explain the advantages and difficulties of both approaches. We verify the proposed formulation model on a hypothetical water distribution network. Results indicate the arc-path model solves the problem with fewer constraints, but the proposed formulation allows using a simple network connectivity matrix which simplifies modeling large or complex networks. The proposed algorithm allows converting existing node-arc hydroeconomic models that broadly represent water trading to ones that also track individual supplier-receiver relationships (trade transactions).
NASA Astrophysics Data System (ADS)
Donges, Jonathan; Heitzig, Jobst; Beronov, Boyan; Wiedermann, Marc; Runge, Jakob; Feng, Qing Yi; Tupikina, Liubov; Stolbova, Veronika; Donner, Reik; Marwan, Norbert; Dijkstra, Henk; Kurths, Jürgen
2016-04-01
We introduce the pyunicorn (Pythonic unified complex network and recurrence analysis toolbox) open source software package for applying and combining modern methods of data analysis and modeling from complex network theory and nonlinear time series analysis. pyunicorn is a fully object-oriented and easily parallelizable package written in the language Python. It allows for the construction of functional networks such as climate networks in climatology or functional brain networks in neuroscience representing the structure of statistical interrelationships in large data sets of time series and, subsequently, investigating this structure using advanced methods of complex network theory such as measures and models for spatial networks, networks of interacting networks, node-weighted statistics, or network surrogates. Additionally, pyunicorn provides insights into the nonlinear dynamics of complex systems as recorded in uni- and multivariate time series from a non-traditional perspective by means of recurrence quantification analysis, recurrence networks, visibility graphs, and construction of surrogate time series. The range of possible applications of the library is outlined, drawing on several examples mainly from the field of climatology. pyunicorn is available online at https://github.com/pik-copan/pyunicorn. Reference: J.F. Donges, J. Heitzig, B. Beronov, M. Wiedermann, J. Runge, Q.-Y. Feng, L. Tupikina, V. Stolbova, R.V. Donner, N. Marwan, H.A. Dijkstra, and J. Kurths, Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package, Chaos 25, 113101 (2015), DOI: 10.1063/1.4934554, Preprint: arxiv.org:1507.01571 [physics.data-an].
Complex networks as a unified framework for descriptive analysis and predictive modeling in climate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinhaeuser, Karsten J K; Chawla, Nitesh; Ganguly, Auroop R
The analysis of climate data has relied heavily on hypothesis-driven statistical methods, while projections of future climate are based primarily on physics-based computational models. However, in recent years a wealth of new datasets has become available. Therefore, we take a more data-centric approach and propose a unified framework for studying climate, with an aim towards characterizing observed phenomena as well as discovering new knowledge in the climate domain. Specifically, we posit that complex networks are well-suited for both descriptive analysis and predictive modeling tasks. We show that the structural properties of climate networks have useful interpretation within the domain. Further,more » we extract clusters from these networks and demonstrate their predictive power as climate indices. Our experimental results establish that the network clusters are statistically significantly better predictors than clusters derived using a more traditional clustering approach. Using complex networks as data representation thus enables the unique opportunity for descriptive and predictive modeling to inform each other.« less
Yang, Ruiyue; Huang, Zhongwei; Yu, Wei; Li, Gensheng; Ren, Wenxi; Zuo, Lihua; Tan, Xiaosi; Sepehrnoori, Kamy; Tian, Shouceng; Sheng, Mao
2016-01-01
A complex fracture network is generally generated during the hydraulic fracturing treatment in shale gas reservoirs. Numerous efforts have been made to model the flow behavior of such fracture networks. However, it is still challenging to predict the impacts of various gas transport mechanisms on well performance with arbitrary fracture geometry in a computationally efficient manner. We develop a robust and comprehensive model for real gas transport in shales with complex non-planar fracture network. Contributions of gas transport mechanisms and fracture complexity to well productivity and rate transient behavior are systematically analyzed. The major findings are: simple planar fracture can overestimate gas production than non-planar fracture due to less fracture interference. A “hump” that occurs in the transition period and formation linear flow with a slope less than 1/2 can infer the appearance of natural fractures. The sharpness of the “hump” can indicate the complexity and irregularity of the fracture networks. Gas flow mechanisms can extend the transition flow period. The gas desorption could make the “hump” more profound. The Knudsen diffusion and slippage effect play a dominant role in the later production time. Maximizing the fracture complexity through generating large connected networks is an effective way to increase shale gas production. PMID:27819349
Yang, Ruiyue; Huang, Zhongwei; Yu, Wei; Li, Gensheng; Ren, Wenxi; Zuo, Lihua; Tan, Xiaosi; Sepehrnoori, Kamy; Tian, Shouceng; Sheng, Mao
2016-11-07
A complex fracture network is generally generated during the hydraulic fracturing treatment in shale gas reservoirs. Numerous efforts have been made to model the flow behavior of such fracture networks. However, it is still challenging to predict the impacts of various gas transport mechanisms on well performance with arbitrary fracture geometry in a computationally efficient manner. We develop a robust and comprehensive model for real gas transport in shales with complex non-planar fracture network. Contributions of gas transport mechanisms and fracture complexity to well productivity and rate transient behavior are systematically analyzed. The major findings are: simple planar fracture can overestimate gas production than non-planar fracture due to less fracture interference. A "hump" that occurs in the transition period and formation linear flow with a slope less than 1/2 can infer the appearance of natural fractures. The sharpness of the "hump" can indicate the complexity and irregularity of the fracture networks. Gas flow mechanisms can extend the transition flow period. The gas desorption could make the "hump" more profound. The Knudsen diffusion and slippage effect play a dominant role in the later production time. Maximizing the fracture complexity through generating large connected networks is an effective way to increase shale gas production.
Koch, Ina; Junker, Björn H; Heiner, Monika
2005-04-01
Because of the complexity of metabolic networks and their regulation, formal modelling is a useful method to improve the understanding of these systems. An essential step in network modelling is to validate the network model. Petri net theory provides algorithms and methods, which can be applied directly to metabolic network modelling and analysis in order to validate the model. The metabolism between sucrose and starch in the potato tuber is of great research interest. Even if the metabolism is one of the best studied in sink organs, it is not yet fully understood. We provide an approach for model validation of metabolic networks using Petri net theory, which we demonstrate for the sucrose breakdown pathway in the potato tuber. We start with hierarchical modelling of the metabolic network as a Petri net and continue with the analysis of qualitative properties of the network. The results characterize the net structure and give insights into the complex net behaviour.
Jones, Andrew S; Taktak, Azzam G F; Helliwell, Timothy R; Fenton, John E; Birchall, Martin A; Husband, David J; Fisher, Anthony C
2006-06-01
The accepted method of modelling and predicting failure/survival, Cox's proportional hazards model, is theoretically inferior to neural network derived models for analysing highly complex systems with large datasets. A blinded comparison of the neural network versus the Cox's model in predicting survival utilising data from 873 treated patients with laryngeal cancer. These were divided randomly and equally into a training set and a study set and Cox's and neural network models applied in turn. Data were then divided into seven sets of binary covariates and the analysis repeated. Overall survival was not significantly different on Kaplan-Meier plot, or with either test model. Although the network produced qualitatively similar results to Cox's model it was significantly more sensitive to differences in survival curves for age and N stage. We propose that neural networks are capable of prediction in systems involving complex interactions between variables and non-linearity.
The Curriculum Prerequisite Network: Modeling the Curriculum as a Complex System
ERIC Educational Resources Information Center
Aldrich, Preston R.
2015-01-01
This article advances the prerequisite network as a means to visualize the hidden structure in an academic curriculum. Networks have been used to represent a variety of complex systems ranging from social systems to biochemical pathways and protein interactions. Here, I treat the academic curriculum as a complex system with nodes representing…
Quantifying networks complexity from information geometry viewpoint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felice, Domenico, E-mail: domenico.felice@unicam.it; Mancini, Stefano; INFN-Sezione di Perugia, Via A. Pascoli, I-06123 Perugia
We consider a Gaussian statistical model whose parameter space is given by the variances of random variables. Underlying this model we identify networks by interpreting random variables as sitting on vertices and their correlations as weighted edges among vertices. We then associate to the parameter space a statistical manifold endowed with a Riemannian metric structure (that of Fisher-Rao). Going on, in analogy with the microcanonical definition of entropy in Statistical Mechanics, we introduce an entropic measure of networks complexity. We prove that it is invariant under networks isomorphism. Above all, considering networks as simplicial complexes, we evaluate this entropy onmore » simplexes and find that it monotonically increases with their dimension.« less
Robustness and structure of complex networks
NASA Astrophysics Data System (ADS)
Shao, Shuai
This dissertation covers the two major parts of my PhD research on statistical physics and complex networks: i) modeling a new type of attack -- localized attack, and investigating robustness of complex networks under this type of attack; ii) discovering the clustering structure in complex networks and its influence on the robustness of coupled networks. Complex networks appear in every aspect of our daily life and are widely studied in Physics, Mathematics, Biology, and Computer Science. One important property of complex networks is their robustness under attacks, which depends crucially on the nature of attacks and the structure of the networks themselves. Previous studies have focused on two types of attack: random attack and targeted attack, which, however, are insufficient to describe many real-world damages. Here we propose a new type of attack -- localized attack, and study the robustness of complex networks under this type of attack, both analytically and via simulation. On the other hand, we also study the clustering structure in the network, and its influence on the robustness of a complex network system. In the first part, we propose a theoretical framework to study the robustness of complex networks under localized attack based on percolation theory and generating function method. We investigate the percolation properties, including the critical threshold of the phase transition pc and the size of the giant component Pinfinity. We compare localized attack with random attack and find that while random regular (RR) networks are more robust against localized attack, Erdoḧs-Renyi (ER) networks are equally robust under both types of attacks. As for scale-free (SF) networks, their robustness depends crucially on the degree exponent lambda. The simulation results show perfect agreement with theoretical predictions. We also test our model on two real-world networks: a peer-to-peer computer network and an airline network, and find that the real-world networks are much more vulnerable to localized attack compared with random attack. In the second part, we extend the tree-like generating function method to incorporating clustering structure in complex networks. We study the robustness of a complex network system, especially a network of networks (NON) with clustering structure in each network. We find that the system becomes less robust as we increase the clustering coefficient of each network. For a partially dependent network system, we also find that the influence of the clustering coefficient on network robustness decreases as we decrease the coupling strength, and the critical coupling strength qc, at which the first-order phase transition changes to second-order, increases as we increase the clustering coefficient.
BoolNet--an R package for generation, reconstruction and analysis of Boolean networks.
Müssel, Christoph; Hopfensitz, Martin; Kestler, Hans A
2010-05-15
As the study of information processing in living cells moves from individual pathways to complex regulatory networks, mathematical models and simulation become indispensable tools for analyzing the complex behavior of such networks and can provide deep insights into the functioning of cells. The dynamics of gene expression, for example, can be modeled with Boolean networks (BNs). These are mathematical models of low complexity, but have the advantage of being able to capture essential properties of gene-regulatory networks. However, current implementations of BNs only focus on different sub-aspects of this model and do not allow for a seamless integration into existing preprocessing pipelines. BoolNet efficiently integrates methods for synchronous, asynchronous and probabilistic BNs. This includes reconstructing networks from time series, generating random networks, robustness analysis via perturbation, Markov chain simulations, and identification and visualization of attractors. The package BoolNet is freely available from the R project at http://cran.r-project.org/ or http://www.informatik.uni-ulm.de/ni/mitarbeiter/HKestler/boolnet/ under Artistic License 2.0. hans.kestler@uni-ulm.de Supplementary data are available at Bioinformatics online.
Bifurcations: Focal Points of Particle Adhesion in Microvascular Networks
Prabhakarpandian, Balabhaskar; Wang, Yi; Rea-Ramsey, Angela; Sundaram, Shivshankar; Kiani, Mohammad F.; Pant, Kapil
2011-01-01
Objective Particle adhesion in vivo is dependent on microcirculation environment which features unique anatomical (bifurcations, tortuosity, cross-sectional changes) and physiological (complex hemodynamics) characteristics. The mechanisms behind these complex phenomena are not well understood. In this study, we used a recently developed in vitro model of microvascular networks, called Synthetic Microvascular Network, for characterizing particle adhesion patterns in the microcirculation. Methods Synthetic microvascular networks were fabricated using soft lithography processes followed by particle adhesion studies using avidin and biotin-conjugated microspheres. Particle adhesion patterns were subsequently analyzed using CFD based modeling. Results Experimental and modeling studies highlighted the complex and heterogeneous fluid flow patterns encountered by particles in microvascular networks resulting in significantly higher propensity of adhesion (>1.5X) near bifurcations compared to the branches of the microvascular networks. Conclusion Bifurcations are the focal points of particle adhesion in microvascular networks. Changing flow patterns and morphology near bifurcations are the primary factors controlling the preferential adhesion of functionalized particles in microvascular networks. Synthetic microvascular networks provide an in vitro framework for understanding particle adhesion. PMID:21418388
Macroscopic description of complex adaptive networks coevolving with dynamic node states
NASA Astrophysics Data System (ADS)
Wiedermann, Marc; Donges, Jonathan F.; Heitzig, Jobst; Lucht, Wolfgang; Kurths, Jürgen
2015-05-01
In many real-world complex systems, the time evolution of the network's structure and the dynamic state of its nodes are closely entangled. Here we study opinion formation and imitation on an adaptive complex network which is dependent on the individual dynamic state of each node and vice versa to model the coevolution of renewable resources with the dynamics of harvesting agents on a social network. The adaptive voter model is coupled to a set of identical logistic growth models and we mainly find that, in such systems, the rate of interactions between nodes as well as the adaptive rewiring probability are crucial parameters for controlling the sustainability of the system's equilibrium state. We derive a macroscopic description of the system in terms of ordinary differential equations which provides a general framework to model and quantify the influence of single node dynamics on the macroscopic state of the network. The thus obtained framework is applicable to many fields of study, such as epidemic spreading, opinion formation, or socioecological modeling.
Macroscopic description of complex adaptive networks coevolving with dynamic node states.
Wiedermann, Marc; Donges, Jonathan F; Heitzig, Jobst; Lucht, Wolfgang; Kurths, Jürgen
2015-05-01
In many real-world complex systems, the time evolution of the network's structure and the dynamic state of its nodes are closely entangled. Here we study opinion formation and imitation on an adaptive complex network which is dependent on the individual dynamic state of each node and vice versa to model the coevolution of renewable resources with the dynamics of harvesting agents on a social network. The adaptive voter model is coupled to a set of identical logistic growth models and we mainly find that, in such systems, the rate of interactions between nodes as well as the adaptive rewiring probability are crucial parameters for controlling the sustainability of the system's equilibrium state. We derive a macroscopic description of the system in terms of ordinary differential equations which provides a general framework to model and quantify the influence of single node dynamics on the macroscopic state of the network. The thus obtained framework is applicable to many fields of study, such as epidemic spreading, opinion formation, or socioecological modeling.
Graph theoretical analysis of complex networks in the brain
Stam, Cornelis J; Reijneveld, Jaap C
2007-01-01
Since the discovery of small-world and scale-free networks the study of complex systems from a network perspective has taken an enormous flight. In recent years many important properties of complex networks have been delineated. In particular, significant progress has been made in understanding the relationship between the structural properties of networks and the nature of dynamics taking place on these networks. For instance, the 'synchronizability' of complex networks of coupled oscillators can be determined by graph spectral analysis. These developments in the theory of complex networks have inspired new applications in the field of neuroscience. Graph analysis has been used in the study of models of neural networks, anatomical connectivity, and functional connectivity based upon fMRI, EEG and MEG. These studies suggest that the human brain can be modelled as a complex network, and may have a small-world structure both at the level of anatomical as well as functional connectivity. This small-world structure is hypothesized to reflect an optimal situation associated with rapid synchronization and information transfer, minimal wiring costs, as well as a balance between local processing and global integration. The topological structure of functional networks is probably restrained by genetic and anatomical factors, but can be modified during tasks. There is also increasing evidence that various types of brain disease such as Alzheimer's disease, schizophrenia, brain tumours and epilepsy may be associated with deviations of the functional network topology from the optimal small-world pattern. PMID:17908336
AST: Activity-Security-Trust driven modeling of time varying networks
Wang, Jian; Xu, Jiake; Liu, Yanheng; Deng, Weiwen
2016-01-01
Network modeling is a flexible mathematical structure that enables to identify statistical regularities and structural principles hidden in complex systems. The majority of recent driving forces in modeling complex networks are originated from activity, in which an activity potential of a time invariant function is introduced to identify agents’ interactions and to construct an activity-driven model. However, the new-emerging network evolutions are already deeply coupled with not only the explicit factors (e.g. activity) but also the implicit considerations (e.g. security and trust), so more intrinsic driving forces behind should be integrated into the modeling of time varying networks. The agents undoubtedly seek to build a time-dependent trade-off among activity, security, and trust in generating a new connection to another. Thus, we reasonably propose the Activity-Security-Trust (AST) driven model through synthetically considering the explicit and implicit driving forces (e.g. activity, security, and trust) underlying the decision process. AST-driven model facilitates to more accurately capture highly dynamical network behaviors and figure out the complex evolution process, allowing a profound understanding of the effects of security and trust in driving network evolution, and improving the biases induced by only involving activity representations in analyzing the dynamical processes. PMID:26888717
Duardo-Sánchez, Aliuska; Munteanu, Cristian R; Riera-Fernández, Pablo; López-Díaz, Antonio; Pazos, Alejandro; González-Díaz, Humberto
2014-01-27
The use of numerical parameters in Complex Network analysis is expanding to new fields of application. At a molecular level, we can use them to describe the molecular structure of chemical entities, protein interactions, or metabolic networks. However, the applications are not restricted to the world of molecules and can be extended to the study of macroscopic nonliving systems, organisms, or even legal or social networks. On the other hand, the development of the field of Artificial Intelligence has led to the formulation of computational algorithms whose design is based on the structure and functioning of networks of biological neurons. These algorithms, called Artificial Neural Networks (ANNs), can be useful for the study of complex networks, since the numerical parameters that encode information of the network (for example centralities/node descriptors) can be used as inputs for the ANNs. The Wiener index (W) is a graph invariant widely used in chemoinformatics to quantify the molecular structure of drugs and to study complex networks. In this work, we explore for the first time the possibility of using Markov chains to calculate analogues of node distance numbers/W to describe complex networks from the point of view of their nodes. These parameters are called Markov-Wiener node descriptors of order k(th) (W(k)). Please, note that these descriptors are not related to Markov-Wiener stochastic processes. Here, we calculated the W(k)(i) values for a very high number of nodes (>100,000) in more than 100 different complex networks using the software MI-NODES. These networks were grouped according to the field of application. Molecular networks include the Metabolic Reaction Networks (MRNs) of 40 different organisms. In addition, we analyzed other biological and legal and social networks. These include the Interaction Web Database Biological Networks (IWDBNs), with 75 food webs or ecological systems and the Spanish Financial Law Network (SFLN). The calculated W(k)(i) values were used as inputs for different ANNs in order to discriminate correct node connectivity patterns from incorrect random patterns. The MIANN models obtained present good values of Sensitivity/Specificity (%): MRNs (78/78), IWDBNs (90/88), and SFLN (86/84). These preliminary results are very promising from the point of view of a first exploratory study and suggest that the use of these models could be extended to the high-throughput re-evaluation of connectivity in known complex networks (collation).
Modelling and prediction for chaotic fir laser attractor using rational function neural network.
Cho, S
2001-02-01
Many real-world systems such as irregular ECG signal, volatility of currency exchange rate and heated fluid reaction exhibit highly complex nonlinear characteristic known as chaos. These chaotic systems cannot be retreated satisfactorily using linear system theory due to its high dimensionality and irregularity. This research focuses on prediction and modelling of chaotic FIR (Far InfraRed) laser system for which the underlying equations are not given. This paper proposed a method for prediction and modelling a chaotic FIR laser time series using rational function neural network. Three network architectures, TDNN (Time Delayed Neural Network), RBF (radial basis function) network and the RF (rational function) network, are also presented. Comparisons between these networks performance show the improvements introduced by the RF network in terms of a decrement in network complexity and better ability of predictability.
Complex Networks in Psychological Models
NASA Astrophysics Data System (ADS)
Wedemann, R. S.; Carvalho, L. S. A. V. D.; Donangelo, R.
We develop schematic, self-organizing, neural-network models to describe mechanisms associated with mental processes, by a neurocomputational substrate. These models are examples of real world complex networks with interesting general topological structures. Considering dopaminergic signal-to-noise neuronal modulation in the central nervous system, we propose neural network models to explain development of cortical map structure and dynamics of memory access, and unify different mental processes into a single neurocomputational substrate. Based on our neural network models, neurotic behavior may be understood as an associative memory process in the brain, and the linguistic, symbolic associative process involved in psychoanalytic working-through can be mapped onto a corresponding process of reconfiguration of the neural network. The models are illustrated through computer simulations, where we varied dopaminergic modulation and observed the self-organizing emergent patterns at the resulting semantic map, interpreting them as different manifestations of mental functioning, from psychotic through to normal and neurotic behavior, and creativity.
Logic-Based Models for the Analysis of Cell Signaling Networks†
2010-01-01
Computational models are increasingly used to analyze the operation of complex biochemical networks, including those involved in cell signaling networks. Here we review recent advances in applying logic-based modeling to mammalian cell biology. Logic-based models represent biomolecular networks in a simple and intuitive manner without describing the detailed biochemistry of each interaction. A brief description of several logic-based modeling methods is followed by six case studies that demonstrate biological questions recently addressed using logic-based models and point to potential advances in model formalisms and training procedures that promise to enhance the utility of logic-based methods for studying the relationship between environmental inputs and phenotypic or signaling state outputs of complex signaling networks. PMID:20225868
Statistical Physics of Cascading Failures in Complex Networks
NASA Astrophysics Data System (ADS)
Panduranga, Nagendra Kumar
Systems such as the power grid, world wide web (WWW), and internet are categorized as complex systems because of the presence of a large number of interacting elements. For example, the WWW is estimated to have a billion webpages and understanding the dynamics of such a large number of individual agents (whose individual interactions might not be fully known) is a challenging task. Complex network representations of these systems have proved to be of great utility. Statistical physics is the study of emergence of macroscopic properties of systems from the characteristics of the interactions between individual molecules. Hence, statistical physics of complex networks has been an effective approach to study these systems. In this dissertation, I have used statistical physics to study two distinct phenomena in complex systems: i) Cascading failures and ii) Shortest paths in complex networks. Understanding cascading failures is considered to be one of the "holy grails" in the study of complex systems such as the power grid, transportation networks, and economic systems. Studying failures of these systems as percolation on complex networks has proved to be insightful. Previously, cascading failures have been studied extensively using two different models: k-core percolation and interdependent networks. The first part of this work combines the two models into a general model, solves it analytically, and validates the theoretical predictions through extensive computer simulations. The phase diagram of the percolation transition has been systematically studied as one varies the average local k-core threshold and the coupling between networks. The phase diagram of the combined processes is very rich and includes novel features that do not appear in the models which study each of the processes separately. For example, the phase diagram consists of first- and second-order transition regions separated by two tricritical lines that merge together and enclose a two-stage transition region. In the two-stage transition, the size of the giant component undergoes a first-order jump at a certain occupation probability followed by a continuous second-order transition at a smaller occupation probability. Furthermore, at certain fixed interdependencies, the percolation transition cycles from first-order to second-order to two-stage to first-order as the k-core threshold is increased. We setup the analytical equations describing the phase boundaries of the two-stage transition region and we derive the critical exponents for each type of transition. Understanding the shortest paths between individual elements in systems like communication networks and social media networks is important in the study of information cascades in these systems. Often, large heterogeneity can be present in the connections between nodes in these networks. Certain sets of nodes can be more highly connected among themselves than with the nodes from other sets. These sets of nodes are often referred to as 'communities'. The second part of this work studies the effect of the presence of communities on the distribution of shortest paths in a network using a modular Erdős-Renyi network model. In this model, the number of communities and the degree of modularity of the network can be tuned using the parameters of the model. We find that the model reaches a percolation threshold while tuning the degree of modularity of the network and the distribution of the shortest paths in the network can be used as an indicator of how the communities are connected.
Preferential attachment in multiple trade networks
NASA Astrophysics Data System (ADS)
Foschi, Rachele; Riccaboni, Massimo; Schiavo, Stefano
2014-08-01
In this paper we develop a model for the evolution of multiple networks which is able to replicate the concentrated and sparse nature of world trade data. Our model is an extension of the preferential attachment growth model to the case of multiple networks. Countries trade a variety of goods of different complexity. Every country progressively evolves from trading less sophisticated to high-tech goods. The probabilities of capturing more trade opportunities at a given level of complexity and of starting to trade more complex goods are both proportional to the number of existing trade links. We provide a set of theoretical predictions and simulative results. A calibration exercise shows that our model replicates the same concentration level of world trade as well as the sparsity pattern of the trade matrix. We also discuss a set of numerical solutions to deal with large multiple networks.
Yin, Weiwei; Garimalla, Swetha; Moreno, Alberto; Galinski, Mary R; Styczynski, Mark P
2015-08-28
There are increasing efforts to bring high-throughput systems biology techniques to bear on complex animal model systems, often with a goal of learning about underlying regulatory network structures (e.g., gene regulatory networks). However, complex animal model systems typically have significant limitations on cohort sizes, number of samples, and the ability to perform follow-up and validation experiments. These constraints are particularly problematic for many current network learning approaches, which require large numbers of samples and may predict many more regulatory relationships than actually exist. Here, we test the idea that by leveraging the accuracy and efficiency of classifiers, we can construct high-quality networks that capture important interactions between variables in datasets with few samples. We start from a previously-developed tree-like Bayesian classifier and generalize its network learning approach to allow for arbitrary depth and complexity of tree-like networks. Using four diverse sample networks, we demonstrate that this approach performs consistently better at low sample sizes than the Sparse Candidate Algorithm, a representative approach for comparison because it is known to generate Bayesian networks with high positive predictive value. We develop and demonstrate a resampling-based approach to enable the identification of a viable root for the learned tree-like network, important for cases where the root of a network is not known a priori. We also develop and demonstrate an integrated resampling-based approach to the reduction of variable space for the learning of the network. Finally, we demonstrate the utility of this approach via the analysis of a transcriptional dataset of a malaria challenge in a non-human primate model system, Macaca mulatta, suggesting the potential to capture indicators of the earliest stages of cellular differentiation during leukopoiesis. We demonstrate that by starting from effective and efficient approaches for creating classifiers, we can identify interesting tree-like network structures with significant ability to capture the relationships in the training data. This approach represents a promising strategy for inferring networks with high positive predictive value under the constraint of small numbers of samples, meeting a need that will only continue to grow as more high-throughput studies are applied to complex model systems.
Mapping and discrimination of networks in the complexity-entropy plane
NASA Astrophysics Data System (ADS)
Wiedermann, Marc; Donges, Jonathan F.; Kurths, Jürgen; Donner, Reik V.
2017-10-01
Complex networks are usually characterized in terms of their topological, spatial, or information-theoretic properties and combinations of the associated metrics are used to discriminate networks into different classes or categories. However, even with the present variety of characteristics at hand it still remains a subject of current research to appropriately quantify a network's complexity and correspondingly discriminate between different types of complex networks, like infrastructure or social networks, on such a basis. Here we explore the possibility to classify complex networks by means of a statistical complexity measure that has formerly been successfully applied to distinguish different types of chaotic and stochastic time series. It is composed of a network's averaged per-node entropic measure characterizing the network's information content and the associated Jenson-Shannon divergence as a measure of disequilibrium. We study 29 real-world networks and show that networks of the same category tend to cluster in distinct areas of the resulting complexity-entropy plane. We demonstrate that within our framework, connectome networks exhibit among the highest complexity while, e.g., transportation and infrastructure networks display significantly lower values. Furthermore, we demonstrate the utility of our framework by applying it to families of random scale-free and Watts-Strogatz model networks. We then show in a second application that the proposed framework is useful to objectively construct threshold-based networks, such as functional climate networks or recurrence networks, by choosing the threshold such that the statistical network complexity is maximized.
Hu, Jin; Wang, Jun
2015-06-01
In recent years, complex-valued recurrent neural networks have been developed and analysed in-depth in view of that they have good modelling performance for some applications involving complex-valued elements. In implementing continuous-time dynamical systems for simulation or computational purposes, it is quite necessary to utilize a discrete-time model which is an analogue of the continuous-time system. In this paper, we analyse a discrete-time complex-valued recurrent neural network model and obtain the sufficient conditions on its global exponential periodicity and exponential stability. Simulation results of several numerical examples are delineated to illustrate the theoretical results and an application on associative memory is also given. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jeong, Hyundoo; Yoon, Byung-Jun
2017-03-14
Network querying algorithms provide computational means to identify conserved network modules in large-scale biological networks that are similar to known functional modules, such as pathways or molecular complexes. Two main challenges for network querying algorithms are the high computational complexity of detecting potential isomorphism between the query and the target graphs and ensuring the biological significance of the query results. In this paper, we propose SEQUOIA, a novel network querying algorithm that effectively addresses these issues by utilizing a context-sensitive random walk (CSRW) model for network comparison and minimizing the network conductance of potential matches in the target network. The CSRW model, inspired by the pair hidden Markov model (pair-HMM) that has been widely used for sequence comparison and alignment, can accurately assess the node-to-node correspondence between different graphs by accounting for node insertions and deletions. The proposed algorithm identifies high-scoring network regions based on the CSRW scores, which are subsequently extended by maximally reducing the network conductance of the identified subnetworks. Performance assessment based on real PPI networks and known molecular complexes show that SEQUOIA outperforms existing methods and clearly enhances the biological significance of the query results. The source code and datasets can be downloaded from http://www.ece.tamu.edu/~bjyoon/SEQUOIA .
Sato, Masanao; Tsuda, Kenichi; Wang, Lin; Coller, John; Watanabe, Yuichiro; Glazebrook, Jane; Katagiri, Fumiaki
2010-01-01
Biological signaling processes may be mediated by complex networks in which network components and network sectors interact with each other in complex ways. Studies of complex networks benefit from approaches in which the roles of individual components are considered in the context of the network. The plant immune signaling network, which controls inducible responses to pathogen attack, is such a complex network. We studied the Arabidopsis immune signaling network upon challenge with a strain of the bacterial pathogen Pseudomonas syringae expressing the effector protein AvrRpt2 (Pto DC3000 AvrRpt2). This bacterial strain feeds multiple inputs into the signaling network, allowing many parts of the network to be activated at once. mRNA profiles for 571 immune response genes of 22 Arabidopsis immunity mutants and wild type were collected 6 hours after inoculation with Pto DC3000 AvrRpt2. The mRNA profiles were analyzed as detailed descriptions of changes in the network state resulting from the genetic perturbations. Regulatory relationships among the genes corresponding to the mutations were inferred by recursively applying a non-linear dimensionality reduction procedure to the mRNA profile data. The resulting static network model accurately predicted 23 of 25 regulatory relationships reported in the literature, suggesting that predictions of novel regulatory relationships are also accurate. The network model revealed two striking features: (i) the components of the network are highly interconnected; and (ii) negative regulatory relationships are common between signaling sectors. Complex regulatory relationships, including a novel negative regulatory relationship between the early microbe-associated molecular pattern-triggered signaling sectors and the salicylic acid sector, were further validated. We propose that prevalent negative regulatory relationships among the signaling sectors make the plant immune signaling network a “sector-switching” network, which effectively balances two apparently conflicting demands, robustness against pathogenic perturbations and moderation of negative impacts of immune responses on plant fitness. PMID:20661428
Modeling and simulating networks of interdependent protein interactions.
Stöcker, Bianca K; Köster, Johannes; Zamir, Eli; Rahmann, Sven
2018-05-21
Protein interactions are fundamental building blocks of biochemical reaction systems underlying cellular functions. The complexity and functionality of these systems emerge not only from the protein interactions themselves but also from the dependencies between these interactions, as generated by allosteric effects or mutual exclusion due to steric hindrance. Therefore, formal models for integrating and utilizing information about interaction dependencies are of high interest. Here, we describe an approach for endowing protein networks with interaction dependencies using propositional logic, thereby obtaining constrained protein interaction networks ("constrained networks"). The construction of these networks is based on public interaction databases as well as text-mined information about interaction dependencies. We present an efficient data structure and algorithm to simulate protein complex formation in constrained networks. The efficiency of the model allows fast simulation and facilitates the analysis of many proteins in large networks. In addition, this approach enables the simulation of perturbation effects, such as knockout of single or multiple proteins and changes of protein concentrations. We illustrate how our model can be used to analyze a constrained human adhesome protein network, which is responsible for the formation of diverse and dynamic cell-matrix adhesion sites. By comparing protein complex formation under known interaction dependencies versus without dependencies, we investigate how these dependencies shape the resulting repertoire of protein complexes. Furthermore, our model enables investigating how the interplay of network topology with interaction dependencies influences the propagation of perturbation effects across a large biochemical system. Our simulation software CPINSim (for Constrained Protein Interaction Network Simulator) is available under the MIT license at http://github.com/BiancaStoecker/cpinsim and as a Bioconda package (https://bioconda.github.io).
Complex growing networks with intrinsic vertex fitness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bedogne, C.; Rodgers, G. J.
2006-10-15
One of the major questions in complex network research is to identify the range of mechanisms by which a complex network can self organize into a scale-free state. In this paper we investigate the interplay between a fitness linking mechanism and both random and preferential attachment. In our models, each vertex is assigned a fitness x, drawn from a probability distribution {rho}(x). In Model A, at each time step a vertex is added and joined to an existing vertex, selected at random, with probability p and an edge is introduced between vertices with fitnesses x and y, with a ratemore » f(x,y), with probability 1-p. Model B differs from Model A in that, with probability p, edges are added with preferential attachment rather than randomly. The analysis of Model A shows that, for every fixed fitness x, the network's degree distribution decays exponentially. In Model B we recover instead a power-law degree distribution whose exponent depends only on p, and we show how this result can be generalized. The properties of a number of particular networks are examined.« less
Rule-based modeling and simulations of the inner kinetochore structure.
Tschernyschkow, Sergej; Herda, Sabine; Gruenert, Gerd; Döring, Volker; Görlich, Dennis; Hofmeister, Antje; Hoischen, Christian; Dittrich, Peter; Diekmann, Stephan; Ibrahim, Bashar
2013-09-01
Combinatorial complexity is a central problem when modeling biochemical reaction networks, since the association of a few components can give rise to a large variation of protein complexes. Available classical modeling approaches are often insufficient for the analysis of very large and complex networks in detail. Recently, we developed a new rule-based modeling approach that facilitates the analysis of spatial and combinatorially complex problems. Here, we explore for the first time how this approach can be applied to a specific biological system, the human kinetochore, which is a multi-protein complex involving over 100 proteins. Applying our freely available SRSim software to a large data set on kinetochore proteins in human cells, we construct a spatial rule-based simulation model of the human inner kinetochore. The model generates an estimation of the probability distribution of the inner kinetochore 3D architecture and we show how to analyze this distribution using information theory. In our model, the formation of a bridge between CenpA and an H3 containing nucleosome only occurs efficiently for higher protein concentration realized during S-phase but may be not in G1. Above a certain nucleosome distance the protein bridge barely formed pointing towards the importance of chromatin structure for kinetochore complex formation. We define a metric for the distance between structures that allow us to identify structural clusters. Using this modeling technique, we explore different hypothetical chromatin layouts. Applying a rule-based network analysis to the spatial kinetochore complex geometry allowed us to integrate experimental data on kinetochore proteins, suggesting a 3D model of the human inner kinetochore architecture that is governed by a combinatorial algebraic reaction network. This reaction network can serve as bridge between multiple scales of modeling. Our approach can be applied to other systems beyond kinetochores. Copyright © 2013 Elsevier Ltd. All rights reserved.
Using RDF to Model the Structure and Process of Systems
NASA Astrophysics Data System (ADS)
Rodriguez, Marko A.; Watkins, Jennifer H.; Bollen, Johan; Gershenson, Carlos
Many systems can be described in terms of networks of discrete elements and their various relationships to one another. A semantic network, or multi-relational network, is a directed labeled graph consisting of a heterogeneous set of entities connected by a heterogeneous set of relationships. Semantic networks serve as a promising general-purpose modeling substrate for complex systems. Various standardized formats and tools are now available to support practical, large-scale semantic network models. First, the Resource Description Framework (RDF) offers a standardized semantic network data model that can be further formalized by ontology modeling languages such as RDF Schema (RDFS) and the Web Ontology Language (OWL). Second, the recent introduction of highly performant triple-stores (i.e. semantic network databases) allows semantic network models on the order of 109 edges to be efficiently stored and manipulated. RDF and its related technologies are currently used extensively in the domains of computer science, digital library science, and the biological sciences. This article will provide an introduction to RDF/RDFS/OWL and an examination of its suitability to model discrete element complex systems.
Statistical Mechanics of Temporal and Interacting Networks
NASA Astrophysics Data System (ADS)
Zhao, Kun
In the last ten years important breakthroughs in the understanding of the topology of complexity have been made in the framework of network science. Indeed it has been found that many networks belong to the universality classes called small-world networks or scale-free networks. Moreover it was found that the complex architecture of real world networks strongly affects the critical phenomena defined on these structures. Nevertheless the main focus of the research has been the characterization of single and static networks. Recently, temporal networks and interacting networks have attracted large interest. Indeed many networks are interacting or formed by a multilayer structure. Example of these networks are found in social networks where an individual might be at the same time part of different social networks, in economic and financial networks, in physiology or in infrastructure systems. Moreover, many networks are temporal, i.e. the links appear and disappear on the fast time scale. Examples of these networks are social networks of contacts such as face-to-face interactions or mobile-phone communication, the time-dependent correlations in the brain activity and etc. Understanding the evolution of temporal and multilayer networks and characterizing critical phenomena in these systems is crucial if we want to describe, predict and control the dynamics of complex system. In this thesis, we investigate several statistical mechanics models of temporal and interacting networks, to shed light on the dynamics of this new generation of complex networks. First, we investigate a model of temporal social networks aimed at characterizing human social interactions such as face-to-face interactions and phone-call communication. Indeed thanks to the availability of data on these interactions, we are now in the position to compare the proposed model to the real data finding good agreement. Second, we investigate the entropy of temporal networks and growing networks , to provide a new framework to quantify the information encoded in these networks and to answer a fundamental problem in network science: how complex are temporal and growing networks. Finally, we consider two examples of critical phenomena in interacting networks. In particular, on one side we investigate the percolation of interacting networks by introducing antagonistic interactions. On the other side, we investigate a model of political election based on the percolation of antagonistic networks. The aim of this research is to show how antagonistic interactions change the physics of critical phenomena on interacting networks. We believe that the work presented in these thesis offers the possibility to appreciate the large variability of problems that can be addressed in the new framework of temporal and interacting networks.
Local synchronization of a complex network model.
Yu, Wenwu; Cao, Jinde; Chen, Guanrong; Lü, Jinhu; Han, Jian; Wei, Wei
2009-02-01
This paper introduces a novel complex network model to evaluate the reputation of virtual organizations. By using the Lyapunov function and linear matrix inequality approaches, the local synchronization of the proposed model is further investigated. Here, the local synchronization is defined by the inner synchronization within a group which does not mean the synchronization between different groups. Moreover, several sufficient conditions are derived to ensure the local synchronization of the proposed network model. Finally, several representative examples are given to show the effectiveness of the proposed methods and theories.
Deconstructing the core dynamics from a complex time-lagged regulatory biological circuit.
Eriksson, O; Brinne, B; Zhou, Y; Björkegren, J; Tegnér, J
2009-03-01
Complex regulatory dynamics is ubiquitous in molecular networks composed of genes and proteins. Recent progress in computational biology and its application to molecular data generate a growing number of complex networks. Yet, it has been difficult to understand the governing principles of these networks beyond graphical analysis or extensive numerical simulations. Here the authors exploit several simplifying biological circumstances which thereby enable to directly detect the underlying dynamical regularities driving periodic oscillations in a dynamical nonlinear computational model of a protein-protein network. System analysis is performed using the cell cycle, a mathematically well-described complex regulatory circuit driven by external signals. By introducing an explicit time delay and using a 'tearing-and-zooming' approach the authors reduce the system to a piecewise linear system with two variables that capture the dynamics of this complex network. A key step in the analysis is the identification of functional subsystems by identifying the relations between state-variables within the model. These functional subsystems are referred to as dynamical modules operating as sensitive switches in the original complex model. By using reduced mathematical representations of the subsystems the authors derive explicit conditions on how the cell cycle dynamics depends on system parameters, and can, for the first time, analyse and prove global conditions for system stability. The approach which includes utilising biological simplifying conditions, identification of dynamical modules and mathematical reduction of the model complexity may be applicable to other well-characterised biological regulatory circuits. [Includes supplementary material].
NASA Astrophysics Data System (ADS)
Yang, Hyun Mo
2015-12-01
Currently, discrete modellings are largely accepted due to the access to computers with huge storage capacity and high performance processors and easy implementation of algorithms, allowing to develop and simulate increasingly sophisticated models. Wang et al. [7] present a review of dynamics in complex networks, focusing on the interaction between disease dynamics and human behavioral and social dynamics. By doing an extensive review regarding to the human behavior responding to disease dynamics, the authors briefly describe the complex dynamics found in the literature: well-mixed populations networks, where spatial structure can be neglected, and other networks considering heterogeneity on spatially distributed populations. As controlling mechanisms are implemented, such as social distancing due 'social contagion', quarantine, non-pharmaceutical interventions and vaccination, adaptive behavior can occur in human population, which can be easily taken into account in the dynamics formulated by networked populations.
Heterogeneous fractionation profiles of meta-analytic coactivation networks.
Laird, Angela R; Riedel, Michael C; Okoe, Mershack; Jianu, Radu; Ray, Kimberly L; Eickhoff, Simon B; Smith, Stephen M; Fox, Peter T; Sutherland, Matthew T
2017-04-01
Computational cognitive neuroimaging approaches can be leveraged to characterize the hierarchical organization of distributed, functionally specialized networks in the human brain. To this end, we performed large-scale mining across the BrainMap database of coordinate-based activation locations from over 10,000 task-based experiments. Meta-analytic coactivation networks were identified by jointly applying independent component analysis (ICA) and meta-analytic connectivity modeling (MACM) across a wide range of model orders (i.e., d=20-300). We then iteratively computed pairwise correlation coefficients for consecutive model orders to compare spatial network topologies, ultimately yielding fractionation profiles delineating how "parent" functional brain systems decompose into constituent "child" sub-networks. Fractionation profiles differed dramatically across canonical networks: some exhibited complex and extensive fractionation into a large number of sub-networks across the full range of model orders, whereas others exhibited little to no decomposition as model order increased. Hierarchical clustering was applied to evaluate this heterogeneity, yielding three distinct groups of network fractionation profiles: high, moderate, and low fractionation. BrainMap-based functional decoding of resultant coactivation networks revealed a multi-domain association regardless of fractionation complexity. Rather than emphasize a cognitive-motor-perceptual gradient, these outcomes suggest the importance of inter-lobar connectivity in functional brain organization. We conclude that high fractionation networks are complex and comprised of many constituent sub-networks reflecting long-range, inter-lobar connectivity, particularly in fronto-parietal regions. In contrast, low fractionation networks may reflect persistent and stable networks that are more internally coherent and exhibit reduced inter-lobar communication. Copyright © 2017 Elsevier Inc. All rights reserved.
Heterogeneous fractionation profiles of meta-analytic coactivation networks
Laird, Angela R.; Riedel, Michael C.; Okoe, Mershack; Jianu, Radu; Ray, Kimberly L.; Eickhoff, Simon B.; Smith, Stephen M.; Fox, Peter T.; Sutherland, Matthew T.
2017-01-01
Computational cognitive neuroimaging approaches can be leveraged to characterize the hierarchical organization of distributed, functionally specialized networks in the human brain. To this end, we performed large-scale mining across the BrainMap database of coordinate-based activation locations from over 10,000 task-based experiments. Meta-analytic coactivation networks were identified by jointly applying independent component analysis (ICA) and meta-analytic connectivity modeling (MACM) across a wide range of model orders (i.e., d = 20 to 300). We then iteratively computed pairwise correlation coefficients for consecutive model orders to compare spatial network topologies, ultimately yielding fractionation profiles delineating how “parent” functional brain systems decompose into constituent “child” sub-networks. Fractionation profiles differed dramatically across canonical networks: some exhibited complex and extensive fractionation into a large number of sub-networks across the full range of model orders, whereas others exhibited little to no decomposition as model order increased. Hierarchical clustering was applied to evaluate this heterogeneity, yielding three distinct groups of network fractionation profiles: high, moderate, and low fractionation. BrainMap-based functional decoding of resultant coactivation networks revealed a multi-domain association regardless of fractionation complexity. Rather than emphasize a cognitive-motor-perceptual gradient, these outcomes suggest the importance of inter-lobar connectivity in functional brain organization. We conclude that high fractionation networks are complex and comprised of many constituent sub-networks reflecting long-range, inter-lobar connectivity, particularly in fronto-parietal regions. In contrast, low fractionation networks may reflect persistent and stable networks that are more internally coherent and exhibit reduced inter-lobar communication. PMID:28222386
Some characteristics of supernetworks based on unified hybrid network theory framework
NASA Astrophysics Data System (ADS)
Liu, Qiang; Fang, Jin-Qing; Li, Yong
Comparing with single complex networks, supernetworks are more close to the real world in some ways, and have become the newest research hot spot in the network science recently. Some progresses have been made in the research of supernetworks, but the theoretical research method and complex network characteristics of supernetwork models are still needed to further explore. In this paper, we propose three kinds of supernetwork models with three layers based on the unified hybrid network theory framework (UHNTF), and introduce preferential and random linking, respectively, between the upper and lower layers. Then we compared the topological characteristics of the single networks with the supernetwork models. In order to analyze the influence of the interlayer edges on network characteristics, the cross-degree is defined as a new important parameter. Then some interesting new phenomena are found, the results imply this supernetwork model has reference value and application potential.
Petri net modelling of biological networks.
Chaouiya, Claudine
2007-07-01
Mathematical modelling is increasingly used to get insights into the functioning of complex biological networks. In this context, Petri nets (PNs) have recently emerged as a promising tool among the various methods employed for the modelling and analysis of molecular networks. PNs come with a series of extensions, which allow different abstraction levels, from purely qualitative to more complex quantitative models. Noteworthily, each of these models preserves the underlying graph, which depicts the interactions between the biological components. This article intends to present the basics of the approach and to foster the potential role PNs could play in the development of the computational systems biology.
Modeling of the ground-to-SSFMB link networking features using SPW
NASA Technical Reports Server (NTRS)
Watson, John C.
1993-01-01
This report describes the modeling and simulation of the networking features of the ground-to-Space Station Freedom manned base (SSFMB) link using COMDISCO signal processing work-system (SPW). The networking features modeled include the implementation of Consultative Committee for Space Data Systems (CCSDS) protocols in the multiplexing of digitized audio and core data into virtual channel data units (VCDU's) in the control center complex and the demultiplexing of VCDU's in the onboard baseband signal processor. The emphasis of this work has been placed on techniques for modeling the CCSDS networking features using SPW. The objectives for developing the SPW models are to test the suitability of SPW for modeling networking features and to develop SPW simulation models of the control center complex and space station baseband signal processor for use in end-to-end testing of the ground-to-SSFMB S-band single access forward (SSAF) link.
Ibáñez, Juan José; Ortega, David; Campos, Daniel; Khalidi, Lamya; Méndez, Vicenç
2015-01-01
In this paper, we explore the conditions that led to the origins and development of the Near Eastern Neolithic using mathematical modelling of obsidian exchange. The analysis presented expands on previous research, which established that the down-the-line model could not explain long-distance obsidian distribution across the Near East during this period. Drawing from outcomes of new simulations and their comparison with archaeological data, we provide results that illuminate the presence of complex networks of interaction among the earliest farming societies. We explore a network prototype of obsidian exchange with distant links which replicates the long-distance movement of ideas, goods and people during the Early Neolithic. Our results support the idea that during the first (Pre-Pottery Neolithic A) and second (Pre-Pottery Neolithic B) phases of the Early Neolithic, the complexity of obsidian exchange networks gradually increased. We propose then a refined model (the optimized distant link model) whereby long-distance exchange was largely operated by certain interconnected villages, resulting in the appearance of a relatively homogeneous Neolithic cultural sphere. We hypothesize that the appearance of complex interaction and exchange networks reduced risks of isolation caused by restricted mobility as groups settled and argue that these networks partially triggered and were crucial for the success of the Neolithic Revolution. Communities became highly dynamic through the sharing of experiences and objects, while the networks that developed acted as a repository of innovations, limiting the risk of involution. PMID:25948614
Robustness and percolation of holes in complex networks
NASA Astrophysics Data System (ADS)
Zhou, Andu; Maletić, Slobodan; Zhao, Yi
2018-07-01
Efficient robustness and fault tolerance of complex network is significantly influenced by its connectivity, commonly modeled by the structure of pairwise relations between network elements, i.e., nodes. Nevertheless, aggregations of nodes build higher-order structures embedded in complex network, which may be more vulnerable when the fraction of nodes is removed. The structure of higher-order aggregations of nodes can be naturally modeled by simplicial complexes, whereas the removal of nodes affects the values of topological invariants, like the number of higher-dimensional holes quantified with Betti numbers. Following the methodology of percolation theory, as the fraction of nodes is removed, new holes appear, which have the role of merger between already present holes. In the present article, relationship between the robustness and homological properties of complex network is studied, through relating the graph-theoretical signatures of robustness and the quantities derived from topological invariants. The simulation results of random failures and intentional attacks on networks suggest that the changes of graph-theoretical signatures of robustness are followed by differences in the distribution of number of holes per cluster under different attack strategies. In the broader sense, the results indicate the importance of topological invariants research for obtaining further insights in understanding dynamics taking place over complex networks.
Sequential defense against random and intentional attacks in complex networks.
Chen, Pin-Yu; Cheng, Shin-Ming
2015-02-01
Network robustness against attacks is one of the most fundamental researches in network science as it is closely associated with the reliability and functionality of various networking paradigms. However, despite the study on intrinsic topological vulnerabilities to node removals, little is known on the network robustness when network defense mechanisms are implemented, especially for networked engineering systems equipped with detection capabilities. In this paper, a sequential defense mechanism is first proposed in complex networks for attack inference and vulnerability assessment, where the data fusion center sequentially infers the presence of an attack based on the binary attack status reported from the nodes in the network. The network robustness is evaluated in terms of the ability to identify the attack prior to network disruption under two major attack schemes, i.e., random and intentional attacks. We provide a parametric plug-in model for performance evaluation on the proposed mechanism and validate its effectiveness and reliability via canonical complex network models and real-world large-scale network topology. The results show that the sequential defense mechanism greatly improves the network robustness and mitigates the possibility of network disruption by acquiring limited attack status information from a small subset of nodes in the network.
Identification of hybrid node and link communities in complex networks
He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong
2015-01-01
Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately. PMID:25728010
Identification of hybrid node and link communities in complex networks.
He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong
2015-03-02
Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately.
Identification of hybrid node and link communities in complex networks
NASA Astrophysics Data System (ADS)
He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong
2015-03-01
Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately.
Some comparisons of complexity in dictionary-based and linear computational models.
Gnecco, Giorgio; Kůrková, Věra; Sanguineti, Marcello
2011-03-01
Neural networks provide a more flexible approximation of functions than traditional linear regression. In the latter, one can only adjust the coefficients in linear combinations of fixed sets of functions, such as orthogonal polynomials or Hermite functions, while for neural networks, one may also adjust the parameters of the functions which are being combined. However, some useful properties of linear approximators (such as uniqueness, homogeneity, and continuity of best approximation operators) are not satisfied by neural networks. Moreover, optimization of parameters in neural networks becomes more difficult than in linear regression. Experimental results suggest that these drawbacks of neural networks are offset by substantially lower model complexity, allowing accuracy of approximation even in high-dimensional cases. We give some theoretical results comparing requirements on model complexity for two types of approximators, the traditional linear ones and so called variable-basis types, which include neural networks, radial, and kernel models. We compare upper bounds on worst-case errors in variable-basis approximation with lower bounds on such errors for any linear approximator. Using methods from nonlinear approximation and integral representations tailored to computational units, we describe some cases where neural networks outperform any linear approximator. Copyright © 2010 Elsevier Ltd. All rights reserved.
Real-time biomimetic Central Pattern Generators in an FPGA for hybrid experiments
Ambroise, Matthieu; Levi, Timothée; Joucla, Sébastien; Yvert, Blaise; Saïghi, Sylvain
2013-01-01
This investigation of the leech heartbeat neural network system led to the development of a low resources, real-time, biomimetic digital hardware for use in hybrid experiments. The leech heartbeat neural network is one of the simplest central pattern generators (CPG). In biology, CPG provide the rhythmic bursts of spikes that form the basis for all muscle contraction orders (heartbeat) and locomotion (walking, running, etc.). The leech neural network system was previously investigated and this CPG formalized in the Hodgkin–Huxley neural model (HH), the most complex devised to date. However, the resources required for a neural model are proportional to its complexity. In response to this issue, this article describes a biomimetic implementation of a network of 240 CPGs in an FPGA (Field Programmable Gate Array), using a simple model (Izhikevich) and proposes a new synapse model: activity-dependent depression synapse. The network implementation architecture operates on a single computation core. This digital system works in real-time, requires few resources, and has the same bursting activity behavior as the complex model. The implementation of this CPG was initially validated by comparing it with a simulation of the complex model. Its activity was then matched with pharmacological data from the rat spinal cord activity. This digital system opens the way for future hybrid experiments and represents an important step toward hybridization of biological tissue and artificial neural networks. This CPG network is also likely to be useful for mimicking the locomotion activity of various animals and developing hybrid experiments for neuroprosthesis development. PMID:24319408
Nonequilibrium transitions in complex networks: A model of social interaction
NASA Astrophysics Data System (ADS)
Klemm, Konstantin; Eguíluz, Víctor M.; Toral, Raúl; San Miguel, Maxi
2003-02-01
We analyze the nonequilibrium order-disorder transition of Axelrod’s model of social interaction in several complex networks. In a small-world network, we find a transition between an ordered homogeneous state and a disordered state. The transition point is shifted by the degree of spatial disorder of the underlying network, the network disorder favoring ordered configurations. In random scale-free networks the transition is only observed for finite size systems, showing system size scaling, while in the thermodynamic limit only ordered configurations are always obtained. Thus, in the thermodynamic limit the transition disappears. However, in structured scale-free networks, the phase transition between an ordered and a disordered phase is restored.
Riera-Fernández, Pablo; Munteanu, Cristian R; Escobar, Manuel; Prado-Prado, Francisco; Martín-Romalde, Raquel; Pereira, David; Villalba, Karen; Duardo-Sánchez, Aliuska; González-Díaz, Humberto
2012-01-21
Graph and Complex Network theory is expanding its application to different levels of matter organization such as molecular, biological, technological, and social networks. A network is a set of items, usually called nodes, with connections between them, which are called links or edges. There are many different experimental and/or theoretical methods to assign node-node links depending on the type of network we want to construct. Unfortunately, the use of a method for experimental reevaluation of the entire network is very expensive in terms of time and resources; thus the development of cheaper theoretical methods is of major importance. In addition, different methods to link nodes in the same type of network are not totally accurate in such a way that they do not always coincide. In this sense, the development of computational methods useful to evaluate connectivity quality in complex networks (a posteriori of network assemble) is a goal of major interest. In this work, we report for the first time a new method to calculate numerical quality scores S(L(ij)) for network links L(ij) (connectivity) based on the Markov-Shannon Entropy indices of order k-th (θ(k)) for network nodes. The algorithm may be summarized as follows: (i) first, the θ(k)(j) values are calculated for all j-th nodes in a complex network already constructed; (ii) A Linear Discriminant Analysis (LDA) is used to seek a linear equation that discriminates connected or linked (L(ij)=1) pairs of nodes experimentally confirmed from non-linked ones (L(ij)=0); (iii) the new model is validated with external series of pairs of nodes; (iv) the equation obtained is used to re-evaluate the connectivity quality of the network, connecting/disconnecting nodes based on the quality scores calculated with the new connectivity function. This method was used to study different types of large networks. The linear models obtained produced the following results in terms of overall accuracy for network reconstruction: Metabolic networks (72.3%), Parasite-Host networks (93.3%), CoCoMac brain cortex co-activation network (89.6%), NW Spain fasciolosis spreading network (97.2%), Spanish financial law network (89.9%) and World trade network for Intelligent & Active Food Packaging (92.8%). In order to seek these models, we studied an average of 55,388 pairs of nodes in each model and a total of 332,326 pairs of nodes in all models. Finally, this method was used to solve a more complicated problem. A model was developed to score the connectivity quality in the Drug-Target network of US FDA approved drugs. In this last model the θ(k) values were calculated for three types of molecular networks representing different levels of organization: drug molecular graphs (atom-atom bonds), protein residue networks (amino acid interactions), and drug-target network (compound-protein binding). The overall accuracy of this model was 76.3%. This work opens a new door to the computational reevaluation of network connectivity quality (collation) for complex systems in molecular, biomedical, technological, and legal-social sciences as well as in world trade and industry. Copyright © 2011 Elsevier Ltd. All rights reserved.
Common quandaries and their practical solutions in Bayesian network modeling
Bruce G. Marcot
2017-01-01
Use and popularity of Bayesian network (BN) modeling has greatly expanded in recent years, but many common problems remain. Here, I summarize key problems in BN model construction and interpretation,along with suggested practical solutions. Problems in BN model construction include parameterizing probability values, variable definition, complex network structures,...
An Attractor-Based Complexity Measurement for Boolean Recurrent Neural Networks
Cabessa, Jérémie; Villa, Alessandro E. P.
2014-01-01
We provide a novel refined attractor-based complexity measurement for Boolean recurrent neural networks that represents an assessment of their computational power in terms of the significance of their attractor dynamics. This complexity measurement is achieved by first proving a computational equivalence between Boolean recurrent neural networks and some specific class of -automata, and then translating the most refined classification of -automata to the Boolean neural network context. As a result, a hierarchical classification of Boolean neural networks based on their attractive dynamics is obtained, thus providing a novel refined attractor-based complexity measurement for Boolean recurrent neural networks. These results provide new theoretical insights to the computational and dynamical capabilities of neural networks according to their attractive potentialities. An application of our findings is illustrated by the analysis of the dynamics of a simplified model of the basal ganglia-thalamocortical network simulated by a Boolean recurrent neural network. This example shows the significance of measuring network complexity, and how our results bear new founding elements for the understanding of the complexity of real brain circuits. PMID:24727866
Contagion on complex networks with persuasion
NASA Astrophysics Data System (ADS)
Huang, Wei-Min; Zhang, Li-Jie; Xu, Xin-Jian; Fu, Xinchu
2016-03-01
The threshold model has been widely adopted as a classic model for studying contagion processes on social networks. We consider asymmetric individual interactions in social networks and introduce a persuasion mechanism into the threshold model. Specifically, we study a combination of adoption and persuasion in cascading processes on complex networks. It is found that with the introduction of the persuasion mechanism, the system may become more vulnerable to global cascades, and the effects of persuasion tend to be more significant in heterogeneous networks than those in homogeneous networks: a comparison between heterogeneous and homogeneous networks shows that under weak persuasion, heterogeneous networks tend to be more robust against random shocks than homogeneous networks; whereas under strong persuasion, homogeneous networks are more stable. Finally, we study the effects of adoption and persuasion threshold heterogeneity on systemic stability. Though both heterogeneities give rise to global cascades, the adoption heterogeneity has an overwhelmingly stronger impact than the persuasion heterogeneity when the network connectivity is sufficiently dense.
Contagion on complex networks with persuasion
Huang, Wei-Min; Zhang, Li-Jie; Xu, Xin-Jian; Fu, Xinchu
2016-01-01
The threshold model has been widely adopted as a classic model for studying contagion processes on social networks. We consider asymmetric individual interactions in social networks and introduce a persuasion mechanism into the threshold model. Specifically, we study a combination of adoption and persuasion in cascading processes on complex networks. It is found that with the introduction of the persuasion mechanism, the system may become more vulnerable to global cascades, and the effects of persuasion tend to be more significant in heterogeneous networks than those in homogeneous networks: a comparison between heterogeneous and homogeneous networks shows that under weak persuasion, heterogeneous networks tend to be more robust against random shocks than homogeneous networks; whereas under strong persuasion, homogeneous networks are more stable. Finally, we study the effects of adoption and persuasion threshold heterogeneity on systemic stability. Though both heterogeneities give rise to global cascades, the adoption heterogeneity has an overwhelmingly stronger impact than the persuasion heterogeneity when the network connectivity is sufficiently dense. PMID:27029498
Contagion on complex networks with persuasion.
Huang, Wei-Min; Zhang, Li-Jie; Xu, Xin-Jian; Fu, Xinchu
2016-03-31
The threshold model has been widely adopted as a classic model for studying contagion processes on social networks. We consider asymmetric individual interactions in social networks and introduce a persuasion mechanism into the threshold model. Specifically, we study a combination of adoption and persuasion in cascading processes on complex networks. It is found that with the introduction of the persuasion mechanism, the system may become more vulnerable to global cascades, and the effects of persuasion tend to be more significant in heterogeneous networks than those in homogeneous networks: a comparison between heterogeneous and homogeneous networks shows that under weak persuasion, heterogeneous networks tend to be more robust against random shocks than homogeneous networks; whereas under strong persuasion, homogeneous networks are more stable. Finally, we study the effects of adoption and persuasion threshold heterogeneity on systemic stability. Though both heterogeneities give rise to global cascades, the adoption heterogeneity has an overwhelmingly stronger impact than the persuasion heterogeneity when the network connectivity is sufficiently dense.
McDonnell, Mark D.; Ward, Lawrence M.
2014-01-01
Abstract Directed random graph models frequently are used successfully in modeling the population dynamics of networks of cortical neurons connected by chemical synapses. Experimental results consistently reveal that neuronal network topology is complex, however, in the sense that it differs statistically from a random network, and differs for classes of neurons that are physiologically different. This suggests that complex network models whose subnetworks have distinct topological structure may be a useful, and more biologically realistic, alternative to random networks. Here we demonstrate that the balanced excitation and inhibition frequently observed in small cortical regions can transiently disappear in otherwise standard neuronal-scale models of fluctuation-driven dynamics, solely because the random network topology was replaced by a complex clustered one, whilst not changing the in-degree of any neurons. In this network, a small subset of cells whose inhibition comes only from outside their local cluster are the cause of bistable population dynamics, where different clusters of these cells irregularly switch back and forth from a sparsely firing state to a highly active state. Transitions to the highly active state occur when a cluster of these cells spikes sufficiently often to cause strong unbalanced positive feedback to each other. Transitions back to the sparsely firing state rely on occasional large fluctuations in the amount of non-local inhibition received. Neurons in the model are homogeneous in their intrinsic dynamics and in-degrees, but differ in the abundance of various directed feedback motifs in which they participate. Our findings suggest that (i) models and simulations should take into account complex structure that varies for neuron and synapse classes; (ii) differences in the dynamics of neurons with similar intrinsic properties may be caused by their membership in distinctive local networks; (iii) it is important to identify neurons that share physiological properties and location, but differ in their connectivity. PMID:24743633
Application of network methods for understanding evolutionary dynamics in discrete habitats.
Greenbaum, Gili; Fefferman, Nina H
2017-06-01
In populations occupying discrete habitat patches, gene flow between habitat patches may form an intricate population structure. In such structures, the evolutionary dynamics resulting from interaction of gene-flow patterns with other evolutionary forces may be exceedingly complex. Several models describing gene flow between discrete habitat patches have been presented in the population-genetics literature; however, these models have usually addressed relatively simple settings of habitable patches and have stopped short of providing general methodologies for addressing nontrivial gene-flow patterns. In the last decades, network theory - a branch of discrete mathematics concerned with complex interactions between discrete elements - has been applied to address several problems in population genetics by modelling gene flow between habitat patches using networks. Here, we present the idea and concepts of modelling complex gene flows in discrete habitats using networks. Our goal is to raise awareness to existing network theory applications in molecular ecology studies, as well as to outline the current and potential contribution of network methods to the understanding of evolutionary dynamics in discrete habitats. We review the main branches of network theory that have been, or that we believe potentially could be, applied to population genetics and molecular ecology research. We address applications to theoretical modelling and to empirical population-genetic studies, and we highlight future directions for extending the integration of network science with molecular ecology. © 2017 John Wiley & Sons Ltd.
Dynamics of functional failures and recovery in complex road networks
NASA Astrophysics Data System (ADS)
Zhan, Xianyuan; Ukkusuri, Satish V.; Rao, P. Suresh C.
2017-11-01
We propose a new framework for modeling the evolution of functional failures and recoveries in complex networks, with traffic congestion on road networks as the case study. Differently from conventional approaches, we transform the evolution of functional states into an equivalent dynamic structural process: dual-vertex splitting and coalescing embedded within the original network structure. The proposed model successfully explains traffic congestion and recovery patterns at the city scale based on high-resolution data from two megacities. Numerical analysis shows that certain network structural attributes can amplify or suppress cascading functional failures. Our approach represents a new general framework to model functional failures and recoveries in flow-based networks and allows understanding of the interplay between structure and function for flow-induced failure propagation and recovery.
Trade-offs between driving nodes and time-to-control in complex networks
Pequito, Sérgio; Preciado, Victor M.; Barabási, Albert-László; Pappas, George J.
2017-01-01
Recent advances in control theory provide us with efficient tools to determine the minimum number of driving (or driven) nodes to steer a complex network towards a desired state. Furthermore, we often need to do it within a given time window, so it is of practical importance to understand the trade-offs between the minimum number of driving/driven nodes and the minimum time required to reach a desired state. Therefore, we introduce the notion of actuation spectrum to capture such trade-offs, which we used to find that in many complex networks only a small fraction of driving (or driven) nodes is required to steer the network to a desired state within a relatively small time window. Furthermore, our empirical studies reveal that, even though synthetic network models are designed to present structural properties similar to those observed in real networks, their actuation spectra can be dramatically different. Thus, it supports the need to develop new synthetic network models able to replicate controllability properties of real-world networks. PMID:28054597
Trade-offs between driving nodes and time-to-control in complex networks
NASA Astrophysics Data System (ADS)
Pequito, Sérgio; Preciado, Victor M.; Barabási, Albert-László; Pappas, George J.
2017-01-01
Recent advances in control theory provide us with efficient tools to determine the minimum number of driving (or driven) nodes to steer a complex network towards a desired state. Furthermore, we often need to do it within a given time window, so it is of practical importance to understand the trade-offs between the minimum number of driving/driven nodes and the minimum time required to reach a desired state. Therefore, we introduce the notion of actuation spectrum to capture such trade-offs, which we used to find that in many complex networks only a small fraction of driving (or driven) nodes is required to steer the network to a desired state within a relatively small time window. Furthermore, our empirical studies reveal that, even though synthetic network models are designed to present structural properties similar to those observed in real networks, their actuation spectra can be dramatically different. Thus, it supports the need to develop new synthetic network models able to replicate controllability properties of real-world networks.
Mapping the q-voter model: From a single chain to complex networks
NASA Astrophysics Data System (ADS)
Jȩdrzejewski, Arkadiusz; Sznajd-Weron, Katarzyna; Szwabiński, Janusz
2016-03-01
We propose and compare six different ways of mapping the modified q-voter model to complex networks. Considering square lattices, Barabási-Albert, Watts-Strogatz and real Twitter networks, we ask the question if always a particular choice of the group of influence of a fixed size q leads to different behavior at the macroscopic level. Using Monte Carlo simulations we show that the answer depends on the relative average path length of the network and for real-life topologies the differences between the considered mappings may be negligible.
Structural Preferential Attachment: Network Organization beyond the Link
NASA Astrophysics Data System (ADS)
Hébert-Dufresne, Laurent; Allard, Antoine; Marceau, Vincent; Noël, Pierre-André; Dubé, Louis J.
2011-10-01
We introduce a mechanism which models the emergence of the universal properties of complex networks, such as scale independence, modularity and self-similarity, and unifies them under a scale-free organization beyond the link. This brings a new perspective on network organization where communities, instead of links, are the fundamental building blocks of complex systems. We show how our simple model can reproduce social and information networks by predicting their community structure and more importantly, how their nodes or communities are interconnected, often in a self-similar manner.
Statistical significance of the rich-club phenomenon in complex networks
NASA Astrophysics Data System (ADS)
Jiang, Zhi-Qiang; Zhou, Wei-Xing
2008-04-01
We propose that the rich-club phenomenon in complex networks should be defined in the spirit of bootstrapping, in which a null model is adopted to assess the statistical significance of the rich-club detected. Our method can serve as a definition of the rich-club phenomenon and is applied to analyze three real networks and three model networks. The results show significant improvement compared with previously reported results. We report a dilemma with an exceptional example, showing that there does not exist an omnipotent definition for the rich-club phenomenon.
Fast Recall for Complex-Valued Hopfield Neural Networks with Projection Rules.
Kobayashi, Masaki
2017-01-01
Many models of neural networks have been extended to complex-valued neural networks. A complex-valued Hopfield neural network (CHNN) is a complex-valued version of a Hopfield neural network. Complex-valued neurons can represent multistates, and CHNNs are available for the storage of multilevel data, such as gray-scale images. The CHNNs are often trapped into the local minima, and their noise tolerance is low. Lee improved the noise tolerance of the CHNNs by detecting and exiting the local minima. In the present work, we propose a new recall algorithm that eliminates the local minima. We show that our proposed recall algorithm not only accelerated the recall but also improved the noise tolerance through computer simulations.
Manning, Brendan D
2012-07-10
In their study published in Science Signaling (Research Article, 27 March 2012, DOI: 10.1126/scisignal.2002469), Dalle Pezze et al. tackle the dynamic and complex wiring of the signaling network involving the protein kinase mTOR, which exists within two distinct protein complexes (mTORC1 and mTORC2) that differ in their regulation and function. The authors use a combination of immunoblotting for specific phosphorylation events and computational modeling. The primary experimental tool employed is to monitor the autophosphorylation of mTOR on Ser(2481) in cell lysates as a surrogate for mTOR activity, which the authors conclude is a specific readout for mTORC2. However, Ser(2481) phosphorylation occurs on both mTORC1 and mTORC2 and will dynamically change as the network through which these two complexes are connected is manipulated. Therefore, models of mTOR network regulation built using this tool are inherently imperfect and open to alternative explanations. Specific issues with the main conclusion made in this study, involving the TSC1-TSC2 (tuberous sclerosis complex 1 and 2) complex and its potential regulation of mTORC2, are discussed here. A broader goal of this Letter is to clarify to other investigators the caveats of using mTOR Ser(2481) phosphorylation in cell lysates as a specific readout for either of the two mTOR complexes.
Model identification of signal transduction networks from data using a state regulator problem.
Gadkar, K G; Varner, J; Doyle, F J
2005-03-01
Advances in molecular biology provide an opportunity to develop detailed models of biological processes that can be used to obtain an integrated understanding of the system. However, development of useful models from the available knowledge of the system and experimental observations still remains a daunting task. In this work, a model identification strategy for complex biological networks is proposed. The approach includes a state regulator problem (SRP) that provides estimates of all the component concentrations and the reaction rates of the network using the available measurements. The full set of the estimates is utilised for model parameter identification for the network of known topology. An a priori model complexity test that indicates the feasibility of performance of the proposed algorithm is developed. Fisher information matrix (FIM) theory is used to address model identifiability issues. Two signalling pathway case studies, the caspase function in apoptosis and the MAP kinase cascade system, are considered. The MAP kinase cascade, with measurements restricted to protein complex concentrations, fails the a priori test and the SRP estimates are poor as expected. The apoptosis network structure used in this work has moderate complexity and is suitable for application of the proposed tools. Using a measurement set of seven protein concentrations, accurate estimates for all unknowns are obtained. Furthermore, the effects of measurement sampling frequency and quality of information in the measurement set on the performance of the identified model are described.
The noisy voter model on complex networks.
Carro, Adrián; Toral, Raúl; San Miguel, Maxi
2016-04-20
We propose a new analytical method to study stochastic, binary-state models on complex networks. Moving beyond the usual mean-field theories, this alternative approach is based on the introduction of an annealed approximation for uncorrelated networks, allowing to deal with the network structure as parametric heterogeneity. As an illustration, we study the noisy voter model, a modification of the original voter model including random changes of state. The proposed method is able to unfold the dependence of the model not only on the mean degree (the mean-field prediction) but also on more complex averages over the degree distribution. In particular, we find that the degree heterogeneity--variance of the underlying degree distribution--has a strong influence on the location of the critical point of a noise-induced, finite-size transition occurring in the model, on the local ordering of the system, and on the functional form of its temporal correlations. Finally, we show how this latter point opens the possibility of inferring the degree heterogeneity of the underlying network by observing only the aggregate behavior of the system as a whole, an issue of interest for systems where only macroscopic, population level variables can be measured.
NASA Astrophysics Data System (ADS)
Wu, Qing-Chu; Fu, Xin-Chu; Sun, Wei-Gang
2010-01-01
In this paper a class of networks with multiple connections are discussed. The multiple connections include two different types of links between nodes in complex networks. For this new model, we give a simple generating procedure. Furthermore, we investigate dynamical synchronization behavior in a delayed two-layer network, giving corresponding theoretical analysis and numerical examples.
Inferring general relations between network characteristics from specific network ensembles.
Cardanobile, Stefano; Pernice, Volker; Deger, Moritz; Rotter, Stefan
2012-01-01
Different network models have been suggested for the topology underlying complex interactions in natural systems. These models are aimed at replicating specific statistical features encountered in real-world networks. However, it is rarely considered to which degree the results obtained for one particular network class can be extrapolated to real-world networks. We address this issue by comparing different classical and more recently developed network models with respect to their ability to generate networks with large structural variability. In particular, we consider the statistical constraints which the respective construction scheme imposes on the generated networks. After having identified the most variable networks, we address the issue of which constraints are common to all network classes and are thus suitable candidates for being generic statistical laws of complex networks. In fact, we find that generic, not model-related dependencies between different network characteristics do exist. This makes it possible to infer global features from local ones using regression models trained on networks with high generalization power. Our results confirm and extend previous findings regarding the synchronization properties of neural networks. Our method seems especially relevant for large networks, which are difficult to map completely, like the neural networks in the brain. The structure of such large networks cannot be fully sampled with the present technology. Our approach provides a method to estimate global properties of under-sampled networks in good approximation. Finally, we demonstrate on three different data sets (C. elegans neuronal network, R. prowazekii metabolic network, and a network of synonyms extracted from Roget's Thesaurus) that real-world networks have statistical relations compatible with those obtained using regression models.
Complex networks as an emerging property of hierarchical preferential attachment.
Hébert-Dufresne, Laurent; Laurence, Edward; Allard, Antoine; Young, Jean-Gabriel; Dubé, Louis J
2015-12-01
Real complex systems are not rigidly structured; no clear rules or blueprints exist for their construction. Yet, amidst their apparent randomness, complex structural properties universally emerge. We propose that an important class of complex systems can be modeled as an organization of many embedded levels (potentially infinite in number), all of them following the same universal growth principle known as preferential attachment. We give examples of such hierarchy in real systems, for instance, in the pyramid of production entities of the film industry. More importantly, we show how real complex networks can be interpreted as a projection of our model, from which their scale independence, their clustering, their hierarchy, their fractality, and their navigability naturally emerge. Our results suggest that complex networks, viewed as growing systems, can be quite simple, and that the apparent complexity of their structure is largely a reflection of their unobserved hierarchical nature.
Complex networks as an emerging property of hierarchical preferential attachment
NASA Astrophysics Data System (ADS)
Hébert-Dufresne, Laurent; Laurence, Edward; Allard, Antoine; Young, Jean-Gabriel; Dubé, Louis J.
2015-12-01
Real complex systems are not rigidly structured; no clear rules or blueprints exist for their construction. Yet, amidst their apparent randomness, complex structural properties universally emerge. We propose that an important class of complex systems can be modeled as an organization of many embedded levels (potentially infinite in number), all of them following the same universal growth principle known as preferential attachment. We give examples of such hierarchy in real systems, for instance, in the pyramid of production entities of the film industry. More importantly, we show how real complex networks can be interpreted as a projection of our model, from which their scale independence, their clustering, their hierarchy, their fractality, and their navigability naturally emerge. Our results suggest that complex networks, viewed as growing systems, can be quite simple, and that the apparent complexity of their structure is largely a reflection of their unobserved hierarchical nature.
Ibáñez, Juan José; Ortega, David; Campos, Daniel; Khalidi, Lamya; Méndez, Vicenç
2015-06-06
In this paper, we explore the conditions that led to the origins and development of the Near Eastern Neolithic using mathematical modelling of obsidian exchange. The analysis presented expands on previous research, which established that the down-the-line model could not explain long-distance obsidian distribution across the Near East during this period. Drawing from outcomes of new simulations and their comparison with archaeological data, we provide results that illuminate the presence of complex networks of interaction among the earliest farming societies. We explore a network prototype of obsidian exchange with distant links which replicates the long-distance movement of ideas, goods and people during the Early Neolithic. Our results support the idea that during the first (Pre-Pottery Neolithic A) and second (Pre-Pottery Neolithic B) phases of the Early Neolithic, the complexity of obsidian exchange networks gradually increased. We propose then a refined model (the optimized distant link model) whereby long-distance exchange was largely operated by certain interconnected villages, resulting in the appearance of a relatively homogeneous Neolithic cultural sphere. We hypothesize that the appearance of complex interaction and exchange networks reduced risks of isolation caused by restricted mobility as groups settled and argue that these networks partially triggered and were crucial for the success of the Neolithic Revolution. Communities became highly dynamic through the sharing of experiences and objects, while the networks that developed acted as a repository of innovations, limiting the risk of involution. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Topological Vulnerability Evaluation Model Based on Fractal Dimension of Complex Networks.
Gou, Li; Wei, Bo; Sadiq, Rehan; Sadiq, Yong; Deng, Yong
2016-01-01
With an increasing emphasis on network security, much more attentions have been attracted to the vulnerability of complex networks. In this paper, the fractal dimension, which can reflect space-filling capacity of networks, is redefined as the origin moment of the edge betweenness to obtain a more reasonable evaluation of vulnerability. The proposed model combining multiple evaluation indexes not only overcomes the shortage of average edge betweenness's failing to evaluate vulnerability of some special networks, but also characterizes the topological structure and highlights the space-filling capacity of networks. The applications to six US airline networks illustrate the practicality and effectiveness of our proposed method, and the comparisons with three other commonly used methods further validate the superiority of our proposed method.
Analyzing the causation of a railway accident based on a complex network
NASA Astrophysics Data System (ADS)
Ma, Xin; Li, Ke-Ping; Luo, Zi-Yan; Zhou, Jin
2014-02-01
In this paper, a new model is constructed for the causation analysis of railway accident based on the complex network theory. In the model, the nodes are defined as various manifest or latent accident causal factors. By employing the complex network theory, especially its statistical indicators, the railway accident as well as its key causations can be analyzed from the overall perspective. As a case, the “7.23” China—Yongwen railway accident is illustrated based on this model. The results show that the inspection of signals and the checking of line conditions before trains run played an important role in this railway accident. In conclusion, the constructed model gives a theoretical clue for railway accident prediction and, hence, greatly reduces the occurrence of railway accidents.
NASA Astrophysics Data System (ADS)
Christensen, Claire Petra
Across diverse fields ranging from physics to biology, sociology, and economics, the technological advances of the past decade have engendered an unprecedented explosion of data on highly complex systems with thousands, if not millions of interacting components. These systems exist at many scales of size and complexity, and it is becoming ever-more apparent that they are, in fact, universal, arising in every field of study. Moreover, they share fundamental properties---chief among these, that the individual interactions of their constituent parts may be well-understood, but the characteristic behaviour produced by the confluence of these interactions---by these complex networks---is unpredictable; in a nutshell, the whole is more than the sum of its parts. There is, perhaps, no better illustration of this concept than the discoveries being made regarding complex networks in the biological sciences. In particular, though the sequencing of the human genome in 2003 was a remarkable feat, scientists understand that the "cellular-level blueprints" for the human being are cellular-level parts lists, but they say nothing (explicitly) about cellular-level processes. The challenge of modern molecular biology is to understand these processes in terms of the networks of parts---in terms of the interactions among proteins, enzymes, genes, and metabolites---as it is these processes that ultimately differentiate animate from inanimate, giving rise to life! It is the goal of systems biology---an umbrella field encapsulating everything from molecular biology to epidemiology in social systems---to understand processes in terms of fundamental networks of core biological parts, be they proteins or people. By virtue of the fact that there are literally countless complex systems, not to mention tools and techniques used to infer, simulate, analyze, and model these systems, it is impossible to give a truly comprehensive account of the history and study of complex systems. The author's own publications have contributed network inference, simulation, modeling, and analysis methods to the much larger body of work in systems biology, and indeed, in network science. The aim of this thesis is therefore twofold: to present this original work in the historical context of network science, but also to provide sufficient review and reference regarding complex systems (with an emphasis on complex networks in systems biology) and tools and techniques for their inference, simulation, analysis, and modeling, such that the reader will be comfortable in seeking out further information on the subject. The review-like Chapters 1, 2, and 4 are intended to convey the co-evolution of network science and the slow but noticeable breakdown of boundaries between disciplines in academia as research and comparison of diverse systems has brought to light the shared properties of these systems. It is the author's hope that theses chapters impart some sense of the remarkable and rapid progress in complex systems research that has led to this unprecedented academic synergy. Chapters 3 and 5 detail the author's original work in the context of complex systems research. Chapter 3 presents the methods and results of a two-stage modeling process that generates candidate gene-regulatory networks of the bacterium B.subtilis from experimentally obtained, yet mathematically underdetermined microchip array data. These networks are then analyzed from a graph theoretical perspective, and their biological viability is critiqued by comparing the networks' graph theoretical properties to those of other biological systems. The results of topological perturbation analyses revealing commonalities in behavior at multiple levels of complexity are also presented, and are shown to be an invaluable means by which to ascertain the level of complexity to which the network inference process is robust to noise. Chapter 5 outlines a learning algorithm for the development of a realistic, evolving social network (a city) into which a disease is introduced. The results of simulations in populations spanning two orders of magnitude are compared to prevaccine era measles data for England and Wales and demonstrate that the simulations are able to capture the quantitative and qualitative features of epidemics in populations as small as 10,000 people. The work presented in Chapter 5 validates the utility of network simulation in concurrently probing contact network dynamics and disease dynamics.
Multi-stage complex contagions.
Melnik, Sergey; Ward, Jonathan A; Gleeson, James P; Porter, Mason A
2013-03-01
The spread of ideas across a social network can be studied using complex contagion models, in which agents are activated by contact with multiple activated neighbors. The investigation of complex contagions can provide crucial insights into social influence and behavior-adoption cascades on networks. In this paper, we introduce a model of a multi-stage complex contagion on networks. Agents at different stages-which could, for example, represent differing levels of support for a social movement or differing levels of commitment to a certain product or idea-exert different amounts of influence on their neighbors. We demonstrate that the presence of even one additional stage introduces novel dynamical behavior, including interplay between multiple cascades, which cannot occur in single-stage contagion models. We find that cascades-and hence collective action-can be driven not only by high-stage influencers but also by low-stage influencers.
Multi-stage complex contagions
NASA Astrophysics Data System (ADS)
Melnik, Sergey; Ward, Jonathan A.; Gleeson, James P.; Porter, Mason A.
2013-03-01
The spread of ideas across a social network can be studied using complex contagion models, in which agents are activated by contact with multiple activated neighbors. The investigation of complex contagions can provide crucial insights into social influence and behavior-adoption cascades on networks. In this paper, we introduce a model of a multi-stage complex contagion on networks. Agents at different stages—which could, for example, represent differing levels of support for a social movement or differing levels of commitment to a certain product or idea—exert different amounts of influence on their neighbors. We demonstrate that the presence of even one additional stage introduces novel dynamical behavior, including interplay between multiple cascades, which cannot occur in single-stage contagion models. We find that cascades—and hence collective action—can be driven not only by high-stage influencers but also by low-stage influencers.
NASA Astrophysics Data System (ADS)
Fang, Jin-Qing; Li, Yong
2010-02-01
A large unified hybrid network model with a variable speed growth (LUHNM-VSG) is proposed as third model of the unified hybrid network theoretical framework (UHNTF). A hybrid growth ratio vg of deterministic linking number to random linking number and variable speed growth index α are introduced in it. The main effects of vg and α on topological transition features of the LUHNM-VSG are revealed. For comparison with the other models, we construct a type of the network complexity pyramid with seven levels, in which from the bottom level-1 to the top level-7 of the pyramid simplicity-universality is increasing but complexity-diversity is decreasing. The transition relations between them depend on matching of four hybrid ratios (dr, fd, gr, vg). Thus the most of network models can be investigated in the unification way via four hybrid ratios (dr, fd, gr, vg). The LUHNM-VSG as the level-1 of the pyramid is much better and closer to description of real-world networks as well as has potential application.
A pairwise maximum entropy model accurately describes resting-state human brain networks
Watanabe, Takamitsu; Hirose, Satoshi; Wada, Hiroyuki; Imai, Yoshio; Machida, Toru; Shirouzu, Ichiro; Konishi, Seiki; Miyashita, Yasushi; Masuda, Naoki
2013-01-01
The resting-state human brain networks underlie fundamental cognitive functions and consist of complex interactions among brain regions. However, the level of complexity of the resting-state networks has not been quantified, which has prevented comprehensive descriptions of the brain activity as an integrative system. Here, we address this issue by demonstrating that a pairwise maximum entropy model, which takes into account region-specific activity rates and pairwise interactions, can be robustly and accurately fitted to resting-state human brain activities obtained by functional magnetic resonance imaging. Furthermore, to validate the approximation of the resting-state networks by the pairwise maximum entropy model, we show that the functional interactions estimated by the pairwise maximum entropy model reflect anatomical connexions more accurately than the conventional functional connectivity method. These findings indicate that a relatively simple statistical model not only captures the structure of the resting-state networks but also provides a possible method to derive physiological information about various large-scale brain networks. PMID:23340410
Rumor spreading model with noise interference in complex social networks
NASA Astrophysics Data System (ADS)
Zhu, Liang; Wang, Youguo
2017-03-01
In this paper, a modified susceptible-infected-removed (SIR) model has been proposed to explore rumor diffusion on complex social networks. We take variation of connectivity into consideration and assume the variation as noise. On the basis of related literature on virus networks, the noise is described as standard Brownian motion while stochastic differential equations (SDE) have been derived to characterize dynamics of rumor diffusion both on homogeneous networks and heterogeneous networks. Then, theoretical analysis on homogeneous networks has been demonstrated to investigate the solution of SDE model and the steady state of rumor diffusion. Simulations both on Barabási-Albert (BA) network and Watts-Strogatz (WS) network display that the addition of noise accelerates rumor diffusion and expands diffusion size, meanwhile, the spreading speed on BA network is much faster than on WS network under the same noise intensity. In addition, there exists a rumor diffusion threshold in statistical average meaning on homogeneous network which is absent on heterogeneous network. Finally, we find a positive correlation between peak value of infected individuals and noise intensity while a negative correlation between rumor lifecycle and noise intensity overall.
ERIC Educational Resources Information Center
Doskey, Steven Craig
2014-01-01
This research presents an innovative means of gauging Systems Engineering effectiveness through a Systems Engineering Relative Effectiveness Index (SE REI) model. The SE REI model uses a Bayesian Belief Network to map causal relationships in government acquisitions of Complex Information Systems (CIS), enabling practitioners to identify and…
Pereira, Vanessa Helena; Gama, Maria Carolina Traina; Sousa, Filipe Antônio Barros; Lewis, Theodore Gyle; Gobatto, Claudio Alexandre; Manchado - Gobatto, Fúlvia Barros
2015-01-01
The aims of the present study were analyze the fatigue process at distinct intensity efforts and to investigate its occurrence as interactions at distinct body changes during exercise, using complex network models. For this, participants were submitted to four different running intensities until exhaustion, accomplished in a non-motorized treadmill using a tethered system. The intensities were selected according to critical power model. Mechanical (force, peak power, mean power, velocity and work) and physiological related parameters (heart rate, blood lactate, time until peak blood lactate concentration (lactate time), lean mass, anaerobic and aerobic capacities) and IPAQ score were obtained during exercises and it was used to construction of four complex network models. Such models have both, theoretical and mathematical value, and enables us to perceive new insights that go beyond conventional analysis. From these, we ranked the influences of each node at the fatigue process. Our results shows that nodes, links and network metrics are sensibility according to increase of efforts intensities, been the velocity a key factor to exercise maintenance at models/intensities 1 and 2 (higher time efforts) and force and power at models 3 and 4, highlighting mechanical variables in the exhaustion occurrence and even training prescription applications. PMID:25994386
NASA Astrophysics Data System (ADS)
Pereira, Vanessa Helena; Gama, Maria Carolina Traina; Sousa, Filipe Antônio Barros; Lewis, Theodore Gyle; Gobatto, Claudio Alexandre; Manchado-Gobatto, Fúlvia Barros
2015-05-01
The aims of the present study were analyze the fatigue process at distinct intensity efforts and to investigate its occurrence as interactions at distinct body changes during exercise, using complex network models. For this, participants were submitted to four different running intensities until exhaustion, accomplished in a non-motorized treadmill using a tethered system. The intensities were selected according to critical power model. Mechanical (force, peak power, mean power, velocity and work) and physiological related parameters (heart rate, blood lactate, time until peak blood lactate concentration (lactate time), lean mass, anaerobic and aerobic capacities) and IPAQ score were obtained during exercises and it was used to construction of four complex network models. Such models have both, theoretical and mathematical value, and enables us to perceive new insights that go beyond conventional analysis. From these, we ranked the influences of each node at the fatigue process. Our results shows that nodes, links and network metrics are sensibility according to increase of efforts intensities, been the velocity a key factor to exercise maintenance at models/intensities 1 and 2 (higher time efforts) and force and power at models 3 and 4, highlighting mechanical variables in the exhaustion occurrence and even training prescription applications.
Common neighbour structure and similarity intensity in complex networks
NASA Astrophysics Data System (ADS)
Hou, Lei; Liu, Kecheng
2017-10-01
Complex systems as networks always exhibit strong regularities, implying underlying mechanisms governing their evolution. In addition to the degree preference, the similarity has been argued to be another driver for networks. Assuming a network is randomly organised without similarity preference, the present paper studies the expected number of common neighbours between vertices. A symmetrical similarity index is accordingly developed by removing such expected number from the observed common neighbours. The developed index can not only describe the similarities between vertices, but also the dissimilarities. We further apply the proposed index to measure of the influence of similarity on the wring patterns of networks. Fifteen empirical networks as well as artificial networks are examined in terms of similarity intensity and degree heterogeneity. Results on real networks indicate that, social networks are strongly governed by the similarity as well as the degree preference, while the biological networks and infrastructure networks show no apparent similarity governance. Particularly, classical network models, such as the Barabási-Albert model, the Erdös-Rényi model and the Ring Lattice, cannot well describe the social networks in terms of the degree heterogeneity and similarity intensity. The findings may shed some light on the modelling and link prediction of different classes of networks.
Right-side-stretched multifractal spectra indicate small-worldness in networks
NASA Astrophysics Data System (ADS)
Oświȩcimka, Paweł; Livi, Lorenzo; Drożdż, Stanisław
2018-04-01
Complex network formalism allows to explain the behavior of systems composed by interacting units. Several prototypical network models have been proposed thus far. The small-world model has been introduced to mimic two important features observed in real-world systems: i) local clustering and ii) the possibility to move across a network by means of long-range links that significantly reduce the characteristic path length. A natural question would be whether there exist several ;types; of small-world architectures, giving rise to a continuum of models with properties (partially) shared with other models belonging to different network families. Here, we take advantage of the interplay between network theory and time series analysis and propose to investigate small-world signatures in complex networks by analyzing multifractal characteristics of time series generated from such networks. In particular, we suggest that the degree of right-sided asymmetry of multifractal spectra is linked with the degree of small-worldness present in networks. This claim is supported by numerical simulations performed on several parametric models, including prototypical small-world networks, scale-free, fractal and also real-world networks describing protein molecules. Our results also indicate that right-sided asymmetry emerges with the presence of the following topological properties: low edge density, low average shortest path, and high clustering coefficient.
Single- and two-phase flow in microfluidic porous media analogs based on Voronoi tessellation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Mengjie; Xiao, Feng; Johnson-Paben, Rebecca
2012-01-01
The objective of this study was to create a microfluidic model of complex porous media for studying single and multiphase flows. Most experimental porous media models consist of periodic geometries that lend themselves to comparison with well-developed theoretical predictions. However, most real porous media such as geological formations and biological tissues contain a degree of randomness and complexity that is not adequately represented in periodic geometries. To design an experimental tool to study these complex geometries, we created microfluidic models of random homogeneous and heterogeneous networks based on Voronoi tessellations. These networks consisted of approximately 600 grains separated by amore » highly connected network of channels with an overall porosity of 0.11 0.20. We found that introducing heterogeneities in the form of large cavities within the network changed the permeability in a way that cannot be predicted by the classical porosity-permeability relationship known as the Kozeny equation. The values of permeability found in experiments were in excellent agreement with those calculated from three-dimensional lattice Boltzmann simulations. In two-phase flow experiments of oil displacement with water we found that the surface energy of channel walls determined the pattern of water invasion, while the network topology determined the residual oil saturation. These results suggest that complex network topologies lead to fluid flow behavior that is difficult to predict based solely on porosity. The microfluidic models developed in this study using a novel geometry generation algorithm based on Voronoi tessellation are a new experimental tool for studying fluid and solute transport problems within complex porous media.« less
Alvarez-Galvez, Javier
2016-03-01
Studies assume that socioeconomic status determines individuals' states of health, but how does health determine socioeconomic status? And how does this association vary depending on contextual differences? To answer this question, our study uses an additive Bayesian Networks model to explain the interrelationships between health and socioeconomic determinants using complex and messy data. This model has been used to find the most probable structure in a network to describe the interdependence of these factors in five European welfare state regimes. The advantage of this study is that it offers a specific picture to describe the complex interrelationship between socioeconomic determinants and health, producing a network that is controlled by socio-demographic factors such as gender and age. The present work provides a general framework to describe and understand the complex association between socioeconomic determinants and health. Copyright © 2016 Elsevier Inc. All rights reserved.
Advanced Fault Diagnosis Methods in Molecular Networks
Habibi, Iman; Emamian, Effat S.; Abdi, Ali
2014-01-01
Analysis of the failure of cell signaling networks is an important topic in systems biology and has applications in target discovery and drug development. In this paper, some advanced methods for fault diagnosis in signaling networks are developed and then applied to a caspase network and an SHP2 network. The goal is to understand how, and to what extent, the dysfunction of molecules in a network contributes to the failure of the entire network. Network dysfunction (failure) is defined as failure to produce the expected outputs in response to the input signals. Vulnerability level of a molecule is defined as the probability of the network failure, when the molecule is dysfunctional. In this study, a method to calculate the vulnerability level of single molecules for different combinations of input signals is developed. Furthermore, a more complex yet biologically meaningful method for calculating the multi-fault vulnerability levels is suggested, in which two or more molecules are simultaneously dysfunctional. Finally, a method is developed for fault diagnosis of networks based on a ternary logic model, which considers three activity levels for a molecule instead of the previously published binary logic model, and provides equations for the vulnerabilities of molecules in a ternary framework. Multi-fault analysis shows that the pairs of molecules with high vulnerability typically include a highly vulnerable molecule identified by the single fault analysis. The ternary fault analysis for the caspase network shows that predictions obtained using the more complex ternary model are about the same as the predictions of the simpler binary approach. This study suggests that by increasing the number of activity levels the complexity of the model grows; however, the predictive power of the ternary model does not appear to be increased proportionally. PMID:25290670
Role of Edges in Complex Network Epidemiology
NASA Astrophysics Data System (ADS)
Zhang, Hao; Jiang, Zhi-Hong; Wang, Hui; Xie, Fei; Chen, Chao
2012-09-01
In complex network epidemiology, diseases spread along contacting edges between individuals and different edges may play different roles in epidemic outbreaks. Quantifying the efficiency of edges is an important step towards arresting epidemics. In this paper, we study the efficiency of edges in general susceptible-infected-recovered models, and introduce the transmission capability to measure the efficiency of edges. Results show that deleting edges with the highest transmission capability will greatly decrease epidemics on scale-free networks. Basing on the message passing approach, we get exact mathematical solution on configuration model networks with edge deletion in the large size limit.
Synchronisation of chaos and its applications
NASA Astrophysics Data System (ADS)
Eroglu, Deniz; Lamb, Jeroen S. W.; Pereira, Tiago
2017-07-01
Dynamical networks are important models for the behaviour of complex systems, modelling physical, biological and societal systems, including the brain, food webs, epidemic disease in populations, power grids and many other. Such dynamical networks can exhibit behaviour in which deterministic chaos, exhibiting unpredictability and disorder, coexists with synchronisation, a classical paradigm of order. We survey the main theory behind complete, generalised and phase synchronisation phenomena in simple as well as complex networks and discuss applications to secure communications, parameter estimation and the anticipation of chaos.
Epidemic processes in complex networks
NASA Astrophysics Data System (ADS)
Pastor-Satorras, Romualdo; Castellano, Claudio; Van Mieghem, Piet; Vespignani, Alessandro
2015-07-01
In recent years the research community has accumulated overwhelming evidence for the emergence of complex and heterogeneous connectivity patterns in a wide range of biological and sociotechnical systems. The complex properties of real-world networks have a profound impact on the behavior of equilibrium and nonequilibrium phenomena occurring in various systems, and the study of epidemic spreading is central to our understanding of the unfolding of dynamical processes in complex networks. The theoretical analysis of epidemic spreading in heterogeneous networks requires the development of novel analytical frameworks, and it has produced results of conceptual and practical relevance. A coherent and comprehensive review of the vast research activity concerning epidemic processes is presented, detailing the successful theoretical approaches as well as making their limits and assumptions clear. Physicists, mathematicians, epidemiologists, computer, and social scientists share a common interest in studying epidemic spreading and rely on similar models for the description of the diffusion of pathogens, knowledge, and innovation. For this reason, while focusing on the main results and the paradigmatic models in infectious disease modeling, the major results concerning generalized social contagion processes are also presented. Finally, the research activity at the forefront in the study of epidemic spreading in coevolving, coupled, and time-varying networks is reported.
NASA Astrophysics Data System (ADS)
Ji, Junzhong; Song, Xiangjing; Liu, Chunnian; Zhang, Xiuzhen
2013-08-01
Community structure detection in complex networks has been intensively investigated in recent years. In this paper, we propose an adaptive approach based on ant colony clustering to discover communities in a complex network. The focus of the method is the clustering process of an ant colony in a virtual grid, where each ant represents a node in the complex network. During the ant colony search, the method uses a new fitness function to percept local environment and employs a pheromone diffusion model as a global information feedback mechanism to realize information exchange among ants. A significant advantage of our method is that the locations in the grid environment and the connections of the complex network structure are simultaneously taken into account in ants moving. Experimental results on computer-generated and real-world networks show the capability of our method to successfully detect community structures.
Campbell Grant, Evan H.
2011-01-01
Spatial complexity in metacommunities can be separated into 3 main components: size (i.e., number of habitat patches), spatial arrangement of habitat patches (network topology), and diversity of habitat patch types. Much attention has been paid to lattice-type networks, such as patch-based metapopulations, but interest in understanding ecological networks of alternative geometries is building. Dendritic ecological networks (DENs) include some increasingly threatened ecological systems, such as caves and streams. The restrictive architecture of dendritic ecological networks might have overriding implications for species persistence. I used a modeling approach to investigate how number and spatial arrangement of habitat patches influence metapopulation extinction risk in 2 DENs of different size and topology. Metapopulation persistence was higher in larger networks, but this relationship was mediated by network topology and the dispersal pathways used to navigate the network. Larger networks, especially those with greater topological complexity, generally had lower extinction risk than smaller and less-complex networks, but dispersal bias and magnitude affected the shape of this relationship. Applying these general results to real systems will require empirical data on the movement behavior of organisms and will improve our understanding of the implications of network complexity on population and community patterns and processes.
A framework for evaluating complex networks measurements
NASA Astrophysics Data System (ADS)
Comin, Cesar H.; Silva, Filipi N.; Costa, Luciano da F.
2015-06-01
A good deal of current research in complex networks involves the characterization and/or classification of the topological properties of given structures, which has motivated several respective measurements. This letter proposes a framework for evaluating the quality of complex-network measurements in terms of their effective resolution, degree of degeneracy and discriminability. The potential of the suggested approach is illustrated with respect to comparing the characterization of several model and real-world networks by using concentric and symmetry measurements. The results indicate a markedly superior performance for the latter type of mapping.
Weighill, Deborah A.; Jacobson, Daniel A.
2015-03-27
Herein we present and develop the theory of 3-way networks, a type of hypergraph in which each edge models relationships between triplets of objects as opposed to pairs of objects as done by standard network models. We explore approaches of how to prune these 3-way networks, illustrate their utility in comparative genomics and demonstrate how they find relationships which would be missed by standard 2-way network models using a phylogenomic dataset of 211 bacterial genomes.
Weighill, Deborah A; Jacobson, Daniel A
2015-01-01
We present and develop the theory of 3-way networks, a type of hypergraph in which each edge models relationships between triplets of objects as opposed to pairs of objects as done by standard network models. We explore approaches of how to prune these 3-way networks, illustrate their utility in comparative genomics and demonstrate how they find relationships which would be missed by standard 2-way network models using a phylogenomic dataset of 211 bacterial genomes. PMID:25815802
Saxena, Anupam; Lipson, Hod; Valero-Cuevas, Francisco J.
2012-01-01
In systems and computational biology, much effort is devoted to functional identification of systems and networks at the molecular-or cellular scale. However, similarly important networks exist at anatomical scales such as the tendon network of human fingers: the complex array of collagen fibers that transmits and distributes muscle forces to finger joints. This network is critical to the versatility of the human hand, and its function has been debated since at least the 16th century. Here, we experimentally infer the structure (both topology and parameter values) of this network through sparse interrogation with force inputs. A population of models representing this structure co-evolves in simulation with a population of informative future force inputs via the predator-prey estimation-exploration algorithm. Model fitness depends on their ability to explain experimental data, while the fitness of future force inputs depends on causing maximal functional discrepancy among current models. We validate our approach by inferring two known synthetic Latex networks, and one anatomical tendon network harvested from a cadaver's middle finger. We find that functionally similar but structurally diverse models can exist within a narrow range of the training set and cross-validation errors. For the Latex networks, models with low training set error [<4%] and resembling the known network have the smallest cross-validation errors [∼5%]. The low training set [<4%] and cross validation [<7.2%] errors for models for the cadaveric specimen demonstrate what, to our knowledge, is the first experimental inference of the functional structure of complex anatomical networks. This work expands current bioinformatics inference approaches by demonstrating that sparse, yet informative interrogation of biological specimens holds significant computational advantages in accurate and efficient inference over random testing, or assuming model topology and only inferring parameters values. These findings also hold clues to both our evolutionary history and the development of versatile machines. PMID:23144601
Saxena, Anupam; Lipson, Hod; Valero-Cuevas, Francisco J
2012-01-01
In systems and computational biology, much effort is devoted to functional identification of systems and networks at the molecular-or cellular scale. However, similarly important networks exist at anatomical scales such as the tendon network of human fingers: the complex array of collagen fibers that transmits and distributes muscle forces to finger joints. This network is critical to the versatility of the human hand, and its function has been debated since at least the 16(th) century. Here, we experimentally infer the structure (both topology and parameter values) of this network through sparse interrogation with force inputs. A population of models representing this structure co-evolves in simulation with a population of informative future force inputs via the predator-prey estimation-exploration algorithm. Model fitness depends on their ability to explain experimental data, while the fitness of future force inputs depends on causing maximal functional discrepancy among current models. We validate our approach by inferring two known synthetic Latex networks, and one anatomical tendon network harvested from a cadaver's middle finger. We find that functionally similar but structurally diverse models can exist within a narrow range of the training set and cross-validation errors. For the Latex networks, models with low training set error [<4%] and resembling the known network have the smallest cross-validation errors [∼5%]. The low training set [<4%] and cross validation [<7.2%] errors for models for the cadaveric specimen demonstrate what, to our knowledge, is the first experimental inference of the functional structure of complex anatomical networks. This work expands current bioinformatics inference approaches by demonstrating that sparse, yet informative interrogation of biological specimens holds significant computational advantages in accurate and efficient inference over random testing, or assuming model topology and only inferring parameters values. These findings also hold clues to both our evolutionary history and the development of versatile machines.
Network representations of angular regions for electromagnetic scattering
2017-01-01
Network modeling in electromagnetics is an effective technique in treating scattering problems by canonical and complex structures. Geometries constituted of angular regions (wedges) together with planar layers can now be approached with the Generalized Wiener-Hopf Technique supported by network representation in spectral domain. Even if the network representations in spectral planes are of great importance by themselves, the aim of this paper is to present a theoretical base and a general procedure for the formulation of complex scattering problems using network representation for the Generalized Wiener Hopf Technique starting basically from the wave equation. In particular while the spectral network representations are relatively well known for planar layers, the network modelling for an angular region requires a new theory that will be developed in this paper. With this theory we complete the formulation of a network methodology whose effectiveness is demonstrated by the application to a complex scattering problem with practical solutions given in terms of GTD/UTD diffraction coefficients and total far fields for engineering applications. The methodology can be applied to other physics fields. PMID:28817573
Advanced functional network analysis in the geosciences: The pyunicorn package
NASA Astrophysics Data System (ADS)
Donges, Jonathan F.; Heitzig, Jobst; Runge, Jakob; Schultz, Hanna C. H.; Wiedermann, Marc; Zech, Alraune; Feldhoff, Jan; Rheinwalt, Aljoscha; Kutza, Hannes; Radebach, Alexander; Marwan, Norbert; Kurths, Jürgen
2013-04-01
Functional networks are a powerful tool for analyzing large geoscientific datasets such as global fields of climate time series originating from observations or model simulations. pyunicorn (pythonic unified complex network and recurrence analysis toolbox) is an open-source, fully object-oriented and easily parallelizable package written in the language Python. It allows for constructing functional networks (aka climate networks) representing the structure of statistical interrelationships in large datasets and, subsequently, investigating this structure using advanced methods of complex network theory such as measures for networks of interacting networks, node-weighted statistics or network surrogates. Additionally, pyunicorn allows to study the complex dynamics of geoscientific systems as recorded by time series by means of recurrence networks and visibility graphs. The range of possible applications of the package is outlined drawing on several examples from climatology.
Evolution of the social network of scientific collaborations
NASA Astrophysics Data System (ADS)
Barabási, A. L.; Jeong, H.; Néda, Z.; Ravasz, E.; Schubert, A.; Vicsek, T.
2002-08-01
The co-authorship network of scientists represents a prototype of complex evolving networks. In addition, it offers one of the most extensive database to date on social networks. By mapping the electronic database containing all relevant journals in mathematics and neuro-science for an 8-year period (1991-98), we infer the dynamic and the structural mechanisms that govern the evolution and topology of this complex system. Three complementary approaches allow us to obtain a detailed characterization. First, empirical measurements allow us to uncover the topological measures that characterize the network at a given moment, as well as the time evolution of these quantities. The results indicate that the network is scale-free, and that the network evolution is governed by preferential attachment, affecting both internal and external links. However, in contrast with most model predictions the average degree increases in time, and the node separation decreases. Second, we propose a simple model that captures the network's time evolution. In some limits the model can be solved analytically, predicting a two-regime scaling in agreement with the measurements. Third, numerical simulations are used to uncover the behavior of quantities that could not be predicted analytically. The combined numerical and analytical results underline the important role internal links play in determining the observed scaling behavior and network topology. The results and methodologies developed in the context of the co-authorship network could be useful for a systematic study of other complex evolving networks as well, such as the world wide web, Internet, or other social networks.
Intrinsic noise and deviations from criticality in Boolean gene-regulatory networks
NASA Astrophysics Data System (ADS)
Villegas, Pablo; Ruiz-Franco, José; Hidalgo, Jorge; Muñoz, Miguel A.
2016-10-01
Gene regulatory networks can be successfully modeled as Boolean networks. A much discussed hypothesis says that such model networks reproduce empirical findings the best if they are tuned to operate at criticality, i.e. at the borderline between their ordered and disordered phases. Critical networks have been argued to lead to a number of functional advantages such as maximal dynamical range, maximal sensitivity to environmental changes, as well as to an excellent tradeoff between stability and flexibility. Here, we study the effect of noise within the context of Boolean networks trained to learn complex tasks under supervision. We verify that quasi-critical networks are the ones learning in the fastest possible way -even for asynchronous updating rules- and that the larger the task complexity the smaller the distance to criticality. On the other hand, when additional sources of intrinsic noise in the network states and/or in its wiring pattern are introduced, the optimally performing networks become clearly subcritical. These results suggest that in order to compensate for inherent stochasticity, regulatory and other type of biological networks might become subcritical rather than being critical, all the most if the task to be performed has limited complexity.
Hippert, Henrique S; Taylor, James W
2010-04-01
Artificial neural networks have frequently been proposed for electricity load forecasting because of their capabilities for the nonlinear modelling of large multivariate data sets. Modelling with neural networks is not an easy task though; two of the main challenges are defining the appropriate level of model complexity, and choosing the input variables. This paper evaluates techniques for automatic neural network modelling within a Bayesian framework, as applied to six samples containing daily load and weather data for four different countries. We analyse input selection as carried out by the Bayesian 'automatic relevance determination', and the usefulness of the Bayesian 'evidence' for the selection of the best structure (in terms of number of neurones), as compared to methods based on cross-validation. Copyright 2009 Elsevier Ltd. All rights reserved.
Modeling complex tone perception: grouping harmonics with combination-sensitive neurons.
Medvedev, Andrei V; Chiao, Faye; Kanwal, Jagmeet S
2002-06-01
Perception of complex communication sounds is a major function of the auditory system. To create a coherent precept of these sounds the auditory system may instantaneously group or bind multiple harmonics within complex sounds. This perception strategy simplifies further processing of complex sounds and facilitates their meaningful integration with other sensory inputs. Based on experimental data and a realistic model, we propose that associative learning of combinations of harmonic frequencies and nonlinear facilitation of responses to those combinations, also referred to as "combination-sensitivity," are important for spectral grouping. For our model, we simulated combination sensitivity using Hebbian and associative types of synaptic plasticity in auditory neurons. We also provided a parallel tonotopic input that converges and diverges within the network. Neurons in higher-order layers of the network exhibited an emergent property of multifrequency tuning that is consistent with experimental findings. Furthermore, this network had the capacity to "recognize" the pitch or fundamental frequency of a harmonic tone complex even when the fundamental frequency itself was missing.
Passivity of Directed and Undirected Complex Dynamical Networks With Adaptive Coupling Weights.
Wang, Jin-Liang; Wu, Huai-Ning; Huang, Tingwen; Ren, Shun-Yan; Wu, Jigang
2017-08-01
A complex dynamical network consisting of N identical neural networks with reaction-diffusion terms is considered in this paper. First, several passivity definitions for the systems with different dimensions of input and output are given. By utilizing some inequality techniques, several criteria are presented, ensuring the passivity of the complex dynamical network under the designed adaptive law. Then, we discuss the relationship between the synchronization and output strict passivity of the proposed network model. Furthermore, these results are extended to the case when the topological structure of the network is undirected. Finally, two examples with numerical simulations are provided to illustrate the correctness and effectiveness of the proposed results.
The Evolution of ICT Markets: An Agent-Based Model on Complex Networks
NASA Astrophysics Data System (ADS)
Zhao, Liangjie; Wu, Bangtao; Chen, Zhong; Li, Li
Information and communication technology (ICT) products exhibit positive network effects.The dynamic process of ICT markets evolution has two intrinsic characteristics: (1) customers are influenced by each others’ purchasing decision; (2) customers are intelligent agents with bounded rationality.Guided by complex systems theory, we construct an agent-based model and simulate on complex networks to examine how the evolution can arise from the interaction of customers, which occur when they make expectations about the future installed base of a product by the fraction of neighbors who are using the same product in his personal network.We demonstrate that network effects play an important role in the evolution of markets share, which make even an inferior product can dominate the whole market.We also find that the intensity of customers’ communication can influence whether the best initial strategy for firms is to improve product quality or expand their installed base.
General and craniofacial development are complex adaptive processes influenced by diversity.
Brook, A H; O'Donnell, M Brook; Hone, A; Hart, E; Hughes, T E; Smith, R N; Townsend, G C
2014-06-01
Complex systems are present in such diverse areas as social systems, economies, ecosystems and biology and, therefore, are highly relevant to dental research, education and practice. A Complex Adaptive System in biological development is a dynamic process in which, from interacting components at a lower level, higher level phenomena and structures emerge. Diversity makes substantial contributions to the performance of complex adaptive systems. It enhances the robustness of the process, allowing multiple responses to external stimuli as well as internal changes. From diversity comes variation in outcome and the possibility of major change; outliers in the distribution enhance the tipping points. The development of the dentition is a valuable, accessible model with extensive and reliable databases for investigating the role of complex adaptive systems in craniofacial and general development. The general characteristics of such systems are seen during tooth development: self-organization; bottom-up emergence; multitasking; self-adaptation; variation; tipping points; critical phases; and robustness. Dental findings are compatible with the Random Network Model, the Threshold Model and also with the Scale Free Network Model which has a Power Law distribution. In addition, dental development shows the characteristics of Modularity and Clustering to form Hierarchical Networks. The interactions between the genes (nodes) demonstrate Small World phenomena, Subgraph Motifs and Gene Regulatory Networks. Genetic mechanisms are involved in the creation and evolution of variation during development. The genetic factors interact with epigenetic and environmental factors at the molecular level and form complex networks within the cells. From these interactions emerge the higher level tissues, tooth germs and mineralized teeth. Approaching development in this way allows investigation of why there can be variations in phenotypes from identical genotypes; the phenotype is the outcome of perturbations in the cellular systems and networks, as well as of the genotype. Understanding and applying complexity theory will bring about substantial advances not only in dental research and education but also in the organization and delivery of oral health care. © 2014 Australian Dental Association.
Multiple tipping points and optimal repairing in interacting networks
Majdandzic, Antonio; Braunstein, Lidia A.; Curme, Chester; Vodenska, Irena; Levy-Carciente, Sary; Eugene Stanley, H.; Havlin, Shlomo
2016-01-01
Systems composed of many interacting dynamical networks—such as the human body with its biological networks or the global economic network consisting of regional clusters—often exhibit complicated collective dynamics. Three fundamental processes that are typically present are failure, damage spread and recovery. Here we develop a model for such systems and find a very rich phase diagram that becomes increasingly more complex as the number of interacting networks increases. In the simplest example of two interacting networks we find two critical points, four triple points, ten allowed transitions and two ‘forbidden' transitions, as well as complex hysteresis loops. Remarkably, we find that triple points play the dominant role in constructing the optimal repairing strategy in damaged interacting systems. To test our model, we analyse an example of real interacting financial networks and find evidence of rapid dynamical transitions between well-defined states, in agreement with the predictions of our model. PMID:26926803
Yang, Guanxue; Wang, Lin; Wang, Xiaofan
2017-06-07
Reconstruction of networks underlying complex systems is one of the most crucial problems in many areas of engineering and science. In this paper, rather than identifying parameters of complex systems governed by pre-defined models or taking some polynomial and rational functions as a prior information for subsequent model selection, we put forward a general framework for nonlinear causal network reconstruction from time-series with limited observations. With obtaining multi-source datasets based on the data-fusion strategy, we propose a novel method to handle nonlinearity and directionality of complex networked systems, namely group lasso nonlinear conditional granger causality. Specially, our method can exploit different sets of radial basis functions to approximate the nonlinear interactions between each pair of nodes and integrate sparsity into grouped variables selection. The performance characteristic of our approach is firstly assessed with two types of simulated datasets from nonlinear vector autoregressive model and nonlinear dynamic models, and then verified based on the benchmark datasets from DREAM3 Challenge4. Effects of data size and noise intensity are also discussed. All of the results demonstrate that the proposed method performs better in terms of higher area under precision-recall curve.
Global terrestrial water storage connectivity revealed using complex climate network analyses
NASA Astrophysics Data System (ADS)
Sun, A. Y.; Chen, J.; Donges, J.
2015-07-01
Terrestrial water storage (TWS) exerts a key control in global water, energy, and biogeochemical cycles. Although certain causal relationship exists between precipitation and TWS, the latter quantity also reflects impacts of anthropogenic activities. Thus, quantification of the spatial patterns of TWS will not only help to understand feedbacks between climate dynamics and the hydrologic cycle, but also provide new insights and model calibration constraints for improving the current land surface models. This work is the first attempt to quantify the spatial connectivity of TWS using the complex network theory, which has received broad attention in the climate modeling community in recent years. Complex networks of TWS anomalies are built using two global TWS data sets, a remote sensing product that is obtained from the Gravity Recovery and Climate Experiment (GRACE) satellite mission, and a model-generated data set from the global land data assimilation system's NOAH model (GLDAS-NOAH). Both data sets have 1° × 1° grid resolutions and cover most global land areas except for permafrost regions. TWS networks are built by first quantifying pairwise correlation among all valid TWS anomaly time series, and then applying a cutoff threshold derived from the edge-density function to retain only the most important features in the network. Basinwise network connectivity maps are used to illuminate connectivity of individual river basins with other regions. The constructed network degree centrality maps show the TWS anomaly hotspots around the globe and the patterns are consistent with recent GRACE studies. Parallel analyses of networks constructed using the two data sets reveal that the GLDAS-NOAH model captures many of the spatial patterns shown by GRACE, although significant discrepancies exist in some regions. Thus, our results provide further measures for constraining the current land surface models, especially in data sparse regions.
Leveraging Modeling Approaches: Reaction Networks and Rules
Blinov, Michael L.; Moraru, Ion I.
2012-01-01
We have witnessed an explosive growth in research involving mathematical models and computer simulations of intracellular molecular interactions, ranging from metabolic pathways to signaling and gene regulatory networks. Many software tools have been developed to aid in the study of such biological systems, some of which have a wealth of features for model building and visualization, and powerful capabilities for simulation and data analysis. Novel high resolution and/or high throughput experimental techniques have led to an abundance of qualitative and quantitative data related to the spatio-temporal distribution of molecules and complexes, their interactions kinetics, and functional modifications. Based on this information, computational biology researchers are attempting to build larger and more detailed models. However, this has proved to be a major challenge. Traditionally, modeling tools require the explicit specification of all molecular species and interactions in a model, which can quickly become a major limitation in the case of complex networks – the number of ways biomolecules can combine to form multimolecular complexes can be combinatorially large. Recently, a new breed of software tools has been created to address the problems faced when building models marked by combinatorial complexity. These have a different approach for model specification, using reaction rules and species patterns. Here we compare the traditional modeling approach with the new rule-based methods. We make a case for combining the capabilities of conventional simulation software with the unique features and flexibility of a rule-based approach in a single software platform for building models of molecular interaction networks. PMID:22161349
Leveraging modeling approaches: reaction networks and rules.
Blinov, Michael L; Moraru, Ion I
2012-01-01
We have witnessed an explosive growth in research involving mathematical models and computer simulations of intracellular molecular interactions, ranging from metabolic pathways to signaling and gene regulatory networks. Many software tools have been developed to aid in the study of such biological systems, some of which have a wealth of features for model building and visualization, and powerful capabilities for simulation and data analysis. Novel high-resolution and/or high-throughput experimental techniques have led to an abundance of qualitative and quantitative data related to the spatiotemporal distribution of molecules and complexes, their interactions kinetics, and functional modifications. Based on this information, computational biology researchers are attempting to build larger and more detailed models. However, this has proved to be a major challenge. Traditionally, modeling tools require the explicit specification of all molecular species and interactions in a model, which can quickly become a major limitation in the case of complex networks - the number of ways biomolecules can combine to form multimolecular complexes can be combinatorially large. Recently, a new breed of software tools has been created to address the problems faced when building models marked by combinatorial complexity. These have a different approach for model specification, using reaction rules and species patterns. Here we compare the traditional modeling approach with the new rule-based methods. We make a case for combining the capabilities of conventional simulation software with the unique features and flexibility of a rule-based approach in a single software platform for building models of molecular interaction networks.
Wang, Danny J J; Jann, Kay; Fan, Chang; Qiao, Yang; Zang, Yu-Feng; Lu, Hanbing; Yang, Yihong
2018-01-01
Recently, non-linear statistical measures such as multi-scale entropy (MSE) have been introduced as indices of the complexity of electrophysiology and fMRI time-series across multiple time scales. In this work, we investigated the neurophysiological underpinnings of complexity (MSE) of electrophysiology and fMRI signals and their relations to functional connectivity (FC). MSE and FC analyses were performed on simulated data using neural mass model based brain network model with the Brain Dynamics Toolbox, on animal models with concurrent recording of fMRI and electrophysiology in conjunction with pharmacological manipulations, and on resting-state fMRI data from the Human Connectome Project. Our results show that the complexity of regional electrophysiology and fMRI signals is positively correlated with network FC. The associations between MSE and FC are dependent on the temporal scales or frequencies, with higher associations between MSE and FC at lower temporal frequencies. Our results from theoretical modeling, animal experiment and human fMRI indicate that (1) Regional neural complexity and network FC may be two related aspects of brain's information processing: the more complex regional neural activity, the higher FC this region has with other brain regions; (2) MSE at high and low frequencies may represent local and distributed information processing across brain regions. Based on literature and our data, we propose that the complexity of regional neural signals may serve as an index of the brain's capacity of information processing-increased complexity may indicate greater transition or exploration between different states of brain networks, thereby a greater propensity for information processing.
Propagation, cascades, and agreement dynamics in complex communication and social networks
NASA Astrophysics Data System (ADS)
Lu, Qiming
Many modern and important technological, social, information and infrastructure systems can be viewed as complex systems with a large number of interacting components. Models of complex networks and dynamical interactions, as well as their applications are of fundamental interests in many aspects. Here, several stylized models of multiplex propagation and opinion dynamics are investigated on complex and empirical social networks. We first investigate cascade dynamics in threshold-controlled (multiplex) propagation on random geometric networks. We find that such local dynamics can serve as an efficient, robust, and reliable prototypical activation protocol in sensor networks in responding to various alarm scenarios. We also consider the same dynamics on a modified network by adding a few long-range communication links, resulting in a small-world network. We find that such construction can further enhance and optimize the speed of the network's response, while keeping energy consumption at a manageable level. We also investigate a prototypical agent-based model, the Naming Game, on two-dimensional random geometric networks. The Naming Game [A. Baronchelli et al., J. Stat. Mech.: Theory Exp. (2006) P06014.] is a minimal model, employing local communications that captures the emergence of shared communication schemes (languages) in a population of autonomous semiotic agents. Implementing the Naming Games with local broadcasts on random geometric graphs, serves as a model for agreement dynamics in large-scale, autonomously operating wireless sensor networks. Further, it captures essential features of the scaling properties of the agreement process for spatially-embedded autonomous agents. Among the relevant observables capturing the temporal properties of the agreement process, we investigate the cluster-size distribution and the distribution of the agreement times, both exhibiting dynamic scaling. We also present results for the case when a small density of long-range communication links are added on top of the random geometric graph, resulting in a "small-world"-like network and yielding a significantly reduced time to reach global agreement. We construct a finite-size scaling analysis for the agreement times in this case. When applying the model of Naming Game on empirical social networks, this stylized agent-based model captures essential features of agreement dynamics in a network of autonomous agents, corresponding to the development of shared classification schemes in a network of artificial agents or opinion spreading and social dynamics in social networks. Our study focuses on the impact that communities in the underlying social graphs have on the outcome of the agreement process. We find that networks with strong community structure hinder the system from reaching global agreement; the evolution of the Naming Game in these networks maintains clusters of coexisting opinions indefinitely. Further, we investigate agent-based network strategies to facilitate convergence to global consensus.
Mechanisms of complex network growth: Synthesis of the preferential attachment and fitness models
NASA Astrophysics Data System (ADS)
Golosovsky, Michael
2018-06-01
We analyze growth mechanisms of complex networks and focus on their validation by measurements. To this end we consider the equation Δ K =A (t ) (K +K0) Δ t , where K is the node's degree, Δ K is its increment, A (t ) is the aging constant, and K0 is the initial attractivity. This equation has been commonly used to validate the preferential attachment mechanism. We show that this equation is undiscriminating and holds for the fitness model [Caldarelli et al., Phys. Rev. Lett. 89, 258702 (2002), 10.1103/PhysRevLett.89.258702] as well. In other words, accepted method of the validation of the microscopic mechanism of network growth does not discriminate between "rich-gets-richer" and "good-gets-richer" scenarios. This means that the growth mechanism of many natural complex networks can be based on the fitness model rather than on the preferential attachment, as it was believed so far. The fitness model yields the long-sought explanation for the initial attractivity K0, an elusive parameter which was left unexplained within the framework of the preferential attachment model. We show that the initial attractivity is determined by the width of the fitness distribution. We also present the network growth model based on recursive search with memory and show that this model contains both the preferential attachment and the fitness models as extreme cases.
A novel approach to characterize information radiation in complex networks
NASA Astrophysics Data System (ADS)
Wang, Xiaoyang; Wang, Ying; Zhu, Lin; Li, Chao
2016-06-01
The traditional research of information dissemination is mostly based on the virus spreading model that the information is being spread by probability, which does not match very well to the reality, because the information that we receive is always more or less than what was sent. In order to quantitatively describe variations in the amount of information during the spreading process, this article proposes a safety information radiation model on the basis of communication theory, combining with relevant theories of complex networks. This model comprehensively considers the various influence factors when safety information radiates in the network, and introduces some concepts from the communication theory perspective, such as the radiation gain function, receiving gain function, information retaining capacity and information second reception capacity, to describe the safety information radiation process between nodes and dynamically investigate the states of network nodes. On a micro level, this article analyzes the influence of various initial conditions and parameters on safety information radiation through the new model simulation. The simulation reveals that this novel approach can reflect the variation of safety information quantity of each node in the complex network, and the scale-free network has better ;radiation explosive power;, while the small-world network has better ;radiation staying power;. The results also show that it is efficient to improve the overall performance of network security by selecting nodes with high degrees as the information source, refining and simplifying the information, increasing the information second reception capacity and decreasing the noises. In a word, this article lays the foundation for further research on the interactions of information and energy between internal components within complex systems.
A Stratified Acoustic Model Accounting for Phase Shifts for Underwater Acoustic Networks
Wang, Ping; Zhang, Lin; Li, Victor O. K.
2013-01-01
Accurate acoustic channel models are critical for the study of underwater acoustic networks. Existing models include physics-based models and empirical approximation models. The former enjoy good accuracy, but incur heavy computational load, rendering them impractical in large networks. On the other hand, the latter are computationally inexpensive but inaccurate since they do not account for the complex effects of boundary reflection losses, the multi-path phenomenon and ray bending in the stratified ocean medium. In this paper, we propose a Stratified Acoustic Model (SAM) based on frequency-independent geometrical ray tracing, accounting for each ray's phase shift during the propagation. It is a feasible channel model for large scale underwater acoustic network simulation, allowing us to predict the transmission loss with much lower computational complexity than the traditional physics-based models. The accuracy of the model is validated via comparisons with the experimental measurements in two different oceans. Satisfactory agreements with the measurements and with other computationally intensive classical physics-based models are demonstrated. PMID:23669708
A stratified acoustic model accounting for phase shifts for underwater acoustic networks.
Wang, Ping; Zhang, Lin; Li, Victor O K
2013-05-13
Accurate acoustic channel models are critical for the study of underwater acoustic networks. Existing models include physics-based models and empirical approximation models. The former enjoy good accuracy, but incur heavy computational load, rendering them impractical in large networks. On the other hand, the latter are computationally inexpensive but inaccurate since they do not account for the complex effects of boundary reflection losses, the multi-path phenomenon and ray bending in the stratified ocean medium. In this paper, we propose a Stratified Acoustic Model (SAM) based on frequency-independent geometrical ray tracing, accounting for each ray's phase shift during the propagation. It is a feasible channel model for large scale underwater acoustic network simulation, allowing us to predict the transmission loss with much lower computational complexity than the traditional physics-based models. The accuracy of the model is validated via comparisons with the experimental measurements in two different oceans. Satisfactory agreements with the measurements and with other computationally intensive classical physics-based models are demonstrated.
Ioannidis, J P; McQueen, P G; Goedert, J J; Kaslow, R A
1998-03-01
Complex immunogenetic associations of disease involving a large number of gene products are difficult to evaluate with traditional statistical methods and may require complex modeling. The authors evaluated the performance of feed-forward backpropagation neural networks in predicting rapid progression to acquired immunodeficiency syndrome (AIDS) for patients with human immunodeficiency virus (HIV) infection on the basis of major histocompatibility complex variables. Networks were trained on data from patients from the Multicenter AIDS Cohort Study (n = 139) and then validated on patients from the DC Gay cohort (n = 102). The outcome of interest was rapid disease progression, defined as progression to AIDS in <6 years from seroconversion. Human leukocyte antigen (HLA) variables were selected as network inputs with multivariate regression and a previously described algorithm selecting markers with extreme point estimates for progression risk. Network performance was compared with that of logistic regression. Networks with 15 HLA inputs and a single hidden layer of five nodes achieved a sensitivity of 87.5% and specificity of 95.6% in the training set, vs. 77.0% and 76.9%, respectively, achieved by logistic regression. When validated on the DC Gay cohort, networks averaged a sensitivity of 59.1% and specificity of 74.3%, vs. 53.1% and 61.4%, respectively, for logistic regression. Neural networks offer further support to the notion that HIV disease progression may be dependent on complex interactions between different class I and class II alleles and transporters associated with antigen processing variants. The effect in the current models is of moderate magnitude, and more data as well as other host and pathogen variables may need to be considered to improve the performance of the models. Artificial intelligence methods may complement linear statistical methods for evaluating immunogenetic associations of disease.
A toolbox for discrete modelling of cell signalling dynamics.
Paterson, Yasmin Z; Shorthouse, David; Pleijzier, Markus W; Piterman, Nir; Bendtsen, Claus; Hall, Benjamin A; Fisher, Jasmin
2018-06-18
In an age where the volume of data regarding biological systems exceeds our ability to analyse it, many researchers are looking towards systems biology and computational modelling to help unravel the complexities of gene and protein regulatory networks. In particular, the use of discrete modelling allows generation of signalling networks in the absence of full quantitative descriptions of systems, which are necessary for ordinary differential equation (ODE) models. In order to make such techniques more accessible to mainstream researchers, tools such as the BioModelAnalyzer (BMA) have been developed to provide a user-friendly graphical interface for discrete modelling of biological systems. Here we use the BMA to build a library of discrete target functions of known canonical molecular interactions, translated from ordinary differential equations (ODEs). We then show that these BMA target functions can be used to reconstruct complex networks, which can correctly predict many known genetic perturbations. This new library supports the accessibility ethos behind the creation of BMA, providing a toolbox for the construction of complex cell signalling models without the need for extensive experience in computer programming or mathematical modelling, and allows for construction and simulation of complex biological systems with only small amounts of quantitative data.
Complex networks untangle competitive advantage in Australian football
NASA Astrophysics Data System (ADS)
Braham, Calum; Small, Michael
2018-05-01
We construct player-based complex network models of Australian football teams for the 2014 Australian Football League season; modelling the passes between players as weighted, directed edges. We show that analysis of these measures can give an insight into the underlying structure and strategy of Australian football teams, quantitatively distinguishing different playing styles. The relationships observed between network properties and match outcomes suggest that successful teams exhibit well-connected passing networks with the passes distributed between all 22 players as evenly as possible. Linear regression models of team scores and match margins show significant improvements in R2 and Bayesian information criterion when network measures are added to models that use conventional measures, demonstrating that network analysis measures contain useful, extra information. Several measures, particularly the mean betweenness centrality, are shown to be useful in predicting the outcomes of future matches, suggesting they measure some aspect of the intrinsic strength of teams. In addition, several local centrality measures are shown to be useful in analysing individual players' differing contributions to the team's structure.
Complex networks untangle competitive advantage in Australian football.
Braham, Calum; Small, Michael
2018-05-01
We construct player-based complex network models of Australian football teams for the 2014 Australian Football League season; modelling the passes between players as weighted, directed edges. We show that analysis of these measures can give an insight into the underlying structure and strategy of Australian football teams, quantitatively distinguishing different playing styles. The relationships observed between network properties and match outcomes suggest that successful teams exhibit well-connected passing networks with the passes distributed between all 22 players as evenly as possible. Linear regression models of team scores and match margins show significant improvements in R 2 and Bayesian information criterion when network measures are added to models that use conventional measures, demonstrating that network analysis measures contain useful, extra information. Several measures, particularly the mean betweenness centrality, are shown to be useful in predicting the outcomes of future matches, suggesting they measure some aspect of the intrinsic strength of teams. In addition, several local centrality measures are shown to be useful in analysing individual players' differing contributions to the team's structure.
Novel indexes based on network structure to indicate financial market
NASA Astrophysics Data System (ADS)
Zhong, Tao; Peng, Qinke; Wang, Xiao; Zhang, Jing
2016-02-01
There have been various achievements to understand and to analyze the financial market by complex network model. However, current studies analyze the financial network model but seldom present quantified indexes to indicate or forecast the price action of market. In this paper, the stock market is modeled as a dynamic network, in which the vertices refer to listed companies and edges refer to their rank-based correlation based on price series. Characteristics of the network are analyzed and then novel indexes are introduced into market analysis, which are calculated from maximum and fully-connected subnets. The indexes are compared with existing ones and the results confirm that our indexes perform better to indicate the daily trend of market composite index in advance. Via investment simulation, the performance of our indexes is analyzed in detail. The results indicate that the dynamic complex network model could not only serve as a structural description of the financial market, but also work to predict the market and guide investment by indexes.
Modeling of polymer networks for application to solid propellant formulating
NASA Technical Reports Server (NTRS)
Marsh, H. E.
1979-01-01
Methods for predicting the network structural characteristics formed by the curing of pourable elastomers were presented; as well as the logic which was applied in the development of mathematical models. A universal approach for modeling was developed and verified by comparison with other methods in application to a complex system. Several applications of network models to practical problems are described.
A Study of Complex Deep Learning Networks on High Performance, Neuromorphic, and Quantum Computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potok, Thomas E; Schuman, Catherine D; Young, Steven R
Current Deep Learning models use highly optimized convolutional neural networks (CNN) trained on large graphical processing units (GPU)-based computers with a fairly simple layered network topology, i.e., highly connected layers, without intra-layer connections. Complex topologies have been proposed, but are intractable to train on current systems. Building the topologies of the deep learning network requires hand tuning, and implementing the network in hardware is expensive in both cost and power. In this paper, we evaluate deep learning models using three different computing architectures to address these problems: quantum computing to train complex topologies, high performance computing (HPC) to automatically determinemore » network topology, and neuromorphic computing for a low-power hardware implementation. Due to input size limitations of current quantum computers we use the MNIST dataset for our evaluation. The results show the possibility of using the three architectures in tandem to explore complex deep learning networks that are untrainable using a von Neumann architecture. We show that a quantum computer can find high quality values of intra-layer connections and weights, while yielding a tractable time result as the complexity of the network increases; a high performance computer can find optimal layer-based topologies; and a neuromorphic computer can represent the complex topology and weights derived from the other architectures in low power memristive hardware. This represents a new capability that is not feasible with current von Neumann architecture. It potentially enables the ability to solve very complicated problems unsolvable with current computing technologies.« less
An egalitarian network model for the emergence of simple and complex cells in visual cortex
Tao, Louis; Shelley, Michael; McLaughlin, David; Shapley, Robert
2004-01-01
We explain how simple and complex cells arise in a large-scale neuronal network model of the primary visual cortex of the macaque. Our model consists of ≈4,000 integrate-and-fire, conductance-based point neurons, representing the cells in a small, 1-mm2 patch of an input layer of the primary visual cortex. In the model the local connections are isotropic and nonspecific, and convergent input from the lateral geniculate nucleus confers cortical cells with orientation and spatial phase preference. The balance between lateral connections and lateral geniculate nucleus drive determines whether individual neurons in this recurrent circuit are simple or complex. The model reproduces qualitatively the experimentally observed distributions of both extracellular and intracellular measures of simple and complex response. PMID:14695891
Bayesian Mixed-Membership Models of Complex and Evolving Networks
2006-12-01
R. Hughes, J. Parkinson , M. Gerstein, S . J. Wodak, A. Emili, and J. F. Greenblatt. Global landscape of protein complexes in the yeast Saccharomyces...provision of law , no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid...Membership Models of Complex and Evolving Networks 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e
NASA Astrophysics Data System (ADS)
Cong, Jin; Liu, Haitao
2014-12-01
Amid the enthusiasm for real-world networks of the new millennium, the enquiry into linguistic networks is flourishing not only as a productive branch of the new networks science but also as a promising approach to linguistic research. Although the complex network approach constitutes a potential opportunity to make linguistics a science, the world of linguistics seems unprepared to embrace it. For one thing, linguistics has been largely unaffected by quantitative methods. Those who are accustomed to qualitative linguistic methods may find it hard to appreciate the application of quantitative properties of language such as frequency and length, not to mention quantitative properties of language modeled as networks. With this in mind, in our review [1] we restrict ourselves to the basics of complex networks and the new insights into human language with the application of complex networks. For another, while breaking new grounds and posing new challenges for linguistics, the complex network approach to human language as a new tradition of linguistic research is faced with challenges and unsolved issues of its own. It is no surprise that the comments on our review, especially their skepticism and suggestions, focus on various different aspects of the complex network approach to human language. We are grateful to all the insightful and penetrating comments, which, together with our review, mark a significant impetus to linguistic research from the complex network approach. In this reply, we would like to address four major issues of the complex network approach to human language, namely, a) its theoretical rationale, b) its application in linguistic research, c) interpretation of the results, and d) directions of future research.
Yu, Bin; Xu, Jia-Meng; Li, Shan; Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Zhang, Yan; Wang, Ming-Hui
2017-01-01
Gene regulatory networks (GRNs) research reveals complex life phenomena from the perspective of gene interaction, which is an important research field in systems biology. Traditional Bayesian networks have a high computational complexity, and the network structure scoring model has a single feature. Information-based approaches cannot identify the direction of regulation. In order to make up for the shortcomings of the above methods, this paper presents a novel hybrid learning method (DBNCS) based on dynamic Bayesian network (DBN) to construct the multiple time-delayed GRNs for the first time, combining the comprehensive score (CS) with the DBN model. DBNCS algorithm first uses CMI2NI (conditional mutual inclusive information-based network inference) algorithm for network structure profiles learning, namely the construction of search space. Then the redundant regulations are removed by using the recursive optimization algorithm (RO), thereby reduce the false positive rate. Secondly, the network structure profiles are decomposed into a set of cliques without loss, which can significantly reduce the computational complexity. Finally, DBN model is used to identify the direction of gene regulation within the cliques and search for the optimal network structure. The performance of DBNCS algorithm is evaluated by the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in Escherichia coli, and compared with other state-of-the-art methods. The experimental results show the rationality of the algorithm design and the outstanding performance of the GRNs. PMID:29113310
Yu, Bin; Xu, Jia-Meng; Li, Shan; Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Zhang, Yan; Wang, Ming-Hui
2017-10-06
Gene regulatory networks (GRNs) research reveals complex life phenomena from the perspective of gene interaction, which is an important research field in systems biology. Traditional Bayesian networks have a high computational complexity, and the network structure scoring model has a single feature. Information-based approaches cannot identify the direction of regulation. In order to make up for the shortcomings of the above methods, this paper presents a novel hybrid learning method (DBNCS) based on dynamic Bayesian network (DBN) to construct the multiple time-delayed GRNs for the first time, combining the comprehensive score (CS) with the DBN model. DBNCS algorithm first uses CMI2NI (conditional mutual inclusive information-based network inference) algorithm for network structure profiles learning, namely the construction of search space. Then the redundant regulations are removed by using the recursive optimization algorithm (RO), thereby reduce the false positive rate. Secondly, the network structure profiles are decomposed into a set of cliques without loss, which can significantly reduce the computational complexity. Finally, DBN model is used to identify the direction of gene regulation within the cliques and search for the optimal network structure. The performance of DBNCS algorithm is evaluated by the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in Escherichia coli , and compared with other state-of-the-art methods. The experimental results show the rationality of the algorithm design and the outstanding performance of the GRNs.
Epidemic outbreaks in complex heterogeneous networks
NASA Astrophysics Data System (ADS)
Moreno, Y.; Pastor-Satorras, R.; Vespignani, A.
2002-04-01
We present a detailed analytical and numerical study for the spreading of infections with acquired immunity in complex population networks. We show that the large connectivity fluctuations usually found in these networks strengthen considerably the incidence of epidemic outbreaks. Scale-free networks, which are characterized by diverging connectivity fluctuations in the limit of a very large number of nodes, exhibit the lack of an epidemic threshold and always show a finite fraction of infected individuals. This particular weakness, observed also in models without immunity, defines a new epidemiological framework characterized by a highly heterogeneous response of the system to the introduction of infected individuals with different connectivity. The understanding of epidemics in complex networks might deliver new insights in the spread of information and diseases in biological and technological networks that often appear to be characterized by complex heterogeneous architectures.
Optimal topology to minimizing congestion in connected communication complex network
NASA Astrophysics Data System (ADS)
Benyoussef, M.; Ez-Zahraouy, H.; Benyoussef, A.
In this paper, a new model of the interdependent complex network is proposed, based on two assumptions that (i) the capacity of a node depends on its degree, and (ii) the traffic load depends on the distribution of the links in the network. Based on these assumptions, the presented model proposes a method of connection not based on the node having a higher degree but on the region containing hubs. It is found that the final network exhibits two kinds of degree distribution behavior, depending on the kind and the way of the connection. This study reveals a direct relation between network structure and traffic flow. It is found that pc the point of transition between the free flow and the congested phase depends on the network structure and the degree distribution. Moreover, this new model provides an improvement in the traffic compared to the results found in a single network. The same behavior of degree distribution found in a BA network and observed in the real world is obtained; except for this model, the transition point between the free phase and congested phase is much higher than the one observed in a network of BA, for both static and dynamic protocols.
Stochastic model simulation using Kronecker product analysis and Zassenhaus formula approximation.
Caglar, Mehmet Umut; Pal, Ranadip
2013-01-01
Probabilistic Models are regularly applied in Genetic Regulatory Network modeling to capture the stochastic behavior observed in the generation of biological entities such as mRNA or proteins. Several approaches including Stochastic Master Equations and Probabilistic Boolean Networks have been proposed to model the stochastic behavior in genetic regulatory networks. It is generally accepted that Stochastic Master Equation is a fundamental model that can describe the system being investigated in fine detail, but the application of this model is computationally enormously expensive. On the other hand, Probabilistic Boolean Network captures only the coarse-scale stochastic properties of the system without modeling the detailed interactions. We propose a new approximation of the stochastic master equation model that is able to capture the finer details of the modeled system including bistabilities and oscillatory behavior, and yet has a significantly lower computational complexity. In this new method, we represent the system using tensors and derive an identity to exploit the sparse connectivity of regulatory targets for complexity reduction. The algorithm involves an approximation based on Zassenhaus formula to represent the exponential of a sum of matrices as product of matrices. We derive upper bounds on the expected error of the proposed model distribution as compared to the stochastic master equation model distribution. Simulation results of the application of the model to four different biological benchmark systems illustrate performance comparable to detailed stochastic master equation models but with considerably lower computational complexity. The results also demonstrate the reduced complexity of the new approach as compared to commonly used Stochastic Simulation Algorithm for equivalent accuracy.
Models for the modern power grid
NASA Astrophysics Data System (ADS)
Nardelli, Pedro H. J.; Rubido, Nicolas; Wang, Chengwei; Baptista, Murilo S.; Pomalaza-Raez, Carlos; Cardieri, Paulo; Latva-aho, Matti
2014-10-01
This article reviews different kinds of models for the electric power grid that can be used to understand the modern power system, the smart grid. From the physical network to abstract energy markets, we identify in the literature different aspects that co-determine the spatio-temporal multilayer dynamics of power system. We start our review by showing how the generation, transmission and distribution characteristics of the traditional power grids are already subject to complex behaviour appearing as a result of the the interplay between dynamics of the nodes and topology, namely synchronisation and cascade effects. When dealing with smart grids, the system complexity increases even more: on top of the physical network of power lines and controllable sources of electricity, the modernisation brings information networks, renewable intermittent generation, market liberalisation, prosumers, among other aspects. In this case, we forecast a dynamical co-evolution of the smart grid and other kind of networked systems that cannot be understood isolated. This review compiles recent results that model electric power grids as complex systems, going beyond pure technological aspects. From this perspective, we then indicate possible ways to incorporate the diverse co-evolving systems into the smart grid model using, for example, network theory and multi-agent simulation.
Demystifying the cytokine network: Mathematical models point the way.
Morel, Penelope A; Lee, Robin E C; Faeder, James R
2017-10-01
Cytokines provide the means by which immune cells communicate with each other and with parenchymal cells. There are over one hundred cytokines and many exist in families that share receptor components and signal transduction pathways, creating complex networks. Reductionist approaches to understanding the role of specific cytokines, through the use of gene-targeted mice, have revealed further complexity in the form of redundancy and pleiotropy in cytokine function. Creating an understanding of the complex interactions between cytokines and their target cells is challenging experimentally. Mathematical and computational modeling provides a robust set of tools by which complex interactions between cytokines can be studied and analyzed, in the process creating novel insights that can be further tested experimentally. This review will discuss and provide examples of the different modeling approaches that have been used to increase our understanding of cytokine networks. This includes discussion of knowledge-based and data-driven modeling approaches and the recent advance in single-cell analysis. The use of modeling to optimize cytokine-based therapies will also be discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Network modulation during complex syntactic processing
den Ouden, Dirk-Bart; Saur, Dorothee; Mader, Wolfgang; Schelter, Björn; Lukic, Sladjana; Wali, Eisha; Timmer, Jens; Thompson, Cynthia K.
2011-01-01
Complex sentence processing is supported by a left-lateralized neural network including inferior frontal cortex and posterior superior temporal cortex. This study investigates the pattern of connectivity and information flow within this network. We used fMRI BOLD data derived from 12 healthy participants reported in an earlier study (Thompson, C. K., Den Ouden, D. B., Bonakdarpour, B., Garibaldi, K., & Parrish, T. B. (2010b). Neural plasticity and treatment-induced recovery of sentence processing in agrammatism. Neuropsychologia, 48(11), 3211-3227) to identify activation peaks associated with object-cleft over syntactically less complex subject-cleft processing. Directed Partial Correlation Analysis was conducted on time series extracted from participant-specific activation peaks and showed evidence of functional connectivity between four regions, linearly between premotor cortex, inferior frontal gyrus, posterior superior temporal sulcus and anterior middle temporal gyrus. This pattern served as the basis for Dynamic Causal Modeling of networks with a driving input to posterior superior temporal cortex, which likely supports thematic role assignment, and networks with a driving input to inferior frontal cortex, a core region associated with syntactic computation. The optimal model was determined through both frequentist and Bayesian model selection and turned out to reflect a network with a primary drive from inferior frontal cortex and modulation of the connection between inferior frontal and posterior superior temporal cortex by complex sentence processing. The winning model also showed a substantive role for a feedback mechanism from posterior superior temporal cortex back to inferior frontal cortex. We suggest that complex syntactic processing is driven by word-order analysis, supported by inferior frontal cortex, in an interactive relation with posterior superior temporal cortex, which supports verb argument structure processing. PMID:21820518
Blinov, Michael L.; Moraru, Ion I.
2011-01-01
Multi-state molecules and multi-component complexes are commonly involved in cellular signaling. Accounting for molecules that have multiple potential states, such as a protein that may be phosphorylated on multiple residues, and molecules that combine to form heterogeneous complexes located among multiple compartments, generates an effect of combinatorial complexity. Models involving relatively few signaling molecules can include thousands of distinct chemical species. Several software tools (StochSim, BioNetGen) are already available to deal with combinatorial complexity. Such tools need information standards if models are to be shared, jointly evaluated and developed. Here we discuss XML conventions that can be adopted for modeling biochemical reaction networks described by user-specified reaction rules. These could form a basis for possible future extensions of the Systems Biology Markup Language (SBML). PMID:21464833
Reconstruction of Complex Network based on the Noise via QR Decomposition and Compressed Sensing.
Li, Lixiang; Xu, Dafei; Peng, Haipeng; Kurths, Jürgen; Yang, Yixian
2017-11-08
It is generally known that the states of network nodes are stable and have strong correlations in a linear network system. We find that without the control input, the method of compressed sensing can not succeed in reconstructing complex networks in which the states of nodes are generated through the linear network system. However, noise can drive the dynamics between nodes to break the stability of the system state. Therefore, a new method integrating QR decomposition and compressed sensing is proposed to solve the reconstruction problem of complex networks under the assistance of the input noise. The state matrix of the system is decomposed by QR decomposition. We construct the measurement matrix with the aid of Gaussian noise so that the sparse input matrix can be reconstructed by compressed sensing. We also discover that noise can build a bridge between the dynamics and the topological structure. Experiments are presented to show that the proposed method is more accurate and more efficient to reconstruct four model networks and six real networks by the comparisons between the proposed method and only compressed sensing. In addition, the proposed method can reconstruct not only the sparse complex networks, but also the dense complex networks.
Modeling Endoplasmic Reticulum Network Maintenance in a Plant Cell.
Lin, Congping; White, Rhiannon R; Sparkes, Imogen; Ashwin, Peter
2017-07-11
The endoplasmic reticulum (ER) in plant cells forms a highly dynamic network of complex geometry. ER network morphology and dynamics are influenced by a number of biophysical processes, including filament/tubule tension, viscous forces, Brownian diffusion, and interactions with many other organelles and cytoskeletal elements. Previous studies have indicated that ER networks can be thought of as constrained minimal-length networks acted on by a variety of forces that perturb and/or remodel the network. Here, we study two specific biophysical processes involved in remodeling. One is the dynamic relaxation process involving a combination of tubule tension and viscous forces. The other is the rapid creation of cross-connection tubules by direct or indirect interactions with cytoskeletal elements. These processes are able to remodel the ER network: the first reduces network length and complexity whereas the second increases both. Using live cell imaging of ER network dynamics in tobacco leaf epidermal cells, we examine these processes on ER network dynamics. Away from regions of cytoplasmic streaming, we suggest that the dynamic network structure is a balance between the two processes, and we build an integrative model of the two processes for network remodeling. This model produces quantitatively similar ER networks to those observed in experiments. We use the model to explore the effect of parameter variation on statistical properties of the ER network. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Dubé, C; Ribble, C; Kelton, D; McNab, B
2009-04-01
Livestock movements are important in spreading infectious diseases and many countries have developed regulations that require farmers to report livestock movements to authorities. This has led to the availability of large amounts of data for analysis and inclusion in computer simulation models developed to support policy formulation. Social network analysis has become increasingly popular to study and characterize the networks resulting from the movement of livestock from farm-to-farm and through other types of livestock operations. Network analysis is a powerful tool that allows one to study the relationships created among these operations, providing information on the role that they play in acquiring and spreading infectious diseases, information that is not readily available from more traditional livestock movement studies. Recent advances in the study of real-world complex networks are now being applied to veterinary epidemiology and infectious disease modelling and control. A review of the principles of network analysis and of the relevance of various complex network theories to infectious disease modelling and control is presented in this paper.
Narimani, Zahra; Beigy, Hamid; Ahmad, Ashar; Masoudi-Nejad, Ali; Fröhlich, Holger
2017-01-01
Inferring the structure of molecular networks from time series protein or gene expression data provides valuable information about the complex biological processes of the cell. Causal network structure inference has been approached using different methods in the past. Most causal network inference techniques, such as Dynamic Bayesian Networks and ordinary differential equations, are limited by their computational complexity and thus make large scale inference infeasible. This is specifically true if a Bayesian framework is applied in order to deal with the unavoidable uncertainty about the correct model. We devise a novel Bayesian network reverse engineering approach using ordinary differential equations with the ability to include non-linearity. Besides modeling arbitrary, possibly combinatorial and time dependent perturbations with unknown targets, one of our main contributions is the use of Expectation Propagation, an algorithm for approximate Bayesian inference over large scale network structures in short computation time. We further explore the possibility of integrating prior knowledge into network inference. We evaluate the proposed model on DREAM4 and DREAM8 data and find it competitive against several state-of-the-art existing network inference methods.
Autonomous Modeling, Statistical Complexity and Semi-annealed Treatment of Boolean Networks
NASA Astrophysics Data System (ADS)
Gong, Xinwei
This dissertation presents three studies on Boolean networks. Boolean networks are a class of mathematical systems consisting of interacting elements with binary state variables. Each element is a node with a Boolean logic gate, and the presence of interactions between any two nodes is represented by directed links. Boolean networks that implement the logic structures of real systems are studied as coarse-grained models of the real systems. Large random Boolean networks are studied with mean field approximations and used to provide a baseline of possible behaviors of large real systems. This dissertation presents one study of the former type, concerning the stable oscillation of a yeast cell-cycle oscillator, and two studies of the latter type, respectively concerning the statistical complexity of large random Boolean networks and an extension of traditional mean field techniques that accounts for the presence of short loops. In the cell-cycle oscillator study, a novel autonomous update scheme is introduced to study the stability of oscillations in small networks. A motif that corrects pulse-growing perturbations and a motif that grows pulses are identified. A combination of the two motifs is capable of sustaining stable oscillations. Examining a Boolean model of the yeast cell-cycle oscillator using an autonomous update scheme yields evidence that it is endowed with such a combination. Random Boolean networks are classified as ordered, critical or disordered based on their response to small perturbations. In the second study, random Boolean networks are taken as prototypical cases for the evaluation of two measures of complexity based on a criterion for optimal statistical prediction. One measure, defined for homogeneous systems, does not distinguish between the static spatial inhomogeneity in the ordered phase and the dynamical inhomogeneity in the disordered phase. A modification in which complexities of individual nodes are calculated yields vanishing complexity values for networks in the ordered and critical phases and for highly disordered networks, peaking somewhere in the disordered phase. Individual nodes with high complexity have, on average, a larger influence on the system dynamics. Lastly, a semi-annealed approximation that preserves the correlation between states at neighboring nodes is introduced to study a social game-inspired network model in which all links are bidirectional and all nodes have a self-input. The technique developed here is shown to yield accurate predictions of distribution of players' states, and accounts for some nontrivial collective behavior of game theoretic interest.
Computational exploration of neuron and neural network models in neurobiology.
Prinz, Astrid A
2007-01-01
The electrical activity of individual neurons and neuronal networks is shaped by the complex interplay of a large number of non-linear processes, including the voltage-dependent gating of ion channels and the activation of synaptic receptors. These complex dynamics make it difficult to understand how individual neuron or network parameters-such as the number of ion channels of a given type in a neuron's membrane or the strength of a particular synapse-influence neural system function. Systematic exploration of cellular or network model parameter spaces by computational brute force can overcome this difficulty and generate comprehensive data sets that contain information about neuron or network behavior for many different combinations of parameters. Searching such data sets for parameter combinations that produce functional neuron or network output provides insights into how narrowly different neural system parameters have to be tuned to produce a desired behavior. This chapter describes the construction and analysis of databases of neuron or neuronal network models and describes some of the advantages and downsides of such exploration methods.
NASA Astrophysics Data System (ADS)
WANG, Qingrong; ZHU, Changfeng; LI, Ying; ZHANG, Zhengkun
2017-06-01
Considering the time dependence of emergency logistic network and complexity of the environment that the network exists in, in this paper the time dependent network optimization theory and robust discrete optimization theory are combined, and the emergency logistics dynamic network optimization model with characteristics of robustness is built to maximize the timeliness of emergency logistics. On this basis, considering the complexity of dynamic network and the time dependence of edge weight, an improved ant colony algorithm is proposed to realize the coupling of the optimization algorithm and the network time dependence and robustness. Finally, a case study has been carried out in order to testify validity of this robustness optimization model and its algorithm, and the value of different regulation factors was analyzed considering the importance of the value of the control factor in solving the optimal path. Analysis results show that this model and its algorithm above-mentioned have good timeliness and strong robustness.
Modification Propagation in Complex Networks
NASA Astrophysics Data System (ADS)
Mouronte, Mary Luz; Vargas, María Luisa; Moyano, Luis Gregorio; Algarra, Francisco Javier García; Del Pozo, Luis Salvador
To keep up with rapidly changing conditions, business systems and their associated networks are growing increasingly intricate as never before. By doing this, network management and operation costs not only rise, but are difficult even to measure. This fact must be regarded as a major constraint to system optimization initiatives, as well as a setback to derived economic benefits. In this work we introduce a simple model in order to estimate the relative cost associated to modification propagation in complex architectures. Our model can be used to anticipate costs caused by network evolution, as well as for planning and evaluating future architecture development while providing benefit optimization.
Wang, Jiguang; Sun, Yidan; Zheng, Si; Zhang, Xiang-Sun; Zhou, Huarong; Chen, Luonan
2013-01-01
Synergistic interactions among transcription factors (TFs) and their cofactors collectively determine gene expression in complex biological systems. In this work, we develop a novel graphical model, called Active Protein-Gene (APG) network model, to quantify regulatory signals of transcription in complex biomolecular networks through integrating both TF upstream-regulation and downstream-regulation high-throughput data. Firstly, we theoretically and computationally demonstrate the effectiveness of APG by comparing with the traditional strategy based only on TF downstream-regulation information. We then apply this model to study spontaneous type 2 diabetic Goto-Kakizaki (GK) and Wistar control rats. Our biological experiments validate the theoretical results. In particular, SP1 is found to be a hidden TF with changed regulatory activity, and the loss of SP1 activity contributes to the increased glucose production during diabetes development. APG model provides theoretical basis to quantitatively elucidate transcriptional regulation by modelling TF combinatorial interactions and exploiting multilevel high-throughput information.
Wang, Jiguang; Sun, Yidan; Zheng, Si; Zhang, Xiang-Sun; Zhou, Huarong; Chen, Luonan
2013-01-01
Synergistic interactions among transcription factors (TFs) and their cofactors collectively determine gene expression in complex biological systems. In this work, we develop a novel graphical model, called Active Protein-Gene (APG) network model, to quantify regulatory signals of transcription in complex biomolecular networks through integrating both TF upstream-regulation and downstream-regulation high-throughput data. Firstly, we theoretically and computationally demonstrate the effectiveness of APG by comparing with the traditional strategy based only on TF downstream-regulation information. We then apply this model to study spontaneous type 2 diabetic Goto-Kakizaki (GK) and Wistar control rats. Our biological experiments validate the theoretical results. In particular, SP1 is found to be a hidden TF with changed regulatory activity, and the loss of SP1 activity contributes to the increased glucose production during diabetes development. APG model provides theoretical basis to quantitatively elucidate transcriptional regulation by modelling TF combinatorial interactions and exploiting multilevel high-throughput information. PMID:23346354
Wilczynski, Bartek; Furlong, Eileen E M
2010-04-15
Development is regulated by dynamic patterns of gene expression, which are orchestrated through the action of complex gene regulatory networks (GRNs). Substantial progress has been made in modeling transcriptional regulation in recent years, including qualitative "coarse-grain" models operating at the gene level to very "fine-grain" quantitative models operating at the biophysical "transcription factor-DNA level". Recent advances in genome-wide studies have revealed an enormous increase in the size and complexity or GRNs. Even relatively simple developmental processes can involve hundreds of regulatory molecules, with extensive interconnectivity and cooperative regulation. This leads to an explosion in the number of regulatory functions, effectively impeding Boolean-based qualitative modeling approaches. At the same time, the lack of information on the biophysical properties for the majority of transcription factors within a global network restricts quantitative approaches. In this review, we explore the current challenges in moving from modeling medium scale well-characterized networks to more poorly characterized global networks. We suggest to integrate coarse- and find-grain approaches to model gene regulatory networks in cis. We focus on two very well-studied examples from Drosophila, which likely represent typical developmental regulatory modules across metazoans. Copyright (c) 2009 Elsevier Inc. All rights reserved.
Phase-space networks of geometrically frustrated systems.
Han, Yilong
2009-11-01
We illustrate a network approach to the phase-space study by using two geometrical frustration models: antiferromagnet on triangular lattice and square ice. Their highly degenerated ground states are mapped as discrete networks such that the quantitative network analysis can be applied to phase-space studies. The resulting phase spaces share some comon features and establish a class of complex networks with unique Gaussian spectral densities. Although phase-space networks are heterogeneously connected, the systems are still ergodic due to the random Poisson processes. This network approach can be generalized to phase spaces of some other complex systems.
Hierarchical Control Using Networks Trained with Higher-Level Forward Models
Wayne, Greg; Abbott, L.F.
2015-01-01
We propose and develop a hierarchical approach to network control of complex tasks. In this approach, a low-level controller directs the activity of a “plant,” the system that performs the task. However, the low-level controller may only be able to solve fairly simple problems involving the plant. To accomplish more complex tasks, we introduce a higher-level controller that controls the lower-level controller. We use this system to direct an articulated truck to a specified location through an environment filled with static or moving obstacles. The final system consists of networks that have memorized associations between the sensory data they receive and the commands they issue. These networks are trained on a set of optimal associations that are generated by minimizing cost functions. Cost function minimization requires predicting the consequences of sequences of commands, which is achieved by constructing forward models, including a model of the lower-level controller. The forward models and cost minimization are only used during training, allowing the trained networks to respond rapidly. In general, the hierarchical approach can be extended to larger numbers of levels, dividing complex tasks into more manageable sub-tasks. The optimization procedure and the construction of the forward models and controllers can be performed in similar ways at each level of the hierarchy, which allows the system to be modified to perform other tasks, or to be extended for more complex tasks without retraining lower-levels. PMID:25058706
Towards Reproducible Descriptions of Neuronal Network Models
Nordlie, Eilen; Gewaltig, Marc-Oliver; Plesser, Hans Ekkehard
2009-01-01
Progress in science depends on the effective exchange of ideas among scientists. New ideas can be assessed and criticized in a meaningful manner only if they are formulated precisely. This applies to simulation studies as well as to experiments and theories. But after more than 50 years of neuronal network simulations, we still lack a clear and common understanding of the role of computational models in neuroscience as well as established practices for describing network models in publications. This hinders the critical evaluation of network models as well as their re-use. We analyze here 14 research papers proposing neuronal network models of different complexity and find widely varying approaches to model descriptions, with regard to both the means of description and the ordering and placement of material. We further observe great variation in the graphical representation of networks and the notation used in equations. Based on our observations, we propose a good model description practice, composed of guidelines for the organization of publications, a checklist for model descriptions, templates for tables presenting model structure, and guidelines for diagrams of networks. The main purpose of this good practice is to trigger a debate about the communication of neuronal network models in a manner comprehensible to humans, as opposed to machine-readable model description languages. We believe that the good model description practice proposed here, together with a number of other recent initiatives on data-, model-, and software-sharing, may lead to a deeper and more fruitful exchange of ideas among computational neuroscientists in years to come. We further hope that work on standardized ways of describing—and thinking about—complex neuronal networks will lead the scientific community to a clearer understanding of high-level concepts in network dynamics, and will thus lead to deeper insights into the function of the brain. PMID:19662159
Complex networks repair strategies: Dynamic models
NASA Astrophysics Data System (ADS)
Fu, Chaoqi; Wang, Ying; Gao, Yangjun; Wang, Xiaoyang
2017-09-01
Network repair strategies are tactical methods that restore the efficiency of damaged networks; however, unreasonable repair strategies not only waste resources, they are also ineffective for network recovery. Most extant research on network repair focuses on static networks, but results and findings on static networks cannot be applied to evolutionary dynamic networks because, in dynamic models, complex network repair has completely different characteristics. For instance, repaired nodes face more severe challenges, and require strategic repair methods in order to have a significant effect. In this study, we propose the Shell Repair Strategy (SRS) to minimize the risk of secondary node failures due to the cascading effect. Our proposed method includes the identification of a set of vital nodes that have a significant impact on network repair and defense. Our identification of these vital nodes reduces the number of switching nodes that face the risk of secondary failures during the dynamic repair process. This is positively correlated with the size of the average degree 〈 k 〉 and enhances network invulnerability.
Structurally Dynamic Spin Market Networks
NASA Astrophysics Data System (ADS)
Horváth, Denis; Kuscsik, Zoltán
The agent-based model of stock price dynamics on a directed evolving complex network is suggested and studied by direct simulation. The stationary regime is maintained as a result of the balance between the extremal dynamics, adaptivity of strategic variables and reconnection rules. The inherent structure of node agent "brain" is modeled by a recursive neural network with local and global inputs and feedback connections. For specific parametric combination the complex network displays small-world phenomenon combined with scale-free behavior. The identification of a local leader (network hub, agent whose strategies are frequently adapted by its neighbors) is carried out by repeated random walk process through network. The simulations show empirically relevant dynamics of price returns and volatility clustering. The additional emerging aspects of stylized market statistics are Zipfian distributions of fitness.
NASA Astrophysics Data System (ADS)
Siddiqui, Maheen; Wedemann, Roseli S.; Jensen, Henrik Jeldtoft
2018-01-01
We explore statistical characteristics of avalanches associated with the dynamics of a complex-network model, where two modules corresponding to sensorial and symbolic memories interact, representing unconscious and conscious mental processes. The model illustrates Freud's ideas regarding the neuroses and that consciousness is related with symbolic and linguistic memory activity in the brain. It incorporates the Stariolo-Tsallis generalization of the Boltzmann Machine in order to model memory retrieval and associativity. In the present work, we define and measure avalanche size distributions during memory retrieval, in order to gain insight regarding basic aspects of the functioning of these complex networks. The avalanche sizes defined for our model should be related to the time consumed and also to the size of the neuronal region which is activated, during memory retrieval. This allows the qualitative comparison of the behaviour of the distribution of cluster sizes, obtained during fMRI measurements of the propagation of signals in the brain, with the distribution of avalanche sizes obtained in our simulation experiments. This comparison corroborates the indication that the Nonextensive Statistical Mechanics formalism may indeed be more well suited to model the complex networks which constitute brain and mental structure.
System-level simulation of liquid filling in microfluidic chips.
Song, Hongjun; Wang, Yi; Pant, Kapil
2011-06-01
Liquid filling in microfluidic channels is a complex process that depends on a variety of geometric, operating, and material parameters such as microchannel geometry, flow velocity∕pressure, liquid surface tension, and contact angle of channel surface. Accurate analysis of the filling process can provide key insights into the filling time, air bubble trapping, and dead zone formation, and help evaluate trade-offs among the various design parameters and lead to optimal chip design. However, efficient modeling of liquid filling in complex microfluidic networks continues to be a significant challenge. High-fidelity computational methods, such as the volume of fluid method, are prohibitively expensive from a computational standpoint. Analytical models, on the other hand, are primarily applicable to idealized geometries and, hence, are unable to accurately capture chip level behavior of complex microfluidic systems. This paper presents a parametrized dynamic model for the system-level analysis of liquid filling in three-dimensional (3D) microfluidic networks. In our approach, a complex microfluidic network is deconstructed into a set of commonly used components, such as reservoirs, microchannels, and junctions. The components are then assembled according to their spatial layout and operating rationale to achieve a rapid system-level model. A dynamic model based on the transient momentum equation is developed to track the liquid front in the microchannels. The principle of mass conservation at the junction is used to link the fluidic parameters in the microchannels emanating from the junction. Assembly of these component models yields a set of differential and algebraic equations, which upon integration provides temporal information of the liquid filling process, particularly liquid front propagation (i.e., the arrival time). The models are used to simulate the transient liquid filling process in a variety of microfluidic constructs and in a multiplexer, representing a complex microfluidic network. The accuracy (relative error less than 7%) and orders-of-magnitude speedup (30 000X-4 000 000X) of our system-level models are verified by comparison against 3D high-fidelity numerical studies. Our findings clearly establish the utility of our models and simulation methodology for fast, reliable analysis of liquid filling to guide the design optimization of complex microfluidic networks.
Quantifying Complexity in Quantum Phase Transitions via Mutual Information Complex Networks
NASA Astrophysics Data System (ADS)
Valdez, Marc Andrew; Jaschke, Daniel; Vargas, David L.; Carr, Lincoln D.
2017-12-01
We quantify the emergent complexity of quantum states near quantum critical points on regular 1D lattices, via complex network measures based on quantum mutual information as the adjacency matrix, in direct analogy to quantifying the complexity of electroencephalogram or functional magnetic resonance imaging measurements of the brain. Using matrix product state methods, we show that network density, clustering, disparity, and Pearson's correlation obtain the critical point for both quantum Ising and Bose-Hubbard models to a high degree of accuracy in finite-size scaling for three classes of quantum phase transitions, Z2, mean field superfluid to Mott insulator, and a Berzinskii-Kosterlitz-Thouless crossover.
Impact analysis of two kinds of failure strategies in Beijing road transportation network
NASA Astrophysics Data System (ADS)
Zhang, Zundong; Xu, Xiaoyang; Zhang, Zhaoran; Zhou, Huijuan
The Beijing road transportation network (BRTN), as a large-scale technological network, exhibits very complex and complicate features during daily periods. And it has been widely highlighted that how statistical characteristics (i.e. average path length and global network efficiency) change while the network evolves. In this paper, by using different modeling concepts, three kinds of network models of BRTN namely the abstract network model, the static network model with road mileage as weights and the dynamic network model with travel time as weights — are constructed, respectively, according to the topological data and the real detected flow data. The degree distribution of the three kinds of network models are analyzed, which proves that the urban road infrastructure network and the dynamic network behavior like scale-free networks. By analyzing and comparing the important statistical characteristics of three models under random attacks and intentional attacks, it shows that the urban road infrastructure network and the dynamic network of BRTN are both robust and vulnerable.
Hidden long evolutionary memory in a model biochemical network
NASA Astrophysics Data System (ADS)
Ali, Md. Zulfikar; Wingreen, Ned S.; Mukhopadhyay, Ranjan
2018-04-01
We introduce a minimal model for the evolution of functional protein-interaction networks using a sequence-based mutational algorithm, and apply the model to study neutral drift in networks that yield oscillatory dynamics. Starting with a functional core module, random evolutionary drift increases network complexity even in the absence of specific selective pressures. Surprisingly, we uncover a hidden order in sequence space that gives rise to long-term evolutionary memory, implying strong constraints on network evolution due to the topology of accessible sequence space.
Metrics for evaluating performance and uncertainty of Bayesian network models
Bruce G. Marcot
2012-01-01
This paper presents a selected set of existing and new metrics for gauging Bayesian network model performance and uncertainty. Selected existing and new metrics are discussed for conducting model sensitivity analysis (variance reduction, entropy reduction, case file simulation); evaluating scenarios (influence analysis); depicting model complexity (numbers of model...
Vulnerability of complex networks
NASA Astrophysics Data System (ADS)
Mishkovski, Igor; Biey, Mario; Kocarev, Ljupco
2011-01-01
We consider normalized average edge betweenness of a network as a metric of network vulnerability. We suggest that normalized average edge betweenness together with is relative difference when certain number of nodes and/or edges are removed from the network is a measure of network vulnerability, called vulnerability index. Vulnerability index is calculated for four synthetic networks: Erdős-Rényi (ER) random networks, Barabási-Albert (BA) model of scale-free networks, Watts-Strogatz (WS) model of small-world networks, and geometric random networks. Real-world networks for which vulnerability index is calculated include: two human brain networks, three urban networks, one collaboration network, and two power grid networks. We find that WS model of small-world networks and biological networks (human brain networks) are the most robust networks among all networks studied in the paper.
Limit of a nonpreferential attachment multitype network model
NASA Astrophysics Data System (ADS)
Shang, Yilun
2017-02-01
Here, we deal with a model of multitype network with nonpreferential attachment growth. The connection between two nodes depends asymmetrically on their types, reflecting the implication of time order in temporal networks. Based upon graph limit theory, we analytically determined the limit of the network model characterized by a kernel, in the sense that the number of copies of any fixed subgraph converges when network size tends to infinity. The results are confirmed by extensive simulations. Our work thus provides a theoretical framework for quantitatively understanding grown temporal complex networks as a whole.
Applying Model Based Systems Engineering to NASA's Space Communications Networks
NASA Technical Reports Server (NTRS)
Bhasin, Kul; Barnes, Patrick; Reinert, Jessica; Golden, Bert
2013-01-01
System engineering practices for complex systems and networks now require that requirement, architecture, and concept of operations product development teams, simultaneously harmonize their activities to provide timely, useful and cost-effective products. When dealing with complex systems of systems, traditional systems engineering methodology quickly falls short of achieving project objectives. This approach is encumbered by the use of a number of disparate hardware and software tools, spreadsheets and documents to grasp the concept of the network design and operation. In case of NASA's space communication networks, since the networks are geographically distributed, and so are its subject matter experts, the team is challenged to create a common language and tools to produce its products. Using Model Based Systems Engineering methods and tools allows for a unified representation of the system in a model that enables a highly related level of detail. To date, Program System Engineering (PSE) team has been able to model each network from their top-level operational activities and system functions down to the atomic level through relational modeling decomposition. These models allow for a better understanding of the relationships between NASA's stakeholders, internal organizations, and impacts to all related entities due to integration and sustainment of existing systems. Understanding the existing systems is essential to accurate and detailed study of integration options being considered. In this paper, we identify the challenges the PSE team faced in its quest to unify complex legacy space communications networks and their operational processes. We describe the initial approaches undertaken and the evolution toward model based system engineering applied to produce Space Communication and Navigation (SCaN) PSE products. We will demonstrate the practice of Model Based System Engineering applied to integrating space communication networks and the summary of its results and impact. We will highlight the insights gained by applying the Model Based System Engineering and provide recommendations for its applications and improvements.
Filho, Humberto A; Machicao, Jeaneth; Bruno, Odemir M
2018-01-01
Modeling the basic structure of metabolic machinery is a challenge for modern biology. Some models based on complex networks have provided important information regarding this machinery. In this paper, we constructed metabolic networks of 17 plants covering unicellular organisms to more complex dicotyledonous plants. The metabolic networks were built based on the substrate-product model and a topological percolation was performed using the kcore decomposition. The distribution of metabolites across the percolation layers showed correlations between the metabolic integration hierarchy and the network topology. We show that metabolites concentrated in the internal network (maximum kcore) only comprise molecules of the primary basal metabolism. Moreover, we found a high proportion of a set of common metabolites, among the 17 plants, centered at the inner kcore layers. Meanwhile, the metabolites recognized as participants in the secondary metabolism of plants are concentrated in the outermost layers of the network. This data suggests that the metabolites in the central layer form a basic molecular module in which the whole plant metabolism is anchored. The elements from this central core participate in almost all plant metabolic reactions, which suggests that plant metabolic networks follows a centralized topology.
Filho, Humberto A.; Machicao, Jeaneth
2018-01-01
Modeling the basic structure of metabolic machinery is a challenge for modern biology. Some models based on complex networks have provided important information regarding this machinery. In this paper, we constructed metabolic networks of 17 plants covering unicellular organisms to more complex dicotyledonous plants. The metabolic networks were built based on the substrate-product model and a topological percolation was performed using the kcore decomposition. The distribution of metabolites across the percolation layers showed correlations between the metabolic integration hierarchy and the network topology. We show that metabolites concentrated in the internal network (maximum kcore) only comprise molecules of the primary basal metabolism. Moreover, we found a high proportion of a set of common metabolites, among the 17 plants, centered at the inner kcore layers. Meanwhile, the metabolites recognized as participants in the secondary metabolism of plants are concentrated in the outermost layers of the network. This data suggests that the metabolites in the central layer form a basic molecular module in which the whole plant metabolism is anchored. The elements from this central core participate in almost all plant metabolic reactions, which suggests that plant metabolic networks follows a centralized topology. PMID:29734359
S-curve networks and an approximate method for estimating degree distributions of complex networks
NASA Astrophysics Data System (ADS)
Guo, Jin-Li
2010-12-01
In the study of complex networks almost all theoretical models have the property of infinite growth, but the size of actual networks is finite. According to statistics from the China Internet IPv4 (Internet Protocol version 4) addresses, this paper proposes a forecasting model by using S curve (logistic curve). The growing trend of IPv4 addresses in China is forecasted. There are some reference values for optimizing the distribution of IPv4 address resource and the development of IPv6. Based on the laws of IPv4 growth, that is, the bulk growth and the finitely growing limit, it proposes a finite network model with a bulk growth. The model is said to be an S-curve network. Analysis demonstrates that the analytic method based on uniform distributions (i.e., Barabási-Albert method) is not suitable for the network. It develops an approximate method to predict the growth dynamics of the individual nodes, and uses this to calculate analytically the degree distribution and the scaling exponents. The analytical result agrees with the simulation well, obeying an approximately power-law form. This method can overcome a shortcoming of Barabási-Albert method commonly used in current network research.
Analyzing complex networks evolution through Information Theory quantifiers
NASA Astrophysics Data System (ADS)
Carpi, Laura C.; Rosso, Osvaldo A.; Saco, Patricia M.; Ravetti, Martín Gómez
2011-01-01
A methodology to analyze dynamical changes in complex networks based on Information Theory quantifiers is proposed. The square root of the Jensen-Shannon divergence, a measure of dissimilarity between two probability distributions, and the MPR Statistical Complexity are used to quantify states in the network evolution process. Three cases are analyzed, the Watts-Strogatz model, a gene network during the progression of Alzheimer's disease and a climate network for the Tropical Pacific region to study the El Niño/Southern Oscillation (ENSO) dynamic. We find that the proposed quantifiers are able not only to capture changes in the dynamics of the processes but also to quantify and compare states in their evolution.
Dynamic properties of epidemic spreading on finite size complex networks
NASA Astrophysics Data System (ADS)
Li, Ying; Liu, Yang; Shan, Xiu-Ming; Ren, Yong; Jiao, Jian; Qiu, Ben
2005-11-01
The Internet presents a complex topological structure, on which computer viruses can easily spread. By using theoretical analysis and computer simulation methods, the dynamic process of disease spreading on finite size networks with complex topological structure is investigated. On the finite size networks, the spreading process of SIS (susceptible-infected-susceptible) model is a finite Markov chain with an absorbing state. Two parameters, the survival probability and the conditional infecting probability, are introduced to describe the dynamic properties of disease spreading on finite size networks. Our results can help understanding computer virus epidemics and other spreading phenomena on communication and social networks. Also, knowledge about the dynamic character of virus spreading is helpful for adopting immunity policy.
Lisewski, Andreas Martin; Lichtarge, Olivier
2010-01-01
Recurrent international financial crises inflict significant damage to societies and stress the need for mechanisms or strategies to control risk and tamper market uncertainties. Unfortunately, the complex network of market interactions often confounds rational approaches to optimize financial risks. Here we show that investors can overcome this complexity and globally minimize risk in portfolio models for any given expected return, provided the relative margin requirement remains below a critical, empirically measurable value. In practice, for markets with centrally regulated margin requirements, a rational stabilization strategy would be keeping margins small enough. This result follows from ground states of the random field spin glass Ising model that can be calculated exactly through convex optimization when relative spin coupling is limited by the norm of the network's Laplacian matrix. In that regime, this novel approach is robust to noise in empirical data and may be also broadly relevant to complex networks with frustrated interactions that are studied throughout scientific fields. PMID:20625477
Lisewski, Andreas Martin; Lichtarge, Olivier
2010-08-15
Recurrent international financial crises inflict significant damage to societies and stress the need for mechanisms or strategies to control risk and tamper market uncertainties. Unfortunately, the complex network of market interactions often confounds rational approaches to optimize financial risks. Here we show that investors can overcome this complexity and globally minimize risk in portfolio models for any given expected return, provided the relative margin requirement remains below a critical, empirically measurable value. In practice, for markets with centrally regulated margin requirements, a rational stabilization strategy would be keeping margins small enough. This result follows from ground states of the random field spin glass Ising model that can be calculated exactly through convex optimization when relative spin coupling is limited by the norm of the network's Laplacian matrix. In that regime, this novel approach is robust to noise in empirical data and may be also broadly relevant to complex networks with frustrated interactions that are studied throughout scientific fields.
Predicting wettability behavior of fluorosilica coated metal surface using optimum neural network
NASA Astrophysics Data System (ADS)
Taghipour-Gorjikolaie, Mehran; Valipour Motlagh, Naser
2018-02-01
The interaction between variables, which are effective on the surface wettability, is very complex to predict the contact angles and sliding angles of liquid drops. In this paper, in order to solve this complexity, artificial neural network was used to develop reliable models for predicting the angles of liquid drops. Experimental data are divided into training data and testing data. By using training data and feed forward structure for the neural network and using particle swarm optimization for training the neural network based models, the optimum models were developed. The obtained results showed that regression index for the proposed models for the contact angles and sliding angles are 0.9874 and 0.9920, respectively. As it can be seen, these values are close to unit and it means the reliable performance of the models. Also, it can be inferred from the results that the proposed model have more reliable performance than multi-layer perceptron and radial basis function based models.
Economic and environmental optimization of a multi-site utility network for an industrial complex.
Kim, Sang Hun; Yoon, Sung-Geun; Chae, Song Hwa; Park, Sunwon
2010-01-01
Most chemical companies consume a lot of steam, water and electrical resources in the production process. Given recent record fuel costs, utility networks must be optimized to reduce the overall cost of production. Environmental concerns must also be considered when preparing modifications to satisfy the requirements for industrial utilities, since wastes discharged from the utility networks are restricted by environmental regulations. Construction of Eco-Industrial Parks (EIPs) has drawn attention as a promising approach for retrofitting existing industrial parks to improve energy efficiency. The optimization of the utility network within an industrial complex is one of the most important undertakings to minimize energy consumption and waste loads in the EIP. In this work, a systematic approach to optimize the utility network of an industrial complex is presented. An important issue in the optimization of a utility network is the desire of the companies to achieve high profits while complying with the environmental regulations. Therefore, the proposed optimization was performed with consideration of both economic and environmental factors. The proposed approach consists of unit modeling using thermodynamic principles, mass and energy balances, development of a multi-period Mixed Integer Linear Programming (MILP) model for the integration of utility systems in an industrial complex, and an economic/environmental analysis of the results. This approach is applied to the Yeosu Industrial Complex, considering seasonal utility demands. The results show that both the total utility cost and waste load are reduced by optimizing the utility network of an industrial complex. 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Shaopei; Tan, Jianjun; Ray, C.; Claramunt, C.; Sun, Qinqin
2008-10-01
Diversity is one of the main characteristics of transportation data collected from multiple sources or formats, which can be extremely complex and disparate. Moreover, these multimodal transportation data are usually characterised by spatial and temporal properties. Multimodal transportation network data modelling involves both an engineering and research domain that has attracted the design of a number of spatio-temporal data models in the geographic information system (GIS). However, the application of these specific models to multimodal transportation network is still a challenging task. This research addresses this challenge from both integrated multimodal data organization and object-oriented modelling perspectives, that is, how a complex urban transportation network should be organized, represented and modeled appropriately when considering a multimodal point of view, and using object-oriented modelling method. We proposed an integrated GIS-based data model for multimodal urban transportation network that lays a foundation to enhance the multimodal transportation network analysis and management. This modelling method organizes and integrates multimodal transit network data, and supports multiple representations for spatio-temporal objects and relationship as both visual and graphic views. The data model is expressed by using a spatio-temporal object-oriented modelling method, i.e., the unified modelling language (UML) extended to spatial and temporal plug-in for visual languages (PVLs), which provides an essential support to the spatio-temporal data modelling for transportation GIS.
Egri-Nagy, Attila; Nehaniv, Chrystopher L
2008-01-01
Beyond complexity measures, sometimes it is worthwhile in addition to investigate how complexity changes structurally, especially in artificial systems where we have complete knowledge about the evolutionary process. Hierarchical decomposition is a useful way of assessing structural complexity changes of organisms modeled as automata, and we show how recently developed computational tools can be used for this purpose, by computing holonomy decompositions and holonomy complexity. To gain insight into the evolution of complexity, we investigate the smoothness of the landscape structure of complexity under minimal transitions. As a proof of concept, we illustrate how the hierarchical complexity analysis reveals symmetries and irreversible structure in biological networks by applying the methods to the lac operon mechanism in the genetic regulatory network of Escherichia coli.
Pires, Mathias M.; Cantor, Maurício; Guimarães, Paulo R.; de Aguiar, Marcus A. M.; dos Reis, Sérgio F.; Coltri, Patricia P.
2015-01-01
The network structure of biological systems provides information on the underlying processes shaping their organization and dynamics. Here we examined the structure of the network depicting protein interactions within the spliceosome, the macromolecular complex responsible for splicing in eukaryotic cells. We show the interactions of less connected spliceosome proteins are nested subsets of the connections of the highly connected proteins. At the same time, the network has a modular structure with groups of proteins sharing similar interaction patterns. We then investigated the role of affinity and specificity in shaping the spliceosome network by adapting a probabilistic model originally designed to reproduce food webs. This food-web model was as successful in reproducing the structure of protein interactions as it is in reproducing interactions among species. The good performance of the model suggests affinity and specificity, partially determined by protein size and the timing of association to the complex, may be determining network structure. Moreover, because network models allow building ensembles of realistic networks while encompassing uncertainty they can be useful to examine the dynamics and vulnerability of intracelullar processes. Unraveling the mechanisms organizing the spliceosome interactions is important to characterize the role of individual proteins on splicing catalysis and regulation. PMID:26443080
Computer models of complex multiloop branched pipeline systems
NASA Astrophysics Data System (ADS)
Kudinov, I. V.; Kolesnikov, S. V.; Eremin, A. V.; Branfileva, A. N.
2013-11-01
This paper describes the principal theoretical concepts of the method used for constructing computer models of complex multiloop branched pipeline networks, and this method is based on the theory of graphs and two Kirchhoff's laws applied to electrical circuits. The models make it possible to calculate velocities, flow rates, and pressures of a fluid medium in any section of pipeline networks, when the latter are considered as single hydraulic systems. On the basis of multivariant calculations the reasons for existing problems can be identified, the least costly methods of their elimination can be proposed, and recommendations for planning the modernization of pipeline systems and construction of their new sections can be made. The results obtained can be applied to complex pipeline systems intended for various purposes (water pipelines, petroleum pipelines, etc.). The operability of the model has been verified on an example of designing a unified computer model of the heat network for centralized heat supply of the city of Samara.
Prettejohn, Brenton J.; Berryman, Matthew J.; McDonnell, Mark D.
2011-01-01
Many simulations of networks in computational neuroscience assume completely homogenous random networks of the Erdös–Rényi type, or regular networks, despite it being recognized for some time that anatomical brain networks are more complex in their connectivity and can, for example, exhibit the “scale-free” and “small-world” properties. We review the most well known algorithms for constructing networks with given non-homogeneous statistical properties and provide simple pseudo-code for reproducing such networks in software simulations. We also review some useful mathematical results and approximations associated with the statistics that describe these network models, including degree distribution, average path length, and clustering coefficient. We demonstrate how such results can be used as partial verification and validation of implementations. Finally, we discuss a sometimes overlooked modeling choice that can be crucially important for the properties of simulated networks: that of network directedness. The most well known network algorithms produce undirected networks, and we emphasize this point by highlighting how simple adaptations can instead produce directed networks. PMID:21441986
Cross-Dependency Inference in Multi-Layered Networks: A Collaborative Filtering Perspective.
Chen, Chen; Tong, Hanghang; Xie, Lei; Ying, Lei; He, Qing
2017-08-01
The increasingly connected world has catalyzed the fusion of networks from different domains, which facilitates the emergence of a new network model-multi-layered networks. Examples of such kind of network systems include critical infrastructure networks, biological systems, organization-level collaborations, cross-platform e-commerce, and so forth. One crucial structure that distances multi-layered network from other network models is its cross-layer dependency, which describes the associations between the nodes from different layers. Needless to say, the cross-layer dependency in the network plays an essential role in many data mining applications like system robustness analysis and complex network control. However, it remains a daunting task to know the exact dependency relationships due to noise, limited accessibility, and so forth. In this article, we tackle the cross-layer dependency inference problem by modeling it as a collective collaborative filtering problem. Based on this idea, we propose an effective algorithm Fascinate that can reveal unobserved dependencies with linear complexity. Moreover, we derive Fascinate-ZERO, an online variant of Fascinate that can respond to a newly added node timely by checking its neighborhood dependencies. We perform extensive evaluations on real datasets to substantiate the superiority of our proposed approaches.
Queueing Network Models for Parallel Processing of Task Systems: an Operational Approach
NASA Technical Reports Server (NTRS)
Mak, Victor W. K.
1986-01-01
Computer performance modeling of possibly complex computations running on highly concurrent systems is considered. Earlier works in this area either dealt with a very simple program structure or resulted in methods with exponential complexity. An efficient procedure is developed to compute the performance measures for series-parallel-reducible task systems using queueing network models. The procedure is based on the concept of hierarchical decomposition and a new operational approach. Numerical results for three test cases are presented and compared to those of simulations.
Evolution of weighted complex bus transit networks with flow
NASA Astrophysics Data System (ADS)
Huang, Ailing; Xiong, Jie; Shen, Jinsheng; Guan, Wei
2016-02-01
Study on the intrinsic properties and evolutional mechanism of urban public transit networks (PTNs) has great significance for transit planning and control, particularly considering passengers’ dynamic behaviors. This paper presents an empirical analysis for exploring the complex properties of Beijing’s weighted bus transit network (BTN) based on passenger flow in L-space, and proposes a bi-level evolution model to simulate the development of transit routes from the view of complex network. The model is an iterative process that is driven by passengers’ travel demands and dual-controlled interest mechanism, which is composed of passengers’ spatio-temporal requirements and cost constraint of transit agencies. Also, the flow’s dynamic behaviors, including the evolutions of travel demand, sectional flow attracted by a new link and flow perturbation triggered in nearby routes, are taken into consideration in the evolutional process. We present the numerical experiment to validate the model, where the main parameters are estimated by using distribution functions that are deduced from real-world data. The results obtained have proven that our model can generate a BTN with complex properties, such as the scale-free behavior or small-world phenomenon, which shows an agreement with our empirical results. Our study’s results can be exploited to optimize the real BTN’s structure and improve the network’s robustness.
Evolution of the social network of scientific collaborations
NASA Astrophysics Data System (ADS)
Barabasi, Albert-Laszlo; Jeong, Hawoong; Neda, Zoltan; Ravasz, Erzsebet; Schubert, Andras; Vicsek, Tamas
2002-03-01
The co-authorship network of scientists represents a prototype of complex evolving networks. By mapping the electronic database containing all relevant journals in mathematics and neuro-science for an eight-year period (1991-98), we infer the dynamic and the structural mechanisms that govern the evolution and topology of this complex system. First, empirical measurements allow us to uncover the topological measures that characterize the network at a given moment, as well as the time evolution of these quantities. The results indicate that the network is scale-free, and that the network evolution is governed by preferential attachment, affecting both internal and external links. However, in contrast with most model predictions the average degree increases in time, and the node separation decreases. Second, we propose a simple model that captures the network's time evolution. Third, numerical simulations are used to uncover the behavior of quantities that could not be predicted analytically.
Pattern recognition tool based on complex network-based approach
NASA Astrophysics Data System (ADS)
Casanova, Dalcimar; Backes, André Ricardo; Martinez Bruno, Odemir
2013-02-01
This work proposed a generalization of the method proposed by the authors: 'A complex network-based approach for boundary shape analysis'. Instead of modelling a contour into a graph and use complex networks rules to characterize it, here, we generalize the technique. This way, the work proposes a mathematical tool for characterization signals, curves and set of points. To evaluate the pattern description power of the proposal, an experiment of plat identification based on leaf veins image are conducted. Leaf vein is a taxon characteristic used to plant identification proposes, and one of its characteristics is that these structures are complex, and difficult to be represented as a signal or curves and this way to be analyzed in a classical pattern recognition approach. Here, we model the veins as a set of points and model as graphs. As features, we use the degree and joint degree measurements in a dynamic evolution. The results demonstrates that the technique has a good power of discrimination and can be used for plant identification, as well as other complex pattern recognition tasks.
Local Difference Measures between Complex Networks for Dynamical System Model Evaluation
Lange, Stefan; Donges, Jonathan F.; Volkholz, Jan; Kurths, Jürgen
2015-01-01
A faithful modeling of real-world dynamical systems necessitates model evaluation. A recent promising methodological approach to this problem has been based on complex networks, which in turn have proven useful for the characterization of dynamical systems. In this context, we introduce three local network difference measures and demonstrate their capabilities in the field of climate modeling, where these measures facilitate a spatially explicit model evaluation. Building on a recent study by Feldhoff et al. [1] we comparatively analyze statistical and dynamical regional climate simulations of the South American monsoon system. Three types of climate networks representing different aspects of rainfall dynamics are constructed from the modeled precipitation space-time series. Specifically, we define simple graphs based on positive as well as negative rank correlations between rainfall anomaly time series at different locations, and such based on spatial synchronizations of extreme rain events. An evaluation against respective networks built from daily satellite data provided by the Tropical Rainfall Measuring Mission 3B42 V7 reveals far greater differences in model performance between network types for a fixed but arbitrary climate model than between climate models for a fixed but arbitrary network type. We identify two sources of uncertainty in this respect. Firstly, climate variability limits fidelity, particularly in the case of the extreme event network; and secondly, larger geographical link lengths render link misplacements more likely, most notably in the case of the anticorrelation network; both contributions are quantified using suitable ensembles of surrogate networks. Our model evaluation approach is applicable to any multidimensional dynamical system and especially our simple graph difference measures are highly versatile as the graphs to be compared may be constructed in whatever way required. Generalizations to directed as well as edge- and node-weighted graphs are discussed. PMID:25856374
Local difference measures between complex networks for dynamical system model evaluation.
Lange, Stefan; Donges, Jonathan F; Volkholz, Jan; Kurths, Jürgen
2015-01-01
A faithful modeling of real-world dynamical systems necessitates model evaluation. A recent promising methodological approach to this problem has been based on complex networks, which in turn have proven useful for the characterization of dynamical systems. In this context, we introduce three local network difference measures and demonstrate their capabilities in the field of climate modeling, where these measures facilitate a spatially explicit model evaluation.Building on a recent study by Feldhoff et al. [8] we comparatively analyze statistical and dynamical regional climate simulations of the South American monsoon system [corrected]. types of climate networks representing different aspects of rainfall dynamics are constructed from the modeled precipitation space-time series. Specifically, we define simple graphs based on positive as well as negative rank correlations between rainfall anomaly time series at different locations, and such based on spatial synchronizations of extreme rain events. An evaluation against respective networks built from daily satellite data provided by the Tropical Rainfall Measuring Mission 3B42 V7 reveals far greater differences in model performance between network types for a fixed but arbitrary climate model than between climate models for a fixed but arbitrary network type. We identify two sources of uncertainty in this respect. Firstly, climate variability limits fidelity, particularly in the case of the extreme event network; and secondly, larger geographical link lengths render link misplacements more likely, most notably in the case of the anticorrelation network; both contributions are quantified using suitable ensembles of surrogate networks. Our model evaluation approach is applicable to any multidimensional dynamical system and especially our simple graph difference measures are highly versatile as the graphs to be compared may be constructed in whatever way required. Generalizations to directed as well as edge- and node-weighted graphs are discussed.
Inversion of 2-D DC resistivity data using rapid optimization and minimal complexity neural network
NASA Astrophysics Data System (ADS)
Singh, U. K.; Tiwari, R. K.; Singh, S. B.
2010-02-01
The backpropagation (BP) artificial neural network (ANN) technique of optimization based on steepest descent algorithm is known to be inept for its poor performance and does not ensure global convergence. Nonlinear and complex DC resistivity data require efficient ANN model and more intensive optimization procedures for better results and interpretations. Improvements in the computational ANN modeling process are described with the goals of enhancing the optimization process and reducing ANN model complexity. Well-established optimization methods, such as Radial basis algorithm (RBA) and Levenberg-Marquardt algorithms (LMA) have frequently been used to deal with complexity and nonlinearity in such complex geophysical records. We examined here the efficiency of trained LMA and RB networks by using 2-D synthetic resistivity data and then finally applied to the actual field vertical electrical resistivity sounding (VES) data collected from the Puga Valley, Jammu and Kashmir, India. The resulting ANN reconstruction resistivity results are compared with the result of existing inversion approaches, which are in good agreement. The depths and resistivity structures obtained by the ANN methods also correlate well with the known drilling results and geologic boundaries. The application of the above ANN algorithms proves to be robust and could be used for fast estimation of resistive structures for other complex earth model also.
The Applied Mathematics for Power Systems (AMPS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chertkov, Michael
2012-07-24
Increased deployment of new technologies, e.g., renewable generation and electric vehicles, is rapidly transforming electrical power networks by crossing previously distinct spatiotemporal scales and invalidating many traditional approaches for designing, analyzing, and operating power grids. This trend is expected to accelerate over the coming years, bringing the disruptive challenge of complexity, but also opportunities to deliver unprecedented efficiency and reliability. Our Applied Mathematics for Power Systems (AMPS) Center will discover, enable, and solve emerging mathematics challenges arising in power systems and, more generally, in complex engineered networks. We will develop foundational applied mathematics resulting in rigorous algorithms and simulation toolboxesmore » for modern and future engineered networks. The AMPS Center deconstruction/reconstruction approach 'deconstructs' complex networks into sub-problems within non-separable spatiotemporal scales, a missing step in 20th century modeling of engineered networks. These sub-problems are addressed within the appropriate AMPS foundational pillar - complex systems, control theory, and optimization theory - and merged or 'reconstructed' at their boundaries into more general mathematical descriptions of complex engineered networks where important new questions are formulated and attacked. These two steps, iterated multiple times, will bridge the growing chasm between the legacy power grid and its future as a complex engineered network.« less
A model for the emergence of cooperation, interdependence, and structure in evolving networks.
Jain, S; Krishna, S
2001-01-16
Evolution produces complex and structured networks of interacting components in chemical, biological, and social systems. We describe a simple mathematical model for the evolution of an idealized chemical system to study how a network of cooperative molecular species arises and evolves to become more complex and structured. The network is modeled by a directed weighted graph whose positive and negative links represent "catalytic" and "inhibitory" interactions among the molecular species, and which evolves as the least populated species (typically those that go extinct) are replaced by new ones. A small autocatalytic set, appearing by chance, provides the seed for the spontaneous growth of connectivity and cooperation in the graph. A highly structured chemical organization arises inevitably as the autocatalytic set enlarges and percolates through the network in a short analytically determined timescale. This self organization does not require the presence of self-replicating species. The network also exhibits catastrophes over long timescales triggered by the chance elimination of "keystone" species, followed by recoveries.
A model for the emergence of cooperation, interdependence, and structure in evolving networks
NASA Astrophysics Data System (ADS)
Jain, Sanjay; Krishna, Sandeep
2001-01-01
Evolution produces complex and structured networks of interacting components in chemical, biological, and social systems. We describe a simple mathematical model for the evolution of an idealized chemical system to study how a network of cooperative molecular species arises and evolves to become more complex and structured. The network is modeled by a directed weighted graph whose positive and negative links represent "catalytic" and "inhibitory" interactions among the molecular species, and which evolves as the least populated species (typically those that go extinct) are replaced by new ones. A small autocatalytic set, appearing by chance, provides the seed for the spontaneous growth of connectivity and cooperation in the graph. A highly structured chemical organization arises inevitably as the autocatalytic set enlarges and percolates through the network in a short analytically determined timescale. This self organization does not require the presence of self-replicating species. The network also exhibits catastrophes over long timescales triggered by the chance elimination of "keystone" species, followed by recoveries.
Digital Signal Processing and Control for the Study of Gene Networks
NASA Astrophysics Data System (ADS)
Shin, Yong-Jun
2016-04-01
Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks.
Digital Signal Processing and Control for the Study of Gene Networks.
Shin, Yong-Jun
2016-04-22
Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks.
Digital Signal Processing and Control for the Study of Gene Networks
Shin, Yong-Jun
2016-01-01
Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks. PMID:27102828
Self-organization of network dynamics into local quantized states
Nicolaides, Christos; Juanes, Ruben; Cueto-Felgueroso, Luis
2016-02-17
Self-organization and pattern formation in network-organized systems emerges from the collective activation and interaction of many interconnected units. A striking feature of these non-equilibrium structures is that they are often localized and robust: only a small subset of the nodes, or cell assembly, is activated. Understanding the role of cell assemblies as basic functional units in neural networks and socio-technical systems emerges as a fundamental challenge in network theory. A key open question is how these elementary building blocks emerge, and how they operate, linking structure and function in complex networks. Here we show that a network analogue of themore » Swift-Hohenberg continuum model—a minimal-ingredients model of nodal activation and interaction within a complex network—is able to produce a complex suite of localized patterns. Thus, the spontaneous formation of robust operational cell assemblies in complex networks can be explained as the result of self-organization, even in the absence of synaptic reinforcements.« less
Self-organization of network dynamics into local quantized states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicolaides, Christos; Juanes, Ruben; Cueto-Felgueroso, Luis
Self-organization and pattern formation in network-organized systems emerges from the collective activation and interaction of many interconnected units. A striking feature of these non-equilibrium structures is that they are often localized and robust: only a small subset of the nodes, or cell assembly, is activated. Understanding the role of cell assemblies as basic functional units in neural networks and socio-technical systems emerges as a fundamental challenge in network theory. A key open question is how these elementary building blocks emerge, and how they operate, linking structure and function in complex networks. Here we show that a network analogue of themore » Swift-Hohenberg continuum model—a minimal-ingredients model of nodal activation and interaction within a complex network—is able to produce a complex suite of localized patterns. Thus, the spontaneous formation of robust operational cell assemblies in complex networks can be explained as the result of self-organization, even in the absence of synaptic reinforcements.« less
Network geometry with flavor: From complexity to quantum geometry
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra; Rahmede, Christoph
2016-03-01
Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d -dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s =-1 ,0 ,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d . In d =1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d >1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t . Interestingly the NGF remains fully classical but its statistical properties reveal the relation to its quantum mechanical description. In fact the δ -dimensional faces of the NGF have generalized degrees that follow either the Fermi-Dirac, Boltzmann, or Bose-Einstein statistics depending on the flavor s and the dimensions d and δ .
Network geometry with flavor: From complexity to quantum geometry.
Bianconi, Ginestra; Rahmede, Christoph
2016-03-01
Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d-dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s=-1,0,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d. In d=1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d>1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t. Interestingly the NGF remains fully classical but its statistical properties reveal the relation to its quantum mechanical description. In fact the δ-dimensional faces of the NGF have generalized degrees that follow either the Fermi-Dirac, Boltzmann, or Bose-Einstein statistics depending on the flavor s and the dimensions d and δ.
Higher-order clustering in networks
NASA Astrophysics Data System (ADS)
Yin, Hao; Benson, Austin R.; Leskovec, Jure
2018-05-01
A fundamental property of complex networks is the tendency for edges to cluster. The extent of the clustering is typically quantified by the clustering coefficient, which is the probability that a length-2 path is closed, i.e., induces a triangle in the network. However, higher-order cliques beyond triangles are crucial to understanding complex networks, and the clustering behavior with respect to such higher-order network structures is not well understood. Here we introduce higher-order clustering coefficients that measure the closure probability of higher-order network cliques and provide a more comprehensive view of how the edges of complex networks cluster. Our higher-order clustering coefficients are a natural generalization of the traditional clustering coefficient. We derive several properties about higher-order clustering coefficients and analyze them under common random graph models. Finally, we use higher-order clustering coefficients to gain new insights into the structure of real-world networks from several domains.
A genetic algorithm for solving supply chain network design model
NASA Astrophysics Data System (ADS)
Firoozi, Z.; Ismail, N.; Ariafar, S. H.; Tang, S. H.; Ariffin, M. K. M. A.
2013-09-01
Network design is by nature costly and optimization models play significant role in reducing the unnecessary cost components of a distribution network. This study proposes a genetic algorithm to solve a distribution network design model. The structure of the chromosome in the proposed algorithm is defined in a novel way that in addition to producing feasible solutions, it also reduces the computational complexity of the algorithm. Computational results are presented to show the algorithm performance.
Theory of rumour spreading in complex social networks
NASA Astrophysics Data System (ADS)
Nekovee, M.; Moreno, Y.; Bianconi, G.; Marsili, M.
2007-01-01
We introduce a general stochastic model for the spread of rumours, and derive mean-field equations that describe the dynamics of the model on complex social networks (in particular, those mediated by the Internet). We use analytical and numerical solutions of these equations to examine the threshold behaviour and dynamics of the model on several models of such networks: random graphs, uncorrelated scale-free networks and scale-free networks with assortative degree correlations. We show that in both homogeneous networks and random graphs the model exhibits a critical threshold in the rumour spreading rate below which a rumour cannot propagate in the system. In the case of scale-free networks, on the other hand, this threshold becomes vanishingly small in the limit of infinite system size. We find that the initial rate at which a rumour spreads is much higher in scale-free networks than in random graphs, and that the rate at which the spreading proceeds on scale-free networks is further increased when assortative degree correlations are introduced. The impact of degree correlations on the final fraction of nodes that ever hears a rumour, however, depends on the interplay between network topology and the rumour spreading rate. Our results show that scale-free social networks are prone to the spreading of rumours, just as they are to the spreading of infections. They are relevant to the spreading dynamics of chain emails, viral advertising and large-scale information dissemination algorithms on the Internet.
Mental Models of Invisible Logical Networks
NASA Technical Reports Server (NTRS)
Sanderson, P.
1984-01-01
Subjects were required to discover the structure of a logical network whose links were invisible. Network structure had to be inferred from the behavior of the components after a failure. It was hypothesized that since such failure diagnosis tasks often draw on spatial processes, a good deal of spatial complexity in the network should affect network discovery. Results show that the ability to discover the linkages in the network is directly related to the spatial complexity of the pathway described by the linkages. This effect was generally independent of the amount of evidence available to subjects about the existence of the link. These results raise the question of whether inferences about spatially complex pathways were simply not made, or whether they were made but not retained because of a high load on memory resources.
A generalized approach to complex networks
NASA Astrophysics Data System (ADS)
Costa, L. Da F.; da Rocha, L. E. C.
2006-03-01
This work describes how the formalization of complex network concepts in terms of discrete mathematics, especially mathematical morphology, allows a series of generalizations and important results ranging from new measurements of the network topology to new network growth models. First, the concepts of node degree and clustering coefficient are extended in order to characterize not only specific nodes, but any generic subnetwork. Second, the consideration of distance transform and rings are used to further extend those concepts in order to obtain a signature, instead of a single scalar measurement, ranging from the single node to whole graph scales. The enhanced discriminative potential of such extended measurements is illustrated with respect to the identification of correspondence between nodes in two complex networks, namely a protein-protein interaction network and a perturbed version of it.
Characterizing time series: when Granger causality triggers complex networks
NASA Astrophysics Data System (ADS)
Ge, Tian; Cui, Yindong; Lin, Wei; Kurths, Jürgen; Liu, Chong
2012-08-01
In this paper, we propose a new approach to characterize time series with noise perturbations in both the time and frequency domains by combining Granger causality and complex networks. We construct directed and weighted complex networks from time series and use representative network measures to describe their physical and topological properties. Through analyzing the typical dynamical behaviors of some physical models and the MIT-BIHMassachusetts Institute of Technology-Beth Israel Hospital. human electrocardiogram data sets, we show that the proposed approach is able to capture and characterize various dynamics and has much potential for analyzing real-world time series of rather short length.
Linear control theory for gene network modeling.
Shin, Yong-Jun; Bleris, Leonidas
2010-09-16
Systems biology is an interdisciplinary field that aims at understanding complex interactions in cells. Here we demonstrate that linear control theory can provide valuable insight and practical tools for the characterization of complex biological networks. We provide the foundation for such analyses through the study of several case studies including cascade and parallel forms, feedback and feedforward loops. We reproduce experimental results and provide rational analysis of the observed behavior. We demonstrate that methods such as the transfer function (frequency domain) and linear state-space (time domain) can be used to predict reliably the properties and transient behavior of complex network topologies and point to specific design strategies for synthetic networks.
NASA Astrophysics Data System (ADS)
Franke, R.
2016-11-01
In many networks discovered in biology, medicine, neuroscience and other disciplines special properties like a certain degree distribution and hierarchical cluster structure (also called communities) can be observed as general organizing principles. Detecting the cluster structure of an unknown network promises to identify functional subdivisions, hierarchy and interactions on a mesoscale. It is not trivial choosing an appropriate detection algorithm because there are multiple network, cluster and algorithmic properties to be considered. Edges can be weighted and/or directed, clusters overlap or build a hierarchy in several ways. Algorithms differ not only in runtime, memory requirements but also in allowed network and cluster properties. They are based on a specific definition of what a cluster is, too. On the one hand, a comprehensive network creation model is needed to build a large variety of benchmark networks with different reasonable structures to compare algorithms. On the other hand, if a cluster structure is already known, it is desirable to separate effects of this structure from other network properties. This can be done with null model networks that mimic an observed cluster structure to improve statistics on other network features. A third important application is the general study of properties in networks with different cluster structures, possibly evolving over time. Currently there are good benchmark and creation models available. But what is left is a precise sandbox model to build hierarchical, overlapping and directed clusters for undirected or directed, binary or weighted complex random networks on basis of a sophisticated blueprint. This gap shall be closed by the model CHIMERA (Cluster Hierarchy Interconnection Model for Evaluation, Research and Analysis) which will be introduced and described here for the first time.
Antisynchronization of Two Complex Dynamical Networks
NASA Astrophysics Data System (ADS)
Banerjee, Ranjib; Grosu, Ioan; Dana, Syamal K.
A nonlinear type open-plus-closed-loop (OPCL) coupling is investi-gated for antisynchronization of two complex networks under unidirectional and bidirectional interactions where each node of the networks is considered as a continuous dynamical system. We present analytical results for antisynchroni-zation in identical networks. A numerical example is given for unidirectional coupling with each node represented by a spiking-bursting type Hindmarsh-Rose neuron model. Antisynchronization for mutual interaction is allowed only to inversion symmetric dynamical systems as chosen nodes.
NASA Technical Reports Server (NTRS)
Rai, Man Mohan (Inventor); Madavan, Nateri K. (Inventor)
2007-01-01
A method and system for data modeling that incorporates the advantages of both traditional response surface methodology (RSM) and neural networks is disclosed. The invention partitions the parameters into a first set of s simple parameters, where observable data are expressible as low order polynomials, and c complex parameters that reflect more complicated variation of the observed data. Variation of the data with the simple parameters is modeled using polynomials; and variation of the data with the complex parameters at each vertex is analyzed using a neural network. Variations with the simple parameters and with the complex parameters are expressed using a first sequence of shape functions and a second sequence of neural network functions. The first and second sequences are multiplicatively combined to form a composite response surface, dependent upon the parameter values, that can be used to identify an accurate mode
Measure of robustness for complex networks
NASA Astrophysics Data System (ADS)
Youssef, Mina Nabil
Critical infrastructures are repeatedly attacked by external triggers causing tremendous amount of damages. Any infrastructure can be studied using the powerful theory of complex networks. A complex network is composed of extremely large number of different elements that exchange commodities providing significant services. The main functions of complex networks can be damaged by different types of attacks and failures that degrade the network performance. These attacks and failures are considered as disturbing dynamics, such as the spread of viruses in computer networks, the spread of epidemics in social networks, and the cascading failures in power grids. Depending on the network structure and the attack strength, every network differently suffers damages and performance degradation. Hence, quantifying the robustness of complex networks becomes an essential task. In this dissertation, new metrics are introduced to measure the robustness of technological and social networks with respect to the spread of epidemics, and the robustness of power grids with respect to cascading failures. First, we introduce a new metric called the Viral Conductance (VCSIS ) to assess the robustness of networks with respect to the spread of epidemics that are modeled through the susceptible/infected/susceptible (SIS) epidemic approach. In contrast to assessing the robustness of networks based on a classical metric, the epidemic threshold, the new metric integrates the fraction of infected nodes at steady state for all possible effective infection strengths. Through examples, VCSIS provides more insights about the robustness of networks than the epidemic threshold. In addition, both the paradoxical robustness of Barabasi-Albert preferential attachment networks and the effect of the topology on the steady state infection are studied, to show the importance of quantifying the robustness of networks. Second, a new metric VCSIR is introduced to assess the robustness of networks with respect to the spread of susceptible/infected/recovered (SIR) epidemics. To compute VCSIR, we propose a novel individual-based approach to model the spread of SIR epidemics in networks, which captures the infection size for a given effective infection rate. Thus, VCSIR quantitatively integrates the infection strength with the corresponding infection size. To optimize the VCSIR metric, a new mitigation strategy is proposed, based on a temporary reduction of contacts in social networks. The social contact network is modeled as a weighted graph that describes the frequency of contacts among the individuals. Thus, we consider the spread of an epidemic as a dynamical system, and the total number of infection cases as the state of the system, while the weight reduction in the social network is the controller variable leading to slow/reduce the spread of epidemics. Using optimal control theory, the obtained solution represents an optimal adaptive weighted network defined over a finite time interval. Moreover, given the high complexity of the optimization problem, we propose two heuristics to find the near optimal solutions by reducing the contacts among the individuals in a decentralized way. Finally, the cascading failures that can take place in power grids and have recently caused several blackouts are studied. We propose a new metric to assess the robustness of the power grid with respect to the cascading failures. The power grid topology is modeled as a network, which consists of nodes and links representing power substations and transmission lines, respectively. We also propose an optimal islanding strategy to protect the power grid when a cascading failure event takes place in the grid. The robustness metrics are numerically evaluated using real and synthetic networks to quantify their robustness with respect to disturbing dynamics. We show that the proposed metrics outperform the classical metrics in quantifying the robustness of networks and the efficiency of the mitigation strategies. In summary, our work advances the network science field in assessing the robustness of complex networks with respect to various disturbing dynamics.
Complex network view of evolving manifolds
NASA Astrophysics Data System (ADS)
da Silva, Diamantino C.; Bianconi, Ginestra; da Costa, Rui A.; Dorogovtsev, Sergey N.; Mendes, José F. F.
2018-03-01
We study complex networks formed by triangulations and higher-dimensional simplicial complexes representing closed evolving manifolds. In particular, for triangulations, the set of possible transformations of these networks is restricted by the condition that at each step, all the faces must be triangles. Stochastic application of these operations leads to random networks with different architectures. We perform extensive numerical simulations and explore the geometries of growing and equilibrium complex networks generated by these transformations and their local structural properties. This characterization includes the Hausdorff and spectral dimensions of the resulting networks, their degree distributions, and various structural correlations. Our results reveal a rich zoo of architectures and geometries of these networks, some of which appear to be small worlds while others are finite dimensional with Hausdorff dimension equal or higher than the original dimensionality of their simplices. The range of spectral dimensions of the evolving triangulations turns out to be from about 1.4 to infinity. Our models include simplicial complexes representing manifolds with evolving topologies, for example, an h -holed torus with a progressively growing number of holes. This evolving graph demonstrates features of a small-world network and has a particularly heavy-tailed degree distribution.
A Complex-Valued Firing-Rate Model That Approximates the Dynamics of Spiking Networks
Schaffer, Evan S.; Ostojic, Srdjan; Abbott, L. F.
2013-01-01
Firing-rate models provide an attractive approach for studying large neural networks because they can be simulated rapidly and are amenable to mathematical analysis. Traditional firing-rate models assume a simple form in which the dynamics are governed by a single time constant. These models fail to replicate certain dynamic features of populations of spiking neurons, especially those involving synchronization. We present a complex-valued firing-rate model derived from an eigenfunction expansion of the Fokker-Planck equation and apply it to the linear, quadratic and exponential integrate-and-fire models. Despite being almost as simple as a traditional firing-rate description, this model can reproduce firing-rate dynamics due to partial synchronization of the action potentials in a spiking model, and it successfully predicts the transition to spike synchronization in networks of coupled excitatory and inhibitory neurons. PMID:24204236
Environmental Uncertainty and Communication Network Complexity: A Cross-System, Cross-Cultural Test.
ERIC Educational Resources Information Center
Danowski, James
An infographic model is proposed to account for the operation of systems within their information environments. Infographics is a communication paradigm used to indicate the clustering of information processing variables in communication systems. Four propositions concerning environmental uncertainty and internal communication network complexity,…
On the sufficiency of pairwise interactions in maximum entropy models of networks
NASA Astrophysics Data System (ADS)
Nemenman, Ilya; Merchan, Lina
Biological information processing networks consist of many components, which are coupled by an even larger number of complex multivariate interactions. However, analyses of data sets from fields as diverse as neuroscience, molecular biology, and behavior have reported that observed statistics of states of some biological networks can be approximated well by maximum entropy models with only pairwise interactions among the components. Based on simulations of random Ising spin networks with p-spin (p > 2) interactions, here we argue that this reduction in complexity can be thought of as a natural property of some densely interacting networks in certain regimes, and not necessarily as a special property of living systems. This work was supported in part by James S. McDonnell Foundation Grant No. 220020321.
Petrovskaya, Olga V; Petrovskiy, Evgeny D; Lavrik, Inna N; Ivanisenko, Vladimir A
2017-04-01
Gene network modeling is one of the widely used approaches in systems biology. It allows for the study of complex genetic systems function, including so-called mosaic gene networks, which consist of functionally interacting subnetworks. We conducted a study of a mosaic gene networks modeling method based on integration of models of gene subnetworks by linear control functionals. An automatic modeling of 10,000 synthetic mosaic gene regulatory networks was carried out using computer experiments on gene knockdowns/knockouts. Structural analysis of graphs of generated mosaic gene regulatory networks has revealed that the most important factor for building accurate integrated mathematical models, among those analyzed in the study, is data on expression of genes corresponding to the vertices with high properties of centrality.
Complex Networks - A Key to Understanding Brain Function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sporns, Olaf
2008-01-23
The brain is a complex network of neurons, engaging in spontaneous and evoked activity that is thought to be the main substrate of mental life. How this complex system works together to process information and generate coherent cognitive states, even consciousness, is not yet well understood. In my talk I will review recent studies that have revealed characteristic structural and functional attributes of brain networks, and discuss efforts to build computational models of the brain that are informed by our growing knowledge of brain anatomy and physiology.
Complex Networks - A Key to Understanding Brain Function
Sporns, Olaf
2017-12-22
The brain is a complex network of neurons, engaging in spontaneous and evoked activity that is thought to be the main substrate of mental life. How this complex system works together to process information and generate coherent cognitive states, even consciousness, is not yet well understood. In my talk I will review recent studies that have revealed characteristic structural and functional attributes of brain networks, and discuss efforts to build computational models of the brain that are informed by our growing knowledge of brain anatomy and physiology.
Lim, Hooi Been; Baumann, Dirk; Li, Er-Ping
2011-03-01
Wireless body area network (WBAN) is a new enabling system with promising applications in areas such as remote health monitoring and interpersonal communication. Reliable and optimum design of a WBAN system relies on a good understanding and in-depth studies of the wave propagation around a human body. However, the human body is a very complex structure and is computationally demanding to model. This paper aims to investigate the effects of the numerical model's structure complexity and feature details on the simulation results. Depending on the application, a simplified numerical model that meets desired simulation accuracy can be employed for efficient simulations. Measurements of ultra wideband (UWB) signal propagation along a human arm are performed and compared to the simulation results obtained with numerical arm models of different complexity levels. The influence of the arm shape and size, as well as tissue composition and complexity is investigated.
Some Approaches to Modeling Complex Information Systems.
ERIC Educational Resources Information Center
Rao, V. Venkata; Zunde, Pranas
1982-01-01
Brief discussion of state-of-the-art of modeling complex information systems distinguishes between macrolevel and microlevel modeling of such systems. Network layout and hierarchical system models, simulation, information acquisition and dissemination, databases and information storage, and operating systems are described and assessed. Thirty-four…
Network representations of immune system complexity
Subramanian, Naeha; Torabi-Parizi, Parizad; Gottschalk, Rachel A.; Germain, Ronald N.; Dutta, Bhaskar
2015-01-01
The mammalian immune system is a dynamic multi-scale system composed of a hierarchically organized set of molecular, cellular and organismal networks that act in concert to promote effective host defense. These networks range from those involving gene regulatory and protein-protein interactions underlying intracellular signaling pathways and single cell responses to increasingly complex networks of in vivo cellular interaction, positioning and migration that determine the overall immune response of an organism. Immunity is thus not the product of simple signaling events but rather non-linear behaviors arising from dynamic, feedback-regulated interactions among many components. One of the major goals of systems immunology is to quantitatively measure these complex multi-scale spatial and temporal interactions, permitting development of computational models that can be used to predict responses to perturbation. Recent technological advances permit collection of comprehensive datasets at multiple molecular and cellular levels while advances in network biology support representation of the relationships of components at each level as physical or functional interaction networks. The latter facilitate effective visualization of patterns and recognition of emergent properties arising from the many interactions of genes, molecules, and cells of the immune system. We illustrate the power of integrating ‘omics’ and network modeling approaches for unbiased reconstruction of signaling and transcriptional networks with a focus on applications involving the innate immune system. We further discuss future possibilities for reconstruction of increasingly complex cellular and organism-level networks and development of sophisticated computational tools for prediction of emergent immune behavior arising from the concerted action of these networks. PMID:25625853
Analysis and Design of Complex Network Environments
2012-03-01
and J. Lowe, “The myths and facts behind cyber security risks for industrial control systems ,” in the Proceedings of the VDE Kongress, VDE Congress...questions about 1) how to model them, 2) the design of experiments necessary to discover their structure (and thus adapt system inputs to optimize the...theoretical work that clarifies fundamental limitations of complex networks with network engineering and systems biology to implement specific designs and
Makowiec, Danuta; Struzik, Zbigniew; Graff, Beata; Wdowczyk-Szulc, Joanna; Zarczynska-Buchnowiecka, Marta; Gruchala, Marcin; Rynkiewicz, Andrzej
2013-01-01
Network models have been used to capture, represent and analyse characteristics of living organisms and general properties of complex systems. The use of network representations in the characterization of time series complexity is a relatively new but quickly developing branch of time series analysis. In particular, beat-to-beat heart rate variability can be mapped out in a network of RR-increments, which is a directed and weighted graph with vertices representing RR-increments and the edges of which correspond to subsequent increments. We evaluate entropy measures selected from these network representations in records of healthy subjects and heart transplant patients, and provide an interpretation of the results.
Equity venture capital platform model based on complex network
NASA Astrophysics Data System (ADS)
Guo, Dongwei; Zhang, Lanshu; Liu, Miao
2018-05-01
This paper uses the small-world network and the random-network to simulate the relationship among the investors, construct the network model of the equity venture capital platform to explore the impact of the fraud rate and the bankruptcy rate on the robustness of the network model while observing the impact of the average path length and the average agglomeration coefficient of the investor relationship network on the income of the network model. The study found that the fraud rate and bankruptcy rate exceeded a certain threshold will lead to network collapse; The bankruptcy rate has a great influence on the income of the platform; The risk premium exists, and the average return is better under a certain range of bankruptcy risk; The structure of the investor relationship network has no effect on the income of the investment model.
Spreading dynamics on complex networks: a general stochastic approach.
Noël, Pierre-André; Allard, Antoine; Hébert-Dufresne, Laurent; Marceau, Vincent; Dubé, Louis J
2014-12-01
Dynamics on networks is considered from the perspective of Markov stochastic processes. We partially describe the state of the system through network motifs and infer any missing data using the available information. This versatile approach is especially well adapted for modelling spreading processes and/or population dynamics. In particular, the generality of our framework and the fact that its assumptions are explicitly stated suggests that it could be used as a common ground for comparing existing epidemics models too complex for direct comparison, such as agent-based computer simulations. We provide many examples for the special cases of susceptible-infectious-susceptible and susceptible-infectious-removed dynamics (e.g., epidemics propagation) and we observe multiple situations where accurate results may be obtained at low computational cost. Our perspective reveals a subtle balance between the complex requirements of a realistic model and its basic assumptions.
Empirical modeling for intelligent, real-time manufacture control
NASA Technical Reports Server (NTRS)
Xu, Xiaoshu
1994-01-01
Artificial neural systems (ANS), also known as neural networks, are an attempt to develop computer systems that emulate the neural reasoning behavior of biological neural systems (e.g. the human brain). As such, they are loosely based on biological neural networks. The ANS consists of a series of nodes (neurons) and weighted connections (axons) that, when presented with a specific input pattern, can associate specific output patterns. It is essentially a highly complex, nonlinear, mathematical relationship or transform. These constructs have two significant properties that have proven useful to the authors in signal processing and process modeling: noise tolerance and complex pattern recognition. Specifically, the authors have developed a new network learning algorithm that has resulted in the successful application of ANS's to high speed signal processing and to developing models of highly complex processes. Two of the applications, the Weld Bead Geometry Control System and the Welding Penetration Monitoring System, are discussed in the body of this paper.
Whittington, James C. R.; Bogacz, Rafal
2017-01-01
To efficiently learn from feedback, cortical networks need to update synaptic weights on multiple levels of cortical hierarchy. An effective and well-known algorithm for computing such changes in synaptic weights is the error backpropagation algorithm. However, in this algorithm, the change in synaptic weights is a complex function of weights and activities of neurons not directly connected with the synapse being modified, whereas the changes in biological synapses are determined only by the activity of presynaptic and postsynaptic neurons. Several models have been proposed that approximate the backpropagation algorithm with local synaptic plasticity, but these models require complex external control over the network or relatively complex plasticity rules. Here we show that a network developed in the predictive coding framework can efficiently perform supervised learning fully autonomously, employing only simple local Hebbian plasticity. Furthermore, for certain parameters, the weight change in the predictive coding model converges to that of the backpropagation algorithm. This suggests that it is possible for cortical networks with simple Hebbian synaptic plasticity to implement efficient learning algorithms in which synapses in areas on multiple levels of hierarchy are modified to minimize the error on the output. PMID:28333583
Whittington, James C R; Bogacz, Rafal
2017-05-01
To efficiently learn from feedback, cortical networks need to update synaptic weights on multiple levels of cortical hierarchy. An effective and well-known algorithm for computing such changes in synaptic weights is the error backpropagation algorithm. However, in this algorithm, the change in synaptic weights is a complex function of weights and activities of neurons not directly connected with the synapse being modified, whereas the changes in biological synapses are determined only by the activity of presynaptic and postsynaptic neurons. Several models have been proposed that approximate the backpropagation algorithm with local synaptic plasticity, but these models require complex external control over the network or relatively complex plasticity rules. Here we show that a network developed in the predictive coding framework can efficiently perform supervised learning fully autonomously, employing only simple local Hebbian plasticity. Furthermore, for certain parameters, the weight change in the predictive coding model converges to that of the backpropagation algorithm. This suggests that it is possible for cortical networks with simple Hebbian synaptic plasticity to implement efficient learning algorithms in which synapses in areas on multiple levels of hierarchy are modified to minimize the error on the output.
Complex Network Simulation of Forest Network Spatial Pattern in Pearl River Delta
NASA Astrophysics Data System (ADS)
Zeng, Y.
2017-09-01
Forest network-construction uses for the method and model with the scale-free features of complex network theory based on random graph theory and dynamic network nodes which show a power-law distribution phenomenon. The model is suitable for ecological disturbance by larger ecological landscape Pearl River Delta consistent recovery. Remote sensing and GIS spatial data are available through the latest forest patches. A standard scale-free network node distribution model calculates the area of forest network's power-law distribution parameter value size; The recent existing forest polygons which are defined as nodes can compute the network nodes decaying index value of the network's degree distribution. The parameters of forest network are picked up then make a spatial transition to GIS real world models. Hence the connection is automatically generated by minimizing the ecological corridor by the least cost rule between the near nodes. Based on scale-free network node distribution requirements, select the number compared with less, a huge point of aggregation as a future forest planning network's main node, and put them with the existing node sequence comparison. By this theory, the forest ecological projects in the past avoid being fragmented, scattered disorderly phenomena. The previous regular forest networks can be reduced the required forest planting costs by this method. For ecological restoration of tropical and subtropical in south China areas, it will provide an effective method for the forest entering city project guidance and demonstration with other ecological networks (water, climate network, etc.) for networking a standard and base datum.
CytoCluster: A Cytoscape Plugin for Cluster Analysis and Visualization of Biological Networks.
Li, Min; Li, Dongyan; Tang, Yu; Wu, Fangxiang; Wang, Jianxin
2017-08-31
Nowadays, cluster analysis of biological networks has become one of the most important approaches to identifying functional modules as well as predicting protein complexes and network biomarkers. Furthermore, the visualization of clustering results is crucial to display the structure of biological networks. Here we present CytoCluster, a cytoscape plugin integrating six clustering algorithms, HC-PIN (Hierarchical Clustering algorithm in Protein Interaction Networks), OH-PIN (identifying Overlapping and Hierarchical modules in Protein Interaction Networks), IPCA (Identifying Protein Complex Algorithm), ClusterONE (Clustering with Overlapping Neighborhood Expansion), DCU (Detecting Complexes based on Uncertain graph model), IPC-MCE (Identifying Protein Complexes based on Maximal Complex Extension), and BinGO (the Biological networks Gene Ontology) function. Users can select different clustering algorithms according to their requirements. The main function of these six clustering algorithms is to detect protein complexes or functional modules. In addition, BinGO is used to determine which Gene Ontology (GO) categories are statistically overrepresented in a set of genes or a subgraph of a biological network. CytoCluster can be easily expanded, so that more clustering algorithms and functions can be added to this plugin. Since it was created in July 2013, CytoCluster has been downloaded more than 9700 times in the Cytoscape App store and has already been applied to the analysis of different biological networks. CytoCluster is available from http://apps.cytoscape.org/apps/cytocluster.
CytoCluster: A Cytoscape Plugin for Cluster Analysis and Visualization of Biological Networks
Li, Min; Li, Dongyan; Tang, Yu; Wang, Jianxin
2017-01-01
Nowadays, cluster analysis of biological networks has become one of the most important approaches to identifying functional modules as well as predicting protein complexes and network biomarkers. Furthermore, the visualization of clustering results is crucial to display the structure of biological networks. Here we present CytoCluster, a cytoscape plugin integrating six clustering algorithms, HC-PIN (Hierarchical Clustering algorithm in Protein Interaction Networks), OH-PIN (identifying Overlapping and Hierarchical modules in Protein Interaction Networks), IPCA (Identifying Protein Complex Algorithm), ClusterONE (Clustering with Overlapping Neighborhood Expansion), DCU (Detecting Complexes based on Uncertain graph model), IPC-MCE (Identifying Protein Complexes based on Maximal Complex Extension), and BinGO (the Biological networks Gene Ontology) function. Users can select different clustering algorithms according to their requirements. The main function of these six clustering algorithms is to detect protein complexes or functional modules. In addition, BinGO is used to determine which Gene Ontology (GO) categories are statistically overrepresented in a set of genes or a subgraph of a biological network. CytoCluster can be easily expanded, so that more clustering algorithms and functions can be added to this plugin. Since it was created in July 2013, CytoCluster has been downloaded more than 9700 times in the Cytoscape App store and has already been applied to the analysis of different biological networks. CytoCluster is available from http://apps.cytoscape.org/apps/cytocluster. PMID:28858211
The Dynamics of Coalition Formation on Complex Networks
NASA Astrophysics Data System (ADS)
Auer, S.; Heitzig, J.; Kornek, U.; Schöll, E.; Kurths, J.
2015-08-01
Complex networks describe the structure of many socio-economic systems. However, in studies of decision-making processes the evolution of the underlying social relations are disregarded. In this report, we aim to understand the formation of self-organizing domains of cooperation (“coalitions”) on an acquaintance network. We include both the network’s influence on the formation of coalitions and vice versa how the network adapts to the current coalition structure, thus forming a social feedback loop. We increase complexity from simple opinion adaptation processes studied in earlier research to more complex decision-making determined by costs and benefits, and from bilateral to multilateral cooperation. We show how phase transitions emerge from such coevolutionary dynamics, which can be interpreted as processes of great transformations. If the network adaptation rate is high, the social dynamics prevent the formation of a grand coalition and therefore full cooperation. We find some empirical support for our main results: Our model develops a bimodal coalition size distribution over time similar to those found in social structures. Our detection and distinguishing of phase transitions may be exemplary for other models of socio-economic systems with low agent numbers and therefore strong finite-size effects.
The geometric nature of weights in real complex networks
NASA Astrophysics Data System (ADS)
Allard, Antoine; Serrano, M. Ángeles; García-Pérez, Guillermo; Boguñá, Marián
2017-01-01
The topology of many real complex networks has been conjectured to be embedded in hidden metric spaces, where distances between nodes encode their likelihood of being connected. Besides of providing a natural geometrical interpretation of their complex topologies, this hypothesis yields the recipe for sustainable Internet's routing protocols, sheds light on the hierarchical organization of biochemical pathways in cells, and allows for a rich characterization of the evolution of international trade. Here we present empirical evidence that this geometric interpretation also applies to the weighted organization of real complex networks. We introduce a very general and versatile model and use it to quantify the level of coupling between their topology, their weights and an underlying metric space. Our model accurately reproduces both their topology and their weights, and our results suggest that the formation of connections and the assignment of their magnitude are ruled by different processes.
Evaluation of Supply Chain Efficiency Based on a Novel Network of Data Envelopment Analysis Model
NASA Astrophysics Data System (ADS)
Fu, Li Fang; Meng, Jun; Liu, Ying
2015-12-01
Performance evaluation of supply chain (SC) is a vital topic in SC management and inherently complex problems with multilayered internal linkages and activities of multiple entities. Recently, various Network Data Envelopment Analysis (NDEA) models, which opened the “black box” of conventional DEA, were developed and applied to evaluate the complex SC with a multilayer network structure. However, most of them are input or output oriented models which cannot take into consideration the nonproportional changes of inputs and outputs simultaneously. This paper extends the Slack-based measure (SBM) model to a nonradial, nonoriented network model named as U-NSBM with the presence of undesirable outputs in the SC. A numerical example is presented to demonstrate the applicability of the model in quantifying the efficiency and ranking the supply chain performance. By comparing with the CCR and U-SBM models, it is shown that the proposed model has higher distinguishing ability and gives feasible solution in the presence of undesirable outputs. Meanwhile, it provides more insights for decision makers about the source of inefficiency as well as the guidance to improve the SC performance.
Learning Analytics for Networked Learning Models
ERIC Educational Resources Information Center
Joksimovic, Srecko; Hatala, Marek; Gaševic, Dragan
2014-01-01
Teaching and learning in networked settings has attracted significant attention recently. The central topic of networked learning research is human-human and human-information interactions occurring within a networked learning environment. The nature of these interactions is highly complex and usually requires a multi-dimensional approach to…
Weighted Networks at the Polish Market
NASA Astrophysics Data System (ADS)
Chmiel, A. M.; Sienkiewicz, J.; Suchecki, K.; Hołyst, J. A.
During the last few years various models of networks [1,2] have become a powerful tool for analysis of complex systems in such distant fields as Internet [3], biology [4], social groups [5], ecology [6] and public transport [7]. Modeling behavior of economical agents is a challenging issue that has also been studied from a network point of view. The examples of such studies are models of financial networks [8], supply chains [9, 10], production networks [11], investment networks [12] or collective bank bankrupcies [13, 14]. Relations between different companies have been already analyzed using several methods: as networks of shareholders [15], networks of correlations between stock prices [16] or networks of board directors [17]. In several cases scaling laws for network characteristics have been observed.
Weighted complex network analysis of the Beijing subway system: Train and passenger flows
NASA Astrophysics Data System (ADS)
Feng, Jia; Li, Xiamiao; Mao, Baohua; Xu, Qi; Bai, Yun
2017-05-01
In recent years, complex network theory has become an important approach to the study of the structure and dynamics of traffic networks. However, because traffic data is difficult to collect, previous studies have usually focused on the physical topology of subway systems, whereas few studies have considered the characteristics of traffic flows through the network. Therefore, in this paper, we present a multi-layer model to analyze traffic flow patterns in subway networks, based on trip data and an operation timetable obtained from the Beijing Subway System. We characterize the patterns in terms of the spatiotemporal flow size distributions of both the train flow network and the passenger flow network. In addition, we describe the essential interactions between these two networks based on statistical analyses. The results of this study suggest that layered models of transportation systems can elucidate fundamental differences between the coexisting traffic flows and can also clarify the mechanism that causes these differences.
Properties of a memory network in psychology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wedemann, Roseli S.; Donangelo, Raul; Carvalho, Luis A. V. de
We have previously described neurotic psychopathology and psychoanalytic working-through by an associative memory mechanism, based on a neural network model, where memory was modelled by a Boltzmann machine (BM). Since brain neural topology is selectively structured, we simulated known microscopic mechanisms that control synaptic properties, showing that the network self-organizes to a hierarchical, clustered structure. Here, we show some statistical mechanical properties of the complex networks which result from this self-organization. They indicate that a generalization of the BM may be necessary to model memory.
Properties of a memory network in psychology
NASA Astrophysics Data System (ADS)
Wedemann, Roseli S.; Donangelo, Raul; de Carvalho, Luís A. V.
2007-12-01
We have previously described neurotic psychopathology and psychoanalytic working-through by an associative memory mechanism, based on a neural network model, where memory was modelled by a Boltzmann machine (BM). Since brain neural topology is selectively structured, we simulated known microscopic mechanisms that control synaptic properties, showing that the network self-organizes to a hierarchical, clustered structure. Here, we show some statistical mechanical properties of the complex networks which result from this self-organization. They indicate that a generalization of the BM may be necessary to model memory.
NASA Astrophysics Data System (ADS)
Jalili, Mahdi
2018-03-01
I enjoyed reading Gosak et al. review on analysing biological systems from network science perspective [1]. Network science, first started within Physics community, is now a mature multidisciplinary field of science with many applications ranging from Ecology to biology, medicine, social sciences, engineering and computer science. Gosak et al. discussed how biological systems can be modelled and described by complex network theory which is an important application of network science. Although there has been considerable progress in network biology over the past two decades, this is just the beginning and network science has a great deal to offer to biology and medical sciences.
Epidemic modeling in complex realities.
Colizza, Vittoria; Barthélemy, Marc; Barrat, Alain; Vespignani, Alessandro
2007-04-01
In our global world, the increasing complexity of social relations and transport infrastructures are key factors in the spread of epidemics. In recent years, the increasing availability of computer power has enabled both to obtain reliable data allowing one to quantify the complexity of the networks on which epidemics may propagate and to envision computational tools able to tackle the analysis of such propagation phenomena. These advances have put in evidence the limits of homogeneous assumptions and simple spatial diffusion approaches, and stimulated the inclusion of complex features and heterogeneities relevant in the description of epidemic diffusion. In this paper, we review recent progresses that integrate complex systems and networks analysis with epidemic modelling and focus on the impact of the various complex features of real systems on the dynamics of epidemic spreading.
Classification of complex networks based on similarity of topological network features
NASA Astrophysics Data System (ADS)
Attar, Niousha; Aliakbary, Sadegh
2017-09-01
Over the past few decades, networks have been widely used to model real-world phenomena. Real-world networks exhibit nontrivial topological characteristics and therefore, many network models are proposed in the literature for generating graphs that are similar to real networks. Network models reproduce nontrivial properties such as long-tail degree distributions or high clustering coefficients. In this context, we encounter the problem of selecting the network model that best fits a given real-world network. The need for a model selection method reveals the network classification problem, in which a target-network is classified into one of the candidate network models. In this paper, we propose a novel network classification method which is independent of the network size and employs an alignment-free metric of network comparison. The proposed method is based on supervised machine learning algorithms and utilizes the topological similarities of networks for the classification task. The experiments show that the proposed method outperforms state-of-the-art methods with respect to classification accuracy, time efficiency, and robustness to noise.
NASA Technical Reports Server (NTRS)
Shih, Ann T.; Ancel, Ersin; Jones, Sharon M.
2012-01-01
The concern for reducing aviation safety risk is rising as the National Airspace System in the United States transforms to the Next Generation Air Transportation System (NextGen). The NASA Aviation Safety Program is committed to developing an effective aviation safety technology portfolio to meet the challenges of this transformation and to mitigate relevant safety risks. The paper focuses on the reasoning of selecting Object-Oriented Bayesian Networks (OOBN) as the technique and commercial software for the accident modeling and portfolio assessment. To illustrate the benefits of OOBN in a large and complex aviation accident model, the in-flight Loss-of-Control Accident Framework (LOCAF) constructed as an influence diagram is presented. An OOBN approach not only simplifies construction and maintenance of complex causal networks for the modelers, but also offers a well-organized hierarchical network that is easier for decision makers to exploit the model examining the effectiveness of risk mitigation strategies through technology insertions.
NASA Astrophysics Data System (ADS)
OświÈ©cimka, Paweł; Livi, Lorenzo; DroŻdŻ, Stanisław
2016-10-01
We investigate the scaling of the cross-correlations calculated for two-variable time series containing vertex properties in the context of complex networks. Time series of such observables are obtained by means of stationary, unbiased random walks. We consider three vertex properties that provide, respectively, short-, medium-, and long-range information regarding the topological role of vertices in a given network. In order to reveal the relation between these quantities, we applied the multifractal cross-correlation analysis technique, which provides information about the nonlinear effects in coupling of time series. We show that the considered network models are characterized by unique multifractal properties of the cross-correlation. In particular, it is possible to distinguish between Erdös-Rényi, Barabási-Albert, and Watts-Strogatz networks on the basis of fractal cross-correlation. Moreover, the analysis of protein contact networks reveals characteristics shared with both scale-free and small-world models.
Mitochondrial network complexity emerges from fission/fusion dynamics.
Zamponi, Nahuel; Zamponi, Emiliano; Cannas, Sergio A; Billoni, Orlando V; Helguera, Pablo R; Chialvo, Dante R
2018-01-10
Mitochondrial networks exhibit a variety of complex behaviors, including coordinated cell-wide oscillations of energy states as well as a phase transition (depolarization) in response to oxidative stress. Since functional and structural properties are often interwinded, here we characterized the structure of mitochondrial networks in mouse embryonic fibroblasts using network tools and percolation theory. Subsequently we perturbed the system either by promoting the fusion of mitochondrial segments or by inducing mitochondrial fission. Quantitative analysis of mitochondrial clusters revealed that structural parameters of healthy mitochondria laid in between the extremes of highly fragmented and completely fusioned networks. We confirmed our results by contrasting our empirical findings with the predictions of a recently described computational model of mitochondrial network emergence based on fission-fusion kinetics. Altogether these results offer not only an objective methodology to parametrize the complexity of this organelle but also support the idea that mitochondrial networks behave as critical systems and undergo structural phase transitions.
The big data-big model (BDBM) challenges in ecological research
NASA Astrophysics Data System (ADS)
Luo, Y.
2015-12-01
The field of ecology has become a big-data science in the past decades due to development of new sensors used in numerous studies in the ecological community. Many sensor networks have been established to collect data. For example, satellites, such as Terra and OCO-2 among others, have collected data relevant on global carbon cycle. Thousands of field manipulative experiments have been conducted to examine feedback of terrestrial carbon cycle to global changes. Networks of observations, such as FLUXNET, have measured land processes. In particular, the implementation of the National Ecological Observatory Network (NEON), which is designed to network different kinds of sensors at many locations over the nation, will generate large volumes of ecological data every day. The raw data from sensors from those networks offer an unprecedented opportunity for accelerating advances in our knowledge of ecological processes, educating teachers and students, supporting decision-making, testing ecological theory, and forecasting changes in ecosystem services. Currently, ecologists do not have the infrastructure in place to synthesize massive yet heterogeneous data into resources for decision support. It is urgent to develop an ecological forecasting system that can make the best use of multiple sources of data to assess long-term biosphere change and anticipate future states of ecosystem services at regional and continental scales. Forecasting relies on big models that describe major processes that underlie complex system dynamics. Ecological system models, despite great simplification of the real systems, are still complex in order to address real-world problems. For example, Community Land Model (CLM) incorporates thousands of processes related to energy balance, hydrology, and biogeochemistry. Integration of massive data from multiple big data sources with complex models has to tackle Big Data-Big Model (BDBM) challenges. Those challenges include interoperability of multiple, heterogeneous data sets; intractability of structural complexity of big models; equifinality of model structure selection and parameter estimation; and computational demand of global optimization with Big Models.
The topological requirements for robust perfect adaptation in networks of any size.
Araujo, Robyn P; Liotta, Lance A
2018-05-01
Robustness, and the ability to function and thrive amid changing and unfavorable environments, is a fundamental requirement for living systems. Until now it has been an open question how large and complex biological networks can exhibit robust behaviors, such as perfect adaptation to a variable stimulus, since complexity is generally associated with fragility. Here we report that all networks that exhibit robust perfect adaptation (RPA) to a persistent change in stimulus are decomposable into well-defined modules, of which there exist two distinct classes. These two modular classes represent a topological basis for all RPA-capable networks, and generate the full set of topological realizations of the internal model principle for RPA in complex, self-organizing, evolvable bionetworks. This unexpected result supports the notion that evolutionary processes are empowered by simple and scalable modular design principles that promote robust performance no matter how large or complex the underlying networks become.
Generation of Complex Karstic Conduit Networks with a Hydro-chemical Model
NASA Astrophysics Data System (ADS)
De Rooij, R.; Graham, W. D.
2016-12-01
The discrete-continuum approach is very well suited to simulate flow and solute transport within karst aquifers. Using this approach, discrete one-dimensional conduits are embedded within a three-dimensional continuum representative of the porous limestone matrix. Typically, however, little is known about the geometry of the karstic conduit network. As such the discrete-continuum approach is rarely used for practical applications. It may be argued, however, that the uncertainty associated with the geometry of the network could be handled by modeling an ensemble of possible karst conduit networks within a stochastic framework. We propose to generate stochastically realistic karst conduit networks by simulating the widening of conduits as caused by the dissolution of limestone over geological relevant timescales. We illustrate that advanced numerical techniques permit to solve the non-linear and coupled hydro-chemical processes efficiently, such that relatively large and complex networks can be generated in acceptable time frames. Instead of specifying flow boundary conditions on conduit cells to recharge the network as is typically done in classical speleogenesis models, we specify an effective rainfall rate over the land surface and let model physics determine the amount of water entering the network. This is advantageous since the amount of water entering the network is extremely difficult to reconstruct, whereas the effective rainfall rate may be quantified using paleoclimatic data. Furthermore, we show that poorly known flow conditions may be constrained by requiring a realistic flow field. Using our speleogenesis model we have investigated factors that influence the geometry of simulated conduit networks. We illustrate that our model generates typical branchwork, network and anastomotic conduit systems. Flow, solute transport and water ages in karst aquifers are simulated using a few illustrative networks.
Epidemic dynamics and endemic states in complex networks
NASA Astrophysics Data System (ADS)
Pastor-Satorras, Romualdo; Vespignani, Alessandro
2001-06-01
We study by analytical methods and large scale simulations a dynamical model for the spreading of epidemics in complex networks. In networks with exponentially bounded connectivity we recover the usual epidemic behavior with a threshold defining a critical point below that the infection prevalence is null. On the contrary, on a wide range of scale-free networks we observe the absence of an epidemic threshold and its associated critical behavior. This implies that scale-free networks are prone to the spreading and the persistence of infections whatever spreading rate the epidemic agents might possess. These results can help understanding computer virus epidemics and other spreading phenomena on communication and social networks.
The structure and resilience of financial market networks
NASA Astrophysics Data System (ADS)
Kauê Dal'Maso Peron, Thomas; da Fontoura Costa, Luciano; Rodrigues, Francisco A.
2012-03-01
Financial markets can be viewed as a highly complex evolving system that is very sensitive to economic instabilities. The complex organization of the market can be represented in a suitable fashion in terms of complex networks, which can be constructed from stock prices such that each pair of stocks is connected by a weighted edge that encodes the distance between them. In this work, we propose an approach to analyze the topological and dynamic evolution of financial networks based on the stock correlation matrices. An entropy-related measurement is adopted to quantify the robustness of the evolving financial market organization. It is verified that the network topological organization suffers strong variation during financial instabilities and the networks in such periods become less robust. A statistical robust regression model is proposed to quantity the relationship between the network structure and resilience. The obtained coefficients of such model indicate that the average shortest path length is the measurement most related to network resilience coefficient. This result indicates that a collective behavior is observed between stocks during financial crisis. More specifically, stocks tend to synchronize their price evolution, leading to a high correlation between pair of stock prices, which contributes to the increase in distance between them and, consequently, decrease the network resilience.
Wealth distribution on complex networks
NASA Astrophysics Data System (ADS)
Ichinomiya, Takashi
2012-12-01
We study the wealth distribution of the Bouchaud-Mézard model on complex networks. It is known from numerical simulations that this distribution depends on the topology of the network; however, no one has succeeded in explaining it. Using “adiabatic” and “independent” assumptions along with the central-limit theorem, we derive equations that determine the probability distribution function. The results are compared to those of simulations for various networks. We find good agreement between our theory and the simulations, except for the case of Watts-Strogatz networks with a low rewiring rate due to the breakdown of independent assumption.
NASA Astrophysics Data System (ADS)
Shimada, Yutaka; Ikeguchi, Tohru; Shigehara, Takaomi
2012-10-01
In this Letter, we propose a framework to transform a complex network to a time series. The transformation from complex networks to time series is realized by the classical multidimensional scaling. Applying the transformation method to a model proposed by Watts and Strogatz [Nature (London) 393, 440 (1998)], we show that ring lattices are transformed to periodic time series, small-world networks to noisy periodic time series, and random networks to random time series. We also show that these relationships are analytically held by using the circulant-matrix theory and the perturbation theory of linear operators. The results are generalized to several high-dimensional lattices.
Complex Network for a Crisis Contagion on AN Interbank System
NASA Astrophysics Data System (ADS)
Tirado, Mariano
2012-09-01
The main focus of this research is the contagion of a financial crisis on an interbank debt network. In order to simulate the crisis propagation a weighted community complex network based on growth strategy has been created. The contagion is described by a new way of disease propagation perspective based on the concept of a financial virus. The model reproduces the existence of TBTF banks and shows the impact that an initial TBTF bank crash produces in the interbank network depending on the magnitude of the initial crash and on the resistance that the network offers against the contagion propagation.
Haak, Danielle M; Fath, Brian D; Forbes, Valery E; Martin, Dustin R; Pope, Kevin L
2017-04-01
Network analysis is used to address diverse ecological, social, economic, and epidemiological questions, but few efforts have been made to combine these field-specific analyses into interdisciplinary approaches that effectively address how complex systems are interdependent and connected to one another. Identifying and understanding these cross-boundary connections improves natural resource management and promotes proactive, rather than reactive, decisions. This research had two main objectives; first, adapt the framework and approach of infectious disease network modeling so that it may be applied to the socio-ecological problem of spreading aquatic invasive species, and second, use this new coupled model to simulate the spread of the invasive Chinese mystery snail (Bellamya chinensis) in a reservoir network in Southeastern Nebraska, USA. The coupled model integrates an existing social network model of how anglers move on the landscape with new reservoir-specific ecological network models. This approach allowed us to identify 1) how angler movement among reservoirs aids in the spread of B. chinensis, 2) how B. chinensis alters energy flows within individual-reservoir food webs, and 3) a new method for assessing the spread of any number of non-native or invasive species within complex, social-ecological systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Haak, Danielle M.; Fath, Brian D.; Forbes, Valery E.; Martin, Dustin R.; Pope, Kevin L.
2017-01-01
Network analysis is used to address diverse ecological, social, economic, and epidemiological questions, but few efforts have been made to combine these field-specific analyses into interdisciplinary approaches that effectively address how complex systems are interdependent and connected to one another. Identifying and understanding these cross-boundary connections improves natural resource management and promotes proactive, rather than reactive, decisions. This research had two main objectives; first, adapt the framework and approach of infectious disease network modeling so that it may be applied to the socio-ecological problem of spreading aquatic invasive species, and second, use this new coupled model to simulate the spread of the invasive Chinese mystery snail (Bellamya chinensis) in a reservoir network in Southeastern Nebraska, USA. The coupled model integrates an existing social network model of how anglers move on the landscape with new reservoir-specific ecological network models. This approach allowed us to identify 1) how angler movement among reservoirs aids in the spread of B. chinensis, 2) how B. chinensisalters energy flows within individual-reservoir food webs, and 3) a new method for assessing the spread of any number of non-native or invasive species within complex, social-ecological systems.
Epidemic spreading on complex networks with community structures
Stegehuis, Clara; van der Hofstad, Remco; van Leeuwaarden, Johan S. H.
2016-01-01
Many real-world networks display a community structure. We study two random graph models that create a network with similar community structure as a given network. One model preserves the exact community structure of the original network, while the other model only preserves the set of communities and the vertex degrees. These models show that community structure is an important determinant of the behavior of percolation processes on networks, such as information diffusion or virus spreading: the community structure can both enforce as well as inhibit diffusion processes. Our models further show that it is the mesoscopic set of communities that matters. The exact internal structures of communities barely influence the behavior of percolation processes across networks. This insensitivity is likely due to the relative denseness of the communities. PMID:27440176
Unified Approach to Modeling and Simulation of Space Communication Networks and Systems
NASA Technical Reports Server (NTRS)
Barritt, Brian; Bhasin, Kul; Eddy, Wesley; Matthews, Seth
2010-01-01
Network simulator software tools are often used to model the behaviors and interactions of applications, protocols, packets, and data links in terrestrial communication networks. Other software tools that model the physics, orbital dynamics, and RF characteristics of space systems have matured to allow for rapid, detailed analysis of space communication links. However, the absence of a unified toolset that integrates the two modeling approaches has encumbered the systems engineers tasked with the design, architecture, and analysis of complex space communication networks and systems. This paper presents the unified approach and describes the motivation, challenges, and our solution - the customization of the network simulator to integrate with astronautical analysis software tools for high-fidelity end-to-end simulation. Keywords space; communication; systems; networking; simulation; modeling; QualNet; STK; integration; space networks
Coordinating complex problem-solving among distributed intelligent agents
NASA Technical Reports Server (NTRS)
Adler, Richard M.
1992-01-01
A process-oriented control model is described for distributed problem solving. The model coordinates the transfer and manipulation of information across independent networked applications, both intelligent and conventional. The model was implemented using SOCIAL, a set of object-oriented tools for distributing computing. Complex sequences of distributed tasks are specified in terms of high level scripts. Scripts are executed by SOCIAL objects called Manager Agents, which realize an intelligent coordination model that routes individual tasks to suitable server applications across the network. These tools are illustrated in a prototype distributed system for decision support of ground operations for NASA's Space Shuttle fleet.
A complex network for studying the transmission mechanisms in stock market
NASA Astrophysics Data System (ADS)
Long, Wen; Guan, Lijing; Shen, Jiangjian; Song, Linqiu; Cui, Lingxiao
2017-10-01
This paper introduces a new complex network to describe the volatility transmission mechanisms in stock market. The network can not only endogenize stock market's volatility but also figure out the direction of volatility spillover. In this model, we first use BEKK-GARCH to estimate the volatility spillover effects among Chinese 18 industry sectors. Then, based on the ARCH coefficients and GARCH coefficients, the directional shock networks and variance networks in different stages are constructed separately. We find that the spillover effects and network structures changes in different stages. The results of the topological stability test demonstrate that the connectivity of networks becomes more fragile to selective attacks than stochastic attacks.
Localization of diffusion sources in complex networks with sparse observations
NASA Astrophysics Data System (ADS)
Hu, Zhao-Long; Shen, Zhesi; Tang, Chang-Bing; Xie, Bin-Bin; Lu, Jian-Feng
2018-04-01
Locating sources in a large network is of paramount importance to reduce the spreading of disruptive behavior. Based on the backward diffusion-based method and integer programming, we propose an efficient approach to locate sources in complex networks with limited observers. The results on model networks and empirical networks demonstrate that, for a certain fraction of observers, the accuracy of our method for source localization will improve as the increase of network size. Besides, compared with the previous method (the maximum-minimum method), the performance of our method is much better with a small fraction of observers, especially in heterogeneous networks. Furthermore, our method is more robust against noise environments and strategies of choosing observers.
Susceptible-infected-recovered epidemics in random networks with population awareness
NASA Astrophysics Data System (ADS)
Wu, Qingchu; Chen, Shufang
2017-10-01
The influence of epidemic information-based awareness on the spread of infectious diseases on networks cannot be ignored. Within the effective degree modeling framework, we discuss the susceptible-infected-recovered model in complex networks with general awareness and general degree distribution. By performing the linear stability analysis, the conditions of epidemic outbreak can be deduced and the results of the previous research can be further expanded. Results show that the local awareness can suppress significantly the epidemic spreading on complex networks via raising the epidemic threshold and such effects are closely related to the formulation of awareness functions. In addition, our results suggest that the recovered information-based awareness has no effect on the critical condition of epidemic outbreak.
From trees to forest: relational complexity network and workload of air traffic controllers.
Zhang, Jingyu; Yang, Jiazhong; Wu, Changxu
2015-01-01
In this paper, we propose a relational complexity (RC) network framework based on RC metric and network theory to model controllers' workload in conflict detection and resolution. We suggest that, at the sector level, air traffic showing a centralised network pattern can provide cognitive benefits in visual search and resolution decision which will in turn result in lower workload. We found that the network centralisation index can account for more variance in predicting perceived workload and task completion time in both a static conflict detection task (Study 1) and a dynamic one (Study 2) in addition to other aircraft-level and pair-level factors. This finding suggests that linear combination of aircraft-level or dyad-level information may not be adequate and the global-pattern-based index is necessary. Theoretical and practical implications of using this framework to improve future workload modelling and management are discussed. We propose a RC network framework to model the workload of air traffic controllers. The effect of network centralisation was examined in both a static conflict detection task and a dynamic one. Network centralisation was predictive of perceived workload and task completion time over and above other control variables.
Communication Network Integration and Group Uniformity in a Complex Organization.
ERIC Educational Resources Information Center
Danowski, James A.; Farace, Richard V.
This paper contains a discussion of the limitations of research on group processes in complex organizations and the manner in which a procedure for network analysis in on-going systems can reduce problems. The research literature on group uniformity processes and on theoretical models of these processes from an information processing perspective…
Modeling the Propagation of Mobile Phone Virus under Complex Network
Yang, Wei; Wei, Xi-liang; Guo, Hao; An, Gang; Guo, Lei
2014-01-01
Mobile phone virus is a rogue program written to propagate from one phone to another, which can take control of a mobile device by exploiting its vulnerabilities. In this paper the propagation model of mobile phone virus is tackled to understand how particular factors can affect its propagation and design effective containment strategies to suppress mobile phone virus. Two different propagation models of mobile phone viruses under the complex network are proposed in this paper. One is intended to describe the propagation of user-tricking virus, and the other is to describe the propagation of the vulnerability-exploiting virus. Based on the traditional epidemic models, the characteristics of mobile phone viruses and the network topology structure are incorporated into our models. A detailed analysis is conducted to analyze the propagation models. Through analysis, the stable infection-free equilibrium point and the stability condition are derived. Finally, considering the network topology, the numerical and simulation experiments are carried out. Results indicate that both models are correct and suitable for describing the spread of two different mobile phone viruses, respectively. PMID:25133209
Modeling and Density Estimation of an Urban Freeway Network Based on Dynamic Graph Hybrid Automata
Chen, Yangzhou; Guo, Yuqi; Wang, Ying
2017-01-01
In this paper, in order to describe complex network systems, we firstly propose a general modeling framework by combining a dynamic graph with hybrid automata and thus name it Dynamic Graph Hybrid Automata (DGHA). Then we apply this framework to model traffic flow over an urban freeway network by embedding the Cell Transmission Model (CTM) into the DGHA. With a modeling procedure, we adopt a dual digraph of road network structure to describe the road topology, use linear hybrid automata to describe multi-modes of dynamic densities in road segments and transform the nonlinear expressions of the transmitted traffic flow between two road segments into piecewise linear functions in terms of multi-mode switchings. This modeling procedure is modularized and rule-based, and thus is easily-extensible with the help of a combination algorithm for the dynamics of traffic flow. It can describe the dynamics of traffic flow over an urban freeway network with arbitrary topology structures and sizes. Next we analyze mode types and number in the model of the whole freeway network, and deduce a Piecewise Affine Linear System (PWALS) model. Furthermore, based on the PWALS model, a multi-mode switched state observer is designed to estimate the traffic densities of the freeway network, where a set of observer gain matrices are computed by using the Lyapunov function approach. As an example, we utilize the PWALS model and the corresponding switched state observer to traffic flow over Beijing third ring road. In order to clearly interpret the principle of the proposed method and avoid computational complexity, we adopt a simplified version of Beijing third ring road. Practical application for a large-scale road network will be implemented by decentralized modeling approach and distributed observer designing in the future research. PMID:28353664
Modeling and Density Estimation of an Urban Freeway Network Based on Dynamic Graph Hybrid Automata.
Chen, Yangzhou; Guo, Yuqi; Wang, Ying
2017-03-29
In this paper, in order to describe complex network systems, we firstly propose a general modeling framework by combining a dynamic graph with hybrid automata and thus name it Dynamic Graph Hybrid Automata (DGHA). Then we apply this framework to model traffic flow over an urban freeway network by embedding the Cell Transmission Model (CTM) into the DGHA. With a modeling procedure, we adopt a dual digraph of road network structure to describe the road topology, use linear hybrid automata to describe multi-modes of dynamic densities in road segments and transform the nonlinear expressions of the transmitted traffic flow between two road segments into piecewise linear functions in terms of multi-mode switchings. This modeling procedure is modularized and rule-based, and thus is easily-extensible with the help of a combination algorithm for the dynamics of traffic flow. It can describe the dynamics of traffic flow over an urban freeway network with arbitrary topology structures and sizes. Next we analyze mode types and number in the model of the whole freeway network, and deduce a Piecewise Affine Linear System (PWALS) model. Furthermore, based on the PWALS model, a multi-mode switched state observer is designed to estimate the traffic densities of the freeway network, where a set of observer gain matrices are computed by using the Lyapunov function approach. As an example, we utilize the PWALS model and the corresponding switched state observer to traffic flow over Beijing third ring road. In order to clearly interpret the principle of the proposed method and avoid computational complexity, we adopt a simplified version of Beijing third ring road. Practical application for a large-scale road network will be implemented by decentralized modeling approach and distributed observer designing in the future research.
A Deep Neural Network Model for Rainfall Estimation UsingPolarimetric WSR-88DP Radar Observations
NASA Astrophysics Data System (ADS)
Tan, H.; Chandra, C. V.; Chen, H.
2016-12-01
Rainfall estimation based on radar measurements has been an important topic for a few decades. Generally, radar rainfall estimation is conducted through parametric algorisms such as reflectivity-rainfall relation (i.e., Z-R relation). On the other hand, neural networks are developed for ground rainfall estimation based on radar measurements. This nonparametric method, which takes into account of both radar observations and rainfall measurements from ground rain gauges, has been demonstrated successfully for rainfall rate estimation. However, the neural network-based rainfall estimation is limited in practice due to the model complexity and structure, data quality, as well as different rainfall microphysics. Recently, the deep learning approach has been introduced in pattern recognition and machine learning areas. Compared to traditional neural networks, the deep learning based methodologies have larger number of hidden layers and more complex structure for data representation. Through a hierarchical learning process, the high level structured information and knowledge can be extracted automatically from low level features of the data. In this paper, we introduce a novel deep neural network model for rainfall estimation based on ground polarimetric radar measurements .The model is designed to capture the complex abstractions of radar measurements at different levels using multiple layers feature identification and extraction. The abstractions at different levels can be used independently or fused with other data resource such as satellite-based rainfall products and/or topographic data to represent the rain characteristics at certain location. In particular, the WSR-88DP radar and rain gauge data collected in Dallas - Fort Worth Metroplex and Florida are used extensively to train the model, and for demonstration purposes. Quantitative evaluation of the deep neural network based rainfall products will also be presented, which is based on an independent rain gauge network.
Elastic Network Model of a Nuclear Transport Complex
NASA Astrophysics Data System (ADS)
Ryan, Patrick; Liu, Wing K.; Lee, Dockjin; Seo, Sangjae; Kim, Young-Jin; Kim, Moon K.
2010-05-01
The structure of Kap95p was obtained from the Protein Data Bank (www.pdb.org) and analyzed RanGTP plays an important role in both nuclear protein import and export cycles. In the nucleus, RanGTP releases macromolecular cargoes from importins and conversely facilitates cargo binding to exportins. Although the crystal structure of the nuclear import complex formed by importin Kap95p and RanGTP was recently identified, its molecular mechanism still remains unclear. To understand the relationship between structure and function of a nuclear transport complex, a structure-based mechanical model of Kap95p:RanGTP complex is introduced. In this model, a protein structure is simply modeled as an elastic network in which a set of coarse-grained point masses are connected by linear springs representing biochemical interactions at atomic level. Harmonic normal mode analysis (NMA) and anharmonic elastic network interpolation (ENI) are performed to predict the modes of vibrations and a feasible pathway between locked and unlocked conformations of Kap95p, respectively. Simulation results imply that the binding of RanGTP to Kap95p induces the release of the cargo in the nucleus as well as prevents any new cargo from attaching to the Kap95p:RanGTP complex.
González-Díaz, Humberto; Herrera-Ibatá, Diana María; Duardo-Sánchez, Aliuska; Munteanu, Cristian R; Orbegozo-Medina, Ricardo Alfredo; Pazos, Alejandro
2014-03-24
This work is aimed at describing the workflow for a methodology that combines chemoinformatics and pharmacoepidemiology methods and at reporting the first predictive model developed with this methodology. The new model is able to predict complex networks of AIDS prevalence in the US counties, taking into consideration the social determinants and activity/structure of anti-HIV drugs in preclinical assays. We trained different Artificial Neural Networks (ANNs) using as input information indices of social networks and molecular graphs. We used a Shannon information index based on the Gini coefficient to quantify the effect of income inequality in the social network. We obtained the data on AIDS prevalence and the Gini coefficient from the AIDSVu database of Emory University. We also used the Balaban information indices to quantify changes in the chemical structure of anti-HIV drugs. We obtained the data on anti-HIV drug activity and structure (SMILE codes) from the ChEMBL database. Last, we used Box-Jenkins moving average operators to quantify information about the deviations of drugs with respect to data subsets of reference (targets, organisms, experimental parameters, protocols). The best model found was a Linear Neural Network (LNN) with values of Accuracy, Specificity, and Sensitivity above 0.76 and AUROC > 0.80 in training and external validation series. This model generates a complex network of AIDS prevalence in the US at county level with respect to the preclinical activity of anti-HIV drugs in preclinical assays. To train/validate the model and predict the complex network we needed to analyze 43,249 data points including values of AIDS prevalence in 2,310 counties in the US vs ChEMBL results for 21,582 unique drugs, 9 viral or human protein targets, 4,856 protocols, and 10 possible experimental measures.
Alignment and integration of complex networks by hypergraph-based spectral clustering
NASA Astrophysics Data System (ADS)
Michoel, Tom; Nachtergaele, Bruno
2012-11-01
Complex networks possess a rich, multiscale structure reflecting the dynamical and functional organization of the systems they model. Often there is a need to analyze multiple networks simultaneously, to model a system by more than one type of interaction, or to go beyond simple pairwise interactions, but currently there is a lack of theoretical and computational methods to address these problems. Here we introduce a framework for clustering and community detection in such systems using hypergraph representations. Our main result is a generalization of the Perron-Frobenius theorem from which we derive spectral clustering algorithms for directed and undirected hypergraphs. We illustrate our approach with applications for local and global alignment of protein-protein interaction networks between multiple species, for tripartite community detection in folksonomies, and for detecting clusters of overlapping regulatory pathways in directed networks.
Alignment and integration of complex networks by hypergraph-based spectral clustering.
Michoel, Tom; Nachtergaele, Bruno
2012-11-01
Complex networks possess a rich, multiscale structure reflecting the dynamical and functional organization of the systems they model. Often there is a need to analyze multiple networks simultaneously, to model a system by more than one type of interaction, or to go beyond simple pairwise interactions, but currently there is a lack of theoretical and computational methods to address these problems. Here we introduce a framework for clustering and community detection in such systems using hypergraph representations. Our main result is a generalization of the Perron-Frobenius theorem from which we derive spectral clustering algorithms for directed and undirected hypergraphs. We illustrate our approach with applications for local and global alignment of protein-protein interaction networks between multiple species, for tripartite community detection in folksonomies, and for detecting clusters of overlapping regulatory pathways in directed networks.
Encoding dependence in Bayesian causal networks
USDA-ARS?s Scientific Manuscript database
Bayesian networks (BNs) represent complex, uncertain spatio-temporal dynamics by propagation of conditional probabilities between identifiable states with a testable causal interaction model. Typically, they assume random variables are discrete in time and space with a static network structure that ...
A complex speciation–richness relationship in a simple neutral model
Desjardins-Proulx, Philippe; Gravel, Dominique
2012-01-01
Speciation is the “elephant in the room” of community ecology. As the ultimate source of biodiversity, its integration in ecology's theoretical corpus is necessary to understand community assembly. Yet, speciation is often completely ignored or stripped of its spatial dimension. Recent approaches based on network theory have allowed ecologists to effectively model complex landscapes. In this study, we use this framework to model allopatric and parapatric speciation in networks of communities. We focus on the relationship between speciation, richness, and the spatial structure of communities. We find a strong opposition between speciation and local richness, with speciation being more common in isolated communities and local richness being higher in more connected communities. Unlike previous models, we also find a transition to a positive relationship between speciation and local richness when dispersal is low and the number of communities is small. We use several measures of centrality to characterize the effect of network structure on diversity. The degree, the simplest measure of centrality, is the best predictor of local richness and speciation, although it loses some of its predictive power as connectivity grows. Our framework shows how a simple neutral model can be combined with network theory to reveal complex relationships between speciation, richness, and the spatial organization of populations. PMID:22957181
Feng, Song; Ollivier, Julien F; Swain, Peter S; Soyer, Orkun S
2015-10-30
Systems biologists aim to decipher the structure and dynamics of signaling and regulatory networks underpinning cellular responses; synthetic biologists can use this insight to alter existing networks or engineer de novo ones. Both tasks will benefit from an understanding of which structural and dynamic features of networks can emerge from evolutionary processes, through which intermediary steps these arise, and whether they embody general design principles. As natural evolution at the level of network dynamics is difficult to study, in silico evolution of network models can provide important insights. However, current tools used for in silico evolution of network dynamics are limited to ad hoc computer simulations and models. Here we introduce BioJazz, an extendable, user-friendly tool for simulating the evolution of dynamic biochemical networks. Unlike previous tools for in silico evolution, BioJazz allows for the evolution of cellular networks with unbounded complexity by combining rule-based modeling with an encoding of networks that is akin to a genome. We show that BioJazz can be used to implement biologically realistic selective pressures and allows exploration of the space of network architectures and dynamics that implement prescribed physiological functions. BioJazz is provided as an open-source tool to facilitate its further development and use. Source code and user manuals are available at: http://oss-lab.github.io/biojazz and http://osslab.lifesci.warwick.ac.uk/BioJazz.aspx. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Gene expression complex networks: synthesis, identification, and analysis.
Lopes, Fabrício M; Cesar, Roberto M; Costa, Luciano Da F
2011-10-01
Thanks to recent advances in molecular biology, allied to an ever increasing amount of experimental data, the functional state of thousands of genes can now be extracted simultaneously by using methods such as cDNA microarrays and RNA-Seq. Particularly important related investigations are the modeling and identification of gene regulatory networks from expression data sets. Such a knowledge is fundamental for many applications, such as disease treatment, therapeutic intervention strategies and drugs design, as well as for planning high-throughput new experiments. Methods have been developed for gene networks modeling and identification from expression profiles. However, an important open problem regards how to validate such approaches and its results. This work presents an objective approach for validation of gene network modeling and identification which comprises the following three main aspects: (1) Artificial Gene Networks (AGNs) model generation through theoretical models of complex networks, which is used to simulate temporal expression data; (2) a computational method for gene network identification from the simulated data, which is founded on a feature selection approach where a target gene is fixed and the expression profile is observed for all other genes in order to identify a relevant subset of predictors; and (3) validation of the identified AGN-based network through comparison with the original network. The proposed framework allows several types of AGNs to be generated and used in order to simulate temporal expression data. The results of the network identification method can then be compared to the original network in order to estimate its properties and accuracy. Some of the most important theoretical models of complex networks have been assessed: the uniformly-random Erdös-Rényi (ER), the small-world Watts-Strogatz (WS), the scale-free Barabási-Albert (BA), and geographical networks (GG). The experimental results indicate that the inference method was sensitive to average degree
Spatial price dynamics: From complex network perspective
NASA Astrophysics Data System (ADS)
Li, Y. L.; Bi, J. T.; Sun, H. J.
2008-10-01
The spatial price problem means that if the supply price plus the transportation cost is less than the demand price, there exists a trade. Thus, after an amount of exchange, the demand price will decrease. This process is continuous until an equilibrium state is obtained. However, how the trade network structure affects this process has received little attention. In this paper, we give a evolving model to describe the levels of spatial price on different complex network structures. The simulation results show that the network with shorter path length is sensitive to the variation of prices.
Thinking outside the channel: Modeling nitrogen cycling in networked river ecosystems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helton, Ashley; Poole, Geoffrey C.; Meyer, Judy
2011-01-01
Agricultural and urban development alters nitrogen and other biogeochemical cycles in rivers worldwide. Because such biogeochemical processes cannot be measured empirically across whole river networks, simulation models are critical tools for understanding river-network biogeochemistry. However, limitations inherent in current models restrict our ability to simulate biogeochemical dynamics among diverse river networks. We illustrate these limitations using a river-network model to scale up in situ measures of nitrogen cycling in eight catchments spanning various geophysical and land-use conditions. Our model results provide evidence that catchment characteristics typically excluded from models may control river-network biogeochemistry. Based on our findings, we identify importantmore » components of a revised strategy for simulating biogeochemical dynamics in river networks, including approaches to modeling terrestrial-aquatic linkages, hydrologic exchanges between the channel, floodplain/riparian complex, and subsurface waters, and interactions between coupled biogeochemical cycles.« less
Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics
Bennett, Eric J.; Rush, John; Gygi, Steven P.; Harper, J. Wade
2010-01-01
Dynamic reorganization of signaling systems frequently accompany pathway perturbations, yet quantitative studies of network remodeling by pathway stimuli are lacking. Here, we report the development of a quantitative proteomics platform centered on multiplex Absolute Quantification (AQUA) technology to elucidate the architecture of the cullin-RING ubiquitin ligase (CRL) network and to evaluate current models of dynamic CRL remodeling. Current models suggest that CRL complexes are controlled by cycles of CRL deneddylation and CAND1 binding. Contrary to expectations, acute CRL inhibition with MLN4924, an inhibitor of the NEDD8-activating enzyme, does not result in a global reorganization of the CRL network. Examination of CRL complex stoichiometry reveals that, independent of cullin neddylation, a large fraction of cullins are assembled with adaptor modules while only a small fraction are associated with CAND1. These studies suggest an alternative model of CRL dynamicity where the abundance of adaptor modules, rather than cycles of neddylation and CAND1 binding, drives CRL network organization. PMID:21145461
Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics.
Bennett, Eric J; Rush, John; Gygi, Steven P; Harper, J Wade
2010-12-10
Dynamic reorganization of signaling systems frequently accompanies pathway perturbations, yet quantitative studies of network remodeling by pathway stimuli are lacking. Here, we report the development of a quantitative proteomics platform centered on multiplex absolute quantification (AQUA) technology to elucidate the architecture of the cullin-RING ubiquitin ligase (CRL) network and to evaluate current models of dynamic CRL remodeling. Current models suggest that CRL complexes are controlled by cycles of CRL deneddylation and CAND1 binding. Contrary to expectations, acute CRL inhibition with MLN4924, an inhibitor of the NEDD8-activating enzyme, does not result in a global reorganization of the CRL network. Examination of CRL complex stoichiometry reveals that, independent of cullin neddylation, a large fraction of cullins are assembled with adaptor modules, whereas only a small fraction are associated with CAND1. These studies suggest an alternative model of CRL dynamicity where the abundance of adaptor modules, rather than cycles of neddylation and CAND1 binding, drives CRL network organization. Copyright © 2010 Elsevier Inc. All rights reserved.
Complex Road Intersection Modelling Based on Low-Frequency GPS Track Data
NASA Astrophysics Data System (ADS)
Huang, J.; Deng, M.; Zhang, Y.; Liu, H.
2017-09-01
It is widely accepted that digital map becomes an indispensable guide for human daily traveling. Traditional road network maps are produced in the time-consuming and labour-intensive ways, such as digitizing printed maps and extraction from remote sensing images. At present, a large number of GPS trajectory data collected by floating vehicles makes it a reality to extract high-detailed and up-to-date road network information. Road intersections are often accident-prone areas and very critical to route planning and the connectivity of road networks is mainly determined by the topological geometry of road intersections. A few studies paid attention on detecting complex road intersections and mining the attached traffic information (e.g., connectivity, topology and turning restriction) from massive GPS traces. To the authors' knowledge, recent studies mainly used high frequency (1 s sampling rate) trajectory data to detect the crossroads regions or extract rough intersection models. It is still difficult to make use of low frequency (20-100 s) and easily available trajectory data to modelling complex road intersections geometrically and semantically. The paper thus attempts to construct precise models for complex road intersection by using low frequency GPS traces. We propose to firstly extract the complex road intersections by a LCSS-based (Longest Common Subsequence) trajectory clustering method, then delineate the geometry shapes of complex road intersections by a K-segment principle curve algorithm, and finally infer the traffic constraint rules inside the complex intersections.
A coevolving model based on preferential triadic closure for social media networks
Li, Menghui; Zou, Hailin; Guan, Shuguang; Gong, Xiaofeng; Li, Kun; Di, Zengru; Lai, Choy-Heng
2013-01-01
The dynamical origin of complex networks, i.e., the underlying principles governing network evolution, is a crucial issue in network study. In this paper, by carrying out analysis to the temporal data of Flickr and Epinions–two typical social media networks, we found that the dynamical pattern in neighborhood, especially the formation of triadic links, plays a dominant role in the evolution of networks. We thus proposed a coevolving dynamical model for such networks, in which the evolution is only driven by the local dynamics–the preferential triadic closure. Numerical experiments verified that the model can reproduce global properties which are qualitatively consistent with the empirical observations. PMID:23979061
Bortfeldt, Ralf H; Schuster, Stefan; Koch, Ina
2011-01-01
Spliceosomes are macro-complexes involving hundreds of proteins with many functional interactions. Spliceosome assembly belongs to the key processes that enable splicing of mRNA and modulate alternative splicing. A detailed list of factors involved in spliceosomal reactions has been assorted over the past decade, but, their functional interplay is often unknown and most of the present biological models cover only parts of the complete assembly process. It is a challenging task to build a computational model that integrates dispersed knowledge and combines a multitude of reaction schemes proposed earlier. Because for most reactions involved in spliceosome assembly kinetic parameters are not available, we propose a discrete modeling using Petri nets, through which we are enabled to get insights into the system's behavior via computation of structural and dynamic properties. In this paper, we compile and examine reactions from experimental reports that contribute to a functional spliceosome. All these reactions form a network, which describes the inventory and conditions necessary to perform the splicing process. The analysis is mainly based on system invariants. Transition invariants (T-invariants) can be interpreted as signaling routes through the network. Due to the huge number of T-invariants that arise with increasing network size and complexity, maximal common transition sets (MCTS) and T-clusters were used for further analysis. Additionally, we introduce a false color map representation, which allows a quick survey of network modules and the visual detection of single reactions or reaction sequences, which participate in more than one signaling route. We designed a structured model of spliceosome assembly, which combines the demands on a platform that i) can display involved factors and concurrent processes, ii) offers the possibility to run computational methods for knowledge extraction, and iii) is successively extendable as new insights into spliceosome function are reported by experimental reports. The network consists of 161 transitions (reactions) and 140 places (reactants). All reactions are part of at least one of the 71 T-invariants. These T-invariants define pathways, which are in good agreement with the current knowledge and known hypotheses on reaction sequences during spliceosome assembly, hence contributing to a functional spliceosome. We demonstrate that present knowledge, in particular of the initial part of the assembly process, describes parallelism and interaction of signaling routes, which indicate functional redundancy and reflect the dependency of spliceosome assembly initiation on different cellular conditions. The complexity of the network is further increased by two switches, which introduce alternative routes during A-complex formation in early spliceosome assembly and upon transition from the B-complex to the C-complex. By compiling known reactions into a complete network, the combinatorial nature of invariant computation leads to pathways that have previously not been described as connected routes, although their constituents were known. T-clusters divide the network into modules, which we interpret as building blocks in spliceosome maturation. We conclude that Petri net representations of large biological networks and system invariants, are well-suited as a means for validating the integration of experimental knowledge into a consistent model. Based on this network model, the design of further experiments is facilitated.
Bortfeldt, Ralf H; Schuster, Stefan; Koch, Ina
2010-01-01
Spliceosomes are macro-complexes involving hundreds of proteins with many functional interactions. Spliceosome assembly belongs to the key processes that enable splicing of mRNA and modulate alternative splicing. A detailed list of factors involved in spliceosomal reactions has been assorted over the past decade, but, their functional interplay is often unknown and most of the present biological models cover only parts of the complete assembly process. It is a challenging task to build a computational model that integrates dispersed knowledge and combines a multitude of reaction schemes proposed earlier.Because for most reactions involved in spliceosome assembly kinetic parameters are not available, we propose a discrete modeling using Petri nets, through which we are enabled to get insights into the system's behavior via computation of structural and dynamic properties. In this paper, we compile and examine reactions from experimental reports that contribute to a functional spliceosome. All these reactions form a network, which describes the inventory and conditions necessary to perform the splicing process. The analysis is mainly based on system invariants. Transition invariants (T-invariants) can be interpreted as signaling routes through the network. Due to the huge number of T-invariants that arise with increasing network size and complexity, maximal common transition sets (MCTS) and T-clusters were used for further analysis. Additionally, we introduce a false color map representation, which allows a quick survey of network modules and the visual detection of single reactions or reaction sequences, which participate in more than one signaling route. We designed a structured model of spliceosome assembly, which combines the demands on a platform that i) can display involved factors and concurrent processes, ii) offers the possibility to run computational methods for knowledge extraction, and iii) is successively extendable as new insights into spliceosome function are reported by experimental reports. The network consists of 161 transitions (reactions) and 140 places (reactants). All reactions are part of at least one of the 71 T-invariants. These T-invariants define pathways, which are in good agreement with the current knowledge and known hypotheses on reaction sequences during spliceosome assembly, hence contributing to a functional spliceosome. We demonstrate that present knowledge, in particular of the initial part of the assembly process, describes parallelism and interaction of signaling routes, which indicate functional redundancy and reflect the dependency of spliceosome assembly initiation on different cellular conditions. The complexity of the network is further increased by two switches, which introduce alternative routes during A-complex formation in early spliceosome assembly and upon transition from the B-complex to the C-complex. By compiling known reactions into a complete network, the combinatorial nature of invariant computation leads to pathways that have previously not been described as connected routes, although their constituents were known. T-clusters divide the network into modules, which we interpret as building blocks in spliceosome maturation. We conclude that Petri net representations of large biological networks and system invariants, are well-suited as a means for validating the integration of experimental knowledge into a consistent model. Based on this network model, the design of further experiments is facilitated.
Growing complex network of citations of scientific papers: Modeling and measurements
NASA Astrophysics Data System (ADS)
Golosovsky, Michael; Solomon, Sorin
2017-01-01
We consider the network of citations of scientific papers and use a combination of the theoretical and experimental tools to uncover microscopic details of this network growth. Namely, we develop a stochastic model of citation dynamics based on the copying-redirection-triadic closure mechanism. In a complementary and coherent way, the model accounts both for statistics of references of scientific papers and for their citation dynamics. Originating in empirical measurements, the model is cast in such a way that it can be verified quantitatively in every aspect. Such validation is performed by measuring citation dynamics of physics papers. The measurements revealed nonlinear citation dynamics, the nonlinearity being intricately related to network topology. The nonlinearity has far-reaching consequences including nonstationary citation distributions, diverging citation trajectories of similar papers, runaways or "immortal papers" with infinite citation lifetime, etc. Thus nonlinearity in complex network growth is our most important finding. In a more specific context, our results can be a basis for quantitative probabilistic prediction of citation dynamics of individual papers and of the journal impact factor.
Miconi, Thomas
2017-01-01
Neural activity during cognitive tasks exhibits complex dynamics that flexibly encode task-relevant variables. Chaotic recurrent networks, which spontaneously generate rich dynamics, have been proposed as a model of cortical computation during cognitive tasks. However, existing methods for training these networks are either biologically implausible, and/or require a continuous, real-time error signal to guide learning. Here we show that a biologically plausible learning rule can train such recurrent networks, guided solely by delayed, phasic rewards at the end of each trial. Networks endowed with this learning rule can successfully learn nontrivial tasks requiring flexible (context-dependent) associations, memory maintenance, nonlinear mixed selectivities, and coordination among multiple outputs. The resulting networks replicate complex dynamics previously observed in animal cortex, such as dynamic encoding of task features and selective integration of sensory inputs. We conclude that recurrent neural networks offer a plausible model of cortical dynamics during both learning and performance of flexible behavior. DOI: http://dx.doi.org/10.7554/eLife.20899.001 PMID:28230528
Miconi, Thomas
2017-02-23
Neural activity during cognitive tasks exhibits complex dynamics that flexibly encode task-relevant variables. Chaotic recurrent networks, which spontaneously generate rich dynamics, have been proposed as a model of cortical computation during cognitive tasks. However, existing methods for training these networks are either biologically implausible, and/or require a continuous, real-time error signal to guide learning. Here we show that a biologically plausible learning rule can train such recurrent networks, guided solely by delayed, phasic rewards at the end of each trial. Networks endowed with this learning rule can successfully learn nontrivial tasks requiring flexible (context-dependent) associations, memory maintenance, nonlinear mixed selectivities, and coordination among multiple outputs. The resulting networks replicate complex dynamics previously observed in animal cortex, such as dynamic encoding of task features and selective integration of sensory inputs. We conclude that recurrent neural networks offer a plausible model of cortical dynamics during both learning and performance of flexible behavior.
Learning and innovative elements of strategy adoption rules expand cooperative network topologies.
Wang, Shijun; Szalay, Máté S; Zhang, Changshui; Csermely, Peter
2008-04-09
Cooperation plays a key role in the evolution of complex systems. However, the level of cooperation extensively varies with the topology of agent networks in the widely used models of repeated games. Here we show that cooperation remains rather stable by applying the reinforcement learning strategy adoption rule, Q-learning on a variety of random, regular, small-word, scale-free and modular network models in repeated, multi-agent Prisoner's Dilemma and Hawk-Dove games. Furthermore, we found that using the above model systems other long-term learning strategy adoption rules also promote cooperation, while introducing a low level of noise (as a model of innovation) to the strategy adoption rules makes the level of cooperation less dependent on the actual network topology. Our results demonstrate that long-term learning and random elements in the strategy adoption rules, when acting together, extend the range of network topologies enabling the development of cooperation at a wider range of costs and temptations. These results suggest that a balanced duo of learning and innovation may help to preserve cooperation during the re-organization of real-world networks, and may play a prominent role in the evolution of self-organizing, complex systems.
López Chavira, Magali Alexander; Marcelín-Jiménez, Ricardo
2017-01-01
The study of complex networks has become an important subject over the last decades. It has been shown that these structures have special features, such as their diameter, or their average path length, which in turn are the explanation of some functional properties in a system such as its fault tolerance, its fragility before attacks, or the ability to support routing procedures. In the present work, we study some of the forces that help a network to evolve to the point where structural properties are settled. Although our work is mainly focused on the possibility of applying our ideas to Information and Communication Technologies systems, we consider that our results may contribute to understanding different scenarios where complex networks have become an important modeling tool. Using a discrete event simulator, we get each node to discover the shortcuts that may connect it with regions away from its local environment. Based on this partial knowledge, each node can rewire some of its links, which allows modifying the topology of the entire underlying graph to achieve new structural properties. We proposed a distributed rewiring model that creates networks with features similar to those found in complex networks. Although each node acts in a distributed way and seeking to reduce only the trajectories of its packets, we observed a decrease of diameter and an increase in clustering coefficient in the global structure compared to the initial graph. Furthermore, we can find different final structures depending on slight changes in the local rewiring rules.
NASA Technical Reports Server (NTRS)
Rajkumar, T.; Bardina, Jorge; Clancy, Daniel (Technical Monitor)
2002-01-01
Wind tunnels use scale models to characterize aerodynamic coefficients, Wind tunnel testing can be slow and costly due to high personnel overhead and intensive power utilization. Although manual curve fitting can be done, it is highly efficient to use a neural network to define the complex relationship between variables. Numerical simulation of complex vehicles on the wide range of conditions required for flight simulation requires static and dynamic data. Static data at low Mach numbers and angles of attack may be obtained with simpler Euler codes. Static data of stalled vehicles where zones of flow separation are usually present at higher angles of attack require Navier-Stokes simulations which are costly due to the large processing time required to attain convergence. Preliminary dynamic data may be obtained with simpler methods based on correlations and vortex methods; however, accurate prediction of the dynamic coefficients requires complex and costly numerical simulations. A reliable and fast method of predicting complex aerodynamic coefficients for flight simulation I'S presented using a neural network. The training data for the neural network are derived from numerical simulations and wind-tunnel experiments. The aerodynamic coefficients are modeled as functions of the flow characteristics and the control surfaces of the vehicle. The basic coefficients of lift, drag and pitching moment are expressed as functions of angles of attack and Mach number. The modeled and training aerodynamic coefficients show good agreement. This method shows excellent potential for rapid development of aerodynamic models for flight simulation. Genetic Algorithms (GA) are used to optimize a previously built Artificial Neural Network (ANN) that reliably predicts aerodynamic coefficients. Results indicate that the GA provided an efficient method of optimizing the ANN model to predict aerodynamic coefficients. The reliability of the ANN using the GA includes prediction of aerodynamic coefficients to an accuracy of 110% . In our problem, we would like to get an optimized neural network architecture and minimum data set. This has been accomplished within 500 training cycles of a neural network. After removing training pairs (outliers), the GA has produced much better results. The neural network constructed is a feed forward neural network with a back propagation learning mechanism. The main goal has been to free the network design process from constraints of human biases, and to discover better forms of neural network architectures. The automation of the network architecture search by genetic algorithms seems to have been the best way to achieve this goal.
Dynamic Business Networks: A Headache for Sustainable Systems Interoperability
NASA Astrophysics Data System (ADS)
Agostinho, Carlos; Jardim-Goncalves, Ricardo
Collaborative networked environments emerged with the spread of the internet, contributing to overcome past communication barriers, and identifying interoperability as an essential property. When achieved seamlessly, efficiency is increased in the entire product life cycle. Nowadays, most organizations try to attain interoperability by establishing peer-to-peer mappings with the different partners, or in optimized networks, by using international standard models as the core for information exchange. In current industrial practice, mappings are only defined once, and the morphisms that represent them, are hardcoded in the enterprise systems. This solution has been effective for static environments, where enterprise and product models are valid for decades. However, with an increasingly complex and dynamic global market, models change frequently to answer new customer requirements. This paper draws concepts from the complex systems science and proposes a framework for sustainable systems interoperability in dynamic networks, enabling different organizations to evolve at their own rate.
Bianchini, Monica; Scarselli, Franco
2014-08-01
Recently, researchers in the artificial neural network field have focused their attention on connectionist models composed by several hidden layers. In fact, experimental results and heuristic considerations suggest that deep architectures are more suitable than shallow ones for modern applications, facing very complex problems, e.g., vision and human language understanding. However, the actual theoretical results supporting such a claim are still few and incomplete. In this paper, we propose a new approach to study how the depth of feedforward neural networks impacts on their ability in implementing high complexity functions. First, a new measure based on topological concepts is introduced, aimed at evaluating the complexity of the function implemented by a neural network, used for classification purposes. Then, deep and shallow neural architectures with common sigmoidal activation functions are compared, by deriving upper and lower bounds on their complexity, and studying how the complexity depends on the number of hidden units and the used activation function. The obtained results seem to support the idea that deep networks actually implements functions of higher complexity, so that they are able, with the same number of resources, to address more difficult problems.
The statistical mechanics of complex signaling networks: nerve growth factor signaling
NASA Astrophysics Data System (ADS)
Brown, K. S.; Hill, C. C.; Calero, G. A.; Myers, C. R.; Lee, K. H.; Sethna, J. P.; Cerione, R. A.
2004-10-01
The inherent complexity of cellular signaling networks and their importance to a wide range of cellular functions necessitates the development of modeling methods that can be applied toward making predictions and highlighting the appropriate experiments to test our understanding of how these systems are designed and function. We use methods of statistical mechanics to extract useful predictions for complex cellular signaling networks. A key difficulty with signaling models is that, while significant effort is being made to experimentally measure the rate constants for individual steps in these networks, many of the parameters required to describe their behavior remain unknown or at best represent estimates. To establish the usefulness of our approach, we have applied our methods toward modeling the nerve growth factor (NGF)-induced differentiation of neuronal cells. In particular, we study the actions of NGF and mitogenic epidermal growth factor (EGF) in rat pheochromocytoma (PC12) cells. Through a network of intermediate signaling proteins, each of these growth factors stimulates extracellular regulated kinase (Erk) phosphorylation with distinct dynamical profiles. Using our modeling approach, we are able to predict the influence of specific signaling modules in determining the integrated cellular response to the two growth factors. Our methods also raise some interesting insights into the design and possible evolution of cellular systems, highlighting an inherent property of these systems that we call 'sloppiness.'
Simulation-based modeling of building complexes construction management
NASA Astrophysics Data System (ADS)
Shepelev, Aleksandr; Severova, Galina; Potashova, Irina
2018-03-01
The study reported here examines the experience in the development and implementation of business simulation games based on network planning and management of high-rise construction. Appropriate network models of different types and levels of detail have been developed; a simulation model including 51 blocks (11 stages combined in 4 units) is proposed.
Cooperative spreading processes in multiplex networks.
Wei, Xiang; Chen, Shihua; Wu, Xiaoqun; Ning, Di; Lu, Jun-An
2016-06-01
This study is concerned with the dynamic behaviors of epidemic spreading in multiplex networks. A model composed of two interacting complex networks is proposed to describe cooperative spreading processes, wherein the virus spreading in one layer can penetrate into the other to promote the spreading process. The global epidemic threshold of the model is smaller than the epidemic thresholds of the corresponding isolated networks. Thus, global epidemic onset arises in the interacting networks even though an epidemic onset does not arise in each isolated network. Simulations verify the analysis results and indicate that cooperative spreading processes in multiplex networks enhance the final infection fraction.
Exploring network operations for data and information networks
NASA Astrophysics Data System (ADS)
Yao, Bing; Su, Jing; Ma, Fei; Wang, Xiaomin; Zhao, Xiyang; Yao, Ming
2017-01-01
Barabási and Albert, in 1999, formulated scale-free models based on some real networks: World-Wide Web, Internet, metabolic and protein networks, language or sexual networks. Scale-free networks not only appear around us, but also have high qualities in the world. As known, high quality information networks can transfer feasibly and efficiently data, clearly, their topological structures are very important for data safety. We build up network operations for constructing large scale of dynamic networks from smaller scale of network models having good property and high quality. We focus on the simplest operators to formulate complex operations, and are interesting on the closeness of operations to desired network properties.
In Silico Reconstitution of Actin-Based Symmetry Breaking and Motility
Dayel, Mark J.; Akin, Orkun; Landeryou, Mark; Risca, Viviana; Mogilner, Alex; Mullins, R. Dyche
2009-01-01
Eukaryotic cells assemble viscoelastic networks of crosslinked actin filaments to control their shape, mechanical properties, and motility. One important class of actin network is nucleated by the Arp2/3 complex and drives both membrane protrusion at the leading edge of motile cells and intracellular motility of pathogens such as Listeria monocytogenes. These networks can be reconstituted in vitro from purified components to drive the motility of spherical micron-sized beads. An Elastic Gel model has been successful in explaining how these networks break symmetry, but how they produce directed motile force has been less clear. We have combined numerical simulations with in vitro experiments to reconstitute the behavior of these motile actin networks in silico using an Accumulative Particle-Spring (APS) model that builds on the Elastic Gel model, and demonstrates simple intuitive mechanisms for both symmetry breaking and sustained motility. The APS model explains observed transitions between smooth and pulsatile motion as well as subtle variations in network architecture caused by differences in geometry and conditions. Our findings also explain sideways symmetry breaking and motility of elongated beads, and show that elastic recoil, though important for symmetry breaking and pulsatile motion, is not necessary for smooth directional motility. The APS model demonstrates how a small number of viscoelastic network parameters and construction rules suffice to recapture the complex behavior of motile actin networks. The fact that the model not only mirrors our in vitro observations, but also makes novel predictions that we confirm by experiment, suggests that the model captures much of the essence of actin-based motility in this system. PMID:19771152
On relativistic spin network vertices
NASA Astrophysics Data System (ADS)
Reisenberger, Michael P.
1999-04-01
Barrett and Crane have proposed a model of simplicial Euclidean quantum gravity in which a central role is played by a class of Spin(4) spin networks called "relativistic spin networks" which satisfy a series of physically motivated constraints. Here a proof is presented that demonstrates that the intertwiner of a vertex of such a spin network is uniquely determined, up to normalization, by the representations on the incident edges and the constraints. Moreover, the constraints, which were formulated for four valent spin networks only, are extended to networks of arbitrary valence, and the generalized relativistic spin networks proposed by Yetter are shown to form the entire solution set (mod normalization) of the extended constraints. Finally, using the extended constraints, the Barrett-Crane model is generalized to arbitrary polyhedral complexes (instead of just simplicial complexes) representing space-time. It is explained how this model, like the Barret-Crane model can be derived from BF theory, a simple topological field theory [G. Horowitz, Commun. Math. Phys. 125, 417 (1989)], by restricting the sum over histories to ones in which the left-handed and right-handed areas of any 2-surface are equal. It is known that the solutions of classical Euclidean general relativity form a branch of the stationary points of the BF action with respect to variations preserving this condition.
NASA Astrophysics Data System (ADS)
Keane, Harriet; Ryan, Brent J.; Jackson, Brendan; Whitmore, Alan; Wade-Martins, Richard
2015-11-01
Neurodegenerative diseases are complex multifactorial disorders characterised by the interplay of many dysregulated physiological processes. As an exemplar, Parkinson’s disease (PD) involves multiple perturbed cellular functions, including mitochondrial dysfunction and autophagic dysregulation in preferentially-sensitive dopamine neurons, a selective pathophysiology recapitulated in vitro using the neurotoxin MPP+. Here we explore a network science approach for the selection of therapeutic protein targets in the cellular MPP+ model. We hypothesised that analysis of protein-protein interaction networks modelling MPP+ toxicity could identify proteins critical for mediating MPP+ toxicity. Analysis of protein-protein interaction networks constructed to model the interplay of mitochondrial dysfunction and autophagic dysregulation (key aspects of MPP+ toxicity) enabled us to identify four proteins predicted to be key for MPP+ toxicity (P62, GABARAP, GBRL1 and GBRL2). Combined, but not individual, knockdown of these proteins increased cellular susceptibility to MPP+ toxicity. Conversely, combined, but not individual, over-expression of the network targets provided rescue of MPP+ toxicity associated with the formation of autophagosome-like structures. We also found that modulation of two distinct proteins in the protein-protein interaction network was necessary and sufficient to mitigate neurotoxicity. Together, these findings validate our network science approach to multi-target identification in complex neurological diseases.
Multilayer network of language: A unified framework for structural analysis of linguistic subsystems
NASA Astrophysics Data System (ADS)
Martinčić-Ipšić, Sanda; Margan, Domagoj; Meštrović, Ana
2016-09-01
Recently, the focus of complex networks' research has shifted from the analysis of isolated properties of a system toward a more realistic modeling of multiple phenomena - multilayer networks. Motivated by the prosperity of multilayer approach in social, transport or trade systems, we introduce the multilayer networks for language. The multilayer network of language is a unified framework for modeling linguistic subsystems and their structural properties enabling the exploration of their mutual interactions. Various aspects of natural language systems can be represented as complex networks, whose vertices depict linguistic units, while links model their relations. The multilayer network of language is defined by three aspects: the network construction principle, the linguistic subsystem and the language of interest. More precisely, we construct a word-level (syntax and co-occurrence) and a subword-level (syllables and graphemes) network layers, from four variations of original text (in the modeled language). The analysis and comparison of layers at the word and subword-levels are employed in order to determine the mechanism of the structural influences between linguistic units and subsystems. The obtained results suggest that there are substantial differences between the networks' structures of different language subsystems, which are hidden during the exploration of an isolated layer. The word-level layers share structural properties regardless of the language (e.g. Croatian or English), while the syllabic subword-level expresses more language dependent structural properties. The preserved weighted overlap quantifies the similarity of word-level layers in weighted and directed networks. Moreover, the analysis of motifs reveals a close topological structure of the syntactic and syllabic layers for both languages. The findings corroborate that the multilayer network framework is a powerful, consistent and systematic approach to model several linguistic subsystems simultaneously and hence to provide a more unified view on language.
The game of go as a complex network
NASA Astrophysics Data System (ADS)
Georgeot, B.; Giraud, O.
2012-03-01
We study the game of go from a complex network perspective. We construct a directed network using a suitable definition of tactical moves including local patterns, and study this network for different datasets of professional and amateur games. The move distribution follows Zipf's law and the network is scale free, with statistical peculiarities different from other real directed networks, such as, e.g., the World Wide Web. These specificities reflect in the outcome of ranking algorithms applied to it. The fine study of the eigenvalues and eigenvectors of matrices used by the ranking algorithms singles out certain strategic situations. Our results should pave the way to a better modelization of board games and other types of human strategic scheming.
Hill, Kristine; Porco, Silvana; Lobet, Guillaume; Zappala, Susan; Mooney, Sacha; Draye, Xavier; Bennett, Malcolm J.
2013-01-01
Genetic and genomic approaches in model organisms have advanced our understanding of root biology over the last decade. Recently, however, systems biology and modeling have emerged as important approaches, as our understanding of root regulatory pathways has become more complex and interpreting pathway outputs has become less intuitive. To relate root genotype to phenotype, we must move beyond the examination of interactions at the genetic network scale and employ multiscale modeling approaches to predict emergent properties at the tissue, organ, organism, and rhizosphere scales. Understanding the underlying biological mechanisms and the complex interplay between systems at these different scales requires an integrative approach. Here, we describe examples of such approaches and discuss the merits of developing models to span multiple scales, from network to population levels, and to address dynamic interactions between plants and their environment. PMID:24143806
Testing a Firefly-Inspired Synchronization Algorithm in a Complex Wireless Sensor Network
Hao, Chuangbo; Song, Ping; Yang, Cheng; Liu, Xiongjun
2017-01-01
Data acquisition is the foundation of soft sensor and data fusion. Distributed data acquisition and its synchronization are the important technologies to ensure the accuracy of soft sensors. As a research topic in bionic science, the firefly-inspired algorithm has attracted widespread attention as a new synchronization method. Aiming at reducing the design difficulty of firefly-inspired synchronization algorithms for Wireless Sensor Networks (WSNs) with complex topologies, this paper presents a firefly-inspired synchronization algorithm based on a multiscale discrete phase model that can optimize the performance tradeoff between the network scalability and synchronization capability in a complex wireless sensor network. The synchronization process can be regarded as a Markov state transition, which ensures the stability of this algorithm. Compared with the Miroll and Steven model and Reachback Firefly Algorithm, the proposed algorithm obtains better stability and performance. Finally, its practicality has been experimentally confirmed using 30 nodes in a real multi-hop topology with low quality links. PMID:28282899
Testing a Firefly-Inspired Synchronization Algorithm in a Complex Wireless Sensor Network.
Hao, Chuangbo; Song, Ping; Yang, Cheng; Liu, Xiongjun
2017-03-08
Data acquisition is the foundation of soft sensor and data fusion. Distributed data acquisition and its synchronization are the important technologies to ensure the accuracy of soft sensors. As a research topic in bionic science, the firefly-inspired algorithm has attracted widespread attention as a new synchronization method. Aiming at reducing the design difficulty of firefly-inspired synchronization algorithms for Wireless Sensor Networks (WSNs) with complex topologies, this paper presents a firefly-inspired synchronization algorithm based on a multiscale discrete phase model that can optimize the performance tradeoff between the network scalability and synchronization capability in a complex wireless sensor network. The synchronization process can be regarded as a Markov state transition, which ensures the stability of this algorithm. Compared with the Miroll and Steven model and Reachback Firefly Algorithm, the proposed algorithm obtains better stability and performance. Finally, its practicality has been experimentally confirmed using 30 nodes in a real multi-hop topology with low quality links.
Szostak, Justyna; Martin, Florian; Talikka, Marja; Peitsch, Manuel C; Hoeng, Julia
2016-01-01
The cellular and molecular mechanisms behind the process of atherosclerotic plaque destabilization are complex, and molecular data from aortic plaques are difficult to interpret. Biological network models may overcome these difficulties and precisely quantify the molecular mechanisms impacted during disease progression. The atherosclerosis plaque destabilization biological network model was constructed with the semiautomated curation pipeline, BELIEF. Cellular and molecular mechanisms promoting plaque destabilization or rupture were captured in the network model. Public transcriptomic data sets were used to demonstrate the specificity of the network model and to capture the different mechanisms that were impacted in ApoE -/- mouse aorta at 6 and 32 weeks. We concluded that network models combined with the network perturbation amplitude algorithm provide a sensitive, quantitative method to follow disease progression at the molecular level. This approach can be used to investigate and quantify molecular mechanisms during plaque progression.
Advertising and Irreversible Opinion Spreading in Complex Social Networks
NASA Astrophysics Data System (ADS)
Candia, Julián
Irreversible opinion spreading phenomena are studied on small-world and scale-free networks by means of the magnetic Eden model, a nonequilibrium kinetic model for the growth of binary mixtures in contact with a thermal bath. In this model, the opinion of an individual is affected by those of their acquaintances, but opinion changes (analogous to spin flips in an Ising-like model) are not allowed. We focus on the influence of advertising, which is represented by external magnetic fields. The interplay and competition between temperature and fields lead to order-disorder transitions, which are found to also depend on the link density and the topology of the complex network substrate. The effects of advertising campaigns with variable duration, as well as the best cost-effective strategies to achieve consensus within different scenarios, are also discussed.
A framework for modelling the complexities of food and water security under globalisation
NASA Astrophysics Data System (ADS)
Dermody, Brian J.; Sivapalan, Murugesu; Stehfest, Elke; van Vuuren, Detlef P.; Wassen, Martin J.; Bierkens, Marc F. P.; Dekker, Stefan C.
2018-01-01
We present a new framework for modelling the complexities of food and water security under globalisation. The framework sets out a method to capture regional and sectoral interdependencies and cross-scale feedbacks within the global food system that contribute to emergent water use patterns. The framework integrates aspects of existing models and approaches in the fields of hydrology and integrated assessment modelling. The core of the framework is a multi-agent network of city agents connected by infrastructural trade networks. Agents receive socio-economic and environmental constraint information from integrated assessment models and hydrological models respectively and simulate complex, socio-environmental dynamics that operate within those constraints. The emergent changes in food and water resources are aggregated and fed back to the original models with minimal modification of the structure of those models. It is our conviction that the framework presented can form the basis for a new wave of decision tools that capture complex socio-environmental change within our globalised world. In doing so they will contribute to illuminating pathways towards a sustainable future for humans, ecosystems and the water they share.
Infection dynamics on spatial small-world network models
NASA Astrophysics Data System (ADS)
Iotti, Bryan; Antonioni, Alberto; Bullock, Seth; Darabos, Christian; Tomassini, Marco; Giacobini, Mario
2017-11-01
The study of complex networks, and in particular of social networks, has mostly concentrated on relational networks, abstracting the distance between nodes. Spatial networks are, however, extremely relevant in our daily lives, and a large body of research exists to show that the distances between nodes greatly influence the cost and probability of establishing and maintaining a link. A random geometric graph (RGG) is the main type of synthetic network model used to mimic the statistical properties and behavior of many social networks. We propose a model, called REDS, that extends energy-constrained RGGs to account for the synergic effect of sharing the cost of a link with our neighbors, as is observed in real relational networks. We apply both the standard Watts-Strogatz rewiring procedure and another method that conserves the degree distribution of the network. The second technique was developed to eliminate unwanted forms of spatial correlation between the degree of nodes that are affected by rewiring, limiting the effect on other properties such as clustering and assortativity. We analyze both the statistical properties of these two network types and their epidemiological behavior when used as a substrate for a standard susceptible-infected-susceptible compartmental model. We consider and discuss the differences in properties and behavior between RGGs and REDS as rewiring increases and as infection parameters are changed. We report considerable differences both between the network types and, in the case of REDS, between the two rewiring schemes. We conclude that REDS represent, with the application of these rewiring mechanisms, extremely useful and interesting tools in the study of social and epidemiological phenomena in synthetic complex networks.
Reducing Neuronal Networks to Discrete Dynamics
Terman, David; Ahn, Sungwoo; Wang, Xueying; Just, Winfried
2008-01-01
We consider a general class of purely inhibitory and excitatory-inhibitory neuronal networks, with a general class of network architectures, and characterize the complex firing patterns that emerge. Our strategy for studying these networks is to first reduce them to a discrete model. In the discrete model, each neuron is represented as a finite number of states and there are rules for how a neuron transitions from one state to another. In this paper, we rigorously demonstrate that the continuous neuronal model can be reduced to the discrete model if the intrinsic and synaptic properties of the cells are chosen appropriately. In a companion paper [1], we analyze the discrete model. PMID:18443649
Nariai, N; Kim, S; Imoto, S; Miyano, S
2004-01-01
We propose a statistical method to estimate gene networks from DNA microarray data and protein-protein interactions. Because physical interactions between proteins or multiprotein complexes are likely to regulate biological processes, using only mRNA expression data is not sufficient for estimating a gene network accurately. Our method adds knowledge about protein-protein interactions to the estimation method of gene networks under a Bayesian statistical framework. In the estimated gene network, a protein complex is modeled as a virtual node based on principal component analysis. We show the effectiveness of the proposed method through the analysis of Saccharomyces cerevisiae cell cycle data. The proposed method improves the accuracy of the estimated gene networks, and successfully identifies some biological facts.
Epidemic extinction paths in complex networks
NASA Astrophysics Data System (ADS)
Hindes, Jason; Schwartz, Ira B.
2017-05-01
We study the extinction of long-lived epidemics on finite complex networks induced by intrinsic noise. Applying analytical techniques to the stochastic susceptible-infected-susceptible model, we predict the distribution of large fluctuations, the most probable or optimal path through a network that leads to a disease-free state from an endemic state, and the average extinction time in general configurations. Our predictions agree with Monte Carlo simulations on several networks, including synthetic weighted and degree-distributed networks with degree correlations, and an empirical high school contact network. In addition, our approach quantifies characteristic scaling patterns for the optimal path and distribution of large fluctuations, both near and away from the epidemic threshold, in networks with heterogeneous eigenvector centrality and degree distributions.
Epidemic extinction paths in complex networks.
Hindes, Jason; Schwartz, Ira B
2017-05-01
We study the extinction of long-lived epidemics on finite complex networks induced by intrinsic noise. Applying analytical techniques to the stochastic susceptible-infected-susceptible model, we predict the distribution of large fluctuations, the most probable or optimal path through a network that leads to a disease-free state from an endemic state, and the average extinction time in general configurations. Our predictions agree with Monte Carlo simulations on several networks, including synthetic weighted and degree-distributed networks with degree correlations, and an empirical high school contact network. In addition, our approach quantifies characteristic scaling patterns for the optimal path and distribution of large fluctuations, both near and away from the epidemic threshold, in networks with heterogeneous eigenvector centrality and degree distributions.
Network Analysis of Protein Adaptation: Modeling the Functional Impact of Multiple Mutations
Beleva Guthrie, Violeta; Masica, David L; Fraser, Andrew; Federico, Joseph; Fan, Yunfan; Camps, Manel; Karchin, Rachel
2018-01-01
Abstract The evolution of new biochemical activities frequently involves complex dependencies between mutations and rapid evolutionary radiation. Mutation co-occurrence and covariation have previously been used to identify compensating mutations that are the result of physical contacts and preserve protein function and fold. Here, we model pairwise functional dependencies and higher order interactions that enable evolution of new protein functions. We use a network model to find complex dependencies between mutations resulting from evolutionary trade-offs and pleiotropic effects. We present a method to construct these networks and to identify functionally interacting mutations in both extant and reconstructed ancestral sequences (Network Analysis of Protein Adaptation). The time ordering of mutations can be incorporated into the networks through phylogenetic reconstruction. We apply NAPA to three distantly homologous β-lactamase protein clusters (TEM, CTX-M-3, and OXA-51), each of which has experienced recent evolutionary radiation under substantially different selective pressures. By analyzing the network properties of each protein cluster, we identify key adaptive mutations, positive pairwise interactions, different adaptive solutions to the same selective pressure, and complex evolutionary trajectories likely to increase protein fitness. We also present evidence that incorporating information from phylogenetic reconstruction and ancestral sequence inference can reduce the number of spurious links in the network, whereas preserving overall network community structure. The analysis does not require structural or biochemical data. In contrast to function-preserving mutation dependencies, which are frequently from structural contacts, gain-of-function mutation dependencies are most commonly between residues distal in protein structure. PMID:29522102
Knowledge diffusion in complex networks by considering time-varying information channels
NASA Astrophysics Data System (ADS)
Zhu, He; Ma, Jing
2018-03-01
In this article, based on a model of epidemic spreading, we explore the knowledge diffusion process with an innovative mechanism for complex networks by considering time-varying information channels. To cover the knowledge diffusion process in homogeneous and heterogeneous networks, two types of networks (the BA network and the ER network) are investigated. The mean-field theory is used to theoretically draw the knowledge diffusion threshold. Numerical simulation demonstrates that the knowledge diffusion threshold is almost linearly correlated with the mean of the activity rate. In addition, under the influence of the activity rate and distinct from the classic Susceptible-Infected-Susceptible (SIS) model, the density of knowers almost linearly grows with the spreading rate. Finally, in consideration of the ubiquitous mechanism of innovation, we further study the evolution of knowledge in our proposed model. The results suggest that compared with the effect of the spreading rate, the average knowledge version of the population is affected more by the innovation parameter and the mean of the activity rate. Furthermore, in the BA network, the average knowledge version of individuals with higher degree is always newer than those with lower degree.
Self-organized topology of recurrence-based complex networks
NASA Astrophysics Data System (ADS)
Yang, Hui; Liu, Gang
2013-12-01
With the rapid technological advancement, network is almost everywhere in our daily life. Network theory leads to a new way to investigate the dynamics of complex systems. As a result, many methods are proposed to construct a network from nonlinear time series, including the partition of state space, visibility graph, nearest neighbors, and recurrence approaches. However, most previous works focus on deriving the adjacency matrix to represent the complex network and extract new network-theoretic measures. Although the adjacency matrix provides connectivity information of nodes and edges, the network geometry can take variable forms. The research objective of this article is to develop a self-organizing approach to derive the steady geometric structure of a network from the adjacency matrix. We simulate the recurrence network as a physical system by treating the edges as springs and the nodes as electrically charged particles. Then, force-directed algorithms are developed to automatically organize the network geometry by minimizing the system energy. Further, a set of experiments were designed to investigate important factors (i.e., dynamical systems, network construction methods, force-model parameter, nonhomogeneous distribution) affecting this self-organizing process. Interestingly, experimental results show that the self-organized geometry recovers the attractor of a dynamical system that produced the adjacency matrix. This research addresses a question, i.e., "what is the self-organizing geometry of a recurrence network?" and provides a new way to reproduce the attractor or time series from the recurrence plot. As a result, novel network-theoretic measures (e.g., average path length and proximity ratio) can be achieved based on actual node-to-node distances in the self-organized network topology. The paper brings the physical models into the recurrence analysis and discloses the spatial geometry of recurrence networks.
Self-organized topology of recurrence-based complex networks.
Yang, Hui; Liu, Gang
2013-12-01
With the rapid technological advancement, network is almost everywhere in our daily life. Network theory leads to a new way to investigate the dynamics of complex systems. As a result, many methods are proposed to construct a network from nonlinear time series, including the partition of state space, visibility graph, nearest neighbors, and recurrence approaches. However, most previous works focus on deriving the adjacency matrix to represent the complex network and extract new network-theoretic measures. Although the adjacency matrix provides connectivity information of nodes and edges, the network geometry can take variable forms. The research objective of this article is to develop a self-organizing approach to derive the steady geometric structure of a network from the adjacency matrix. We simulate the recurrence network as a physical system by treating the edges as springs and the nodes as electrically charged particles. Then, force-directed algorithms are developed to automatically organize the network geometry by minimizing the system energy. Further, a set of experiments were designed to investigate important factors (i.e., dynamical systems, network construction methods, force-model parameter, nonhomogeneous distribution) affecting this self-organizing process. Interestingly, experimental results show that the self-organized geometry recovers the attractor of a dynamical system that produced the adjacency matrix. This research addresses a question, i.e., "what is the self-organizing geometry of a recurrence network?" and provides a new way to reproduce the attractor or time series from the recurrence plot. As a result, novel network-theoretic measures (e.g., average path length and proximity ratio) can be achieved based on actual node-to-node distances in the self-organized network topology. The paper brings the physical models into the recurrence analysis and discloses the spatial geometry of recurrence networks.
Self-organized topology of recurrence-based complex networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Hui, E-mail: huiyang@usf.edu; Liu, Gang
With the rapid technological advancement, network is almost everywhere in our daily life. Network theory leads to a new way to investigate the dynamics of complex systems. As a result, many methods are proposed to construct a network from nonlinear time series, including the partition of state space, visibility graph, nearest neighbors, and recurrence approaches. However, most previous works focus on deriving the adjacency matrix to represent the complex network and extract new network-theoretic measures. Although the adjacency matrix provides connectivity information of nodes and edges, the network geometry can take variable forms. The research objective of this article ismore » to develop a self-organizing approach to derive the steady geometric structure of a network from the adjacency matrix. We simulate the recurrence network as a physical system by treating the edges as springs and the nodes as electrically charged particles. Then, force-directed algorithms are developed to automatically organize the network geometry by minimizing the system energy. Further, a set of experiments were designed to investigate important factors (i.e., dynamical systems, network construction methods, force-model parameter, nonhomogeneous distribution) affecting this self-organizing process. Interestingly, experimental results show that the self-organized geometry recovers the attractor of a dynamical system that produced the adjacency matrix. This research addresses a question, i.e., “what is the self-organizing geometry of a recurrence network?” and provides a new way to reproduce the attractor or time series from the recurrence plot. As a result, novel network-theoretic measures (e.g., average path length and proximity ratio) can be achieved based on actual node-to-node distances in the self-organized network topology. The paper brings the physical models into the recurrence analysis and discloses the spatial geometry of recurrence networks.« less
A Networks Approach to Modeling Enzymatic Reactions.
Imhof, P
2016-01-01
Modeling enzymatic reactions is a demanding task due to the complexity of the system, the many degrees of freedom involved and the complex, chemical, and conformational transitions associated with the reaction. Consequently, enzymatic reactions are not determined by precisely one reaction pathway. Hence, it is beneficial to obtain a comprehensive picture of possible reaction paths and competing mechanisms. By combining individually generated intermediate states and chemical transition steps a network of such pathways can be constructed. Transition networks are a discretized representation of a potential energy landscape consisting of a multitude of reaction pathways connecting the end states of the reaction. The graph structure of the network allows an easy identification of the energetically most favorable pathways as well as a number of alternative routes. © 2016 Elsevier Inc. All rights reserved.
Smad Signaling Dynamics: Insights from a Parsimonious Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiley, H. S.; Shankaran, Harish
2008-09-09
The molecular mechanisms that transmit information from cell surface receptors to the nucleus are exceedingly complex; thus, much effort has been expended in developing computational models to understand these processes. A recent study on modeling the nuclear-cytoplasmic shuttling of Smad2-Smad4 complexes in response to transforming growth factor β (TGF-β) receptor activation has provided substantial insight into how this signaling network translates the degree of TGF-β receptor activation (input) into the amount of nuclear Smad2-Smad4 complexes (output). The study addressed this question by combining a simple, mechanistic model with targeted experiments, an approach that proved particularly powerful for exploring the fundamentalmore » properties of a complex signaling network. The mathematical model revealed that Smad nuclear-cytoplasmic dynamics enables a proportional, but time-delayed coupling between the input and the output. As a result, the output can faithfully track gradual changes in the input, while the rapid input fluctuations that constitute signaling noise are dampened out.« less
HIA, the next step: Defining models and roles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Putters, Kim
If HIA is to be an effective instrument for optimising health interests in the policy making process it has to recognise the different contests in which policy is made and the relevance of both technical rationality and political rationality. Policy making may adopt a rational perspective in which there is a systematic and orderly progression from problem formulation to solution or a network perspective in which there are multiple interdependencies, extensive negotiation and compromise, and the steps from problem to formulation are not followed sequentially or in any particular order. Policy problems may be simple with clear causal pathways andmore » responsibilities or complex with unclear causal pathways and disputed responsibilities. Network analysis is required to show which stakeholders are involved, their support for health issues and the degree of consensus. From this analysis three models of HIA emerge. The first is the phases model which is fitted to simple problems and a rational perspective of policymaking. This model involves following structured steps. The second model is the rounds (Echternach) model that is fitted to complex problems and a network perspective of policymaking. This model is dynamic and concentrates on network solutions taking these steps in no particular order. The final model is the 'garbage can' model fitted to contexts which combine simple and complex problems. In this model HIA functions as a problem solver and signpost keeping all possible solutions and stakeholders in play and allowing solutions to emerge over time. HIA models should be the beginning rather than the conclusion of discussion the worlds of HIA and policymaking.« less
A selection model for accounting for publication bias in a full network meta-analysis.
Mavridis, Dimitris; Welton, Nicky J; Sutton, Alex; Salanti, Georgia
2014-12-30
Copas and Shi suggested a selection model to explore the potential impact of publication bias via sensitivity analysis based on assumptions for the probability of publication of trials conditional on the precision of their results. Chootrakool et al. extended this model to three-arm trials but did not fully account for the implications of the consistency assumption, and their model is difficult to generalize for complex network structures with more than three treatments. Fitting these selection models within a frequentist setting requires maximization of a complex likelihood function, and identification problems are common. We have previously presented a Bayesian implementation of the selection model when multiple treatments are compared with a common reference treatment. We now present a general model suitable for complex, full network meta-analysis that accounts for consistency when adjusting results for publication bias. We developed a design-by-treatment selection model to describe the mechanism by which studies with different designs (sets of treatments compared in a trial) and precision may be selected for publication. We fit the model in a Bayesian setting because it avoids the numerical problems encountered in the frequentist setting, it is generalizable with respect to the number of treatments and study arms, and it provides a flexible framework for sensitivity analysis using external knowledge. Our model accounts for the additional uncertainty arising from publication bias more successfully compared to the standard Copas model or its previous extensions. We illustrate the methodology using a published triangular network for the failure of vascular graft or arterial patency. Copyright © 2014 John Wiley & Sons, Ltd.
A game theory-based trust measurement model for social networks.
Wang, Yingjie; Cai, Zhipeng; Yin, Guisheng; Gao, Yang; Tong, Xiangrong; Han, Qilong
2016-01-01
In social networks, trust is a complex social network. Participants in online social networks want to share information and experiences with as many reliable users as possible. However, the modeling of trust is complicated and application dependent. Modeling trust needs to consider interaction history, recommendation, user behaviors and so on. Therefore, modeling trust is an important focus for online social networks. We propose a game theory-based trust measurement model for social networks. The trust degree is calculated from three aspects, service reliability, feedback effectiveness, recommendation credibility, to get more accurate result. In addition, to alleviate the free-riding problem, we propose a game theory-based punishment mechanism for specific trust and global trust, respectively. We prove that the proposed trust measurement model is effective. The free-riding problem can be resolved effectively through adding the proposed punishment mechanism.
Bidirectional selection between two classes in complex social networks.
Zhou, Bin; He, Zhe; Jiang, Luo-Luo; Wang, Nian-Xin; Wang, Bing-Hong
2014-12-19
The bidirectional selection between two classes widely emerges in various social lives, such as commercial trading and mate choosing. Until now, the discussions on bidirectional selection in structured human society are quite limited. We demonstrated theoretically that the rate of successfully matching is affected greatly by individuals' neighborhoods in social networks, regardless of the type of networks. Furthermore, it is found that the high average degree of networks contributes to increasing rates of successful matches. The matching performance in different types of networks has been quantitatively investigated, revealing that the small-world networks reinforces the matching rate more than scale-free networks at given average degree. In addition, our analysis is consistent with the modeling result, which provides the theoretical understanding of underlying mechanisms of matching in complex networks.
Yang, Shiju; Li, Chuandong; Huang, Tingwen
2016-03-01
The problem of exponential stabilization and synchronization for fuzzy model of memristive neural networks (MNNs) is investigated by using periodically intermittent control in this paper. Based on the knowledge of memristor and recurrent neural network, the model of MNNs is formulated. Some novel and useful stabilization criteria and synchronization conditions are then derived by using the Lyapunov functional and differential inequality techniques. It is worth noting that the methods used in this paper are also applied to fuzzy model for complex networks and general neural networks. Numerical simulations are also provided to verify the effectiveness of theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.
GraphStore: A Distributed Graph Storage System for Big Data Networks
ERIC Educational Resources Information Center
Martha, VenkataSwamy
2013-01-01
Networks, such as social networks, are a universal solution for modeling complex problems in real time, especially in the Big Data community. While previous studies have attempted to enhance network processing algorithms, none have paved a path for the development of a persistent storage system. The proposed solution, GraphStore, provides an…
Comparison of De Novo Network Reverse Engineering Methods with Applications to Ecotoxicology
The DREAM competitions for network modeling comparisons have made several points clear: 1) incorporating knowledge beyond gene expression data may improve modeling (e.g., data from knock-out organisms), 2) most techniques do not perform better than random, and 3) more complex met...
Modelling DC responses of 3D complex fracture networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beskardes, Gungor Didem; Weiss, Chester Joseph
Here, the determination of the geometrical properties of fractures plays a critical role in many engineering problems to assess the current hydrological and mechanical states of geological media and to predict their future states. However, numerical modeling of geoelectrical responses in realistic fractured media has been challenging due to the explosive computational cost imposed by the explicit discretizations of fractures at multiple length scales, which often brings about a tradeoff between computational efficiency and geologic realism. Here, we use the hierarchical finite element method to model electrostatic response of realistically complex 3D conductive fracture networks with minimal computational cost.
Modelling DC responses of 3D complex fracture networks
Beskardes, Gungor Didem; Weiss, Chester Joseph
2018-03-01
Here, the determination of the geometrical properties of fractures plays a critical role in many engineering problems to assess the current hydrological and mechanical states of geological media and to predict their future states. However, numerical modeling of geoelectrical responses in realistic fractured media has been challenging due to the explosive computational cost imposed by the explicit discretizations of fractures at multiple length scales, which often brings about a tradeoff between computational efficiency and geologic realism. Here, we use the hierarchical finite element method to model electrostatic response of realistically complex 3D conductive fracture networks with minimal computational cost.
Complex networks in the Euclidean space of communicability distances
NASA Astrophysics Data System (ADS)
Estrada, Ernesto
2012-06-01
We study the properties of complex networks embedded in a Euclidean space of communicability distances. The communicability distance between two nodes is defined as the difference between the weighted sum of walks self-returning to the nodes and the weighted sum of walks going from one node to the other. We give some indications that the communicability distance identifies the least crowded routes in networks where simultaneous submission of packages is taking place. We define an index Q based on communicability and shortest path distances, which allows reinterpreting the “small-world” phenomenon as the region of minimum Q in the Watts-Strogatz model. It also allows the classification and analysis of networks with different efficiency of spatial uses. Consequently, the communicability distance displays unique features for the analysis of complex networks in different scenarios.
Analysis of complex neural circuits with nonlinear multidimensional hidden state models
Friedman, Alexander; Slocum, Joshua F.; Tyulmankov, Danil; Gibb, Leif G.; Altshuler, Alex; Ruangwises, Suthee; Shi, Qinru; Toro Arana, Sebastian E.; Beck, Dirk W.; Sholes, Jacquelyn E. C.; Graybiel, Ann M.
2016-01-01
A universal need in understanding complex networks is the identification of individual information channels and their mutual interactions under different conditions. In neuroscience, our premier example, networks made up of billions of nodes dynamically interact to bring about thought and action. Granger causality is a powerful tool for identifying linear interactions, but handling nonlinear interactions remains an unmet challenge. We present a nonlinear multidimensional hidden state (NMHS) approach that achieves interaction strength analysis and decoding of networks with nonlinear interactions by including latent state variables for each node in the network. We compare NMHS to Granger causality in analyzing neural circuit recordings and simulations, improvised music, and sociodemographic data. We conclude that NMHS significantly extends the scope of analyses of multidimensional, nonlinear networks, notably in coping with the complexity of the brain. PMID:27222584
Complex and unexpected dynamics in simple genetic regulatory networks
NASA Astrophysics Data System (ADS)
Borg, Yanika; Ullner, Ekkehard; Alagha, Afnan; Alsaedi, Ahmed; Nesbeth, Darren; Zaikin, Alexey
2014-03-01
One aim of synthetic biology is to construct increasingly complex genetic networks from interconnected simpler ones to address challenges in medicine and biotechnology. However, as systems increase in size and complexity, emergent properties lead to unexpected and complex dynamics due to nonlinear and nonequilibrium properties from component interactions. We focus on four different studies of biological systems which exhibit complex and unexpected dynamics. Using simple synthetic genetic networks, small and large populations of phase-coupled quorum sensing repressilators, Goodwin oscillators, and bistable switches, we review how coupled and stochastic components can result in clustering, chaos, noise-induced coherence and speed-dependent decision making. A system of repressilators exhibits oscillations, limit cycles, steady states or chaos depending on the nature and strength of the coupling mechanism. In large repressilator networks, rich dynamics can also be exhibited, such as clustering and chaos. In populations of Goodwin oscillators, noise can induce coherent oscillations. In bistable systems, the speed with which incoming external signals reach steady state can bias the network towards particular attractors. These studies showcase the range of dynamical behavior that simple synthetic genetic networks can exhibit. In addition, they demonstrate the ability of mathematical modeling to analyze nonlinearity and inhomogeneity within these systems.
A Complex Network Approach to Stylometry
Amancio, Diego Raphael
2015-01-01
Statistical methods have been widely employed to study the fundamental properties of language. In recent years, methods from complex and dynamical systems proved useful to create several language models. Despite the large amount of studies devoted to represent texts with physical models, only a limited number of studies have shown how the properties of the underlying physical systems can be employed to improve the performance of natural language processing tasks. In this paper, I address this problem by devising complex networks methods that are able to improve the performance of current statistical methods. Using a fuzzy classification strategy, I show that the topological properties extracted from texts complement the traditional textual description. In several cases, the performance obtained with hybrid approaches outperformed the results obtained when only traditional or networked methods were used. Because the proposed model is generic, the framework devised here could be straightforwardly used to study similar textual applications where the topology plays a pivotal role in the description of the interacting agents. PMID:26313921
NASA Astrophysics Data System (ADS)
Li, Yuanyuan; Jin, Suoqin; Lei, Lei; Pan, Zishu; Zou, Xiufen
2015-03-01
The early diagnosis and investigation of the pathogenic mechanisms of complex diseases are the most challenging problems in the fields of biology and medicine. Network-based systems biology is an important technique for the study of complex diseases. The present study constructed dynamic protein-protein interaction (PPI) networks to identify dynamical network biomarkers (DNBs) and analyze the underlying mechanisms of complex diseases from a systems level. We developed a model-based framework for the construction of a series of time-sequenced networks by integrating high-throughput gene expression data into PPI data. By combining the dynamic networks and molecular modules, we identified significant DNBs for four complex diseases, including influenza caused by either H3N2 or H1N1, acute lung injury and type 2 diabetes mellitus, which can serve as warning signals for disease deterioration. Function and pathway analyses revealed that the identified DNBs were significantly enriched during key events in early disease development. Correlation and information flow analyses revealed that DNBs effectively discriminated between different disease processes and that dysfunctional regulation and disproportional information flow may contribute to the increased disease severity. This study provides a general paradigm for revealing the deterioration mechanisms of complex diseases and offers new insights into their early diagnoses.
Honegger, Thibault; Thielen, Moritz I; Feizi, Soheil; Sanjana, Neville E; Voldman, Joel
2016-06-22
The central nervous system is a dense, layered, 3D interconnected network of populations of neurons, and thus recapitulating that complexity for in vitro CNS models requires methods that can create defined topologically-complex neuronal networks. Several three-dimensional patterning approaches have been developed but none have demonstrated the ability to control the connections between populations of neurons. Here we report a method using AC electrokinetic forces that can guide, accelerate, slow down and push up neurites in un-modified collagen scaffolds. We present a means to create in vitro neural networks of arbitrary complexity by using such forces to create 3D intersections of primary neuronal populations that are plated in a 2D plane. We report for the first time in vitro basic brain motifs that have been previously observed in vivo and show that their functional network is highly decorrelated to their structure. This platform can provide building blocks to reproduce in vitro the complexity of neural circuits and provide a minimalistic environment to study the structure-function relationship of the brain circuitry.
NASA Astrophysics Data System (ADS)
Honegger, Thibault; Thielen, Moritz I.; Feizi, Soheil; Sanjana, Neville E.; Voldman, Joel
2016-06-01
The central nervous system is a dense, layered, 3D interconnected network of populations of neurons, and thus recapitulating that complexity for in vitro CNS models requires methods that can create defined topologically-complex neuronal networks. Several three-dimensional patterning approaches have been developed but none have demonstrated the ability to control the connections between populations of neurons. Here we report a method using AC electrokinetic forces that can guide, accelerate, slow down and push up neurites in un-modified collagen scaffolds. We present a means to create in vitro neural networks of arbitrary complexity by using such forces to create 3D intersections of primary neuronal populations that are plated in a 2D plane. We report for the first time in vitro basic brain motifs that have been previously observed in vivo and show that their functional network is highly decorrelated to their structure. This platform can provide building blocks to reproduce in vitro the complexity of neural circuits and provide a minimalistic environment to study the structure-function relationship of the brain circuitry.
An Application to the Prediction of LOD Change Based on General Regression Neural Network
NASA Astrophysics Data System (ADS)
Zhang, X. H.; Wang, Q. J.; Zhu, J. J.; Zhang, H.
2011-07-01
Traditional prediction of the LOD (length of day) change was based on linear models, such as the least square model and the autoregressive technique, etc. Due to the complex non-linear features of the LOD variation, the performances of the linear model predictors are not fully satisfactory. This paper applies a non-linear neural network - general regression neural network (GRNN) model to forecast the LOD change, and the results are analyzed and compared with those obtained with the back propagation neural network and other models. The comparison shows that the performance of the GRNN model in the prediction of the LOD change is efficient and feasible.
Search for Directed Networks by Different Random Walk Strategies
NASA Astrophysics Data System (ADS)
Zhu, Zi-Qi; Jin, Xiao-Ling; Huang, Zhi-Long
2012-03-01
A comparative study is carried out on the efficiency of five different random walk strategies searching on directed networks constructed based on several typical complex networks. Due to the difference in search efficiency of the strategies rooted in network clustering, the clustering coefficient in a random walker's eye on directed networks is defined and computed to be half of the corresponding undirected networks. The search processes are performed on the directed networks based on Erdös—Rényi model, Watts—Strogatz model, Barabási—Albert model and clustered scale-free network model. It is found that self-avoiding random walk strategy is the best search strategy for such directed networks. Compared to unrestricted random walk strategy, path-iteration-avoiding random walks can also make the search process much more efficient. However, no-triangle-loop and no-quadrangle-loop random walks do not improve the search efficiency as expected, which is different from those on undirected networks since the clustering coefficient of directed networks are smaller than that of undirected networks.
Klein, Michael T; Hou, Gang; Quann, Richard J; Wei, Wei; Liao, Kai H; Yang, Raymond S H; Campain, Julie A; Mazurek, Monica A; Broadbelt, Linda J
2002-01-01
A chemical engineering approach for the rigorous construction, solution, and optimization of detailed kinetic models for biological processes is described. This modeling capability addresses the required technical components of detailed kinetic modeling, namely, the modeling of reactant structure and composition, the building of the reaction network, the organization of model parameters, the solution of the kinetic model, and the optimization of the model. Even though this modeling approach has enjoyed successful application in the petroleum industry, its application to biomedical research has just begun. We propose to expand the horizons on classic pharmacokinetics and physiologically based pharmacokinetics (PBPK), where human or animal bodies were often described by a few compartments, by integrating PBPK with reaction network modeling described in this article. If one draws a parallel between an oil refinery, where the application of this modeling approach has been very successful, and a human body, the individual processing units in the oil refinery may be considered equivalent to the vital organs of the human body. Even though the cell or organ may be much more complicated, the complex biochemical reaction networks in each organ may be similarly modeled and linked in much the same way as the modeling of the entire oil refinery through linkage of the individual processing units. The integrated chemical engineering software package described in this article, BioMOL, denotes the biological application of molecular-oriented lumping. BioMOL can build a detailed model in 1-1,000 CPU sec using standard desktop hardware. The models solve and optimize using standard and widely available hardware and software and can be presented in the context of a user-friendly interface. We believe this is an engineering tool with great promise in its application to complex biological reaction networks. PMID:12634134
NASA Astrophysics Data System (ADS)
Lisewski, Andreas Martin; Lichtarge, Olivier
2010-08-01
Recurrent international financial crises inflict significant damage to societies and stress the need for mechanisms or strategies to control risk and tamper market uncertainties. Unfortunately, the complex network of market interactions often confounds rational approaches to optimize financial risks. Here we show that investors can overcome this complexity and globally minimize risk in portfolio models for any given expected return, provided the margin requirement remains below a critical, empirically measurable value. In practice, for markets with centrally regulated margin requirements, a rational stabilization strategy would be keeping margins small enough. This result follows from ground states of the random field spin glass Ising model that can be calculated exactly through convex optimization when relative spin coupling is limited by the norm of the network’s Laplacian matrix. In that regime, this novel approach is robust to noise in empirical data and may be also broadly relevant to complex networks with frustrated interactions that are studied throughout scientific fields.
A network dynamics approach to chemical reaction networks
NASA Astrophysics Data System (ADS)
van der Schaft, A. J.; Rao, S.; Jayawardhana, B.
2016-04-01
A treatment of a chemical reaction network theory is given from the perspective of nonlinear network dynamics, in particular of consensus dynamics. By starting from the complex-balanced assumption, the reaction dynamics governed by mass action kinetics can be rewritten into a form which allows for a very simple derivation of a number of key results in the chemical reaction network theory, and which directly relates to the thermodynamics and port-Hamiltonian formulation of the system. Central in this formulation is the definition of a balanced Laplacian matrix on the graph of chemical complexes together with a resulting fundamental inequality. This immediately leads to the characterisation of the set of equilibria and their stability. Furthermore, the assumption of complex balancedness is revisited from the point of view of Kirchhoff's matrix tree theorem. Both the form of the dynamics and the deduced behaviour are very similar to consensus dynamics, and provide additional perspectives to the latter. Finally, using the classical idea of extending the graph of chemical complexes by a 'zero' complex, a complete steady-state stability analysis of mass action kinetics reaction networks with constant inflows and mass action kinetics outflows is given, and a unified framework is provided for structure-preserving model reduction of this important class of open reaction networks.
Valdés, Julio J; Bonham-Carter, Graeme
2006-03-01
A computational intelligence approach is used to explore the problem of detecting internal state changes in time dependent processes; described by heterogeneous, multivariate time series with imprecise data and missing values. Such processes are approximated by collections of time dependent non-linear autoregressive models represented by a special kind of neuro-fuzzy neural network. Grid and high throughput computing model mining procedures based on neuro-fuzzy networks and genetic algorithms, generate: (i) collections of models composed of sets of time lag terms from the time series, and (ii) prediction functions represented by neuro-fuzzy networks. The composition of the models and their prediction capabilities, allows the identification of changes in the internal structure of the process. These changes are associated with the alternation of steady and transient states, zones with abnormal behavior, instability, and other situations. This approach is general, and its sensitivity for detecting subtle changes of state is revealed by simulation experiments. Its potential in the study of complex processes in earth sciences and astrophysics is illustrated with applications using paleoclimate and solar data.
Preprogramming Complex Hydrogel Responses using Enzymatic Reaction Networks.
Postma, Sjoerd G J; Vialshin, Ilia N; Gerritsen, Casper Y; Bao, Min; Huck, Wilhelm T S
2017-02-06
The creation of adaptive matter is heavily inspired by biological systems. However, it remains challenging to design complex material responses that are governed by reaction networks, which lie at the heart of cellular complexity. The main reason for this slow progress is the lack of a general strategy to integrate reaction networks with materials. Herein we use a systematic approach to preprogram the response of a hydrogel to a trigger, in this case the enzyme trypsin, which activates a reaction network embedded within the hydrogel. A full characterization of all the kinetic rate constants in the system enabled the construction of a computational model, which predicted different hydrogel responses depending on the input concentration of the trigger. The results of the simulation are in good agreement with experimental findings. Our methodology can be used to design new, adaptive materials of which the properties are governed by reaction networks of arbitrary complexity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Model-based design of RNA hybridization networks implemented in living cells
Rodrigo, Guillermo; Prakash, Satya; Shen, Shensi; Majer, Eszter
2017-01-01
Abstract Synthetic gene circuits allow the behavior of living cells to be reprogrammed, and non-coding small RNAs (sRNAs) are increasingly being used as programmable regulators of gene expression. However, sRNAs (natural or synthetic) are generally used to regulate single target genes, while complex dynamic behaviors would require networks of sRNAs regulating each other. Here, we report a strategy for implementing such networks that exploits hybridization reactions carried out exclusively by multifaceted sRNAs that are both targets of and triggers for other sRNAs. These networks are ultimately coupled to the control of gene expression. We relied on a thermodynamic model of the different stable conformational states underlying this system at the nucleotide level. To test our model, we designed five different RNA hybridization networks with a linear architecture, and we implemented them in Escherichia coli. We validated the network architecture at the molecular level by native polyacrylamide gel electrophoresis, as well as the network function at the bacterial population and single-cell levels with a fluorescent reporter. Our results suggest that it is possible to engineer complex cellular programs based on RNA from first principles. Because these networks are mainly based on physical interactions, our designs could be expanded to other organisms as portable regulatory resources or to implement biological computations. PMID:28934501
Network structure of production
Atalay, Enghin; Hortaçsu, Ali; Roberts, James; Syverson, Chad
2011-01-01
Complex social networks have received increasing attention from researchers. Recent work has focused on mechanisms that produce scale-free networks. We theoretically and empirically characterize the buyer–supplier network of the US economy and find that purely scale-free models have trouble matching key attributes of the network. We construct an alternative model that incorporates realistic features of firms’ buyer–supplier relationships and estimate the model’s parameters using microdata on firms’ self-reported customers. This alternative framework is better able to match the attributes of the actual economic network and aids in further understanding several important economic phenomena. PMID:21402924
The advantage of flexible neuronal tunings in neural network models for motor learning
Marongelli, Ellisha N.; Thoroughman, Kurt A.
2013-01-01
Human motor adaptation to novel environments is often modeled by a basis function network that transforms desired movement properties into estimated forces. This network employs a layer of nodes that have fixed broad tunings that generalize across the input domain. Learning is achieved by updating the weights of these nodes in response to training experience. This conventional model is unable to account for rapid flexibility observed in human spatial generalization during motor adaptation. However, added plasticity in the widths of the basis function tunings can achieve this flexibility, and several neurophysiological experiments have revealed flexibility in tunings of sensorimotor neurons. We found a model, Locally Weighted Projection Regression (LWPR), which uniquely possesses the structure of a basis function network in which both the weights and tuning widths of the nodes are updated incrementally during adaptation. We presented this LWPR model with training functions of different spatial complexities and monitored incremental updates to receptive field widths. An inverse pattern of dependence of receptive field adaptation on experienced error became evident, underlying both a relationship between generalization and complexity, and a unique behavior in which generalization always narrows after a sudden switch in environmental complexity. These results implicate a model that is flexible in both basis function widths and weights, like LWPR, as a viable alternative model for human motor adaptation that can account for previously observed plasticity in spatial generalization. This theory can be tested by using the behaviors observed in our experiments as novel hypotheses in human studies. PMID:23888141
NASA Astrophysics Data System (ADS)
Bellingeri, Michele; Lu, Zhe-Ming; Cassi, Davide; Scotognella, Francesco
2018-02-01
Complex network response to node loss is a central question in different fields of science ranging from physics, sociology, biology to ecology. Previous studies considered binary networks where the weight of the links is not accounted for. However, in real-world networks the weights of connections can be widely different. Here, we analyzed the response of real-world road traffic complex network of Beijing, the most prosperous city in China. We produced nodes removal attack simulations using classic binary node features and we introduced weighted ranks for node importance. We measured the network functioning during nodes removal with three different parameters: the size of the largest connected cluster (LCC), the binary network efficiency (Bin EFF) and the weighted network efficiency (Weg EFF). We find that removing nodes according to weighted rank, i.e. considering the weight of the links as a number of taxi flows along the roads, produced in general the highest damage in the system. Our results show that: (i) in order to model Beijing road complex networks response to nodes (intersections) failure, it is necessary to consider the weight of the links; (ii) to discover the best attack strategy, it is important to use nodes rank accounting links weight.
Features of spillover networks in international financial markets: Evidence from the G20 countries
NASA Astrophysics Data System (ADS)
Liu, Xueyong; An, Haizhong; Li, Huajiao; Chen, Zhihua; Feng, Sida; Wen, Shaobo
2017-08-01
The objective of this study is to investigate volatility spillover transmission systematically in stock markets across the G20 countries. To achieve this objective, we combined GARCH-BEKK model with complex network theory using the linkages of spillovers. GARCH-BEKK model was used to capture volatility spillover between stock markets. Then, an information spillover network was built. The data encompass the main stock indexes from 19 individual countries in the G20. To consider the dynamic spillover, the full data set was divided into several sub-periods. The main contribution of this paper is considering the volatility spillover relationships as the edges of a complex network, which can capture the propagation path of volatility spillovers. The results indicate that the volatility spillovers among the stock markets of the G20 countries constitute a holistic associated network, another finding is that Korea acts a role of largest sender in long-term, while Brazil is the largest long-term recipient in the G20 spillover network.
Seismic Hazard Analysis on a Complex, Interconnected Fault Network
NASA Astrophysics Data System (ADS)
Page, M. T.; Field, E. H.; Milner, K. R.
2017-12-01
In California, seismic hazard models have evolved from simple, segmented prescriptive models to much more complex representations of multi-fault and multi-segment earthquakes on an interconnected fault network. During the development of the 3rd Uniform California Earthquake Rupture Forecast (UCERF3), the prevalence of multi-fault ruptures in the modeling was controversial. Yet recent earthquakes, for example, the Kaikora earthquake - as well as new research on the potential of multi-fault ruptures (e.g., Nissen et al., 2016; Sahakian et al. 2017) - have validated this approach. For large crustal earthquakes, multi-fault ruptures may be the norm rather than the exception. As datasets improve and we can view the rupture process at a finer scale, the interconnected, fractal nature of faults is revealed even by individual earthquakes. What is the proper way to model earthquakes on a fractal fault network? We show multiple lines of evidence that connectivity even in modern models such as UCERF3 may be underestimated, although clustering in UCERF3 mitigates some modeling simplifications. We need a methodology that can be applied equally well where the fault network is well-mapped and where it is not - an extendable methodology that allows us to "fill in" gaps in the fault network and in our knowledge.
Nonlinear model of epidemic spreading in a complex social network.
Kosiński, Robert A; Grabowski, A
2007-10-01
The epidemic spreading in a human society is a complex process, which can be described on the basis of a nonlinear mathematical model. In such an approach the complex and hierarchical structure of social network (which has implications for the spreading of pathogens and can be treated as a complex network), can be taken into account. In our model each individual has one of the four permitted states: susceptible, infected, infective, unsusceptible or dead. This refers to the SEIR model used in epidemiology. The state of an individual changes in time, depending on the previous state and the interactions with other individuals. The description of the interpersonal contacts is based on the experimental observations of the social relations in the community. It includes spatial localization of the individuals and hierarchical structure of interpersonal interactions. Numerical simulations were performed for different types of epidemics, giving the progress of a spreading process and typical relationships (e.g. range of epidemic in time, the epidemic curve). The spreading process has a complex and spatially chaotic character. The time dependence of the number of infective individuals shows the nonlinear character of the spreading process. We investigate the influence of the preventive vaccinations on the spreading process. In particular, for a critical value of preventively vaccinated individuals the percolation threshold is observed and the epidemic is suppressed.
Global stability of an SIR model with differential infectivity on complex networks
NASA Astrophysics Data System (ADS)
Yuan, Xinpeng; Wang, Fang; Xue, Yakui; Liu, Maoxing
2018-06-01
In this paper, an SIR model with birth and death on complex networks is analyzed, where infected individuals are divided into m groups according to their infection and contact between human is treated as a scale-free social network. We obtain the basic reproduction number R0 as well as the effects of various immunization schemes. The results indicate that the disease-free equilibrium is locally and globally asymptotically stable in some conditions, otherwise disease-free equilibrium is unstable and exists an unique endemic equilibrium that is globally asymptotically stable. Our theoretical results are confirmed by numerical simulations and a promising way for infectious diseases control is suggested.
Analysis of structural patterns in the brain with the complex network approach
NASA Astrophysics Data System (ADS)
Maksimenko, Vladimir A.; Makarov, Vladimir V.; Kharchenko, Alexander A.; Pavlov, Alexey N.; Khramova, Marina V.; Koronovskii, Alexey A.; Hramov, Alexander E.
2015-03-01
In this paper we study mechanisms of the phase synchronization in a model network of Van der Pol oscillators and in the neural network of the brain by consideration of macroscopic parameters of these networks. As the macroscopic characteristics of the model network we consider a summary signal produced by oscillators. Similar to the model simulations, we study EEG signals reflecting the macroscopic dynamics of neural network. We show that the appearance of the phase synchronization leads to an increased peak in the wavelet spectrum related to the dynamics of synchronized oscillators. The observed correlation between the phase relations of individual elements and the macroscopic characteristics of the whole network provides a way to detect phase synchronization in the neural networks in the cases of normal and pathological activity.
Networks consolidation program: Maintenance and Operations (M&O) staffing estimates
NASA Technical Reports Server (NTRS)
Goodwin, J. P.
1981-01-01
The Mark IV-A consolidate deep space and high elliptical Earth orbiter (HEEO) missions tracking and implements centralized control and monitoring at the deep space communications complexes (DSCC). One of the objectives of the network design is to reduce maintenance and operations (M&O) costs. To determine if the system design meets this objective an M&O staffing model for Goldstone was developed which was used to estimate the staffing levels required to support the Mark IV-A configuration. The study was performed for the Goldstone complex and the program office translated these estimates for the overseas complexes to derive the network estimates.
Neural network submodel as an abstraction tool: relating network performance to combat outcome
NASA Astrophysics Data System (ADS)
Jablunovsky, Greg; Dorman, Clark; Yaworsky, Paul S.
2000-06-01
Simulation of Command and Control (C2) networks has historically emphasized individual system performance with little architectural context or credible linkage to `bottom- line' measures of combat outcomes. Renewed interest in modeling C2 effects and relationships stems from emerging network intensive operational concepts. This demands improved methods to span the analytical hierarchy between C2 system performance models and theater-level models. Neural network technology offers a modeling approach that can abstract the essential behavior of higher resolution C2 models within a campaign simulation. The proposed methodology uses off-line learning of the relationships between network state and campaign-impacting performance of a complex C2 architecture and then approximation of that performance as a time-varying parameter in an aggregated simulation. Ultimately, this abstraction tool offers an increased fidelity of C2 system simulation that captures dynamic network dependencies within a campaign context.
Communications network design and costing model technical manual
NASA Technical Reports Server (NTRS)
Logan, K. P.; Somes, S. S.; Clark, C. A.
1983-01-01
This computer model provides the capability for analyzing long-haul trunking networks comprising a set of user-defined cities, traffic conditions, and tariff rates. Networks may consist of all terrestrial connectivity, all satellite connectivity, or a combination of terrestrial and satellite connectivity. Network solutions provide the least-cost routes between all cities, the least-cost network routing configuration, and terrestrial and satellite service cost totals. The CNDC model allows analyses involving three specific FCC-approved tariffs, which are uniquely structured and representative of most existing service connectivity and pricing philosophies. User-defined tariffs that can be variations of these three tariffs are accepted as input to the model and allow considerable flexibility in network problem specification. The resulting model extends the domain of network analysis from traditional fixed link cost (distance-sensitive) problems to more complex problems involving combinations of distance and traffic-sensitive tariffs.
The Shear Mechanisms of Natural Fractures during the Hydraulic Stimulation of Shale Gas Reservoirs.
Zhang, Zhaobin; Li, Xiao
2016-08-23
The shearing of natural fractures is important in the permeability enhancement of shale gas reservoirs during hydraulic fracturing treatment. In this work, the shearing mechanisms of natural fractures are analyzed using a newly proposed numerical model based on the displacement discontinuities method. The fluid-rock coupling system of the model is carefully designed to calculate the shearing of fractures. Both a single fracture and a complex fracture network are used to investigate the shear mechanisms. The investigation based on a single fracture shows that the non-ignorable shearing length of a natural fracture could be formed before the natural fracture is filled by pressurized fluid. Therefore, for the hydraulic fracturing treatment of the naturally fractured shale gas reservoirs, the shear strength of shale is generally more important than the tensile strength. The fluid-rock coupling propagation processes of a complex fracture network are simulated under different crustal stress conditions and the results agree well with those of the single fracture. The propagation processes of complex fracture network show that a smaller crustal stress difference is unfavorable to the shearing of natural fractures, but is favorable to the formation of complex fracture network.
Systems Genetics as a Tool to Identify Master Genetic Regulators in Complex Disease.
Moreno-Moral, Aida; Pesce, Francesco; Behmoaras, Jacques; Petretto, Enrico
2017-01-01
Systems genetics stems from systems biology and similarly employs integrative modeling approaches to describe the perturbations and phenotypic effects observed in a complex system. However, in the case of systems genetics the main source of perturbation is naturally occurring genetic variation, which can be analyzed at the systems-level to explain the observed variation in phenotypic traits. In contrast with conventional single-variant association approaches, the success of systems genetics has been in the identification of gene networks and molecular pathways that underlie complex disease. In addition, systems genetics has proven useful in the discovery of master trans-acting genetic regulators of functional networks and pathways, which in many cases revealed unexpected gene targets for disease. Here we detail the central components of a fully integrated systems genetics approach to complex disease, starting from assessment of genetic and gene expression variation, linking DNA sequence variation to mRNA (expression QTL mapping), gene regulatory network analysis and mapping the genetic control of regulatory networks. By summarizing a few illustrative (and successful) examples, we highlight how different data-modeling strategies can be effectively integrated in a systems genetics study.
The Shear Mechanisms of Natural Fractures during the Hydraulic Stimulation of Shale Gas Reservoirs
Zhang, Zhaobin; Li, Xiao
2016-01-01
The shearing of natural fractures is important in the permeability enhancement of shale gas reservoirs during hydraulic fracturing treatment. In this work, the shearing mechanisms of natural fractures are analyzed using a newly proposed numerical model based on the displacement discontinuities method. The fluid-rock coupling system of the model is carefully designed to calculate the shearing of fractures. Both a single fracture and a complex fracture network are used to investigate the shear mechanisms. The investigation based on a single fracture shows that the non-ignorable shearing length of a natural fracture could be formed before the natural fracture is filled by pressurized fluid. Therefore, for the hydraulic fracturing treatment of the naturally fractured shale gas reservoirs, the shear strength of shale is generally more important than the tensile strength. The fluid-rock coupling propagation processes of a complex fracture network are simulated under different crustal stress conditions and the results agree well with those of the single fracture. The propagation processes of complex fracture network show that a smaller crustal stress difference is unfavorable to the shearing of natural fractures, but is favorable to the formation of complex fracture network. PMID:28773834
Yue, Shigang; Rind, F Claire
2006-05-01
The lobula giant movement detector (LGMD) is an identified neuron in the locust brain that responds most strongly to the images of an approaching object such as a predator. Its computational model can cope with unpredictable environments without using specific object recognition algorithms. In this paper, an LGMD-based neural network is proposed with a new feature enhancement mechanism to enhance the expanded edges of colliding objects via grouped excitation for collision detection with complex backgrounds. The isolated excitation caused by background detail will be filtered out by the new mechanism. Offline tests demonstrated the advantages of the presented LGMD-based neural network in complex backgrounds. Real time robotics experiments using the LGMD-based neural network as the only sensory system showed that the system worked reliably in a wide range of conditions; in particular, the robot was able to navigate in arenas with structured surrounds and complex backgrounds.
Effect of interaction strength on robustness of controlling edge dynamics in complex networks
NASA Astrophysics Data System (ADS)
Pang, Shao-Peng; Hao, Fei
2018-05-01
Robustness plays a critical role in the controllability of complex networks to withstand failures and perturbations. Recent advances in the edge controllability show that the interaction strength among edges plays a more important role than network structure. Therefore, we focus on the effect of interaction strength on the robustness of edge controllability. Using three categories of all edges to quantify the robustness, we develop a universal framework to evaluate and analyze the robustness in complex networks with arbitrary structures and interaction strengths. Applying our framework to a large number of model and real-world networks, we find that the interaction strength is a dominant factor for the robustness in undirected networks. Meanwhile, the strongest robustness and the optimal edge controllability in undirected networks can be achieved simultaneously. Different from the case of undirected networks, the robustness in directed networks is determined jointly by the interaction strength and the network's degree distribution. Moreover, a stronger robustness is usually associated with a larger number of driver nodes required to maintain full control in directed networks. This prompts us to provide an optimization method by adjusting the interaction strength to optimize the robustness of edge controllability.
Localization and Spreading of Diseases in Complex Networks
NASA Astrophysics Data System (ADS)
Goltsev, A. V.; Dorogovtsev, S. N.; Oliveira, J. G.; Mendes, J. F. F.
2012-09-01
Using the susceptible-infected-susceptible model on unweighted and weighted networks, we consider the disease localization phenomenon. In contrast to the well-recognized point of view that diseases infect a finite fraction of vertices right above the epidemic threshold, we show that diseases can be localized on a finite number of vertices, where hubs and edges with large weights are centers of localization. Our results follow from the analysis of standard models of networks and empirical data for real-world networks.
Restricted Complexity Framework for Nonlinear Adaptive Control in Complex Systems
NASA Astrophysics Data System (ADS)
Williams, Rube B.
2004-02-01
Control law adaptation that includes implicit or explicit adaptive state estimation, can be a fundamental underpinning for the success of intelligent control in complex systems, particularly during subsystem failures, where vital system states and parameters can be impractical or impossible to measure directly. A practical algorithm is proposed for adaptive state filtering and control in nonlinear dynamic systems when the state equations are unknown or are too complex to model analytically. The state equations and inverse plant model are approximated by using neural networks. A framework for a neural network based nonlinear dynamic inversion control law is proposed, as an extrapolation of prior developed restricted complexity methodology used to formulate the adaptive state filter. Examples of adaptive filter performance are presented for an SSME simulation with high pressure turbine failure to support extrapolations to adaptive control problems.
DETERMINANTS OF NETWORK OUTCOMES: THE IMPACT OF MANAGEMENT STRATEGIES
YSA, TAMYKO; SIERRA, VICENTA; ESTEVE, MARC
2014-01-01
The literature on network management is extensive. However, it generally explores network structures, neglecting the impact of management strategies. In this article we assess the effect of management strategies on network outcomes, providing empirical evidence from 119 urban revitalization networks. We go beyond current work by testing a path model for the determinants of network outcomes and considering the interactions between the constructs: management strategies, trust, complexity, and facilitative leadership. Our results suggest that management strategies have a strong effect on network outcomes and that they enhance the level of trust. We also found that facilitative leadership has a positive impact on network management as well as on trust in the network. Our findings also show that complexity has a negative impact on trust. A key finding of our research is that managers may wield more influence on network dynamics than previously theorized. PMID:25520529
DETERMINANTS OF NETWORK OUTCOMES: THE IMPACT OF MANAGEMENT STRATEGIES.
Ysa, Tamyko; Sierra, Vicenta; Esteve, Marc
2014-09-01
The literature on network management is extensive. However, it generally explores network structures, neglecting the impact of management strategies. In this article we assess the effect of management strategies on network outcomes, providing empirical evidence from 119 urban revitalization networks. We go beyond current work by testing a path model for the determinants of network outcomes and considering the interactions between the constructs: management strategies, trust, complexity, and facilitative leadership. Our results suggest that management strategies have a strong effect on network outcomes and that they enhance the level of trust. We also found that facilitative leadership has a positive impact on network management as well as on trust in the network. Our findings also show that complexity has a negative impact on trust. A key finding of our research is that managers may wield more influence on network dynamics than previously theorized.
Weak signal transmission in complex networks and its application in detecting connectivity.
Liang, Xiaoming; Liu, Zonghua; Li, Baowen
2009-10-01
We present a network model of coupled oscillators to study how a weak signal is transmitted in complex networks. Through both theoretical analysis and numerical simulations, we find that the response of other nodes to the weak signal decays exponentially with their topological distance to the signal source and the coupling strength between two neighboring nodes can be figured out by the responses. This finding can be conveniently used to detect the topology of unknown network, such as the degree distribution, clustering coefficient and community structure, etc., by repeatedly choosing different nodes as the signal source. Through four typical networks, i.e., the regular one dimensional, small world, random, and scale-free networks, we show that the features of network can be approximately given by investigating many fewer nodes than the network size, thus our approach to detect the topology of unknown network may be efficient in practical situations with large network size.
Promoting evaluation capacity building in a complex adaptive system.
Lawrenz, Frances; Kollmann, Elizabeth Kunz; King, Jean A; Bequette, Marjorie; Pattison, Scott; Nelson, Amy Grack; Cohn, Sarah; Cardiel, Christopher L B; Iacovelli, Stephanie; Eliou, Gayra Ostgaard; Goss, Juli; Causey, Lauren; Sinkey, Anne; Beyer, Marta; Francisco, Melanie
2018-04-10
This study provides results from an NSF funded, four year, case study about evaluation capacity building in a complex adaptive system, the Nanoscale Informal Science Education Network (NISE Net). The results of the Complex Adaptive Systems as a Model for Network Evaluations (CASNET) project indicate that complex adaptive system concepts help to explain evaluation capacity building in a network. The NISE Network was found to be a complex learning system that was supportive of evaluation capacity building through feedback loops that provided for information sharing and interaction. Participants in the system had different levels of and sources of evaluation knowledge. To be successful at building capacity, the system needed to have a balance between both centralized and decentralized control, coherence, redundancy, and diversity. Embeddedness of individuals within the system also provided support and moved the capacity of the system forward. Finally, success depended on attention being paid to the control of resources. Implications of these findings are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Atomic switch networks-nanoarchitectonic design of a complex system for natural computing.
Demis, E C; Aguilera, R; Sillin, H O; Scharnhorst, K; Sandouk, E J; Aono, M; Stieg, A Z; Gimzewski, J K
2015-05-22
Self-organized complex systems are ubiquitous in nature, and the structural complexity of these natural systems can be used as a model to design new classes of functional nanotechnology based on highly interconnected networks of interacting units. Conventional fabrication methods for electronic computing devices are subject to known scaling limits, confining the diversity of possible architectures. This work explores methods of fabricating a self-organized complex device known as an atomic switch network and discusses its potential utility in computing. Through a merger of top-down and bottom-up techniques guided by mathematical and nanoarchitectonic design principles, we have produced functional devices comprising nanoscale elements whose intrinsic nonlinear dynamics and memorization capabilities produce robust patterns of distributed activity and a capacity for nonlinear transformation of input signals when configured in the appropriate network architecture. Their operational characteristics represent a unique potential for hardware implementation of natural computation, specifically in the area of reservoir computing-a burgeoning field that investigates the computational aptitude of complex biologically inspired systems.
Epidemics Modelings: Some New Challenges
NASA Astrophysics Data System (ADS)
Boatto, Stefanella; Khouri, Renata Stella; Solerman, Lucas; Codeço, Claudia; Bonnet, Catherine
2010-09-01
Epidemics modeling has been particularly growing in the past years. In epidemics studies, mathematical modeling is used in particular to reach a better understanding of some neglected diseases (dengue, malaria, …) and of new emerging ones (SARS, influenza A,….) of big agglomerates. Such studies offer new challenges both from the modeling point of view (searching for simple models which capture the main characteristics of the disease spreading), data analysis and mathematical complexity. We are facing often with complex networks especially when modeling the city dynamics. Such networks can be static (in first approximation) and homogeneous, static and not homogeneous and/or not static (when taking into account the city structure, micro-climates, people circulation, etc.). The objective being studying epidemics dynamics and being able to predict its spreading.
Yamashita, Yuichi; Okumura, Tetsu; Okanoya, Kazuo; Tani, Jun
2011-01-01
How the brain learns and generates temporal sequences is a fundamental issue in neuroscience. The production of birdsongs, a process which involves complex learned sequences, provides researchers with an excellent biological model for this topic. The Bengalese finch in particular learns a highly complex song with syntactical structure. The nucleus HVC (HVC), a premotor nucleus within the avian song system, plays a key role in generating the temporal structures of their songs. From lesion studies, the nucleus interfacialis (NIf) projecting to the HVC is considered one of the essential regions that contribute to the complexity of their songs. However, the types of interaction between the HVC and the NIf that can produce complex syntactical songs remain unclear. In order to investigate the function of interactions between the HVC and NIf, we have proposed a neural network model based on previous biological evidence. The HVC is modeled by a recurrent neural network (RNN) that learns to generate temporal patterns of songs. The NIf is modeled as a mechanism that provides auditory feedback to the HVC and generates random noise that feeds into the HVC. The model showed that complex syntactical songs can be replicated by simple interactions between deterministic dynamics of the RNN and random noise. In the current study, the plausibility of the model is tested by the comparison between the changes in the songs of actual birds induced by pharmacological inhibition of the NIf and the changes in the songs produced by the model resulting from modification of parameters representing NIf functions. The efficacy of the model demonstrates that the changes of songs induced by pharmacological inhibition of the NIf can be interpreted as a trade-off between the effects of noise and the effects of feedback on the dynamics of the RNN of the HVC. These facts suggest that the current model provides a convincing hypothesis for the functional role of NIf–HVC interaction. PMID:21559065
Complex Systems and Human Performance Modeling
2013-12-01
human communication patterns can be implemented in a task network modeling tool. Although queues are a basic feature in many task network modeling...time. MODELING COMMUNICATIVE BEHAVIOR Barabasi (2010) argues that human communication patterns are “bursty”; that is, the inter-event arrival...Having implemented the methods advocated by Clauset et al. in C3TRACE, we have grown more confident that the human communication data discussed above
Modular synchronization in complex networks.
Oh, E; Rho, K; Hong, H; Kahng, B
2005-10-01
We study the synchronization transition (ST) of a modified Kuramoto model on two different types of modular complex networks. It is found that the ST depends on the type of intermodular connections. For the network with decentralized (centralized) intermodular connections, the ST occurs at finite coupling constant (behaves abnormally). Such distinct features are found in the yeast protein interaction network and the Internet, respectively. Moreover, by applying the finite-size scaling analysis to an artificial network with decentralized intermodular connections, we obtain the exponent associated with the order parameter of the ST to be beta approximately 1 different from beta(MF) approximately 1/2 obtained from the scale-free network with the same degree distribution but the absence of modular structure, corresponding to the mean field value.
Competitive cluster growth in complex networks.
Moreira, André A; Paula, Demétrius R; Costa Filho, Raimundo N; Andrade, José S
2006-06-01
In this work we propose an idealized model for competitive cluster growth in complex networks. Each cluster can be thought of as a fraction of a community that shares some common opinion. Our results show that the cluster size distribution depends on the particular choice for the topology of the network of contacts among the agents. As an application, we show that the cluster size distributions obtained when the growth process is performed on hierarchical networks, e.g., the Apollonian network, have a scaling form similar to what has been observed for the distribution of a number of votes in an electoral process. We suggest that this similarity may be due to the fact that social networks involved in the electoral process may also possess an underlining hierarchical structure.
Song, H Francis; Wang, Xiao-Jing
2014-12-01
Small-world networks-complex networks characterized by a combination of high clustering and short path lengths-are widely studied using the paradigmatic model of Watts and Strogatz (WS). Although the WS model is already quite minimal and intuitive, we describe an alternative formulation of the WS model in terms of a distance-dependent probability of connection that further simplifies, both practically and theoretically, the generation of directed and undirected WS-type small-world networks. In addition to highlighting an essential feature of the WS model that has previously been overlooked, namely the equivalence to a simple distance-dependent model, this alternative formulation makes it possible to derive exact expressions for quantities such as the degree and motif distributions and global clustering coefficient for both directed and undirected networks in terms of model parameters.
Sun, Gang; Hoff, Steven J; Zelle, Brian C; Nelson, Minda A
2008-12-01
It is vital to forecast gas and particle matter concentrations and emission rates (GPCER) from livestock production facilities to assess the impact of airborne pollutants on human health, ecological environment, and global warming. Modeling source air quality is a complex process because of abundant nonlinear interactions between GPCER and other factors. The objective of this study was to introduce statistical methods and radial basis function (RBF) neural network to predict daily source air quality in Iowa swine deep-pit finishing buildings. The results show that four variables (outdoor and indoor temperature, animal units, and ventilation rates) were identified as relative important model inputs using statistical methods. It can be further demonstrated that only two factors, the environment factor and the animal factor, were capable of explaining more than 94% of the total variability after performing principal component analysis. The introduction of fewer uncorrelated variables to the neural network would result in the reduction of the model structure complexity, minimize computation cost, and eliminate model overfitting problems. The obtained results of RBF network prediction were in good agreement with the actual measurements, with values of the correlation coefficient between 0.741 and 0.995 and very low values of systemic performance indexes for all the models. The good results indicated the RBF network could be trained to model these highly nonlinear relationships. Thus, the RBF neural network technology combined with multivariate statistical methods is a promising tool for air pollutant emissions modeling.
Preferential attachment in evolutionary earthquake networks
NASA Astrophysics Data System (ADS)
Rezaei, Soghra; Moghaddasi, Hanieh; Darooneh, Amir Hossein
2018-04-01
Earthquakes as spatio-temporal complex systems have been recently studied using complex network theory. Seismic networks are dynamical networks due to addition of new seismic events over time leading to establishing new nodes and links to the network. Here we have constructed Iran and Italy seismic networks based on Hybrid Model and testified the preferential attachment hypothesis for the connection of new nodes which states that it is more probable for newly added nodes to join the highly connected nodes comparing to the less connected ones. We showed that the preferential attachment is present in the case of earthquakes network and the attachment rate has a linear relationship with node degree. We have also found the seismic passive points, the most probable points to be influenced by other seismic places, using their preferential attachment values.
Exploring the patterns and evolution of self-organized urban street networks through modeling
NASA Astrophysics Data System (ADS)
Rui, Yikang; Ban, Yifang; Wang, Jiechen; Haas, Jan
2013-03-01
As one of the most important subsystems in cities, urban street networks have recently been well studied by using the approach of complex networks. This paper proposes a growing model for self-organized urban street networks. The model involves a competition among new centers with different values of attraction radius and a local optimal principle of both geometrical and topological factors. We find that with the model growth, the local optimization in the connection process and appropriate probability for the loop construction well reflect the evolution strategy in real-world cities. Moreover, different values of attraction radius in centers competition process lead to morphological change in patterns including urban network, polycentric and monocentric structures. The model succeeds in reproducing a large diversity of road network patterns by varying parameters. The similarity between the properties of our model and empirical results implies that a simple universal growth mechanism exists in self-organized cities.
A Continuum Model of Actin Waves in Dictyostelium discoideum
Khamviwath, Varunyu; Hu, Jifeng; Othmer, Hans G.
2013-01-01
Actin waves are complex dynamical patterns of the dendritic network of filamentous actin in eukaryotes. We developed a model of actin waves in PTEN-deficient Dictyostelium discoideum by deriving an approximation of the dynamics of discrete actin filaments and combining it with a signaling pathway that controls filament branching. This signaling pathway, together with the actin network, contains a positive feedback loop that drives the actin waves. Our model predicts the structure, composition, and dynamics of waves that are consistent with existing experimental evidence, as well as the biochemical dependence on various protein partners. Simulation suggests that actin waves are initiated when local actin network activity, caused by an independent process, exceeds a certain threshold. Moreover, diffusion of proteins that form a positive feedback loop with the actin network alone is sufficient for propagation of actin waves at the observed speed of . Decay of the wave back can be caused by scarcity of network components, and the shape of actin waves is highly dependent on the filament disassembly rate. The model allows retraction of actin waves and captures formation of new wave fronts in broken waves. Our results demonstrate that a delicate balance between a positive feedback, filament disassembly, and local availability of network components is essential for the complex dynamics of actin waves. PMID:23741312
Exploring Normalization and Network Reconstruction Methods using In Silico and In Vivo Models
Abstract: Lessons learned from the recent DREAM competitions include: The search for the best network reconstruction method continues, and we need more complete datasets with ground truth from more complex organisms. It has become obvious that the network reconstruction methods t...
Application of the GERTS II simulator in the industrial environment.
NASA Technical Reports Server (NTRS)
Whitehouse, G. E.; Klein, K. I.
1971-01-01
GERT was originally developed to aid in the analysis of stochastic networks. GERT can be used to graphically model and analyze complex systems. Recently a simulator model, GERTS II, has been developed to solve GERT Networks. The simulator language used in the development of this model was GASP II A. This paper discusses the possible application of GERTS II to model and analyze (1) assembly line operations, (2) project management networks, (3) conveyor systems and (4) inventory systems. Finally, an actual application dealing with a job shop loading problem is presented.
Hierarchy Measure for Complex Networks
Mones, Enys; Vicsek, Lilla; Vicsek, Tamás
2012-01-01
Nature, technology and society are full of complexity arising from the intricate web of the interactions among the units of the related systems (e.g., proteins, computers, people). Consequently, one of the most successful recent approaches to capturing the fundamental features of the structure and dynamics of complex systems has been the investigation of the networks associated with the above units (nodes) together with their relations (edges). Most complex systems have an inherently hierarchical organization and, correspondingly, the networks behind them also exhibit hierarchical features. Indeed, several papers have been devoted to describing this essential aspect of networks, however, without resulting in a widely accepted, converging concept concerning the quantitative characterization of the level of their hierarchy. Here we develop an approach and propose a quantity (measure) which is simple enough to be widely applicable, reveals a number of universal features of the organization of real-world networks and, as we demonstrate, is capable of capturing the essential features of the structure and the degree of hierarchy in a complex network. The measure we introduce is based on a generalization of the m-reach centrality, which we first extend to directed/partially directed graphs. Then, we define the global reaching centrality (GRC), which is the difference between the maximum and the average value of the generalized reach centralities over the network. We investigate the behavior of the GRC considering both a synthetic model with an adjustable level of hierarchy and real networks. Results for real networks show that our hierarchy measure is related to the controllability of the given system. We also propose a visualization procedure for large complex networks that can be used to obtain an overall qualitative picture about the nature of their hierarchical structure. PMID:22470477
Resting state brain networks in the prairie vole.
Ortiz, Juan J; Portillo, Wendy; Paredes, Raul G; Young, Larry J; Alcauter, Sarael
2018-01-19
Resting state functional magnetic resonance imaging (rsfMRI) has shown the hierarchical organization of the human brain into large-scale complex networks, referred as resting state networks. This technique has turned into a promising translational research tool after the finding of similar resting state networks in non-human primates, rodents and other animal models of great value for neuroscience. Here, we demonstrate and characterize the presence of resting states networks in Microtus ochrogaster, the prairie vole, an extraordinary animal model to study complex human-like social behavior, with potential implications for the research of normal social development, addiction and neuropsychiatric disorders. Independent component analysis of rsfMRI data from isoflurane-anestethized prairie voles resulted in cortical and subcortical networks, including primary motor and sensory networks, but also included putative salience and default mode networks. We further discuss how future research could help to close the gap between the properties of the large scale functional organization and the underlying neurobiology of several aspects of social cognition. These results contribute to the evidence of preserved resting state brain networks across species and provide the foundations to explore the use of rsfMRI in the prairie vole for basic and translational research.
Model of mobile agents for sexual interactions networks
NASA Astrophysics Data System (ADS)
González, M. C.; Lind, P. G.; Herrmann, H. J.
2006-02-01
We present a novel model to simulate real social networks of complex interactions, based in a system of colliding particles (agents). The network is build by keeping track of the collisions and evolves in time with correlations which emerge due to the mobility of the agents. Therefore, statistical features are a consequence only of local collisions among its individual agents. Agent dynamics is realized by an event-driven algorithm of collisions where energy is gained as opposed to physical systems which have dissipation. The model reproduces empirical data from networks of sexual interactions, not previously obtained with other approaches.
Maximizing information exchange between complex networks
NASA Astrophysics Data System (ADS)
West, Bruce J.; Geneston, Elvis L.; Grigolini, Paolo
2008-10-01
Science is not merely the smooth progressive interaction of hypothesis, experiment and theory, although it sometimes has that form. More realistically the scientific study of any given complex phenomenon generates a number of explanations, from a variety of perspectives, that eventually requires synthesis to achieve a deep level of insight and understanding. One such synthesis has created the field of out-of-equilibrium statistical physics as applied to the understanding of complex dynamic networks. Over the past forty years the concept of complexity has undergone a metamorphosis. Complexity was originally seen as a consequence of memory in individual particle trajectories, in full agreement with a Hamiltonian picture of microscopic dynamics and, in principle, macroscopic dynamics could be derived from the microscopic Hamiltonian picture. The main difficulty in deriving macroscopic dynamics from microscopic dynamics is the need to take into account the actions of a very large number of components. The existence of events such as abrupt jumps, considered by the conventional continuous time random walk approach to describing complexity was never perceived as conflicting with the Hamiltonian view. Herein we review many of the reasons why this traditional Hamiltonian view of complexity is unsatisfactory. We show that as a result of technological advances, which make the observation of single elementary events possible, the definition of complexity has shifted from the conventional memory concept towards the action of non-Poisson renewal events. We show that the observation of crucial processes, such as the intermittent fluorescence of blinking quantum dots as well as the brain’s response to music, as monitored by a set of electrodes attached to the scalp, has forced investigators to go beyond the traditional concept of complexity and to establish closer contact with the nascent field of complex networks. Complex networks form one of the most challenging areas of modern research overarching all of the traditional scientific disciplines. The transportation networks of planes, highways and railroads; the economic networks of global finance and stock markets; the social networks of terrorism, governments, businesses and churches; the physical networks of telephones, the Internet, earthquakes and global warming and the biological networks of gene regulation, the human body, clusters of neurons and food webs, share a number of apparently universal properties as the networks become increasingly complex. Ubiquitous aspects of such complex networks are the appearance of non-stationary and non-ergodic statistical processes and inverse power-law statistical distributions. Herein we review the traditional dynamical and phase-space methods for modeling such networks as their complexity increases and focus on the limitations of these procedures in explaining complex networks. Of course we will not be able to review the entire nascent field of network science, so we limit ourselves to a review of how certain complexity barriers have been surmounted using newly applied theoretical concepts such as aging, renewal, non-ergodic statistics and the fractional calculus. One emphasis of this review is information transport between complex networks, which requires a fundamental change in perception that we express as a transition from the familiar stochastic resonance to the new concept of complexity matching.
Learning Probabilistic Inference through Spike-Timing-Dependent Plasticity.
Pecevski, Dejan; Maass, Wolfgang
2016-01-01
Numerous experimental data show that the brain is able to extract information from complex, uncertain, and often ambiguous experiences. Furthermore, it can use such learnt information for decision making through probabilistic inference. Several models have been proposed that aim at explaining how probabilistic inference could be performed by networks of neurons in the brain. We propose here a model that can also explain how such neural network could acquire the necessary information for that from examples. We show that spike-timing-dependent plasticity in combination with intrinsic plasticity generates in ensembles of pyramidal cells with lateral inhibition a fundamental building block for that: probabilistic associations between neurons that represent through their firing current values of random variables. Furthermore, by combining such adaptive network motifs in a recursive manner the resulting network is enabled to extract statistical information from complex input streams, and to build an internal model for the distribution p (*) that generates the examples it receives. This holds even if p (*) contains higher-order moments. The analysis of this learning process is supported by a rigorous theoretical foundation. Furthermore, we show that the network can use the learnt internal model immediately for prediction, decision making, and other types of probabilistic inference.
Learning Probabilistic Inference through Spike-Timing-Dependent Plasticity123
Pecevski, Dejan
2016-01-01
Abstract Numerous experimental data show that the brain is able to extract information from complex, uncertain, and often ambiguous experiences. Furthermore, it can use such learnt information for decision making through probabilistic inference. Several models have been proposed that aim at explaining how probabilistic inference could be performed by networks of neurons in the brain. We propose here a model that can also explain how such neural network could acquire the necessary information for that from examples. We show that spike-timing-dependent plasticity in combination with intrinsic plasticity generates in ensembles of pyramidal cells with lateral inhibition a fundamental building block for that: probabilistic associations between neurons that represent through their firing current values of random variables. Furthermore, by combining such adaptive network motifs in a recursive manner the resulting network is enabled to extract statistical information from complex input streams, and to build an internal model for the distribution p* that generates the examples it receives. This holds even if p* contains higher-order moments. The analysis of this learning process is supported by a rigorous theoretical foundation. Furthermore, we show that the network can use the learnt internal model immediately for prediction, decision making, and other types of probabilistic inference. PMID:27419214
From quiescence to proliferation: Cdk oscillations drive the mammalian cell cycle
Gérard, Claude; Goldbeter, Albert
2012-01-01
We recently proposed a detailed model describing the dynamics of the network of cyclin-dependent kinases (Cdks) driving the mammalian cell cycle (Gérard and Goldbeter, 2009). The model contains four modules, each centered around one cyclin/Cdk complex. Cyclin D/Cdk4–6 and cyclin E/Cdk2 promote progression in G1 and elicit the G1/S transition, respectively; cyclin A/Cdk2 ensures progression in S and the transition S/G2, while the activity of cyclin B/Cdk1 brings about the G2/M transition. This model shows that in the presence of sufficient amounts of growth factor the Cdk network is capable of temporal self-organization in the form of sustained oscillations, which correspond to the ordered, sequential activation of the various cyclin/Cdk complexes that control the successive phases of the cell cycle. The results suggest that the switch from cellular quiescence to cell proliferation corresponds to the transition from a stable steady state to sustained oscillations in the Cdk network. The transition depends on a finely tuned balance between factors that promote or hinder progression in the cell cycle. We show that the transition from quiescence to proliferation can occur in multiple ways that alter this balance. By resorting to bifurcation diagrams, we analyze the mechanism of oscillations in the Cdk network. Finally, we show that the complexity of the detailed model can be greatly reduced, without losing its key dynamical properties, by considering a skeleton model for the Cdk network. Using such a skeleton model for the mammalian cell cycle we show that positive feedback (PF) loops enhance the amplitude and the robustness of Cdk oscillations with respect to molecular noise. We compare the relative merits of the detailed and skeleton versions of the model for the Cdk network driving the mammalian cell cycle. PMID:23130001
Formal modeling and analysis of ER-α associated Biological Regulatory Network in breast cancer.
Khalid, Samra; Hanif, Rumeza; Tareen, Samar H K; Siddiqa, Amnah; Bibi, Zurah; Ahmad, Jamil
2016-01-01
Breast cancer (BC) is one of the leading cause of death among females worldwide. The increasing incidence of BC is due to various genetic and environmental changes which lead to the disruption of cellular signaling network(s). It is a complex disease in which several interlinking signaling cascades play a crucial role in establishing a complex regulatory network. The logical modeling approach of René Thomas has been applied to analyze the behavior of estrogen receptor-alpha (ER- α ) associated Biological Regulatory Network (BRN) for a small part of complex events that leads to BC metastasis. A discrete model was constructed using the kinetic logic formalism and its set of logical parameters were obtained using the model checking technique implemented in the SMBioNet software which is consistent with biological observations. The discrete model was further enriched with continuous dynamics by converting it into an equivalent Petri Net (PN) to analyze the logical parameters of the involved entities. In-silico based discrete and continuous modeling of ER- α associated signaling network involved in BC provides information about behaviors and gene-gene interaction in detail. The dynamics of discrete model revealed, imperative behaviors represented as cyclic paths and trajectories leading to pathogenic states such as metastasis. Results suggest that the increased expressions of receptors ER- α , IGF-1R and EGFR slow down the activity of tumor suppressor genes (TSGs) such as BRCA1, p53 and Mdm2 which can lead to metastasis. Therefore, IGF-1R and EGFR are considered as important inhibitory targets to control the metastasis in BC. The in-silico approaches allow us to increase our understanding of the functional properties of living organisms. It opens new avenues of investigations of multiple inhibitory targets (ER- α , IGF-1R and EGFR) for wet lab experiments as well as provided valuable insights in the treatment of cancers such as BC.
Revisiting node-based SIR models in complex networks with degree correlations
NASA Astrophysics Data System (ADS)
Wang, Yi; Cao, Jinde; Alofi, Abdulaziz; AL-Mazrooei, Abdullah; Elaiw, Ahmed
2015-11-01
In this paper, we consider two growing networks which will lead to the degree-degree correlations between two nearest neighbors in the network. When the network grows to some certain size, we introduce an SIR-like disease such as pandemic influenza H1N1/09 to the population. Due to its rapid spread, the population size changes slowly, and thus the disease spreads on correlated networks with approximately fixed size. To predict the disease evolution on correlated networks, we first review two node-based SIR models incorporating degree correlations and an edge-based SIR model without considering degree correlation, and then compare the predictions of these models with stochastic SIR simulations, respectively. We find that the edge-based model, even without considering degree correlations, agrees much better than the node-based models incorporating degree correlations with stochastic SIR simulations in many respects. Moreover, simulation results show that for networks with positive correlation, the edge-based model provides a better upper bound of the cumulative incidence than the node-based SIR models, whereas for networks with negative correlation, it provides a lower bound of the cumulative incidence.
NASA Astrophysics Data System (ADS)
Erkol, Şirag; Yücel, Gönenç
In this study, the problem of seed selection is investigated. This problem is mainly treated as an optimization problem, which is proved to be NP-hard. There are several heuristic approaches in the literature which mostly use algorithmic heuristics. These approaches mainly focus on the trade-off between computational complexity and accuracy. Although the accuracy of algorithmic heuristics are high, they also have high computational complexity. Furthermore, in the literature, it is generally assumed that complete information on the structure and features of a network is available, which is not the case in most of the times. For the study, a simulation model is constructed, which is capable of creating networks, performing seed selection heuristics, and simulating diffusion models. Novel metric-based seed selection heuristics that rely only on partial information are proposed and tested using the simulation model. These heuristics use local information available from nodes in the synthetically created networks. The performances of heuristics are comparatively analyzed on three different network types. The results clearly show that the performance of a heuristic depends on the structure of a network. A heuristic to be used should be selected after investigating the properties of the network at hand. More importantly, the approach of partial information provided promising results. In certain cases, selection heuristics that rely only on partial network information perform very close to similar heuristics that require complete network data.
A general stochastic model for studying time evolution of transition networks
NASA Astrophysics Data System (ADS)
Zhan, Choujun; Tse, Chi K.; Small, Michael
2016-12-01
We consider a class of complex networks whose nodes assume one of several possible states at any time and may change their states from time to time. Such networks represent practical networks of rumor spreading, disease spreading, language evolution, and so on. Here, we derive a model describing the dynamics of this kind of network and a simulation algorithm for studying the network evolutionary behavior. This model, derived at a microscopic level, can reveal the transition dynamics of every node. A numerical simulation is taken as an ;experiment; or ;realization; of the model. We use this model to study the disease propagation dynamics in four different prototypical networks, namely, the regular nearest-neighbor (RN) network, the classical Erdös-Renyí (ER) random graph, the Watts-Strogátz small-world (SW) network, and the Barabási-Albert (BA) scalefree network. We find that the disease propagation dynamics in these four networks generally have different properties but they do share some common features. Furthermore, we utilize the transition network model to predict user growth in the Facebook network. Simulation shows that our model agrees with the historical data. The study can provide a useful tool for a more thorough understanding of the dynamics networks.
Mezlini, Aziz M; Goldenberg, Anna
2017-10-01
Discovering genetic mechanisms driving complex diseases is a hard problem. Existing methods often lack power to identify the set of responsible genes. Protein-protein interaction networks have been shown to boost power when detecting gene-disease associations. We introduce a Bayesian framework, Conflux, to find disease associated genes from exome sequencing data using networks as a prior. There are two main advantages to using networks within a probabilistic graphical model. First, networks are noisy and incomplete, a substantial impediment to gene discovery. Incorporating networks into the structure of a probabilistic models for gene inference has less impact on the solution than relying on the noisy network structure directly. Second, using a Bayesian framework we can keep track of the uncertainty of each gene being associated with the phenotype rather than returning a fixed list of genes. We first show that using networks clearly improves gene detection compared to individual gene testing. We then show consistently improved performance of Conflux compared to the state-of-the-art diffusion network-based method Hotnet2 and a variety of other network and variant aggregation methods, using randomly generated and literature-reported gene sets. We test Hotnet2 and Conflux on several network configurations to reveal biases and patterns of false positives and false negatives in each case. Our experiments show that our novel Bayesian framework Conflux incorporates many of the advantages of the current state-of-the-art methods, while offering more flexibility and improved power in many gene-disease association scenarios.
Identifying the starting point of a spreading process in complex networks.
Comin, Cesar Henrique; Costa, Luciano da Fontoura
2011-11-01
When dealing with the dissemination of epidemics, one important question that can be asked is the location where the contamination began. In this paper, we analyze three spreading schemes and propose and validate an effective methodology for the identification of the source nodes. The method is based on the calculation of the centrality of the nodes on the sampled network, expressed here by degree, betweenness, closeness, and eigenvector centrality. We show that the source node tends to have the highest measurement values. The potential of the methodology is illustrated with respect to three theoretical complex network models as well as a real-world network, the email network of the University Rovira i Virgili.
An efficient link prediction index for complex military organization
NASA Astrophysics Data System (ADS)
Fan, Changjun; Liu, Zhong; Lu, Xin; Xiu, Baoxin; Chen, Qing
2017-03-01
Quality of information is crucial for decision-makers to judge the battlefield situations and design the best operation plans, however, real intelligence data are often incomplete and noisy, where missing links prediction methods and spurious links identification algorithms can be applied, if modeling the complex military organization as the complex network where nodes represent functional units and edges denote communication links. Traditional link prediction methods usually work well on homogeneous networks, but few for the heterogeneous ones. And the military network is a typical heterogeneous network, where there are different types of nodes and edges. In this paper, we proposed a combined link prediction index considering both the nodes' types effects and nodes' structural similarities, and demonstrated that it is remarkably superior to all the 25 existing similarity-based methods both in predicting missing links and identifying spurious links in a real military network data; we also investigated the algorithms' robustness under noisy environment, and found the mistaken information is more misleading than incomplete information in military areas, which is different from that in recommendation systems, and our method maintained the best performance under the condition of small noise. Since the real military network intelligence must be carefully checked at first due to its significance, and link prediction methods are just adopted to purify the network with the left latent noise, the method proposed here is applicable in real situations. In the end, as the FINC-E model, here used to describe the complex military organizations, is also suitable to many other social organizations, such as criminal networks, business organizations, etc., thus our method has its prospects in these areas for many tasks, like detecting the underground relationships between terrorists, predicting the potential business markets for decision-makers, and so on.
Percolation and Reinforcement on Complex Networks
NASA Astrophysics Data System (ADS)
Yuan, Xin
Complex networks appear in almost every aspect of our daily life and are widely studied in the fields of physics, mathematics, finance, biology and computer science. This work utilizes percolation theory in statistical physics to explore the percolation properties of complex networks and develops a reinforcement scheme on improving network resilience. This dissertation covers two major parts of my Ph.D. research on complex networks: i) probe--in the context of both traditional percolation and k-core percolation--the resilience of complex networks with tunable degree distributions or directed dependency links under random, localized or targeted attacks; ii) develop and propose a reinforcement scheme to eradicate catastrophic collapses that occur very often in interdependent networks. We first use generating function and probabilistic methods to obtain analytical solutions to percolation properties of interest, such as the giant component size and the critical occupation probability. We study uncorrelated random networks with Poisson, bi-Poisson, power-law, and Kronecker-delta degree distributions and construct those networks which are based on the configuration model. The computer simulation results show remarkable agreement with theoretical predictions. We discover an increase of network robustness as the degree distribution broadens and a decrease of network robustness as directed dependency links come into play under random attacks. We also find that targeted attacks exert the biggest damage to the structure of both single and interdependent networks in k-core percolation. To strengthen the resilience of interdependent networks, we develop and propose a reinforcement strategy and obtain the critical amount of reinforced nodes analytically for interdependent Erdḧs-Renyi networks and numerically for scale-free and for random regular networks. Our mechanism leads to improvement of network stability of the West U.S. power grid. This dissertation provides us with a deeper understanding of the effects of structural features on network stability and fresher insights into designing resilient interdependent infrastructure networks.
Control of complex networks requires both structure and dynamics
NASA Astrophysics Data System (ADS)
Gates, Alexander J.; Rocha, Luis M.
2016-04-01
The study of network structure has uncovered signatures of the organization of complex systems. However, there is also a need to understand how to control them; for example, identifying strategies to revert a diseased cell to a healthy state, or a mature cell to a pluripotent state. Two recent methodologies suggest that the controllability of complex systems can be predicted solely from the graph of interactions between variables, without considering their dynamics: structural controllability and minimum dominating sets. We demonstrate that such structure-only methods fail to characterize controllability when dynamics are introduced. We study Boolean network ensembles of network motifs as well as three models of biochemical regulation: the segment polarity network in Drosophila melanogaster, the cell cycle of budding yeast Saccharomyces cerevisiae, and the floral organ arrangement in Arabidopsis thaliana. We demonstrate that structure-only methods both undershoot and overshoot the number and which sets of critical variables best control the dynamics of these models, highlighting the importance of the actual system dynamics in determining control. Our analysis further shows that the logic of automata transition functions, namely how canalizing they are, plays an important role in the extent to which structure predicts dynamics.
A Complex Network Approach to Distributional Semantic Models
Utsumi, Akira
2015-01-01
A number of studies on network analysis have focused on language networks based on free word association, which reflects human lexical knowledge, and have demonstrated the small-world and scale-free properties in the word association network. Nevertheless, there have been very few attempts at applying network analysis to distributional semantic models, despite the fact that these models have been studied extensively as computational or cognitive models of human lexical knowledge. In this paper, we analyze three network properties, namely, small-world, scale-free, and hierarchical properties, of semantic networks created by distributional semantic models. We demonstrate that the created networks generally exhibit the same properties as word association networks. In particular, we show that the distribution of the number of connections in these networks follows the truncated power law, which is also observed in an association network. This indicates that distributional semantic models can provide a plausible model of lexical knowledge. Additionally, the observed differences in the network properties of various implementations of distributional semantic models are consistently explained or predicted by considering the intrinsic semantic features of a word-context matrix and the functions of matrix weighting and smoothing. Furthermore, to simulate a semantic network with the observed network properties, we propose a new growing network model based on the model of Steyvers and Tenenbaum. The idea underlying the proposed model is that both preferential and random attachments are required to reflect different types of semantic relations in network growth process. We demonstrate that this model provides a better explanation of network behaviors generated by distributional semantic models. PMID:26295940
Feed-forward neural network model for hunger and satiety related VAS score prediction.
Krishnan, Shaji; Hendriks, Henk F J; Hartvigsen, Merete L; de Graaf, Albert A
2016-07-07
An artificial neural network approach was chosen to model the outcome of the complex signaling pathways in the gastro-intestinal tract and other peripheral organs that eventually produce the satiety feeling in the brain upon feeding. A multilayer feed-forward neural network was trained with sets of experimental data relating concentration-time courses of plasma satiety hormones to Visual Analog Scales (VAS) scores. The network successfully predicted VAS responses from sets of satiety hormone data obtained in experiments using different food compositions. The correlation coefficients for the predicted VAS responses for test sets having i) a full set of three satiety hormones, ii) a set of only two satiety hormones, and iii) a set of only one satiety hormone were 0.96, 0.96, and 0.89, respectively. The predicted VAS responses discriminated the satiety effects of high satiating food types from less satiating food types both in orally fed and ileal infused forms. From this application of artificial neural networks, one may conclude that neural network models are very suitable to describe situations where behavior is complex and incompletely understood. However, training data sets that fit the experimental conditions need to be available.
Network growth models: A behavioural basis for attachment proportional to fitness
NASA Astrophysics Data System (ADS)
Bell, Michael; Perera, Supun; Piraveenan, Mahendrarajah; Bliemer, Michiel; Latty, Tanya; Reid, Chris
2017-02-01
Several growth models have been proposed in the literature for scale-free complex networks, with a range of fitness-based attachment models gaining prominence recently. However, the processes by which such fitness-based attachment behaviour can arise are less well understood, making it difficult to compare the relative merits of such models. This paper analyses an evolutionary mechanism that would give rise to a fitness-based attachment process. In particular, it is proven by analytical and numerical methods that in homogeneous networks, the minimisation of maximum exposure to node unfitness leads to attachment probabilities that are proportional to node fitness. This result is then extended to heterogeneous networks, with supply chain networks being used as an example.
Narayan, Manjari; Allen, Genevera I.
2016-01-01
Many complex brain disorders, such as autism spectrum disorders, exhibit a wide range of symptoms and disability. To understand how brain communication is impaired in such conditions, functional connectivity studies seek to understand individual differences in brain network structure in terms of covariates that measure symptom severity. In practice, however, functional connectivity is not observed but estimated from complex and noisy neural activity measurements. Imperfect subject network estimates can compromise subsequent efforts to detect covariate effects on network structure. We address this problem in the case of Gaussian graphical models of functional connectivity, by proposing novel two-level models that treat both subject level networks and population level covariate effects as unknown parameters. To account for imperfectly estimated subject level networks when fitting these models, we propose two related approaches—R2 based on resampling and random effects test statistics, and R3 that additionally employs random adaptive penalization. Simulation studies using realistic graph structures reveal that R2 and R3 have superior statistical power to detect covariate effects compared to existing approaches, particularly when the number of within subject observations is comparable to the size of subject networks. Using our novel models and methods to study parts of the ABIDE dataset, we find evidence of hypoconnectivity associated with symptom severity in autism spectrum disorders, in frontoparietal and limbic systems as well as in anterior and posterior cingulate cortices. PMID:27147940
NASA Astrophysics Data System (ADS)
Vivoni, Enrique R.; Mascaro, Giuseppe; Mniszewski, Susan; Fasel, Patricia; Springer, Everett P.; Ivanov, Valeriy Y.; Bras, Rafael L.
2011-10-01
SummaryA major challenge in the use of fully-distributed hydrologic models has been the lack of computational capabilities for high-resolution, long-term simulations in large river basins. In this study, we present the parallel model implementation and real-world hydrologic assessment of the Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator (tRIBS). Our parallelization approach is based on the decomposition of a complex watershed using the channel network as a directed graph. The resulting sub-basin partitioning divides effort among processors and handles hydrologic exchanges across boundaries. Through numerical experiments in a set of nested basins, we quantify parallel performance relative to serial runs for a range of processors, simulation complexities and lengths, and sub-basin partitioning methods, while accounting for inter-run variability on a parallel computing system. In contrast to serial simulations, the parallel model speed-up depends on the variability of hydrologic processes. Load balancing significantly improves parallel speed-up with proportionally faster runs as simulation complexity (domain resolution and channel network extent) increases. The best strategy for large river basins is to combine a balanced partitioning with an extended channel network, with potential savings through a lower TIN resolution. Based on these advances, a wider range of applications for fully-distributed hydrologic models are now possible. This is illustrated through a set of ensemble forecasts that account for precipitation uncertainty derived from a statistical downscaling model.
Packet Traffic Dynamics Near Onset of Congestion in Data Communication Network Model
NASA Astrophysics Data System (ADS)
Lawniczak, A. T.; Tang, X.
2006-05-01
The dominant technology of data communication networks is the Packet Switching Network (PSN). It is a complex technology organized as various hierarchical layers according to the International Standard Organization (ISO) Open Systems Interconnect (OSI) Reference Model. The Network Layer of the ISO OSI Reference Model is responsible for delivering packets from their sources to their destinations and for dealing with congestion if it arises in a network. Thus, we focus on this layer and present an abstraction of the Network Layer of the ISO OSI Reference Model. Using this abstraction we investigate how onset of traffic congestion is affected for various routing algorithms by changes in network connection topology. We study how aggregate measures of network performance depend on network connection topology and routing. We explore packets traffic spatio-temporal dynamics near the phase transition point from free flow to congestion for various network connection topologies and routing algorithms. We consider static and adaptive routings. We present selected simulation results.
Localization Algorithm Based on a Spring Model (LASM) for Large Scale Wireless Sensor Networks.
Chen, Wanming; Mei, Tao; Meng, Max Q-H; Liang, Huawei; Liu, Yumei; Li, Yangming; Li, Shuai
2008-03-15
A navigation method for a lunar rover based on large scale wireless sensornetworks is proposed. To obtain high navigation accuracy and large exploration area, highnode localization accuracy and large network scale are required. However, thecomputational and communication complexity and time consumption are greatly increasedwith the increase of the network scales. A localization algorithm based on a spring model(LASM) method is proposed to reduce the computational complexity, while maintainingthe localization accuracy in large scale sensor networks. The algorithm simulates thedynamics of physical spring system to estimate the positions of nodes. The sensor nodesare set as particles with masses and connected with neighbor nodes by virtual springs. Thevirtual springs will force the particles move to the original positions, the node positionscorrespondingly, from the randomly set positions. Therefore, a blind node position can bedetermined from the LASM algorithm by calculating the related forces with the neighbornodes. The computational and communication complexity are O(1) for each node, since thenumber of the neighbor nodes does not increase proportionally with the network scale size.Three patches are proposed to avoid local optimization, kick out bad nodes and deal withnode variation. Simulation results show that the computational and communicationcomplexity are almost constant despite of the increase of the network scale size. The time consumption has also been proven to remain almost constant since the calculation steps arealmost unrelated with the network scale size.
The complex network of musical tastes
NASA Astrophysics Data System (ADS)
Buldú, Javier M.; Cano, P.; Koppenberger, M.; Almendral, Juan A.; Boccaletti, S.
2007-06-01
We present an empirical study of the evolution of a social network constructed under the influence of musical tastes. The network is obtained thanks to the selfless effort of a broad community of users who share playlists of their favourite songs with other users. When two songs co-occur in a playlist a link is created between them, leading to a complex network where songs are the fundamental nodes. In this representation, songs in the same playlist could belong to different musical genres, but they are prone to be linked by a certain musical taste (e.g. if songs A and B co-occur in several playlists, an user who likes A will probably like also B). Indeed, playlist collections such as the one under study are the basic material that feeds some commercial music recommendation engines. Since playlists have an input date, we are able to evaluate the topology of this particular complex network from scratch, observing how its characteristic parameters evolve in time. We compare our results with those obtained from an artificial network defined by means of a null model. This comparison yields some insight on the evolution and structure of such a network, which could be used as ground data for the development of proper models. Finally, we gather information that can be useful for the development of music recommendation engines and give some hints about how top-hits appear.
Grembowski, David; Schaefer, Judith; Johnson, Karin E; Fischer, Henry; Moore, Susan L; Tai-Seale, Ming; Ricciardi, Richard; Fraser, James R; Miller, Donald; LeRoy, Lisa
2014-03-01
Effective healthcare for people with multiple chronic conditions (MCC) is a US priority, but the inherent complexity makes both research and delivery of care particularly challenging. As part of AHRQ Multiple Chronic Conditions Research Network (MCCRN) efforts, the Network developed a conceptual model to guide research in this area. To synthesize methodological and topical issues relevant to MCC patient care into a framework that can improve the delivery of care and advance future research about caring for patients with MCC. The Network synthesized essential constructs for MCC research identified from roundtable discussion, input from expert advisors, and previously published models. The AHRQ MCCRN conceptual model defines complexity as the gap between patient needs and healthcare services, taking into account both the multiple considerations that affect the needs of MCC patients, as well as the contextual factors that influence service delivery. The model reframes processes and outcomes to include not only clinical care quality and experience, but also patient health, well being, and quality of life. The single-condition paradigm for treating needs one-by-one falls apart and highlights the need for care systems to address dynamic patient needs. Defining complexity in terms of the misalignment between patient needs and services offers new insights in how to research and develop solutions to patient care needs.
The dynamical analysis of modified two-compartment neuron model and FPGA implementation
NASA Astrophysics Data System (ADS)
Lin, Qianjin; Wang, Jiang; Yang, Shuangming; Yi, Guosheng; Deng, Bin; Wei, Xile; Yu, Haitao
2017-10-01
The complexity of neural models is increasing with the investigation of larger biological neural network, more various ionic channels and more detailed morphologies, and the implementation of biological neural network is a task with huge computational complexity and power consumption. This paper presents an efficient digital design using piecewise linearization on field programmable gate array (FPGA), to succinctly implement the reduced two-compartment model which retains essential features of more complicated models. The design proposes an approximate neuron model which is composed of a set of piecewise linear equations, and it can reproduce different dynamical behaviors to depict the mechanisms of a single neuron model. The consistency of hardware implementation is verified in terms of dynamical behaviors and bifurcation analysis, and the simulation results including varied ion channel characteristics coincide with the biological neuron model with a high accuracy. Hardware synthesis on FPGA demonstrates that the proposed model has reliable performance and lower hardware resource compared with the original two-compartment model. These investigations are conducive to scalability of biological neural network in reconfigurable large-scale neuromorphic system.
Ranking in evolving complex networks
NASA Astrophysics Data System (ADS)
Liao, Hao; Mariani, Manuel Sebastian; Medo, Matúš; Zhang, Yi-Cheng; Zhou, Ming-Yang
2017-05-01
Complex networks have emerged as a simple yet powerful framework to represent and analyze a wide range of complex systems. The problem of ranking the nodes and the edges in complex networks is critical for a broad range of real-world problems because it affects how we access online information and products, how success and talent are evaluated in human activities, and how scarce resources are allocated by companies and policymakers, among others. This calls for a deep understanding of how existing ranking algorithms perform, and which are their possible biases that may impair their effectiveness. Many popular ranking algorithms (such as Google's PageRank) are static in nature and, as a consequence, they exhibit important shortcomings when applied to real networks that rapidly evolve in time. At the same time, recent advances in the understanding and modeling of evolving networks have enabled the development of a wide and diverse range of ranking algorithms that take the temporal dimension into account. The aim of this review is to survey the existing ranking algorithms, both static and time-aware, and their applications to evolving networks. We emphasize both the impact of network evolution on well-established static algorithms and the benefits from including the temporal dimension for tasks such as prediction of network traffic, prediction of future links, and identification of significant nodes.
NASA Technical Reports Server (NTRS)
Shooman, Martin L.; Cortes, Eladio R.
1991-01-01
The network-complexity of LANs and of LANs that are interconnected by bridges and routers poses a challenging reliability-modeling problem. The present effort toward these problems' solution attempts to simplify them by reducing their number of states through truncation and state merging, as suggested by Shooman and Laemmel (1990). Through the use of state merging, it becomes possible to reduce the Bateman-Cortes 161 state model to a two state model with a closed-form solution. In the case of coupled networks, a technique which allows for problem-decomposition must be used.
Søreide, K; Thorsen, K; Søreide, J A
2015-02-01
Mortality prediction models for patients with perforated peptic ulcer (PPU) have not yielded consistent or highly accurate results. Given the complex nature of this disease, which has many non-linear associations with outcomes, we explored artificial neural networks (ANNs) to predict the complex interactions between the risk factors of PPU and death among patients with this condition. ANN modelling using a standard feed-forward, back-propagation neural network with three layers (i.e., an input layer, a hidden layer and an output layer) was used to predict the 30-day mortality of consecutive patients from a population-based cohort undergoing surgery for PPU. A receiver-operating characteristic (ROC) analysis was used to assess model accuracy. Of the 172 patients, 168 had their data included in the model; the data of 117 (70%) were used for the training set, and the data of 51 (39%) were used for the test set. The accuracy, as evaluated by area under the ROC curve (AUC), was best for an inclusive, multifactorial ANN model (AUC 0.90, 95% CIs 0.85-0.95; p < 0.001). This model outperformed standard predictive scores, including Boey and PULP. The importance of each variable decreased as the number of factors included in the ANN model increased. The prediction of death was most accurate when using an ANN model with several univariate influences on the outcome. This finding demonstrates that PPU is a highly complex disease for which clinical prognoses are likely difficult. The incorporation of computerised learning systems might enhance clinical judgments to improve decision making and outcome prediction.
Schmitt, Michael
2004-09-01
We study networks of spiking neurons that use the timing of pulses to encode information. Nonlinear interactions model the spatial groupings of synapses on the neural dendrites and describe the computations performed at local branches. Within a theoretical framework of learning we analyze the question of how many training examples these networks must receive to be able to generalize well. Bounds for this sample complexity of learning can be obtained in terms of a combinatorial parameter known as the pseudodimension. This dimension characterizes the computational richness of a neural network and is given in terms of the number of network parameters. Two types of feedforward architectures are considered: constant-depth networks and networks of unconstrained depth. We derive asymptotically tight bounds for each of these network types. Constant depth networks are shown to have an almost linear pseudodimension, whereas the pseudodimension of general networks is quadratic. Networks of spiking neurons that use temporal coding are becoming increasingly more important in practical tasks such as computer vision, speech recognition, and motor control. The question of how well these networks generalize from a given set of training examples is a central issue for their successful application as adaptive systems. The results show that, although coding and computation in these networks is quite different and in many cases more powerful, their generalization capabilities are at least as good as those of traditional neural network models.
Neural network applications in telecommunications
NASA Technical Reports Server (NTRS)
Alspector, Joshua
1994-01-01
Neural network capabilities include automatic and organized handling of complex information, quick adaptation to continuously changing environments, nonlinear modeling, and parallel implementation. This viewgraph presentation presents Bellcore work on applications, learning chip computational function, learning system block diagram, neural network equalization, broadband access control, calling-card fraud detection, software reliability prediction, and conclusions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Austin; Chakraborty, Sudipta; Wang, Dexin
This paper presents a cyber-physical testbed, developed to investigate the complex interactions between emerging microgrid technologies such as grid-interactive power sources, control systems, and a wide variety of communication platforms and bandwidths. The cyber-physical testbed consists of three major components for testing and validation: real time models of a distribution feeder model with microgrid assets that are integrated into the National Renewable Energy Laboratory's (NREL) power hardware-in-the-loop (PHIL) platform; real-time capable network-simulator-in-the-loop (NSIL) models; and physical hardware including inverters and a simple system controller. Several load profiles and microgrid configurations were tested to examine the effect on system performance withmore » increasing channel delays and router processing delays in the network simulator. Testing demonstrated that the controller's ability to maintain a target grid import power band was severely diminished with increasing network delays and laid the foundation for future testing of more complex cyber-physical systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulissi, Zachary W.; Medford, Andrew J.; Bligaard, Thomas
Surface reaction networks involving hydrocarbons exhibit enormous complexity with thousands of species and reactions for all but the very simplest of chemistries. We present a framework for optimization under uncertainty for heterogeneous catalysis reaction networks using surrogate models that are trained on the fly. The surrogate model is constructed by teaching a Gaussian process adsorption energies based on group additivity fingerprints, combined with transition-state scaling relations and a simple classifier for determining the rate-limiting step. The surrogate model is iteratively used to predict the most important reaction step to be calculated explicitly with computationally demanding electronic structure theory. Applying thesemore » methods to the reaction of syngas on rhodium(111), we identify the most likely reaction mechanism. Lastly, propagating uncertainty throughout this process yields the likelihood that the final mechanism is complete given measurements on only a subset of the entire network and uncertainty in the underlying density functional theory calculations.« less
Ulissi, Zachary W.; Medford, Andrew J.; Bligaard, Thomas; ...
2017-03-06
Surface reaction networks involving hydrocarbons exhibit enormous complexity with thousands of species and reactions for all but the very simplest of chemistries. We present a framework for optimization under uncertainty for heterogeneous catalysis reaction networks using surrogate models that are trained on the fly. The surrogate model is constructed by teaching a Gaussian process adsorption energies based on group additivity fingerprints, combined with transition-state scaling relations and a simple classifier for determining the rate-limiting step. The surrogate model is iteratively used to predict the most important reaction step to be calculated explicitly with computationally demanding electronic structure theory. Applying thesemore » methods to the reaction of syngas on rhodium(111), we identify the most likely reaction mechanism. Lastly, propagating uncertainty throughout this process yields the likelihood that the final mechanism is complete given measurements on only a subset of the entire network and uncertainty in the underlying density functional theory calculations.« less
Information Network Model Query Processing
NASA Astrophysics Data System (ADS)
Song, Xiaopu
Information Networking Model (INM) [31] is a novel database model for real world objects and relationships management. It naturally and directly supports various kinds of static and dynamic relationships between objects. In INM, objects are networked through various natural and complex relationships. INM Query Language (INM-QL) [30] is designed to explore such information network, retrieve information about schema, instance, their attributes, relationships, and context-dependent information, and process query results in the user specified form. INM database management system has been implemented using Berkeley DB, and it supports INM-QL. This thesis is mainly focused on the implementation of the subsystem that is able to effectively and efficiently process INM-QL. The subsystem provides a lexical and syntactical analyzer of INM-QL, and it is able to choose appropriate evaluation strategies and index mechanism to process queries in INM-QL without the user's intervention. It also uses intermediate result structure to hold intermediate query result and other helping structures to reduce complexity of query processing.
A network-base analysis of CMIP5 "historical" experiments
NASA Astrophysics Data System (ADS)
Bracco, A.; Foudalis, I.; Dovrolis, C.
2012-12-01
In computer science, "complex network analysis" refers to a set of metrics, modeling tools and algorithms commonly used in the study of complex nonlinear dynamical systems. Its main premise is that the underlying topology or network structure of a system has a strong impact on its dynamics and evolution. By allowing to investigate local and non-local statistical interaction, network analysis provides a powerful, but only marginally explored, framework to validate climate models and investigate teleconnections, assessing their strength, range, and impacts on the climate system. In this work we propose a new, fast, robust and scalable methodology to examine, quantify, and visualize climate sensitivity, while constraining general circulation models (GCMs) outputs with observations. The goal of our novel approach is to uncover relations in the climate system that are not (or not fully) captured by more traditional methodologies used in climate science and often adopted from nonlinear dynamical systems analysis, and to explain known climate phenomena in terms of the network structure or its metrics. Our methodology is based on a solid theoretical framework and employs mathematical and statistical tools, exploited only tentatively in climate research so far. Suitably adapted to the climate problem, these tools can assist in visualizing the trade-offs in representing global links and teleconnections among different data sets. Here we present the methodology, and compare network properties for different reanalysis data sets and a suite of CMIP5 coupled GCM outputs. With an extensive model intercomparison in terms of the climate network that each model leads to, we quantify how each model reproduces major teleconnections, rank model performances, and identify common or specific errors in comparing model outputs and observations.
Can simple rules control development of a pioneer vertebrate neuronal network generating behavior?
Roberts, Alan; Conte, Deborah; Hull, Mike; Merrison-Hort, Robert; al Azad, Abul Kalam; Buhl, Edgar; Borisyuk, Roman; Soffe, Stephen R
2014-01-08
How do the pioneer networks in the axial core of the vertebrate nervous system first develop? Fundamental to understanding any full-scale neuronal network is knowledge of the constituent neurons, their properties, synaptic interconnections, and normal activity. Our novel strategy uses basic developmental rules to generate model networks that retain individual neuron and synapse resolution and are capable of reproducing correct, whole animal responses. We apply our developmental strategy to young Xenopus tadpoles, whose brainstem and spinal cord share a core vertebrate plan, but at a tractable complexity. Following detailed anatomical and physiological measurements to complete a descriptive library of each type of spinal neuron, we build models of their axon growth controlled by simple chemical gradients and physical barriers. By adding dendrites and allowing probabilistic formation of synaptic connections, we reconstruct network connectivity among up to 2000 neurons. When the resulting "network" is populated by model neurons and synapses, with properties based on physiology, it can respond to sensory stimulation by mimicking tadpole swimming behavior. This functioning model represents the most complete reconstruction of a vertebrate neuronal network that can reproduce the complex, rhythmic behavior of a whole animal. The findings validate our novel developmental strategy for generating realistic networks with individual neuron- and synapse-level resolution. We use it to demonstrate how early functional neuronal connectivity and behavior may in life result from simple developmental "rules," which lay out a scaffold for the vertebrate CNS without specific neuron-to-neuron recognition.
Robustness of weighted networks
NASA Astrophysics Data System (ADS)
Bellingeri, Michele; Cassi, Davide
2018-01-01
Complex network response to node loss is a central question in different fields of network science because node failure can cause the fragmentation of the network, thus compromising the system functioning. Previous studies considered binary networks where the intensity (weight) of the links is not accounted for, i.e. a link is either present or absent. However, in real-world networks the weights of connections, and thus their importance for network functioning, can be widely different. Here, we analyzed the response of real-world and model networks to node loss accounting for link intensity and the weighted structure of the network. We used both classic binary node properties and network functioning measure, introduced a weighted rank for node importance (node strength), and used a measure for network functioning that accounts for the weight of the links (weighted efficiency). We find that: (i) the efficiency of the attack strategies changed using binary or weighted network functioning measures, both for real-world or model networks; (ii) in some cases, removing nodes according to weighted rank produced the highest damage when functioning was measured by the weighted efficiency; (iii) adopting weighted measure for the network damage changed the efficacy of the attack strategy with respect the binary analyses. Our results show that if the weighted structure of complex networks is not taken into account, this may produce misleading models to forecast the system response to node failure, i.e. consider binary links may not unveil the real damage induced in the system. Last, once weighted measures are introduced, in order to discover the best attack strategy, it is important to analyze the network response to node loss using nodes rank accounting the intensity of the links to the node.
Analysis and Reduction of Complex Networks Under Uncertainty.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghanem, Roger G
2014-07-31
This effort was a collaboration with Youssef Marzouk of MIT, Omar Knio of Duke University (at the time at Johns Hopkins University) and Habib Najm of Sandia National Laboratories. The objective of this effort was to develop the mathematical and algorithmic capacity to analyze complex networks under uncertainty. Of interest were chemical reaction networks and smart grid networks. The statements of work for USC focused on the development of stochastic reduced models for uncertain networks. The USC team was led by Professor Roger Ghanem and consisted of one graduate student and a postdoc. The contributions completed by the USC teammore » consisted of 1) methodology and algorithms to address the eigenvalue problem, a problem of significance in the stability of networks under stochastic perturbations, 2) methodology and algorithms to characterize probability measures on graph structures with random flows. This is an important problem in characterizing random demand (encountered in smart grid) and random degradation (encountered in infrastructure systems), as well as modeling errors in Markov Chains (with ubiquitous relevance !). 3) methodology and algorithms for treating inequalities in uncertain systems. This is an important problem in the context of models for material failure and network flows under uncertainty where conditions of failure or flow are described in the form of inequalities between the state variables.« less
Reliability Analysis and Modeling of ZigBee Networks
NASA Astrophysics Data System (ADS)
Lin, Cheng-Min
The architecture of ZigBee networks focuses on developing low-cost, low-speed ubiquitous communication between devices. The ZigBee technique is based on IEEE 802.15.4, which specifies the physical layer and medium access control (MAC) for a low rate wireless personal area network (LR-WPAN). Currently, numerous wireless sensor networks have adapted the ZigBee open standard to develop various services to promote improved communication quality in our daily lives. The problem of system and network reliability in providing stable services has become more important because these services will be stopped if the system and network reliability is unstable. The ZigBee standard has three kinds of networks; star, tree and mesh. The paper models the ZigBee protocol stack from the physical layer to the application layer and analyzes these layer reliability and mean time to failure (MTTF). Channel resource usage, device role, network topology and application objects are used to evaluate reliability in the physical, medium access control, network, and application layers, respectively. In the star or tree networks, a series system and the reliability block diagram (RBD) technique can be used to solve their reliability problem. However, a division technology is applied here to overcome the problem because the network complexity is higher than that of the others. A mesh network using division technology is classified into several non-reducible series systems and edge parallel systems. Hence, the reliability of mesh networks is easily solved using series-parallel systems through our proposed scheme. The numerical results demonstrate that the reliability will increase for mesh networks when the number of edges in parallel systems increases while the reliability quickly drops when the number of edges and the number of nodes increase for all three networks. More use of resources is another factor impact on reliability decreasing. However, lower network reliability will occur due to network complexity, more resource usage and complex object relationship.
Analysis of Artificial Neural Network in Erosion Modeling: A Case Study of Serang Watershed
NASA Astrophysics Data System (ADS)
Arif, N.; Danoedoro, P.; Hartono
2017-12-01
Erosion modeling is an important measuring tool for both land users and decision makers to evaluate land cultivation and thus it is necessary to have a model to represent the actual reality. Erosion models are a complex model because of uncertainty data with different sources and processing procedures. Artificial neural networks can be relied on for complex and non-linear data processing such as erosion data. The main difficulty in artificial neural network training is the determination of the value of each network input parameters, i.e. hidden layer, momentum, learning rate, momentum, and RMS. This study tested the capability of artificial neural network application in the prediction of erosion risk with some input parameters through multiple simulations to get good classification results. The model was implemented in Serang Watershed, Kulonprogo, Yogyakarta which is one of the critical potential watersheds in Indonesia. The simulation results showed the number of iterations that gave a significant effect on the accuracy compared to other parameters. A small number of iterations can produce good accuracy if the combination of other parameters was right. In this case, one hidden layer was sufficient to produce good accuracy. The highest training accuracy achieved in this study was 99.32%, occurred in ANN 14 simulation with combination of network input parameters of 1 HL; LR 0.01; M 0.5; RMS 0.0001, and the number of iterations of 15000. The ANN training accuracy was not influenced by the number of channels, namely input dataset (erosion factors) as well as data dimensions, rather it was determined by changes in network parameters.
Model of community emergence in weighted social networks
NASA Astrophysics Data System (ADS)
Kumpula, J. M.; Onnela, J.-P.; Saramäki, J.; Kertész, J.; Kaski, K.
2009-04-01
Over the years network theory has proven to be rapidly expanding methodology to investigate various complex systems and it has turned out to give quite unparalleled insight to their structure, function, and response through data analysis, modeling, and simulation. For social systems in particular the network approach has empirically revealed a modular structure due to interplay between the network topology and link weights between network nodes or individuals. This inspired us to develop a simple network model that could catch some salient features of mesoscopic community and macroscopic topology formation during network evolution. Our model is based on two fundamental mechanisms of network sociology for individuals to find new friends, namely cyclic closure and focal closure, which are mimicked by local search-link-reinforcement and random global attachment mechanisms, respectively. In addition we included to the model a node deletion mechanism by removing all its links simultaneously, which corresponds for an individual to depart from the network. Here we describe in detail the implementation of our model algorithm, which was found to be computationally efficient and produce many empirically observed features of large-scale social networks. Thus this model opens a new perspective for studying such collective social phenomena as spreading, structure formation, and evolutionary processes.
Software-Enabled Distributed Network Governance: The PopMedNet Experience.
Davies, Melanie; Erickson, Kyle; Wyner, Zachary; Malenfant, Jessica; Rosen, Rob; Brown, Jeffrey
2016-01-01
The expanded availability of electronic health information has led to increased interest in distributed health data research networks. The distributed research network model leaves data with and under the control of the data holder. Data holders, network coordinating centers, and researchers have distinct needs and challenges within this model. The concerns of network stakeholders are addressed in the design and governance models of the PopMedNet software platform. PopMedNet features include distributed querying, customizable workflows, and auditing and search capabilities. Its flexible role-based access control system enables the enforcement of varying governance policies. Four case studies describe how PopMedNet is used to enforce network governance models. Trust is an essential component of a distributed research network and must be built before data partners may be willing to participate further. The complexity of the PopMedNet system must be managed as networks grow and new data, analytic methods, and querying approaches are developed. The PopMedNet software platform supports a variety of network structures, governance models, and research activities through customizable features designed to meet the needs of network stakeholders.
Signaling mechanisms underlying the robustness and tunability of the plant immune network
Kim, Yungil; Tsuda, Kenichi; Igarashi, Daisuke; Hillmer, Rachel A.; Sakakibara, Hitoshi; Myers, Chad L.; Katagiri, Fumiaki
2014-01-01
Summary How does robust and tunable behavior emerge in a complex biological network? We sought to understand this for the signaling network controlling pattern-triggered immunity (PTI) in Arabidopsis. A dynamic network model containing four major signaling sectors, the jasmonate, ethylene, PAD4, and salicylate sectors, which together explain up to 80% of the PTI level, was built using data for dynamic sector activities and PTI levels under exhaustive combinatorial sector perturbations. Our regularized multiple regression model had a high level of predictive power and captured known and unexpected signal flows in the network. The sole inhibitory sector in the model, the ethylene sector, was central to the network robustness via its inhibition of the jasmonate sector. The model's multiple input sites linked specific signal input patterns varying in strength and timing to different network response patterns, indicating a mechanism enabling tunability. PMID:24439900
Modelling dendritic ecological networks in space: anintegrated network perspective
Peterson, Erin E.; Ver Hoef, Jay M.; Isaak, Dan J.; Falke, Jeffrey A.; Fortin, Marie-Josée; Jordon, Chris E.; McNyset, Kristina; Monestiez, Pascal; Ruesch, Aaron S.; Sengupta, Aritra; Som, Nicholas; Steel, E. Ashley; Theobald, David M.; Torgersen, Christian E.; Wenger, Seth J.
2013-01-01
the context of stream ecology. Within this context, we summarise the key innovations of a new family of spatial statistical models that describe spatial relationships in DENs. Finally, we discuss how different network analyses may be combined to address more complex and novel research questions. While our main focus is streams, the taxonomy of network analyses is also relevant anywhere spatial patterns in both network and 2-D space can be used to explore the influence of multi-scale processes on biota and their habitat (e.g. plant morphology and pest infestation, or preferential migration along stream or road corridors).
Phase-synchronisation in continuous flow models of production networks
NASA Astrophysics Data System (ADS)
Scholz-Reiter, Bernd; Tervo, Jan Topi; Freitag, Michael
2006-04-01
To improve their position at the market, many companies concentrate on their core competences and hence cooperate with suppliers and distributors. Thus, between many independent companies strong linkages develop and production and logistics networks emerge. These networks are characterised by permanently increasing complexity, and are nowadays forced to adapt to dynamically changing markets. This factor complicates an enterprise-spreading production planning and control enormously. Therefore, a continuous flow model for production networks will be derived regarding these special logistic problems. Furthermore, phase-synchronisation effects will be presented and their dependencies to the set of network parameters will be investigated.
Preston, Daniel L; Jacobs, Abigail Z; Orlofske, Sarah A; Johnson, Pieter T J
2014-03-01
Most food webs use taxonomic or trophic species as building blocks, thereby collapsing variability in feeding linkages that occurs during the growth and development of individuals. This issue is particularly relevant to integrating parasites into food webs because parasites often undergo extreme ontogenetic niche shifts. Here, we used three versions of a freshwater pond food web with varying levels of node resolution (from taxonomic species to life stages) to examine how complex life cycles and parasites alter web properties, the perceived trophic position of organisms, and the fit of a probabilistic niche model. Consistent with prior studies, parasites increased most measures of web complexity in the taxonomic species web; however, when nodes were disaggregated into life stages, the effects of parasites on several network properties (e.g., connectance and nestedness) were reversed, due in part to the lower trophic generality of parasite life stages relative to free-living life stages. Disaggregation also reduced the trophic level of organisms with either complex or direct life cycles and was particularly useful when including predation on parasites, which can inflate trophic positions when life stages are collapsed. Contrary to predictions, disaggregation decreased network intervality and did not enhance the fit of a probabilistic niche model to the food webs with parasites. Although the most useful level of biological organization in food webs will vary with the questions of interest, our results suggest that disaggregating species-level nodes may refine our perception of how parasites and other complex life cycle organisms influence ecological networks.
Geo-Distinctive Comorbidity Networks of Pediatric Asthma.
Shin, Eun Kyong; Shaban-Nejad, Arash
2018-01-01
Most pediatric asthma cases occur in complex interdependencies, exhibiting complex manifestation of multiple symptoms. Studying asthma comorbidities can help to better understand the etiology pathway of the disease. Albeit such relations of co-expressed symptoms and their interactions have been highlighted recently, empirical investigation has not been rigorously applied to pediatric asthma cases. In this study, we use computational network modeling and analysis to reveal the links and associations between commonly co-observed diseases/conditions with asthma among children in Memphis, Tennessee. We present a novel method for geo-parsed comorbidity network analysis to show the distinctive patterns of comorbidity networks in urban and suburban areas in Memphis.
Intelligent classifier for dynamic fault patterns based on hidden Markov model
NASA Astrophysics Data System (ADS)
Xu, Bo; Feng, Yuguang; Yu, Jinsong
2006-11-01
It's difficult to build precise mathematical models for complex engineering systems because of the complexity of the structure and dynamics characteristics. Intelligent fault diagnosis introduces artificial intelligence and works in a different way without building the analytical mathematical model of a diagnostic object, so it's a practical approach to solve diagnostic problems of complex systems. This paper presents an intelligent fault diagnosis method, an integrated fault-pattern classifier based on Hidden Markov Model (HMM). This classifier consists of dynamic time warping (DTW) algorithm, self-organizing feature mapping (SOFM) network and Hidden Markov Model. First, after dynamic observation vector in measuring space is processed by DTW, the error vector including the fault feature of being tested system is obtained. Then a SOFM network is used as a feature extractor and vector quantization processor. Finally, fault diagnosis is realized by fault patterns classifying with the Hidden Markov Model classifier. The importing of dynamic time warping solves the problem of feature extracting from dynamic process vectors of complex system such as aeroengine, and makes it come true to diagnose complex system by utilizing dynamic process information. Simulating experiments show that the diagnosis model is easy to extend, and the fault pattern classifier is efficient and is convenient to the detecting and diagnosing of new faults.
A Model of Biological Attacks on a Realistic Population
NASA Astrophysics Data System (ADS)
Carley, Kathleen M.; Fridsma, Douglas; Casman, Elizabeth; Altman, Neal; Chen, Li-Chiou; Kaminsky, Boris; Nave, Demian; Yahja, Alex
The capability to assess the impacts of large-scale biological attacks and the efficacy of containment policies is critical and requires knowledge-intensive reasoning about social response and disease transmission within a complex social system. There is a close linkage among social networks, transportation networks, disease spread, and early detection. Spatial dimensions related to public gathering places such as hospitals, nursing homes, and restaurants, can play a major role in epidemics [Klovdahl et. al. 2001]. Like natural epidemics, bioterrorist attacks unfold within spatially defined, complex social systems, and the societal and networked response can have profound effects on their outcome. This paper focuses on bioterrorist attacks, but the model has been applied to emergent and familiar diseases as well.
NASA Astrophysics Data System (ADS)
Cheng, Lin; Yang, Yongqing; Li, Li; Sui, Xin
2018-06-01
This paper studies the finite-time hybrid projective synchronization of the drive-response complex networks. In the model, general transmission delays and distributed delays are also considered. By designing the adaptive intermittent controllers, the response network can achieve hybrid projective synchronization with the drive system in finite time. Based on finite-time stability theory and several differential inequalities, some simple finite-time hybrid projective synchronization criteria are derived. Two numerical examples are given to illustrate the effectiveness of the proposed method.
Gao, Xiangyun; Huang, Shupei; Sun, Xiaoqi; Hao, Xiaoqing; An, Feng
2018-03-01
Microscopic factors are the basis of macroscopic phenomena. We proposed a network analysis paradigm to study the macroscopic financial system from a microstructure perspective. We built the cointegration network model and the Granger causality network model based on econometrics and complex network theory and chose stock price time series of the real estate industry and its upstream and downstream industries as empirical sample data. Then, we analysed the cointegration network for understanding the steady long-term equilibrium relationships and analysed the Granger causality network for identifying the diffusion paths of the potential risks in the system. The results showed that the influence from a few key stocks can spread conveniently in the system. The cointegration network and Granger causality network are helpful to detect the diffusion path between the industries. We can also identify and intervene in the transmission medium to curb risk diffusion.