Sample records for modelling forest fires

  1. Forest-fire models

    Treesearch

    Haiganoush Preisler; Alan Ager

    2013-01-01

    For applied mathematicians forest fire models refer mainly to a non-linear dynamic system often used to simulate spread of fire. For forest managers forest fire models may pertain to any of the three phases of fire management: prefire planning (fire risk models), fire suppression (fire behavior models), and postfire evaluation (fire effects and economic models). In...

  2. A second-order impact model for forest fire regimes.

    PubMed

    Maggi, Stefano; Rinaldi, Sergio

    2006-09-01

    We present a very simple "impact" model for the description of forest fires and show that it can mimic the known characteristics of wild fire regimes in savannas, boreal forests, and Mediterranean forests. Moreover, the distribution of burned biomasses in model generated fires resemble those of burned areas in numerous large forests around the world. The model has also the merits of being the first second-order model for forest fires and the first example of the use of impact models in the study of ecosystems.

  3. Mathematical modeling of forest fire initiation in three dimensional setting

    Treesearch

    Valeriy Perminov

    2007-01-01

    In this study, the assignment and theoretical investigations of the problems of forest fire initiation were carried out, including development of a mathematical model for description of heat and mass transfer processes in overterrestrial layer of atmosphere at crown forest fire initiation, taking into account their mutual influence. Mathematical model of forest fire...

  4. Numerical study of propagation of forest fires in the presence of fire breaks using an averaged setting

    NASA Astrophysics Data System (ADS)

    Marzaeva, S. I.; Galtseva, O. V.

    2018-05-01

    The forest fires spread in the pine forests have been numerically simulated using a three-dimensional mathematical model. The model was integrated with respect to the vertical coordinate because horizontal sizes of forest are much greater than the heights of trees. In this paper, the assignment and theoretical investigations of the problems of crown forest fires spread pass the firebreaks were carried out. In this context, a study ( mathematical modeling) of the conditions of forest fire spreading that would make it possible to obtain a detailed picture of the change in the temperature and component concentration fields with time, and determine as well as the limiting condition of fire propagation in forest with these fire breaks.

  5. Impact of forest fires on particulate matter and ozone levels during the 2003, 2004 and 2005 fire seasons in Portugal.

    PubMed

    Martins, V; Miranda, A I; Carvalho, A; Schaap, M; Borrego, C; Sá, E

    2012-01-01

    The main purpose of this work is to estimate the impact of forest fires on air pollution applying the LOTOS-EUROS air quality modeling system in Portugal for three consecutive years, 2003-2005. Forest fire emissions have been included in the modeling system through the development of a numerical module, which takes into account the most suitable parameters for Portuguese forest fire characteristics and the burnt area by large forest fires. To better evaluate the influence of forest fires on air quality the LOTOS-EUROS system has been applied with and without forest fire emissions. Hourly concentration results have been compared to measure data at several monitoring locations with better modeling quality parameters when forest fire emissions were considered. Moreover, hourly estimates, with and without fire emissions, can reach differences in the order of 20%, showing the importance and the influence of this type of emissions on air quality. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Modeling forest fire occurrences using count-data mixed models in Qiannan autonomous prefecture of Guizhou province in China.

    PubMed

    Xiao, Yundan; Zhang, Xiongqing; Ji, Ping

    2015-01-01

    Forest fires can cause catastrophic damage on natural resources. In the meantime, it can also bring serious economic and social impacts. Meteorological factors play a critical role in establishing conditions favorable for a forest fire. Effective prediction of forest fire occurrences could prevent or minimize losses. This paper uses count data models to analyze fire occurrence data which is likely to be dispersed and frequently contain an excess of zero counts (no fire occurrence). Such data have commonly been analyzed using count data models such as a Poisson model, negative binomial model (NB), zero-inflated models, and hurdle models. Data we used in this paper is collected from Qiannan autonomous prefecture of Guizhou province in China. Using the fire occurrence data from January to April (spring fire season) for the years 1996 through 2007, we introduced random effects to the count data models. In this study, the results indicated that the prediction achieved through NB model provided a more compelling and credible inferential basis for fitting actual forest fire occurrence, and mixed-effects model performed better than corresponding fixed-effects model in forest fire forecasting. Besides, among all meteorological factors, we found that relative humidity and wind speed is highly correlated with fire occurrence.

  7. Modeling Forest Fire Occurrences Using Count-Data Mixed Models in Qiannan Autonomous Prefecture of Guizhou Province in China

    PubMed Central

    Ji, Ping

    2015-01-01

    Forest fires can cause catastrophic damage on natural resources. In the meantime, it can also bring serious economic and social impacts. Meteorological factors play a critical role in establishing conditions favorable for a forest fire. Effective prediction of forest fire occurrences could prevent or minimize losses. This paper uses count data models to analyze fire occurrence data which is likely to be dispersed and frequently contain an excess of zero counts (no fire occurrence). Such data have commonly been analyzed using count data models such as a Poisson model, negative binomial model (NB), zero-inflated models, and hurdle models. Data we used in this paper is collected from Qiannan autonomous prefecture of Guizhou province in China. Using the fire occurrence data from January to April (spring fire season) for the years 1996 through 2007, we introduced random effects to the count data models. In this study, the results indicated that the prediction achieved through NB model provided a more compelling and credible inferential basis for fitting actual forest fire occurrence, and mixed-effects model performed better than corresponding fixed-effects model in forest fire forecasting. Besides, among all meteorological factors, we found that relative humidity and wind speed is highly correlated with fire occurrence. PMID:25790309

  8. [Relationships of forest fire with lightning in Daxing' anling Mountains, Northeast China].

    PubMed

    Lei, Xiao-Li; Zhou, Guang-Sheng; Jia, Bing-Rui; Li, Shuai

    2012-07-01

    Forest fire is an important factor affecting forest ecosystem succession. Recently, forest fire, especially forest lightning fire, shows an increasing trend under global warming. To study the relationships of forest fire with lightning is essential to accurately predict the forest fire in time. Daxing' anling Mountains is a region with high frequency of forest lightning fire in China, and an important experiment site to study the relationships of forest fire with lightning. Based on the forest fire records and the corresponding lightning and meteorological observation data in the Mountains from 1966 to 2007, this paper analyzed the relationships of forest fire with lightning in this region. In the period of 1966-2007, both the lightning fire number and the fired forest area in this region increased significantly. The meteorological factors affecting the forest lighting fire were related to temporal scales. At yearly scale, the forest lightning fire was significantly correlated with precipitation, with a correlation coefficient of -0.489; at monthly scale, it had a significant correlation with air temperature, the correlation coefficient being 0.18. The relationship of the forest lightning fire with lightning was also related to temporal scales. At yearly scale, there was no significant correlation between them; at monthly scale, the forest lightning fire was strongly correlated with lightning and affected by precipitation; at daily scale, a positive correlation was observed between forest lightning fire and lightning when the precipitation was less than 5 mm. According to these findings, a fire danger index based on ADTD lightning detection data was established, and a forest lightning fire forecast model was developed. The prediction accuracy of this model for the forest lightning fire in Daxing' anling Mountains in 2005-2007 was > 80%.

  9. Detection, Emission Estimation and Risk Prediction of Forest Fires in China Using Satellite Sensors and Simulation Models in the Past Three Decades—An Overview

    PubMed Central

    Zhang, Jia-Hua; Yao, Feng-Mei; Liu, Cheng; Yang, Li-Min; Boken, Vijendra K.

    2011-01-01

    Forest fires have major impact on ecosystems and greatly impact the amount of greenhouse gases and aerosols in the atmosphere. This paper presents an overview in the forest fire detection, emission estimation, and fire risk prediction in China using satellite imagery, climate data, and various simulation models over the past three decades. Since the 1980s, remotely-sensed data acquired by many satellites, such as NOAA/AVHRR, FY-series, MODIS, CBERS, and ENVISAT, have been widely utilized for detecting forest fire hot spots and burned areas in China. Some developed algorithms have been utilized for detecting the forest fire hot spots at a sub-pixel level. With respect to modeling the forest burning emission, a remote sensing data-driven Net Primary productivity (NPP) estimation model was developed for estimating forest biomass and fuel. In order to improve the forest fire risk modeling in China, real-time meteorological data, such as surface temperature, relative humidity, wind speed and direction, have been used as the model input for improving prediction of forest fire occurrence and its behavior. Shortwave infrared (SWIR) and near infrared (NIR) channels of satellite sensors have been employed for detecting live fuel moisture content (FMC), and the Normalized Difference Water Index (NDWI) was used for evaluating the forest vegetation condition and its moisture status. PMID:21909297

  10. Detection, emission estimation and risk prediction of forest fires in China using satellite sensors and simulation models in the past three decades--an overview.

    PubMed

    Zhang, Jia-Hua; Yao, Feng-Mei; Liu, Cheng; Yang, Li-Min; Boken, Vijendra K

    2011-08-01

    Forest fires have major impact on ecosystems and greatly impact the amount of greenhouse gases and aerosols in the atmosphere. This paper presents an overview in the forest fire detection, emission estimation, and fire risk prediction in China using satellite imagery, climate data, and various simulation models over the past three decades. Since the 1980s, remotely-sensed data acquired by many satellites, such as NOAA/AVHRR, FY-series, MODIS, CBERS, and ENVISAT, have been widely utilized for detecting forest fire hot spots and burned areas in China. Some developed algorithms have been utilized for detecting the forest fire hot spots at a sub-pixel level. With respect to modeling the forest burning emission, a remote sensing data-driven Net Primary productivity (NPP) estimation model was developed for estimating forest biomass and fuel. In order to improve the forest fire risk modeling in China, real-time meteorological data, such as surface temperature, relative humidity, wind speed and direction, have been used as the model input for improving prediction of forest fire occurrence and its behavior. Shortwave infrared (SWIR) and near infrared (NIR) channels of satellite sensors have been employed for detecting live fuel moisture content (FMC), and the Normalized Difference Water Index (NDWI) was used for evaluating the forest vegetation condition and its moisture status.

  11. Prediction of forest fires occurrences with area-level Poisson mixed models.

    PubMed

    Boubeta, Miguel; Lombardía, María José; Marey-Pérez, Manuel Francisco; Morales, Domingo

    2015-05-01

    The number of fires in forest areas of Galicia (north-west of Spain) during the summer period is quite high. Local authorities are interested in analyzing the factors that explain this phenomenon. Poisson regression models are good tools for describing and predicting the number of fires per forest areas. This work employs area-level Poisson mixed models for treating real data about fires in forest areas. A parametric bootstrap method is applied for estimating the mean squared errors of fires predictors. The developed methodology and software are applied to a real data set of fires in forest areas of Galicia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A numerical solution of the problem of crown forest fire initiation and spread

    NASA Astrophysics Data System (ADS)

    Marzaeva, S. I.; Galtseva, O. V.

    2018-05-01

    Mathematical model of forest fire was based on an analysis of known experimental data and using concept and methods from reactive media mechanics. The study takes in to account the mutual interaction of the forest fires and three-dimensional atmosphere flows. The research is done by means of mathematical modeling of physical processes. It is based on numerical solution of Reynolds equations for chemical components and equations of energy conservation for gaseous and condensed phases. It is assumed that the forest during a forest fire can be modeled as a two-temperature multiphase non-deformable porous reactive medium. A discrete analog for the system of equations was obtained by means of the control volume method. The developed model of forest fire initiation and spreading would make it possible to obtain a detailed picture of the variation in the velocity, temperature and chemical species concentration fields with time. Mathematical model and the result of the calculation give an opportunity to evaluate critical conditions of the forest fire initiation and spread which allows applying the given model for of means for preventing fires.

  13. Modeling Forest Understory Fires in an Eastern Amazonian Landscape

    NASA Technical Reports Server (NTRS)

    Alencar, A. A. C.; Solorzano, L. A.; Nepstad, D. C.

    2004-01-01

    Forest understory fires are an increasingly important cause of forest impoverishment in Ammonia, but little is known of the landscape characteristics and climatic phenomena that determine their occurrence. We developed empirical functions relating the occurrence of understory fires to landscape features near Paragominas, a 35- yr-old ranching and logging center in eastern Ammonia. An historical sequence of maps of forest understory fire was created based on field interviews With local farmers and Landsat TM images. Several landscape features that might explain spatial variations in the occurrence of understory fires were also mapped and co-registered for each of the sample dates, including: forest fragment size and shape, forest impoverishment through logging and understory fires, source of ignition (settlements and charcoal pits), roads, forest edges, and others. The spatial relationship between forest understory fire and each landscape characteristic was tested by regression analyses. Fire probability models were then developed for various combinations of landscape characteristics. The analyses were conducted separately for years of the El Nino Southern Oscillation (ENSO), which are associated with severe drought in eastern Amazonia, and non-ENS0 years. Most (91 %) of the forest area that burned during the 10-yr sequence caught fire during ENSO years, when severe drought may have increased both forest flammability and the escape of agricultural management fires. Forest understory fires were associated with forest edges, as reported in previous studies from Ammonia. But the strongest predictor of forest fire was the percentage of the forest fragment that had been previously logged or burned. Forest fragment size, distance to charcoal pits, distance to agricultural settlement, proximity to forest edge, and distance to roads were also correlated with forest understory fire. Logistic regression models using information on fragment degradation and distance to ignition sources accurately predicted the location of lss than 80% of the forest fires observed during the ENSO event of 1997- 1998. In this Amazon landscape, forest understory fire is a complex function of several variables that influence both the flammability and ignition exposure of the forest.

  14. Simulating the Effects of Fire on Forests in the Russian Far East: Integrating a Fire Danger Model and the FAREAST Forest Growth Model Across a Complex Landscape

    NASA Astrophysics Data System (ADS)

    Sherman, N. J.; Loboda, T.; Sun, G.; Shugart, H. H.; Csiszar, I.

    2008-12-01

    The remaining natural habitat of the critically endangered Amur tiger (Panthera tigris altaica) and Amur leopard (Panthera pardus orientalis) is a vast, biologically and topographically diverse area in the Russian Far East (RFE). Although wildland fire is a natural component of ecosystem functioning in the RFE, severe or repeated fires frequently re-set the process of forest succession, which may take centuries to return the affected forests to the pre-fire state and thus significantly alters habitat quality and long-term availability. The frequency of severe fire events has increased over the last 25 years, leading to irreversible modifications of some parts of the species' habitats. Moreover, fire regimes are expected to continue to change toward more frequent and severe events under the influence of climate change. Here we present an approach to developing capabilities for a comprehensive assessment of potential Amur tiger and leopard habitat availability throughout the 21st century by integrating regionally parameterized fire danger and forest growth models. The FAREAST model is an individual, gap-based model that simulates forest growth in a single location and demonstrates temporally explicit forest succession leading to mature forests. Including spatially explicit information on probabilities of fire occurrence at 1 km resolution developed from the regionally specific remotely -sensed data-driven fire danger model improves our ability to provide realistic long-term projections of potential forest composition in the RFE. This work presents the first attempt to merge the FAREAST model with a fire disturbance model, to validate its outputs across a large region, and to compare it to remotely-sensed data products as well as in situ assessments of forest structure. We ran the FAREAST model at 1,000 randomly selected points within forested areas in the RFE. At each point, the model was calibrated for temperature, precipitation, slope, elevation, and fire probability. The output of the model includes biomass estimates for 44 tree species that occur in the RFE, grouped by genus. We compared the model outputs with land cover classifications derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) data and LIDAR-based estimates of biomass across the entire region, and Russian forest inventory records at selected sites. Overall, we find that the FAREAST estimates of forest biomass and general composition are consistent with the observed distribution of forest types.

  15. Simulations of Forest Fires by the Cellular Automata Model "ABBAMPAU"

    NASA Astrophysics Data System (ADS)

    di Gregorio, S.; Bendicenti, E.

    2003-04-01

    Forest fires represent a serious environmental problem, whose negative impact is becoming day by day more worrisome. Forest fires are very complex phenomena; that need an interdisciplinary approach. The adopted method to modelling involves the definition of local rules, from which the global behaviour of the system can emerge. The paradigm of Cellular Automata was applied and the model ABBAMPAU was projected to simulate the evolution of forest fires. Cellular Automata features (parallelism and a-centrism) seem to match the system "forest fire"; the parameters, describing globally a forest fire, i.e. propagation rate, flame length and direction, fireline intensity, fire duration time et c. are mainly depending on some local characteristics i.e. vegetation type (live and dead fuel), relative humidity, fuel moisture, heat, territory morphology (altitude, slope), et c.. The only global characteristic is given by wind velocity and direction, but wind velocity and direction is locally altered according to the morphology; therefore wind has also to be considered at local level. ABBAMPAU accounts for the following aspects of the phenomenon: effects of combustion in surface and crown fire inside the cell, crown fire triggering off; surface and crown fire spread, determination of the local wind rate and direction. A validation of ABBAMPAU was tested on a real case of forest fire, in the territory of Villaputzu, Sardinia island, August 22nd, 1998. First simulations account for the main characteristics of the phenomenon and agree with the observations. The results show that the model could be applied for the forest fire preventions, the productions of risk scenarios and the evaluation of the forest fire environmental impact.

  16. Estimation of Wild Fire Risk Area based on Climate and Maximum Entropy in Korean Peninsular

    NASA Astrophysics Data System (ADS)

    Kim, T.; Lim, C. H.; Song, C.; Lee, W. K.

    2015-12-01

    The number of forest fires and accompanying human injuries and physical damages has been increased by frequent drought. In this study, forest fire danger zone of Korea is estimated to predict and prepare for future forest fire hazard regions. The MaxEnt (Maximum Entropy) model is used to estimate the forest fire hazard region which estimates the probability distribution of the status. The MaxEnt model is primarily for the analysis of species distribution, but its applicability for various natural disasters is getting recognition. The detailed forest fire occurrence data collected by the MODIS for past 5 years (2010-2014) is used as occurrence data for the model. Also meteorology, topography, vegetation data are used as environmental variable. In particular, various meteorological variables are used to check impact of climate such as annual average temperature, annual precipitation, precipitation of dry season, annual effective humidity, effective humidity of dry season, aridity index. Consequently, the result was valid based on the AUC(Area Under the Curve) value (= 0.805) which is used to predict accuracy in the MaxEnt model. Also predicted forest fire locations were practically corresponded with the actual forest fire distribution map. Meteorological variables such as effective humidity showed the greatest contribution, and topography variables such as TWI (Topographic Wetness Index) and slope also contributed on the forest fire. As a result, the east coast and the south part of Korea peninsula were predicted to have high risk on the forest fire. In contrast, high-altitude mountain area and the west coast appeared to be safe with the forest fire. The result of this study is similar with former studies, which indicates high risks of forest fire in accessible area and reflects climatic characteristics of east and south part in dry season. To sum up, we estimated the forest fire hazard zone with existing forest fire locations and environment variables and had meaningful result with artificial and natural effect. It is expected to predict future forest fire risk with future climate variables as the climate changes.

  17. Chapter 2: Fire and Fuels Extension: Model description

    Treesearch

    Sarah J. Beukema; Elizabeth D. Reinhardt; Julee A. Greenough; Donald C. E. Robinson; Werner A. Kurz

    2003-01-01

    The Fire and Fuels Extension to the Forest Vegetation Simulator is a model that simulates fuel dynamics and potential fire behavior over time, in the context of stand development and management. Existing models are used to represent forest stand development (the Forest Vegetation Simulator, Wykoff and others 1982), fire behavior (Rothermel 1972, Van Wagner 1977, and...

  18. Improving the Interoperability of Disaster Models: a Case Study of Proposing Fireml for Forest Fire Model

    NASA Astrophysics Data System (ADS)

    Jiang, W.; Wang, F.; Meng, Q.; Li, Z.; Liu, B.; Zheng, X.

    2018-04-01

    This paper presents a new standardized data format named Fire Markup Language (FireML), extended by the Geography Markup Language (GML) of OGC, to elaborate upon the fire hazard model. The proposed FireML is able to standardize the input and output documents of a fire model for effectively communicating with different disaster management systems to ensure a good interoperability. To demonstrate the usage of FireML and testify its feasibility, an adopted forest fire spread model being compatible with FireML is described. And a 3DGIS disaster management system is developed to simulate the dynamic procedure of forest fire spread with the defined FireML documents. The proposed approach will enlighten ones who work on other disaster models' standardization work.

  19. The carbon debt from Amazon forest degradation: integrating airborne lidar, field measurements, and an ecosystem demography model.

    NASA Astrophysics Data System (ADS)

    Longo, M.; Keller, M. M.; dos-Santos, M. N.; Scaranello, M. A., Sr.; Pinagé, E. R.; Leitold, V.; Morton, D. C.

    2016-12-01

    Amazon deforestation has declined over the last decade, yet forest degradation from logging, fire, and fragmentation continue to impact forest carbon stocks and fluxes. The magnitude of this impact remains uncertain, and observation-based studies are often limited by short time intervals or small study areas. To better understand the long-term impact of forest degradation and recovery, we have been developing a framework that integrates field plot measurements and airborne lidar surveys into an individual- and process-based model (Ecosystem Demography model, ED). We modeled forest dynamics for three forest landscapes in the Amazon with diverse degradation histories: conventional and reduced-impact logging, logging and burning, and multiple burns. Based on the initialization with contemporary forest structure and composition, model results suggest that degraded forests rapidly recover (30 years) water and energy fluxes compared with old-growth, even at sites that were affected by multiple fires. However, degraded forests maintained different carbon stocks and fluxes even after 100 years without further disturbances, because of persistent differences in forest structure and composition. Recurrent disturbances may hinder the recovery of degraded forests. Simulations using a simple fire model entirely dependent on environmental controls indicate that the most degraded forests would take much longer to reach biomass typical of old-growth forests, because drier conditions near the ground make subsequent fires more intense and more recurrent. Fires in tropical forests are also closely related to nearby human activities; while results suggest an important feedback between fires and the microenvironment, additional work is needed to improve how the model represents the human impact on current and future fire regimes. Our study highlights that recovery of degraded forests may act as an important carbon sink, but efficient recovery depends on controlling future disturbances.

  20. A stochastic Forest Fire Model for future land cover scenarios assessment

    NASA Astrophysics Data System (ADS)

    D'Andrea, M.; Fiorucci, P.; Holmes, T. P.

    2010-10-01

    Land cover is affected by many factors including economic development, climate and natural disturbances such as wildfires. The ability to evaluate how fire regimes may alter future vegetation, and how future vegetation may alter fire regimes, would assist forest managers in planning management actions to be carried out in the face of anticipated socio-economic and climatic change. In this paper, we present a method for calibrating a cellular automata wildfire regime simulation model with actual data on land cover and wildfire size-frequency. The method is based on the observation that many forest fire regimes, in different forest types and regions, exhibit power law frequency-area distributions. The standard Drossel-Schwabl cellular automata Forest Fire Model (DS-FFM) produces simulations which reproduce this observed pattern. However, the standard model is simplistic in that it considers land cover to be binary - each cell either contains a tree or it is empty - and the model overestimates the frequency of large fires relative to actual landscapes. Our new model, the Modified Forest Fire Model (MFFM), addresses this limitation by incorporating information on actual land use and differentiating among various types of flammable vegetation. The MFFM simulation model was tested on forest types with Mediterranean and sub-tropical fire regimes. The results showed that the MFFM was able to reproduce structural fire regime parameters for these two regions. Further, the model was used to forecast future land cover. Future research will extend this model to refine the forecasts of future land cover and fire regime scenarios under climate, land use and socio-economic change.

  1. Fire spread estimation on forest wildfire using ensemble kalman filter

    NASA Astrophysics Data System (ADS)

    Syarifah, Wardatus; Apriliani, Erna

    2018-04-01

    Wildfire is one of the most frequent disasters in the world, for example forest wildfire, causing population of forest decrease. Forest wildfire, whether naturally occurring or prescribed, are potential risks for ecosystems and human settlements. These risks can be managed by monitoring the weather, prescribing fires to limit available fuel, and creating firebreaks. With computer simulations we can predict and explore how fires may spread. The model of fire spread on forest wildfire was established to determine the fire properties. The fire spread model is prepared based on the equation of the diffusion reaction model. There are many methods to estimate the spread of fire. The Kalman Filter Ensemble Method is a modified estimation method of the Kalman Filter algorithm that can be used to estimate linear and non-linear system models. In this research will apply Ensemble Kalman Filter (EnKF) method to estimate the spread of fire on forest wildfire. Before applying the EnKF method, the fire spread model will be discreted using finite difference method. At the end, the analysis obtained illustrated by numerical simulation using software. The simulation results show that the Ensemble Kalman Filter method is closer to the system model when the ensemble value is greater, while the covariance value of the system model and the smaller the measurement.

  2. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    NASA Astrophysics Data System (ADS)

    Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S. L.; Poulter, B.; Viovy, N.

    2013-04-01

    Stand-replacing fires are the dominant fire type in North American boreal forest and leave a historical legacy of a mosaic landscape of different aged forest cohorts. To accurately quantify the role of fire in historical and current regional forest carbon balance using models, one needs to explicitly simulate the new forest cohort that is established after fire. The present study adapted the global process-based vegetation model ORCHIDEE to simulate boreal forest fire CO2 emissions and follow-up recovery after a stand-replacing fire, with representation of postfire new cohort establishment, forest stand structure and the following self-thinning process. Simulation results are evaluated against three clusters of postfire forest chronosequence observations in Canada and Alaska. Evaluation variables for simulated postfire carbon dynamics include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index (LAI), and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). The model simulation results, when forced by local climate and the atmospheric CO2 history on each chronosequence site, generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with measurement accuracy (for CO2 flux ~100 g C m-2 yr-1, for biomass carbon ~1000 g C m-2 and for soil carbon ~2000 g C m-2). We find that current postfire forest carbon sink on evaluation sites observed by chronosequence methods is mainly driven by historical atmospheric CO2 increase when forests recover from fire disturbance. Historical climate generally exerts a negative effect, probably due to increasing water stress caused by significant temperature increase without sufficient increase in precipitation. Our simulation results demonstrate that a global vegetation model such as ORCHIDEE is able to capture the essential ecosystem processes in fire-disturbed boreal forests and produces satisfactory results in terms of both carbon fluxes and carbon stocks evolution after fire, making it suitable for regional simulations in boreal regions where fire regimes play a key role on ecosystem carbon balance.

  3. Forest Fire Danger Rating (FFDR) Prediction over the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Song, B.; Won, M.; Jang, K.; Yoon, S.; Lim, J.

    2016-12-01

    Approximately five hundred forest fires occur and inflict the losses of both life and property each year in Korea during the forest fire seasons in the spring and autumn. Thus, an accurate prediction of forest fire is essential for effective forest fire prevention. The meteorology is one of important factors to predict and understand the fire occurrence as well as its behaviors and spread. In this study, we present the Forest Fire Danger Rating Systems (FFDRS) on the Korean Peninsula based on the Daily Weather Index (DWI) which represents the meteorological characteristics related to forest fire. The thematic maps including temperature, humidity, and wind speed produced from Korea Meteorology Administration (KMA) were applied to the forest fire occurrence probability model by logistic regression to analyze the DWI over the Korean Peninsula. The regional data assimilation and prediction system (RDAPS) and the improved digital forecast model were used to verify the sensitivity of DWI. The result of verification test revealed that the improved digital forecast model dataset showed better agreements with the real-time weather data. The forest fire danger rating index (FFDRI) calculated by the improved digital forecast model dataset showed a good agreement with the real-time weather dataset at the 233 administrative districts (R2=0.854). In addition, FFDRI were compared with observation-based FFDRI at 76 national weather stations. The mean difference was 0.5 at the site-level. The results produced in this study indicate that the improved digital forecast model dataset can be useful to predict the FFDRI in the Korean Peninsula successfully.

  4. Real time forest fire warning and forest fire risk zoning: a Vietnamese case study

    NASA Astrophysics Data System (ADS)

    Chu, T.; Pham, D.; Phung, T.; Ha, A.; Paschke, M.

    2016-12-01

    Forest fire occurs seriously in Vietnam and has been considered as one of the major causes of forest lost and degradation. Several studies of forest fire risk warning were conducted using Modified Nesterov Index (MNI) but remaining shortcomings and inaccurate predictions that needs to be urgently improved. In our study, several important topographic and social factors such as aspect, slope, elevation, distance to residential areas and road system were considered as "permanent" factors while meteorological data were updated hourly using near-real-time (NRT) remotely sensed data (i.e. MODIS Terra/Aqua and TRMM) for the prediction and warning of fire. Due to the limited number of weather stations in Vietnam, data from all active stations (i.e. 178) were used with the satellite data to calibrate and upscale meteorological variables. These data with finer resolution were then used to generate MNI. The only significant "permanent" factors were selected as input variables based on the correlation coefficients that computed from multi-variable regression among true fire-burning (collected from 1/2007) and its spatial characteristics. These coefficients also used to suggest appropriate weight for computing forest fire risk (FR) model. Forest fire risk model was calculated from the MNI and the selected factors using fuzzy regression models (FRMs) and GIS based multi-criteria analysis. By this approach, the FR was slightly modified from MNI by the integrated use of various factors in our fire warning and prediction model. Multifactor-based maps of forest fire risk zone were generated from classifying FR into three potential danger levels. Fire risk maps were displayed using webgis technology that is easy for managing data and extracting reports. Reported fire-burnings thereafter have been used as true values for validating the forest fire risk. Fire probability has strong relationship with potential danger levels (varied from 5.3% to 53.8%) indicating that the higher potential risk, the more chance of fire happen. By adding spatial factors to continuous daily updated remote sensing based meteo-data, results are valuable for both mapping forest fire risk zones in short and long-term and real time fire warning in Vietnam. Key words: Near-real-time, forest fire warning, fuzzy regression model, remote sensing.

  5. Modeling the Effects of Fire Frequency and Severity on Forests in the Northwestern United States

    USGS Publications Warehouse

    Busing, Richard T.; Solomon, Allen M.

    2006-01-01

    This study used a model of forest dynamics (FORCLIM) and actual forest survey data to demonstrate the effects of various fire regimes on different forest types in the Pacific Northwest. We examined forests in eight ecoregions ranging from wet coastal forests dominated by Pseudotsuga menziesii and other tall conifers to dry interior forests dominated by Pinus ponderosa. Fire effects simulated as elevated mortality of trees based on their species and size did alter forest structure and species composition. Low frequency fires characteristic of wetter forests (return interval >200 yr) had minor effects on composition. When fires were severe, they tended to reduce total basal area with little regard to species differences. High frequency fires characteristic of drier forests (return interval <30 yr) had major effects on species composition and on total basal area. Typically, they caused substantial reductions in total basal area and shifts in dominance toward highly fire tolerant species. With the addition of fire, simulated basal areas averaged across ecoregions were reduced to levels approximating observed basal areas.

  6. Applying genetic algorithms to set the optimal combination of forest fire related variables and model forest fire susceptibility based on data mining models. The case of Dayu County, China.

    PubMed

    Hong, Haoyuan; Tsangaratos, Paraskevas; Ilia, Ioanna; Liu, Junzhi; Zhu, A-Xing; Xu, Chong

    2018-07-15

    The main objective of the present study was to utilize Genetic Algorithms (GA) in order to obtain the optimal combination of forest fire related variables and apply data mining methods for constructing a forest fire susceptibility map. In the proposed approach, a Random Forest (RF) and a Support Vector Machine (SVM) was used to produce a forest fire susceptibility map for the Dayu County which is located in southwest of Jiangxi Province, China. For this purpose, historic forest fires and thirteen forest fire related variables were analyzed, namely: elevation, slope angle, aspect, curvature, land use, soil cover, heat load index, normalized difference vegetation index, mean annual temperature, mean annual wind speed, mean annual rainfall, distance to river network and distance to road network. The Natural Break and the Certainty Factor method were used to classify and weight the thirteen variables, while a multicollinearity analysis was performed to determine the correlation among the variables and decide about their usability. The optimal set of variables, determined by the GA limited the number of variables into eight excluding from the analysis, aspect, land use, heat load index, distance to river network and mean annual rainfall. The performance of the forest fire models was evaluated by using the area under the Receiver Operating Characteristic curve (ROC-AUC) based on the validation dataset. Overall, the RF models gave higher AUC values. Also the results showed that the proposed optimized models outperform the original models. Specifically, the optimized RF model gave the best results (0.8495), followed by the original RF (0.8169), while the optimized SVM gave lower values (0.7456) than the RF, however higher than the original SVM (0.7148) model. The study highlights the significance of feature selection techniques in forest fire susceptibility, whereas data mining methods could be considered as a valid approach for forest fire susceptibility modeling. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Changing Weather Extremes Call for Early Warning of Potential for Catastrophic Fire

    NASA Astrophysics Data System (ADS)

    Boer, Matthias M.; Nolan, Rachael H.; Resco De Dios, Víctor; Clarke, Hamish; Price, Owen F.; Bradstock, Ross A.

    2017-12-01

    Changing frequencies of extreme weather events and shifting fire seasons call for enhanced capability to forecast where and when forested landscapes switch from a nonflammable (i.e., wet fuel) state to the highly flammable (i.e., dry fuel) state required for catastrophic forest fires. Current forest fire danger indices used in Europe, North America, and Australia rate potential fire behavior by combining numerical indices of fuel moisture content, potential rate of fire spread, and fire intensity. These numerical rating systems lack the physical basis required to reliably quantify forest flammability outside the environments of their development or under novel climate conditions. Here, we argue that exceedance of critical forest flammability thresholds is a prerequisite for major forest fires and therefore early warning systems should be based on a reliable prediction of fuel moisture content plus a regionally calibrated model of how forest fire activity responds to variation in fuel moisture content. We demonstrate the potential of this approach through a case study in Portugal. We use a physically based fuel moisture model with historical weather and fire records to identify critical fuel moisture thresholds for forest fire activity and then show that the catastrophic June 2017 forest fires in central Portugal erupted shortly after fuels in the region dried out to historically unprecedented levels.

  8. Forest-fire model with natural fire resistance.

    PubMed

    Yoder, Mark R; Turcotte, Donald L; Rundle, John B

    2011-04-01

    Observations suggest that contemporary wildfire suppression practices in the United States have contributed to conditions that facilitate large, destructive fires. We introduce a forest-fire model with natural fire resistance that supports this theory. Fire resistance is defined with respect to the size and shape of clusters; the model yields power-law frequency-size distributions of model fires that are consistent with field observations in the United States, Canada, and Australia.

  9. Resuspension and redistribution of radionuclides during grassland and forest fires in the Chernobyl exclusion zone: part II. Modeling the transport process.

    PubMed

    Yoschenko, V I; Kashparov, V A; Levchuk, S E; Glukhovskiy, A S; Khomutinin, Yu V; Protsak, V P; Lundin, S M; Tschiersch, J

    2006-01-01

    To predict parameters of radionuclide resuspension, transport and deposition during forest and grassland fires, several model modules were developed and adapted. Experimental data of controlled burning of prepared experimental plots in the Chernobyl exclusion zone have been used to evaluate the prognostic power of the models. The predicted trajectories and elevations of the plume match with those visually observed during the fire experiments in the grassland and forest sites. Experimentally determined parameters could be successfully used for the calculation of the initial plume parameters which provide the tools for the description of various fire scenarios and enable prognostic calculations. In summary, the model predicts a release of some per thousand from the radionuclide inventory of the fuel material by the grassland fires. During the forest fire, up to 4% of (137)Cs and (90)Sr and up to 1% of the Pu isotopes can be released from the forest litter according to the model calculations. However, these results depend on the parameters of the fire events. In general, the modeling results are in good accordance with the experimental data. Therefore, the considered models were successfully validated and can be recommended for the assessment of the resuspension and redistribution of radionuclides during grassland and forest fires in contaminated territories.

  10. Southwestern Oregon's Biscuit Fire: An Analysis of Forest Resources, Fire Severity, and Fire Hazard

    Treesearch

    David L. Azuma; Glenn A. Christensen

    2005-01-01

    This study compares pre-fire field inventory data (collected from 1993 to 1997) in relation to post-fire mapped fire severity classes and the Fire and Fuels Extension of the Forest Vegetation Simulator growth and yield model measures of fire hazard for the portion of the Siskiyou National Forest in the 2002 Biscuit fire perimeter of southwestern Oregon. Post-fire...

  11. Modeling impacts of fire severity on successional trajectories and future fire behavior in Alaskan boreal forests

    Treesearch

    Jill F. Johnstone; T. Scott Rupp; Mark Olson; David. Verbyla

    2011-01-01

    Much of the boreal forest in western North America and Alaska experiences frequent, stand-replacing wildfires. Secondary succession after fire initiates most forest stands and variations in fire characteristics can have strong effects on pathways of succession. Variations in surface fire severity that influence whether regenerating forests are dominated by coniferous...

  12. Self-organization, the cascade model, and natural hazards.

    PubMed

    Turcotte, Donald L; Malamud, Bruce D; Guzzetti, Fausto; Reichenbach, Paola

    2002-02-19

    We consider the frequency-size statistics of two natural hazards, forest fires and landslides. Both appear to satisfy power-law (fractal) distributions to a good approximation under a wide variety of conditions. Two simple cellular-automata models have been proposed as analogs for this observed behavior, the forest fire model for forest fires and the sand pile model for landslides. The behavior of these models can be understood in terms of a self-similar inverse cascade. For the forest fire model the cascade consists of the coalescence of clusters of trees; for the sand pile model the cascade consists of the coalescence of metastable regions.

  13. Self-organization, the cascade model, and natural hazards

    PubMed Central

    Turcotte, Donald L.; Malamud, Bruce D.; Guzzetti, Fausto; Reichenbach, Paola

    2002-01-01

    We consider the frequency-size statistics of two natural hazards, forest fires and landslides. Both appear to satisfy power-law (fractal) distributions to a good approximation under a wide variety of conditions. Two simple cellular-automata models have been proposed as analogs for this observed behavior, the forest fire model for forest fires and the sand pile model for landslides. The behavior of these models can be understood in terms of a self-similar inverse cascade. For the forest fire model the cascade consists of the coalescence of clusters of trees; for the sand pile model the cascade consists of the coalescence of metastable regions. PMID:11875206

  14. A hierarchical fire frequency model to simulate temporal patterns of fire regimes in LANDIS

    Treesearch

    Jian Yang; Hong S. He; Eric J. Gustafson

    2004-01-01

    Fire disturbance has important ecological effects in many forest landscapes. Existing statistically based approaches can be used to examine the effects of a fire regime on forest landscape dynamics. Most examples of statistically based fire models divide a fire occurrence into two stages--fire ignition and fire initiation. However, the exponential and Weibull fire-...

  15. [Measurement model of carbon emission from forest fire: a review].

    PubMed

    Hu, Hai-Qing; Wei, Shu-Jing; Jin, Sen; Sun, Long

    2012-05-01

    Forest fire is the main disturbance factor for forest ecosystem, and an important pathway of the decrease of vegetation- and soil carbon storage. Large amount of carbonaceous gases in forest fire can release into atmosphere, giving remarkable impacts on the atmospheric carbon balance and global climate change. To scientifically and effectively measure the carbonaceous gases emission from forest fire is of importance in understanding the significance of forest fire in the carbon balance and climate change. This paper reviewed the research progress in the measurement model of carbon emission from forest fire, which covered three critical issues, i. e., measurement methods of forest fire-induced total carbon emission and carbonaceous gases emission, affecting factors and measurement parameters of measurement model, and cause analysis of the uncertainty in the measurement of the carbon emissions. Three path selections to improve the quantitative measurement of the carbon emissions were proposed, i. e., using high resolution remote sensing data and improving algorithm and estimation accuracy of burned area in combining with effective fuel measurement model to improve the accuracy of the estimated fuel load, using high resolution remote sensing images combined with indoor controlled environment experiments, field measurements, and field ground surveys to determine the combustion efficiency, and combining indoor controlled environment experiments with field air sampling to determine the emission factors and emission ratio.

  16. Long-term impacts of recurrent logging and fire in Amazon forests: a modeling study using the Ecosystem Demography Model (ED2)

    NASA Astrophysics Data System (ADS)

    Longo, M.; Keller, M.; Scaranello, M. A., Sr.; dos-Santos, M. N.; Xu, Y.; Huang, M.; Morton, D. C.

    2017-12-01

    Logging and understory fires are major drivers of tropical forest degradation, reducing carbon stocks and changing forest structure, composition, and dynamics. In contrast to deforested areas, sites that are disturbed by logging and fires retain some, albeit severely altered, forest structure and function. In this study we simulated selective logging using the Ecosystem Demography Model (ED-2) to investigate the impact of a broad range of logging techniques, harvest intensities, and recurrence cycles on the long-term dynamics of Amazon forests, including the magnitude and duration of changes in forest flammability following timber extraction. Model results were evaluated using eddy covariance towers at logged sites at the Tapajos National Forest in Brazil and data on long-term dynamics reported in the literature. ED-2 is able to reproduce both the fast (< 5yr) recovery of water, energy fluxes compared to flux tower, and the typical, field-observed, decadal time scales for biomass recovery when no additional logging occurs. Preliminary results using the original ED-2 fire model show that canopy cover loss of forests under high-intensity, conventional logging cause sufficient drying to support more intense fires. These results indicate that under intense degradation, forests may shift to novel disturbance regimes, severely reducing carbon stocks, and inducing long-term changes in forest structure and composition from recurrent fires.

  17. An approach to the real time risk evaluation system of boreal forest fire

    NASA Astrophysics Data System (ADS)

    Nakau, K.; Fukuda, M.; Kimura, K.; Hayasaka, H.; Tani, H.; Kushida, K.

    2005-12-01

    Huge boreal forest fire may cause massive impacts not only on global warming gas emission but also local communities. Thus, it is important to control forest fire. We collected data about boreal forest fire as satellite imagery and fire observation simultaneously in Alaska and east Siberia in summer fire seasons for these three years. Fire observation data was collected from aircraft flying between Japan and Europe. Fire detection results were compared with observed data to evaluate the accuracy and earliness of automatic detection. NOAA and MODIS satellite images covering Alaska and East Siberia are collected. We are also developing fire expansion simulation model to forecast the possible fire expansion area. On the basis of fire expansion forecast, risk analysis of possible fire expansion for decision aid of fire-fighting activities will be analyzed. To identify the risk of boreal forest fire and public concern about forest fire, we collected local news paper in Fairbanks, AK and discuss the statistics of articles related to forest fire on the newspaper.

  18. Sensitivity of ALOS/PALSAR imagery to forest degradation by fire in northern Amazon

    NASA Astrophysics Data System (ADS)

    Martins, Flora da Silva Ramos Vieira; dos Santos, João Roberto; Galvão, Lênio Soares; Xaud, Haron Abrahim Magalhães

    2016-07-01

    We evaluated the sensitivity of the full polarimetric Phased Array type L-band Synthetic Aperture Radar (PALSAR), onboard the Advanced Land Observing Satellite (ALOS), to forest degradation caused by fires in northern Amazon, Brazil. We searched for changes in PALSAR signal and tri-dimensional polarimetric responses for different classes of fire disturbance defined by fire frequency and severity. Since the aboveground biomass (AGB) is affected by fire, multiple regression models to estimate AGB were obtained for the whole set of coherent and incoherent attributes (general model) and for each set separately (specific models). The results showed that the polarimetric L-band PALSAR attributes were sensitive to variations in canopy structure and AGB caused by forest fire. However, except for the unburned and thrice burned classes, no single PALSAR attribute was able to discriminate between the intermediate classes of forest degradation by fire. Both the coherent and incoherent polarimetric attributes were important to explain AGB variations in tropical forests affected by fire. The HV backscattering coefficient, anisotropy, double-bounce component, orientation angle, volume index and HH-VV phase difference were PALSAR attributes selected from multiple regression analysis to estimate AGB. The general regression model, combining phase and power radar metrics, presented better results than specific models using coherent or incoherent attributes. The polarimetric responses indicated the dominance of VV-oriented backscattering in primary forest and lightly burned forests. The HH-oriented backscattering predominated in heavily and frequently burned forests. The results suggested a greater contribution of horizontally arranged constituents such as fallen trunks or branches in areas severely affected by fire.

  19. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    USGS Publications Warehouse

    Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S.L.; Poulter, B.; Viovy, N.

    2013-01-01

    Stand-replacing fires are the dominant fire type in North American boreal forests. They leave a historical legacy of a mosaic landscape of different aged forest cohorts. This forest age dynamics must be included in vegetation models to accurately quantify the role of fire in the historical and current regional forest carbon balance. The present study adapted the global process-based vegetation model ORCHIDEE to simulate the CO2 emissions from boreal forest fire and the subsequent recovery after a stand-replacing fire; the model represents postfire new cohort establishment, forest stand structure and the self-thinning process. Simulation results are evaluated against observations of three clusters of postfire forest chronosequences in Canada and Alaska. The variables evaluated include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index, and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). When forced by local climate and the atmospheric CO2 history at each chronosequence site, the model simulations generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with the measurement accuracy (for CO2 flux ~100 g C m−2 yr−1, for biomass carbon ~1000 g C m−2 and for soil carbon ~2000 g C m−2). We find that the current postfire forest carbon sink at the evaluation sites, as observed by chronosequence methods, is mainly due to a combination of historical CO2 increase and forest succession. Climate change and variability during this period offsets some of these expected carbon gains. The negative impacts of climate were a likely consequence of increasing water stress caused by significant temperature increases that were not matched by concurrent increases in precipitation. Our simulation results demonstrate that a global vegetation model such as ORCHIDEE is able to capture the essential ecosystem processes in fire-disturbed boreal forests and produces satisfactory results in terms of both carbon fluxes and carbon-stock evolution after fire. This makes the model suitable for regional simulations in boreal regions where fire regimes play a key role in the ecosystem carbon balance.

  20. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    NASA Astrophysics Data System (ADS)

    Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S. L.; Poulter, B.; Viovy, N.

    2013-12-01

    Stand-replacing fires are the dominant fire type in North American boreal forests. They leave a historical legacy of a mosaic landscape of different aged forest cohorts. This forest age dynamics must be included in vegetation models to accurately quantify the role of fire in the historical and current regional forest carbon balance. The present study adapted the global process-based vegetation model ORCHIDEE to simulate the CO2 emissions from boreal forest fire and the subsequent recovery after a stand-replacing fire; the model represents postfire new cohort establishment, forest stand structure and the self-thinning process. Simulation results are evaluated against observations of three clusters of postfire forest chronosequences in Canada and Alaska. The variables evaluated include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index, and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). When forced by local climate and the atmospheric CO2 history at each chronosequence site, the model simulations generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with the measurement accuracy (for CO2 flux ~100 g C m-2 yr-1, for biomass carbon ~1000 g C m-2 and for soil carbon ~2000 g C m-2). We find that the current postfire forest carbon sink at the evaluation sites, as observed by chronosequence methods, is mainly due to a combination of historical CO2 increase and forest succession. Climate change and variability during this period offsets some of these expected carbon gains. The negative impacts of climate were a likely consequence of increasing water stress caused by significant temperature increases that were not matched by concurrent increases in precipitation. Our simulation results demonstrate that a global vegetation model such as ORCHIDEE is able to capture the essential ecosystem processes in fire-disturbed boreal forests and produces satisfactory results in terms of both carbon fluxes and carbon-stock evolution after fire. This makes the model suitable for regional simulations in boreal regions where fire regimes play a key role in the ecosystem carbon balance.

  1. Landslides, forest fires, and earthquakes: examples of self-organized critical behavior

    NASA Astrophysics Data System (ADS)

    Turcotte, Donald L.; Malamud, Bruce D.

    2004-09-01

    Per Bak conceived self-organized criticality as an explanation for the behavior of the sandpile model. Subsequently, many cellular automata models were found to exhibit similar behavior. Two examples are the forest-fire and slider-block models. Each of these models can be associated with a serious natural hazard: the sandpile model with landslides, the forest-fire model with actual forest fires, and the slider-block model with earthquakes. We examine the noncumulative frequency-area statistics for each natural hazard, and show that each has a robust power-law (fractal) distribution. We propose an inverse-cascade model as a general explanation for the power-law frequency-area statistics of the three cellular-automata models and their ‘associated’ natural hazards.

  2. The simulation of surface fire spread based on Rothermel model in windthrow area of Changbai Mountain (Jilin, China)

    NASA Astrophysics Data System (ADS)

    Yin, Hang; Jin, Hui; Zhao, Ying; Fan, Yuguang; Qin, Liwu; Chen, Qinghong; Huang, Liya; Jia, Xiang; Liu, Lijie; Dai, Yuhong; Xiao, Ying

    2018-03-01

    The forest-fire not only brings great loss to natural resources, but also destructs the ecosystem and reduces the soil fertility, causing some natural disasters as soil erosion and debris flow. However, due to the lack of the prognosis for forest fire spreading trend in forest fire fighting, it is difficult to formulate rational and effective fire-fighting scheme. In the event of forest fire, achieving accurate judgment to the fire behavior would greatly improve the fire-fighting efficiency, and reduce heavy losses caused by fire. Researches on forest fire spread simulation can effectively reduce the loss of disasters. The present study focused on the simulation of "29 May 2012" wildfire in windthrow area of Changbai Mountain. Basic data were retrieved from the "29 May 2012" wildfire and field survey. A self-development forest fire behavior simulated program based on Rothermel Model was used in the simulation. Kappa coefficient and Sørensen index were employed to evaluate the simulation accuracy. The results showed that: The perimeter of simulated burned area was 4.66 km, the area was 56.47 hm2 and the overlapped burned area was 33.68 hm2, and the estimated rate of fire spread was 0.259 m/s. Between the simulated fire and actual fire, the Kappa coefficient was 0.7398 and the Sørensen co-efficient was 0.7419. This proved the application of Rothermel model to conduct fire behavior simulation in windthrow meadow was feasible. It can achieve the goal of forecasting for the spread behavior in windthrow area of Changbai Mountain. Thus, our self-development program based on the Rothermel model can provide a effective forecast of fire spread, which will facilitate the fire suppression work.

  3. Caliver: An R package for CALIbration and VERification of forest fire gridded model outputs.

    PubMed

    Vitolo, Claudia; Di Giuseppe, Francesca; D'Andrea, Mirko

    2018-01-01

    The name caliver stands for CALIbration and VERification of forest fire gridded model outputs. This is a package developed for the R programming language and available under an APACHE-2 license from a public repository. In this paper we describe the functionalities of the package and give examples using publicly available datasets. Fire danger model outputs are taken from the modeling components of the European Forest Fire Information System (EFFIS) and observed burned areas from the Global Fire Emission Database (GFED). Complete documentation, including a vignette, is also available within the package.

  4. Caliver: An R package for CALIbration and VERification of forest fire gridded model outputs

    PubMed Central

    Di Giuseppe, Francesca; D’Andrea, Mirko

    2018-01-01

    The name caliver stands for CALIbration and VERification of forest fire gridded model outputs. This is a package developed for the R programming language and available under an APACHE-2 license from a public repository. In this paper we describe the functionalities of the package and give examples using publicly available datasets. Fire danger model outputs are taken from the modeling components of the European Forest Fire Information System (EFFIS) and observed burned areas from the Global Fire Emission Database (GFED). Complete documentation, including a vignette, is also available within the package. PMID:29293536

  5. Identifying the location of fire refuges in wet forest ecosystems.

    PubMed

    Berry, Laurence E; Driscoll, Don A; Stein, John A; Blanchard, Wade; Banks, Sam C; Bradstock, Ross A; Lindenmayer, David B

    2015-12-01

    The increasing frequency of large, high-severity fires threatens the survival of old-growth specialist fauna in fire-prone forests. Within topographically diverse montane forests, areas that experience less severe or fewer fires compared with those prevailing in the landscape may present unique resource opportunities enabling old-growth specialist fauna to survive. Statistical landscape models that identify the extent and distribution of potential fire refuges may assist land managers to incorporate these areas into relevant biodiversity conservation strategies. We used a case study in an Australian wet montane forest to establish how predictive fire simulation models can be interpreted as management tools to identify potential fire refuges. We examined the relationship between the probability of fire refuge occurrence as predicted by an existing fire refuge model and fire severity experienced during a large wildfire. We also examined the extent to which local fire severity was influenced by fire severity in the surrounding landscape. We used a combination of statistical approaches, including generalized linear modeling, variogram analysis, and receiver operating characteristics and area under the curve analysis (ROC AUC). We found that the amount of unburned habitat and the factors influencing the retention and location of fire refuges varied with fire conditions. Under extreme fire conditions, the distribution of fire refuges was limited to only extremely sheltered, fire-resistant regions of the landscape. During extreme fire conditions, fire severity patterns were largely determined by stochastic factors that could not be predicted by the model. When fire conditions were moderate, physical landscape properties appeared to mediate fire severity distribution. Our study demonstrates that land managers can employ predictive landscape fire models to identify the broader climatic and spatial domain within which fire refuges are likely to be present. It is essential that within these envelopes, forest is protected from logging, roads, and other developments so that the ecological processes related to the establishment and subsequent use of fire refuges are maintained.

  6. Fire and forest history at Mount Rushmore.

    PubMed

    Brown, Peter M; Wienk, Cody L; Symstad, Amy J

    2008-12-01

    Mount Rushmore National Memorial in the Black Hills of South Dakota is known worldwide for its massive sculpture of four of the United States' most respected presidents. The Memorial landscape also is covered by extensive ponderosa pine (Pinus ponderosa) forest that has not burned in over a century. We compiled dendroecological and forest structural data from 29 plots across the 517-ha Memorial and used fire behavior modeling to reconstruct the historical fire regime and forest structure and compare them to current conditions. The historical fire regime is best characterized as one of low-severity surface fires with occasional (> 100 years) patches (< 100 ha) of passive crown fire. We estimate that only approximately 3.3% of the landscape burned as crown fire during 22 landscape fire years (recorded at > or = 25% of plots) between 1529 and 1893. The last landscape fire was in 1893. Mean fire intervals before 1893 varied depending on spatial scale, from 34 years based on scar-to-scar intervals on individual trees to 16 years between landscape fire years. Modal fire intervals were 11-15 years and did not vary with scale. Fire rotation (the time to burn an area the size of the study area) was estimated to be 30 years for surface fire and 800+ years for crown fire. The current forest is denser and contains more small trees, fewer large trees, lower canopy base heights, and greater canopy bulk density than a reconstructed historical (1870) forest. Fire behavior modeling using the NEXUS program suggests that surface fires would have dominated fire behavior in the 1870 forest during both moderate and severe weather conditions, while crown fire would dominate in the current forest especially under severe weather. Changes in the fire regime and forest structure at Mount Rushmore parallel those seen in ponderosa pine forests from the southwestern United States. Shifts from historical to current forest structure and the increased likelihood of crown fire justify the need for forest restoration before a catastrophic wildfire occurs and adversely impacts the ecological and aesthetic setting of the Mount Rushmore sculpture.

  7. Multi-temporal analysis of forest fire risk driven by environmental and socio-economic change in the Republic of Korea

    NASA Astrophysics Data System (ADS)

    Kim, S. J.; Lim, C. H.; Kim, G. S.; Lee, W. K.

    2017-12-01

    Analysis of forest fire risk is important in disaster risk reduction (DRR) since it provides a way to manage forest fires. Climate and socio-economic factors are important in the cause of forest fires, and the role of the socio-economic factors in prevention and preparedness of forest fires is increasing. As most of the forest fires in the Republic of Korea are highly related to human activities, both environmental factors and socio-economic factors were considered into the analysis of forest fire risk. In this study, the Maximum Entropy (MaxEnt) model was used to predict the potential geographical distribution and probability of forest fire occurrence spatially and temporally from 1980s to the 2010s in the Republic of Korea by multi-temporal analysis and analyze the relationship between forest fires and the factors. As a result of the risk analysis, there was an overall increasing trend in forest fire risk from the 1980s to the 2000s, and socio-economic factors were highly correlated with the occurrence of forest fires. The study demonstrates that the socio-economic factors considered as human activities can increase the occurrence of forest fires. The result implies that managing human activities are significant to prevent forest fire occurrence. In addition, timely forest fire prevention and control is necessary as drought index such as Standardized Precipitation Index (SPI) also affected forest fires.

  8. Effectiveness of Prescribed Fire as a Fuel Treatment in Californian Coniferous Forests

    Treesearch

    Nicole M. Vaillant; JoAnn Fites-Kaufman; Scott L. Stephens

    2006-01-01

    Effective fire suppression for the past century has altered forest structure and increased fuel loads. Prescribed fire as a fuels treatment can reduce wildfire size and severity. This study investigates how prescribed fire affects fuel loads, forest structure, potential fire behavior, and modeled tree mortality at 80th, 90th, and 97.5th percentile fire weather...

  9. Development and analysis of a 12-year daily 1-km forest fire dataset across North America from NOAA/AVHRR

    Treesearch

    Ruiliang Pu; Zhanqing Li; Peng Gong; Ivan Csiszar; Robert Fraser; Wei-Min Hao; Shobha Kondragunta; Fuzhong Weng

    2007-01-01

    Fires in boreal and temperate forests play a significant role in the global carbon cycle. While forest fires in North America (NA) have been surveyed extensively by U.S. and Canadian forest services, most fire records are limited to seasonal statistics without information on temporal evolution and spatial expansion. Such dynamic information is crucial for modeling fire...

  10. Strengthening community participation in reducing GHG emission from forest and peatland fire

    NASA Astrophysics Data System (ADS)

    Thoha, A. S.; Saharjo, B. H.; Boer, R.; Ardiansyah, M.

    2018-02-01

    Strengthening community participation is needed to find solutions to encourage community more participate in reducing Green House Gas (GHG) from forest and peatland fire. This research aimed to identify stakeholders that have the role in forest and peatland fire control and to formulate strengthening model of community participation through community-based early warning fire. Stakeholder mapping and action research were used to determine stakeholders that had potential influence and interest and to formulate strengthening model of community participation in reducing GHG from forest and peatland fire. There was found that position of key players in the mapping of stakeholders came from the government institution. The existence of community-based fire control group can strengthen government institution through collaborating with stakeholders having strong interest and influence. Moreover, it was found several local knowledge in Kapuas District about how communities predict drought that have potential value for developing the community-based early warning fire system. Formulated institutional model in this research also can be further developed as a model institution in the preservation of natural resources based on local knowledge. In conclusion, local knowledge and community-based fire groups can be integrated within strengthening model of community participation in reducing GHG from forest and peatland fire.

  11. [Prediction model of human-caused fire occurrence in the boreal forest of northern China].

    PubMed

    Guo, Fu-tao; Su, Zhang-wen; Wang, Guang-yu; Wang, Qiang; Sun, Long; Yang, Ting-ting

    2015-07-01

    The Chinese boreal forest is an important forest resource in China. However, it has been suffering serious disturbances of forest fires, which were caused equally by natural disasters (e.g., lightning) and human activities. The literature on human-caused fires indicates that climate, topography, vegetation, and human infrastructure are significant factors that impact the occurrence and spread of human-caused fires. But the studies on human-caused fires in the boreal forest of northern China are limited and less comprehensive. This paper applied the spatial analysis tools in ArcGIS 10.0 and Logistic regression model to investigate the driving factors of human-caused fires. Our data included the geographic coordinates of human-caused fires, climate factors during year 1974-2009, topographic information, and forest map. The results indicated that distance to railway (x1) and average relative humidity (x2) significantly impacted the occurrence of human-caused fire in the study area. The logistic model for predicting the fire occurrence probability was formulated as P= 1/[11+e-(3.026-0.00011x1-0.047x2)] with an accuracy rate of 80%. The above model was used to predict the monthly fire occurrence during the fire season of 2015 based on the HADCM2 future weather data. The prediction results showed that the high risk of human-caused fire occurrence concentrated in the months of April, May, June and August, while April and May had higher risk of fire occurrence than other months. According to the spatial distribution of possibility of fire occurrence, the high fire risk zones were mainly in the west and southwest of Tahe, where the major railways were located.

  12. Simulating fire regimes in the Amazon in response to climate change and deforestation.

    PubMed

    Silvestrini, Rafaella Almeida; Soares-Filho, Britaldo Silveira; Nepstad, Daniel; Coe, Michael; Rodrigues, Hermann; Assunção, Renato

    2011-07-01

    Fires in tropical forests release globally significant amounts of carbon to the atmosphere and may increase in importance as a result of climate change. Despite the striking impacts of fire on tropical ecosystems, the paucity of robust spatial models of forest fire still hampers our ability to simulate tropical forest fire regimes today and in the future. Here we present a probabilistic model of human-induced fire occurrence for the Amazon that integrates the effects of a series of anthropogenic factors with climatic conditions described by vapor pressure deficit. The model was calibrated using NOAA-12 night satellite hot pixels for 2003 and validated for the years 2002, 2004, and 2005. Assessment of the fire risk map yielded fitness values > 85% for all months from 2002 to 2005. Simulated fires exhibited high overlap with NOAA-12 hot pixels regarding both spatial and temporal distributions, showing a spatial fit of 50% within a radius of 11 km and a maximum yearly frequency deviation of 15%. We applied this model to simulate fire regimes in the Amazon until 2050 using IPCC's A2 scenario climate data from the Hadley Centre model and a business-as-usual (BAU) scenario of deforestation and road expansion from SimAmazonia. Results show that the combination of these scenarios may double forest fire occurrence outside protected areas (PAs) in years of extreme drought, expanding the risk of fire even to the northwestern Amazon by midcentury. In particular, forest fires may increase substantially across southern and southwestern Amazon, especially along the highways slated for paving and in agricultural zones. Committed emissions from Amazon forest fires and deforestation under a scenario of global warming and uncurbed deforestation may amount to 21 +/- 4 Pg of carbon by 2050. BAU deforestation may increase fires occurrence outside PAs by 19% over the next four decades, while climate change alone may account for a 12% increase. In turn, the combination of climate change and deforestation would boost fire occurrence outside PAs by half during this period. Our modeling results, therefore, confirm the synergy between the two Ds of REDD (Reducing Emissions from Deforestation and Forest Degradation in Developing Countries).

  13. Wildfire and drought dynamics destabilize carbon stores of fire-suppressed forests.

    PubMed

    Earles, J Mason; North, Malcolm P; Hurteau, Matthew D

    2014-06-01

    Widespread fire suppression and thinning have altered the structure and composition of many forests in the western United States, making them more susceptible to the synergy of large-scale drought and fire events. We examine how these changes affect carbon storage and stability compared to historic fire-adapted conditions. We modeled carbon dynamics under possible drought and fire conditions over a 300-year simulation period in two mixed-conifer conditions common in the western United States: (1) pine-dominated with an active fire regime and (2) fir-dominated, fire suppressed forests. Fir-dominated stands, with higher live- and dead-wood density, had much lower carbon stability as drought and fire frequency increased compared to pine-dominated forest. Carbon instability resulted from species (i.e., fir's greater susceptibility to drought and fire) and stand (i.e., high density of smaller trees) conditions that develop in the absence of active management. Our modeling suggests restoring historic species composition and active fire regimes can significantly increase carbon stability in fire-suppressed, mixed-conifer forests. Long-term management of forest carbon should consider the relative resilience of stand structure and composition to possible increases in disturbance frequency and intensity under changing climate.

  14. Utilization of geoinformation tools for the development of forest fire hazard mapping system: example of Pekan fire, Malaysia

    NASA Astrophysics Data System (ADS)

    Mahmud, Ahmad Rodzi; Setiawan, Iwan; Mansor, Shattri; Shariff, Abdul Rashid Mohamed; Pradhan, Biswajeet; Nuruddin, Ahmed

    2009-12-01

    A study in modeling fire hazard assessment will be essential in establishing an effective forest fire management system especially in controlling and preventing peat fire. In this paper, we have used geographic information system (GIS), in combination with other geoinformation technologies such as remote sensing and computer modeling, for all aspects of wild land fire management. Identifying areas that have a high probability of burning is an important component of fire management planning. The development of spatially explicit GIS models has greatly facilitated this process by allowing managers to map and analyze variables contributing to fire occurrence across large, unique geographic units. Using the model and its associated software engine, the fire hazard map was produced. Extensive avenue programming scripts were written to provide additional capabilities in the development of these interfaces to meet the full complement of operational software considering various users requirements. The system developed not only possesses user friendly step by step operations to deliver the fire vulnerability mapping but also allows authorized users to edit, add or modify parameters whenever necessary. Results from the model can support fire hazard mapping in the forest and enhance alert system function by simulating and visualizing forest fire and helps for contingency planning.

  15. Risk of large-scale fires in boreal forests of Finland under changing climate

    NASA Astrophysics Data System (ADS)

    Lehtonen, I.; Venäläinen, A.; Kämäräinen, M.; Peltola, H.; Gregow, H.

    2016-01-01

    The target of this work was to assess the impact of projected climate change on forest-fire activity in Finland with special emphasis on large-scale fires. In addition, we were particularly interested to examine the inter-model variability of the projected change of fire danger. For this purpose, we utilized fire statistics covering the period 1996-2014 and consisting of almost 20 000 forest fires, as well as daily meteorological data from five global climate models under representative concentration pathway RCP4.5 and RCP8.5 scenarios. The model data were statistically downscaled onto a high-resolution grid using the quantile-mapping method before performing the analysis. In examining the relationship between weather and fire danger, we applied the Canadian fire weather index (FWI) system. Our results suggest that the number of large forest fires may double or even triple during the present century. This would increase the risk that some of the fires could develop into real conflagrations which have become almost extinct in Finland due to active and efficient fire suppression. However, the results reveal substantial inter-model variability in the rate of the projected increase of forest-fire danger, emphasizing the large uncertainty related to the climate change signal in fire activity. We moreover showed that the majority of large fires in Finland occur within a relatively short period in May and June due to human activities and that FWI correlates poorer with the fire activity during this time of year than later in summer when lightning is a more important cause of fires.

  16. Fire-mediated dieback and compositional cascade in an Amazonian forest.

    PubMed

    Barlow, Jos; Peres, Carlos A

    2008-05-27

    The only fully coupled land-atmosphere global climate model predicts a widespread dieback of Amazonian forest cover through reduced precipitation. Although these predictions are controversial, the structural and compositional resilience of Amazonian forests may also have been overestimated, as current vegetation models fail to consider the potential role of fire in the degradation of forest ecosystems. We examine forest structure and composition in the Arapiuns River basin in the central Brazilian Amazon, evaluating post-fire forest recovery and the consequences of recurrent fires for the patterns of dominance of tree species. We surveyed tree plots in unburned and once-burned forests examined 1, 3 and 9 years after an unprecedented fire event, in twice-burned forests examined 3 and 9 years after fire and in thrice-burned forests examined 5 years after the most recent fire event. The number of trees recorded in unburned primary forest control plots was stable over time. However, in both once- and twice-burned forest plots, there was a marked recruitment into the 10-20cm diameter at breast height tree size classes between 3 and 9 years post-fire. Considering tree assemblage composition 9 years after the first fire contact, we observed (i) a clear pattern of community turnover among small trees and the most abundant shrubs and saplings, and (ii) that species that were common in any of the four burn treatments (unburned, once-, twice- and thrice-burned) were often rare or entirely absent in other burn treatments. We conclude that episodic wildfires can lead to drastic changes in forest structure and composition, with cascading shifts in forest composition following each additional fire event. Finally, we use these results to evaluate the validity of the savannization paradigm.

  17. Historical, observed, and modeled wildfire severity in montane forests of the Colorado Front Range.

    PubMed

    Sherriff, Rosemary L; Platt, Rutherford V; Veblen, Thomas T; Schoennagel, Tania L; Gartner, Meredith H

    2014-01-01

    Large recent fires in the western U.S. have contributed to a perception that fire exclusion has caused an unprecedented occurrence of uncharacteristically severe fires, particularly in lower elevation dry pine forests. In the absence of long-term fire severity records, it is unknown how short-term trends compare to fire severity prior to 20th century fire exclusion. This study compares historical (i.e. pre-1920) fire severity with observed modern fire severity and modeled potential fire behavior across 564,413 ha of montane forests of the Colorado Front Range. We used forest structure and tree-ring fire history to characterize fire severity at 232 sites and then modeled historical fire-severity across the entire study area using biophysical variables. Eighteen (7.8%) sites were characterized by low-severity fires and 214 (92.2%) by mixed-severity fires (i.e. including moderate- or high-severity fires). Difference in area of historical versus observed low-severity fire within nine recent (post-1999) large fire perimeters was greatest in lower montane forests. Only 16% of the study area recorded a shift from historical low severity to a higher potential for crown fire today. An historical fire regime of more frequent and low-severity fires at low elevations (<2260 m) supports a convergence of management goals of ecological restoration and fire hazard mitigation in those habitats. In contrast, at higher elevations mixed-severity fires were predominant historically and continue to be so today. Thinning treatments at higher elevations of the montane zone will not return the fire regime to an historic low-severity regime, and are of questionable effectiveness in preventing severe wildfires. Based on present-day fuels, predicted fire behavior under extreme fire weather continues to indicate a mixed-severity fire regime throughout most of the montane forest zone. Recent large wildfires in the Front Range are not fundamentally different from similar events that occurred historically under extreme weather conditions.

  18. Historical, Observed, and Modeled Wildfire Severity in Montane Forests of the Colorado Front Range

    PubMed Central

    Sherriff, Rosemary L.; Platt, Rutherford V.; Veblen, Thomas T.; Schoennagel, Tania L.; Gartner, Meredith H.

    2014-01-01

    Large recent fires in the western U.S. have contributed to a perception that fire exclusion has caused an unprecedented occurrence of uncharacteristically severe fires, particularly in lower elevation dry pine forests. In the absence of long-term fire severity records, it is unknown how short-term trends compare to fire severity prior to 20th century fire exclusion. This study compares historical (i.e. pre-1920) fire severity with observed modern fire severity and modeled potential fire behavior across 564,413 ha of montane forests of the Colorado Front Range. We used forest structure and tree-ring fire history to characterize fire severity at 232 sites and then modeled historical fire-severity across the entire study area using biophysical variables. Eighteen (7.8%) sites were characterized by low-severity fires and 214 (92.2%) by mixed-severity fires (i.e. including moderate- or high-severity fires). Difference in area of historical versus observed low-severity fire within nine recent (post-1999) large fire perimeters was greatest in lower montane forests. Only 16% of the study area recorded a shift from historical low severity to a higher potential for crown fire today. An historical fire regime of more frequent and low-severity fires at low elevations (<2260 m) supports a convergence of management goals of ecological restoration and fire hazard mitigation in those habitats. In contrast, at higher elevations mixed-severity fires were predominant historically and continue to be so today. Thinning treatments at higher elevations of the montane zone will not return the fire regime to an historic low-severity regime, and are of questionable effectiveness in preventing severe wildfires. Based on present-day fuels, predicted fire behavior under extreme fire weather continues to indicate a mixed-severity fire regime throughout most of the montane forest zone. Recent large wildfires in the Front Range are not fundamentally different from similar events that occurred historically under extreme weather conditions. PMID:25251103

  19. Modeling of multi-strata forest fire severity using Landsat TM data

    Treesearch

    Q. Meng; R.K. Meentemeyer

    2011-01-01

    Most of fire severity studies use field measures of composite burn index (CBI) to represent forest fire severity and fit the relationships between CBI and Landsat imagery derived differenced normalized burn ratio (dNBR) to predict and map fire severity at unsampled locations. However, less attention has been paid on the multi-strata forest fire severity, which...

  20. A stochastic Forest Fire Model for future land cover scenarios assessment

    NASA Astrophysics Data System (ADS)

    Fiorucci, P.; Holmes, T.; Gaetani, F.; D'Andrea, M.

    2009-04-01

    Land cover change and forest fire interaction under climate and socio-economics changes, is one of the main issues of the 21th century. The capability of defining future scenarios of land cover and fire regime allow forest managers to better understand the best actions to be carried out and their long term effects. In this paper a new methodology for land cover change simulations under climate change and fire disturbance is presented and discussed. The methodology is based on the assumption that forest fires exhibits power law frequency-area distribution. The well known Forest Fire Model (FFM), which is an example of self organized criticality, is able to reproduce this behavior. Starting from this observation, a modified version of the FFM has been developed. The new model, called Modified Forest Fire Model (MFFM) introduces several new features. A stochastic model for vegetation growth and regrowth after fire occurrence has been implemented for different kind of vegetations. In addition, a stochastic fire propagation model taking into account topography and vegetation cover has been introduced. The MFFM has been developed with the purpose of estimating vegetation cover changes and fire regimes over a time windows of many years for a given spatial region. Two different case studies have been carried out. The first case study is related with Liguria (Italy), a region of 5400 km2 lying between the Cote d'Azur, France, and Tuscany, Italy, on the northwest coast of the Tyrrhenian Sea. This region is characterized by Mediterranean fire regime. The second case study has been carried out in California (Florida) on a region having similar area and characterized by similar climate conditions. In both cases the model well represents the actual fire regime in terms of power law parameters proving interesting results about future land cover scenarios under climate, land use and socio-economics change.

  1. Simulating the effect of ignition source type on forest fire statistics

    NASA Astrophysics Data System (ADS)

    Krenn, Roland; Hergarten, Stefan

    2010-05-01

    Forest fires belong to the most frightening natural hazards, and have long-term ecological and economic effects on the regions involved. It was found that their frequency-area distributions show power-law behaviour under a wide variety of conditions, interpreting them as a self-organised critical phenomenon. Using computer simulations, self-organised critical behaviour manifests in simple cellular automaton models. With respect to ignition source, forest fires can be categorised as lightning-induced or as a result of human activity. Lightning fires are considered to be natural, whereas ``man made'' fires are frequently caused by some sort of technological disaster, such as sparks from wheels of trains, the rupture of overhead electrical lines, the misuse of electrical or mechanical devices and so on. Taking into account that such events rarely occur deep in the woods, man made fires should start preferably on the edge of a forest or where the forest is not very dense. We present a modification in the self-organised critical Drossel-Schwabl forest fire model that takes these two different triggering mechanisms into account and increases the scaling exponent of the frequency-area distribution by ca. 1/3. Combined simulations further predict a dependence of the overall event-size distribution on the ratio of lightning-induced and man made fires as well as a splitting of their partial distributions. Lightning is identified as the dominant mechanism in the regime of the largest fires. The results are confirmed by the analysis of the Canadian Large Fire Database and suggest that lightning-induced and man made forest fires cannot be treated separately in wildfire modelling, hazard assessment and forest management.

  2. Forest restoration as a strategy to mitigate climate impacts on wildfire, vegetation, and water in semiarid forests.

    PubMed

    O'Donnell, Frances C; Flatley, William T; Springer, Abraham E; Fulé, Peter Z

    2018-06-25

    Climate change and wildfire are interacting to drive vegetation change and potentially reduce water quantity and quality in the southwestern United States, Forest restoration is a management approach that could mitigate some of these negative outcomes. However, little information exists on how restoration combined with climate change might influence hydrology across large forest landscapes that incorporate multiple vegetation types and complex fire regimes. We combined spatially explicit vegetation and fire modeling with statistical water and sediment yield models for a large forested landscape (335,000 ha) on the Kaibab Plateau in northern Arizona, USA. Our objective was to assess the impacts of climate change and forest restoration on the future fire regime, forest vegetation, and watershed outputs. Our model results predict that the combination of climate change and high-severity fire will drive forest turnover, biomass declines, and compositional change in future forests. Restoration treatments may reduce the area burned in high-severity fires and reduce conversions from forested to non-forested conditions. Even though mid-elevation forests are the targets of restoration, the treatments are expected to delay the decline of high-elevation spruce-fir, aspen, and mixed conifer forests by reducing the occurrence of high-severity fires that may spread across ecoregions. We estimate that climate-induced vegetation changes will result in annual runoff declines of up to 10%, while restoration reduced or reversed this decline. The hydrologic model suggests that mid-elevation forests, which are the targets of restoration treatments, provide around 80% of runoff in this system and the conservation of mid- to high-elevation forests types provides the greatest benefit in terms of water conservation. We also predict that restoration treatments will conserve water quality by reducing patches of high-severity fire that are associated with high sediment yield. Restoration treatments are a management strategy that may reduce undesirable outcomes for multiple ecosystem services. © 2018 by the Ecological Society of America.

  3. Integrating remotely sensed fires for predicting deforestation for REDD.

    PubMed

    Armenteras, Dolors; Gibbes, Cerian; Anaya, Jesús A; Dávalos, Liliana M

    2017-06-01

    Fire is an important tool in tropical forest management, as it alters forest composition, structure, and the carbon budget. The United Nations program on Reducing Emissions from Deforestation and Forest Degradation (REDD+) aims to sustainably manage forests, as well as to conserve and enhance their carbon stocks. Despite the crucial role of fire management, decision-making on REDD+ interventions fails to systematically include fires. Here, we address this critical knowledge gap in two ways. First, we review REDD+ projects and programs to assess the inclusion of fires in monitoring, reporting, and verification (MRV) systems. Second, we model the relationship between fire and forest for a pilot site in Colombia using near-real-time (NRT) fire monitoring data derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). The literature review revealed fire remains to be incorporated as a key component of MRV systems. Spatially explicit modeling of land use change showed the probability of deforestation declined sharply with increasing distance to the nearest fire the preceding year (multi-year model area under the curve [AUC] 0.82). Deforestation predictions based on the model performed better than the official REDD early-warning system. The model AUC for 2013 and 2014 was 0.81, compared to 0.52 for the early-warning system in 2013 and 0.68 in 2014. This demonstrates NRT fire monitoring is a powerful tool to predict sites of forest deforestation. Applying new, publicly available, and open-access NRT fire data should be an essential element of early-warning systems to detect and prevent deforestation. Our results provide tools for improving both the current MRV systems, and the deforestation early-warning system in Colombia. © 2017 by the Ecological Society of America.

  4. Direct and indirect effects of fires on the carbon balance of tropical forest ecosystems (Invited)

    NASA Astrophysics Data System (ADS)

    Randerson, J. T.; Tosca, M. G.; Ward, D. S.; Kasibhatla, P. S.; Mahowald, N. M.; Hess, P. G.

    2013-12-01

    Fires influence the carbon budget of tropical forests directly because they account for a significant component of net emissions from deforestation and forest degradation. They also have indirect effects on nearby intact forests by modifying regional climate, atmospheric composition, and patterns of nutrient deposition. These latter pathways are not well understood and are often ignored in climate mitigation efforts such as the United Nations Program on Reducing Emissions from Deforestation and forest Degradation (REDD+). Here we used the Community Atmosphere Model (CAM5) and the Global Fire Emissions Database (GFED3) to quantify the impacts of fire-emitted aerosols on the productivity of tropical forests. Across the tropical forest biome, fire-emitted aerosols reduced surface temperatures and increased the diffuse solar insolation fraction. These changes in surface meteorology increased gross primary production (GPP) in the Community Land Model. However, these drivers were more than offset in many regions by reductions in soil moisture and total solar radiation. The net effect of fire aerosols caused GPP to decrease by approximately 8% in equatorial Asia and 6% in the central Africa. In the Amazon, decreases in photosynthesis in the western part of the basin were nearly balanced by increases in the south and east. Using additional CAM5 and GEOS-Chem model simulations, we estimated fire contributions to surface concentrations of ozone. Using empirical relationships between ozone exposure and GPP from field studies and models, we estimated how tropical forest GPP was further modified by fire-induced ozone. Our results suggest that efforts to reduce the fire component of tropical land use fluxes may have sustainability benefits that extend beyond the balance sheet for greenhouse gases.

  5. Implications of the spatial dynamics of fire spread for the bistability of savanna and forest.

    PubMed

    Schertzer, E; Staver, A C; Levin, S A

    2015-01-01

    The role of fire in expanding the global distribution of savanna is well recognized. Empirical observations and modeling suggest that fire spread has a threshold response to fuel-layer continuity, which sets up a positive feedback that maintains savanna-forest bistability. However, modeling has so far failed to examine fire spread as a spatial process that interacts with vegetation. Here, we use simple, well-supported assumptions about fire spread as an infection process and its effects on trees to ask whether spatial dynamics qualitatively change the potential for savanna-forest bistability. We show that the spatial effects of fire spread are the fundamental reason that bistability is possible: because fire spread is an infection process, it exhibits a threshold response to fuel continuity followed by a rapid increase in fire size. Other ecological processes affecting fire spread may also contribute including temporal variability in demography or fire spread. Finally, including the potential for spatial aggregation increases the potential both for savanna-forest bistability and for savanna and forest to coexist in a landscape mosaic.

  6. Spatially explicit measurements of forest structure and fire behavior following restoration treatments in dry forests

    Treesearch

    Justin Paul Ziegler; Chad Hoffman; Michael Battaglia; William Mell

    2017-01-01

    Restoration treatments in dry forests of the western US often attempt silvicultural practices to restore the historical characteristics of forest structure and fire behavior. However, it is suggested that a reliance on non-spatial metrics of forest stand structure, along with the use of wildland fire behavior models that lack the ability to handle complex structures,...

  7. Best Longitudinal Adjustment of Satellite Trajectories for the Observation of Forest Fires (Blastoff): A Stochastic Programming Approach to Satellite System Design

    NASA Astrophysics Data System (ADS)

    Hoskins, Aaron B.

    Forest fires cause a significant amount of damage and destruction each year. Optimally dispatching resources reduces the amount of damage a forest fire can cause. Models predict the fire spread to provide the data required to optimally dispatch resources. However, the models are only as accurate as the data used to build them. Satellites are one valuable tool in the collection of data for the forest fire models. Satellites provide data on the types of vegetation, the wind speed and direction, the soil moisture content, etc. The current operating paradigm is to passively collect data when possible. However, images from directly overhead provide better resolution and are easier to process. Maneuvering a constellation of satellites to fly directly over the forest fire provides higher quality data than is achieved with the current operating paradigm. Before launch, the location of the forest fire is unknown. Therefore, it is impossible to optimize the initial orbits for the satellites. Instead, the expected cost of maneuvering to observe the forest fire determines the optimal initial orbits. A two-stage stochastic programming approach is well suited for this class of problem where initial decisions are made with an uncertain future and then subsequent decisions are made once a scenario is realized. A repeat ground track orbit provides a non-maneuvering, natural solution providing a daily flyover of the forest fire. However, additional maneuvers provide a second daily flyover of the forest fire. The additional maneuvering comes at a significant cost in terms of additional fuel, but provides more data collection opportunities. After data are collected, ground stations receive the data for processing. Optimally selecting the ground station locations reduce the number of built ground stations and reduces the data fusion issues. However, the location of the forest fire alters the optimal ground station sites. A two-stage stochastic programming approach optimizes the selection of ground stations to maximize the expected amount of data downloaded from a satellite. The approaches of selecting initial orbits and ground station locations including uncertainty will provide a robust system to reduce the amount of damage caused by forest fires.

  8. Edge fires drive the shape and stability of tropical forests.

    PubMed

    Hébert-Dufresne, Laurent; Pellegrini, Adam F A; Bhat, Uttam; Redner, Sidney; Pacala, Stephen W; Berdahl, Andrew M

    2018-06-01

    In tropical regions, fires propagate readily in grasslands but typically consume only edges of forest patches. Thus, forest patches grow due to tree propagation and shrink by fires in surrounding grasslands. The interplay between these competing edge effects is unknown, but critical in determining the shape and stability of individual forest patches, as well the landscape-level spatial distribution and stability of forests. We analyze high-resolution remote-sensing data from protected Brazilian Cerrado areas and find that forest shapes obey a robust perimeter-area scaling relation across climatic zones. We explain this scaling by introducing a heterogeneous fire propagation model of tropical forest-grassland ecotones. Deviations from this perimeter-area relation determine the stability of individual forest patches. At a larger scale, our model predicts that the relative rates of tree growth due to propagative expansion and long-distance seed dispersal determine whether collapse of regional-scale tree cover is continuous or discontinuous as fire frequency changes. © 2018 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  9. Vulnerability and Resilience of Temperate Forest Landscapes to Broad-Scale Deforestation in Response to Changing Fire Regimes and Altered Post-Fire Vegetation Dynamics

    NASA Astrophysics Data System (ADS)

    Tepley, A. J.; Veblen, T. T.; Perry, G.; Anderson-Teixeira, K. J.

    2015-12-01

    In the face of on-going climatic warming and land-use change, there is growing concern that temperate forest landscapes could be near a tipping point where relatively small changes to the fire regime or altered post-fire vegetation dynamics could lead to extensive conversion to shrublands or savannas. To evaluate vulnerability and resilience to such conversion, we develop a simple model based on three factors we hypothesize to be key in predicting temperate forest responses to changing fire regimes: (1) the hazard rate (i.e., the probability of burning in the next year given the time since the last fire) in closed-canopy forests, (2) the hazard rate for recently-burned, open-canopy vegetation, and (3) the time to redevelop canopy closure following fire. We generate a response surface representing the proportions of the landscape potentially supporting closed-canopy forest and non-forest vegetation under nearly all combinations of these three factors. We then place real landscapes on this response surface to assess the type and magnitude of changes to the fire regime that would drive extensive forest loss. We show that the deforestation of much of New Zealand that followed initial human colonization and the introduction of a new ignition source ca. 750 years ago was essentially inevitable due to the slow rate of forest recovery after fire and the high flammability of post-fire vegetation. In North America's Pacific Northwest, by contrast, a predominantly forested landscape persisted despite two periods of widespread burning in the recent past due in large part to faster post-fire forest recovery and less pronounced differences in flammability between forests and the post-fire vegetation. We also assess the factors that could drive extensive deforestation in other regions to identify where management could reduce this potential and to guide field and modeling work to better understand the responses and ecological feedbacks to changing fire regimes.

  10. Fire Patterns and Drivers of Fires in the West African Tropical Forest

    NASA Astrophysics Data System (ADS)

    Dwomoh, F. K.; Wimberly, M. C.

    2015-12-01

    The West African tropical forest (referred to as the Upper Guinean forest, UGF), is a global biodiversity hotspot providing vital ecosystem services for the region's socio-economic and environmental wellbeing. It is also one of the most fragmented and human-modified tropical forest ecosystems, with the only remaining large patches of original forests contained in protected areas. However, these remnant forests are susceptible to continued fire-mediated degradation and forest loss due to intense climatic, demographic and land use pressures. We analyzed human and climatic drivers of fire activity in the sub-region to better understand the spatial and temporal patterns of these risks. We utilized MODIS active fire and burned area products to identify fire activity within the sub-region. We measured climatic variability using TRMM rainfall data and derived indicators of human land use from a variety of geospatial datasets. We used a boosted regression trees model to determine the influences of predictor variables on fire activity. Our analyses indicated that the spatial and temporal variability of precipitation is a key driving factor of fire activity in the UGF. Anthropogenic effects on fire activity in the area were evident through the influences of agriculture and low-density populations. These human footprints in the landscape make forests more susceptible to fires through forest fragmentation, degradation, and fire spread from agricultural areas. Forested protected areas within the forest savanna mosaic experienced frequent fires, whereas the more humid forest areas located in the south and south-western portions of the study area had fewer fires as these rainforests tend to offer some buffering against fire encroachment. These results improve characterization of UGF fire regime and expand our understanding of the spatio-temporal dynamics of tropical forest fires in response to human and climatic pressures.

  11. Pyro-eco-hydrologic feedbacks and catchment co-evolution in fire-prone forested uplands

    NASA Astrophysics Data System (ADS)

    Sheridan, Gary; Inbar, Assaf; Lane, Patrick; Nyman, Petter

    2017-04-01

    The south east Australian forested uplands are characterized by complex and inter-correlated spatial patterns in standing biomass, soil depth/quality, and fire regimes, even within areas with similar rainfall, geology and catenary position. These system properties have traditionally been investigated independently, however recent research in the areas of post fire hydrology and erosion, and new insights into forest structure, fuel moisture, and flammability, suggest the presence of critical co-evolutionary feedbacks between fire, soils and vegetation that may explain the observed system states. To test this hypothesis we started with a published ecohydrologic model, modifying and extending the algorithms to capture feedbacks between hyrology and fire, and between fire, vegetation and soil production and erosion. The model was parameterized and calibrated with new data from instrumented forested hillslopes across energy and rainfall gradients generated by selecting sites with a range of aspect (energy) and elevation (rainall). The calibrated model was able to reasonably replicate the observed patterns of standing biomass, water balance, fire interval, and soil depth. The catchment co-evolution/feedback modelling approach to understanding patterns of vegetation, soils and fire regimes provides a promising new paradigm for predicting the response of forested se Australian catchments to declining rainfall and increasing temperatures under climate change.

  12. [Forest lighting fire forecasting for Daxing'anling Mountains based on MAXENT model].

    PubMed

    Sun, Yu; Shi, Ming-Chang; Peng, Huan; Zhu, Pei-Lin; Liu, Si-Lin; Wu, Shi-Lei; He, Cheng; Chen, Feng

    2014-04-01

    Daxing'anling Mountains is one of the areas with the highest occurrence of forest lighting fire in Heilongjiang Province, and developing a lightning fire forecast model to accurately predict the forest fires in this area is of importance. Based on the data of forest lightning fires and environment variables, the MAXENT model was used to predict the lightning fire in Daxing' anling region. Firstly, we studied the collinear diagnostic of each environment variable, evaluated the importance of the environmental variables using training gain and the Jackknife method, and then evaluated the prediction accuracy of the MAXENT model using the max Kappa value and the AUC value. The results showed that the variance inflation factor (VIF) values of lightning energy and neutralized charge were 5.012 and 6.230, respectively. They were collinear with the other variables, so the model could not be used for training. Daily rainfall, the number of cloud-to-ground lightning, and current intensity of cloud-to-ground lightning were the three most important factors affecting the lightning fires in the forest, while the daily average wind speed and the slope was of less importance. With the increase of the proportion of test data, the max Kappa and AUC values were increased. The max Kappa values were above 0.75 and the average value was 0.772, while all of the AUC values were above 0.5 and the average value was 0. 859. With a moderate level of prediction accuracy being achieved, the MAXENT model could be used to predict forest lightning fire in Daxing'anling Mountains.

  13. Forest construction infrastructures for the prevision, suppression, and protection before and after forest fires

    NASA Astrophysics Data System (ADS)

    Drosos, Vasileios C.; Giannoulas, Vasileios J.; Daoutis, Christodoulos

    2014-08-01

    Climatic changes cause temperature rise and thus increase the risk of forest fires. In Greece the forests with the greatest risk to fire are usually those located near residential and tourist areas where there are major pressures on land use changes, while there are no currently guaranteed cadastral maps and defined title deeds because of the lack of National and Forest Cadastre. In these areas the deliberate causes of forest fires are at a percentage more than 50%. This study focuses on the forest opening up model concerning both the prevention and suppression of forest fires. The most urgent interventions that can be done after the fire destructions is also studied in relation to soil protection constructions, in order to minimize the erosion and the torrential conditions. Digital orthophotos were used in order to produce and analyze spatial data using Geographical Information Systems (GIS). Initially, Digital Elevation Models were generated, based on photogrammetry and forest areas as well as the forest road network were mapped. Road density, road distance, skidding distance and the opening up percentage were accurately measured for a forest complex. Finally, conclusions and suggestions have been drawn about the environmental compatibility of forest protection and wood harvesting works. In particular the contribution of modern technologies such as digital photogrammetry, remote sensing and Geographical Information Systems is very important, allowing reliable, effective and fast process of spatial analysis contributing to a successful planning of opening up works and fire protection.

  14. Carbon tradeoffs of restoration and provision of endangered species habitat in a fire-maintained forest

    Treesearch

    Katherine L. Martin; Matthew D. Hurteau; Bruce A. Hungate; George W. Koch; Malcolm P. North

    2015-01-01

    Forests are a significant part of the global carbon cycle and are increasingly viewed as tools for mitigating climate change. Natural disturbances, such as fire, can reduce carbon storage. However, many forests and dependent species evolved with frequent fire as an integral ecosystem process. We used a landscape forest simulation model to evaluate the effects of...

  15. Simulating effects of fire on northern Rocky Mountain landscapes with the ecological process model FIRE-BGC.

    PubMed

    Keane, R E; Ryan, K C; Running, S W

    1996-03-01

    A mechanistic, biogeochemical succession model, FIRE-BGC, was used to investigate the role of fire on long-term landscape dynamics in northern Rocky Mountain coniferous forests of Glacier National Park, Montana, USA. FIRE-BGC is an individual-tree model-created by merging the gap-phase process-based model FIRESUM with the mechanistic ecosystem biogeochemical model FOREST-BGC-that has mixed spatial and temporal resolution in its simulation architecture. Ecological processes that act at a landscape level, such as fire and seed dispersal, are simulated annually from stand and topographic information. Stand-level processes, such as tree establishment, growth and mortality, organic matter accumulation and decomposition, and undergrowth plant dynamics are simulated both daily and annually. Tree growth is mechanistically modeled based on the ecosystem process approach of FOREST-BGC where carbon is fixed daily by forest canopy photosynthesis at the stand level. Carbon allocated to the tree stem at the end of the year generates the corresponding diameter and height growth. The model also explicitly simulates fire behavior and effects on landscape characteristics. We simulated the effects of fire on ecosystem characteristics of net primary productivity, evapotranspiration, standing crop biomass, nitrogen cycling and leaf area index over 200 years for the 50,000-ha McDonald Drainage in Glacier National Park. Results show increases in net primary productivity and available nitrogen when fires are included in the simulation. Standing crop biomass and evapotranspiration decrease under a fire regime. Shade-intolerant species dominate the landscape when fires are excluded. Model tree increment predictions compared well with field data.

  16. Impact of prescribed fire and other factors on cheatgrass persistence in a Sierra Nevada ponderosa pine forest

    USGS Publications Warehouse

    Keeley, J.E.; McGinnis, T.W.

    2007-01-01

    Following the reintroduction of fire Bromus tectorum has invaded the low elevation ponderosa pine forests in parts of Kings Canyon National Park, California. We used prescribed burns, other field manipulations, germination studies, and structural equation modelling, to investigate how fire and other factors affect the persistence of cheatgrass in these forests. Our studies show that altering burning season to coincide with seed maturation is not likely to control cheatgrass because sparse fuel loads generate low fire intensity. Increasing time between prescribed fires may inhibit cheatgrass by increasing surface fuels (both herbaceous and litter), which directly inhibit cheatgrass establishment, and by creating higher intensity fires capable of killing a much greater fraction of the seed bank. Using structural equation modelling, postfire cheatgrass dominance was shown to be most strongly controlled by the prefire cheatgrass seedbank; other factors include soil moisture, fire intensity, soil N, and duration of direct sunlight. Current fire management goals in western conifer forests are focused on restoring historical fire regimes; however, these frequent fire regimes may enhance alien plant invasion in some forest types. Where feasible, fire managers should consider the option of an appropriate compromise between reducing serious fire hazards and exacerbating alien plant invasions. ?? IAWF 2007.

  17. Combining fire and erosion modeling to target forest management activities

    Treesearch

    William J. Elliot; Mary Ellen Miller; Nic Enstice

    2015-01-01

    Forests deliver a number of important ecosystem services including clean water. When forests are disturbed by wildfire, the timing, quantity and quality of runoff are altered. A modeling study was carried out in a forested watershed in California to determine the risk of wildfire, and the potential post-fire sediment delivery from approximately 6-ha hillslope polygons...

  18. Targeting forest management through fire and erosion modeling

    Treesearch

    William J. Elliot; Mary Ellen Miller; Nic Enstice

    2016-01-01

    Forests deliver a number of important ecosystem services, including clean water. When forests are disturbed by wildfire, the timing, quantity and quality of runoff are altered. A modelling study was conducted in a forested watershed in California, USA, to determine the risk of wildfire, and the potential post-fire sediment delivery from ~4-ha hillslope polygons within...

  19. Latent resilience in ponderosa pine forest: effects of resumed frequent fire.

    PubMed

    Larson, Andrew J; Belote, R Travis; Cansler, C Alina; Parks, Sean A; Dietz, Matthew S

    2013-09-01

    Ecological systems often exhibit resilient states that are maintained through negative feedbacks. In ponderosa pine forests, fire historically represented the negative feedback mechanism that maintained ecosystem resilience; fire exclusion reduced that resilience, predisposing the transition to an alternative ecosystem state upon reintroduction of fire. We evaluated the effects of reintroduced frequent wildfire in unlogged, fire-excluded, ponderosa pine forest in the Bob Marshall Wilderness, Montana, USA. Initial reintroduction of fire in 2003 reduced tree density and consumed surface fuels, but also stimulated establishment of a dense cohort of lodgepole pine, maintaining a trajectory toward an alternative state. Resumption of a frequent fire regime by a second fire in 2011 restored a low-density forest dominated by large-diameter ponderosa pine by eliminating many regenerating lodgepole pines and by continuing to remove surface fuels and small-diameter lodgepole pine and Douglas-fir that established during the fire suppression era. Our data demonstrate that some unlogged, fire-excluded, ponderosa pine forests possess latent resilience to reintroduced fire. A passive model of simply allowing lightning-ignited fires to burn appears to be a viable approach to restoration of such forests.

  20. Risk for large-scale fires in boreal forests of Finland under changing climate

    NASA Astrophysics Data System (ADS)

    Lehtonen, I.; Venäläinen, A.; Kämäräinen, M.; Peltola, H.; Gregow, H.

    2015-08-01

    The target of this work was to assess the impact of projected climate change on the number of large forest fires (over 10 ha fires) and burned area in Finland. For this purpose, we utilized a strong relationship between fire occurrence and the Canadian fire weather index (FWI) during 1996-2014. We used daily data from five global climate models under representative concentration pathway RCP4.5 and RCP8.5 scenarios. The model data were statistically downscaled onto a high-resolution grid using the quantile-mapping method before performing the analysis. Our results suggest that the number of large forest fires may double or even triple during the present century. This would increase the risk that some of the fires could develop into real conflagrations which have become almost extinct in Finland due to active and efficient fire suppression. Our results also reveal substantial inter-model variability in the rate of the projected increase in forest-fire danger. We moreover showed that the majority of large fires occur within a relatively short period in May and June due to human activities and that FWI correlates poorer with the fire activity during this time of year than later in summer when lightning is more important cause of fires.

  1. Land cover, more than monthly fire weather, drives fire-size distribution in Southern Québec forests: Implications for fire risk management.

    PubMed

    Marchal, Jean; Cumming, Steve G; McIntire, Eliot J B

    2017-01-01

    Fire activity in North American forests is expected to increase substantially with climate change. This would represent a growing risk to human settlements and industrial infrastructure proximal to forests, and to the forest products industry. We modelled fire size distributions in southern Québec as functions of fire weather and land cover, thus explicitly integrating some of the biotic interactions and feedbacks in a forest-wildfire system. We found that, contrary to expectations, land-cover and not fire weather was the primary driver of fire size in our study region. Fires were highly selective on fuel-type under a wide range of fire weather conditions: specifically, deciduous forest, lakes and to a lesser extent recently burned areas decreased the expected fire size in their vicinity compared to conifer forest. This has large implications for fire risk management in that fuels management could reduce fire risk over the long term. Our results imply, for example, that if 30% of a conifer-dominated landscape were converted to hardwoods, the probability of a given fire, occurring in that landscape under mean fire weather conditions, exceeding 100,000 ha would be reduced by a factor of 21. A similarly marked but slightly smaller effect size would be expected under extreme fire weather conditions. We attribute the decrease in expected fire size that occurs in recently burned areas to fuel availability limitations on fires spread. Because regenerating burned conifer stands often pass through a deciduous stage, this would also act as a negative biotic feedback whereby the occurrence of fires limits the size of nearby future for some period of time. Our parameter estimates imply that changes in vegetation flammability or fuel availability after fires would tend to counteract shifts in the fire size distribution favoring larger fires that are expected under climate warming. Ecological forecasts from models neglecting these feedbacks may markedly overestimate the consequences of climate warming on fire activity, and could be misleading. Assessments of vulnerability to climate change, and subsequent adaptation strategies, are directly dependent on integrated ecological forecasts. Thus, we stress the need to explicitly incorporate land-cover's direct effects and feedbacks in simulation models of coupled climate-fire-fuels systems.

  2. The impact of anthropogenic climate change on wildfire across western US forests

    NASA Astrophysics Data System (ADS)

    Williams, P.; Abatzoglou, J. T.

    2016-12-01

    Increased forest fire activity across the western United States (US) in recent decades has contributed to widespread forest mortality, carbon emissions, periods of degraded air quality, and substantial fire suppression expenditures. The increase in forest fire activity has likely been enabled by a number of factors including the legacy of fire suppression and human settlement, changes in suppression policies, natural climate variability, and human-caused climate change. We use modeled climate projections to estimate the contribution of anthropogenic climate change to observed increases in eight fuel aridity metrics and forest fire area across the western US. Anthropogenic increases in temperature and vapor pressure deficit have significantly enhanced fuel aridity across western US forests over the past several decades. Comparing observational climate records to records recalculated after removal of modeled anthropogenic trends, we find that anthropogenic climate change accounted for approximately 55% of observed increases in the eight-metric mean fuel aridity during 1979-2015 across western US forests. This implicates anthropogenic climate change as an important driver of observed increases in fuel aridity, and also highlights the importance of natural multi-decadal climate variability in influencing trends in forest fire potential on the timescales of human lives. Based on a very strong (R2 = 0.76) and mechanistically reasonable relationship between interannual variability in the eight-metric mean fuel aridity and forest-fire area in the western US, we estimate that anthropogenic increases in fuel aridity contributed to an additional 4.2 million ha (95% confidence range: 2.7-6.5 million ha) of forest fire area during 1984-2015, nearly doubling the total forest fire area expected in the absence of anthropogenic climate change. The relationship between annual forest fire area and fuel aridity is exponential and the proportion of total forest area burned in a given year has grown rapidly over the past 32 years. Natural climate variability will continue to alternate between modulating and compounding anthropogenic increases in fuel aridity, but anthropogenic climate change has emerged as a chronic driver of increased forest fire activity and should continue to do so where fuels are not limiting.

  3. Characterization of potential fire regimes: applying landscape ecology to fire management in Mexico

    NASA Astrophysics Data System (ADS)

    Jardel, E.; Alvarado, E.; Perez-Salicrup, D.; Morfín-Rios, J.

    2013-05-01

    Knowledge and understanding of fire regimes is fundamental to design sound fire management practices. The high ecosystem diversity of Mexico offers a great challenge to characterize the fire regime variation at the landscape level. A conceptual model was developed considering the main factors controlling fire regimes: climate and vegetation cover. We classified landscape units combining bioclimatic zones from the Holdridge life-zone system and actual vegetation cover. Since bioclimatic conditions control primary productivity and biomass accumulation (potential fuel), each landscape unit was considered as a fuel bed with a particular fire intensity and behavior potential. Climate is also a determinant factor of post-fire recovery rates of fuel beds, and climate seasonality (length of the dry and wet seasons) influences fire probability (available fuel and ignition efficiency). These two factors influence potential fire frequency. Potential fire severity can be inferred from fire frequency, fire intensity and behavior, and vegetation composition and structure. Based in the conceptual model, an exhaustive literature review and expert opinion, we developed rules to assign a potential fire regime (PFR) defined by frequency, intensity and severity (i.e. fire regime) to each bioclimatic-vegetation landscape unit. Three groups and eight types of potential fire regimes were identified. In Group A are fire-prone ecosystems with frequent low severity surface fires in grasslands (PFR type I) or forests with long dry season (II) and infrequent high-severity fires in chaparral (III), wet temperate forests (IV, fire restricted by humidity), and dry temperate forests (V, fire restricted by fuel recovery rate). Group B includes fire-reluctant ecosystems with very infrequent or occasional mixed severity surface fires limited by moisture in tropical rain forests (VI) or fuel availability in seasonally dry tropical forests (VII). Group C and PFR VIII include fire-free environments that correspond to deserts. Application of PFR model to fire management is discussed.

  4. Land cover, more than monthly fire weather, drives fire-size distribution in Southern Québec forests: Implications for fire risk management

    PubMed Central

    Marchal, Jean; Cumming, Steve G.; McIntire, Eliot J. B.

    2017-01-01

    Fire activity in North American forests is expected to increase substantially with climate change. This would represent a growing risk to human settlements and industrial infrastructure proximal to forests, and to the forest products industry. We modelled fire size distributions in southern Québec as functions of fire weather and land cover, thus explicitly integrating some of the biotic interactions and feedbacks in a forest-wildfire system. We found that, contrary to expectations, land-cover and not fire weather was the primary driver of fire size in our study region. Fires were highly selective on fuel-type under a wide range of fire weather conditions: specifically, deciduous forest, lakes and to a lesser extent recently burned areas decreased the expected fire size in their vicinity compared to conifer forest. This has large implications for fire risk management in that fuels management could reduce fire risk over the long term. Our results imply, for example, that if 30% of a conifer-dominated landscape were converted to hardwoods, the probability of a given fire, occurring in that landscape under mean fire weather conditions, exceeding 100,000 ha would be reduced by a factor of 21. A similarly marked but slightly smaller effect size would be expected under extreme fire weather conditions. We attribute the decrease in expected fire size that occurs in recently burned areas to fuel availability limitations on fires spread. Because regenerating burned conifer stands often pass through a deciduous stage, this would also act as a negative biotic feedback whereby the occurrence of fires limits the size of nearby future for some period of time. Our parameter estimates imply that changes in vegetation flammability or fuel availability after fires would tend to counteract shifts in the fire size distribution favoring larger fires that are expected under climate warming. Ecological forecasts from models neglecting these feedbacks may markedly overestimate the consequences of climate warming on fire activity, and could be misleading. Assessments of vulnerability to climate change, and subsequent adaptation strategies, are directly dependent on integrated ecological forecasts. Thus, we stress the need to explicitly incorporate land-cover’s direct effects and feedbacks in simulation models of coupled climate–fire–fuels systems. PMID:28609467

  5. Evaluating potential fire behavior in lodgepole pine-dominated forests after a mountain pine beetle epidemic in north-central Colorado

    Treesearch

    Jennifer G. Klutsch; Mike A. Battaglia; Daniel R. West; Sheryl L. Costello; Jose F. Negron

    2011-01-01

    A mountain pine beetle outbreak in Colorado lodgepole pine forests has altered stand and fuel characteristics that affect potential fire behavior. Using the Fire and Fuels Extension to the Forest Vegetation Simulator, potential fire behavior was modeled for uninfested and mountain pine beetle-affected plots 7 years after outbreak initiation and 10 and 80% projected...

  6. Providing the Fire Risk Map in Forest Area Using a Geographically Weighted Regression Model with Gaussin Kernel and Modis Images, a Case Study: Golestan Province

    NASA Astrophysics Data System (ADS)

    Shah-Heydari pour, A.; Pahlavani, P.; Bigdeli, B.

    2017-09-01

    According to the industrialization of cities and the apparent increase in pollutants and greenhouse gases, the importance of forests as the natural lungs of the earth is felt more than ever to clean these pollutants. Annually, a large part of the forests is destroyed due to the lack of timely action during the fire. Knowledge about areas with a high-risk of fire and equipping these areas by constructing access routes and allocating the fire-fighting equipment can help to eliminate the destruction of the forest. In this research, the fire risk of region was forecasted and the risk map of that was provided using MODIS images by applying geographically weighted regression model with Gaussian kernel and ordinary least squares over the effective parameters in forest fire including distance from residential areas, distance from the river, distance from the road, height, slope, aspect, soil type, land use, average temperature, wind speed, and rainfall. After the evaluation, it was found that the geographically weighted regression model with Gaussian kernel forecasted 93.4% of the all fire points properly, however the ordinary least squares method could forecast properly only 66% of the fire points.

  7. Mapping and Analysis of Forest and Land Fire Potential Using Geospatial Technology and Mathematical Modeling

    NASA Astrophysics Data System (ADS)

    Suliman, M. D. H.; Mahmud, M.; Reba, M. N. M.; S, L. W.

    2014-02-01

    Forest and land fire can cause negative implications for forest ecosystems, biodiversity, air quality and soil structure. However, the implications involved can be minimized through effective disaster management system. Effective disaster management mechanisms can be developed through appropriate early warning system as well as an efficient delivery system. This study tried to focus on two aspects, namely by mapping the potential of forest fire and land as well as the delivery of information to users through WebGIS application. Geospatial technology and mathematical modeling used in this study for identifying, classifying and mapping the potential area for burning. Mathematical models used is the Analytical Hierarchy Process (AHP), while Geospatial technologies involved include remote sensing, Geographic Information System (GIS) and digital field data collection. The entire Selangor state was chosen as our study area based on a number of cases have been reported over the last two decades. AHP modeling to assess the comparison between the three main criteria of fuel, topography and human factors design. Contributions of experts directly involved in forest fire fighting operations and land comprising officials from the Fire and Rescue Department Malaysia also evaluated in this model. The study found that about 32.83 square kilometers of the total area of Selangor state are the extreme potential for fire. Extreme potential areas identified are in Bestari Jaya and Kuala Langat High Ulu. Continuity of information and terrestrial forest fire potential was displayed in WebGIS applications on the internet. Display information through WebGIS applications is a better approach to help the decision-making process at a high level of confidence and approximate real conditions. Agencies involved in disaster management such as Jawatankuasa Pengurusan Dan Bantuan Bencana (JPBB) of District, State and the National under the National Security Division and the Fire and Rescue Department Malaysia can use the end result of this study in preparation for the land and forest fires in the future.

  8. Lagged cumulative spruce budworm defoliation affects the risk of fire ignition in Ontario, Canada.

    PubMed

    James, Patrick M A; Robert, Louis-Etienne; Wotton, B Mike; Martell, David L; Fleming, Richard A

    2017-03-01

    Detailed understanding of forest disturbance interactions is needed for effective forecasting, modelling, and management. Insect outbreaks are a significant forest disturbance that alters forest structure as well as the distribution and connectivity of combustible fuels at broad spatial scales. The effect of insect outbreaks on fire activity is an important but contentious issue with significant policy consequences. The eastern spruce budworm (Choristoneura fumiferana) is a native defoliating insect in eastern North America whose periodic outbreaks create large patches of dead fir and spruce trees. Of particular concern to fire and forest managers is whether these patches represent an increased fire risk, if so, for how long, and how the relationship between defoliation and fire risk varies through space and time. Previous work suggests a temporary increase in flammability in budworm-killed forests, but regional and seasonal variability in these relationships has not been examined. Using an extensive database on historical lightning-caused fire ignitions and spruce budworm defoliation between 1963 and 2000, we assess the relative importance of cumulative defoliation and fire weather on the probability of ignition in Ontario, Canada. We modeled fire ignition using a generalized additive logistic regression model that accounts for temporal autocorrelation in fire weather. We compared two ecoregions in eastern Ontario (Abitibi Plains) and western Ontario (Lake of the Woods) that differ in terms of climate, geomorphology, and forest composition. We found that defoliation has the potential to both increase and decrease the probability of ignition depending on the time scale, ecoregion, and season examined. Most importantly, we found that lagged spruce budworm defoliation (8-10 yr) increases the risk of fire ignition whereas recent defoliation (1 yr) can decrease this risk. We also found that historical defoliation has a greater influence on ignition risk during the spring than during the summer fire season. Given predicted increases in forest insect activity due to global change, these results represent important information for fire management agencies that can be used to refine existing models of fire risk. © 2016 by the Ecological Society of America.

  9. Simulating statistics of lightning-induced and man made fires

    NASA Astrophysics Data System (ADS)

    Krenn, R.; Hergarten, S.

    2009-04-01

    The frequency-area distributions of forest fires show power-law behavior with scaling exponents α in a quite narrow range, relating wildfire research to the theoretical framework of self-organized criticality. Examples of self-organized critical behavior can be found in computer simulations of simple cellular automata. The established self-organized critical Drossel-Schwabl forest fire model (DS-FFM) is one of the most widespread models in this context. Despite its qualitative agreement with event-size statistics from nature, its applicability is still questioned. Apart from general concerns that the DS-FFM apparently oversimplifies the complex nature of forest dynamics, it significantly overestimates the frequency of large fires. We present a straightforward modification of the model rules that increases the scaling exponent α by approximately 1•3 and brings the simulated event-size statistics close to those observed in nature. In addition, combined simulations of both the original and the modified model predict a dependence of the overall distribution on the ratio of lightning induced and man made fires as well as a difference between their respective event-size statistics. The increase of the scaling exponent with decreasing lightning probability as well as the splitting of the partial distributions are confirmed by the analysis of the Canadian Large Fire Database. As a consequence, lightning induced and man made forest fires cannot be treated separately in wildfire modeling, hazard assessment and forest management.

  10. Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada

    NASA Astrophysics Data System (ADS)

    Wotton, B. M.; Flannigan, M. D.; Marshall, G. A.

    2017-09-01

    Much research has been carried out on the potential impacts of climate change on forest fire activity in the boreal forest. Indeed, there is a general consensus that, while change will vary regionally across the vast extent of the boreal, in general the fire environment will become more conducive to fire. Land management agencies must consider ways to adapt to these new conditions. This paper examines the impact of that changed fire environment on overall wildfire suppression capability. We use multiple General Circulation Models and carbon emission pathways to generate future fire environment scenarios for Canada’s forested region. We then use these scenarios with the Canadian Forest Fire Behaviour Prediction System and spatial coverages of the current forest fuel composition across the landscape to examine potential variation in key fire behaviour outputs that influence whether fire management resources can effectively suppress fire. Specifically, we evaluate how the potential for crown fire occurrence and active growth of fires changes with the changing climate. We also examine future fire behaviour through the lens of operational fire intensity thresholds used to guide decisions about resources effectiveness. Results indicate that the proportion of days in fire seasons with the potential for unmanageable fire will increase across Canada’s forest, more than doubling in some regions in northern and eastern boreal forest.

  11. Linking sediment-charcoal records and ecological modeling to understand causes of fire-regime change in boreal forests

    Treesearch

    Linda B. Brubaker; Philip E. Higuera; T. Scott Rupp; Mark A. Olson; Patricia M. Anderson; Feng Sheng. Hu

    2009-01-01

    Interactions between vegetation and fire have the potential to overshadow direct effects of climate change on fire regimes in boreal forests of North America. We develop methods to compare sediment-charcoal records with fire regimes simulated by an ecological model, ALFRESCO (Alaskan Frame-based Ecosystem Code) and apply these methods to evaluate potential causes of a...

  12. A numerical simulation study on the impact of smoke aerosols from Russian forest fires on the air pollution over Asia

    NASA Astrophysics Data System (ADS)

    Zhu, Qingzhe; Liu, Yuzhi; Jia, Rui; Hua, Shan; Shao, Tianbin; Wang, Bing

    2018-06-01

    Serious forest fires were observed over Siberia, particularly in the vast area between Lake Baikal and the Gulf of Ob, during the period of 18-27 July 2016 using Moderate Resolution Imaging Spectroradiometer (MODIS) data. The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite simultaneously detected a multitude of smoke aerosols surrounding the same area. Combing a Lagrangian Flexible Particle dispersion model (FLEXPART) executed using the Weather Research and Forecasting (WRF) model output, the transport of smoke aerosols and the quantification of impact of Russian forest fires on the Asia were investigated. From model simulations, two transport paths were determined for the smoke plumes from the Russian forest fires. The first path was directed southwestward from Russia to Central Asia and eventually Xinjiang Province of China, furthermore, the second path was directed southeastward through Mongolia to Northeast China. The FLEXPART-WRF model simulations also revealed that the smoke aerosol concentrations entering the Central Asia, Mongolia and Northern China were approximately 60-300 μg m-3, 40-250 μg m-3 and 5-140 μg m-3, respectively. Meanwhile, the aerosol particles from these forest fires have an impact on the air quality in Asia. With the arrival of smoke aerosols from the Russian forest fires, the near-surface PM10 concentrations over Altay, Hulunbuir and Harbin increased to 61, 146 and 42 μg m-3, respectively. In conclusion, smoke aerosols from Russian forest fires can variably influence the air quality over Central Asia, Mongolia and Northern China.

  13. Modeling anthropogenic and natural fire ignitions in an inner-alpine valley

    NASA Astrophysics Data System (ADS)

    Vacchiano, Giorgio; Foderi, Cristiano; Berretti, Roberta; Marchi, Enrico; Motta, Renzo

    2018-03-01

    Modeling and assessing the factors that drive forest fire ignitions is critical for fire prevention and sustainable ecosystem management. In southern Europe, the anthropogenic component of wildland fire ignitions is especially relevant. In the Alps, however, the role of fire as a component of disturbance regimes in forest and grassland ecosystems is poorly known. The aim of this work is to model the probability of fire ignition for an Alpine region in Italy using a regional wildfire archive (1995-2009) and MaxEnt modeling. We analyzed separately (i) winter forest fires, (ii) winter fires on grasslands and fallow land, and (iii) summer fires. Predictors were related to morphology, climate, and land use; distance from infrastructures, number of farms, and number of grazing animals were used as proxies for the anthropogenic component. Collinearity among predictors was reduced by a principal component analysis. Regarding ignitions, 30 % occurred in agricultural areas and 24 % in forests. Ignitions peaked in the late winter-early spring. Negligence from agrosilvicultural activities was the main cause of ignition (64 %); lightning accounted for 9 % of causes across the study time frame, but increased from 6 to 10 % between the first and second period of analysis. Models for all groups of fire had a high goodness of fit (AUC 0.90-0.95). Temperature was proportional to the probability of ignition, and precipitation was inversely proportional. Proximity from infrastructures had an effect only on winter fires, while the density of grazing animals had a remarkably different effect on summer (positive correlation) and winter (negative) fires. Implications are discussed regarding climate change, fire regime changes, and silvicultural prevention. Such a spatially explicit approach allows us to carry out spatially targeted fire management strategies and may assist in developing better fire management plans.

  14. Deriving forest fire ignition risk with biogeochemical process modelling.

    PubMed

    Eastaugh, C S; Hasenauer, H

    2014-05-01

    Climate impacts the growth of trees and also affects disturbance regimes such as wildfire frequency. The European Alps have warmed considerably over the past half-century, but incomplete records make it difficult to definitively link alpine wildfire to climate change. Complicating this is the influence of forest composition and fuel loading on fire ignition risk, which is not considered by purely meteorological risk indices. Biogeochemical forest growth models track several variables that may be used as proxies for fire ignition risk. This study assesses the usefulness of the ecophysiological model BIOME-BGC's 'soil water' and 'labile litter carbon' variables in predicting fire ignition. A brief application case examines historic fire occurrence trends over pre-defined regions of Austria from 1960 to 2008. Results show that summer fire ignition risk is largely a function of low soil moisture, while winter fire ignitions are linked to the mass of volatile litter and atmospheric dryness.

  15. Modelling Variable Fire Severity in Boreal Forests: Effects of Fire Intensity and Stand Structure

    PubMed Central

    Miquelajauregui, Yosune; Cumming, Steven G.; Gauthier, Sylvie

    2016-01-01

    It is becoming clear that fires in boreal forests are not uniformly stand-replacing. On the contrary, marked variation in fire severity, measured as tree mortality, has been found both within and among individual fires. It is important to understand the conditions under which this variation can arise. We integrated forest sample plot data, tree allometries and historical forest fire records within a diameter class-structured model of 1.0 ha patches of mono-specific black spruce and jack pine stands in northern Québec, Canada. The model accounts for crown fire initiation and vertical spread into the canopy. It uses empirical relations between fire intensity, scorch height, the percent of crown scorched and tree mortality to simulate fire severity, specifically the percent reduction in patch basal area due to fire-caused mortality. A random forest and a regression tree analysis of a large random sample of simulated fires were used to test for an effect of fireline intensity, stand structure, species composition and pyrogeographic regions on resultant severity. Severity increased with intensity and was lower for jack pine stands. The proportion of simulated fires that burned at high severity (e.g. >75% reduction in patch basal area) was 0.80 for black spruce and 0.11 for jack pine. We identified thresholds in intensity below which there was a marked sensitivity of simulated fire severity to stand structure, and to interactions between intensity and structure. We found no evidence for a residual effect of pyrogeographic region on simulated severity, after the effects of stand structure and species composition were accounted for. The model presented here was able to produce variation in fire severity under a range of fire intensity conditions. This suggests that variation in stand structure is one of the factors causing the observed variation in boreal fire severity. PMID:26919456

  16. Modelling Variable Fire Severity in Boreal Forests: Effects of Fire Intensity and Stand Structure.

    PubMed

    Miquelajauregui, Yosune; Cumming, Steven G; Gauthier, Sylvie

    2016-01-01

    It is becoming clear that fires in boreal forests are not uniformly stand-replacing. On the contrary, marked variation in fire severity, measured as tree mortality, has been found both within and among individual fires. It is important to understand the conditions under which this variation can arise. We integrated forest sample plot data, tree allometries and historical forest fire records within a diameter class-structured model of 1.0 ha patches of mono-specific black spruce and jack pine stands in northern Québec, Canada. The model accounts for crown fire initiation and vertical spread into the canopy. It uses empirical relations between fire intensity, scorch height, the percent of crown scorched and tree mortality to simulate fire severity, specifically the percent reduction in patch basal area due to fire-caused mortality. A random forest and a regression tree analysis of a large random sample of simulated fires were used to test for an effect of fireline intensity, stand structure, species composition and pyrogeographic regions on resultant severity. Severity increased with intensity and was lower for jack pine stands. The proportion of simulated fires that burned at high severity (e.g. >75% reduction in patch basal area) was 0.80 for black spruce and 0.11 for jack pine. We identified thresholds in intensity below which there was a marked sensitivity of simulated fire severity to stand structure, and to interactions between intensity and structure. We found no evidence for a residual effect of pyrogeographic region on simulated severity, after the effects of stand structure and species composition were accounted for. The model presented here was able to produce variation in fire severity under a range of fire intensity conditions. This suggests that variation in stand structure is one of the factors causing the observed variation in boreal fire severity.

  17. WRF-based fire risk modelling and evaluation for years 2010 and 2012 in Poland

    NASA Astrophysics Data System (ADS)

    Stec, Magdalena; Szymanowski, Mariusz; Kryza, Maciej

    2016-04-01

    Wildfires are one of the main ecosystems' disturbances for forested, seminatural and agricultural areas. They generate significant economic loss, especially in forest management and agriculture. Forest fire risk modeling is therefore essential e.g. for forestry administration. In August 2015 a new method of forest fire risk forecasting entered into force in Poland. The method allows to predict a fire risk level in a 4-degree scale (0 - no risk, 3 - highest risk) and consists of a set of linearized regression equations. Meteorological information is used as predictors in regression equations, with air temperature, relative humidity, average wind speed, cloudiness and rainfall. The equations include also pine litter humidity as a measure of potential fuel characteristics. All these parameters are measured routinely in Poland at 42 basic and 94 auxiliary sites. The fire risk level is estimated for a current (basing on morning measurements) or next day (basing on midday measurements). Entire country is divided into 42 prognostic zones, and fire risk level for each zone is taken from the closest measuring site. The first goal of this work is to assess if the measurements needed for fire risk forecasting may be replaced by the data from mesoscale meteorological model. Additionally, the use of a meteorological model would allow to take into account much more realistic spatial differentiation of weather elements determining the fire risk level instead of discrete point-made measurements. Meteorological data have been calculated using the Weather Research and Forecasting model (WRF). For the purpose of this study the WRF model is run in the reanalysis mode allowing to estimate all required meteorological data in a 5-kilometers grid. The only parameter that cannot be directly calculated using WRF is the litter humidity, which has been estimated using empirical formula developed by Sakowska (2007). The experiments are carried out for two selected years: 2010 and 2012. The year 2010 was characterized by the smallest number of wildfires and burnt area whereas 2012 - by the biggest number of fires and the largest area of conflagration. The data about time, localization, scale and causes of individual wildfire occurrence in given years are taken from the National Forest Fire Information System (KSIPL), administered by Forest Fire Protection Department of Polish Forest Research Institute. The database is a part of European Forest Fire Information System (EFFIS). Basing on this data and on the WRF-based fire risk modelling we intend to achieve the second goal of the study, which is the evaluation of the forecasted fire risk with an occurrence of wildfires. Special attention is paid here to the number, time and the spatial distribution of wildfires occurred in cases of low-level predicted fire risk. Results obtained reveals the effectiveness of the new forecasting method. The outcome of our investigation allows to draw a conclusion that some adjustments are possible to improve the efficiency on the fire-risk estimation method.

  18. Impact air quality by wildfire and agricultural fire in Mexico city 2015

    NASA Astrophysics Data System (ADS)

    Mendoza Campos, Alejandra; Agustín García Reynoso, José; Castro Romero, Telma Gloria; Carbajal Pérez, José Noel; Mar Morales, Bertha Eugenia; Gerardo Ruiz Suárez, Luis

    2016-04-01

    A forest fire is a large-scale process natural combustion where different types of flora and fauna of different sizes and ages are consumed. Consequently, forest fires are a potential source of large amounts of air pollutants that must be considered when trying to relate emissions to the air quality in neighboring cities of forest areas as in the Valley of Mexico. The size, intensity and occurrence of a forest fire directly dependent variables such as weather conditions, topography, vegetation type and its moisture content and the mass of fuel per hectare. An agricultural fire is a controlled combustion, which occurred a negligence can get out of control and increase the burned area or the possibly become a wildfire. Once a fire starts, the dry combustible material is consumed first. If the energy release is large and of sufficient duration, drying green material occurs live, with subsequent burning it. Under proper fuel and environmental conditions, this process can start a chain reaction. These events occur mainly in the dry season. Forest fires and agriculture fires contribute directly in the increase of carbon dioxide (CO2) into the atmosphere; The main pollutants emitted to the atmosphere by a wildfire are the PM10, PM2.5, NOx and VOC's, the consequences have by fire are deforestation, soil erosion or change of structure and composition of forests (Villers, 2006), also it affects ecosystems and the health of the population. In this study the impact of air quality for the emissions of particulate matter less than ten microns PM10, by wildfire and agricultural fire occurred on the same day and same place, the study was evaluated in Mexico City the Delegation Milpa Alta in the community of San Lorenzo Tlacoyucan, the fire occurred on 3rd March, 2015, the wildfire duration 12 hours consuming 32 hectares of oak forest and the agricultural fire duration 6 hours consumed 16 hectares of corn. To evaluate the impact of air quality the WRF-Chem, WRF-Fire and METv3 models were used, four scenarios were made, in the first forest fire emissions were included, in the second agricultural fire emissions were included, the third was the difference between agricultural burning and forest fire and the last stage model without fire emissions. In making the interpolation of the modeled scenarios forest and agricultural fires the impact of air quality in the Valley of Mexico was obtained by increasing the concentration of particles smaller than ten micrometers PM10, with the results of the modeling are obtained that the PM10 concentration is ten times higher in the wildfire regarding agricultural fire. By making interpolation between this difference and considering the fire scenario without emissions by that date, a maximum PM10 concentration was 170μg /m3 during the hours of the fires, which exceeds the Mexican standard NOM-025-SSA1-2014 that provides that the maximum allowable limit of exposure to particulate matter less than ten microns is 75μg/m3 on average 24 hours, forest and agricultural fires have an impact of 226% in the PM10 air quality affecting ecosystems and human health

  19. Understanding fire drivers and relative impacts in different Chinese forest ecosystems.

    PubMed

    Guo, Futao; Su, Zhangwen; Wang, Guangyu; Sun, Long; Tigabu, Mulualem; Yang, Xiajie; Hu, Haiqing

    2017-12-15

    In this study, spatial patterns and driving factors of fires were identified from 2000 to 2010 using Ripley's K (d) function and logistic regression (LR) model in two different forest ecosystems of China: the boreal forest (Daxing'an Mountains) and sub-tropical forest (Fujian province). Relative effects of each driving factor on fire occurrence were identified based on standardized coefficients in the LR model. Results revealed that fires were spatially clustered and that fire drivers vary amongst differing forest ecosystems in China. Fires in the Daxing'an Mountains respond primarily to human factors, of which infrastructure is recognized as the most influential. In contrast, climate factors played a critical role in fire occurrence in Fujian, of which the temperature of fire season was found to be of greater importance than other climate factors. Selected factors can predict nearly 80% of the total fire occurrence in the Daxing'an Mountains and 66% in Fujian, wherein human and climate factors contributed the greatest impact in the two study areas, respectively. This study suggests that different fire prevention and management strategies are required in the areas of study, as significant variations of the main fire-driving exist. Rapid socio-economic development has produced similar effects in different forest ecosystems within China, implying a strong correlation between socio-economic development and fire regimes. It can be concluded that the influence of human factors will increase in the future as China's economy continues to grow - an issue of concern that should be further addressed in future national fire management. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Fire risk in California

    NASA Astrophysics Data System (ADS)

    Peterson, Seth Howard

    Fire is an integral part of ecosystems in the western United States. Decades of fire suppression have led to (unnaturally) large accumulations of fuel in some forest communities, such as the lower elevation forests of the Sierra Nevada. Urban sprawl into fire prone chaparral vegetation in southern California has put human lives at risk and the decreased fire return intervals have put the vegetation community at risk of type conversion. This research examines the factors affecting fire risk in two of the dominant landscapes in the state of California, chaparral and inland coniferous forests. Live fuel moisture (LFM) is important for fire ignition, spread rate, and intensity in chaparral. LFM maps were generated for Los Angeles County by developing and then inverting robust cross-validated regression equations from time series field data and vegetation indices (VIs) and phenological metrics from MODIS data. Fire fuels, including understory fuels which are not visible to remote sensing instruments, were mapped in Yosemite National Park using the random forests decision tree algorithm and climatic, topographic, remotely sensed, and fire history variables. Combining the disparate data sources served to improve classification accuracies. The models were inverted to produce maps of fuel models and fuel amounts, and these showed that fire fuel amounts are highest in the low elevation forests that have been most affected by fire suppression impacting the natural fire regime. Wildland fires in chaparral commonly burn in late summer or fall when LFM is near its annual low, however, the Jesusita Fire burned in early May of 2009, when LFM was still relatively high. The HFire fire spread model was used to simulate the growth of the Jesusita Fire using LFM maps derived from imagery acquired at the time of the fire and imagery acquired in late August to determine how much different the fire would have been if it had occurred later in the year. Simulated fires were 1.5 times larger, and the fire reached the wildland urban interface three hours earlier, when using August LFM.

  1. Paleolandscape Modeling of Climatic vs Anthropogenic Fires Regimes in the southern Sierra Nevada, California using LANDIS-II

    NASA Astrophysics Data System (ADS)

    Klimaszewski-Patterson, A.; Mensing, S. A.; Weisberg, P.; Scheller, R. M.

    2016-12-01

    Humans have altered landscapes across North America for millennia. Ethnographic accounts record regular Native Californian use of fire, but not the exact quantity, frequency, or range to which fire use and management were employed. Previous paleoecological work at Holey Meadow (HLY), Sequoia National Forest, California (Klimaszewski-Patterson and Mensing, 2015) indicated two anomolous periods of forest composition (1550-1000 and 750-100 cal yr BP) over the 2000 years that were inconsistent climatic expections. This research uses the forest succession landscape model LANDIS-II to investigate whether the observed changes in forest composition at HLY can be explained by climatic fires, or whether the addition of Native American-set surface fires is necessary. Simulated outputs of vegetation from LANDS-II were compared to the pollen record at HLY. Results suggest that Native American-set surface fires (anthropogenic fire regime) are most consistent both the pollen and charcoal records from HLY, as well as nearby and regional fire scar records. Climatic fires alone do not seem to explain the paleorecord, and this indicate that HLY may represent an anthropogenically-modified landscape.

  2. Climate change and forest fires.

    PubMed

    Flannigan, M D; Stocks, B J; Wotton, B M

    2000-11-15

    This paper addresses the impacts of climate change on forest fires and describes how this, in turn, will impact on the forests of the United States. In addition to reviewing existing studies on climate change and forest fires we have used two transient general circulation models (GCMs), namely the Hadley Centre and the Canadian GCMs, to estimate fire season severity in the middle of the next century. Ratios of 2 x CO2 seasonal severity rating (SSR) over present day SSR were calculated for the means and maximums for North America. The results suggest that the SSR will increase by 10-50% over most of North America; although, there are regions of little change or where the SSR may decrease by the middle of the next century. Increased SSRs should translate into increased forest fire activity. Thus, forest fires could be viewed as an agent of change for US forests as the fire regime will respond rapidly to climate warming. This change in the fire regime has the potential to overshadow the direct effects of climate change on species distribution and migration.

  3. Modeling Forest Composition and Carbon Dynamics Under Projected Climate-Fire Interactions in the Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Liang, S.; Hurteau, M. D.; Westerling, A. L.

    2014-12-01

    The Sierra Nevada Mountains are occupied by a diversity of forest types that sort by elevation. The interaction of changing climate and altered disturbance regimes (e.g. fire) has the potential to drive changes in forest distribution as a function of species-specific response. Quantifying the effects of these drivers on species distributions and productivity under future climate-fire interactions is necessary for informing mitigation and adaptation efforts. In this study, we assimilated forest inventory and soil survey data and species life history traits into a landscape model, LANDIS-II, to quantify the response of forest dynamics to the interaction of climate change and large wildfire frequency in the Sierra Nevada. We ran 100-year simulations forced with historical climate and climate projections from three models (GFDL, CNRM and CCSM3) driven by the A2 emission scenario. We found that non-growing season NPP is greatly enhanced by 15%-150%, depending on the specific climate projection. The greatest increase occurs in subalpine forests. Species-specific response varied as a function of life history characteristics. The distribution of drought and fire-tolerant species, such as ponderosa pine, expanded by 7.3-9.6% from initial conditions, while drought and fire-intolerant species, such as white fir, showed little change in the absence of fire. Changes in wildfire size and frequency influence species distributions by altering the successional stage of burned patches. The range of responses to different climate models demonstrates the sensitivity of these forests to climate variability. The scale of climate projections relative to the scale of forest simulations presents a source of uncertainty, particularly at the ecotone between forest types and for identifying topographically mediated climate refugia. Improving simulations will likely require higher resolution climate projections.

  4. [Responses of boreal forest landscape in northern Great Xing'an Mountains of Northeast China to climate change].

    PubMed

    Li, Xiao-Na; He, Hong-Shi; Wu, Zhi-Wei; Liang, Yu

    2012-12-01

    With the combination of forest landscape model (LANDIS) and forest gap model (LINKAGES), this paper simulated the effects of climate change on the boreal forest landscape in the Great Xing'an Mountains, and compared the direct effects of climate change and the effects of climate warming-induced fires on the forest landscape. The results showed that under the current climate conditions and fire disturbances, the forest landscape in the study area could maintain its dynamic balance, and Larix gmelinii was still the dominant tree species. Under the future climate and fire disturbances scenario, the distribution area of L. gmelinii and Pinus pumila would be decreased, while that of Betula platyphylla, Populus davidiana, Populus suaveolens, Chosenia arbutifolia, and Pinus sylvestris var. mongolica would be increased, and the forest fragmentation and forest diversity would have an increase. The changes of the forest landscape lagged behind climate change. Climate warming would increase the growth of most tree species except L. gmelinii, while the increased fires would increase the distribution area of P. davidiana, P. suaveolens, and C. arbutifolia and decrease the distribution area of L. gmelinii, P. sylvestris var. mongolica, and P. pumila. The effects of climate warming-induced fires on the forest landscape were almost equal to the direct effects of climate change, and aggravated the direct effects of climate change on forest composition, forest landscape fragmentation, and forest landscape diversity.

  5. Future Wildfire and Managed Fire Interactions in the Lake Tahoe Basin

    NASA Astrophysics Data System (ADS)

    Scheller, R.; Kretchun, A.

    2017-12-01

    Managing large forested landscape in the context of a changing climate and altered disturbance regimes presents new challenges and require integrated assessments of forest disturbance, management, succession, and the carbon cycle. Successful management under these circumstances will require information about trade-offs among multiple objectives and opportunities for spatially optimized landscape-scale management. Improved information about the effects of climate on forest communities, disturbance feedbacks, and the effectiveness of mitigation strategies enables actionable options for landscape managers. We evaluated the effects of fire suppression, wildfires, and forest fuel (thinning) treatments on the long-term carbon storage potential for Lake Tahoe Basin (LTB) forests under various climate futures. We simulated management scenarios that encompass fuel treatments across the larger landscape, beyond the Wildland Urban Interface. We improved upon current fire modeling under climate change via an integrated fire modeling module that, a) explicitly captures the influence of climate, fuels, topography, active fire management (e.g., fire suppression), and fuel treatments, and b) can be parameterized from available data, e.g., remote sensing, field reporting, fire databases, expert opinion. These improvements increase geographic flexibility and decrease reliance on broad historical fire regime statistics - imperfect targets for a no analog future and require minimal parameterization and calibration. We assessed the interactions among fuel treatments, prescribe fire, fire suppression, and stochastically recurring wildfires. Predicted changes in climate and ignition patterns in response to future climatic conditions, vegetation dynamics, and fuel treatments indicate larger potential long-term effects on C emissions, forest structure, and forest composition than prior studies.

  6. Challenges and a checklist for biodiversity conservation in fire-prone forests: perspecitves from the Pacific Northwest of USA and Southeastern Australia

    Treesearch

    Thomas A. Spies; David B. Lindenmayer; A. Malcolm Gill; Scott L. Stephens; James K. Agee

    2012-01-01

    Conserving biodiversity in fire-prone forest ecosystems is challenging for several reasons including differing and incomplete conceptual models of fire-related ecological processes, major gaps in ecological and management knowledge, high variability in fire behavior and ecological responses to fires, altered fire regimes as a result of land-use history and climate...

  7. The Big Burn: C Emissions from the Northern Rockies 1910 Fires

    NASA Astrophysics Data System (ADS)

    Walsh, E.; Hudiburg, T. W.

    2017-12-01

    The forest fires in August of 1910 were one of the greatest fire events in modern U.S. history. The Big Burn of northern Idaho and northwest Montana overwhelmed the burgeoning U.S. Forest Service suppression efforts and would ultimately harden the policy of fire suppression in the United States that prevails today. The fire burned 12k km2 (approximately the size of Connecticut) in two days with an estimated loss of 8 billion board feet of timber valued at $329 million (2016 dollars). Though one of the greatest natural events in U.S. history, little research has focused on the effect of the fires on CO2 emissions and forest successional pathways of this region. Based on fire extents and timber mortality reports, we estimate the fire resulted in 11 Mg/ha in dead woody biomass and potentially as much as 52 Tg C (191 Tg CO2) released as direct emissions. This is 58%-116% above the average yearly direct carbon emissions due to fire during 2002-2012 in the CONUS. We modeled the subsequent fires and change in species composition providing a measure of the observed shift from white pine (Pinus monticola), western larch (Larix occidentalis) and fir (Abies spp.) to lodgepole pine (Pinus contorta). These models can provide biogeochemical and forest successional pathway context for future changes in forest composition and fire severity/extent due to climate change.

  8. Characterization of the Fire Regime and Drivers of Fires in the West African Tropical Forest

    NASA Astrophysics Data System (ADS)

    Dwomoh, F. K.; Wimberly, M. C.

    2016-12-01

    The Upper Guinean forest (UGF), encompassing the tropical regions of West Africa, is a globally significant biodiversity hotspot and a critically important socio-economic and ecological resource for the region. However, the UGF is one of the most human-disturbed tropical forest ecosystems with the only remaining large patches of original forests distributed in protected areas, which are embedded in a hotspot of climate stress & land use pressures, increasing their vulnerability to fire. We hypothesized that human impacts and climate interact to drive spatial and temporal variability in fire, with fire exhibiting distinctive seasonality and sensitivity to drought in areas characterized by different population densities, agricultural practices, vegetation types, and levels of forest degradation. We used the MODIS active fire product to identify and characterize fire activity in the major ecoregions of the UGF. We used TRMM rainfall data to measure climatic variability and derived indicators of human land use from a variety of geospatial datasets. We employed time series modeling to identify the influences of drought indices and other antecedent climatic indicators on temporal patterns of active fire occurrence. We used a variety of modeling approaches to assess the influences of human activities and land cover variables on the spatial pattern of fire activity. Our results showed that temporal patterns of fire activity in the UGF were related to precipitation, but these relationships were spatially heterogeneous. The pattern of fire seasonality varied geographically, reflecting both climatological patterns and agricultural practices. The spatial pattern of fire activity was strongly associated with vegetation gradients and anthropogenic activities occurring at fine spatial scales. The Guinean forest-savanna mosaic ecoregion had the most fires. This study contributes to our understanding of UGF fire regime and the spatio-temporal dynamics of tropical forest fires in response to intense human and climatic drivers.

  9. Modeling the disturbance of vegetation by fire in the boreal forest

    NASA Astrophysics Data System (ADS)

    Crevoisier, C.; Shevliakova, E.; Gloor, M.; Wirth, C.

    2006-12-01

    Boreal regions are important for the global carbon cycle because it is the largest forested area on earth and there are large belowground carbon pools (~1000 PgC). It is also a region where largest warming trends on the globe over the last decades have been observed and changes of the land ecosystems have already started. A major factor that determines the structure and carbon dynamics of the boreal forest is fire. As fire frequency depends strongly on climate, increased fire occurrence and related losses to the atmosphere are likely, and have already been reported. In order to predict with more confidence the occurrence and effect of fire on forest ecosystems in the boreal region, we have developed a fire model that takes advantage of the large on-ground, remote sensing and climate data from Canada, Alaska and Siberia. This prognostic model estimates the monthly burned area in a grid cell of 2 by 2.5 degrees, from four climate (air temperature, air relative humidity, precipitation and soil water content) and one human-related (road density) variables. Parameters are estimated using a Markov Chain Monte Carlo method applied to a dataset of observed burned area for Canada. The model is able to reproduce the seasonality of fire, the interannual variability, as well as the location of fire events, not only for Canada (on which data the model is based), but also for Siberia and Alaska, for which the results compare well with remote sensing observation, and are in the range of various current estimations of burned area. The fire model is being implemented in LM3V, the new vegetation model of GFDL earth system model, in order to make prediction of future fire behavior in boreal regions, and the related disturbance of the vegetation and carbon emissions.

  10. Estimating forest canopy fuel parameters using LIDAR data.

    Treesearch

    Hans-Erik Andersen; Robert J. McGaughey; Stephen E. Reutebuch

    2005-01-01

    Fire researchers and resource managers are dependent upon accurate, spatially-explicit forest structure information to support the application of forest fire behavior models. In particular, reliable estimates of several critical forest canopy structure metrics, including canopy bulk density, canopy height, canopy fuel weight, and canopy base height, are required to...

  11. Protection against fire in the mountainous forests of Greece case study: forest complex of W. Nestos

    NASA Astrophysics Data System (ADS)

    Drosos, Vasileios C.; Giannoulas, Vasileios J.; Stergiadou, Anastasia; Karagiannis, Evaggelos; Doukas, Aristotelis-Kosmas G.

    2014-08-01

    Forest fires are an ancient phenomenon. Appear, however, with devastating frequency and intensity over the last 30 years. In our country, the climatic conditions in combination with the intense relief, favor their rapid spread. Considering the fact that environmental conditions provided for decades even worse (increased temperature, drought and vegetation), then the problem of forest fires in our country, is expected to become more intense. The work focuses on the optimization model of the opening up of the forest mountain areas taking into account the prevention and suppression of forest fires. Research area is the mountain forest complex of W. Nestos of Drama Prefecture. The percentage of forest protection area is examined under the light whether the total hose length corresponds to the actual operational capacity to reach a fire source. For this reason are decided to present a three case study concerning area of the forest being protected by fire extinguishing vehicles. The first one corresponds to a fire suppression bandwidth (buffer zone) with a capacity radius of 150m uphill and 250m downhill from the origin point where the fire extinguishing vehicle stands. The second one corresponds to a fire suppression capacity of 200m uphill and 400m downhill and the third one corresponds to a fire suppression capacity of 300m uphill and 500m downhill. The most important forest technical infrastructures to prevent fire are roads network (opening up) for fire protection and buffer zones. Patrols of small and agile 4 × 4 appropriately equipped (pipe length of 500 meters and putting pressure on uphill to 300 meters) for the first attack of the fire in the summer months coupled with early warning of fire observatories adequately cover the forest protection of W. Nestos complex. But spatial distribution needed improvements to a road density of the optimum economic Dec, both forest protection and for better management (skidding) of woody capital.

  12. Avian response to fire in pine–oak forests of Great Smoky Mountains National Park following decades of fire suppression

    USGS Publications Warehouse

    Rose, Eli T.; Simons, Theodore R.

    2016-01-01

    Fire suppression in southern Appalachian pine–oak forests during the past century dramatically altered the bird community. Fire return intervals decreased, resulting in local extirpation or population declines of many bird species adapted to post-fire plant communities. Within Great Smoky Mountains National Park, declines have been strongest for birds inhabiting xeric pine–oak forests that depend on frequent fire. The buildup of fuels after decades of fire suppression led to changes in the 1996 Great Smoky Mountains Fire Management Plan. Although fire return intervals remain well below historic levels, management changes have helped increase the amount of fire within the park over the past 20 years, providing an opportunity to study patterns of fire severity, time since burn, and bird occurrence. We combined avian point counts in burned and unburned areas with remote sensing indices of fire severity to infer temporal changes in bird occurrence for up to 28 years following fire. Using hierarchical linear models that account for the possibility of a species presence at a site when no individuals are detected, we developed occurrence models for 24 species: 13 occurred more frequently in burned areas, 2 occurred less frequently, and 9 showed no significant difference between burned and unburned areas. Within burned areas, the top models for each species included fire severity, time since burn, or both, suggesting that fire influenced patterns of species occurrence for all 24 species. Our findings suggest that no single fire management strategy will suit all species. To capture peak occupancy for the entire bird community within xeric pine–oak forests, at least 3 fire regimes may be necessary; one applying frequent low severity fire, another using infrequent low severity fire, and a third using infrequently applied high severity fire.

  13. The Fire and Fuels Extension to the Forest Vegetation Simulator

    Treesearch

    Elizabeth Reinhardt; Nicholas L. Crookston

    2003-01-01

    The Fire and Fuels Extension (FFE) to the Forest Vegetation Simulator (FVS) simulates fuel dynamics and potential fire behaviour over time, in the context of stand development and management. Existing models of fire behavior and fire effects were added to FVS to form this extension. New submodels representing snag and fuel dynamics were created to complete the linkages...

  14. A review of the main driving factors of forest fire ignition over Europe.

    PubMed

    Ganteaume, Anne; Camia, Andrea; Jappiot, Marielle; San-Miguel-Ayanz, Jesus; Long-Fournel, Marlène; Lampin, Corinne

    2013-03-01

    Knowledge of the causes of forest fires, and of the main driving factors of ignition, is an indispensable step towards effective fire prevention policies. This study analyses the factors driving forest fire ignition in the Mediterranean region including the most common human and environmental factors used for modelling in the European context. Fire ignition factors are compared to spatial and temporal variations of fire occurrence in the region, then are compared to results obtained in other areas of the world, with a special focus on North America (US and Canada) where a significant number of studies has been carried out on this topic. The causes of forest fires are varied and their distribution differs among countries, but may also differ spatially and temporally within the same country. In Europe, and especially in the Mediterranean basin, fires are mostly human-caused mainly due arson. The distance to transport networks and the distance to urban or recreation areas are among the most frequently used human factors in modelling exercises and the Wildland-Urban Interface is increasingly taken into account in the modelling of fire occurrence. Depending on the socio-economic context of the region concerned, factors such as the unemployment rate or variables linked to agricultural activity can explain the ignition of intentional and unintentional fires. Regarding environmental factors, those related to weather, fuel and topography are the most significant drivers of ignition of forest fires, especially in Mediterranean-type regions. For both human and lightning-caused fires, there is a geographical gradient of fire ignition, mainly due to variations in climate and fuel composition but also to population density for instance. The timing of fires depends on their causes. In populated areas, the timing of human-caused fires is closely linked to human activities and peaks in the afternoon whereas, in remote areas, the timing of lightning-caused fires is more linked to weather conditions and the season, with most such fires occurring in summer.

  15. A Review of the Main Driving Factors of Forest Fire Ignition Over Europe

    NASA Astrophysics Data System (ADS)

    Ganteaume, Anne; Camia, Andrea; Jappiot, Marielle; San-Miguel-Ayanz, Jesus; Long-Fournel, Marlène; Lampin, Corinne

    2013-03-01

    Knowledge of the causes of forest fires, and of the main driving factors of ignition, is an indispensable step towards effective fire prevention policies. This study analyses the factors driving forest fire ignition in the Mediterranean region including the most common human and environmental factors used for modelling in the European context. Fire ignition factors are compared to spatial and temporal variations of fire occurrence in the region, then are compared to results obtained in other areas of the world, with a special focus on North America (US and Canada) where a significant number of studies has been carried out on this topic. The causes of forest fires are varied and their distribution differs among countries, but may also differ spatially and temporally within the same country. In Europe, and especially in the Mediterranean basin, fires are mostly human-caused mainly due arson. The distance to transport networks and the distance to urban or recreation areas are among the most frequently used human factors in modelling exercises and the Wildland-Urban Interface is increasingly taken into account in the modelling of fire occurrence. Depending on the socio-economic context of the region concerned, factors such as the unemployment rate or variables linked to agricultural activity can explain the ignition of intentional and unintentional fires. Regarding environmental factors, those related to weather, fuel and topography are the most significant drivers of ignition of forest fires, especially in Mediterranean-type regions. For both human and lightning-caused fires, there is a geographical gradient of fire ignition, mainly due to variations in climate and fuel composition but also to population density for instance. The timing of fires depends on their causes. In populated areas, the timing of human-caused fires is closely linked to human activities and peaks in the afternoon whereas, in remote areas, the timing of lightning-caused fires is more linked to weather conditions and the season, with most such fires occurring in summer.

  16. Modeling relationships among 217 fires using remote sensing of burn severity in southern pine forests

    Treesearch

    Sparkle L. Malone; Leda N. Kobziar; Christina L. Staudhammer; Amr Abd-Elrahman

    2011-01-01

    Pine flatwoods forests in the southeastern US have experienced severe wildfires over the past few decades, often attributed to fuel load build-up. These forest communities are fire dependent and require regular burning for ecosystem maintenance and health. Although prescribed fire has been used to reduce wildfire risk and maintain ecosystem integrity, managers are...

  17. A decision support system for managing forest fire casualties.

    PubMed

    Bonazountas, Marc; Kallidromitou, Despina; Kassomenos, Pavlos; Passas, Nikos

    2007-09-01

    Southern Europe is exposed to anthropogenic and natural forest fires. These result in loss of lives, goods and infrastructure, but also deteriorate the natural environment and degrade ecosystems. The early detection and combating of such catastrophes requires the use of a decision support system (DSS) for emergency management. The current literature reports on a series of efforts aimed to deliver DSSs for the management of the forest fires by utilising technologies like remote sensing and geographical information systems (GIS), yet no integrated system exists. This manuscript presents the results of scientific research aiming to the development of a DSS for managing forest fires. The system provides a series of software tools for the assessment of the propagation and combating of forest fires based on Arc/Info, ArcView, Arc Spatial Analyst, Arc Avenue, and Visual C++ technologies. The system integrates GIS technologies under the same data environment and utilises a common user interface to produce an integrated computer system based on semi-automatic satellite image processing (fuel maps), socio-economic risk modelling and probabilistic models that would serve as a useful tool for forest fire prevention, planning and management. Its performance has been demonstrated via real time up-to-date accurate information on the position and evolution of the fire. The system can assist emergency assessment, management and combating of the incident. A site demonstration and validation has been accomplished for the island of Evoia, Greece, an area particularly vulnerable to forest fires due to its ecological characteristics and prevailing wind patterns.

  18. Restoring and managing low-severity fire in dry-forest landscapes of the western USA.

    PubMed

    Baker, William L

    2017-01-01

    Low-severity fires that killed few canopy trees played a significant historical role in dry forests of the western USA and warrant restoration and management, but historical rates of burning remain uncertain. Past reconstructions focused on on dating fire years, not measuring historical rates of burning. Past statistics, including mean composite fire interval (mean CFI) and individual-tree fire interval (mean ITFI) have biases and inaccuracies if used as estimators of rates. In this study, I used regression, with a calibration dataset of 96 cases, to test whether these statistics could accurately predict two equivalent historical rates, population mean fire interval (PMFI) and fire rotation (FR). The best model, using Weibull mean ITFI, had low prediction error and R2adj = 0.972. I used this model to predict historical PMFI/FR at 252 sites spanning dry forests. Historical PMFI/FR for a pool of 342 calibration and predicted sites had a mean of 39 years and median of 30 years. Short (< 25 years) mean PMFI/FRs were in Arizona and New Mexico and scattered in other states. Long (> 55 years) mean PMFI/FRs were mainly from northern New Mexico to South Dakota. Mountain sites often had a large range in PMFI/FR. Nearly all 342 estimates are for old forests with a history of primarily low-severity fire, found across only about 34% of historical dry-forest area. Frequent fire (PMFI/FR < 25 years) was found across only about 14% of historical dry-forest area, with 86% having multidecadal rates of low-severity fire. Historical fuels (e.g., understory shrubs and small trees) could fully recover between multidecadal fires, allowing some denser forests and some ecosystem processes and wildlife habitat to be less limited by fire. Lower historical rates mean less restoration treatment is needed before beginning managed fire for resource benefits, where feasible. Mimicking patterns of variability in historical low-severity fire regimes would likely benefit biological diversity and ecosystem functioning.

  19. Restoring and managing low-severity fire in dry-forest landscapes of the western USA

    PubMed Central

    2017-01-01

    Low-severity fires that killed few canopy trees played a significant historical role in dry forests of the western USA and warrant restoration and management, but historical rates of burning remain uncertain. Past reconstructions focused on on dating fire years, not measuring historical rates of burning. Past statistics, including mean composite fire interval (mean CFI) and individual-tree fire interval (mean ITFI) have biases and inaccuracies if used as estimators of rates. In this study, I used regression, with a calibration dataset of 96 cases, to test whether these statistics could accurately predict two equivalent historical rates, population mean fire interval (PMFI) and fire rotation (FR). The best model, using Weibull mean ITFI, had low prediction error and R2adj = 0.972. I used this model to predict historical PMFI/FR at 252 sites spanning dry forests. Historical PMFI/FR for a pool of 342 calibration and predicted sites had a mean of 39 years and median of 30 years. Short (< 25 years) mean PMFI/FRs were in Arizona and New Mexico and scattered in other states. Long (> 55 years) mean PMFI/FRs were mainly from northern New Mexico to South Dakota. Mountain sites often had a large range in PMFI/FR. Nearly all 342 estimates are for old forests with a history of primarily low-severity fire, found across only about 34% of historical dry-forest area. Frequent fire (PMFI/FR < 25 years) was found across only about 14% of historical dry-forest area, with 86% having multidecadal rates of low-severity fire. Historical fuels (e.g., understory shrubs and small trees) could fully recover between multidecadal fires, allowing some denser forests and some ecosystem processes and wildlife habitat to be less limited by fire. Lower historical rates mean less restoration treatment is needed before beginning managed fire for resource benefits, where feasible. Mimicking patterns of variability in historical low-severity fire regimes would likely benefit biological diversity and ecosystem functioning. PMID:28199416

  20. Did the summer 2003 forest fires in Portugal affect air quality over Europe?

    NASA Astrophysics Data System (ADS)

    Miranda, A. I.; Martins, V.; Sá, E.; Carvalho, A.; Amorim, J. H.; Borrego, C.

    2009-04-01

    A forest fire is a large-scale natural combustion process consuming various types, sizes and ages of botanical specimen growing outdoors in a defined geographical area. Although wildland fires are an integral part of ecosystems management and are essential to maintain functional ecosystems their dimensions can give rise to disastrous results. Due to the frequency of occurrence and the magnitude of effects on the environment, health, economy and security, forest fires have increasingly become a major subject of concern for decision-makers, firefighters, researchers and citizens in general. Among their consequences, is the emission of various environmentally significant gases and solid particulate matter to the atmosphere that interfere with local, regional and global phenomena in the biosphere. Smoke from forest fires contains important amounts of carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), nitrogen oxides (NOx), ammonia (NH3), particulate matter (PM) (that is usually referred in terms of particles with a mean diameter less than 2.5 μm, or PM2.5, and particles with a mean diameter less than 10 μm, or PM10), non-methane hydrocarbons (NMHC) and other chemical compounds. These air pollutants can cause serious consequences to local and regional air quality by reducing visibility, contributing to smog and impairing air quality in general, thus threatening human health and ecosystems. Pollutants emitted from forest fires are transported, chemically transformed, and dispersed in the atmosphere. Although major wildfires are limited to some hundreds of hectares, their impacts, with no natural or political boundaries, can be felt and reported far beyond the physical limits of the fire spread. Depending on meteorological conditions, smoke plumes and haze layers can persist in the atmosphere for long periods of time and prevailing conditions will influence the chemical and optical characteristics of the plume. The extreme fire events occurred in the summer of 2003 in Portugal highlighted the need to better analyze the link between forest fires and air quality. Portugal faced in 2003, the worst fire season ever recorded and this is clearly reflected in the values measured by the air quality-monitoring networks. There were 4,645 fires burning 8.6% of the total Portuguese forest area. The main purpose of this paper is to evaluate the contribution of summer 2003 Portuguese fires to air quality impairment in Europe. Portuguese forest fire emissions, namely CO2, CO, CH4, PM10, PM2.5, NMHC, NOx, SO2 and NH3, were estimated throughout the summer of 2003, based on specific southern European emissions factors, on type of vegetation and area burned. LOTOS-EUROS, which is an operational 3D chemistry transport model aimed to simulate air pollution in the lower troposphere, was specifically adapted to simulate forest fire emissions. The modelling system was applied first at a continental scale (with 0.5° x 0.25°, approximately 35 km x 25 km) and then to mainland Portugal domain, using the same physics and a simple one-way nesting technique, with 17.5 km x 12.5 km horizontal resolution. The simulation period covered the entire summer, aiming to estimate hourly concentration values of gaseous and particulate pollutants levels in the air. A baseline simulation (BS) was carried out, only including the "conventional" anthropogenic and biogenic emissions, and a forest fire simulation (FS), which also considered emissions from large forest fires (area burned higher than 100 ha). Hence, forest fire emissions values were added to the anthropogenic and biogenic grid emissions, according to the fire location and assuming a uniform fire spread and a constant injection altitude in the dynamic mixing layer. The modelling system indicates a severe degradation of particulate matter and ozone (O3) concentrations due to forest fires, not only in Portugal, but also in United Kingdom, France and Spain. Modelling results were compared to background monitoring data from the European Air quality dataBase (AIRBASE). A statistical analysis was performed to evaluate the simulations results, using some statistical parameters such as the root mean square error (RMSE), the systematic error (BIAS) and the Pearson correlation coefficient (r). The model performance increased substantially when forest fire emissions were included.

  1. [Forest fire risk assessment for China under different climate scenarios.

    PubMed

    Tian, Xiao Rui; Dai, Xuan; Wang, Ming Yu; Zhao, Feng Jun; Shu, Li Fu

    2016-03-01

    Forest fire risk depends on the hazard factors, affected body, and hazard prevention and reduction ability. The integrated risk assessment is the foundation for developing scientific fire mana-gement policies and carrying out the forest fire prevention measures. A forest fire risk assessment model and index system were established based on the classic natural disaster risk model and available data, and the model was used to assess the forest fire risks in past and future. The future climate scenario data included outputs from five global climate models (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM and NorESM1-M) for RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5, respectively. Each component index of Fire Weather Index (FWI) system was calculated daily for each grid in 1987-2050 for the historical observations and future climate scenarios according to the maximum temperature, minimum relative humidity, wind speed and daily precipitation. The results showed that areas with high and very high fire danger ratings in 1987-2010 accounted for 21.2% and 6.2%, respectively, which were distributed in Greater Xing'an Mountains and the Changbai Mountain area, most parts of Yunnan, and many fragment areas in southern China. The areas with high and very high burn possibilities were mainly distributed in the northeast and southwest region, accounting for 13.1% and 4.0%, respectively. Compared with the observation period, the areas with high and very high fire danger ratings in 2021-2050 would increase by 0.6%, 5.5%, 2.3%, and 3.5% under RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5 respectively, and North China would show significant increase. The regions with high-risk forest fires would also increase due to climate change, with the most significant increase under RCP 8.5 scenario (+1.6%).

  2. Afforestation, subsequent forest fires and provision of hydrological services: a model-based analysis for a Mediterranean mountainous catchment

    NASA Astrophysics Data System (ADS)

    Nunes, João Pedro; Naranjo Quintanilla, Paula; Santos, Juliana; Serpa, Dalila; Carvalho-Santos, Cláudia; Rocha, João; Keizer, Jan Jacob; Keesstra, Saskia

    2017-04-01

    Mediterranean landscapes have experienced extensive abandonment and reforestation in recent decades, which should have improved the provision of hydrological services, such as flood mitigation, soil erosion protection and water quality regulation. However, these forests are fire-prone, and the post-fire increase in runoff, erosion and sediment exports could negatively affect service provision. This issue was assessed using the SWAT model for a small mountain agroforestry catchment, which was monitored between 2010 and 2014 and where some eucalypt stands burned in 2011 and were subsequently plowed for replanting. The model was calibrated and validated for streamflow, sediment yield and erosion in agricultural fields and the burnt hillslopes, showing that it can be adapted for post-fire simulation. It was then used to perform a decadal assessment of surface runoff, erosion, and sediment exports between 2004 and 2014. Results show that the fire did not noticeably affect flood mitigation but that it increased erosion by 3 orders of magnitude, which subsequently increased sediment yield. Erosion in the burnt forest during this decade was one order of magnitude above that in agricultural fields. SWAT was also used to assess different fire and land-use scenarios during the same period. Results indicate that the impacts of fire were lower without post-fire soil management, and when the fire occurred in pine forests (i.e. before the 1990s) or in shrublands (i.e. before afforestation in the 1930s). These impacts were robust to changes in post-fire weather conditions and to a lower fire frequency (20-year intervals). The results suggest that, in the long term, fire-prone forests might not provide the anticipated soil protection and water quality regulation services in wet Mediterranean regions.

  3. Predicting Fire Susceptibility in the Forests of Amazonia

    NASA Technical Reports Server (NTRS)

    Nepstad, Daniel C.; Brown, I. Foster; Setzer, Alberto

    2000-01-01

    Although fire is the single greatest threat to the ecological integrity of Amazon forests, our ability to predict the occurrence of Amazon forest fires is rudimentary. Part of the difficulty encountered in making such predictions is the remarkable capacity of Amazon forests to tolerate drought by tapping moisture stored in deep soil. These forests can avoid drought-induced leaf shedding by withdrawing moisture to depths of 8 meters and more. Hence, the absorption of deep soil moisture allows these forests to maintain their leaf canopies following droughts of several months duration, thereby maintaining the deep shade and high relative humidity of the forest interior that prevents these ecosystems from burning. But the drought- and fire-avoidance that is conferred by this deep-rooting phenomenon is not unlimited. During successive years of drought, such as those provoked by El Nino episodes, deep soil moisture can be depleted, and drought-induced leaf shedding begins. The goal of this project was to incorporate this knowledge of Amazon forest fire ecology into a predictive model of forest flammability.

  4. Simulated Net Ecosystem Carbon Balance of Western US Forests Under Contemporary Climate and Management

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Law, B. E.; Jones, M. O.

    2015-12-01

    Previous projections of the contemporary forest carbon balance in the western US showed uncertainties associated with impacts of climate extremes and a coarse spatio-temporal resolution implemented over heterogeneous mountain regions. We modified the Community Land Model (CLM) 4.5 to produce 4km resolution forest carbon changes with drought, fire and management in the western US. We parameterized the model with species data using local plant trait observations for 30 species. To quantify uncertainty, we evaluated the model with data from flux sites, inventories and ancillary data in the region. Simulated GPP was lower than the measurements at our AmeriFlux sites by 17-22%. Simulated burned area was generally higher than Landsat observations, suggesting the model overestimates fire emissions with the new fire model. Landsat MTBS data show high severity fire represents only a small portion of the total burnt area (12-14%), and no increasing trend from 1984 to 2011. Moderate severity fire increased ~0.23%/year due to fires in the Sierra Nevada (Law & Waring 2014). Oregon, California, and Washington were a net carbon sink, and net ecosystem carbon balance (NECB) declined in California over the past 15 years, partly due to drought impacts. Fire emissions were a small portion of the regional carbon budget compared with the effect of harvest removals. Fossil fuel emissions in CA are more than 3x that of OR and WA combined, but are lower per capita. We also identified forest regions that are most vulnerable to climate-driven transformations and to evaluate the effects of management strategies on forest NECB. Differences in forest NECB among states are strongly influenced by the extent of drought (drier longer in the SW) and management intensity (higher in the PNW).

  5. Space-Based Sensorweb Monitoring of Wildfires in Thailand

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Doubleday, Joshua; Mclaren, David; Davies, Ashley; Tran, Daniel; Tanpipat, Veerachai; Akaakara, Siri; Ratanasuwan, Anuchit; Mandl, Daniel

    2011-01-01

    We describe efforts to apply sensorweb technologies to the monitoring of forest fires in Thailand. In this approach, satellite data and ground reports are assimilated to assess the current state of the forest system in terms of forest fire risk, active fires, and likely progression of fires and smoke plumes. This current and projected assessment can then be used to actively direct sensors and assets to best acquire further information. This process operates continually with new data updating models of fire activity leading to further sensing and updating of models. As the fire activity is tracked, products such as active fire maps, burn scar severity maps, and alerts are automatically delivered to relevant parties.We describe the current state of the Thailand Fire Sensorweb which utilizes the MODIS-based FIRMS system to track active fires and trigger Earth Observing One / Advanced Land Imager to acquire imagery and produce active fire maps, burn scar severity maps, and alerts. We describe ongoing work to integrate additional sensor sources and generate additional products.

  6. Mapping Forest Fire Susceptibility in Temperate Mountain Areas with Expert Knowledge. A Case Study from Iezer Mountains, Romanian Carpathians

    NASA Astrophysics Data System (ADS)

    Mihai, Bogdan; Savulescu, Ionut

    2014-05-01

    Forest fires in Romanian Carpathians became a frequent phenomenon during the last decade, although local climate and other environmental features did not create typical conditions. From 2004, forest fires affect in Romania more than 100 hectares/year of different forest types (deciduous and coniferous). Their magnitude and frequency are not known, since a historical forest fire inventory does not exist (only press papers and local witness for some selected events). Forest fires features the summer dry periods but there are dry autumns and early winter periods with events of different magnitudes. The application we propose is based on an empirical modeling of forest fire susceptibility in a typical mountain area from the Southern Carpathians, the Iezer Mountains (2462 m). The study area features almost all the altitudinal vegetation zones of the European temperate mountains, from the beech zone, to the coniferous zone, the subalpine and the alpine zones (Mihai et al., 2007). The analysis combines GIS and remote sensing models (Chuvieco et al., 2012), starting from the ideas that forest fires are featured by the ignition zones and then by the fire propagation zones. The first data layer (ignition zones) is the result of the crossing between the ignition factors: lightning - points of multitemporal occurence and anthropogenic activities (grazing, tourism and traffic) and the ignition zones (forest fuel zonation - forest stands, soil cover and topoclimatic factor zonation). This data is modelled from different sources: the MODIS imagery fire product (Hantson et al., 2012), detailed topographic maps, multitemporal orthophotos at 0.5 m resolution, Landsat multispectral imagery, forestry cadastre maps, detailed soil maps, meteorological data (the WorldClim digital database) as well as the field survey (mapping using GPS and local observation). The second data layer (fire propagation zones) is the result of the crossing between the forest fuel zonation, obtained with the help of forestry data, the wind regime data and the topographic features of the mountain area (elevation, slope declivity, slope aspect). The analysis also consider the insolation degree of mountain slopes, that creates favourable conditions for fire propagation between different canopies. These data layers are integrated within a simple GIS analysis in order to intersect the ignition zones with the fire propagation zones in order to obtain the potential areas to be affected by fire. The digital map show three levels of forest fire susceptibility, differenced on the basis of expert knowledge. The map can be validated from the statistical point of view with the polygons of the forest fire affected areas mapped from Landsat TM, ETM+ and OLI satellite imagery. The mapping results could be integrated within the forest management strategies and especially within the forest cadastre and development maps (updated every ten years). The result can confirm that the data gap in terms of forest fire events can be filled with expert knowledge. References Chuvieco, E, Aguado, I., Jurdao, S., Pettinari, M., Yebra, M., Salas, J., Hantson, S., de la Riva, J., Ibarra, P., Rodrigues, M., Echeverria, M., Azqueta, D., Roman, M., Bastarrika, A., Martinez, S., Recondo, C., Zapico, E., Martinez-Vega F.J. (2012) Integrating geospatial information into fire risk assessment, International Journal of Wildland Fire, 2,2, 69-86. Hantson, S., Padilla, M., Corti., D, Chuvieco, E. (2013) Strenghts and weaknesses of MODIS hotspots to characterize Global fire occurence, Remote Sensing of Environment, 131, 1, 152-159. Mihai, B., Savulescu, I.,Sandric, I. (2007) Change detection analysis (1986/2002) for the alpine, subalpine and forest landscape in Iezer Mountains (Southern Carpathians, Romania), Mountain Research and Development, 27, 250-258.

  7. Forest fire spatial pattern analysis in Galicia (NW Spain).

    PubMed

    Fuentes-Santos, I; Marey-Pérez, M F; González-Manteiga, W

    2013-10-15

    Knowledge of fire behaviour is of key importance in forest management. In the present study, we analysed the spatial structure of forest fire with spatial point pattern analysis and inference techniques recently developed in the Spatstat package of R. Wildfires have been the primary threat to Galician forests in recent years. The district of Fonsagrada-Ancares is one of the most seriously affected by fire in the region and, therefore, the central focus of the study. Our main goal was to determine the spatial distribution of ignition points to model and predict fire occurrence. These data are of great value in establishing enhanced fire prevention and fire fighting plans. We found that the spatial distribution of wildfires is not random and that fire occurrence may depend on ownership conflicts. We also found positive interaction between small and large fires and spatial independence between wildfires in consecutive years. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Examining fire-induced forest changes using novel remote sensing technique: a case study in a mixed pine-oak forest

    NASA Astrophysics Data System (ADS)

    Meng, R.; Wu, J.; Zhao, F. R.; Cook, B.; Hanavan, R. P.; Serbin, S.

    2017-12-01

    Fire-induced forest changes has long been a central focus for forest ecology and global carbon cycling studies, and is becoming a pressing issue for global change biologists particularly with the projected increases in the frequency and intensity of fire with a warmer and drier climate. Compared with time-consuming and labor intensive field-based approaches, remote sensing offers a promising way to efficiently assess fire effects and monitor post-fire forest responses across a range of spatial and temporal scales. However, traditional remote sensing studies relying on simple optical spectral indices or coarse resolution imagery still face a number of technical challenges, including confusion or contamination of the signal by understory dynamics and mixed pixels with moderate to coarse resolution data (>= 30 m). As such, traditional remote sensing may not meet the increasing demand for more ecologically-meaningful monitoring and quantitation of fire-induced forest changes. Here we examined the use of novel remote sensing technique (i.e. airborne imaging spectroscopy and LiDAR measurement, very high spatial resolution (VHR) space-borne multi-spectral measurement, and high temporal-spatial resolution UAS-based (Unmanned Aerial System) imagery), in combination with field and phenocam measurements to map forest burn severity across spatial scales, quantify crown-scale post-fire forest recovery rate, and track fire-induced phenology changes in the burned areas. We focused on a mixed pine-oak forest undergoing multiple fire disturbances for the past several years in Long Island, NY as a case study. We demonstrate that (1) forest burn severity mapping from VHR remote sensing measurement can capture crown-scale heterogeneous fire patterns over large-scale; (2) the combination of VHR optical and structural measurements provides an efficient means to remotely sense species-level post-fire forest responses; (3) the UAS-based remote sensing enables monitoring of fire-induced forest phenology changes at unprecedented temporal and spatial resolutions. This work provides the methodological approach monitor fire-induced forest changes in a spatially explicit manner across scales, with important implications for fire-related forest management and for constraining/benchmarking process models.

  9. Duration of fuels reduction following prescribed fire in coniferous forests of U.S. national parks in California and the Colorado Plateau

    USGS Publications Warehouse

    van Mantgem, Phillip J.; Lalemand, Laura; Keifer, MaryBeth; Kane, Jeffrey M.

    2016-01-01

    Prescribed fire is a widely used forest management tool, yet the long-term effectiveness of prescribed fire in reducing fuels and fire hazards in many vegetation types is not well documented. We assessed the magnitude and duration of reductions in surface fuels and modeled fire hazards in coniferous forests across nine U.S. national parks in California and the Colorado Plateau. We used observations from a prescribed fire effects monitoring program that feature standard forest and surface fuels inventories conducted pre-fire, immediately following an initial (first-entry) prescribed fire and at varying intervals up to >20 years post-fire. A subset of these plots was subjected to prescribed fire again (second-entry) with continued monitoring. Prescribed fire effects were highly variable among plots, but we found on average first-entry fires resulted in a significant post-fire reduction in surface fuels, with litter and duff fuels not returning to pre-fire levels over the length of our observations. Fine and coarse woody fuels often took a decade or longer to return to pre-fire levels. For second-entry fires we found continued fuels reductions, without strong evidence of fuel loads returning to levels observed immediately prior to second-entry fire. Following both first- and second-entry fire there were increases in estimated canopy base heights, along with reductions in estimated canopy bulk density and modeled flame lengths. We did not find evidence of return to pre-fire conditions during our observation intervals for these measures of fire hazard. Our results show that prescribed fire can be a valuable tool to reduce fire hazards and, depending on forest conditions and the measurement used, reductions in fire hazard can last for decades. Second-entry prescribed fire appeared to reinforce the reduction in fuels and fire hazard from first-entry fires.

  10. Synergy between land use and climate change increases future fire risk in Amazon forests

    NASA Astrophysics Data System (ADS)

    Le Page, Yannick; Morton, Douglas; Hartin, Corinne; Bond-Lamberty, Ben; Cardoso Pereira, José Miguel; Hurtt, George; Asrar, Ghassem

    2017-12-01

    Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactions between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change - Representative Concentration Pathway (RCP) 8.5 - projected understory fires increase in frequency and duration, burning 4-28 times more forest in 2080-2100 than during 1990-2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9-5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.

  11. Climate, soil organic layer, and nitrogen jointly drive forest development after fire in the North American boreal zone

    NASA Astrophysics Data System (ADS)

    Trugman, A. T.; Fenton, N. J.; Bergeron, Y.; Xu, X.; Welp, L. R.; Medvigy, D.

    2016-09-01

    Previous empirical work has shown that feedbacks between fire severity, soil organic layer thickness, tree recruitment, and forest growth are important factors controlling carbon accumulation after fire disturbance. However, current boreal forest models inadequately simulate this feedback. We address this deficiency by updating the ED2 model to include a dynamic feedback between soil organic layer thickness, tree recruitment, and forest growth. The model is validated against observations spanning monthly to centennial time scales and ranging from Alaska to Quebec. We then quantify differences in forest development after fire disturbance resulting from changes in soil organic layer accumulation, temperature, nitrogen availability, and atmospheric CO2. First, we find that ED2 accurately reproduces observations when a dynamic soil organic layer is included. Second, simulations indicate that the presence of a thick soil organic layer after a mild fire disturbance decreases decomposition and productivity. The combination of the biological and physical effects increases or decreases total ecosystem carbon depending on local conditions. Third, with a 4°C temperature increase, some forests transition from undergoing succession to needleleaf forests to recruiting multiple cohorts of broadleaf trees, decreasing total ecosystem carbon by ˜40% after 300 years. However, the presence of a thick soil organic layer due to a persistently mild fire regime can prevent this transition and mediate carbon losses even under warmer temperatures. Fourth, nitrogen availability regulates successional dynamics; broadleaf species are less competitive with needleleaf trees under low nitrogen regimes. Fifth, the boreal forest shows additional short-term capacity for carbon sequestration as atmospheric CO2 increases.

  12. A multivariate model of plant species richness in forested systems: Old-growth montane forests with a long history of fire

    USGS Publications Warehouse

    Laughlin, D.C.; Grace, J.B.

    2006-01-01

    Recently, efforts to develop multivariate models of plant species richness have been extended to include systems where trees play important roles as overstory elements mediating the influences of environment and disturbance on understory richness. We used structural equation modeling to examine the relationship of understory vascular plant species richness to understory abundance, forest structure, topographic slope, and surface fire history in lower montane forests on the North Rim of Grand Canyon National Park, USA based on data from eighty-two 0.1 ha plots. The questions of primary interest in this analysis were: (1) to what degree are influences of trees on understory richness mediated by effects on understory abundance? (2) To what degree are influences of fire history on richness mediated by effects on trees and/or understory abundance? (3) Can the influences of fire history on this system be related simply to time-since-fire or are there unique influences associated with long-term fire frequency? The results we obtained are consistent with the following inferences. First, it appears that pine trees had a strong inhibitory effect on the abundance of understory plants, which in turn led to lower understory species richness. Second, richness declined over time since the last fire. This pattern appears to result from several processes, including (1) a post-fire stimulation of germination, (2) a decline in understory abundance, and (3) an increase over time in pine abundance (which indirectly leads to reduced richness). Finally, once time-since-fire was statistically controlled, it was seen that areas with higher fire frequency have lower richness than expected, which appears to result from negative effects on understory abundance, possibly by depletions of soil nutrients from repeated surface fire. Overall, it appears that at large temporal and spatial scales, surface fire plays an important and complex role in structuring understory plant communities in old-growth montane forests. These results show how multivariate models of herbaceous richness can be expanded to apply to forested systems. Copyright ?? Oikos 2006.

  13. Waterfowl populations are resilient to immediate and lagged impacts of wildfires in the boreal forest

    USGS Publications Warehouse

    Lewis, Tyler; Schmutz, Joel A.; Amundson, Courtney L.; Lindberg, Mark S.

    2016-01-01

    Summary 1. Wildfires are the principal disturbance in the boreal forest, and their size and frequency are increasing as the climate warms. Impacts of fires on boreal wildlife are largely unknown, especially for the tens of millions of waterfowl that breed in the region. This knowledge gap creates significant barriers to the integrative management of fires and waterfowl, leading to fire policies that largely disregard waterfowl. 2. Waterfowl populations across the western boreal forest of North America have been monitored annually since 1955 by the Waterfowl Breeding Population and Habitat Survey (BPOP), widely considered the most extensive wildlife survey in the world. Using these data, we examined impacts of forest fires on abundance of two waterfowl guilds – dabblers and divers. We modelled waterfowl abundance in relation to fire extent (i.e. amount of survey transect burned) and time since fire, examining both immediate and lagged fire impacts. 3. From 1955 to 2014, >1100 fires in the western boreal forest intersected BPOP survey transects, and many transects burned multiple times. Nonetheless, fires had no detectable impact on waterfowl abundance; annual transect counts of dabbler and diver pairs remained stable from the pre- to post-fire period. 4. The absence of fire impacts on waterfowl abundance extended from the years immediately following the fire to those more than a decade afterwards. Likewise, the amount of transect burned did not influence waterfowl abundance, with similar pair counts from the pre- to post-fire period for small (1–20% burned), medium (21–60%) and large (>60%) burns. 5. Policy implications. Waterfowl populations appear largely resilient to forest fires, providing initial evidence that current policies of limited fire suppression, which predominate throughout much of the boreal forest, have not been detrimental to waterfowl populations. Likewise, fire-related management actions, such as prescribed burning or targeted suppression, seem to have limited impacts on waterfowl abundance and productivity. For waterfowl managers, our results suggest that adaptive models of waterfowl harvest, which annually guide hunting quotas, do not need to emphasize fires when integrating climate change effects.

  14. Evaluation of a post-fire tree mortality model for western US conifers

    Treesearch

    Sharon M. Hood; Charles W McHugh; Kevin C. Ryan; Elizabeth Reinhardt; Sheri L. Smith

    2007-01-01

    Accurately predicting fire-caused mortality is essential to developing prescribed fire burn plans and post-fire salvage marking guidelines. The mortality model included in the commonly used USA fire behaviour and effects models, the First Order Fire Effects Model (FOFEM), BehavePlus, and the Fire and Fuels Extension to the Forest Vegetation Simulator (FFE-FVS), has not...

  15. Fire Impact on Phytomass and Carbon Emissions in the Forests of Siberia

    NASA Astrophysics Data System (ADS)

    Ivanova, Galina A.; Zhila, Sergei V.; Ivanov, Valery A.; Kovaleva, Nataly M.; Kukavskaya, Elena A.; Platonova, Irina A.; Conard, Susan G.

    2014-05-01

    Siberian boreal forests contribute considerably to the global carbon budget, since they take up vast areas, accumulate large amount of carbon, and are sensitive to climatic changes. Fire is the main forest disturbance factor, covering up to millions of hectares of boreal forests annually, of which the majority is in Siberia. Carbon emissions released from phytomass burning influence atmospheric chemistry and global carbon cycling. Changing climate and land use influence the number and intensity of wildfires, forest state, and productivity, as well as global carbon balance. Fire effects on forest overstory, subcanopy woody layer, and ground vegetation phytomass were estimated on sites in light-conifer forests of the Central Siberia as a part of the project "The Influence of Changing Forestry Practices on the Effects of Wildfire and on Interactions Between Fire and Changing Climate in Central Siberia" supported by NASA (NEESPI). This study focuses on collecting quantitative data and modeling the influence of fires of varying intensity on fire emissions, carbon budget, and ecosystem processes in coniferous stands. Fires have a profound impact on forest-atmospheric carbon exchange and transform forests from carbon sinks to carbon sources lasting long after the time of burning. Our long-term experiments allowed us to identify vegetation succession patterns in taiga Scots pine stands after fires of known behavior. Estimating fire contributions to the carbon budget requires consideration of many factors, including vegetation type and fire type and intensity. Carbon emissions were found to depend on fire intensity and weather. In the first several years after fire, the above-ground phytomass appeared to be strongly controlled by fire intensity. However, the influence of burning intensity on organic matter accumulation was found to decrease with time.

  16. An overview of the fire and fuels extension to the forest vegetation simulator

    Treesearch

    Sarah J. Beukema; Elizabeth D. Reinhardt; Werner A. Kurz; Nicholas L. Crookston

    2000-01-01

    The Fire and Fuels Extension (FFE) to the Forest Vegetation Simulator (FVS) has been developed to assess the risk, behavior, and impact of fire in forest ecosystems. This extension to the widely-used stand-dynamics model FVS simulates the dynamics of snags and surface fuels as they are affected by stand management (of trees or fuels), live tree growth and mortality,...

  17. Modeling long-term effects of altered fire regimes following Southern Pine Beetle outbreaks (North Carolina).

    Treesearch

    Weiman Xi; John Waldron; Charles Lafon; David Cairns; Andrew Birt; Maria Tchakerian; Robert Coulson; Kier Klepzig

    2009-01-01

    Periodic fires are an important factor shaping the species-rich southern Appalachian forest landscape, and fire regimes in this region have changed significantly over time. The role of fire in maintaining Appalachian forests has been debated and increasingly studied (Delcourt and Delcourt 1998). Experimental studies have shown that pine...

  18. Wildfire and drought dynamics destabilize carbon stores of fire-suppressed forests

    Treesearch

    J. Mason Earles; Malcolm P. North; Matthew D. Hurteau

    2014-01-01

    Widespread fire suppression and thinning have altered the structure and composition of many forests in the western United States, making them more susceptible to the synergy of large-scale drought and fire events. We examine how these changes affect carbon storage and stability compared to historic fire-adapted conditions. We modeled carbon dynamics under possible...

  19. Potential fire behavior in pine flatwood forests following three different fuel reduction techniques

    Treesearch

    Patrick Brose; Dale Wade

    2002-01-01

    A computer modeling study to determine the potential fire behavior in pine flatwood forests following three fuel hazard reduction treatments: herbicide, prescribed fire and thinning was conducted in Florida following the 1998 wildfire season. Prescribed fire provided immediate protection but this protection quickly disappeared as the rough recovered. Thinning had a...

  20. Landscape anthropogenic disturbance in the Mediterranean ecosystem: is the current landscape sustainable?

    NASA Astrophysics Data System (ADS)

    Biondi, Guido; D'Andrea, Mirko; Fiorucci, Paolo; Franciosi, Chiara; Lima, Marco

    2013-04-01

    Mediterranean landscape during the last centuries has been subject to strong anthropogenic disturbances who shifted natural vegetation cover in a cultural landscape. Most of the natural forest were destroyed in order to allow cultivation and grazing activities. In the last century, fast growing conifer plantations were introduced in order to increase timber production replacing slow growing natural forests. In addition, after the Second World War most of the grazing areas were changed in unmanaged mediterranean conifer forest frequently spread by fires. In the last decades radical socio economic changes lead to a dramatic abandonment of the cultural landscape. One of the most relevant result of these human disturbances, and in particular the replacement of deciduous forests with coniferous forests, has been the increasing in the number of forest fires, mainly human caused. The presence of conifers and shrubs, more prone to fire, triggered a feedback mechanism that makes difficult to return to the stage of potential vegetation causing huge economic, social and environmental damages. The aim of this work is to investigate the sustainability of the current landscape. A future landscape scenario has been simulated considering the natural succession in absence of human intervention assuming the current fire regime will be unaltered. To this end, a new model has been defined, implementing an ecological succession model coupled with a simply Forest Fire Model. The ecological succession model simulates the vegetation dynamics using a rule-based approach discrete in space and time. In this model Plant Functional Types (PFTs) are used to describe the landscape. Wildfires are randomly ignited on the landscape, and their propagation is simulated using a stochastic cellular automata model. The results show that the success of the natural succession toward a potential vegetation cover is prevented by the frequency of fire spreading. The actual landscape is then unsustainable because of the high cost of fire fighting activities. The right path to success consists in development of suitable land use planning and forest management to mitigate the consequences of past anthropogenic disturbances.

  1. Severe fire weather and intensive forest management increase fire severity in a multi-ownership landscape.

    PubMed

    Zald, Harold S J; Dunn, Christopher J

    2018-04-26

    Many studies have examined how fuels, topography, climate, and fire weather influence fire severity. Less is known about how different forest management practices influence fire severity in multi-owner landscapes, despite costly and controversial suppression of wildfires that do not acknowledge ownership boundaries. In 2013, the Douglas Complex burned over 19,000 ha of Oregon & California Railroad (O&C) lands in Southwestern Oregon, USA. O&C lands are composed of a checkerboard of private industrial and federal forestland (Bureau of Land Management, BLM) with contrasting management objectives, providing a unique experimental landscape to understand how different management practices influence wildfire severity. Leveraging Landsat based estimates of fire severity (Relative differenced Normalized Burn Ratio, RdNBR) and geospatial data on fire progression, weather, topography, pre-fire forest conditions, and land ownership, we asked (1) what is the relative importance of different variables driving fire severity, and (2) is intensive plantation forestry associated with higher fire severity? Using Random Forest ensemble machine learning, we found daily fire weather was the most important predictor of fire severity, followed by stand age and ownership, followed by topographic features. Estimates of pre-fire forest biomass were not an important predictor of fire severity. Adjusting for all other predictor variables in a general least squares model incorporating spatial autocorrelation, mean predicted RdNBR was higher on private industrial forests (RdNBR 521.85 ± 18.67 [mean ± SE]) vs. BLM forests (398.87 ± 18.23) with a much greater proportion of older forests. Our findings suggest intensive plantation forestry characterized by young forests and spatially homogenized fuels, rather than pre-fire biomass, were significant drivers of wildfire severity. This has implications for perceptions of wildfire risk, shared fire management responsibilities, and developing fire resilience for multiple objectives in multi-owner landscapes. © 2018 by the Ecological Society of America.

  2. Applying GIS to develop a model for forest fire risk: A case study in Espírito Santo, Brazil.

    PubMed

    Eugenio, Fernando Coelho; dos Santos, Alexandre Rosa; Fiedler, Nilton Cesar; Ribeiro, Guido Assunção; da Silva, Aderbal Gomes; dos Santos, Áureo Banhos; Paneto, Greiciane Gaburro; Schettino, Vitor Roberto

    2016-05-15

    A forest fire risk map is a basic element for planning and protecting forested areas. The main goal of this study was to develop a statistical model for preparing a forest fire risk map using GIS. Such model is based on assigning weights to nine variables divided into two classes: physical factors of the site (terrain slope, land-use/occupation, proximity to roads, terrain orientation, and altitude) and climatic factors (precipitation, temperature, water deficit, and evapotranspiration). In regions where the climate is different from the conditions of this study, the model will require an adjustment of the variables weights according to the local climate. The study area, Espírito Santo State, exhibited approximately 3.81% low risk, 21.18% moderate risk, 30.10% high risk, 41.50% very high risk, and 3.40% extreme risk of forest fire. The areas classified as high risk, very high and extreme, contemplated a total of 78.92% of heat spots. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Deriving forest fire ignition risk with biogeochemical process modelling☆

    PubMed Central

    Eastaugh, C.S.; Hasenauer, H.

    2014-01-01

    Climate impacts the growth of trees and also affects disturbance regimes such as wildfire frequency. The European Alps have warmed considerably over the past half-century, but incomplete records make it difficult to definitively link alpine wildfire to climate change. Complicating this is the influence of forest composition and fuel loading on fire ignition risk, which is not considered by purely meteorological risk indices. Biogeochemical forest growth models track several variables that may be used as proxies for fire ignition risk. This study assesses the usefulness of the ecophysiological model BIOME-BGC's ‘soil water’ and ‘labile litter carbon’ variables in predicting fire ignition. A brief application case examines historic fire occurrence trends over pre-defined regions of Austria from 1960 to 2008. Results show that summer fire ignition risk is largely a function of low soil moisture, while winter fire ignitions are linked to the mass of volatile litter and atmospheric dryness. PMID:26109905

  4. Managing wildland fires: integrating weather models into fire projections

    Treesearch

    Anne M. Rosenthal; Francis Fujioka

    2004-01-01

    Flames from the Old Fire sweep through lands north of San Bernardino during late fall of 2003. Like many Southern California fires, the Old Fire consumed susceptible forests at the urban-wildland interface and spread to nearby city neighborhoods. By incorporating weather models into fire perimeter projections, scientist Francis Fujioka is improving fire modeling as a...

  5. Weather Observation Systems and Efficiency of Fighting Forest Fires

    NASA Astrophysics Data System (ADS)

    Khabarov, N.; Moltchanova, E.; Obersteiner, M.

    2007-12-01

    Weather observation is an essential component of modern forest fire management systems. Satellite and in-situ based weather observation systems might help to reduce forest loss, human casualties and destruction of economic capital. In this paper, we develop and apply a methodology to assess the benefits of various weather observation systems on reductions of burned area due to early fire detection. In particular, we consider a model where the air patrolling schedule is determined by a fire hazard index. The index is computed from gridded daily weather data for the area covering parts Spain and Portugal. We conduct a number of simulation experiments. First, the resolution of the original data set is artificially reduced. The reduction of the total forest burned area associated with air patrolling based on a finer weather grid indicates the benefit of using higher spatially resolved weather observations. Second, we consider a stochastic model to simulate forest fires and explore the sensitivity of the model with respect to the quality of input data. The analysis of combination of satellite and ground monitoring reveals potential cost saving due to a "system of systems effect" and substantial reduction in burned area. Finally, we estimate the marginal improvement schedule for loss of life and economic capital as a function of the improved fire observing system.

  6. Wildfire exposure and fuel management on western US national forests.

    PubMed

    Ager, Alan A; Day, Michelle A; McHugh, Charles W; Short, Karen; Gilbertson-Day, Julie; Finney, Mark A; Calkin, David E

    2014-12-01

    Substantial investments in fuel management activities on national forests in the western US are part of a national strategy to reduce human and ecological losses from catastrophic wildfire and create fire resilient landscapes. Prioritizing these investments within and among national forests remains a challenge, partly because a comprehensive assessment that establishes the current wildfire risk and exposure does not exist, making it difficult to identify national priorities and target specific areas for fuel management. To gain a broader understanding of wildfire exposure in the national forest system, we analyzed an array of simulated and empirical data on wildfire activity and fuel treatment investments on the 82 western US national forests. We first summarized recent fire data to examine variation among the Forests in ignition frequency and burned area in relation to investments in fuel reduction treatments. We then used simulation modeling to analyze fine-scale spatial variation in burn probability and intensity. We also estimated the probability of a mega-fire event on each of the Forests, and the transmission of fires ignited on national forests to the surrounding urban interface. The analysis showed a good correspondence between recent area burned and predictions from the simulation models. The modeling also illustrated the magnitude of the variation in both burn probability and intensity among and within Forests. Simulated burn probabilities in most instances were lower than historical, reflecting fire exclusion on many national forests. Simulated wildfire transmission from national forests to the urban interface was highly variable among the Forests. We discuss how the results of the study can be used to prioritize investments in hazardous fuel reduction within a comprehensive multi-scale risk management framework. Published by Elsevier Ltd.

  7. Reconciling salvage logging of boreal forests with a tural-disturbance management model.

    PubMed

    Schmiegelow, Fiona K A; Stepnisky, David P; Stambaugh, Curtis A; Koivula, Matti

    2006-08-01

    In North American boreal forests, wildfire is the dominant agent of natural disturbance. A natural-disturbance model has therefore been promoted as an ecologically based approach to forest harvesting in these systems. Given accelerating resource demands, fire competes with harvest for timber and there is increasing pressure to salvage naturally burned areas. This creates a management paradox: simultaneous promotion of natural disturbance as a guide to sustainability while salvaging forests that have been naturally disturbed. The major drivers of postfire salvage in Canadian boreal forests are societal perceptions, overallocation of forest resources, and economic and policy incentives, and postfire salvage compromisesforest sustainability by diminishing the role of fire as a critical, natural process. These factors might be reconciled through consideration of fire in resource allocations and application of active adaptive management. We provide novel treatment of the role of burn severity in mediating biotic response by examining its influence on the amount, type, and distribution of live, postfire residual material, and we highlight the role of fire in shaping spatial and temporal patterns in forest biodiversity. Maintenance of natural postfire forests is a critical component of an ecosystem-based approach to forest management in boreal systems. Nevertheless, presentpracticesfocus heavily on expediting removal of timber from burned forests, despite increasing evidence that postfire communities differ markedly from postharvest systems, and there is a mismatch between emerging management models and past management practices. Policies that recognize the critical role of fire in these systems and facilitate enhanced understanding of natural system dynamics in support of development of sustainable management practices are urgently needed.

  8. Investigating the effects of forest structure on the small mammal community in frequent-fire coniferous forests using capture-recapture models for stratified populations

    Treesearch

    Rahel Sollmann; Angela M. White; Beth Gardner; Patricia N. Manley

    2015-01-01

    Small mammals comprise an important component of forest vertebrate communities. Our understanding of how small mammals use forested habitat has relied heavily on studies in forest systems not naturally prone to frequent disturbances. Small mammal populations that evolved in frequent-fire forests, however, may be less restricted to specific habitat conditions due to the...

  9. Development of Standard Fuel Models in Boreal Forests of Northeast China through Calibration and Validation

    PubMed Central

    Cai, Longyan; He, Hong S.; Wu, Zhiwei; Lewis, Benard L.; Liang, Yu

    2014-01-01

    Understanding the fire prediction capabilities of fuel models is vital to forest fire management. Various fuel models have been developed in the Great Xing'an Mountains in Northeast China. However, the performances of these fuel models have not been tested for historical occurrences of wildfires. Consequently, the applicability of these models requires further investigation. Thus, this paper aims to develop standard fuel models. Seven vegetation types were combined into three fuel models according to potential fire behaviors which were clustered using Euclidean distance algorithms. Fuel model parameter sensitivity was analyzed by the Morris screening method. Results showed that the fuel model parameters 1-hour time-lag loading, dead heat content, live heat content, 1-hour time-lag SAV(Surface Area-to-Volume), live shrub SAV, and fuel bed depth have high sensitivity. Two main sensitive fuel parameters: 1-hour time-lag loading and fuel bed depth, were determined as adjustment parameters because of their high spatio-temporal variability. The FARSITE model was then used to test the fire prediction capabilities of the combined fuel models (uncalibrated fuel models). FARSITE was shown to yield an unrealistic prediction of the historical fire. However, the calibrated fuel models significantly improved the capabilities of the fuel models to predict the actual fire with an accuracy of 89%. Validation results also showed that the model can estimate the actual fires with an accuracy exceeding 56% by using the calibrated fuel models. Therefore, these fuel models can be efficiently used to calculate fire behaviors, which can be helpful in forest fire management. PMID:24714164

  10. Use of models to study forest fire behavior

    Treesearch

    Wallace L. Fons

    1961-01-01

    The U.S. Forest Service has started a laboratory study with the ultimate objective of determining model laws for fire behavior. The study includes an examination of the effect of such variables as species of wood, density of wood, moisture content, size of fuel particle, spacing, dimensions of fuel bed, wind, and slope on the rate of spread of fire and the partition of...

  11. Project Fire Model: Summary Progress Report, Period November 1, 1958 to April 30, 1960

    Treesearch

    W.L. Fons; H.D. Bruce; W.Y. Pong; S.S. Richards

    1960-01-01

    This report summarizes progress from November 1, 1958, to April 30, 1960, in a study conducted by the Pacific Southwest Forest and Range Experiment Station of the Forest Service in cooperation with the Office of Civil and Defense Mobilization. Called PROJECT FIRE MODEL for convenience, the project sought to develop and study a laboratory-scale fire which would...

  12. Modeling the spatial distribution of forest crown biomass and effects on fire behavior with FUEL3D and WFDS

    Treesearch

    Russell A. Parsons; William Mell; Peter McCauley

    2010-01-01

    Crown fire poses challenges to fire managers and can endanger fire fighters. Understanding of how fire interacts with tree crowns is essential to informed decisions about crown fire. Current operational crown fire predictions in the United States assume homogeneous crown fuels. While a new class of research fire models, which model fire behavior with computational...

  13. Impact of anthropogenic climate change on wildfire across western US forests.

    PubMed

    Abatzoglou, John T; Williams, A Park

    2016-10-18

    Increased forest fire activity across the western continental United States (US) in recent decades has likely been enabled by a number of factors, including the legacy of fire suppression and human settlement, natural climate variability, and human-caused climate change. We use modeled climate projections to estimate the contribution of anthropogenic climate change to observed increases in eight fuel aridity metrics and forest fire area across the western United States. Anthropogenic increases in temperature and vapor pressure deficit significantly enhanced fuel aridity across western US forests over the past several decades and, during 2000-2015, contributed to 75% more forested area experiencing high (>1 σ) fire-season fuel aridity and an average of nine additional days per year of high fire potential. Anthropogenic climate change accounted for ∼55% of observed increases in fuel aridity from 1979 to 2015 across western US forests, highlighting both anthropogenic climate change and natural climate variability as important contributors to increased wildfire potential in recent decades. We estimate that human-caused climate change contributed to an additional 4.2 million ha of forest fire area during 1984-2015, nearly doubling the forest fire area expected in its absence. Natural climate variability will continue to alternate between modulating and compounding anthropogenic increases in fuel aridity, but anthropogenic climate change has emerged as a driver of increased forest fire activity and should continue to do so while fuels are not limiting.

  14. Impact of anthropogenic climate change on wildfire across western US forests

    NASA Astrophysics Data System (ADS)

    Abatzoglou, John T.; Park Williams, A.

    2016-10-01

    Increased forest fire activity across the western continental United States (US) in recent decades has likely been enabled by a number of factors, including the legacy of fire suppression and human settlement, natural climate variability, and human-caused climate change. We use modeled climate projections to estimate the contribution of anthropogenic climate change to observed increases in eight fuel aridity metrics and forest fire area across the western United States. Anthropogenic increases in temperature and vapor pressure deficit significantly enhanced fuel aridity across western US forests over the past several decades and, during 2000-2015, contributed to 75% more forested area experiencing high (>1 σ) fire-season fuel aridity and an average of nine additional days per year of high fire potential. Anthropogenic climate change accounted for ˜55% of observed increases in fuel aridity from 1979 to 2015 across western US forests, highlighting both anthropogenic climate change and natural climate variability as important contributors to increased wildfire potential in recent decades. We estimate that human-caused climate change contributed to an additional 4.2 million ha of forest fire area during 1984-2015, nearly doubling the forest fire area expected in its absence. Natural climate variability will continue to alternate between modulating and compounding anthropogenic increases in fuel aridity, but anthropogenic climate change has emerged as a driver of increased forest fire activity and should continue to do so while fuels are not limiting.

  15. A high-resolution modelling approach on spatial wildfire distribution in the Tyrolean Alps

    NASA Astrophysics Data System (ADS)

    Malowerschnig, Bodo; Sass, Oliver

    2013-04-01

    Global warming will cause increasing danger of wildfires in Austria, which can have long-lasting consequences on woodland ecosystems. The protective effect of forest can be severely diminished, leading to natural hazards like avalanches and rockfall. However, data on wildfire frequency and distribution have been sparse and incomplete for Austria. Long-lasting postfire degradation under adverse preconditions (steep slopes, limestone) was a common phenomenon in parts of the Tyrolean Alps several decades ago and should become relevant again under a changing fire frequency. The FIRIA project compiles historical wildfire data, information on fuel loads, fire weather indices (FWI) and vegetation recovery patterns. The governing climatic, topographic and socio-economic factors of forest fire distribution were assessed to trigger a distribution model of currently fire-prone areas in Tyrol. By collecting data from different sources like old newspapers archives and fire-fighter databases, we were able to build up a fire database of wildfire occurrences containing more than 1400 forest fires since the 15th century in Tyrol. For the period from 1993 to 2011, the database is widely complete and covers 482 fires. Using a non-parametrical statistical method it was possible to select the best suited fire weather index (FWI) for the prediction. The testing of 19 FWI's shows that it is necessary to use two discriminative indices to differentiate between summer and winter season. Together with compiled topographic, socio-economic, infrastructure and forest maps, the dataset was the base for a multifactorial analysis, performed by comparing the maximum entropy approach (Maxent) with an ensemble classifier (Random Forests). Both approaches have their background in the spatial habitat distribution and are easy to adapt to the requirements of a wildfire ignition model. The aim of this modelling approach was to determine areas which are particularly prone to wildfire. Due to the pronounced relief curvature we based our model on 100 x 100 m cells to identify individual slopes and their topography. The first provisional result is a map of fire probability under current climate conditions (fire hot-spots). Our modelling approach indicates the fire weather index as the main driver, which is followed closely by socioeconomic (population density) and infrastructure factors (roads density, aerial railways, building density). The leverage of the forest community or its management is rather low; the same applies to topographic influences like aspect or sea level. The derived fire hot-spots are either placed close to the valley ground or around touristic infrastructure, with an overall preference for inner alpine areas and south-facing slopes. In the next step, the impact of climate change on the distribution and frequency of fires will be assessed by calculating a climate change model adapted to the 1x1km INCA dataset and based on different regional climate change models. Finally, a selection of fire-hot-spots from the previous modelling steps will be used for enhanced 3D-modelling approaches of natural hazards after wildfire-driven deforestation.

  16. Modeling the Effects of Drought, Fire, Beetles, and Management on Future Carbon Cycling in the Western US

    NASA Astrophysics Data System (ADS)

    Buotte, P.; Law, B. E.; Hicke, J. A.; Hudiburg, T. W.; Levis, S.; Kent, J.

    2017-12-01

    Fire and beetle outbreaks can have substantial impacts on forest structure, composition, and function and these types of disturbances are expected to increase in the future. Therefore understanding the ecological impacts of these disturbances into the future is important. We used ecosystem process modeling to estimate the future occurrence of fire and beetle outbreaks and their impacts on forest resilience and carbon sequestration. We modified the Community Land Model (CLM4.5) to better represent forest growth and mortality in the western US through multiple avenues: 1) we increased the ecological resolution to recognize 14 forest types common to the region; 2) we improved CLM4.5's ability to handle drought stress by adding forest type-specific controls on stomatal conductance and increased rates of leaf shed during periods of low soil moisture; 3) we developed and implemented a mechanistic model of beetle population growth and subsequent tree mortality; 4) we modified the current fire module to account for more refined forest types; and 5) we developed multiple scenarios of harvest based on past harvest rates and proposed changes in land management policies. We ran CLM4.5 in offline mode with climate forcing data. We compare future forest growth rates and carbon sequestration with historical metrics to estimate the combined influence of future disturbances on forest composition and carbon sequestration in the western US.

  17. Catchment-scale Validation of a Physically-based, Post-fire Runoff and Erosion Model

    NASA Astrophysics Data System (ADS)

    Quinn, D.; Brooks, E. S.; Robichaud, P. R.; Dobre, M.; Brown, R. E.; Wagenbrenner, J.

    2017-12-01

    The cascading consequences of fire-induced ecological changes have profound impacts on both natural and managed forest ecosystems. Forest managers tasked with implementing post-fire mitigation strategies need robust tools to evaluate the effectiveness of their decisions, particularly those affecting hydrological recovery. Various hillslope-scale interfaces of the physically-based Water Erosion Prediction Project (WEPP) model have been successfully validated for this purpose using fire-effected plot experiments, however these interfaces are explicitly designed to simulate single hillslopes. Spatially-distributed, catchment-scale WEPP interfaces have been developed over the past decade, however none have been validated for post-fire simulations, posing a barrier to adoption for forest managers. In this validation study, we compare WEPP simulations with pre- and post-fire hydrological records for three forested catchments (W. Willow, N. Thomas, and S. Thomas) that burned in the 2011 Wallow Fire in Northeastern Arizona, USA. Simulations were conducted using two approaches; the first using automatically created inputs from an online, spatial, post-fire WEPP interface, and the second using manually created inputs which incorporate the spatial variability of fire effects observed in the field. Both approaches were compared to five years of observed post-fire sediment and flow data to assess goodness of fit.

  18. Assessing Potential Future Carbon Dynamics with Climate Change and Fire Management in a Mountainous Landscape on the Olympic Peninsula, Washington, USA

    NASA Astrophysics Data System (ADS)

    Kennedy, R. S.

    2010-12-01

    Forests of the mountainous landscapes of the maritime Pacific Northwestern USA may have high carbon sequestration potential via their high productivity and moderate to infrequent fire regimes. With climate change, there may be shifts in incidence and severity of fire, especially in the drier areas of the region, via changes to forest productivity and hydrology, and consequent effects to C sequestration and forest structure. To explore this issue, I assessed potential effects of fire management (little fire suppression/wildland fire management/highly effective fire suppression) under two climate change scenarios on future C sequestration dynamics (amounts and spatial pattern) in Olympic National Park, WA, over a 500-year simulation period. I used the simulation platform FireBGCv2, which contains a mechanistic, individual tree succession model, a spatially explicit climate-based biophysical model that uses daily weather data, and a spatially explicit fire model incorporating ignition, spread, and effects on ecosystem components. C sequestration patterns varied over time and spatial and temporal patterns differed somewhat depending on the climate change scenario applied and the fire management methods employed. Under the more extreme climate change scenario with little fire suppression, fires were most frequent and severe and C sequestration decreased. General trends were similar under the more moderate climate change scenario, as compared to current climate, but spatial patterns differed. Both climate change scenarios under highly effective fire suppression showed about 50% of starting total C after the initial transition phase, whereas with 10% fire suppression both scenarios exhibited about 10% of starting amounts. Areas of the landscape that served as refugia for older forest under increasing frequency of high severity fire were also hotspots for C sequestration in a landscape experiencing increasing frequency of disturbance with climate change.

  19. Quantifying black carbon deposition over the Greenland ice sheet from forest fires in Canada: BC DEPOSITION FROM FOREST FIRES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, J. L.; Polashenski, C. M.; Soja, A. J.

    We identify an important Black Carbon (BC) aerosol deposition event that was observed in snow stratigraphy and dated to between 27 July 2013 – 2 August 2013. This event comprises a significant portion (~60%) of total deposition over a 10 month period (July 2013 – April 2014). Here we link this event to forest fires burning in Canada during summer 2013 using modeling and remote sensing tools. Aerosols were detected by both the CALIOP and MODIS instruments during transport between Canada and Greenland, confirming that this event involved emissions from forest fires in Canada. We use high-resolution regional chemical transportmore » mod-eling (WRF-Chem) combined with high-resolution fire emissions (FINNv1.5) to study aerosol emissions, transport, and deposition during this event. The model accurately captures the timing of the BC deposition event and shows that the major contribution to deposition during this event is emissions originating from fires in Canada. However, the model under-predicts aerosol deposition compared to measurements at all sites by a factor of 2–100. Under-prediction of modeled BC deposition originates from uncertainties in fire emissions combined with uncertainties in aerosol scavenging by clouds. This study suggests that it is possible to describe the transport of an exceptional smoke event on regional and continental scales. Improvements in model descriptions of precipitation scavenging and emissions from wildfires are needed to correctly predict deposition, which is critical for determining the climate impacts of aerosols that originate from fires.« less

  20. Contribution of forest fires to concentrations of particulate matter in Singapore

    NASA Astrophysics Data System (ADS)

    Spracklen, D. V.; Reddington, C.; Yoshioka, M.; Arnold, S.; Balasubramanian, R.

    2013-12-01

    Singapore is regularly exposed to substantial levels of transboundary air pollution arising from uncontrolled forest and peat fires from specific regions within Southeast Asia. This air pollution has detrimental impacts on the lives of Singapore residents and on sensitive ecosystems. In June 2013, forest fires resulted in concentrations of particulate matter greatly exceeding levels recommended for human health, causing substantial public concern. We apply two different methods to quantify the impact of forest fires on the concentrations of particulate matter with diameter less than 2.5 micrometres (PM2.5) in Singapore. Firstly, we use a global aerosol model (GLOMAP) in combination with fire emissions from GFED3 to simulate PM2.5 concentrations over the period 1998-2009. We evaluate simulated PM2.5 concentrations against long-term observations from Singapore. To identify the contributions of fires from different source regions to PM2.5 concentrations we run multiple simulations with and without fire emissions from specific regions across Southeast Asia. Secondly, we apply an atmospheric back trajectory model in combination with the GFED3 fire emissions to calculate exposure of air masses arriving in Singapore to fire emissions. Both methods use meteorology from the European Centre for Medium Range Weather Forecasts and are consistent with the large-scale atmospheric flow from the assimilated observations. We find that both methods give consistent results, with forest fires increasing PM2.5 concentrations in Singapore predominately during April to October. Forest and peat fires in Sumatra and Kalimantan cause the greatest degradation of air quality in Singapore. The contribution of fires to PM2.5 concentrations in Singapore exhibits strong interannual variability. During years with a strong contribution from fires, our simulations show that the prevention of fires in southern Sumatra would reduce regional PM2.5 concentrations around Singapore by more than a factor of two, potentially allowing Singapore to meet World Health Organisation guidelines for annual mean concentrations of PM2.5. Acting to reduce forest and peat fires in southern Sumatra, in particular provinces of Lampung, South Sumatra and Jambi, and southern Kalimantan would likely have the greatest environmental benefits to Singapore and surrounding regions.

  1. Negligible influence of spatial autocorrelation in the assessment of fire effects in a mixed conifer forest

    USGS Publications Warehouse

    van Mantgem, P.J.; Schwilk, D.W.

    2009-01-01

    Fire is an important feature of many forest ecosystems, although the quantification of its effects is compromised by the large scale at which fire occurs and its inherent unpredictability. A recurring problem is the use of subsamples collected within individual burns, potentially resulting in spatially autocorrelated data. Using subsamples from six different fires (and three unburned control areas) we show little evidence for strong spatial autocorrelation either before or after burning for eight measures of forest conditions (both fuels and vegetation). Additionally, including a term for spatially autocorrelated errors provided little improvement for simple linear models contrasting the effects of early versus late season burning. While the effects of spatial autocorrelation should always be examined, it may not always greatly influence assessments of fire effects. If high patch scale variability is common in Sierra Nevada mixed conifer forests, even following more than a century of fire exclusion, treatments designed to encourage further heterogeneity in forest conditions prior to the reintroduction of fire will likely be unnecessary.

  2. Forest landowner decisions and the value of information under fire risk.

    Treesearch

    Gregory S. Amacher; Arun S. Malik; Robert G. Haight

    2005-01-01

    We estimate the value of three types of information about fire risk to a nonindustrial forest landowner: the relationship between fire arrival rates and stand age, the magnitude of fire arrival rates, and the efficacy of fuel reduction treatment. Our model incorporates planting density and the level and timing of fuel reduction treatment as landowner decisions. These...

  3. VISUAL-SEVEIF, a tool for integrating fire behavior simulation and economic evaluation of the impact of Wildfires

    Treesearch

    Francisco Rodríguez y Silva; Juan Ramón Molina Martínez; Miguel Ángel Herrera Machuca; Jesús Mª Rodríguez Leal

    2013-01-01

    Progress made in recent years in fire science, particularly as applied to forest fire protection, coupled with the increased power offered by mathematical processors integrated into computers, has led to important developments in the field of dynamic and static simulation of forest fires. Furthermore, and similarly, econometric models applied to economic...

  4. Allocating Fire Mitigation Funds on the Basis of the Predicted Probabilities of Forest Wildfire

    Treesearch

    Ronald E. McRoberts; Greg C. Liknes; Mark D. Nelson; Krista M. Gebert; R. James Barbour; Susan L. Odell; Steven C. Yaddof

    2005-01-01

    A logistic regression model was used with map-based information to predict the probability of forest fire for forested areas of the United States. Model parameters were estimated using a digital layer depicting the locations of wildfires and satellite imagery depicting thermal hotspots. The area of the United States in the upper 50th percentile with respect to...

  5. Synergy between land use and climate change increases future fire risk in Amazon forests

    DOE PAGES

    Le Page, Yannick; Morton, Douglas; Hartin, Corinne; ...

    2017-12-20

    Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactionsmore » between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change – Representative Concentration Pathway (RCP) 8.5 – projected understory fires increase in frequency and duration, burning 4–28 times more forest in 2080–2100 than during 1990–2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9–5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.« less

  6. Synergy between land use and climate change increases future fire risk in Amazon forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Page, Yannick; Morton, Douglas; Hartin, Corinne

    Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactionsmore » between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change – Representative Concentration Pathway (RCP) 8.5 – projected understory fires increase in frequency and duration, burning 4–28 times more forest in 2080–2100 than during 1990–2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9–5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.« less

  7. Impact of fire disturbance on soil thermal and carbon dynamics in Alaskan Tundra and Boreal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Rastetter, E.; Shaver, G. R.; Rocha, A. V.

    2012-12-01

    In Alaska, fire disturbance is a major component influencing the soil water and energy balance in both tundra and boreal forest ecosystems. Fire-caused changes in soil environment further affect both above- and below-ground carbon cycles depending on different fire severities. Understanding the effects of fire disturbance on soil thermal change requires implicit modeling work on the post-fire soil thawing and freezing processes. In this study, we model the soil temperature profiles in multiple burned and non-burned sites using a well-developed soil thermal model which fully couples soil water and heat transport. The subsequent change in carbon dynamics is analyzed based on site level observations and simulations from the Multiple Element Limitation (MEL) model. With comparison between burned and non-burned sites, we compare and contrast fire effects on soil thermal and carbon dynamics in continuous permafrost (Anaktuvik fire in north slope), discontinuous permafrost (Erickson Creek fire at Hess Creek) and non-permafrost zone (Delta Junction fire in interior Alaska). Then we check the post-fire recovery of soil temperature profiles at sites with different fire severities in both tundra and boreal forest fire areas. We further project the future changes in soil thermal and carbon dynamics using projected climate data from Scenarios Network for Alaska & Arctic Planning (SNAP). This study provides information to improve the understanding of fire disturbance on soil thermal and carbon dynamics and the consequent response under a warming climate.

  8. Isotopic composition of carbon dioxide from a boreal forest fire: Inferring carbon loss from measurements and modeling

    USGS Publications Warehouse

    Schuur, E.A.G.; Trumbore, S.E.; Mack, M.C.; Harden, J.W.

    2003-01-01

    Fire is an important pathway for carbon (C) loss from boreal forest ecosystems and has a strong effect on ecosystem C balance. Fires can range widely in severity, defined as the amount of vegetation and forest floor consumed by fire, depending on local fuel and climatic conditions. Here we explore a novel method for estimating fire severity and loss of C from fire using the atmosphere to integrate ecosystem heterogeneity at the watershed scale. We measured the ??13C and ??14C isotopic values of CO2 emitted from an experimental forest fire at the Caribou-Poker Creek Research Watershed (CPCRW), near Fairbanks, Alaska. We used inverse modeling combined with dual isotope near measurements of C contained in aboveground black spruce biomass and soil organic horizons to estimate the amount of C released by this fire. The experimental burn was a medium to severe intensity fire that released, on average, about 2.5 kg Cm-2, more than half of the C contained in vegetation and soil organic horizon pools. For vegetation, the model predicted that approximately 70-75% of pools such as needles, fine branches, and bark were consumed by fire, whereas only 20-30% of pools such as coarse branches and cones were consumed. The fire was predicted to have almost completely consumed surface soil organic horizons and burned about half of the deepest humic horizon. The ability to estimate the amount of biomass combusted and C emission from fires at the watershed scale provides an extensive approach that can complement more limited intensive ground-based measurements.

  9. Impacts of global warming on boreal larch forest in East Siberia: simulations with a coupled carbon cycle and fire regime model

    NASA Astrophysics Data System (ADS)

    Ito, A.

    2005-12-01

    Boreal forest is one of the focal areas in the study of global warming and carbon cycle. In this study, a coupled carbon cycle and fire regime model was developed and applied to a larch forest in East Siberia, near Yakutsk. Fire regime is simulated with a cellular automaton (20 km x 20 km), in which fire ignition, propagation, and extinction are parameterized in a stochastic manner, including the effects of fuel accumulation and weather condition. For each grid, carbon cycle is simulated with a 10-box scheme, in which net biome production by photosynthesis, respiration, decomposition, and biomass burning are calculated explicitly. Model parameters were calibrated with field data of biomass, litter stock, and fire statistics; the carbon cycle scheme was examined with flux measurement data. As a result, the model successfully captured average carbon stocks, productivity, fire frequency, and biomass burning. To assess the effects of global warming, a series of simulations were performed using climatic projections based on the IPCC-SRES emission scenarios from 1990 to 2100. The range of uncertainty among the different climate models and emission scenarios was assessed by using multi-model projection data by CCCma, CCSR/NIES, GFDL, and HCCPR corresponding to the SRES A2 and B2 scenarios. The model simulations showed that global warming in the 21st century would considerably enhance the fire regime (e.g., cumulative burnt area increased by 80 to 120 percent), leading to larger carbon emission by biomass burning. The effect was so strong that growth enhancement by elevated atmospheric CO2 concentration and elongated growing period was cancelled out at landscape scale. In many cases, the larch forest was estimated to act as net carbon sources of 2 to 5 kg C m_|2 by the end of the 21st century, underscoring the importance of forest fire monitoring and management in this region.

  10. Predicted effects of prescribed burning and harvesting on forest recovery and sustainability in southwest Georgia, USA.

    PubMed

    Garten, Charles T

    2006-12-01

    A model-based analysis of the effect of prescribed burning and forest thinning or clear-cutting on stand recovery and sustainability was conducted at Fort Benning, GA, in the southeastern USA. Two experiments were performed with the model. In the first experiment, forest recovery from degraded soils was predicted for 100 years with or without prescribed burning. In the second experiment simulations began with 100 years of predicted stand growth, then forest sustainability was predicted for an additional 100 years under different combinations of prescribed burning and forest harvesting. Three levels of fire intensity (low, medium, and high), that corresponded to 17%, 33%, and 50% consumption of the forest floor C stock by fire, were evaluated at 1-, 2-, and 3-year fire return intervals. Relative to the control (no fire), prescribed burning with a 2- or 3-year return interval caused only a small reduction in predicted steady state soil C stocks (< or =25%) and had no effect on steady state tree wood biomass, regardless of fire intensity. Annual high intensity burns did adversely impact forest recovery and sustainability (after harvesting) on less sandy soils, but not on more sandy soils that had greater N availability. Higher intensity and frequency of ground fires increased the chance that tree biomass would not return to pre-harvest levels. Soil N limitation was indicated as the cause of unsustainable forests when prescribed burns were too frequent or too intense to permit stand recovery.

  11. Fuel buildup and potential fire behavior after stand-replacing fires, logging fire-killed trees and herbicide shrub removal in Sierra Nevada forests

    USGS Publications Warehouse

    McGinnis, Thomas W.; Keeley, Jon E.; Stephens, Scott L.; Roller, Gary B.

    2010-01-01

    Typically, after large stand-replacing fires in mid-elevation Sierra Nevada forests, dense shrub fields occupy sites formerly occupied by mature conifers, until eventually conifers overtop and shade out shrubs. Attempting to reduce fuel loads and expedite forest regeneration in these areas, the USDA Forest Service often disrupts this cycle by the logging of fire-killed trees, replanting of conifers and killing of shrubs. We measured the effects of these treatments on live and dead fuel loads and alien species and modeled potential fire behavior and fire effects on regenerating forests. Sampling occurred in untreated, logged and herbicide-treated stands throughout the Sierra Nevada in four large fire areas 4–21 years after stand-replacing fires. Logging fire-killed trees significantly increased total available dead fuel loads in the short term but did not affect shrub cover, grass and forb cover, alien species cover or alien species richness. Despite the greater available dead fuel loads, fire behavior was not modeled to be different between logged and untreated stands, due to abundant shrub fuels in both logged and untreated stands. In contrast, the herbicide treatment directed at shrubs resulted in extremely low shrub cover, significantly greater alien species richness and significantly greater alien grass and forb cover. Grass and forb cover was strongly correlated with solar radiation on the ground, which may be the primary reason that grass and forb cover was higher in herbicide treated stands with low shrub and tree cover. Repeat burning exacerbated the alien grass problem in some stands. Although modeled surface fire flame lengths and rates of spread were found to be greater in stands dominated by shrubs, compared to low shrub cover conifer plantations, surface fire would still be intense enough to kill most trees, given their small size and low crown heights in the first two decades after planting.

  12. 2013 Annual Report: Fire Modeling Institute

    Treesearch

    Robin J. Innes; Faith Ann Heinsch; Kristine M. Lee

    2014-01-01

    The Fire Modeling Institute (FMI) of the U.S. Forest Service, Rocky Mountain Research Station (RMRS), is a national and international resource for fire managers. Located within the Fire, Fuel, and Smoke Science Program at the Missoula Fire Sciences Laboratory (Fire Lab) in Montana, FMI helps managers utilize fire and fuel science and technology developed throughout the...

  13. Long-term effects of fire and harvest on carbon stocks of boreal forests in northeastern China

    NASA Astrophysics Data System (ADS)

    Huang, C.; He, H. S.; Hawbaker, T. J.; Zhu, Z.; Liang, Y.; Gong, P.

    2017-12-01

    Fire, harvest and their interactions have strong effects on boreal forests carbon stocks. Repeated disturbances associated with relatively short fire return intervals and harvest rotations, and their interactions caused their effects to increase over simulation time.Boreal forests in the northeastern of China cover 8.46×105 km2, store about 350 Tg aboveground carbon, and play an important role in maintaining China's carbon balance. Boreal forests in this region are facing pressures from repeated fires and timber harvesting activities.The objectives of our study were to evaluate the effects of fire, harvest and their interactions on boreal forest carbon stocks of northeastern China.We used the LANDIS PRO-LINKAGES model-coupling framework to simulate the landscape-level effects of fire and harvest and their interactions over 150 years. Our simulation results suggested that aboveground and soil organic carbon are significantly reduced by fire and harvest over 150 years. The long-term effects of fire and harvest on carbon stocks were greater than the short-term effects in the Great Xing' an Mountains. The total effects of fire-harvest interactions on boreal forests are less than the sum of separate effects of fire and harvest. The response of carbon stocks among ecoregions diverged and was due to the spatial variability of fire and harvest regimes.These results emphasize that fire, harvest, and their interactions play an important role in regulating boreal forest carbon stocks, the extent of fire and harvest effects depended on the intensity of these disturbances.

  14. Modeling of phosphorus fluxes produced by wild fires at watershed scales.

    NASA Astrophysics Data System (ADS)

    Matyjasik, M.; Hernandez, M.; Shaw, N.; Baker, M.; Fowles, M. T.; Cisney, T. A.; Jex, A. P.; Moisen, G.

    2017-12-01

    River runoff is one of the controlling processes in the terrestrial phosphorus cycle. Phosphorus is often a limiting factor in fresh water. One of the factors that has not been studied and modeled in detail is phosporus flux produced from forest wild fires. Phosphate released by weathering is quickly absorbed in soils. Forest wild fires expose barren soils to intensive erosion, thus releasing relatively large fluxes of phosphorus. Measurements from three control burn sites were used to correlate erosion with phosphorus fluxes. These results were used to model phosphorus fluxes from burned watersheds during a five year long period after fires occurred. Erosion in our model is simulated using a combination of two models: the WEPP (USDA Water Erosion Prediction Project) and the GeoWEPP (GIS-based Water Erosion Prediction Project). Erosion produced from forest disturbances is predicted for any watershed using hydrologic, soil, and meteorological data unique to the individual watersheds or individual slopes. The erosion results are modified for different textural soil classes and slope angles to model fluxes of phosphorus. The results of these models are calibrated using measured concentrations of phosphorus for three watersheds located in the Interior Western United States. The results will help the United States Forest Service manage phosporus fluxes in national forests.

  15. Forest fire effects on transpiration: process modeling of sapwood area reduction

    NASA Astrophysics Data System (ADS)

    Michaletz, Sean; Johnson, Edward

    2010-05-01

    Transpiration is a hydrological process that is strongly affected by forest fires. In crown fires, canopy fine fuels (foliage, buds, and small branches) combust, which kills individual trees and stops transpiration of the entire stand. In surface fires (intensities ≤ 2500 kW m-1), however, effects on transpiration are less predictable becuase heat transfer from the passing fireline can injure or kill fine roots, leaves, and sapwood; post-fire transpiration of forest stands is thus governed by fire effects on individual tree water budgets. Here, we consider fire effects on cross-sectional sapwood area. A two-dimensional model of transient bole heating is used to estimate radial isotherms for a range of fireline intensities typical of surface fires. Isotherms are then used to drive three processes by which heat may reduce sapwood area: 1) necrosis of living cells in contact with xylem conduits, which prevents repair of natural embolism; 2) relaxation of viscoelastic conduit wall polymers (cellulose, hemicelloluse, and lignin), which reduces cross-sectional conduit area; and 3) boiling of metastable water under tension, which causes conduit embolism. Results show that these processes operate on different time scales, suggesting that fire effects on transpiration vary with time since fire. The model can be linked with a three-dimensional physical fire spread model to predict size-dependent effects on individual trees, which can be used to estimate scaling of individual tree and stand-level transpiration.

  16. Fire behavior modeling to assess net benefits of forest treatments on fire hazard mitigation and bioenergy production in Northeastern California

    Treesearch

    David J. Ganz; David S. Saah; Klaus Barber; Mark Nechodom

    2007-01-01

    The fire behavior modeling described here, conducted as part of the Biomass to Energy (B2E) life cycle assessment, is funded by the California Energy Commission to evaluate the potential net benefits associated with treating and utilizing forest biomass. The B2E project facilitates economic, environmental, energy, and effectiveness assessments of the potential public...

  17. Measuring and Modeling the Effects of Alternate Post-Fire Successional Trajectories on Boreal Forest Carbon Dynamics

    NASA Astrophysics Data System (ADS)

    Loranty, M. M.; Goetz, S. J.; Mack, M. C.; Alexander, H. D.; Beck, P. S.

    2011-12-01

    High latitude ecosystems are experiencing amplified climate warming, and recent evidence suggests concurrent intensification of fire disturbance regimes. In central Alaskan boreal forests, severe burns consume more of the soil organic layer, resulting in increased establishment of deciduous seedlings and altered post-fire stand composition with increased deciduous dominance. Quantifying differences in ecosystem carbon (C) dynamics between forest successional trajectories in response to burn severity is essential for understanding potential changes in regional or global feedbacks between boreal forests and climate. We used the Biome BioGeochemical Cycling model (Biome-BGC) to quantify differences in C stocks and fluxes associated with alternate post-fire successional trajectories related to fire severity. A version of Biome-BGC that allows alternate competing vegetation types was calibrated against a series of aboveground biomass observations from chronosequences of stands with differing post-fire successional trajectories characterized by the proportion of deciduous biomass. The model was able to reproduce observed patterns of biomass accumulation after fire, with stands dominated by deciduous species sequestering more C at a faster rate than stands dominated by conifers. Modeled C fluxes suggest that stands dominated by deciduous species are a stronger sink of atmospheric C soon after disturbance than coniferous stands. These results agree with the few available C flux observations. We use a historic database in conjunction with a map of deciduous canopy cover to explore the consequences of ongoing and potential future changes in the fire regime on central Alaskan C balance.

  18. A heuristic expert system for forest fire guidance in Greece.

    PubMed

    Iliadis, Lazaros S; Papastavrou, Anastasios K; Lefakis, Panagiotis D

    2002-07-01

    Forests and forestlands are common inheritance for all Greeks and a piece of the national wealth that must be handed over to the next generations in the best possible condition. After 1974, Greece faces a severe forest fire problem and forest fire forecasting is the process that will enable the Greek ministry of Agriculture to reduce the destruction. This paper describes the basic design principles of an Expert System that performs forest fire forecasting (for the following fire season) and classification of the prefectures of Greece into forest fire risk zones. The Expert system handles uncertainty and uses heuristics in order to produce scenarios based on the presence or absence of various qualitative factors. The initial research focused on the construction of a mathematical model which attempted to describe the annual number of forest fires and burnt area in Greece based on historical data. However this has proven to be impossible using regression analysis and time series. A closer analysis of the fire data revealed that two qualitative factors dramatically affect the number of forest fires and the hectares of burnt areas annually. The first is political stability and national elections and the other is drought cycles. Heuristics were constructed that use political stability and drought cycles, to provide forest fire guidance. Fuzzy logic was applied to produce a fuzzy expected interval for each prefecture of Greece. A fuzzy expected interval is a narrow interval of values that best describes the situation in the country or a part of the country for a certain time period. A successful classification of the prefectures of Greece in forest fire risk zones was done by the system, by comparing the fuzzy expected intervals to each other. The system was tested for the years 1994 and 1995. The testing has clearly shown that the system can predict accurately, the number of forest fires for each prefecture for the following year. The average accuracy was as high as 85.25% for 1995 and 80.89% for 1994. This makes the Expert System a very important tool for forest fire prevention planning.

  19. A study of the influence of forest gaps on fire–atmosphere interactions

    Treesearch

    Michael T. Kiefer; Warren E. Heilman; Shiyuan Zhong; Joseph J. (Jay) Charney; Xindi (Randy) Bian

    2016-01-01

    Much uncertainty exists regarding the possible role that gaps in forest canopies play in modulating fire–atmosphere interactions in otherwise horizontally homogeneous forests. This study examines the influence of gaps in forest canopies on atmospheric perturbations induced by a low-intensity fire using the ARPS-CANOPY model, a version of the Advanced Regional...

  20. Modeling soil erosion and sediment transport from fires in forested watersheds of the South Carolina Piedmont

    Treesearch

    Tyler Crumbley; Ge Sun; Steve McNulty

    2008-01-01

    Forested watersheds in the Southeastern U.S. provide high quality water vital to ecosystem integrity and downstream aquatic resources. Excessive sedimentation from human activities in forest streams is of concern to responsible land managers. Prescribed fire is a common treatment applied to Southeastern piedmont forests and the risk of wildfire is becoming increasingly...

  1. Assessing the impacts of federal forest planning on wildfire risk-mitigation in the Pacific Northwest, USA

    Treesearch

    Alan A. Ager; Michelle A. Day; Karen C. Short; Cody R. Evers

    2016-01-01

    We analyzed the impact of amenity and biodiversity protection as mandated in national forest plans on the implementation of hazardous fuel reduction treatments aimed at protecting the wildland urban interface (WUI) and restoring fire resilient forests. We used simulation modeling to delineate areas on national forests that can potentially transmit fires to...

  2. Modeling soil erosion and sediment transport from fires in forested watersheds of the South Carolina Piedmont

    Treesearch

    Tyler Crumbley; Ge Sun; Steve McNulty

    2007-01-01

    Forested watersheds in the Southeastern U.S. provide high quality water vital to ecosystem integrity and downstream aquatic resources. Excessive sedimentation from human activities in forest streams is of concern to responsible land managers. Prescribed fire is a common treatment applied to Southeastern Piedmont forests and the risk of wildfire is becoming increasingly...

  3. Modeling the effects of fire severity and climate warming on active layer and soil carbon dynamics of black spruce forests across the landscape in interior Alaska

    USGS Publications Warehouse

    Genet, H.; McGuire, Anthony David; Barrett, K.; Breen, A.; Euskirchen, E.S.; Johnstone, J.F.; Kasischke, E.S.; Melvin, A.M.; Bennett, A.; Mack, M.C.; Rupp, T.S.; Schuur, A.E.G.; Turetsky, M.R.; Yuan, F.

    2013-01-01

    There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layer caused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness of 1.1 m on average by 2100. The combination of warming and fire led to a simulated cumulative loss of 9.6 kgC m−2 on average by 2100. Our analysis suggests that ecosystem carbon storage in boreal forests in interior Alaska is particularly vulnerable, primarily due to the combustion of organic layer thickness in fire and the related increase in active layer thickness that exposes previously protected permafrost soil carbon to decomposition.

  4. Forest Fires, Oil Spills, and Fractal Geometry: An Investigation in Two Parts. Part 2: Using Fractal Complexity to Analyze Mathematical Models.

    ERIC Educational Resources Information Center

    Biehl, L. Charles

    1999-01-01

    Presents an activity that utilizes the mathematical models of forest fires and oil spills that were generated (in the first part of this activity, published in the November 1998 issue) by students using probability and cellular automata. (ASK)

  5. Influence of fire frequency on carbon consumption in Alaskan blackspruce forests

    NASA Astrophysics Data System (ADS)

    Hoy, E.; Kasischke, E. S.

    2014-12-01

    Increasing temperatures and drier conditions within the boreal forests of Alaska have resulted in increases in burned area and fire frequency, which alter carbon storage and emissions. In particular, analyses of satellite remote sensing data showed that >20% of the area impacted by fires in interior Alaska occurred in areas that had previously burned since 1950 (e.g., short to intermediate interval fires). Field studies showed that in immature black spruce forests ~ 35 to 55 years old organic layers experienced deep burning regardless of topographic position or seasonality of burning, factors that control depth of burning in mature black spruce forests. Here, refinements were made to a carbon consumption model to account for variations in fuel loads and fraction of carbon consumed associated with fire frequency based on quantifying burned area in recently burned sites using satellite imagery. An immature black spruce (Picea mariana) fuel type (including stands of ~0-50 years) was developed which contains new ground-layer carbon consumption values in order to more accurately account for differences between various age classes of black spruce forest. Both versions of the model were used to assess carbon consumption during 100 fire events (over 4.4 x 10^6 ha of burned area) from two recent ultra-large fire years (2004 and 2005). Using the improved model to better attribute fuel type and consumption resulted in higher ground-layer carbon consumption (4.9% in 2004 and 6.8% in 2005) than previously estimated. These adjustments in ground-layer burning resulted in total carbon consumption within 2004 and 2005 of 63.5 and 42.0 Tg of carbon, respectively. Results from this research could be incorporated into larger scale modeling efforts to better assess changes in the climate-fire-vegetation dynamics in interior Alaskan boreal forests, and to understand the impacts of these changes on carbon consumption and emissions.

  6. A review of the relationships between drought and forest fire in the United States

    USGS Publications Warehouse

    Littell, Jeremy; Peterson, David L.; Riley, Karin L.; Yongquiang Liu,; Luce, Charles H.

    2016-01-01

    The historical and pre-settlement relationships between drought and wildfire are well documented in North America, with forest fire occurrence and area clearly increasing in response to drought. There is also evidence that drought interacts with other controls (forest productivity, topography, fire weather, management activities) to affect fire intensity, severity, extent, and frequency. Fire regime characteristics arise across many individual fires at a variety of spatial and temporal scales, so both weather and climate—including short- and long-term droughts—are important and influence several, but not all, aspects of fire regimes. We review relationships between drought and fire regimes in United States forests, fire-related drought metrics and expected changes in fire risk, and implications for fire management under climate change. Collectively, this points to a conceptual model of fire on real landscapes: fire regimes, and how they change through time, are products of fuels and how other factors affect their availability (abundance, arrangement, continuity) and flammability (moisture, chemical composition). Climate, management, and land use all affect availability, flammability, and probability of ignition differently in different parts of North America. From a fire ecology perspective, the concept of drought varies with scale, application, scientific or management objective, and ecosystem.

  7. Influence of forest management alternatives and land type on susceptibility to fire in northern Wisconsin, USA

    Treesearch

    Eric J. Gustafson; Patrick A. Zollner; Brian R. Sturtevant; S. He Hong; David J. Mladenoff

    2004-01-01

    We used the LANDIS disturbance and succession model to study the effects of six alternative vegetation management scenarios on forest succession and the subsequent risk of canopy fire on a 2791 km2 landscape in northern Wisconsin, USA. The study area is a mix of fire-prone and fire-resistant land types. The alternatives vary the spatial...

  8. Surface fire intensity influences simulated crown fire behavior in lodgepole pine forests with recent mountain pine beetle-caused tree mortality

    Treesearch

    Chad M. Hoffman; Penelope Morgan; William Mell; Russell Parsons; Eva Strand; Steve Cook

    2013-01-01

    Recent bark beetle outbreaks have had a significant impact on forests throughout western North America and have generated concerns about interactions and feedbacks between beetle attacks and fire. However, research has been hindered by a lack of experimental studies and the use of fire behavior models incapable of accounting for the heterogeneous fuel complexes. We...

  9. Fuel treatments alter the effects of wildfire in a mixed-evergreen forest, Oregon, USA.

    Treesearch

    Crystal L. Raymond; David L. Peterson

    2005-01-01

    We had the rare opportunity to quantify the relationship between fuels and fire severity using prefire surface and canopy fuel data and fire severity data after a wildfire. The study area is a mixed-evergreen forest of southwestern Oregon with a mixed-severity fire regime. Modeled fire behavior showed that thinning reduced canopy fuels, thereby decreasing the potential...

  10. Impact of anthropogenic climate change on wildfire across western US forests

    PubMed Central

    Williams, A. Park

    2016-01-01

    Increased forest fire activity across the western continental United States (US) in recent decades has likely been enabled by a number of factors, including the legacy of fire suppression and human settlement, natural climate variability, and human-caused climate change. We use modeled climate projections to estimate the contribution of anthropogenic climate change to observed increases in eight fuel aridity metrics and forest fire area across the western United States. Anthropogenic increases in temperature and vapor pressure deficit significantly enhanced fuel aridity across western US forests over the past several decades and, during 2000–2015, contributed to 75% more forested area experiencing high (>1 σ) fire-season fuel aridity and an average of nine additional days per year of high fire potential. Anthropogenic climate change accounted for ∼55% of observed increases in fuel aridity from 1979 to 2015 across western US forests, highlighting both anthropogenic climate change and natural climate variability as important contributors to increased wildfire potential in recent decades. We estimate that human-caused climate change contributed to an additional 4.2 million ha of forest fire area during 1984–2015, nearly doubling the forest fire area expected in its absence. Natural climate variability will continue to alternate between modulating and compounding anthropogenic increases in fuel aridity, but anthropogenic climate change has emerged as a driver of increased forest fire activity and should continue to do so while fuels are not limiting. PMID:27791053

  11. Developing Custom Fire Behavior Fuel Models for Mediterranean Wildland-Urban Interfaces in Southern Italy

    NASA Astrophysics Data System (ADS)

    Elia, Mario; Lafortezza, Raffaele; Lovreglio, Raffaella; Sanesi, Giovanni

    2015-09-01

    The dramatic increase of fire hazard in wildland-urban interfaces (WUIs) has required more detailed fuel management programs to preserve ecosystem functions and human settlements. Designing effective fuel treatment strategies allows to achieve goals such as resilient landscapes, fire-adapted communities, and ecosystem response. Therefore, obtaining background information on forest fuel parameters and fuel accumulation patterns has become an important first step in planning fuel management interventions. Site-specific fuel inventory data enhance the accuracy of fuel management planning and help forest managers in fuel management decision-making. We have customized four fuel models for WUIs in southern Italy, starting from forest classes of land-cover use and adopting a hierarchical clustering approach. Furthermore, we provide a prediction of the potential fire behavior of our customized fuel models using FlamMap 5 under different weather conditions. The results suggest that fuel model IIIP (Mediterranean maquis) has the most severe fire potential for the 95th percentile weather conditions and the least severe potential fire behavior for the 85th percentile weather conditions. This study shows that it is possible to create customized fuel models directly from fuel inventory data. This achievement has broad implications for land managers, particularly forest managers of the Mediterranean landscape, an ecosystem that is susceptible not only to wildfires but also to the increasing human population and man-made infrastructures.

  12. Developing Custom Fire Behavior Fuel Models for Mediterranean Wildland-Urban Interfaces in Southern Italy.

    PubMed

    Elia, Mario; Lafortezza, Raffaele; Lovreglio, Raffaella; Sanesi, Giovanni

    2015-09-01

    The dramatic increase of fire hazard in wildland-urban interfaces (WUIs) has required more detailed fuel management programs to preserve ecosystem functions and human settlements. Designing effective fuel treatment strategies allows to achieve goals such as resilient landscapes, fire-adapted communities, and ecosystem response. Therefore, obtaining background information on forest fuel parameters and fuel accumulation patterns has become an important first step in planning fuel management interventions. Site-specific fuel inventory data enhance the accuracy of fuel management planning and help forest managers in fuel management decision-making. We have customized four fuel models for WUIs in southern Italy, starting from forest classes of land-cover use and adopting a hierarchical clustering approach. Furthermore, we provide a prediction of the potential fire behavior of our customized fuel models using FlamMap 5 under different weather conditions. The results suggest that fuel model IIIP (Mediterranean maquis) has the most severe fire potential for the 95th percentile weather conditions and the least severe potential fire behavior for the 85th percentile weather conditions. This study shows that it is possible to create customized fuel models directly from fuel inventory data. This achievement has broad implications for land managers, particularly forest managers of the Mediterranean landscape, an ecosystem that is susceptible not only to wildfires but also to the increasing human population and man-made infrastructures.

  13. Compounding nonlinearities in the climate and wildfire system contribute to high uncertainty in estimates of future burned area in the western United State

    NASA Astrophysics Data System (ADS)

    Williams, P.

    2015-12-01

    Ecological studies are increasingly recognizing the importance of atmospheric vapor-pressure deficit (VPD) as a driver of forest drought stress and disturbance processes such as wildfire. Because of the nonlinear Clausius-Clapeyron relationship between temperature and saturation vapor pressure, small variations in temperature can have large impacts on VPD, and therefore drought, particularly in warm, dry areas and particularly during the warm season. It is also clear that VPD and drought affect forest fire nonlinearly, as incremental drying leads to increasingly large burned areas. Forest fire is also affected by fuel amount and connectivity, which are promoted by vegetation growth in previous years, which is in turn promoted by lack of drought, highlighting the importance of nuances in the sequencing of natural interannual climate variations in modulating the impacts of drought on wildfire. The many factors affecting forest fire, and the nonlinearities embedded within the climate and wildfire systems, cause interannual variability in forest-fire area and frequency to be wildly variable and strongly affected by internal climate variability. In addition, warming over the past century has produced a background increase in forest fire frequency and area in many regions. In this talk I focus on the western United States and will explore whether the relationships between internal climate variability on forest fire area have been amplified by the effects of warming as a result of the compounding nonlinearities described above. I will then explore what this means for future burned area in the western United States and make the case that uncertainties in the future global greenhouse gas emissions trajectory, model projections of mean temperatures, model projections of precipitation, and model projections of natural climate variability translate to very large uncertainties in the effects of future climate variability on forest fire area in the United States and globally.

  14. Forest Fire Ecology.

    ERIC Educational Resources Information Center

    Zucca, Carol; And Others

    1995-01-01

    Presents a model that integrates high school science with the needs of the local scientific community. Describes how a high school ecology class conducted scientific research in fire ecology that benefited the students and a state park forest ecologist. (MKR)

  15. Web service tools in the era of forest fire management and elimination

    NASA Astrophysics Data System (ADS)

    Poursanidis, Dimitris; Kochilakis, Giorgos; Chrysoulakis, Nektarios; Varella, Vasiliki; Kotroni, Vassiliki; Eftychidis, Giorgos; Lagouvardos, Kostas

    2014-10-01

    Wildfires in forests and forested areas in South Europe, North America, Central Asia and Australia are a diachronic threat with crucial ecological, economic and social impacts. Last decade the frequency, the magnitude and the intensity of fires have increased even more because of the climate change. An efficient response to such disasters requires an effective planning, with an early detection system of the ignition area and an accurate prediction of fire propagation to support the rapid response mechanisms. For this reason, information systems able to predict and visualize the behavior of fires, are valuable tools for fire fighting. Such systems, able also to perform simulations that evaluate the fire development scenarios, based on weather conditions, become valuable Decision Support Tools for fire mitigation planning. A Web-based Information System (WIS) developed in the framework of the FLIRE (Floods and fire risk assessment and management) project, a LIFE+ co-funded by the European Commission research, is presented in this study. The FLIRE WIS use forest fuel maps which have been developed by using generalized fuel maps, satellite data and in-situ observations. Furthermore, it leverages data from meteorological stations and weather forecast from numerical models to feed the fire propagation model with the necessary for the simulations inputs and to visualize the model's results for user defined time periods and steps. The user has real-time access to FLIRE WIS via any web browser from any platform (PC, Laptop, Tablet, Smartphone).

  16. A new parameterization of the post-fire snow albedo effect

    NASA Astrophysics Data System (ADS)

    Gleason, K. E.; Nolin, A. W.

    2013-12-01

    Mountain snowpack serves as an important natural reservoir of water: recharging aquifers, sustaining streams, and providing important ecosystem services. Reduced snowpacks and earlier snowmelt have been shown to affect fire size, frequency, and severity in the western United States. In turn, wildfire disturbance affects patterns of snow accumulation and ablation by reducing canopy interception, increasing turbulent fluxes, and modifying the surface radiation balance. Recent work shows that after a high severity forest fire, approximately 60% more solar radiation reaches the snow surface due to the reduction in canopy density. Also, significant amounts of pyrogenic carbon particles and larger burned woody debris (BWD) are shed from standing charred trees, which concentrate on the snowpack, darken its surface, and reduce snow albedo by 50% during ablation. Although the post-fire forest environment drives a substantial increase in net shortwave radiation at the snowpack surface, driving earlier and more rapid melt, hydrologic models do not explicitly incorporate forest fire disturbance effects to snowpack dynamics. The objective of this study was to parameterize the post-fire snow albedo effect due to BWD deposition on snow to better represent forest fire disturbance in modeling of snow-dominated hydrologic regimes. Based on empirical results from winter experiments, in-situ snow monitoring, and remote sensing data from a recent forest fire in the Oregon High Cascades, we characterized the post-fire snow albedo effect, and developed a simple parameterization of snowpack albedo decay in the post-fire forest environment. We modified the recession coefficient in the algorithm: α = α0 + K exp (-nr) where α = snowpack albedo, α0 = minimum snowpack albedo (≈0.4), K = constant (≈ 0.44), -n = number of days since last major snowfall, r = recession coefficient [Rohrer and Braun, 1994]. Our parameterization quantified BWD deposition and snow albedo decay rates and related these forest disturbance effects to radiative heating and snow melt rates. We validated our parameterization of the post-fire snow albedo effect at the plot scale using a physically-based, spatially-distributed snow accumulation and melt model, and in-situ eddy covariance and snow monitoring data. This research quantified wildfire impacts to snow dynamics in the Oregon High Cascades, and provided a new parameterization of post-fire drivers to changes in high elevation winter water storage.

  17. Assessing Surface Fuel Hazard in Coastal Conifer Forests through the Use of LiDAR Remote Sensing

    NASA Astrophysics Data System (ADS)

    Koulas, Christos

    The research problem that this thesis seeks to examine is a method of predicting conventional fire hazards using data drawn from specific regions, namely the Sooke and Goldstream watershed regions in coastal British Columbia. This thesis investigates whether LiDAR data can be used to describe conventional forest stand fire hazard classes. Three objectives guided this thesis: to discuss the variables associated with fire hazard, specifically the distribution and makeup of fuel; to examine the relationship between derived LiDAR biometrics and forest attributes related to hazard assessment factors defined by the Capitol Regional District (CRD); and to assess the viability of the LiDAR biometric decision tree in the CRD based on current frameworks for use. The research method uses quantitative datasets to assess the optimal generalization of these types of fire hazard data through discriminant analysis. Findings illustrate significant LiDAR-derived data limitations, and reflect the literature in that flawed field application of data modelling techniques has led to a disconnect between the ways in which fire hazard models have been intended to be used by scholars and the ways in which they are used by those tasked with prevention of forest fires. It can be concluded that a significant trade-off exists between computational requirements for wildfire simulation models and the algorithms commonly used by field teams to apply these models with remote sensing data, and that CRD forest management practices would need to change to incorporate a decision tree model in order to decrease risk.

  18. Biophysical Mechanistic Modelling Quantifies the Effects of Plant Traits on Fire Severity: Species, Not Surface Fuel Loads, Determine Flame Dimensions in Eucalypt Forests

    PubMed Central

    Bedward, Michael; Penman, Trent D.; Doherty, Michael D.; Weber, Rodney O.; Gill, A. Malcolm; Cary, Geoffrey J.

    2016-01-01

    The influence of plant traits on forest fire behaviour has evolutionary, ecological and management implications, but is poorly understood and frequently discounted. We use a process model to quantify that influence and provide validation in a diverse range of eucalypt forests burnt under varying conditions. Measured height of consumption was compared to heights predicted using a surface fuel fire behaviour model, then key aspects of our model were sequentially added to this with and without species-specific information. Our fully specified model had a mean absolute error 3.8 times smaller than the otherwise identical surface fuel model (p < 0.01), and correctly predicted the height of larger (≥1 m) flames 12 times more often (p < 0.001). We conclude that the primary endogenous drivers of fire severity are the species of plants present rather than the surface fuel load, and demonstrate the accuracy and versatility of the model for quantifying this. PMID:27529789

  19. Biophysical Mechanistic Modelling Quantifies the Effects of Plant Traits on Fire Severity: Species, Not Surface Fuel Loads, Determine Flame Dimensions in Eucalypt Forests.

    PubMed

    Zylstra, Philip; Bradstock, Ross A; Bedward, Michael; Penman, Trent D; Doherty, Michael D; Weber, Rodney O; Gill, A Malcolm; Cary, Geoffrey J

    2016-01-01

    The influence of plant traits on forest fire behaviour has evolutionary, ecological and management implications, but is poorly understood and frequently discounted. We use a process model to quantify that influence and provide validation in a diverse range of eucalypt forests burnt under varying conditions. Measured height of consumption was compared to heights predicted using a surface fuel fire behaviour model, then key aspects of our model were sequentially added to this with and without species-specific information. Our fully specified model had a mean absolute error 3.8 times smaller than the otherwise identical surface fuel model (p < 0.01), and correctly predicted the height of larger (≥1 m) flames 12 times more often (p < 0.001). We conclude that the primary endogenous drivers of fire severity are the species of plants present rather than the surface fuel load, and demonstrate the accuracy and versatility of the model for quantifying this.

  20. Long-term temporal changes in the occurrence of a high forest fire danger in Finland

    NASA Astrophysics Data System (ADS)

    Mäkelä, H. M.; Laapas, M.; Venäläinen, A.

    2012-08-01

    Climate variation and change influence several ecosystem components including forest fires. To examine long-term temporal variations of forest fire danger, a fire danger day (FDD) model was developed. Using mean temperature and total precipitation of the Finnish wildfire season (June-August), the model describes the climatological preconditions of fire occurrence and gives the number of fire danger days during the same time period. The performance of the model varied between different regions in Finland being best in south and west. In the study period 1908-2011, the year-to-year variation of FDD was large and no significant increasing or decreasing tendencies could be found. Negative slopes of linear regression lines for FDD could be explained by the simultaneous, mostly not significant increases in precipitation. Years with the largest wildfires did not stand out from the FDD time series. This indicates that intra-seasonal variations of FDD enable occurrence of large-scale fires, despite the whole season's fire danger is on an average level. Based on available monthly climate data, it is possible to estimate the general fire conditions of a summer. However, more detailed input data about weather conditions, land use, prevailing forestry conventions and socio-economical factors would be needed to gain more specific information about a season's fire risk.

  1. Decreases in Soil Moisture and Organic Matter Quality Suppress Microbial Decomposition Following a Boreal Forest Fire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holden, Sandra R.; Berhe, Asmeret A.; Treseder, Kathleen K.

    Climate warming is projected to increase the frequency and severity of wildfires in boreal forests, and increased wildfire activity may alter the large soil carbon (C) stocks in boreal forests. Changes in boreal soil C stocks that result from increased wildfire activity will be regulated in part by the response of microbial decomposition to fire, but post-fire changes in microbial decomposition are poorly understood. Here, we investigate the response of microbial decomposition to a boreal forest fire in interior Alaska and test the mechanisms that control post-fire changes in microbial decomposition. We used a reciprocal transplant between a recently burnedmore » boreal forest stand and a late successional boreal forest stand to test how post-fire changes in abiotic conditions, soil organic matter (SOM) composition, and soil microbial communities influence microbial decomposition. We found that SOM decomposing at the burned site lost 30.9% less mass over two years than SOM decomposing at the unburned site, indicating that post-fire changes in abiotic conditions suppress microbial decomposition. Our results suggest that moisture availability is one abiotic factor that constrains microbial decomposition in recently burned forests. In addition, we observed that burned SOM decomposed more slowly than unburned SOM, but the exact nature of SOM changes in the recently burned stand are unclear. Finally, we found no evidence that post-fire changes in soil microbial community composition significantly affect decomposition. Taken together, our study has demonstrated that boreal forest fires can suppress microbial decomposition due to post-fire changes in abiotic factors and the composition of SOM. Models that predict the consequences of increased wildfires for C storage in boreal forests may increase their predictive power by incorporating the observed negative response of microbial decomposition to boreal wildfires.« less

  2. Strategies for preventing invasive plant outbreaks after prescribed fire in ponderosa pine forest

    USGS Publications Warehouse

    Symstad, Amy J.; Newton, Wesley E.; Swanson, Daniel J.

    2014-01-01

    Land managers use prescribed fire to return a vital process to fire-adapted ecosystems, restore forest structure from a state altered by long-term fire suppression, and reduce wildfire intensity. However, fire often produces favorable conditions for invasive plant species, particularly if it is intense enough to reveal bare mineral soil and open previously closed canopies. Understanding the environmental or fire characteristics that explain post-fire invasive plant abundance would aid managers in efficiently finding and quickly responding to fire-caused infestations. To that end, we used an information-theoretic model-selection approach to assess the relative importance of abiotic environmental characteristics (topoedaphic position, distance from roads), pre-and post-fire biotic environmental characteristics (forest structure, understory vegetation, fuel load), and prescribed fire severity (measured in four different ways) in explaining invasive plant cover in ponderosa pine forest in South Dakota’s Black Hills. Environmental characteristics (distance from roads and post-fire forest structure) alone provided the most explanation of variation (26%) in post-fire cover of Verbascum thapsus (common mullein), but a combination of surface fire severity and environmental characteristics (pre-fire forest structure and distance from roads) explained 36–39% of the variation in post-fire cover of Cirsium arvense (Canada thistle) and all invasives together. For four species and all invasives together, their pre-fire cover explained more variation (26–82%) in post-fire cover than environmental and fire characteristics did, suggesting one strategy for reducing post-fire invasive outbreaks may be to find and control invasives before the fire. Finding them may be difficult, however, since pre-fire environmental characteristics explained only 20% of variation in pre-fire total invasive cover, and less for individual species. Thus, moderating fire intensity or targeting areas of high severity for post-fire invasive control may be the most efficient means for reducing the chances of post-fire invasive plant outbreaks when conducting prescribed fires in this region.

  3. Application of a CO2 dial system for infrared detection of forest fire and reduction of false alarm

    NASA Astrophysics Data System (ADS)

    Bellecci, C.; Francucci, M.; Gaudio, P.; Gelfusa, M.; Martellucci, S.; Richetta, M.; Lo Feudo, T.

    2007-04-01

    Forest fires can be the cause of serious environmental and economic damages. For this reason considerable effort has been directed toward forest protection and fire fighting. The means traditionally used for early fire detection mainly consist in human observers dispersed over forest regions. A significant improvement in early warning capabilities could be obtained by using automatic detection apparatus. In order to early detect small forest fires and minimize false alarms, the use of a lidar system and dial technique will be considered. A first evaluation of the lowest detectable concentration will be estimated by numerical simulation. The theoretical model will also be used to get the capability of the dial system to control wooded areas. Fixing the burning rate for several fuels, the maximum range of detection will be evaluated. Finally results of simulations will be reported.

  4. Simulating the impacts of fire: A computer program

    NASA Astrophysics Data System (ADS)

    Ffolliott, Peter F.; Guertin, D. Phillip; Rasmussen, William D.

    1988-11-01

    Recurrent fire has played a dominant role in the ecology of southwestern ponderosa pine forests. To assess the benefits or losses of fire in these forests, a computer simulation model, called BURN, considers vegetation (mortality, regeneration, and production of herbaceous vegetation), wildlife (populations and habitats), and hydrology (streamflow and water quality). In the formulation of the model, graphical representations (time-trend response curves) of increases or losses (compared to an unburned control) after the occurrence of fire are converted to fixedterm annual ratios, and then annuities for the simulation components. Annuity values higher than 1.0 indicate benefits, while annuity values lower than 1.0 indicate losses. Studies in southwestern ponderosa pine forests utilized in the development of BURN are described briefly.

  5. Comparing the role of fuel breaks across southern California national forests

    USGS Publications Warehouse

    Syphard, Alexandra D.; Keeley, Jon E.; Brennan, Teresa J.

    2011-01-01

    Fuel treatment of wildland vegetation is the primary approach advocated for mitigating fire risk at the wildland-urban interface (WUI), but little systematic research has been conducted to understand what role fuel treatments play in controlling large fires, which factors influence this role, or how the role of fuel treatments may vary over space and time. We assembled a spatial database of fuel breaks and fires from the last 30 years in four southern California national forests to better understand which factors are consistently important for fuel breaks in the control of large fires. We also explored which landscape features influence where fires and fuel breaks are most likely to intersect. The relative importance of significant factors explaining fuel break outcome and number of fire and fuel break intersections varied among the forests, which reflects high levels of regional landscape diversity. Nevertheless, several factors were consistently important across all the forests. In general, fuel breaks played an important role in controlling large fires only when they facilitated fire management, primarily by providing access for firefighting activities. Fire weather and fuel break maintenance were also consistently important. Models and maps predicting where fuel breaks and fires are most likely to intersect performed well in the regions where the models were developed, but these models did not extend well to other regions, reflecting how the environmental controls of fire regimes vary even within a single ecoregion. Nevertheless, similar mapping methods could be adopted in different landscapes to help with strategic location of fuel breaks. Strategic location of fuel breaks should also account for access points near communities, where fire protection is most important.

  6. Surface forcing of non-stand-replacing fires in Siberian larch forests

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Loboda, Tatiana V.

    2018-04-01

    Wildfires are the dominant disturbance agent in the Siberian larch forests. Extensive low- to mediate-intensity non-stand-replacing fires are a notable property of fire regime in these forests. Recent large scale studies of these fires have focused mostly on their impacts on carbon budget; however, their potential impacts on energy budget through post-fire albedo changes have not been considered. This study quantifies the post-fire surface forcing for Siberian larch forests that experienced non-stand-replacing fires between 2001 and 2012 using the full record of MODIS MCD43A3 albedo product and a burned area product developed specifically for the Russian forests. Despite a large variability, the mean effect of non-stand-replacing fires imposed through albedo is a negative forcing which lasts for at least 14 years. However, the magnitude of the forcing is much smaller than that imposed by stand-replacing fires, highlighting the importance of differentiating between the two fire types in the studies involving the fire impacts in the region. The results of this study also show that MODIS-based summer differenced normalized burn ratio (dNBR) provides a reliable metric for differentiating non-stand-replacing from stand-replacing fires with an overall accuracy of 88%, which is of considerable importance for future work on modeling post-fire energy budget and carbon budget in the region.

  7. Application of remote sensing and geographical information system in mapping forest fire risk zone at Bhadra wildlife sanctuary, India.

    PubMed

    Sowmya, S V; Somashekar, R K

    2010-11-01

    Fire is the most spectacular natural disturbance that affects the forest ecosystem composition and diversity. Fire has a devastating effect on the landscape and its impact is felt at every level of the ecosystem and it is possible to map forest fire risk zone and thereby minimize the frequency of fire. There is a need for supranational approaches that analyze wide scenarios of factors involved and global fire effects. Fires can be monitored and analyzed over large areas in a timely and cost effective manner by using satellite imagery. Also Geographical Information System (GIS) can be used effectively to demarcate the fire risk zone map. Bhadra wildlife Sanctuary located in Kamataka, India was selected for this study. Vegetation, slope, distance from roads, settlements parameters were derived for a study area using topographic maps and field information. The Remote Sensing (RS) and Geographical Information System (GIS)-based forest fire risk model of the study area appeared to be highly compatible with the actual fire-affected sites. The temporal satellite data from 1989 to2006 have been analyzed to map the burnt areas. These classes were weighted according to their influence on forest fire. Four categories of fire risk regions such as Low, Moderate, High and Very high fire intensity zones were identified. It is predicted that around 10.31% of the area falls undermoderate risk zone.

  8. Entrainment and Optical Properties of an Elevated Canadian Forest Fire Plume Transported into the Planetary Boundary Layer near Washington, D.C.

    NASA Technical Reports Server (NTRS)

    Colarco, P. R.; Schoeberl, M. R.; Doddridge, B. G.; Marufu, L. T.; Torres, O.; Welton, E. J.

    2003-01-01

    Smoke and pollutants from Canadian forest fires were transported over the northeastern United States in July 2002. Lidar observations at the NASA Goddard Space Flight Center show the smoke from these fires arriving in an elevated plume that was subsequently mixed to the surface. Trajectory and three-dimensional model calculations confirm the origin of the smoke and show that it mixed to the surface after it was intercepted by the turbulent planetary boundary layer. Modeled smoke optical properties agreed well with aircraft and remote sensing observations provided coagulation of smoke particles was accounted for in the model. Our results have important implications for the long-range transport of pollutants and their subsequent entrainment to the surface, as well as the evolving optical properties of smoke from boreal forest fires.

  9. Entrainment and Optical Properties of an Elevated Forest Fire Plume Transported into the Planetary Boundary Layer near Washington, D.C.

    NASA Technical Reports Server (NTRS)

    Colarco, P. R.; Schoeberl, M. R.; Marufu, L. T.; Torres, O.; Welton, E. J.; Doddridge, B. G.

    2003-01-01

    Smoke and pollutants from Canadian forest fires were transported over the northeastern United States in July 2002. Lidar observations at the NASA Goddard Space Flight Center show the smoke from these fires arriving in an elevated plume that was subsequently transported to the surface. Trajectory and three-dimensional model calculations confirm the origin of the smoke and show that it mixed to the surface after it was intercepted by the turbulent planetary boundary layer. Modeled smoke optical properties agreed well with aircraft and remote sensing observations provided coagulation of smoke particles was accounted for in the model. Our results have important implications for the long-range transport of pollutants and their subsequent entrainment to the surface, as well as the evolving optical properties of smoke from boreal forest fires.

  10. FireStem2D — A two-dimensional heat transfer model for simulating tree stem injury in fires

    Treesearch

    Efthalia K. Chatziefstratiou; Gil Bohrer; Anthony S. Bova; Ravishankar Subramanian; Renato P.M. Frasson; Amy Scherzer; Bret W. Butler; Matthew B. Dickinson

    2013-01-01

    FireStem2D, a software tool for predicting tree stem heating and injury in forest fires, is a physically-based, two-dimensional model of stem thermodynamics that results from heating at the bark surface. It builds on an earlier one-dimensional model (FireStem) and provides improved capabilities for predicting fire-induced mortality and injury before a fire occurs by...

  11. Testing woody fuel consumption models for application in Australian southern eucalypt forest fires

    Treesearch

    J.J. Hollis; S. Matthews; Roger Ottmar; S.J. Prichard; S. Slijepcevic; N.D. Burrows; B. Ward; K.G. Tolhurst; W.R. Anderson; J S. Gould

    2010-01-01

    Five models for the consumption of coarse woody debris or woody fuels with a diameter larger than 0.6 cm were assessed for application in Australian southern eucalypt forest fires including: CONSUME models for (1) activity fuels, (2) natural western woody and (3) natural southern woody fuels, (4) the BURNUP model and (5) the recommendation by the Australian National...

  12. Sensitivity of woody carbon stocks to bark investment strategy in Neotropical savannas and forests

    NASA Astrophysics Data System (ADS)

    Trugman, Anna T.; Medvigy, David; Hoffmann, William A.; Pellegrini, Adam F. A.

    2018-01-01

    Fire frequencies are changing in Neotropical savannas and forests as a result of forest fragmentation and increasing drought. Such changes in fire regime and climate are hypothesized to destabilize tropical carbon storage, but there has been little consideration of the widespread variability in tree fire tolerance strategies. To test how aboveground carbon stocks change with fire frequency and composition of plants with different fire tolerance strategies, we update the Ecosystem Demography model 2 (ED2) with (i) a fire survivorship module based on tree bark thickness (a key fire-tolerance trait across woody plants in savannas and forests), and (ii) plant functional types representative of trees in the region. With these updates, the model is better able to predict how fire frequency affects population demography and aboveground woody carbon. Simulations illustrate that the high survival rate of thick-barked, large trees reduces carbon losses with increasing fire frequency, with high investment in bark being particularly important in reducing losses in the wettest sites. Additionally, in landscapes that frequently burn, bark investment can broaden the range of climate and fire conditions under which savannas occur by reducing the range of conditions leading to either complete tree loss or complete grass loss. These results highlight that tropical vegetation dynamics depend not only on rainfall and changing fire frequencies but also on tree fire survival strategy. Further, our results indicate that fire survival strategy is fundamentally important in regulating tree size demography in ecosystems exposed to fire, which increases the preservation of aboveground carbon stocks and the coexistence of different plant functional groups.

  13. Use of fire spread and hydrology models to target forest management on a municipal watershed

    Treesearch

    Anurag Srivastava; William J. Elliot; Joan Wu

    2015-01-01

    A small town relies on a forested watershed for its water supply. The forest is at risk for a wildfire. To reduce this risk, some of the watershed will be thinned followed by a prescribed burn. This paper reports on a study to evaluate the impact of such watershed disturbances on water yield. To target management activities, a fire spread model was applied to the...

  14. Modeling the effects of fire on the long-term dynamics and restoration of yellow pine and oak forests in the Southern Appalachian Mountains

    Treesearch

    Charles W. Lafon; John D. Waldron; David M. Cairns; Maria D. Tchakerian; Robert N. Coulson; Kier D. Klepzig

    2007-01-01

    We used LANDIS, a model of forest disturbance and succession, to simulate successional dynamics of forests in the southern Appalachian Mountains. The simulated environments are based on the Great Smoky Mountains landscapes studied by Whittaker. We focused on the consequences of two contrasting disturbance regimes—fire exclusion versus frequent burning—for the Yellow...

  15. Modelling leaf, plant and stand flammability for ecological and operational decision making

    NASA Astrophysics Data System (ADS)

    Zylstra, Philip

    2014-05-01

    Numerous factors have been found to affect the flammability of individual leaves and plant parts; however the way in which these factors relate to whole plant flammability, fire behaviour and the overall risk imposed by fire is not straightforward. Similarly, although the structure of plant communities is known to affect the flammability of the stand, a quantified, broadly applicable link has proven difficult to establish and validate. These knowledge gaps have presented major obstacles to the integration into fire behaviour science of research into factors affecting plant flammability, physiology, species succession and structural change, so that the management of ecosystems for fire risk is largely uninformed by these fields. The Forest Flammability Model (Zylstra, 2011) is a process-driven, complex systems model developed specifically to address this disconnect. Flame dimensions and position are calculated as properties emerging from the capacity for convective heat to propagate flame between horizontally and vertically separated leaves, branches, plants and plant strata, and this capacity is determined dynamically from the ignitability, combustibility and sustainability of those objects, their spatial arrangement and a vector-based model of the plume temperature from each burning fuel. All flammability properties as well as the physics of flame dimensions, angle and temperature distributions and the vertical structure of wind within the plant array use published sub-models which can be replaced as further work is developed. This modular structure provides a platform for the immediate application of new work on any aspect of leaf flammability or fire physics. Initial validation of the model examined its qualitative predictions for trends in forest flammability as a function of time since fire. The positive feedback predicted for the subalpine forest examined constituted a 'risky prediction' by running counter to the expectations of the existing approach, however examination of historical fire sizes confirmed the positive feedback (Zylstra, 2013). The capacity to model even counter-intuitive trends in flammability represents a fundamental advance in the management of fire risk, underpinning the importance of work on those fields that compose the sub-models. Ongoing validation work has focused on accuracy in flame height and fire severity prediction, with excellent results to date. Further studies will examine quantitative estimates of fire risk parameters and the reliability of rate of spread predictions. By accurately modelling the relationship between seemingly disparate studies of leaf flammability, moisture, physiology and forest structure, the Forest Flammability Model has the potential to resolve some long-standing questions (Yebra et al., 2013) as well as to provide insight into the effect of climate or management-induced ecosystem changes on fire behaviour and risk. References Yebra, M., Dennison, P. E., Chuvieco, E., Riaño, D., Zylstra, P., Hunt, E. R., … Jurdao, S. (2013). A global review of remote sensing of live fuel moisture content for fire danger assessment: Moving towards operational products. Remote Sensing of Environment, 136, 455-468. doi:10.1016/j.rse.2013.05.029 Zylstra, P. (2011). Forest Flammability: Modelling and Managing a Complex System. PhD Thesis, University of NSW @ ADFA. Retrieved from http://handle.unsw.edu.au/1959.4/51656 Zylstra, P. (2013). The historical influence of fire on the flammability of subalpine Snowgum forest and woodland. Victorian Naturalist, 130(6), 232-239.

  16. Modeling Tree Mortality Following Wildfire in Pinus ponderosa Forests in the Central Sierra Nevada of California

    Treesearch

    Jon C. Regelbrugge

    1993-01-01

    Abstract. We modeled tree mortality occurring two years following wildfire in Pinus ponderosa forests using data from 1275 trees in 25 stands burned during the 1987 Stanislaus Complex fires. We used logistic regression analysis to develop models relating the probability of wildfire-induced mortality with tree size and fire severity for Pinus ponderosa, Calocedrus...

  17. Disequilibrium of fire-prone forests sets the stage for a rapid decline in conifer dominance during the 21st century.

    PubMed

    Serra-Diaz, Josep M; Maxwell, Charles; Lucash, Melissa S; Scheller, Robert M; Laflower, Danelle M; Miller, Adam D; Tepley, Alan J; Epstein, Howard E; Anderson-Teixeira, Kristina J; Thompson, Jonathan R

    2018-04-30

    The impacts of climatic changes on forests may appear gradually on time scales of years to centuries due to the long generation times of trees. Consequently, current forest extent may not reflect current climatic patterns. In contrast with these lagged responses, abrupt transitions in forests under climate change may occur in environments where alternative vegetation states are influenced by disturbances, such as fire. The Klamath forest landscape (northern California and southwest Oregon, USA) is currently dominated by high biomass, biodiverse temperate coniferous forests, but climate change could disrupt the mechanisms promoting forest stability (e.g. growth, regeneration and fire tolerance). Using a landscape simulation model, we estimate that about one-third of the Klamath forest landscape (500,000 ha) could transition from conifer-dominated forest to shrub/hardwood chaparral, triggered by increased fire activity coupled with lower post-fire conifer establishment. Such shifts were widespread under the warmer climate change scenarios (RCP 8.5) but were surprisingly prevalent under the climate of 1949-2010, reflecting the joint influences of recent warming trends and the legacy of fire suppression that may have enhanced conifer dominance. Our results demonstrate that major forest ecosystem shifts should be expected when climate change disrupts key stabilizing feedbacks that maintain the dominance of long-lived, slowly regenerating trees.

  18. A multivariate decision tree analysis of biophysical factors in tropical forest fire occurrence

    Treesearch

    Rey S. Ofren; Edward Harvey

    2000-01-01

    A multivariate decision tree model was used to quantify the relative importance of complex hierarchical relationships between biophysical variables and the occurrence of tropical forest fires. The study site is the Huai Kha Kbaeng wildlife sanctuary, a World Heritage Site in northwestern Thailand where annual fires are common and particularly destructive. Thematic...

  19. A stochastic forest fire model for future land cover scenarios assessment

    Treesearch

    M. D' Andrea; P. Fiorucci; T.P. Holmes

    2011-01-01

    Land cover is affected by many factors including economic development, climate and natural disturbances such as wildfires. The ability to evaluate how fire regimes may alter future vegetation, and how future vegetation may alter fire regimes, would assist forest managers in planning management actions to be carried out in the face of anticipated socio-economic and...

  20. Comparing modern and presettlement forest dynamics of a subboreal wilderness: Does spruce budworm enhance fire risk?

    Treesearch

    Brian R Sturtevant; Brian R Miranda; Douglas J Shinneman; Eric J Gustafson; Peter T. Wolter

    2012-01-01

    Insect disturbance is often thought to increase fire risk through enhanced fuel loadings, particularly in coniferous forest ecosystems. Yet insect disturbances also affect successional pathways and landscape structure that interact with fire disturbances (and vice-versa) over longer time scales. We applied a landscape succession and disturbance model (LANDIS-II) to...

  1. Spatially explicit and stochastic simulation of forest landscape fire disturbance and succession

    Treesearch

    Hong S. He; David J. Mladenoff

    1999-01-01

    Understanding disturbance and recovery of forest landscapes is a challenge because of complex interactions over a range of temporal and spatial scales. Landscape simulation models offer an approach to studying such systems at broad scales. Fire can be simulated spatially using mechanistic or stochastic approaches. We describe the fire module in a spatially explicit,...

  2. The Perfect Fire? Aging Stands in the Alaskan Boreal Forest Encounter Global Warming

    NASA Astrophysics Data System (ADS)

    Mann, D.; Rupp, S.; Duffy, P.

    2008-12-01

    The ecological responses of the boreal forest to climate change have global significance because of the large amount of carbon stored in its soils and biomass. Fire, mostly ignited by lightning, is the keystone disturbance agent in this forest. It triggers cycles of forest succession in its wake, and burning is the main avenue for carbon release back to the atmosphere. We studied the interactions between climate, fires, forest succession, and the age distributions of forest stands in a 60-million hectare region of Interior Alaska over the past 150 years. First we developed a statistical model relating climate to area burned over the period of record (1950-2005). Next we combined this model with climate reconstructions to extend the estimates of area burned back to A.D. 1860. We checked the resultant fire history against stand-age data from 5000 living trees sampled in the study region. Then we fed the history of area burned into a computer model that simulates forest succession on real landscapes. Results show striking changes in the means and variances of stand ages over the last 150 years in response to interactions between climate change and the successional dynamics of the boreal forest. Average stand age increased steadily between 1880 and 1940 and has fluctuated at high levels since then, indicating a historically unusual abundance of flammable stands. This accumulation of old stands has created the potential for unusually large fires. Some support for this conclusion comes from the unprecedented large sizes of the areas burned in 2004 and 2005. Further support comes when we add to the analysis the forecasts made by global climate models for Alaska over the next twenty years. Bracketing estimates for climate warming and precipitation change suggest that warmer, drier summers combined with aging forest stands will cause a series of unusually large fires, the like of which have not occurred in the region for >150 years. We infer that the enhanced burning of the Alaska boreal forest over the next 20 years will increase the release of trace gases from this region. We speculate that the forest will be transformed from being conifer dominated to one dominated by deciduous tree species, which could have sweeping effects on the region's other biota, its hydrology, and the role of the boreal forest in the global carbon cycle.

  3. Assessing crown fire potential by linking models of surface and crown fire behavior

    Treesearch

    Joe H. Scott; Elizabeth D. Reinhardt

    2001-01-01

    Fire managers are increasingly concerned about the threat of crown fires, yet only now are quantitative methods for assessing crown fire hazard being developed. Links among existing mathematical models of fire behavior are used to develop two indices of crown fire hazard-the Torching Index and Crowning Index. These indices can be used to ordinate different forest...

  4. Fire Modeling Institute: FY2012 Annual Report: Bridging scientists and managers

    Treesearch

    Robin J. Innes

    2013-01-01

    The Fire Modeling Institute (FMI) brings the best available fire and fuel science and technology developed throughout the research community to bear in fire-related management issues. Although located within the Fire, Fuel, and Smoke Science Program of the U.S. Forest Service Rocky Mountain Research Station, FMI is a national and international resource, serving fire...

  5. Measuring short-term post-fire forest recovery across a burn severity gradient in a mixed pine-oak forest using multi-sensor remote sensing techniques

    DOE PAGES

    Meng, Ran; Wu, Jin; Zhao, Feng; ...

    2018-06-01

    Understanding post-fire forest recovery is pivotal to the study of forest dynamics and global carbon cycle. Field-based studies indicated a convex response of forest recovery rate to burn severity at the individual tree level, related with fire-induced tree mortality; however, these findings were constrained in spatial/temporal extents, while not detectable by traditional optical remote sensing studies, largely attributing to the contaminated effect from understory recovery. For this work, we examined whether the combined use of multi-sensor remote sensing techniques (i.e., 1m simultaneous airborne imaging spectroscopy and LiDAR and 2m satellite multi-spectral imagery) to separate canopy recovery from understory recovery wouldmore » enable to quantify post-fire forest recovery rate spanning a large gradient in burn severity over large-scales. Our study was conducted in a mixed pine-oak forest in Long Island, NY, three years after a top-killing fire. Our studies remotely detected an initial increase and then decline of forest recovery rate to burn severity across the burned area, with a maximum canopy area-based recovery rate of 10% per year at moderate forest burn severity class. More intriguingly, such remotely detected convex relationships also held at species level, with pine trees being more resilient to high burn severity and having a higher maximum recovery rate (12% per year) than oak trees (4% per year). These results are one of the first quantitative evidences showing the effects of fire adaptive strategies on post-fire forest recovery, derived from relatively large spatial-temporal domains. Our study thus provides the methodological advance to link multi-sensor remote sensing techniques to monitor forest dynamics in a spatially explicit manner over large-scales, with important implications for fire-related forest management, and for constraining/benchmarking fire effect schemes in ecological process models.« less

  6. Measuring short-term post-fire forest recovery across a burn severity gradient in a mixed pine-oak forest using multi-sensor remote sensing techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Ran; Wu, Jin; Zhao, Feng

    Understanding post-fire forest recovery is pivotal to the study of forest dynamics and global carbon cycle. Field-based studies indicated a convex response of forest recovery rate to burn severity at the individual tree level, related with fire-induced tree mortality; however, these findings were constrained in spatial/temporal extents, while not detectable by traditional optical remote sensing studies, largely attributing to the contaminated effect from understory recovery. For this work, we examined whether the combined use of multi-sensor remote sensing techniques (i.e., 1m simultaneous airborne imaging spectroscopy and LiDAR and 2m satellite multi-spectral imagery) to separate canopy recovery from understory recovery wouldmore » enable to quantify post-fire forest recovery rate spanning a large gradient in burn severity over large-scales. Our study was conducted in a mixed pine-oak forest in Long Island, NY, three years after a top-killing fire. Our studies remotely detected an initial increase and then decline of forest recovery rate to burn severity across the burned area, with a maximum canopy area-based recovery rate of 10% per year at moderate forest burn severity class. More intriguingly, such remotely detected convex relationships also held at species level, with pine trees being more resilient to high burn severity and having a higher maximum recovery rate (12% per year) than oak trees (4% per year). These results are one of the first quantitative evidences showing the effects of fire adaptive strategies on post-fire forest recovery, derived from relatively large spatial-temporal domains. Our study thus provides the methodological advance to link multi-sensor remote sensing techniques to monitor forest dynamics in a spatially explicit manner over large-scales, with important implications for fire-related forest management, and for constraining/benchmarking fire effect schemes in ecological process models.« less

  7. Mitigating Large Fires in Drossel-Schwabl Forest Fire Models

    NASA Astrophysics Data System (ADS)

    Yoder, M.; Turcotte, D.; Rundle, J.; Morein, G.

    2008-12-01

    We employ variations of the traditional Drossel-Schwabl cellular automata Forest Fire Models (FFM) to study wildfire dynamics. The traditional FFM produces a very robust power law distribution of events, as a function of size, with frequency-size slope very close to -1. Observed data from Australia, the US and northern Mexico suggest that real wild fires closely follow power laws in frequency size with slopes ranging from close to -2 to -1.3 (B.D. Malamud et al. 2005). We suggest two models that, by fracturing and trimming large clusters, reduce the number of large fires while maintaining scale invariance. These fracturing and trimming processes can be justified in terms of real physical processes. For each model, we achieve slopes in the frequency-size relation ranging from approximately -1.77 to -1.06.

  8. Effects of fire on spotted owl site occupancy in a late-successional forest

    USGS Publications Warehouse

    Roberts, Susan L.; van Wagtendonk, Jan W.; Miles, A. Keith; Kelt, Douglas A.

    2011-01-01

    The spotted owl (Strix occidentalis) is a late-successional forest dependent species that is sensitive to forest management practices throughout its range. An increase in the frequency and spatial extent of standreplacing fires in western North America has prompted concern for the persistence of spotted owls and other sensitive late-successional forest associated species. However, there is sparse information on the effects of fire on spotted owls to guide conservation policies. In 2004-2005, we surveyed for California spotted owls during the breeding season at 32 random sites (16 burned, 16 unburned) throughout late-successional montane forest in Yosemite National Park, California. Our burned areas burned at all severities, but predominately involved low to moderate fire severity. Based on an information theoretic approach, spotted owl detection and occupancy rates were similar between burned and unburned sites. Nest and roost site occupancy was best explained by a model that combined total tree basal area (positive effect) with cover by coarse woody debris (negative effect). The density estimates of California spotted owl pairs were similar in burned and unburned forests, and the overall mean density estimate for Yosemite was higher than previously reported for montane forests. Our results indicate that low to moderate severity fires, historically common within montane forests of the Sierra Nevada, California, maintain habitat characteristics essential for spotted owl site occupancy. These results suggest that managed fires that emulate the historic fire regime of these forests may maintain spotted owl habitat and protect this species from the effects of future catastrophic fires.

  9. Potential changes in forest composition could reduce impacts of climate change on boreal wildfires.

    PubMed

    Terrier, Aurélie; Girardin, Martin P; Périé, Catherine; Legendre, Pierre; Bergeron, Yves

    2013-01-01

    There is general consensus that wildfires in boreal forests will increase throughout this century in response to more severe and frequent drought conditions induced by climate change. However, prediction models generally assume that the vegetation component will remain static over the next few decades. As deciduous species are less flammable than conifer species, it is reasonable to believe that a potential expansion of deciduous species in boreal forests, either occurring naturally or through landscape management, could offset some of the impacts of climate change on the occurrence of boreal wildfires. The objective of this study was to determine the potential of this offsetting effect through a simulation experiment conducted in eastern boreal North America. Predictions of future fire activity were made using multivariate adaptive regression splines (MARS) with fire behavior indices and ecological niche models as predictor variables so as to take into account the effects of changing climate and tree distribution on fire activity. A regional climate model (RCM) was used for predictions of future fire risk conditions. The experiment was conducted under two tree dispersal scenarios: the status quo scenario, in which the distribution of forest types does not differ from the present one, and the unlimited dispersal scenario, which allows forest types to expand their range to fully occupy their climatic niche. Our results show that future warming will create climate conditions that are more prone to fire occurrence. However, unlimited dispersal of southern restricted deciduous species could reduce the impact of climate change on future fire occurrence. Hence, the use of deciduous species could be a good option for an efficient strategic fire mitigation strategy aimed at reducing fire Propagation in coniferous landscapes and increasing public safety in remote populated areas of eastern boreal Canada under climate change.

  10. Developing custom fire behavior fuel models from ecologically complex fuel structures for upper Atlantic Coastal Plain forests

    Treesearch

    Bernard R. Parresol; Joe H. Scott; Anne Andreu; Susan Prichard; Laurie Kurth

    2012-01-01

    Currently geospatial fire behavior analyses are performed with an array of fire behavior modeling systems such as FARSITE, FlamMap, and the Large Fire Simulation System. These systems currently require standard or customized surface fire behavior fuel models as inputs that are often assigned through remote sensing information. The ability to handle hundreds or...

  11. Modelling the ecological vulnerability to forest fires in mediterranean ecosystems using geographic information technologies.

    PubMed

    Duguy, Beatriz; Alloza, José Antonio; Baeza, M Jaime; De la Riva, Juan; Echeverría, Maite; Ibarra, Paloma; Llovet, Juan; Cabello, Fernando Pérez; Rovira, Pere; Vallejo, Ramon V

    2012-12-01

    Forest fires represent a major driver of change at the ecosystem and landscape levels in the Mediterranean region. Environmental features and vegetation are key factors to estimate the ecological vulnerability to fire; defined as the degree to which an ecosystem is susceptible to, and unable to cope with, adverse effects of fire (provided a fire occurs). Given the predicted climatic changes for the region, it is urgent to validate spatially explicit tools for assessing this vulnerability in order to support the design of new fire prevention and restoration strategies. This work presents an innovative GIS-based modelling approach to evaluate the ecological vulnerability to fire of an ecosystem, considering its main components (soil and vegetation) and different time scales. The evaluation was structured in three stages: short-term (focussed on soil degradation risk), medium-term (focussed on changes in vegetation), and coupling of the short- and medium-term vulnerabilities. The model was implemented in two regions: Aragón (inland North-eastern Spain) and Valencia (eastern Spain). Maps of the ecological vulnerability to fire were produced at a regional scale. We partially validated the model in a study site combining two complementary approaches that focused on testing the adequacy of model's predictions in three ecosystems, all very common in fire-prone landscapes of eastern Spain: two shrublands and a pine forest. Both approaches were based on the comparison of model's predictions with values of NDVI (Normalized Difference Vegetation Index), which is considered a good proxy for green biomass. Both methods showed that the model's performance is satisfactory when applied to the three selected vegetation types.

  12. Current and future patterns of fire-induced forest degradation in Amazonia

    NASA Astrophysics Data System (ADS)

    De Faria, Bruno L.; Brando, Paulo M.; Macedo, Marcia N.; Panday, Prajjwal K.; Soares-Filho, Britaldo S.; Coe, Michael T.

    2017-09-01

    Amazon droughts directly increase forest flammability by reducing forest understory air and fuel moisture. Droughts also increase forest flammability indirectly by decreasing soil moisture, triggering leaf shedding, branch loss, and tree mortality—all of which contribute to increased fuel loads. These direct and indirect effects can cause widespread forest fires that reduce forest carbon stocks in the Amazon, with potentially important consequences for the global carbon cycle. These processes are expected to become more widespread, common, and intense as global climate changes, yet the mechanisms linking droughts, wildfires, and associated changes in carbon stocks remain poorly understood. Here, we expanded the capabilities of a dynamic forest carbon model to better represent (1) drought effects on carbon and fuel dynamics and (2) understory fire behavior and severity. We used the refined model to quantify changes in Pan-Amazon live carbon stocks as a function of the maximum climatological water deficit (MCWD) and fire intensity, under both historical and future climate conditions. We found that the 2005 and 2010 droughts increased potential fire intensity by 226 kW m-1 and 494 kW m-1, respectively. These increases were due primarily to increased understory dryness (109 kW m-1 in 2005; 124 kW m-1 in 2010) and altered forest structure (117 kW m-1 in 2005; 370 kW m-1 in 2010) effects. Combined, these historic droughts drove total simulated reductions in live carbon stocks of 0.016 (2005) and 0.027 (2010) PgC across the Amazon Basin. Projected increases in future fire intensity increased simulated carbon losses by up to 90% per unit area burned, compared with modern climate. Increased air temperature was the primary driver of changes in simulated future fire intensity, while reduced precipitation was secondary, particularly in the eastern portion of the Basin. Our results show that fire-drought interactions strongly affect live carbon stocks and that future climate change, combined with the synergistic effects of drought on forest flammability, may strongly influence the stability of tropical forests in the future.

  13. Study of landscape change under forest harvesting and climate warming-induced fire disturbance

    Treesearch

    S. He Hong; David J. Mladenoff; Eric J. Gustafson

    2002-01-01

    We examined tree species responses under forest harvesting and an increased fire disturbance scenario due to climate warming in northern Wisconsin where northern hardwood and boreal forests are currently predominant. Individual species response at the ecosystem scale was simulated with a gap model, which integrates soil, climate and species data, stratified by...

  14. Boreal forest fire emissions in fresh Canadian smoke plumes: C1-C10 volatile organic compounds (VOCs), CO2, CO, NO2, NO, HCN and CH3CN

    NASA Astrophysics Data System (ADS)

    Simpson, I. J.; Akagi, S. K.; Barletta, B.; Blake, N. J.; Choi, Y.; Diskin, G. S.; Fried, A.; Fuelberg, H. E.; Meinardi, S.; Rowland, F. S.; Vay, S. A.; Weinheimer, A. J.; Wennberg, P. O.; Wiebring, P.; Wisthaler, A.; Yang, M.; Yokelson, R. J.; Blake, D. R.

    2011-03-01

    Boreal regions comprise about 17% of the global land area, and they both affect and are influenced by climate change. To better understand boreal forest fire emissions and plume evolution, 947 whole air samples were collected aboard the NASA DC-8 research aircraft in summer 2008 as part of the ARCTAS-B field mission, and analyzed for 79 non-methane volatile organic compounds (NMVOCs) using gas chromatography. Together with simultaneous measurements of CO2, CO, CH4, CH2O, NO2, NO, HCN and CH3CN, these measurements represent the most comprehensive assessment of trace gas emissions from boreal forest fires to date. Based on 105 air samples collected in fresh Canadian smoke plumes, 57 of the 80 measured NMVOCs (including CH2O) were emitted from the fires, including 45 species that were quantified from boreal forest fires for the first time. After CO2, CO and CH4, the largest emission factors (EFs) for individual species were formaldehyde (2.1 ± 0.2 g kg-1), followed by methanol, NO2, HCN, ethene, α-pinene, β-pinene, ethane, benzene, propene, acetone and CH3CN. Globally, we estimate that boreal forest fires release 2.4 ± 0.6 Tg C yr-1 in the form of NMVOCs, with approximately 41% of the carbon released as C1-C2 NMVOCs and 21% as pinenes. These are the first reported field measurements of monoterpene emissions from boreal forest fires, and we speculate that the pinenes, which are relatively heavy molecules, were detected in the fire plumes as the result of distillation of stored terpenes as the vegetation is heated. Their inclusion in smoke chemistry models is expected to improve model predictions of secondary organic aerosol (SOA) formation. The fire-averaged EF of dichloromethane or CH2Cl2, (6.9 ± 8.6) ×10-4 g kg-1, was not significantly different from zero and supports recent findings that its global biomass burning source appears to have been overestimated. Similarly, we found no evidence for emissions of chloroform (CHCl3) or methyl chloroform (CH3CCl3) from boreal forest fires. The speciated hydrocarbon measurements presented here show the importance of carbon released by short-chain NMVOCs, the strong contribution of pinene emissions from boreal forest fires, and the wide range of compound classes in the most abundantly emitted NMVOCs, all of which can be used to improve biomass burning inventories in local/global models and reduce uncertainties in model estimates of trace gas emissions and their impact on the atmosphere.

  15. Boreal forest fire emissions in fresh Canadian smoke plumes: C1-C10 volatile organic compounds (VOCs), CO2, CO, NO2, NO, HCN and CH3CN

    NASA Astrophysics Data System (ADS)

    Simpson, I. J.; Akagi, S. K.; Barletta, B.; Blake, N. J.; Choi, Y.; Diskin, G. S.; Fried, A.; Fuelberg, H. E.; Meinardi, S.; Rowland, F. S.; Vay, S. A.; Weinheimer, A. J.; Wennberg, P. O.; Wiebring, P.; Wisthaler, A.; Yang, M.; Yokelson, R. J.; Blake, D. R.

    2011-07-01

    Boreal regions comprise about 17 % of the global land area, and they both affect and are influenced by climate change. To better understand boreal forest fire emissions and plume evolution, 947 whole air samples were collected aboard the NASA DC-8 research aircraft in summer 2008 as part of the ARCTAS-B field mission, and analyzed for 79 non-methane volatile organic compounds (NMVOCs) using gas chromatography. Together with simultaneous measurements of CO2, CO, CH4, CH2O, NO2, NO, HCN and CH3CN, these measurements represent the most comprehensive assessment of trace gas emissions from boreal forest fires to date. Based on 105 air samples collected in fresh Canadian smoke plumes, 57 of the 80 measured NMVOCs (including CH2O) were emitted from the fires, including 45 species that were quantified from boreal forest fires for the first time. After CO2, CO and CH4, the largest emission factors (EFs) for individual species were formaldehyde (2.1 ± 0.2 g kg-1), followed by methanol, NO2, HCN, ethene, α-pinene, β-pinene, ethane, benzene, propene, acetone and CH3CN. Globally, we estimate that boreal forest fires release 2.4 ± 0.6 Tg C yr-1 in the form of NMVOCs, with approximately 41 % of the carbon released as C1-C2 NMVOCs and 21 % as pinenes. These are the first reported field measurements of monoterpene emissions from boreal forest fires, and we speculate that the pinenes, which are relatively heavy molecules, were detected in the fire plumes as the result of distillation of stored terpenes as the vegetation is heated. Their inclusion in smoke chemistry models is expected to improve model predictions of secondary organic aerosol (SOA) formation. The fire-averaged EF of dichloromethane or CH2Cl2, (6.9 ± 8.6) × 10-4 g kg-1, was not significantly different from zero and supports recent findings that its global biomass burning source appears to have been overestimated. Similarly, we found no evidence for emissions of chloroform (CHCl3) or methyl chloroform (CH3CCl3) from boreal forest fires. The speciated hydrocarbon measurements presented here show the importance of carbon released by short-chain NMVOCs, the strong contribution of pinene emissions from boreal forest fires, and the wide range of compound classes in the most abundantly emitted NMVOCs, all of which can be used to improve biomass burning inventories in local/global models and reduce uncertainties in model estimates of trace gas emissions and their impact on the atmosphere.

  16. Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point.

    PubMed

    Nepstad, Daniel C; Stickler, Claudia M; Filho, Britaldo Soares-; Merry, Frank

    2008-05-27

    Some model experiments predict a large-scale substitution of Amazon forest by savannah-like vegetation by the end of the twenty-first century. Expanding global demands for biofuels and grains, positive feedbacks in the Amazon forest fire regime and drought may drive a faster process of forest degradation that could lead to a near-term forest dieback. Rising worldwide demands for biofuel and meat are creating powerful new incentives for agro-industrial expansion into Amazon forest regions. Forest fires, drought and logging increase susceptibility to further burning while deforestation and smoke can inhibit rainfall, exacerbating fire risk. If sea surface temperature anomalies (such as El Niño episodes) and associated Amazon droughts of the last decade continue into the future, approximately 55% of the forests of the Amazon will be cleared, logged, damaged by drought or burned over the next 20 years, emitting 15-26Pg of carbon to the atmosphere. Several important trends could prevent a near-term dieback. As fire-sensitive investments accumulate in the landscape, property holders use less fire and invest more in fire control. Commodity markets are demanding higher environmental performance from farmers and cattle ranchers. Protected areas have been established in the pathway of expanding agricultural frontiers. Finally, emerging carbon market incentives for reductions in deforestation could support these trends.

  17. Broad-Scale Assessment of Fuel Treatment Opportunities

    Treesearch

    Patrick D. Miles; Kenneth E. Skog; Wayne D. Shepperd; Elizabeth D. Reinhardt; Roger D. Fight

    2006-01-01

    The Forest Inventory and Analysis (FIA) program has produced estimates of the extent and composition of the Nation?s forests for several decades. FIA data have been used with a flexible silvicultural thinning option, a fire hazard model for preharvest and postharvest fire hazard assessment, a harvest economics model, and geospatial data to produce a Web-based tool to...

  18. A dynamic organic soil biogeochemical model for simulating the effects of wildfire on soil environmental conditions and carbon dynamics of black spruce forests

    Treesearch

    Shuhua Yi; A. David McGuire; Eric Kasischke; Jennifer Harden; Kristen Manies; Michelle Mack; Merritt Turetsky

    2010-01-01

    Ecosystem models have not comprehensively considered how interactions among fire disturbance, soil environmental conditions, and biogeochemical processes affect ecosystem dynamics in boreal forest ecosystems. In this study, we implemented a dynamic organic soil structure in the Terrestrial Ecosystem Model (DOS-TEM) to investigate the effects of fire on soil temperature...

  19. Evaluation of the CONSUME and FOFEM fuel consumption models in pine and mixed hardwood forests of the eastern United States

    Treesearch

    Susan J. Prichard; Eva C. Karau; Roger D. Ottmar; Maureen C. Kennedy; James B. Cronan; Clinton S. Wright; Robert E. Keane

    2014-01-01

    Reliable predictions of fuel consumption are critical in the eastern United States (US), where prescribed burning is frequently applied to forests and air quality is of increasing concern. CONSUME and the First Order Fire Effects Model (FOFEM), predictive models developed to estimate fuel consumption and emissions from wildland fires, have not been systematically...

  20. Effects of active forest fire on terrestrial ecosystem production and greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Sannigrahi, Srikanta; Rahmat, Shahid; Bhatt, Sandeep; Rana, Virendra

    2017-04-01

    The forest fire is one of the most catalysing agents which degrade an ecosystems leading to the loss of net and gross primary productivity (NPP & GPP) and carbon sequestration service. Additionally, it can suppress the efficiency of service providing capacity of an ecosystem throughout the time and space. Remote sensing-based forest fire estimation in a diverse ecosystem is very much essential for mitigating the biodiversity and productivity losses due to the forest fire. Satellite-based Land Surface Temperature (LST) has been calculated for the pre-fire and fire years to identify the burn severity hotspot across all eco-regions in the Lower Himalaya region. Several burn severity indices: Normalized Burn Ratio (NBR), Burnt Area Index (BAI), Normalized Multiband Drought Index (NMDI), Soil Adjusted Vegetation Index (SAVI), Global Environmental Monitoring Index (GEMI), Enhance Vegetation Index (EVI) have been used in this study to quantify the spatial and temporal changes (delta) of the selected indices. Two Light Use Efficiency (LUE) models: Carnegie- Ames-Stanford-Approach (CASA) and Vegetation Photosynthesis Model (VPM) have been used to quantify the terrestrial Net Primary Productivity (NPP) in the pre-fire and fire years across all biomes of the region. A novel approach has been preceded in this field to demonstrate the correlation between forest fire density (FFD) and NPP. A strong positive correlation was found between burn severity indices and predicted NPP: BAI and NPP (r = 0.49), NBR and NPP: (r = 0.58), EVI and NPP: (r = 0.72), SAVI and NPP: (r = 0.67), whereas, a negative association has noted between the NMDI and NPP: (r = -0.36) during the both studied years. Results have shown that the NPP is highly correlated with the forest fire density (R2 = 0.75, RMSE = 5.03 gC m-2 month-1). The estimated LST of the individual fire days has witnessed a sharp temperature increase by > 6oC - 9oC in comparison to the non-fire days clearly indicates high fire risk (in Uttarakhand) due to the subtle water stress condition with lesser soil moisture content into the ground. Among the 13 districts, the maximum net emissions of carbon and nitrogen compounds have been observed in 7 districts (accounting for high biomass and forest cover loss by the 2016 forest fire), whereas, the rest of the 6 districts acts as the sequester of greenhouse compounds. This new approach having the potentiality of quantifying the losses of ecosystem productivity due to forest fires and could be used in broader aspects if more accurate field based observation can be obtained in the near future.

  1. Forest fires are associated with elevated mortality in a dense urban setting.

    PubMed

    Analitis, Antonis; Georgiadis, Ioannis; Katsouyanni, Klea

    2012-03-01

    The climate and vegetation of the greater Athens area (population over three million) make forest fires a real threat to the environment during the summer. A few studies have reported the adverse health effects of forest fires, mainly using morbidity outcomes. The authors investigated the short-term effects of forest fires on non-accidental mortality in the population of Athens, Greece, during 1998-2004. The authors used generalised additive models to investigate the effect of forest fires on daily mortality, adjusting for time trend and meteorological variables, taking into account air pollution as measured from fixed monitors. Forest fires were classified by size according to the area burnt. Small fires do not have an effect on mortality. Medium sized fires are associated with an increase of 4.9% (95% CI 0.3% to 9.6%) in the daily total number of deaths, 6.0% (95% CI -0.3% to 12.6%) in the number of cardiovascular deaths and 16.2% (95% CI 1.3% to 33.4%) in the number of respiratory deaths. Cardiovascular effects are larger in those aged <75 years, while respiratory effects are larger in older people. The corresponding effects of the one large fire are: 49.7% (95% CI 37.2% to 63.4%), 60.6% (95% CI 43.1% to 80.3%) and 92.0% (95% CI 47.5% to 150.0%). These effects cannot be completely explained by an increase in ambient particle concentrations. Forest fires have an immediate effect on mortality, not associated with accidental deaths, which is a significant public health problem, especially if the fire occurs near a densely populated area.

  2. Photo guide for estimating fuel loading and fire behavior in mixed-oak forests of the Mid-Atlantic Region

    Treesearch

    Patrick H. Brose

    2009-01-01

    A field guide of 45 pairs of photographs depicting ericaceous shrub, leaf litter, and logging slash fuel types of eastern oak forests and observed fire behavior of these fuel types during prescribed burning. The guide contains instructions on how to use the photo guide to choose appropriate fuel models for prescribed fire planning.

  3. Restoration of fire in managed forests: a model to prioritize landscapes and analyze tradeoffs

    Treesearch

    Alan A. Ager; Nicole M. Vaillant; Andrew McMahan

    2013-01-01

    Ongoing forest restoration on public lands in the western US is a concerted effort to counter the growing incidence of uncharacteristic wildfire in fire-adapted ecosystems. Restoration projects cover 725,000 ha annually, and include thinning and underburning to remove ladder and surface fuel, and seeding of fire-adapted native grasses and shrubs. The backlog of areas...

  4. Future fire probability modeling with climate change data and physical chemistry

    Treesearch

    Richard P. Guyette; Frank R. Thompson; Jodi Whittier; Michael C. Stambaugh; Daniel C. Dey

    2014-01-01

    Climate has a primary influence on the occurrence and rate of combustion in ecosystems with carbon-based fuels such as forests and grasslands. Society will be confronted with the effects of climate change on fire in future forests. There are, however, few quantitative appraisals of how climate will affect wildland fire in the United States. We demonstrated a method for...

  5. Modeling the effects of environmental disturbance on wildlife communities: Avian responses to prescribed fire

    Treesearch

    Robin E. Russell; J. Andrew Royle; Victoria A. Saab; John F. Lehmkuhl; William M. Block; John R. Sauer

    2009-01-01

    Prescribed fire is a management tool used to reduce fuel loads on public lands in forested areas in the western United States. Identifying the impacts of prescribed fire on bird communities in ponderosa pine (Pinus ponderosa) forests is necessary for providing land management agencies with information regarding the effects of fuel reduction on sensitive, threatened,...

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Rod

    FIRETEC presents a new way of studying fire and learning how to better manage and cope with it. The model provides additional scientific input for decisions by policymakers working in land management, water resources and energy. The team hopes it will eventually assist fire and fuel management operations. This research is done in partnership with the USDA Forest Service, Air Force Wildland Fire Center, INRA and Canadian Forest Service.

  7. Modeling forest development after fire disturbance: Climate, soil organic layer, and nitrogen jointly affect forest canopy species and long-term ecosystem carbon accumulation in the North American boreal forest

    NASA Astrophysics Data System (ADS)

    Trugman, A. T.; Fenton, N.; Bergeron, Y.; Xu, X.; Welp, L.; Medvigy, D.

    2015-12-01

    Soil organic layer dynamics strongly affect boreal forest development after fire. Field studies show that soil organic layer thickness exerts a species-specific control on propagule establishment in the North American boreal forest. On organic soils thicker than a few centimeters, all propagules are less able to recruit, but broadleaf trees recruit less effectively than needleleaf trees. In turn, forest growth controls organic layer accumulation through modulating litter input and litter quality. These dynamics have not been fully incorporated into models, but may be essential for accurate projections of ecosystem carbon storage. Here, we develop a data-constrained model for understanding boreal forest development after fire. We update the ED2 model to include new aspen and black spruce species-types, species-specific propagule survivorship dependent on soil organic layer depth, species-specific litter decay rates, dynamically accumulating moss and soil organic layers, and nitrogen fixation by cyanobacteria associated with moss. The model is validated against diverse observations ranging from monthly to centennial timescales and spanning a climate gradient in Alaska, central Canada, and Quebec. We then quantify differences in forest development that result from changes in organic layer accumulation, temperature, and nitrogen. We find that (1) the model accurately reproduces a range of observations throughout the North American boreal forest; (2) the presence of a thick organic layer results in decreased decomposition and decreased aboveground productivity, effects that can increase or decrease ecosystem carbon uptake depending on location-specific attributes; (3) with a mean warming of 4°C, some forests switch from undergoing succession to needleleaf forests to recruiting multiple cohorts of broadleaf trees, decreasing ecosystem accumulation by ~30% after 300 years; (4) the availability of nitrogen regulates successional dynamics such than broadleaf species are less able to compete with needleleaf trees under low nitrogen regimes. We conclude that a joint regulation between the soil organic layer, temperature, and nitrogen will likely play an important role in influencing boreal forests development after fire in future climates, and should be represented in models.

  8. Application of constraint-based satellite mission planning model in forest fire monitoring

    NASA Astrophysics Data System (ADS)

    Guo, Bingjun; Wang, Hongfei; Wu, Peng

    2017-10-01

    In this paper, a constraint-based satellite mission planning model is established based on the thought of constraint satisfaction. It includes target, request, observation, satellite, payload and other elements, with constraints linked up. The optimization goal of the model is to make full use of time and resources, and improve the efficiency of target observation. Greedy algorithm is used in the model solving to make observation plan and data transmission plan. Two simulation experiments are designed and carried out, which are routine monitoring of global forest fire and emergency monitoring of forest fires in Australia. The simulation results proved that the model and algorithm perform well. And the model is of good emergency response capability. Efficient and reasonable plan can be worked out to meet users' needs under complex cases of multiple payloads, multiple targets and variable priorities with this model.

  9. Tree cover bimodality in savannas and forests emerging from the switching between two fire dynamics.

    PubMed

    De Michele, Carlo; Accatino, Francesco

    2014-01-01

    Moist savannas and tropical forests share the same climatic conditions and occur side by side. Experimental evidences show that the tree cover of these ecosystems exhibits a bimodal frequency distribution. This is considered as a proof of savanna-forest bistability, predicted by dynamic vegetation models based on non-linear differential equations. Here, we propose a change of perspective about the bimodality of tree cover distribution. We show, using a simple matrix model of tree dynamics, how the bimodality of tree cover can emerge from the switching between two linear dynamics of trees, one in presence and one in absence of fire, with a feedback between fire and trees. As consequence, we find that the transitions between moist savannas and tropical forests, if sharp, are not necessarily catastrophic.

  10. Fire forbids fifty-fifty forest

    PubMed Central

    Staal, Arie; Hantson, Stijn; Holmgren, Milena; Pueyo, Salvador; Bernardi, Rafael E.; Flores, Bernardo M.; Xu, Chi; Scheffer, Marten

    2018-01-01

    Recent studies have interpreted patterns of remotely sensed tree cover as evidence that forest with intermediate tree cover might be unstable in the tropics, as it will tip into either a closed forest or a more open savanna state. Here we show that across all continents the frequency of wildfires rises sharply as tree cover falls below ~40%. Using a simple empirical model, we hypothesize that the steepness of this pattern causes intermediate tree cover (30‒60%) to be unstable for a broad range of assumptions on tree growth and fire-driven mortality. We show that across all continents, observed frequency distributions of tropical tree cover are consistent with this hypothesis. We argue that percolation of fire through an open landscape may explain the remarkably universal rise of fire frequency around a critical tree cover, but we show that simple percolation models cannot predict the actual threshold quantitatively. The fire-driven instability of intermediate states implies that tree cover will not change smoothly with climate or other stressors and shifts between closed forest and a state of low tree cover will likely tend to be relatively sharp and difficult to reverse. PMID:29351323

  11. Fire forbids fifty-fifty forest.

    PubMed

    van Nes, Egbert H; Staal, Arie; Hantson, Stijn; Holmgren, Milena; Pueyo, Salvador; Bernardi, Rafael E; Flores, Bernardo M; Xu, Chi; Scheffer, Marten

    2018-01-01

    Recent studies have interpreted patterns of remotely sensed tree cover as evidence that forest with intermediate tree cover might be unstable in the tropics, as it will tip into either a closed forest or a more open savanna state. Here we show that across all continents the frequency of wildfires rises sharply as tree cover falls below ~40%. Using a simple empirical model, we hypothesize that the steepness of this pattern causes intermediate tree cover (30‒60%) to be unstable for a broad range of assumptions on tree growth and fire-driven mortality. We show that across all continents, observed frequency distributions of tropical tree cover are consistent with this hypothesis. We argue that percolation of fire through an open landscape may explain the remarkably universal rise of fire frequency around a critical tree cover, but we show that simple percolation models cannot predict the actual threshold quantitatively. The fire-driven instability of intermediate states implies that tree cover will not change smoothly with climate or other stressors and shifts between closed forest and a state of low tree cover will likely tend to be relatively sharp and difficult to reverse.

  12. Regional air quality impacts of future fire emissions in Sumatra and Kalimantan

    NASA Astrophysics Data System (ADS)

    Marlier, Miriam E.; DeFries, Ruth S.; Kim, Patrick S.; Gaveau, David L. A.; Koplitz, Shannon N.; Jacob, Daniel J.; Mickley, Loretta J.; Margono, Belinda A.; Myers, Samuel S.

    2015-05-01

    Fire emissions associated with land cover change and land management contribute to the concentrations of atmospheric pollutants, which can affect regional air quality and climate. Mitigating these impacts requires a comprehensive understanding of the relationship between fires and different land cover change trajectories and land management strategies. We develop future fire emissions inventories from 2010-2030 for Sumatra and Kalimantan (Indonesian Borneo) to assess the impact of varying levels of forest and peatland conservation on air quality in Equatorial Asia. To compile these inventories, we combine detailed land cover information from published maps of forest extent, satellite fire radiative power observations, fire emissions from the Global Fire Emissions Database, and spatially explicit future land cover projections using a land cover change model. We apply the sensitivities of mean smoke concentrations to Indonesian fire emissions, calculated by the GEOS-Chem adjoint model, to our scenario-based future fire emissions inventories to quantify the different impacts of fires on surface air quality across Equatorial Asia. We find that public health impacts are highly sensitive to the location of fires, with emissions from Sumatra contributing more to smoke concentrations at population centers across the region than Kalimantan, which had higher emissions by more than a factor of two. Compared to business-as-usual projections, protecting peatlands from fires reduces smoke concentrations in the cities of Singapore and Palembang by 70% and 40%, and by 60% for the Equatorial Asian region, weighted by the population in each grid cell. Our results indicate the importance of focusing conservation priorities on protecting both forested (intact or logged) peatlands and non-forested peatlands from fire, even after considering potential leakage of deforestation pressure to other areas, in order to limit the impact of fire emissions on atmospheric smoke concentrations and subsequent health effects.

  13. Influence of disturbance on temperate forest productivity

    USGS Publications Warehouse

    Peters, Emily B.; Wythers, Kirk R.; Bradford, John B.; Reich, Peter B.

    2013-01-01

    Climate, tree species traits, and soil fertility are key controls on forest productivity. However, in most forest ecosystems, natural and human disturbances, such as wind throw, fire, and harvest, can also exert important and lasting direct and indirect influence over productivity. We used an ecosystem model, PnET-CN, to examine how disturbance type, intensity, and frequency influence net primary production (NPP) across a range of forest types from Minnesota and Wisconsin, USA. We assessed the importance of past disturbances on NPP, net N mineralization, foliar N, and leaf area index at 107 forest stands of differing types (aspen, jack pine, northern hardwood, black spruce) and disturbance history (fire, harvest) by comparing model simulations with observations. The model reasonably predicted differences among forest types in productivity, foliar N, leaf area index, and net N mineralization. Model simulations that included past disturbances minimally improved predictions compared to simulations without disturbance, suggesting the legacy of past disturbances played a minor role in influencing current forest productivity rates. Modeled NPP was more sensitive to the intensity of soil removal during a disturbance than the fraction of stand mortality or wood removal. Increasing crown fire frequency resulted in lower NPP, particularly for conifer forest types with longer leaf life spans and longer recovery times. These findings suggest that, over long time periods, moderate frequency disturbances are a relatively less important control on productivity than climate, soil, and species traits.

  14. Validation of BEHAVE fire behavior predictions in oak savannas using five fuel models

    Treesearch

    Keith Grabner; John Dwyer; Bruce Cutter

    1997-01-01

    Prescribed fire is a valuable tool in the restoration and management of oak savannas. BEHAVE, a fire behavior prediction system developed by the United States Forest Service, can be a useful tool when managing oak savannas with prescribed fire. BEHAVE predictions of fire rate-of-spread and flame length were validated using four standardized fuel models: Fuel Model 1 (...

  15. Modeling interactions betweenspotted owl and barred owl populations in fire-prone forests

    EPA Science Inventory

    Background / Question / Methods Efforts to conserve northern spotted owls (Strix occidentalis caurina) in the eastern Cascades of Washington must merge the challenges of providing sufficient structurally complex forest habitat in a fire-prone landscape with the limitations impos...

  16. First Order Fire Effects Model: FOFEM 4.0, user's guide

    Treesearch

    Elizabeth D. Reinhardt; Robert E. Keane; James K. Brown

    1997-01-01

    A First Order Fire Effects Model (FOFEM) was developed to predict the direct consequences of prescribed fire and wildfire. FOFEM computes duff and woody fuel consumption, smoke production, and fire-caused tree mortality for most forest and rangeland types in the United States. The model is available as a computer program for PC or Data General computer.

  17. Modeling regional-scale wildland fire emissions with the wildland fire emissions information system

    Treesearch

    Nancy H.F. French; Donald McKenzie; Tyler Erickson; Benjamin Koziol; Michael Billmire; K. Endsley; Naomi K.Y. Scheinerman; Liza Jenkins; Mary E. Miller; Roger Ottmar; Susan Prichard

    2014-01-01

    As carbon modeling tools become more comprehensive, spatial data are needed to improve quantitative maps of carbon emissions from fire. The Wildland Fire Emissions Information System (WFEIS) provides mapped estimates of carbon emissions from historical forest fires in the United States through a web browser. WFEIS improves access to data and provides a consistent...

  18. Jack Pine and Aspen Forest Floors in Northeastern Minnesota

    Treesearch

    Robert M. Loomis

    1977-01-01

    Characteristics of upland forest floors under mature jack pine and aspen in northeastern Minnesota were investigated. These fuel measurements were needed as inputs for fire behavior prediction models -- useful for fire management decisions. The forest floor weight averaged 33,955 kg/ha and depth averaged 7.1 cm. Bulk density averaged 17 kg/m3 for the L (litter)...

  19. Can landscape-level ecological restoration influence fire risk? A spatially-explicit assessment of a northern temperate-southern boreal forest landscape

    Treesearch

    Douglas J. Shinneman; Brian J. Palik; Meredith W. Cornett

    2012-01-01

    Management strategies to restore forest landscapes are often designed to concurrently reduce fire risk. However, the compatibility of these two objectives is not always clear, and uncoordinated management among landowners may have unintended consequences. We used a forest landscape simulation model to compare the effects of contemporary management and hypothetical...

  20. Thermal biology of eastern box turtles in a longleaf pine system managed with prescribed fire.

    PubMed

    Roe, John H; Wild, Kristoffer H; Hall, Carlisha A

    2017-10-01

    Fire can influence the microclimate of forest habitats by removing understory vegetation and surface debris. Temperature is often higher in recently burned forests owing to increased light penetration through the open understory. Because physiological processes are sensitive to temperature in ectotherms, we expected fire-maintained forests to improve the suitability of the thermal environment for turtles, and for turtles to seasonally associate with the most thermally-optimal habitats. Using a laboratory thermal gradient, we determined the thermal preference range (T set ) of eastern box turtles, Terrapene carolina, to be 27-31°C. Physical models simulating the body temperatures experienced by turtles in the field revealed that surface environments in a fire-maintained longleaf pine forest were 3°C warmer than adjacent unburned mixed hardwood/pine forests, but the fire-maintained forest was never of superior thermal quality owing to wider T e fluctuations above T set and exposure to extreme and potentially lethal temperatures. Radiotracked turtles using fire-managed longleaf pine forests maintained shell temperatures (T s ) approximately 2°C above those at a nearby unburned forest, but we observed only moderate seasonal changes in habitat use which were inconsistent with thermoregulatory behavior. We conclude that turtles were not responding strongly to the thermal heterogeneity generated by fire in our system, and that other aspects of the environment are likely more important in shaping habitat associations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Focused sunlight factor of forest fire danger assessment using Web-GIS and RS technologies

    NASA Astrophysics Data System (ADS)

    Baranovskiy, Nikolay V.; Sherstnyov, Vladislav S.; Yankovich, Elena P.; Engel, Marina V.; Belov, Vladimir V.

    2016-08-01

    Timiryazevskiy forestry of Tomsk region (Siberia, Russia) is a study area elaborated in current research. Forest fire danger assessment is based on unique technology using probabilistic criterion, statistical data on forest fires, meteorological conditions, forest sites classification and remote sensing data. MODIS products are used for estimating some meteorological conditions and current forest fire situation. Geonformation technologies are used for geospatial analysis of forest fire danger situation on controlled forested territories. GIS-engine provides opportunities to construct electronic maps with different levels of forest fire probability and support raster layer for satellite remote sensing data on current forest fires. Web-interface is used for data loading on specific web-site and for forest fire danger data representation via World Wide Web. Special web-forms provide interface for choosing of relevant input data in order to process the forest fire danger data and assess the forest fire probability.

  2. Climate drives inter-annual variability in probability of high severity fire occurrence in the western United States

    NASA Astrophysics Data System (ADS)

    Keyser, Alisa; Westerling, Anthony LeRoy

    2017-05-01

    A long history of fire suppression in the western United States has significantly changed forest structure and ecological function, leading to increasingly uncharacteristic fires in terms of size and severity. Prior analyses of fire severity in California forests showed that time since last fire and fire weather conditions predicted fire severity very well, while a larger regional analysis showed that topography and climate were important predictors of high severity fire. There has not yet been a large-scale study that incorporates topography, vegetation and fire-year climate to determine regional scale high severity fire occurrence. We developed models to predict the probability of high severity fire occurrence for the western US. We predict high severity fire occurrence with some accuracy, and identify the relative importance of predictor classes in determining the probability of high severity fire. The inclusion of both vegetation and fire-year climate predictors was critical for model skill in identifying fires with high fractional fire severity. The inclusion of fire-year climate variables allows this model to forecast inter-annual variability in areas at future risk of high severity fire, beyond what slower-changing fuel conditions alone can accomplish. This allows for more targeted land management, including resource allocation for fuels reduction treatments to decrease the risk of high severity fire.

  3. Tailored stakeholder products help provide a vulnerability and adaptation assessment of Greek forests due to climate change

    NASA Astrophysics Data System (ADS)

    Giannakopoulos, Christos; Karali, Anna; Roussos, Anargyros

    2014-05-01

    Greece, being part of the eastern Mediterranean basin, is an area particularly vulnerable to climate change and associated forest fire risk. The aim of this study is to assess the vulnerability of Greek forests to fire risk occurrence and identify potential adaptation options within the context of climate change through continuous interaction with local stakeholders. To address their needs, the following tools for the provision of climate information services were developed: 1. An application providing fire risk forecasts for the following 3 days (http://cirrus.meteo.noa.gr/forecast/bolam/index.htm) was developed from NOA to address the needs of short term fire planners. 2. A web-based application providing long term fire risk and other fire related indices changes due to climate change (time horizon up to 2050 and 2100) was developed in collaboration with the WWF Greece office to address the needs of long term fire policy makers (http://www.oikoskopio.gr/map/). 3. An educational tool was built in order to complement the two web-based tools and to further expand knowledge in fire risk modeling to address the needs for in-depth training. In particular, the second product provided the necessary information to assess the exposure to forest fires. To this aim, maps depicting the days with elevated fire risk (FWI>30) both for the control (1961-1990) and the near future period (2021-2050) were created by the web-application. FWI is a daily index that provides numerical ratings of relative fire potential based solely on weather observations. The meteorological inputs to the FWI System are daily noon values of temperature, air relative humidity, 10m wind speed and precipitation during the previous 24 hours. It was found that eastern lowlands are more exposed to fire risk followed by eastern high elevation areas, for both the control and near future period. The next step towards vulnerability assessment was to address sensitivity, ie the human-environmental conditions that can worsen or ameliorate the hazard. In our study static information concerning fire affecting factors, namely the topography and vegetation, was used to create a fire hazard map in order to assess the sensitivity factor. Land cover types for the year 2007 were combined with topographic information deriving from a digital elevation model order to produce these maps. High elevation continental areas were found to be the most sensitive areas followed by the lowland continental areas. Exposure and sensitivity were combined to produce the overall impact of climate change to forest fire risk. The adaptive capacity is defined by the ability of forests to adapt to changing environmental conditions. To assess the adaptive capacity of Greek forests, a Multi-Criteria Analysis (MCA) tool was implemented and used by the stakeholders. The major proposed adaptation measures for Greek forests included fire prevention measures and the inclusion of the private forest covered areas in the fire fighting. Finally, vulnerability of Greek forest to fire was estimated as the overall impact of climate change minus the forests' adaptive capacity and was found to be medium for most areas in the country. Acknowledgement: This work was supported by the EU project CLIM-RUN under contract FP7-ENV-2010-265192.

  4. Relative effects of climatic and local factors on fire occurrence in boreal forest landscapes of northeastern China.

    PubMed

    Wu, Zhiwei; He, Hong S; Yang, Jian; Liu, Zhihua; Liang, Yu

    2014-09-15

    Fire significantly affects species composition, structure, and ecosystem processes in boreal forests. Our study objective was to identify the relative effects of climate, vegetation, topography, and human activity on fire occurrence in Chinese boreal forest landscapes. We used historical fire ignition for 1966-2005 and the statistical method of Kernel Density Estimation to derive fire-occurrence density (number of fires/km(2)). The Random Forest models were used to quantify the relative effects of climate, vegetation, topography, and human activity on fire-occurrence density. Our results showed that fire-occurrence density tended to be spatially clustered. Human-caused fire occurrence was highly clustered at the southern part of the region, where human population density is high (comprising about 75% of the area's population). In the north-central areas where elevations are the highest in the region and less densely populated, lightning-caused fires were clustered. Climate factors (e.g., fine fuel and duff moisture content) were important at both regional and landscape scales. Human activity factors (e.g., distance to nearest settlement and road) were secondary to climate as the primary fire occurrence factors. Predictions of fire regimes often assume a strong linkage between climate and fire but usually with less emphasis placed on the effects of local factors such as human activity. We therefore suggest that accurate forecasting of fire regime should include human influences such as those measured by forest proximity to roads and human settlements. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genet, Helene; McGuire, A. David; Barrett, K.

    There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and testedmore » a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layercaused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness of 1.1 m on average by 2100. The combination of warming and fire led to a simulated cumulative loss of 9.6 kgC m 2 on average by 2100. Our analysis suggests that ecosystem carbon storage in boreal forests in interior Alaska is particularly vulnerable, primarily due to the combustion of organic layer thickness in fire and the related increase in active layer thickness that exposes previously protected permafrost soil carbon to decomposition.« less

  6. Climate effects on fire regimes and tree recruitment in Black Hills ponderosa pine forests.

    PubMed

    Brown, Peter M

    2006-10-01

    Climate influences forest structure through effects on both species demography (recruitment and mortality) and disturbance regimes. Here, I compare multi-century chronologies of regional fire years and tree recruitment from ponderosa pine forests in the Black Hills of southwestern South Dakota and northeastern Wyoming to reconstructions of precipitation and global circulation indices. Regional fire years were affected by droughts and variations in both Pacific and Atlantic sea surface temperatures. Fires were synchronous with La Niñas, cool phases of the Pacific Decadal Oscillation (PDO), and warm phases of the Atlantic Multidecadal Oscillation (AMO). These quasi-periodic circulation features are associated with drought conditions over much of the western United States. The opposite pattern (El Niño, warm PDO, cool AMO) was associated with fewer fires than expected. Regional tree recruitment largely occurred during wet periods in precipitation reconstructions, with the most abundant recruitment coeval with an extended pluvial from the late 1700s to early 1800s. Widespread even-aged cohorts likely were not the result of large crown fires causing overstory mortality, but rather were caused by optimal climate conditions that contributed to synchronous regional recruitment and longer intervals between surface fires. Synchronous recruitment driven by climate is an example of the Moran effect. The presence of abundant fire-scarred trees in multi-aged stands supports a prevailing historical model for ponderosa pine forests in which recurrent surface fires affected heterogenous forest structure, although the Black Hills apparently had a greater range of fire behavior and resulting forest structure over multi-decadal time scales than ponderosa pine forests of the Southwest that burned more often.

  7. Fire Regime and Ecosystem Effects of Climate-driven Changes in Rocky Mountains Hydrology

    NASA Astrophysics Data System (ADS)

    Westerling, A. L.; Das, T.; Lubetkin, K.; Romme, W.; Ryan, M. G.; Smithwick, E. A.; Turner, M.

    2009-12-01

    Western US Forest managers face more wildfires than ever before, and it is increasingly imperative to anticipate the consequences of this trend. Large fires in the northern Rocky Mountains have increased in association with warmer temperatures, earlier snowmelt, and longer fire seasons (1), and this trend is likely to continue with global warming (2). Increased wildfire occurrence is already a concern shared by managers from many federal land-management agencies (3). However, new analyses for the western US suggest that future climate could diverge even more rapidly from past climate than previously suggested. Current model projections suggest end-of-century hydroclimatic conditions like those of 1988 (the year of the well-known Yellowstone Fires) may represent close to the average year rather than an extreme year. The consequences of a shift of this magnitude for the fire regime, post-fire succession and carbon (C) balance of western forest ecosystems are well beyond what scientists have explored to date, and may fundamentally change the potential of western forests to sequester atmospheric C. We link hydroclimatic extremes (spring and summer temperature and cumulative water-year moisture deficit) to extreme fire years in northern Rockies forests, using large forest fire histories and 1/8-degree gridded historical hydrologic simulations (1950 - 2005) (4) forced with historical gridded temperature and precipitation (5). The frequency of extremes in hydroclimate associated with historic severe fire years in the northern Rocky Mountains is compared to those projected under a range of climate change projections, using global climate model runs for the A2 and B1 emissions pathways for three global climate models (NCAR PCM1, GFDL CM2.1, CNRM CM3). Coarse-scale climatic variables are downscaled to a 1/8 degree grid and used to force hydrologic simulations (6, 7). We will present preliminary results using these hydrologic simulations to model spatially explicit annual wildfire occurrence historically and under the above-cited future climate scenarios, and discuss how these results are being integrated with process-based ecosystem models and field data to model changes in carbon flux across the Greater Yellowstone Ecosystem landscape (8). 1. Westerling, Hidalgo, Cayan, Swetnam, Science 313, 940 (2006). 2. Tymstra, Flannigan, Armitage, Logan, Int’l J. Wildland Fire 16, 153 (2007). 3. U. S. G. A. O. GAO. (2007). 4. Liang, Lettenmaier, Wood, Burges. J. Geophys. Res. 99(D7), 14,415 (1994). 5. Maurer, Wood, Adam, Lettenmaier, Nijssen. J. Climate 15:3237 (2002). 6. Cayan, Maurer, Dettinger, Tyree, Hayhoe. Climatic Change 87(Suppl. 1) 21 (2008). 7. Hidalgo, Dettinger Cayan, CEC Report CEC-500-2007-123 (2008). 8. We acknowledge support from the Joint Fire Science Program (Project ID 09-3-01-47), the NOAA RISA program for California, and the US Forest Service.

  8. Database of in-situ field measurements for estimates of fuel consumption and fire emissions in Siberia

    NASA Astrophysics Data System (ADS)

    Kukavskaya, Elena; Conard, Susan; Buryak, Ludmila; Ivanova, Galina; Soja, Amber; Kalenskaya, Olga; Zhila, Sergey; Zarubin, Denis; Groisman, Pavel

    2016-04-01

    Wildfires show great variability in the amount of fuel consumed and carbon emitted to the atmosphere. Various types of models are used to calculate global or large scale regional fire emissions. However, in the databases used to estimate fuel consumptions, data for Russia are typically under-represented. Meanwhile, the differences in vegetation and fire regimes in the boreal forests in North America and Eurasia argue strongly for the need of regional ecosystem-specific data. For about 15 years we have been collecting field data on fuel loads and consumption in different ecosystem types of Siberia. We conducted a series of experimental burnings of varying fireline intensity in Scots pine and larch forests of central Siberia to obtain quantitative and qualitative data on fire behavior and carbon emissions. In addition, we examined wildfire behavior and effects in different vegetation types including Scots pine, Siberian pine, fir, birch, poplar, and larch-dominated forests; evergreen coniferous shrubs; grasslands, and peats. We investigated various ecosystem zones of Siberia (central and southern taiga, forest-steppe, steppe, mountains) in the different subjects of the Russian Federation (Krasnoyarsk Kray, Republic of Khakassia, Republic of Buryatia, Tuva Republic, Zabaikalsky Kray). To evaluate the impact of forest practices on fire emissions, burned and unburned logged sites and forest plantations were examined. We found large variations of fuel consumption and fire emission rates among different vegetation types depending on growing conditions, fire behavior characteristics and anthropogenic factors. Changes in the climate system result in an increase in fire frequency, area burned, the number of extreme fires, fire season length, fire season severity, and the number of ignitions from lightning. This leads to an increase of fire-related emissions of carbon to the atmosphere. The field measurement database we compiled is required for improving accuracy of existing biomass burning models and for use by air quality agencies in developing regional strategies to mitigate negative smoke impacts on human health and environment. The research was supported by the Grant of the President of the Russian Federation MK-4646.2015.5, RFBR grant # 15-04-06567, and the NASA LCLUC Program.

  9. Timber net value and physical output changes following wildfire in the northern Rocky Mountains: estimates for specific fire situations

    Treesearch

    Patrick J. Flowers; Patricia B. Shinkle; Daria A. Cain; Thomas J. Mills

    1985-01-01

    In the last decade, the fire management program of the Forest Service, U.S. Department of Agriculture, has come under closer scrutiny because of ever-rising program costs. The Forest Service has responded by conducting several studies analyzing the economic efficiency of its fire management program. Some components of the analytical models have been difficult to...

  10. Analyzing wildfire exposure and source–sink relationships on a fire prone forest landscape

    Treesearch

    Alan A. Ager; Nicole M. Vaillant; Mark A. Finney; Haiganoush K. Preisler

    2012-01-01

    We used simulation modeling to analyze wildfire exposure to social and ecological values on a 0.6 million ha national forest in central Oregon, USA. We simulated 50,000 wildfires that replicated recent fire events in the area and generated detailed maps of burn probability (BP) and fire intensity distributions. We also recorded the ignition locations and size of each...

  11. Litter Species Composition and Topographic Effects on Fuels and Modeled Fire Behavior in an Oak-Hickory Forest in the Eastern USA

    Treesearch

    Matthew B. Dickinson; Todd F. Hutchinson; Mark Dietenberger; Frederick Matt; Matthew P. Peters; Jian Yang

    2016-01-01

    Mesophytic species (esp. Acer rubrum) are increasingly replacing oaks (Quercus spp.) in fire-suppressed, deciduous oak-hickory forests of the eastern US. A pivotal hypothesis is that fuel beds derived from mesophytic litter are less likely than beds derived from oak litter to carry a fire and, if they do, are more likely to...

  12. A fuel treatment reduces potential fire severity and increases suppression efficiency in a Sierran mixed conifer forest

    Treesearch

    Jason J. Moghaddas

    2006-01-01

    Fuel treatments are being widely implemented on public and private lands across the western U.S. While scientists and managers have an understanding of how fuel treatments can modify potential fire behavior under modeled conditions, there is limited information on how treatments perform under real wildfire conditions in Sierran mixed conifer forests. The Bell Fire...

  13. Comparing modern and presettlement forest dynamics of a subboreal wilderness: Does spruce budworm enhance fire risk?

    USGS Publications Warehouse

    Sturtevant, Brian R.; Miranda, Brian R.; Shinneman, Douglas J.; Gustafson, Eric J.; Wolter, Peter T.

    2012-01-01

    Insect disturbance is often thought to increase fire risk through enhanced fuel loadings, particularly in coniferous forest ecosystems. Yet insect disturbances also affect successional pathways and landscape structure that interact with fire disturbances (and vice-versa) over longer time scales. We applied a landscape succession and disturbance model (LANDIS-II) to evaluate the relative strength of interactions between spruce budworm (Choristoneura fumiferana) outbreaks and fire disturbances in the Boundary Waters Canoe Area (BWCA) in northern Minnesota (USA). Disturbance interactions were evaluated for two different scenarios: presettlement forests and fire regimes vs. contemporary forests and fire regimes. Forest composition under the contemporary scenario trended toward mixtures of deciduous species (primarily Betula papyrifera and Populus spp.) and shade-tolerant conifers (Picea mariana, Abies balsamea, Thuja occidentalis), with disturbances dominated by a combination of budworm defoliation and high-severity fires. The presettlement scenario retained comparatively more “big pines” (i.e., Pinus strobus, P. resinosa) and tamarack (L. laricina), and experienced less budworm disturbance and a comparatively less-severe fire regime. Spruce budworm disturbance decreased area burned and fire severity under both scenarios when averaged across the entire 300-year simulations. Contrary to past research, area burned and fire severity during outbreak decades were each similar to that observed in non-outbreak decades. Our analyses suggest budworm disturbances within forests of the BWCA have a comparatively weak effect on long-term forest composition due to a combination of characteristics. These include strict host specificity, fine-scaled patchiness created by defoliation damage, and advance regeneration of its primary host, balsam fir (A. balsamea) that allows its host to persist despite repeated disturbances. Understanding the nature of the three-way interaction between budworm, fire, and composition has important ramifications for both fire mitigation strategies and ecosystem restoration initiatives. We conclude that budworm disturbance can partially mitigate long-term future fire risk by periodically reducing live ladder fuel within the mixed forest types of the BWCA but will do little to reverse the compositional trends caused in part by reduced fire rotations.

  14. The global distribution of ecosystems in a world without fire.

    PubMed

    Bond, W J; Woodward, F I; Midgley, G F

    2005-02-01

    This paper is the first global study of the extent to which fire determines global vegetation patterns by preventing ecosystems from achieving the potential height, biomass and dominant functional types expected under the ambient climate (climate potential). To determine climate potential, we simulated vegetation without fire using a dynamic global-vegetation model. Model results were tested against fire exclusion studies from different parts of the world. Simulated dominant growth forms and tree cover were compared with satellite-derived land- and tree-cover maps. Simulations were generally consistent with results of fire exclusion studies in southern Africa and elsewhere. Comparison of global 'fire off' simulations with landcover and treecover maps show that vast areas of humid C(4) grasslands and savannas, especially in South America and Africa, have the climate potential to form forests. These are the most frequently burnt ecosystems in the world. Without fire, closed forests would double from 27% to 56% of vegetated grid cells, mostly at the expense of C(4) plants but also of C(3) shrubs and grasses in cooler climates. C(4) grasses began spreading 6-8 Ma, long before human influence on fire regimes. Our results suggest that fire was a major factor in their spread into forested regions, splitting biotas into fire tolerant and intolerant taxa.

  15. A review of the relationships between drought and forest fire in the United States.

    PubMed

    Littell, Jeremy S; Peterson, David L; Riley, Karin L; Liu, Yongquiang; Luce, Charles H

    2016-07-01

    The historical and presettlement relationships between drought and wildfire are well documented in North America, with forest fire occurrence and area clearly increasing in response to drought. There is also evidence that drought interacts with other controls (forest productivity, topography, fire weather, management activities) to affect fire intensity, severity, extent, and frequency. Fire regime characteristics arise across many individual fires at a variety of spatial and temporal scales, so both weather and climate - including short- and long-term droughts - are important and influence several, but not all, aspects of fire regimes. We review relationships between drought and fire regimes in United States forests, fire-related drought metrics and expected changes in fire risk, and implications for fire management under climate change. Collectively, this points to a conceptual model of fire on real landscapes: fire regimes, and how they change through time, are products of fuels and how other factors affect their availability (abundance, arrangement, continuity) and flammability (moisture, chemical composition). Climate, management, and land use all affect availability, flammability, and probability of ignition differently in different parts of North America. From a fire ecology perspective, the concept of drought varies with scale, application, scientific or management objective, and ecosystem. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  16. Climate changes and wildfire alter vegetation of Yellowstone National Park, but forest cover persists

    USGS Publications Warehouse

    Clark, Jason A.; Loehman, Rachel A.; Keane, Robert E.

    2017-01-01

    We present landscape simulation results contrasting effects of changing climates on forest vegetation and fire regimes in Yellowstone National Park, USA, by mid-21st century. We simulated potential changes to fire dynamics and forest characteristics under three future climate projections representing a range of potential future conditions using the FireBGCv2 model. Under the future climate scenarios with moderate warming (>2°C) and moderate increases in precipitation (3–5%), model simulations resulted in 1.2–4.2 times more burned area, decreases in forest cover (10–44%), and reductions in basal area (14–60%). In these same scenarios, lodgepole pine (Pinus contorta) decreased in basal area (18–41%), while Douglas-fir (Pseudotsuga menziesii) basal area increased (21–58%). Conversely, mild warming (<2°C) coupled with greater increases in precipitation (12–13%) suggested an increase in forest cover and basal area by mid-century, with spruce and subalpine fir increasing in abundance. Overall, we found changes in forest tree species compositions were caused by the climate-mediated changes in fire regime (56–315% increase in annual area burned). Simulated changes in forest composition and fire regime under warming climates portray a landscape that shifts from lodgepole pine to Douglas-fir caused by the interaction between the magnitude and seasonality of future climate changes, by climate-induced changes in the frequency and intensity of wildfires, and by tree species response.

  17. The critical role of fire in catchment coevolution in South Eastern Australia

    NASA Astrophysics Data System (ADS)

    Nyman, P.; Inbar, A.; Lane, P. N. J.; Sheridan, G. J.

    2016-12-01

    Temperate south east Australian forested uplands are characterised by complex spatial patterns in forest types, soils and fire regimes, even within areas with similar geologies and landscape position. Preliminary measurements and experiments suggest that positive and negative feedbacks between the vegetation, fuels, fire frequency and soil erosion may control the coevolution of these observed system states. Here we propose the hypotheses that in this landscape post-fire soil erosion has played a dominant role in the coevolved system-state combinations of standing biomass, fire frequency and soil depth. To test the hypothesis a 1D simulation model was developed that links together an ecohydrological model to drive the biomass production and water and energy partitioning, a stochastic fire model that is controlled by climate, fuel load and moisture conditions, and a geomorphic model that controls soil production and fluvial and diffusive sediment transport rates. The model was calibrated to the range of existing observed quasi-equalibrium system-states of soil depth, standing biomass, fuel loading and fire frequency using field measurements from 12 instrumented eco-hydrologic microclimate research sites. The long-term partitioning of rainfall into evaporation, transpiration, and streamflow was calibrated against field and literature values. Fuel moisture and micro-climate variables were calibrated to the field microclimate stations. The calibrated model was able to reasonably replicate the observed quasi-equilibrium system-states and hydrologic outputs using current climate forcings operating over a 10,000 year period, providing confidence in the model structure and performance. The model was then used to test the hypothesis stated above, by alternatively including or excluding the post fire erosion process. An alternate hypothesis, whereby the observed system states are dominated by climate related differences in soil production rates was also tested in this way. The results support the hypothesis that feedbacks between fire, ecology, hydrology and geomorphology have played a critical role in the coevolution of south east Australian forested uplands. Similar pyro-eco-hydrologic feedbacks may play a critical role in catchment coevolution in other forested systems globally.

  18. Estimation of carbon emissions from wildfires in Alaskan boreal forests using AVHRR data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasischke, E.S.; French, N.H.F.; Bourgeau-Chavez, L.L

    1993-06-01

    The objectives of this research study were to evaluate the utility of using AVHRR data for locating and measuring the areal extent of wildfires in the boreal forests of Alaska and to estimate the amount of carbon being released during these fires. Techniques were developed to using the normalized difference vegetation signature derived from AVHRR data to detect and measure the area of fires in Alaska. A model was developed to estimate the amount of biomass/carbon being stored in Alaskan boreal forests, and the amount of carbon released during fires. The AVHRR analysis resulted in detection of > 83% ofmore » all forest fires greater than 2,000 ha in size in the years 1990 and 1991. The areal estimate derived from AVHRR data were 75% of the area mapped by the Alaska Fire Service for these years. Using fire areas and locations for 1954 through 1992, it was determined that on average, 13.0 gm-C-m-2 of boreal forest area is released during fires every year. This estimate is two to six times greater than previous reported estimates. Our conclusions are that the analysis of AVHRR data represents a viable means for detecting and mapping fires in boreal regions on a global basis.« less

  19. Mega-fire Recovery in Dry Conifer Forests of the Interior West

    NASA Astrophysics Data System (ADS)

    Malone, S. L.; Fornwalt, P.; Chambers, M. E.; Battaglia, M.

    2015-12-01

    Wildfire is a complex landscape process with great uncertainty in whether trends in size and severity are shifting trajectories for ecosystem recovery that are outside of the historical range of variability. Considering that wildfire size and severity is likely to increase into the future with a drier climate, it is important that we understand wildfire effects and ecosystem recovery. To evaluate how ecosystems recover from wildfire we measured spatial patterns in regeneration and mapped tree refugia within mega-fire perimeters (Hayman, Jasper, Bobcat, and Grizzly Gulch) in ponderosa pine (Pinus ponderosa) dominated forest. On average, high severity fire effects accounted for > 15% of burned area and increased with fire size. Areas with high severity fire effects contained 1 - 15% tree refugia cover, compared to 37 - 70% observed in low severity areas . Large high severity patches with low coverage of tree refugia, were more frequent in larger fires and regeneration distances required to initiate forest recovery far exceeded 1.5 canopy height or 200 m, distances where the vast majority of regeneration is likely to arise. Using a recovery model driven by distance, we estimate recovery times between 300 to > 1000 years for these mega-fires. In Western dry conifer forests, large patches of stand replacing fire are likely to lead to uneven aged forest and very long recovery times.

  20. Multi-temporal LiDAR and Landsat quantification of fire-induced changes to forest structure

    USGS Publications Warehouse

    McCarley, T. Ryan; Kolden, Crystal A.; Vaillant, Nicole M.; Hudak, Andrew T.; Smith, Alistair M.S.; Wing, Brian M.; Kellogg, Bryce; Kreitler, Jason R.

    2017-01-01

    Measuring post-fire effects at landscape scales is critical to an ecological understanding of wildfire effects. Predominantly this is accomplished with either multi-spectral remote sensing data or through ground-based field sampling plots. While these methods are important, field data is usually limited to opportunistic post-fire observations, and spectral data often lacks validation with specific variables of change. Additional uncertainty remains regarding how best to account for environmental variables influencing fire effects (e.g., weather) for which observational data cannot easily be acquired, and whether pre-fire agents of change such as bark beetle and timber harvest impact model accuracy. This study quantifies wildfire effects by correlating changes in forest structure derived from multi-temporal Light Detection and Ranging (LiDAR) acquisitions to multi-temporal spectral changes captured by the Landsat Thematic Mapper and Operational Land Imager for the 2012 Pole Creek Fire in central Oregon. Spatial regression modeling was assessed as a methodology to account for spatial autocorrelation, and model consistency was quantified across areas impacted by pre-fire mountain pine beetle and timber harvest. The strongest relationship (pseudo-r2 = 0.86, p < 0.0001) was observed between the ratio of shortwave infrared and near infrared reflectance (d74) and LiDAR-derived estimate of canopy cover change. Relationships between percentage of LiDAR returns in forest strata and spectral indices generally increased in strength with strata height. Structural measurements made closer to the ground were not well correlated. The spatial regression approach improved all relationships, demonstrating its utility, but model performance declined across pre-fire agents of change, suggesting that such studies should stratify by pre-fire forest condition. This study establishes that spectral indices such as d74 and dNBR are most sensitive to wildfire-caused structural changes such as reduction in canopy cover and perform best when that structure has not been reduced pre-fire.

  1. Climate Change Transforms Fire Regimes but Does not Eliminate Forest Carbon Sequestration in the Greater Yellowstone Ecosystem

    NASA Astrophysics Data System (ADS)

    Henne, P. D.; Hawbaker, T. J.; Berryman, E.

    2017-12-01

    Annual area burned in the Rocky Mountains varies with climatic conditions. However, projecting long-term changes in wildfire presents an enduring challenge because climate also constrains vegetation and fuel availability. We combined an aridity-threshold fire model with the Landis-II dynamic landscape vegetation model (NECN extension) to project climate change impacts on vegetation, area burned, and ecosystem carbon balance in the Greater Yellowstone Ecosystem (GYE). We developed a fire model that relates drought stress to area burned by quantifying an aridity threshold separating large and small years in 15 ecoregions in the Intermountain West. A significant positive correlation (r2 = 0.97) exists between mean fire-season aridity and ecoregion-specific aridity thresholds. We simulated vegetation and fire dynamics in the GYE at 250 m spatial resolution with Landis-II, using projections from five climate models and two emissions scenarios for the period 1980-2100 AD. We determined if each simulation year exceeded the regional aridity threshold, then randomly drew the number of fires and size of individual fires from fire-size distributions from large or small fire years. Burned area increases dramatically in most climate scenarios, especially after 2060, when most years exceed the aridity threshold. Productivity gains due to rising temperatures partially offset biomass lost to fire, but C stocks plateau or decline after 2060 in most simulations as burned area increases, and drought stress causes post-fire regeneration to decline at low elevations. However, species level changes (e.g. expansion by drought-tolerant Pseuodotsuga menziesii) help maintain productivity in sites where water becomes limiting. Fire-adapted Pinus contorta occupies less total area, but a greater proportion of remaining forests, and Picea engelmannii and Abies lasiocarpa significantly decline. Although fire and climate change will alter species distributions and forest structure, our results suggest that the GYE can maintain a C sink through 2100. However, C stocks will likely shift to higher elevations, and forests will be less resilient to disturbance, in a warmer future. Our landscape-level approach identifies regions likely to maintain high conservation value and ecosystem services under multiple climate scenarios.

  2. Effects of biotic feedback and harvest management on boreal forest fire activity under climate change.

    PubMed

    Krawchuk, Meg A; Cumming, Steve G

    2011-01-01

    Predictions of future fire activity over Canada's boreal forests have primarily been generated from climate data following assumptions that direct effects of weather will stand alone in contributing to changes in burning. However, this assumption needs explicit testing. First, areas recently burned can be less likely to burn again in the near term, and this endogenous regulation suggests the potential for self-limiting, negative biotic feedback to regional climate-driven increases in fire. Second, forest harvest is ongoing, and resulting changes in vegetation structure have been shown to affect fire activity. Consequently, we tested the assumption that fire activity will be driven by changes in fire weather without regulation by biotic feedback or regional harvest-driven changes in vegetation structure in the mixedwood boreal forest of Alberta, Canada, using a simulation experiment that includes the interaction of fire, stand dynamics, climate change, and clear cut harvest management. We found that climate change projected with fire weather indices calculated from the Canadian Regional Climate Model increased fire activity, as expected, and our simulations established evidence that the magnitude of regional increase in fire was sufficient to generate negative feedback to subsequent fire activity. We illustrate a 39% (1.39-fold) increase in fire initiation and 47% (1.47-fold) increase in area burned when climate and stand dynamics were included in simulations, yet 48% (1.48-fold) and 61% (1.61-fold) increases, respectively, when climate was considered alone. Thus, although biotic feedbacks reduced burned area estimates in important ways, they were secondary to the direct effect of climate on fire. We then show that ongoing harvest management in this region changed landscape composition in a way that led to reduced fire activity, even in the context of climate change. Although forest harvesting resulted in decreased regional fire activity when compared to unharvested conditions, forest composition and age structure was shifted substantially, illustrating a trade-off between management goals to minimize fire and conservation goals to emulate natural disturbance.

  3. Convergence of bark investment according to fire and climate structures ecosystem vulnerability to future change.

    PubMed

    Pellegrini, Adam F A; Anderegg, William R L; Paine, C E Timothy; Hoffmann, William A; Kartzinel, Tyler; Rabin, Sam S; Sheil, Douglas; Franco, Augusto C; Pacala, Stephen W

    2017-03-01

    Fire regimes in savannas and forests are changing over much of the world. Anticipating the impact of these changes requires understanding how plants are adapted to fire. In this study, we test whether fire imposes a broad selective force on a key fire-tolerance trait, bark thickness, across 572 tree species distributed worldwide. We show that investment in thick bark is a pervasive adaptation in frequently burned areas across savannas and forests in both temperate and tropical regions where surface fires occur. Geographic variability in bark thickness is largely explained by annual burned area and precipitation seasonality. Combining environmental and species distribution data allowed us to assess vulnerability to future climate and fire conditions: tropical rainforests are especially vulnerable, whereas seasonal forests and savannas are more robust. The strong link between fire and bark thickness provides an avenue for assessing the vulnerability of tree communities to fire and demands inclusion in global models. © 2017 John Wiley & Sons Ltd/CNRS.

  4. The effectiveness and limitations of fuel modeling using the fire and fuels extension to the Forest Vegetation Simulator

    Treesearch

    Erin K. Noonan-Wright; Nicole M. Vaillant; Alicia L. Reiner

    2014-01-01

    Fuel treatment effectiveness is often evaluated with fire behavior modeling systems that use fuel models to generate fire behavior outputs. How surface fuels are assigned, either using one of the 53 stylized fuel models or developing custom fuel models, can affect predicted fire behavior. We collected surface and canopy fuels data before and 1, 2, 5, and 8 years after...

  5. Birth-jump processes and application to forest fire spotting.

    PubMed

    Hillen, T; Greese, B; Martin, J; de Vries, G

    2015-01-01

    Birth-jump models are designed to describe population models for which growth and spatial spread cannot be decoupled. A birth-jump model is a nonlinear integro-differential equation. We present two different derivations of this equation, one based on a random walk approach and the other based on a two-compartmental reaction-diffusion model. In the case that the redistribution kernels are highly concentrated, we show that the integro-differential equation can be approximated by a reaction-diffusion equation, in which the proliferation rate contributes to both the diffusion term and the reaction term. We completely solve the corresponding critical domain size problem and the minimal wave speed problem. Birth-jump models can be applied in many areas in mathematical biology. We highlight an application of our results in the context of forest fire spread through spotting. We show that spotting increases the invasion speed of a forest fire front.

  6. A simple physical model for forest fire spread

    Treesearch

    E. Koo; P. Pagni; J. Woycheese; S. Stephens; D. Weise; J. Huff

    2005-01-01

    Based on energy conservation and detailed heat transfer mechanisms, a simple physical model for fire spread is presented for the limit of one-dimensional steady-state contiguous spread of a line fire in a thermally-thin uniform porous fuel bed. The solution for the fire spread rate is found as an eigenvalue from this model with appropriate boundary conditions through a...

  7. Integrating climatic and fuels information into National Fire Risk Decision Support Tools

    Treesearch

    W. Cooke; V. Anantharaj; C. Wax; J. Choi; K. Grala; M. Jolly; G.P. Dixon; J. Dyer; D.L. Evans; G.B. Goodrich

    2007-01-01

    The Wildland Fire Assessment System (WFAS) is a component of the U.S. Department of Agriculture, Forest Service Decision Support Systems (DSS) that support fire potential modeling. Fire potential models for Mississippi and for Eastern fire environments have been developed as part of a National Aeronautic and Space Agency-funded study aimed at demonstrating the utility...

  8. Model gives a 3-month warning of Amazonian forest fires

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2011-08-01

    The widespread drought suffered by the Amazon rain forest in the summer of 2005 was heralded at the time as the drought of the century. Because of the dehydrated conditions, supplemented by slash and burn agricultural practices, the drought led to widespread forest fires throughout the western Amazon, a portion of the rain forest usually too lush to support spreading wildfires. Only 5 years later, the 2005 season was outdone by even more widespread drought, with fires decimating more than 3000 square kilometers of western Amazonian rain forest. Blame for the wildfires has been consistently laid on deforestation and agricultural practices, but a convincing climatological explanation exists as well. (Geophysical Research Letters, doi:10.1029/2011GL047392, 2011)

  9. Fire evolution in the radioactive forests of Ukraine and Belarus: future risks for the population and the environment

    Treesearch

    N. Evangeliou; Y. Balkanski; A. Cozic; WeiMin Hao; F. Mouillot; K. Thonicke; R. Paugam; S. Zibtsev; T. A. Mousseau; R. Wang; B. Poulter; A. Petkov; C. Yue; P. Cadule; B. Koffi; J. W. Kaiser; A. P. Moller

    2015-01-01

    In this paper, we analyze the current and future status of forests in Ukraine and Belarus that were contaminated after the nuclear disaster in 1986. Using several models, together with remote-sensing data and observations, we studied how climate change in these forests may affect fire regimes. We investigated the possibility of 137Cs displacement over Europe...

  10. Returning fire to Ozark Highland forest ecosystems: Effects on advance regeneration

    Treesearch

    Daniel C. Dey; George Hartman

    2005-01-01

    In mature forests of the Ozark Highlands, MO, USA, we evaluated fire effects on the survival and growth of tree seedlings and saplings (i.e., advance regeneration), and used this information to develop species-specific models that predict the probability of survival based on initial tree size and number of times burned. A 1000 ha forest area was divided into five units...

  11. Recreational use management and wildfires in Southern California: Using GIS and visual landscape simulation models for economic assessment

    Treesearch

    Daniel Moya; Armando González-Cabán; José J. Sánchez; José de la Heras

    2013-01-01

    Recent advances in fire behavior are conforming strategies for forest management in nonindustrial private and public forests in the western United States. The strategy developed should include identifying the most cost-effective ways for allocating fire management budgets. In recreational areas, visitors’ opinion should be included in forest planning decisions and...

  12. Fire as the dominant driver of central Canadian boreal forest carbon balance.

    PubMed

    Bond-Lamberty, Ben; Peckham, Scott D; Ahl, Douglas E; Gower, Stith T

    2007-11-01

    Changes in climate, atmospheric carbon dioxide concentration and fire regimes have been occurring for decades in the global boreal forest, with future climate change likely to increase fire frequency--the primary disturbance agent in most boreal forests. Previous attempts to assess quantitatively the effect of changing environmental conditions on the net boreal forest carbon balance have not taken into account the competition between different vegetation types on a large scale. Here we use a process model with three competing vascular and non-vascular vegetation types to examine the effects of climate, carbon dioxide concentrations and fire disturbance on net biome production, net primary production and vegetation dominance in 100 Mha of Canadian boreal forest. We find that the carbon balance of this region was driven by changes in fire disturbance from 1948 to 2005. Climate changes affected the variability, but not the mean, of the landscape carbon balance, with precipitation exerting a more significant effect than temperature. We show that more frequent and larger fires in the late twentieth century resulted in deciduous trees and mosses increasing production at the expense of coniferous trees. Our model did not however exhibit the increases in total forest net primary production that have been inferred from satellite data. We find that poor soil drainage decreased the variability of the landscape carbon balance, which suggests that increased climate and hydrological changes have the potential to affect disproportionately the carbon dynamics of these areas. Overall, we conclude that direct ecophysiological changes resulting from global climate change have not yet been felt in this large boreal region. Variations in the landscape carbon balance and vegetation dominance have so far been driven largely by increases in fire frequency.

  13. Climate change impacts on forest fires: the stakeholders' perspective

    NASA Astrophysics Data System (ADS)

    Giannakopoulos, C.; Roussos, A.; Karali, A.; Hatzaki, M.; Xanthopoulos, G.; Chatzinikos, E.; Fyllas, N.; Georgiades, N.; Karetsos, G.; Maheras, G.; Nikolaou, I.; Proutsos, N.; Sbarounis, T.; Tsaggari, K.; Tzamtzis, I.; Goodess, C.

    2012-04-01

    In this work, we present a synthesis of the presentations and discussions which arose during a workshop on 'Impacts of climate change on forest fires' held in September 2011 at the National Observatory of Athens, Greece in the framework of EU project CLIMRUN. At first, a general presentation about climate change and extremes in the Greek territory provided the necessary background to the audience and highlighted the need for data and information exchange between scientists and stakeholders through climate services within CLIMRUN. Discussions and presentations that followed linked climate with forest science through the use of a meteorological index for fire risk and future projections of fire danger using regional climate models. The current situation on Greek forests was also presented, as well as future steps that should be taken to ameliorate the situation under a climate change world. A time series analysis of changes in forest fires using available historical data on forest ecosystems in Greece was given in this session. This led to the topic of forest fire risk assessment and fire prevention, stating all actions towards sustainable management of forests and effective mechanisms to control fires under climate change. Options for a smooth adaptation of forests to climate change were discussed together with the lessons learned on practical level on prevention, repression and rehabilitation of forest fires. In between there were useful interventions on sustainable hunting and biodiversity protection and on climate change impacts on forest ecosystems dynamics. The importance of developing an educational program for primary/secondary school students on forest fire management was also highlighted. The perspective of forest stakeholders on climate change and how this change can affect their current or future activities was addressed through a questionnaire they were asked to complete. Results showed that the majority of the participants consider climate variability to be important or very important and to influence their activities. Extreme climate events, desertification and drought were regarded as the most important environmental problems along with loss of biodiversity. Most of the participants answered that they use historical data for research, and would welcome climate data and services targeted to their sector if offered. Acknowledgement: This work was supported by the EU project CLIMRUN under contract FP7-ENV-2010- 265192.

  14. Estimating aboveground forest biomass carbon and fire consumption in the U.S. Utah High Plateaus using data from the Forest Inventory and Analysis program, Landsat, and LANDFIRE

    USGS Publications Warehouse

    Chen, Xuexia; Liu, Shuguang; Zhu, Zhiliang; Vogelmann, James E.; Li, Zhengpeng; Ohlen, Donald O.

    2011-01-01

    The concentrations of CO2 and other greenhouse gases in the atmosphere have been increasing and greatly affecting global climate and socio-economic systems. Actively growing forests are generally considered to be a major carbon sink, but forest wildfires lead to large releases of biomass carbon into the atmosphere. Aboveground forest biomass carbon (AFBC), an important ecological indicator, and fire-induced carbon emissions at regional scales are highly relevant to forest sustainable management and climate change. It is challenging to accurately estimate the spatial distribution of AFBC across large areas because of the spatial heterogeneity of forest cover types and canopy structure. In this study, Forest Inventory and Analysis (FIA) data, Landsat, and Landscape Fire and Resource Management Planning Tools Project (LANDFIRE) data were integrated in a regression tree model for estimating AFBC at a 30-m resolution in the Utah High Plateaus. AFBC were calculated from 225 FIA field plots and used as the dependent variable in the model. Of these plots, 10% were held out for model evaluation with stratified random sampling, and the other 90% were used as training data to develop the regression tree model. Independent variable layers included Landsat imagery and the derived spectral indicators, digital elevation model (DEM) data and derivatives, biophysical gradient data, existing vegetation cover type and vegetation structure. The cross-validation correlation coefficient (r value) was 0.81 for the training model. Independent validation using withheld plot data was similar with r value of 0.82. This validated regression tree model was applied to map AFBC in the Utah High Plateaus and then combined with burn severity information to estimate loss of AFBC in the Longston fire of Zion National Park in 2001. The final dataset represented 24 forest cover types for a 4 million ha forested area. We estimated a total of 353 Tg AFBC with an average of 87 MgC/ha in the Utah High Plateaus. We also estimated that 8054 Mg AFBC were released from 2.24 km2 burned forest area in the Longston fire. These results demonstrate that an AFBC spatial map and estimated biomass carbon consumption can readily be generated using existing database. The methodology provides a consistent, practical, and inexpensive way for estimating AFBC at 30-m resolution over large areas throughout the United States.

  15. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity

    NASA Astrophysics Data System (ADS)

    Pellegrini, Adam F. A.; Ahlström, Anders; Hobbie, Sarah E.; Reich, Peter B.; Nieradzik, Lars P.; Staver, A. Carla; Scharenbroch, Bryant C.; Jumpponen, Ari; Anderegg, William R. L.; Randerson, James T.; Jackson, Robert B.

    2018-01-01

    Fire frequency is changing globally and is projected to affect the global carbon cycle and climate. However, uncertainty about how ecosystems respond to decadal changes in fire frequency makes it difficult to predict the effects of altered fire regimes on the carbon cycle; for instance, we do not fully understand the long-term effects of fire on soil carbon and nutrient storage, or whether fire-driven nutrient losses limit plant productivity. Here we analyse data from 48 sites in savanna grasslands, broadleaf forests and needleleaf forests spanning up to 65 years, during which time the frequency of fires was altered at each site. We find that frequently burned plots experienced a decline in surface soil carbon and nitrogen that was non-saturating through time, having 36 per cent (±13 per cent) less carbon and 38 per cent (±16 per cent) less nitrogen after 64 years than plots that were protected from fire. Fire-driven carbon and nitrogen losses were substantial in savanna grasslands and broadleaf forests, but not in temperate and boreal needleleaf forests. We also observe comparable soil carbon and nitrogen losses in an independent field dataset and in dynamic model simulations of global vegetation. The model study predicts that the long-term losses of soil nitrogen that result from more frequent burning may in turn decrease the carbon that is sequestered by net primary productivity by about 20 per cent of the total carbon that is emitted from burning biomass over the same period. Furthermore, we estimate that the effects of changes in fire frequency on ecosystem carbon storage may be 30 per cent too low if they do not include multidecadal changes in soil carbon, especially in drier savanna grasslands. Future changes in fire frequency may shift ecosystem carbon storage by changing soil carbon pools and nitrogen limitations on plant growth, altering the carbon sink capacity of frequently burning savanna grasslands and broadleaf forests.

  16. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity.

    PubMed

    Pellegrini, Adam F A; Ahlström, Anders; Hobbie, Sarah E; Reich, Peter B; Nieradzik, Lars P; Staver, A Carla; Scharenbroch, Bryant C; Jumpponen, Ari; Anderegg, William R L; Randerson, James T; Jackson, Robert B

    2018-01-11

    Fire frequency is changing globally and is projected to affect the global carbon cycle and climate. However, uncertainty about how ecosystems respond to decadal changes in fire frequency makes it difficult to predict the effects of altered fire regimes on the carbon cycle; for instance, we do not fully understand the long-term effects of fire on soil carbon and nutrient storage, or whether fire-driven nutrient losses limit plant productivity. Here we analyse data from 48 sites in savanna grasslands, broadleaf forests and needleleaf forests spanning up to 65 years, during which time the frequency of fires was altered at each site. We find that frequently burned plots experienced a decline in surface soil carbon and nitrogen that was non-saturating through time, having 36 per cent (±13 per cent) less carbon and 38 per cent (±16 per cent) less nitrogen after 64 years than plots that were protected from fire. Fire-driven carbon and nitrogen losses were substantial in savanna grasslands and broadleaf forests, but not in temperate and boreal needleleaf forests. We also observe comparable soil carbon and nitrogen losses in an independent field dataset and in dynamic model simulations of global vegetation. The model study predicts that the long-term losses of soil nitrogen that result from more frequent burning may in turn decrease the carbon that is sequestered by net primary productivity by about 20 per cent of the total carbon that is emitted from burning biomass over the same period. Furthermore, we estimate that the effects of changes in fire frequency on ecosystem carbon storage may be 30 per cent too low if they do not include multidecadal changes in soil carbon, especially in drier savanna grasslands. Future changes in fire frequency may shift ecosystem carbon storage by changing soil carbon pools and nitrogen limitations on plant growth, altering the carbon sink capacity of frequently burning savanna grasslands and broadleaf forests.

  17. Quantifying the Carbon Balance of Forest Restoration and Wildfire under Projected Climate in the Fire-Prone Southwestern US.

    PubMed

    Hurteau, Matthew D

    2017-01-01

    Climate projections for the southwestern US suggest a warmer, drier future and have the potential to impact forest carbon (C) sequestration and post-fire C recovery. Restoring forest structure and surface fire regimes initially decreases total ecosystem carbon (TEC), but can stabilize the remaining C by moderating wildfire behavior. Previous research has demonstrated that fire maintained forests can store more C over time than fire suppressed forests in the presence of wildfire. However, because the climate future is uncertain, I sought to determine the efficacy of forest management to moderate fire behavior and its effect on forest C dynamics under current and projected climate. I used the LANDIS-II model to simulate carbon dynamics under early (2010-2019), mid (2050-2059), and late (2090-2099) century climate projections for a ponderosa pine (Pinus ponderosa) dominated landscape in northern Arizona. I ran 100-year simulations with two different treatments (control, thin and burn) and a 1 in 50 chance of wildfire occurring. I found that control TEC had a consistent decline throughout the simulation period, regardless of climate. Thin and burn TEC increased following treatment implementation and showed more differentiation than the control in response to climate, with late-century climate having the lowest TEC. Treatment efficacy, as measured by mean fire severity, was not impacted by climate. Fire effects were evident in the cumulative net ecosystem exchange (NEE) for the different treatments. Over the simulation period, 32.8-48.9% of the control landscape was either C neutral or a C source to the atmosphere and greater than 90% of the thin and burn landscape was a moderate C sink. These results suggest that in southwestern ponderosa pine, restoring forest structure and surface fire regimes provides a reasonable hedge against the uncertainty of future climate change for maintaining the forest C sink.

  18. Quantifying the Carbon Balance of Forest Restoration and Wildfire under Projected Climate in the Fire-Prone Southwestern US

    PubMed Central

    2017-01-01

    Climate projections for the southwestern US suggest a warmer, drier future and have the potential to impact forest carbon (C) sequestration and post-fire C recovery. Restoring forest structure and surface fire regimes initially decreases total ecosystem carbon (TEC), but can stabilize the remaining C by moderating wildfire behavior. Previous research has demonstrated that fire maintained forests can store more C over time than fire suppressed forests in the presence of wildfire. However, because the climate future is uncertain, I sought to determine the efficacy of forest management to moderate fire behavior and its effect on forest C dynamics under current and projected climate. I used the LANDIS-II model to simulate carbon dynamics under early (2010–2019), mid (2050–2059), and late (2090–2099) century climate projections for a ponderosa pine (Pinus ponderosa) dominated landscape in northern Arizona. I ran 100-year simulations with two different treatments (control, thin and burn) and a 1 in 50 chance of wildfire occurring. I found that control TEC had a consistent decline throughout the simulation period, regardless of climate. Thin and burn TEC increased following treatment implementation and showed more differentiation than the control in response to climate, with late-century climate having the lowest TEC. Treatment efficacy, as measured by mean fire severity, was not impacted by climate. Fire effects were evident in the cumulative net ecosystem exchange (NEE) for the different treatments. Over the simulation period, 32.8–48.9% of the control landscape was either C neutral or a C source to the atmosphere and greater than 90% of the thin and burn landscape was a moderate C sink. These results suggest that in southwestern ponderosa pine, restoring forest structure and surface fire regimes provides a reasonable hedge against the uncertainty of future climate change for maintaining the forest C sink. PMID:28046079

  19. Predicting moisture dynamics of fine understory fuels in a moist tropical rainforest system: results of a pilot study undertaken to identify proxy variables useful for rating fire danger.

    PubMed

    Ray, David; Nepstad, Dan; Brando, Paulo

    2010-08-01

    *The use of fire as a land management tool in the moist tropics often has the unintended consequence of degrading adjacent forest, particularly during severe droughts. Reliable models of fire danger are needed to help mitigate these impacts. *Here, we studied the moisture dynamics of fine understory fuels in the east-central Brazilian Amazon during the 2003 dry season. Drying stations established under varying amounts of canopy cover (leaf area index (LAI) = 0 - 5.3) were subjected to a range of water inputs (5-15 mm) and models were developed to forecast litter moisture content (LMC). Predictions were then compared with independent field data. *A multiple linear regression relating litter moisture content to forest structure (LAI), ambient vapor pressure deficit (VPD(M)) and an index of elapsed time since a precipitation event (d(-1)) was identified as the best-fit model (adjusted R(2) = 0.89). Relative to the independent observations, model predictions were relatively unbiased when the LMC was

  20. Simulating fire and forest dynamics for a coordinated landscape fuel treatment project in the Sierra Nevada

    Treesearch

    Brandon M. Collins; Scott L. Stephens; Gary B. Roller; John Battles

    2011-01-01

    We evaluate an actual landscape fuel treatment project that was designed by local U. S. Forest Service managers in the northern Sierra Nevada. We model the effects of this project at reducing landscape-level fire behavior at multiple time steps, up to nearly 30 yr beyond treatment implementation. Additionally, we modeled planned treatments under multiple diameter-...

  1. Evaluating the performance and mapping of three fuel classification systems using Forest Inventory and Analysis surface fuel measurements

    Treesearch

    Robert E. Keane; Jason M. Herynk; Chris Toney; Shawn P. Urbanski; Duncan C. Lutes; Roger D. Ottmar

    2013-01-01

    Fuel Loading Models (FLMs) and Fuel Characteristic Classification System (FCCSs) fuelbeds are used throughout wildland fire science and management to simplify fuel inputs into fire behavior and effects models, but they have yet to be thoroughly evaluated with field data. In this study, we used a large dataset of Forest Inventory and Analysis (FIA) surface fuel...

  2. [Research progress in post-fire debris flow].

    PubMed

    Di, Xue-ying; Tao, Yu-zhu

    2013-08-01

    The occurrence of the secondary disasters of forest fire has significant impacts on the environment quality and human health and safety. Post-fire debris flow is one of the most hazardous secondary disasters of forest fire. To understand the occurrence conditions of post-fire debris flow and to master its occurrence situation are the critical elements in post-fire hazard assessment. From the viewpoints of vegetation, precipitation threshold and debris flow material sources, this paper elaborated the impacts of forest fire on the debris flow, analyzed the geologic and geomorphic conditions, precipitation and slope condition that caused the post-fire debris flow as well as the primary mechanisms of debris-flow initiation caused by shallow landslide or surface runoff, and reviewed the research progress in the prediction and forecast of post-fire debris flow and the related control measures. In the future research, four aspects to be focused on were proposed, i. e., the quantification of the relationships between the fire behaviors and environmental factors and the post-fire debris flow, the quantitative research on the post-fire debris flow initiation and movement processes, the mechanistic model of post-fire debris flow, and the rapid and efficient control countermeasures of post-fire debris flow.

  3. Resource-dependent growth models for Sierran mixed-conifer saplings

    Treesearch

    S.W. Bigelow; M.P. North; W.R. Horwath

    2009-01-01

    Thinning to reduce wildfire hazard is a common management practice in frequent-fire forests of the American west, but it is uncertain whether projects will help regenerate fire-resistant, shade-intolerant pines. We studied naturally established saplings of six conifer species in mixed-conifer forest in northern California, USA to...

  4. Measuring and modeling carbon balance in mountainous Northern Rocky mixed conifer forests

    NASA Astrophysics Data System (ADS)

    Hudiburg, T. W.; Berardi, D.; Stenzel, J.

    2016-12-01

    Drought and wildfire caused by changing precipitation patterns, increased temperatures, increased fuel loads, and decades of fire suppression are reducing forest carbon uptake from local to continental scales. This trend is especially widespread in Idaho and the intermountain west and has important implications for climate change and forest management options. Given the key role of forests in climate regulation, understanding forest response to drought and the feedbacks to the atmosphere is a key research and policy-relevant priority globally. As temperature, fire, and precipitation regimes continue to change and there is increased risk of forest mortality, measurements and modeling at temporal and spatial scales that are conducive to understanding the impacts and underlying mechanisms of carbon and nutrient cycling become critically important. Until recently, sub-daily measurements of ecosystem carbon balance have been limited in remote, mountainous terrain (e.g Northern Rocky mountain forests). Here, we combine new measurement technology and state-of-the-art ecosystem modeling to determine the impact of drought on the total carbon balance of a mature, mixed-conifer forest in Northern Idaho. Our findings indicate that drought had no impact on aboveground NPP, despite early growing season reductions in soil moisture and fine root biomass compared to non-drought years in the past. Modeled estimates of net ecosystem production (NEP) suggest that a simultaneous reduction in heterotrophic respiration increased the carbon sink for this forest. This has important implications for forest management, such as thinning where the objectives are to increase forest resilience to fire and drought, but may decrease NEP.

  5. Simulating high spatial resolution high severity burned area in Sierra Nevada forests for California Spotted Owl habitat climate change risk assessment and management.

    NASA Astrophysics Data System (ADS)

    Keyser, A.; Westerling, A. L.; Jones, G.; Peery, M. Z.

    2017-12-01

    Sierra Nevada forests have experienced an increase in very large fires with significant areas of high burn severity, such as the Rim (2013) and King (2014) fires, that have impacted habitat of endangered species such as the California spotted owl. In order to support land manager forest management planning and risk assessment activities, we used historical wildfire histories from the Monitoring Trends in Burn Severity project and gridded hydroclimate and land surface characteristics data to develope statistical models to simulate the frequency, location and extent of high severity burned area in Sierra Nevada forest wildfires as functions of climate and land surface characteristics. We define high severity here as BA90 area: the area comprising patches with ninety percent or more basal area killed within a larger fire. We developed a system of statistical models to characterize the probability of large fire occurrence, the probability of significant BA90 area present given a large fire, and the total extent of BA90 area in a fire on a 1/16 degree lat/lon grid over the Sierra Nevada. Repeated draws from binomial and generalized pareto distributions using these probabilities generated a library of simulated histories of high severity fire for a range of near (50 yr) future climate and fuels management scenarios. Fuels management scenarios were provided by USFS Region 5. Simulated BA90 area was then downscaled to 30 m resolution using a statistical model we developed using Random Forest techniques to estimate the probability of adjacent 30m pixels burning with ninety percent basal kill as a function of fire size and vegetation and topographic features. The result is a library of simulated high resolution maps of BA90 burned areas for a range of climate and fuels management scenarios with which we estimated conditional probabilities of owl nesting sites being impacted by high severity wildfire.

  6. Using a Numerical Model to Assess the Geomorphic Impacts of Forest Management Scenarios on Streams

    NASA Astrophysics Data System (ADS)

    Davidson, S. L.; Eaton, B. C.

    2014-12-01

    In-stream large wood governs the morphology of many small to intermediate streams, while riparian vegetation influences bank strength and channel pattern. Forest management practices such as harvesting and fire suppression therefore dramatically influence channel processes and associated aquatic habitat. The primary objective of this research is to compare the impacts of three common forest scenarios - natural fire disturbance, forest harvesting with a riparian buffer, and fire suppression - on the volume of in-channel wood and the complexity of aquatic habitat in channels at a range of scales. Each scenario is explored through Monte Carlo simulations run over a period of 1000 years using a numerical reach scale channel simulator (RSCS), with variations in tree toppling rate and forest density used to represent each forest management trajectory. The habitat complexity associated with each scenario is assessed based on the area of the bed occupied by pools and spawning sized sediment, the availability of wood cover, and the probability of avulsion. Within the fire scenario, we also use the model to separately investigate the effects of root decay and recovery on equilibrium channel geometry by varying the rooting depth and associated bank strength through time. The results show that wood loading and habitat complexity are influenced by the timing and magnitude of wood recruitment, as well as channel scale. The forest harvesting scenario produces the lowest wood loads and habitat complexity so long as the buffer width is less than the average mature tree height. The natural fire cycle produces the greatest wood loading and habitat complexity, but also the greatest variability because these streams experience significant periods without wood recruitment as forests regenerate. In reaches that experience recurrent fires, width increases in the post-fire period as roots decay, at times producing a change in channel pattern when a threshold width to depth ratio is exceeded, and decreases as the forest regenerates. In all cases, the effects are greatest in small to intermediate sized streams where wood is the dominant driver of channel morphology, and become negligible in large streams governed by fluvial processes.

  7. Forest fire risk zonation mapping using remote sensing technology

    NASA Astrophysics Data System (ADS)

    Chandra, Sunil; Arora, M. K.

    2006-12-01

    Forest fires cause major losses to forest cover and disturb the ecological balance in our region. Rise in temperature during summer season causing increased dryness, increased activity of human beings in the forest areas, and the type of forest cover in the Garhwal Himalayas are some of the reasons that lead to forest fires. Therefore, generation of forest fire risk maps becomes necessary so that preventive measures can be taken at appropriate time. These risk maps shall indicate the zonation of the areas which are in very high, high, medium and low risk zones with regard to forest fire in the region. In this paper, an attempt has been made to generate the forest fire risk maps based on remote sensing data and other geographical variables responsible for the occurrence of fire. These include altitude, temperature and soil variations. Key thematic data layers pertaining to these variables have been generated using various techniques. A rule-based approach has been used and implemented in GIS environment to estimate fuel load and fuel index leading to the derivation of fire risk zonation index and subsequently to fire risk zonation maps. The fire risk maps thus generated have been validated on the ground for forest types as well as for forest fire risk areas. These maps would help the state forest departments in prioritizing their strategy for combating forest fires particularly during the fire seasons.

  8. Assessing accuracy of point fire intervals across landscapes with simulation modelling

    Treesearch

    Russell A. Parsons; Emily K. Heyerdahl; Robert E. Keane; Brigitte Dorner; Joseph Fall

    2007-01-01

    We assessed accuracy in point fire intervals using a simulation model that sampled four spatially explicit simulated fire histories. These histories varied in fire frequency and size and were simulated on a flat landscape with two forest types (dry versus mesic). We used three sampling designs (random, systematic grids, and stratified). We assessed the sensitivity of...

  9. A conceptual framework for ranking crown fire potential in wildland fuelbeds.

    Treesearch

    Mark D. Schaaf; David V. Sandberg; Maarten D. Schreuder; Cynthia L. Riccardi

    2007-01-01

    This paper presents a conceptual framework for ranking the crown fire potential of wildland fuelbeds with forest canopies. This approach extends the work by Van Wagner and Rothermel, and introduces several new physical concepts to the modeling of crown fire behavior derived from the reformulated Rothemel surface fire modeling concepts proposed by Sandberg et al. This...

  10. Fire intensity impacts on post-fire temperate coniferous forest net primary productivity

    NASA Astrophysics Data System (ADS)

    Sparks, Aaron M.; Kolden, Crystal A.; Smith, Alistair M. S.; Boschetti, Luigi; Johnson, Daniel M.; Cochrane, Mark A.

    2018-02-01

    Fire is a dynamic ecological process in forests and impacts the carbon (C) cycle through direct combustion emissions, tree mortality, and by impairing the ability of surviving trees to sequester carbon. While studies on young trees have demonstrated that fire intensity is a determinant of post-fire net primary productivity, wildland fires on landscape to regional scales have largely been assumed to either cause tree mortality, or conversely, cause no physiological impact, ignoring the impacted but surviving trees. Our objective was to understand how fire intensity affects post-fire net primary productivity in conifer-dominated forested ecosystems on the spatial scale of large wildland fires. We examined the relationships between fire radiative power (FRP), its temporal integral (fire radiative energy - FRE), and net primary productivity (NPP) using 16 years of data from the MOderate Resolution Imaging Spectrometer (MODIS) for 15 large fires in western United States coniferous forests. The greatest NPP post-fire loss occurred 1 year post-fire and ranged from -67 to -312 g C m-2 yr-1 (-13 to -54 %) across all fires. Forests dominated by fire-resistant species (species that typically survive low-intensity fires) experienced the lowest relative NPP reductions compared to forests with less resistant species. Post-fire NPP in forests that were dominated by fire-susceptible species were not as sensitive to FRP or FRE, indicating that NPP in these forests may be reduced to similar levels regardless of fire intensity. Conversely, post-fire NPP in forests dominated by fire-resistant and mixed species decreased with increasing FRP or FRE. In some cases, this dose-response relationship persisted for more than a decade post-fire, highlighting a legacy effect of fire intensity on post-fire C dynamics in these forests.

  11. Estimating fire behavior with FIRECAST: user's manual

    Treesearch

    Jack D. Cohen

    1986-01-01

    FIRECAST is a computer program that estimates fire behavior in terms of six fire parameters. Required inputs vary depending on the outputs desired by the fire manager. Fuel model options available to users are these: Northern Forest Fire Laboratory (NFFL), National Fire Danger Rating System (NFDRS), and southern California brushland (SCAL). The program has been...

  12. Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic.

    PubMed

    Gustine, David D; Brinkman, Todd J; Lindgren, Michael A; Schmidt, Jennifer I; Rupp, T Scott; Adams, Layne G

    2014-01-01

    Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (-21%) than the Central Arctic herd that wintered primarily in the arctic tundra (-11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.

  13. Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic

    USGS Publications Warehouse

    Gustine, David D.; Brinkman, Todd J.; Lindgren, Michael A.; Schmidt, Jennifer I.; Rupp, T. Scott; Adams, Layne G.

    2014-01-01

    Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (−21%) than the Central Arctic herd that wintered primarily in the arctic tundra (−11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.

  14. Dynamic analysis and pattern visualization of forest fires.

    PubMed

    Lopes, António M; Tenreiro Machado, J A

    2014-01-01

    This paper analyses forest fires in the perspective of dynamical systems. Forest fires exhibit complex correlations in size, space and time, revealing features often present in complex systems, such as the absence of a characteristic length-scale, or the emergence of long range correlations and persistent memory. This study addresses a public domain forest fires catalogue, containing information of events for Portugal, during the period from 1980 up to 2012. The data is analysed in an annual basis, modelling the occurrences as sequences of Dirac impulses with amplitude proportional to the burnt area. First, we consider mutual information to correlate annual patterns. We use visualization trees, generated by hierarchical clustering algorithms, in order to compare and to extract relationships among the data. Second, we adopt the Multidimensional Scaling (MDS) visualization tool. MDS generates maps where each object corresponds to a point. Objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to identify forest fire patterns.

  15. Dynamic Analysis and Pattern Visualization of Forest Fires

    PubMed Central

    Lopes, António M.; Tenreiro Machado, J. A.

    2014-01-01

    This paper analyses forest fires in the perspective of dynamical systems. Forest fires exhibit complex correlations in size, space and time, revealing features often present in complex systems, such as the absence of a characteristic length-scale, or the emergence of long range correlations and persistent memory. This study addresses a public domain forest fires catalogue, containing information of events for Portugal, during the period from 1980 up to 2012. The data is analysed in an annual basis, modelling the occurrences as sequences of Dirac impulses with amplitude proportional to the burnt area. First, we consider mutual information to correlate annual patterns. We use visualization trees, generated by hierarchical clustering algorithms, in order to compare and to extract relationships among the data. Second, we adopt the Multidimensional Scaling (MDS) visualization tool. MDS generates maps where each object corresponds to a point. Objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to identify forest fire patterns. PMID:25137393

  16. The role of fire in the boreal carbon budget

    USGS Publications Warehouse

    Harden, J.W.; Trumbore, S.E.; Stocks, B.J.; Hirsch, A.; Gower, S.T.; O'Neill, K. P.; Kasischke, E.S.

    2000-01-01

    To reconcile observations of decomposition rates, carbon inventories, and net primary production (NPP), we estimated long-term averages for C exchange in boreal forests near Thompson, Manitoba. Soil drainage as defined by water table, moss cover, and permafrost dynamics, is the dominant control on direct fire emissions. In upland forests, an average of about 10-30% of annual NPP was likely consumed by fire over the past 6500 years since these landforms and ecosystems were established. This long-term, average fire emission is much larger than has been accounted for in global C cycle models and may forecast an increase in fire activity for this region. While over decadal to century times these boreal forests may be acting as slight net sinks for C from the atmosphere to land, periods of drought and severe fire activity may result in net sources of C from these systems.

  17. LANDFIRE: Collaboration for National Fire Fuel Assessment

    USGS Publications Warehouse

    Zhu, Zhi-Liang

    2006-01-01

    The implementation of national fire management policies, such as the National Fire Plan and the Healthy Forest Restoration Act, requires geospatial data of vegetation types and structure, wildland fuels, fire risks, and ecosystem fire regime conditions. Presently, no such data sets are available that can meet these requirements. As a result, the U.S. Department of Agriculture (USDA) Forest Service and the Department of the Interior's land management bureaus (Bureau of Indian Affairs (BIA), Bureau of Land Management (BLM), Fish and Wildlife Service (FWS), and National Park Service (NPS)) have jointly sponsored LANDFIRE, a new research and development project. The primary objective of the project is to develop an integrated and repeatable methodology and produce vegetation, fire, and ecosystem information and predictive models for cost-effective national land management applications. The project is conducted collaboratively by the U.S. Geological Survey (USGS), the USDA Forest Service, and The Nature Conservancy.

  18. Metastability for discontinuous dynamical systems under Lévy noise: Case study on Amazonian Vegetation.

    PubMed

    Serdukova, Larissa; Zheng, Yayun; Duan, Jinqiao; Kurths, Jürgen

    2017-08-24

    For the tipping elements in the Earth's climate system, the most important issue to address is how stable is the desirable state against random perturbations. Extreme biotic and climatic events pose severe hazards to tropical rainforests. Their local effects are extremely stochastic and difficult to measure. Moreover, the direction and intensity of the response of forest trees to such perturbations are unknown, especially given the lack of efficient dynamical vegetation models to evaluate forest tree cover changes over time. In this study, we consider randomness in the mathematical modelling of forest trees by incorporating uncertainty through a stochastic differential equation. According to field-based evidence, the interactions between fires and droughts are a more direct mechanism that may describe sudden forest degradation in the south-eastern Amazon. In modeling the Amazonian vegetation system, we include symmetric α-stable Lévy perturbations. We report results of stability analysis of the metastable fertile forest state. We conclude that even a very slight threat to the forest state stability represents L´evy noise with large jumps of low intensity, that can be interpreted as a fire occurring in a non-drought year. During years of severe drought, high-intensity fires significantly accelerate the transition between a forest and savanna state.

  19. Climate- and disturbance-driven changes in vegetation composition and structure limit future potential carbon storage in the Greater Yellowstone Ecosystem, USA

    NASA Astrophysics Data System (ADS)

    Henne, Paul D.; Hawbaker, Todd J.; Zhao, Feng; Huang, Chengquan; Berryman, Erin M.; Zhu, Zhiliang

    2016-04-01

    The Greater Yellowstone Ecosystem (GYE) provides unique opportunities to understand how changing climate, land use, and disturbance affect ecosystem carbon balance. The GYE is one of the largest, most intact ecosystems in the United States. However, distinct management histories on National Park, National Forest, and private lands, elevational climate gradients, and variable fire activity, have created a mosaic of stand ages and forest types. It is uncertain how greenhouse forcing may alter the carbon balance of the GYE. Whereas increasing temperatures may enhance productivity and perpetuate the GYE as a carbon sink, climate-driven increases in fire frequency may offset productivity gains by limiting biomass accumulation. We investigated how changes in fire frequency and size may affect vegetation dynamics and carbon sequestration potential in the GYE using the LANDIS-II dynamic landscape vegetation model. LANDIS-II provides sufficient spatial resolution to capture landscape-level variation in forest biomass and forest types (i.e. 90 × 90 m grid cells), but can integrate disturbance regimes and vegetation dynamics across the entire GYE (92,000 km2). We initiated our simulations with biomass and stand conditions that preceded the exceptional 1988 fire, when 16% of the GYE burned. We inferred the biomass, species abundances, and stand demographics of each model cell by combining satellite imagery with forest inventory data, and developed two fire regime scenarios from historical fire records. We developed a historic wildfire scenario with infrequent fires by excluding 1988 from our calibration of fire sizes and frequencies, and a future scenario with more frequent and larger fires by including 1988 in our calibrations. Fire frequency increased in all forest types in our future scenario, with a 152% increase in the annual forest area burned relative to observed area burned during recent decades. However, the changes in fire frequency varied among forest types, with the largest increases in lodgepole pine (Pinus contorta; 332% increase) and spruce/fir (Picea engelmannii, Abies lasiocarpa; 243% increase) stands. In model runs with the historic fire regime, average stand age and live biomass remained consistent with pre-1988 values during the 200-year simulation period; biomass increased significantly only in recently-logged areas. In contrast, a marked shift to younger stands with lower biomass occurred in the future fire scenario. Average stand age declined from 112 years to 31 years in lodgepole pine stands, and from 191 years to 65 years in spruce/fir stands, with consequent reductions in living biomass. A smaller shift in stand age was simulated for douglas-fir (Pseudotsuga menziesii) stands (i.e. 121 to 92 years). These fire-driven changes in stand age and biomass coincided with important shifts in species abundances. Specifically, lodgepole pine stands replaced large areas previously dominated by spruce and fir. Our results suggest that the potential for increasing the amount of fossil fuel emissions offset by carbon sequestration on public lands in the American West is limited by ongoing changes in disturbance regimes. Instead, land managers may need to consider strategies to adapt to climate change impacts.

  20. Active fire detection using a peat fire radiance model

    NASA Astrophysics Data System (ADS)

    Kushida, K.; Honma, T.; Kaku, K.; Fukuda, M.

    2011-12-01

    The fire fractional area and radiances at 4 and 11 μm of active fires in Indonesia were estimated using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. Based on these fire information, a stochastic fire model was used for evaluating two fire detection algorithms of Moderate Resolution Imaging Spectroradiometer (MODIS). One is single-image stochastic fire detection, and the other is multitemporal stochastic fire detection (Kushida, 2010 - IEEE Geosci. Remote Sens. Lett.). The average fire fractional area per one 1 km2 ×1 km2 pixel was 1.7%; this value corresponds to 32% of that of Siberian and Mongolian boreal forest fires. The average radiances at 4 and 11 μm of active fires were 7.2 W/(m2.sr.μm) and 11.1 W/(m2.sr.μm); these values correspond to 47% and 91% of those of Siberian and Mongolian boreal forest fires, respectively. In order to get false alarms less than 20 points per 106 km2 area, for the Siberian and Mongolian boreal forest fires, omission errors (OE) of 50-60% and about 40% were expected for the detections by using the single and multitemporal images, respectively. For Indonesian peat fires, OE of 80-90% was expected for the detections by using the single images. For the peat-fire detections by using the multitemporal images, OE of about 40% was expected, provided that the background radiances were estimated from past multitemporal images with less than the standard deviation of 1K. The analyses indicated that it was difficult to obtain sufficient active-fire information of Indonesian peat fires from single MODIS images for the fire fighting, and that the use of the multitemporal images was important.

  1. Spatial controls of occurrence and spread of wildfires in the Missouri Ozark Highlands.

    PubMed

    Yang, Jian; He, Hong S; Shifley, Stephen R

    2008-07-01

    Understanding spatial controls on wildfires is important when designing adaptive fire management plans and optimizing fuel treatment locations on a forest landscape. Previous research about this topic focused primarily on spatial controls for fire origin locations alone. Fire spread and behavior were largely overlooked. This paper contrasts the relative importance of biotic, abiotic, and anthropogenic constraints on the spatial pattern of fire occurrence with that on burn probability (i.e., the probability that fire will spread to a particular location). Spatial point pattern analysis and landscape succession fire model (LANDIS) were used to create maps to show the contrast. We quantified spatial controls on both fire occurrence and fire spread in the Midwest Ozark Highlands region, USA. This area exhibits a typical anthropogenic surface fire regime. We found that (1) human accessibility and land ownership were primary limiting factors in shaping clustered fire origin locations; (2) vegetation and topography had a negligible influence on fire occurrence in this anthropogenic regime; (3) burn probability was higher in grassland and open woodland than in closed-canopy forest, even though fire occurrence density was less in these vegetation types; and (4) biotic and abiotic factors were secondary descriptive ingredients for determining the spatial patterns of burn probability. This study demonstrates how fire occurrence and spread interact with landscape patterns to affect the spatial distribution of wildfire risk. The application of spatial point pattern data analysis would also be valuable to researchers working on landscape forest fire models to integrate historical ignition location patterns in fire simulation.

  2. Classification Model for Forest Fire Hotspot Occurrences Prediction Using ANFIS Algorithm

    NASA Astrophysics Data System (ADS)

    Wijayanto, A. K.; Sani, O.; Kartika, N. D.; Herdiyeni, Y.

    2017-01-01

    This study proposed the application of data mining technique namely Adaptive Neuro-Fuzzy inference system (ANFIS) on forest fires hotspot data to develop classification models for hotspots occurrence in Central Kalimantan. Hotspot is a point that is indicated as the location of fires. In this study, hotspot distribution is categorized as true alarm and false alarm. ANFIS is a soft computing method in which a given inputoutput data set is expressed in a fuzzy inference system (FIS). The FIS implements a nonlinear mapping from its input space to the output space. The method of this study classified hotspots as target objects by correlating spatial attributes data using three folds in ANFIS algorithm to obtain the best model. The best result obtained from the 3rd fold provided low error for training (error = 0.0093676) and also low error testing result (error = 0.0093676). Attribute of distance to road is the most determining factor that influences the probability of true and false alarm where the level of human activities in this attribute is higher. This classification model can be used to develop early warning system of forest fire.

  3. Science in 60 – Simulating Flames Helps Tame Future Wildfires

    ScienceCinema

    Lin, Rod

    2018-01-16

    FIRETEC presents a new way of studying fire and learning how to better manage and cope with it. The model provides additional scientific input for decisions by policymakers working in land management, water resources and energy. The team hopes it will eventually assist fire and fuel management operations. This research is done in partnership with the USDA Forest Service, Air Force Wildland Fire Center, INRA and Canadian Forest Service.

  4. Mapping vegetation and fuels for fire management on the Gila National Forest Complex, New Mexico

    Treesearch

    Robert E. Keane; Scott A. Mincemoyer; Kirsten M. Schmidt; Donald G. Long; Janice L. Garner

    2000-01-01

    (Please note: This PDF is part of a CD-ROM package only and was not printed on paper.) Fuels and vegetation spatial data layers required by the spatially explicit fire growth model FARSITE were developed for all lands in and around the Gila National Forest in New Mexico. Satellite imagery, terrain modeling, and biophysical simulation were used to create the three...

  5. Contribution of biomass burning to particles matter smaller than ten microns in Mexico City during April 2013.

    NASA Astrophysics Data System (ADS)

    Mendoza Campos, Alejandra; Agustin Garcia Reynoso, Jóse; Castro Romero, Telma; Carbajal Perez, Jóse Noel; Gerardo Ruiz Suarez, Luis; Peralta Rosales, Oscar Augusto

    2015-04-01

    A forest fire is a natural combustion process in a specific geographic area, it's depends on meteorological variables, topography and vegetation type, The wildfires are potential sources of large amounts of pollutants. The main air pollutants emitted in a forest fire are the particles (PM10 and PM2.5) Carbon Monoxide (CO), Nitrogen Oxides (NOx), Volatile Organic Compounds (VOCs) and a negligible amount of Sulfur Dioxide (SO2) (Chow 1995), The study of the impact of air quality in Mexico City for a forest fire occurred on April 14 of 2013 was conducted a duration of 26 hours of grassland burning and consuming an extension of 150 ha, the WRF-Chem, WRF-fire and METv3 models were used to perform the study, for the study two modeling were made, one including emissions from forest fires and the other one no emission-fire, when interpolation is made between the two modeling and obtained the impact of air quality in Mexico City, performing calculating emissions and modeling, the impact on air quality for PM10particles were observed arriving at a concentration of 350 mg/m3 due to wildfire occurred, this issue exceeds the maximum permissible limit of PM10particles governed by NOM-025-SSA1-1993 that establishes a maximum of 120 mg/m3 on average for 24 hours, the modeling results with measured data is corroborated weather Stations the environmental monitoring network of the Mexico City, that alerts an environmental contingency for particles for the post-wildfire day. Until now is review the rule which establishes a maximum of 75 mg/m3 on average for 24 hours, implying greater involvement in air quality.

  6. Avian community responses to post-fire forest structure: Implications for fire management in mixed conifer forests

    USGS Publications Warehouse

    White, Angela M.; Manley, Patricia N.; Tarbill, Gina; Richardson, T.L.; Russell, Robin E.; Safford, Hugh D.; Dobrowski, Solomon Z.

    2015-01-01

    Fire is a natural process and the dominant disturbance shaping plant and animal communities in many coniferous forests of the western US. Given that fire size and severity are predicted to increase in the future, it has become increasingly important to understand how wildlife responds to fire and post-fire management. The Angora Fire burned 1243 hectares of mixed conifer forest in South Lake Tahoe, California. We conducted avian point counts for the first 3 years following the fire in burned and unburned areas to investigate which habitat characteristics are most important for re-establishing or maintaining the native avian community in post-fire landscapes. We used a multi-species occurrence model to estimate how avian species are influenced by the density of live and dead trees and shrub cover. While accounting for variations in the detectability of species, our approach estimated the occurrence probabilities of all species detected including those that were rare or observed infrequently. Although all species encountered in this study were detected in burned areas, species-specific modeling results predicted that some species were strongly associated with specific post-fire conditions, such as a high density of dead trees, open-canopy conditions or high levels of shrub cover that occur at particular burn severities or at a particular time following fire. These results indicate that prescribed fire or managed wildfire which burns at low to moderate severity without at least some high-severity effects is both unlikely to result in the species assemblages that are unique to post-fire areas or to provide habitat for burn specialists. Additionally, the probability of occurrence for many species was associated with high levels of standing dead trees indicating that intensive post-fire harvest of these structures could negatively impact habitat of a considerable proportion of the avian community.

  7. Gis-Based Multi-Criteria Decision Analysis for Forest Fire Risk Mapping

    NASA Astrophysics Data System (ADS)

    Akay, A. E.; Erdoğan, A.

    2017-11-01

    The forested areas along the coastal zone of the Mediterranean region in Turkey are classified as first-degree fire sensitive areas. Forest fires are major environmental disaster that affects the sustainability of forest ecosystems. Besides, forest fires result in important economic losses and even threaten human lives. Thus, it is critical to determine the forested areas with fire risks and thereby minimize the damages on forest resources by taking necessary precaution measures in these areas. The risk of forest fire can be assessed based on various factors such as forest vegetation structures (tree species, crown closure, tree stage), topographic features (slope and aspect), and climatic parameters (temperature, wind). In this study, GIS-based Multi-Criteria Decision Analysis (MCDA) method was used to generate forest fire risk map. The study was implemented in the forested areas within Yayla Forest Enterprise Chiefs at Dursunbey Forest Enterprise Directorate which is classified as first degree fire sensitive area. In the solution process, "extAhp 2.0" plug-in running Analytic Hierarchy Process (AHP) method in ArcGIS 10.4.1 was used to categorize study area under five fire risk classes: extreme risk, high risk, moderate risk, and low risk. The results indicated that 23.81 % of the area was of extreme risk, while 25.81 % was of high risk. The result indicated that the most effective criterion was tree species, followed by tree stages. The aspect had the least effective criterion on forest fire risk. It was revealed that GIS techniques integrated with MCDA methods are effective tools to quickly estimate forest fire risk at low cost. The integration of these factors into GIS can be very useful to determine forested areas with high fire risk and also to plan forestry management after fire.

  8. [Change trends of summer fire danger in great Xing' an Mountains forest region of Heilongjiang Province, Northeast China under climate change].

    PubMed

    Yang, Guang; Shu, Li-Fu; Di, Xue-Ying

    2012-11-01

    By using Delta and WGEN downscaling methods and Canadian Forest Fire Weather Index, this paper analyzed the variation characteristics of summer fire in Great Xing' an Mountains forest region of Heilongjiang Province in 1966-2010, estimated the change trends of the summer fire danger in 2010-2099, compared the differences of the forest fire in summer, spring, and autumn, and proposed the prevention and control strategies of the summer fire based on the fire environment. Under the background of climate warming, the summer forest fire in the region in 2000-2010 showed a high incidence trend. In foreseeable future, the summer forest fire across the region in 2010-2099, as compared to that in the baseline period 1961-1990, would be increased by 34%, and the increment would be obviously greater than that of spring and autumn fire. Relative to that in 1961-1990, the summer fire in 2010-2099 under both SRES A2a and SRES B2a scenarios would have an increasing trend, and, with the lapse of time, the trend would be more evident, and the area with high summer fire would become wider and wider. Under the scenario of SRES A2a, the summer fire by the end of the 21st century would be doubled, as compared to that in 1961-1990, and the area with high summer fire would be across the region. In the characteristics of fire source, attributes of forest fuel, and fire weather conditions, the summer forest fire was different from the spring and autumn forest fire, and thus, the management of fire source and forest fuel load as well as the forest fire forecast (mid-long term forecast in particular) in the region should be strengthened to control the summer forest fire.

  9. Fire ecology of western Montana forest habitat types

    Treesearch

    William C. Fischer; Anne F. Bradley

    1987-01-01

    Provides information on fire as an ecological factor for forest habitat types in western Montana. Identifies Fire Groups of habitat types based on fire's role in forest succession. Describes forest fuels and suggests considerations for fire management.

  10. Villaflores: Municipal forest fire management model

    Treesearch

    Pedro Martínez Muñoz; Carlos Alberto Velázquez Sanabria

    2013-01-01

    As provided for in the General Law on Sustainable Forestry Development, the Municipality of Villaflores has worked on a continuous basis since 2002 to reduce the damage caused by forest fires as part of its working agenda, in conjunction with Federal and State agencies and NGOs. The work plan has the following phases: a) Inter-agency coordination:...

  11. Predicting wildfire behavior in black spruce forests in Alaska.

    Treesearch

    Rodney A. Norum

    1982-01-01

    The current fire behavior system, when properly adjusted, accurately predicts forward rate of spread and flame length of wildfires in black spruce (Picea mariana (Mill.) B.S.P.) forests in Alaska. After fire behavior was observed and quantified, adjustment factors were calculated and assigned to the selected fuel models to correct the outputs to...

  12. Deconstructing the King Megafire.

    PubMed

    Coen, Janice L; Stavros, E Natasha; Fites-Kaufman, Josephine A

    2018-05-24

    Hypotheses that megafires - very large, high impact fires - are caused by either climate effects such as drought or fuel accumulation due to fire exclusion with accompanying changes to forest structure have long been alleged and guided policy but their physical basis remains untested. Here, unique airborne observations and microscale simulations using a coupled weather - wildland fire behavior model allowed a recent megafire, the King Fire, to be deconstructed and the relative impacts of forest structure, fuel load, weather, and drought on fire size, behavior, and duration to be separated. Simulations reproduced observed details including the arrival at an inclined canyon, a 25-km run, and later slower growth and features. Analysis revealed that fire-induced winds that equaled or exceeded ambient winds and fine-scale airflow undetected by surface weather networks were primarily responsible for the fire's rapid growth and size. Sensitivity tests varied fuel moisture and amount across wide ranges and showed that both drought and fuel accumulation effects were secondary, limited to sloped terrain where they compounded each other, and, in this case, unable to significantly impact the final extent. Compared to standard data, fuel models derived solely from remote sensing of vegetation type and forest structure improved simulated fire progression, notably in disturbed areas, and the distribution of burn severity. These results point to self-reinforcing internal dynamics rather than external forces as a means of generating this and possibly other outlier fire events. Hence, extreme fires need not arise from extreme fire environment conditions. Kinematic models used in operations do not capture fire-induced winds and dynamic feedbacks so can underestimate megafire events. The outcomes provided a nuanced view of weather, forest structure, fuel accumulation, and drought impacts on landscape-scale fire behavior - roles that can be misconstrued using correlational analyses between area burned and macroscale climate data or other exogenous factors. A practical outcome is that fuel treatments should be focused on sloped terrain, where factors multiply, for highest impact. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Probabilistic risk models for multiple disturbances: an example of forest insects and wildfires

    Treesearch

    Haiganoush K. Preisler; Alan A. Ager; Jane L. Hayes

    2010-01-01

    Building probabilistic risk models for highly random forest disturbances like wildfire and forest insect outbreaks is a challenging. Modeling the interactions among natural disturbances is even more difficult. In the case of wildfire and forest insects, we looked at the probability of a large fire given an insect outbreak and also the incidence of insect outbreaks...

  14. Fire risk and adaptation strategies in Northern Eurasian forests

    NASA Astrophysics Data System (ADS)

    Shvidenko, Anatoly; Schepaschenko, Dmitry

    2013-04-01

    On-going climatic changes substantially accelerate current fire regimes in Northern Eurasian ecosystems, particularly in forests. During 1998-2012, wildfires enveloped on average ~10.5 M ha year-1 in Russia with a large annual variation (between 3 and 30 M ha) and average direct carbon emissions at ~150 Tg C year-1. Catastrophic fires, which envelope large areas, spread in usually incombustible wetlands, escape from control and provide extraordinary negative impacts on ecosystems, biodiversity, economics, infrastructure, environment, and health of population, become a typical feature of the current fire regimes. There are new evidences of correlation between catastrophic fires and large-scale climatic anomalies at a continental scale. While current climatic predictions suggest the dramatic warming (at the average at 6-7 °C for the country and up to 10-12°C in some northern continental regions), any substantial increase of summer precipitation does not expected. Increase of dryness and instability of climate will impact fire risk and severity of consequences. Current models suggest a 2-3 fold increase of the number of fires by the end of this century in the boreal zone. They predict increases of the number of catastrophic fires; a significant increase in the intensity of fire and amount of consumed fuel; synergies between different types of disturbances (outbreaks of insects, unregulated anthropogenic impacts); acceleration of composition of the gas emissions due to enhanced soil burning. If boreal forests would become a typing element, the mass mortality of trees would increase fire risk and severity. Permafrost melting and subsequent change of hydrological regimes very likely will lead to the degradation and destruction of boreal forests, as well as to the widespread irreversible replacement of forests by other underproductive vegetation types. A significant feedback between warming and escalating fire regimes is very probable in Russia and particularly in the permafrost areas. Overall, Russia should expect a disproportionate escalation of fire regimes compared to increasing climatic fire danger. Thus, development and implementation of an efficient adaptation strategy is a pressing problem of current forest management of the country. An appropriate system of forest fire protection which would be able to meet challenges of future climates is a corner stone of such a strategy. We consider possible systems solutions of this complex problem including (1) integrated ecological and socio-economic analysis of current and future fire regimes; (2) regional requirements to and specific features of a new paradigm of forest fire protection in the boreal zone of Northern Eurasia; (3) anticipatory strategy of the prevention of large-scale disturbances in forests, including adaptation of forest landscapes to the future climates (regulation of tree composition; setup of relevant spatial structure of forest landscapes; etc.); (4) implementation of an effective system of forest monitoring as part of integrated observing systems; (5) transition to ecologically-friendly systems of industrial development of northern territories; (6) development of new/ improvement of existing legislation and institutional frameworks of forest management which would be satisfactory to react on challenges of climate change; and (6) international cooperation.

  15. Challenges of assessing fire and burn severity using field measures, remote sensing and modelling

    Treesearch

    Penelope Morgan; Robert E. Keane; Gregory K. Dillon; Theresa B. Jain; Andrew T. Hudak; Eva C. Karau; Pamela G. Sikkink; Zachery A. Holden; Eva K. Strand

    2014-01-01

    Comprehensive assessment of ecological change after fires have burned forests and rangelands is important if we are to understand, predict and measure fire effects. We highlight the challenges in effective assessment of fire and burn severity in the field and using both remote sensing and simulation models. We draw on diverse recent research for guidance on assessing...

  16. Modeling fire and other disturbance processes using LANDIS

    Treesearch

    Stephen R. Shifley; Jian Yang; Hong He

    2009-01-01

    LANDIS is a landscape decision support tool that models spatial relationships to help managers and planners examine the large-scale, long-term, cumulative effects of succession, harvesting, wildfire, prescribed fire, insects, and disease. It can operate on forest landscapes from a few thousand to a few million acres in extent. Fire modeling capabilities in LANDIS are...

  17. Fire regimes, forest change, and self-organization in an old-growth mixed-conifer forest, Yosemite National Park, USA.

    PubMed

    Scholl, Andrew E; Taylor, Alan H

    2010-03-01

    Fire is recognized as a keystone process in dry mixed-conifer forests that have been altered by decades of fire suppression, Restoration of fire disturbance to these forests is a guiding principle of resource management in the U.S. National Park Service. Policy implementation is often hindered by a poor understanding of forest conditions before fire exclusion, the characteristics of forest changes since excluding fire, and the influence of topographic or self-organizing controls on forest structure. In this study the spatial and temporal characteristics of fire regimes and forest structure are reconstructed in a 2125-ha mixed-conifer forest. Forests were multi-aged, burned frequently at low severity and fire-return interval, and forest structure did not vary with slope aspect, elevation, or slope position. Fire exclusion has caused an increase in forest density and basal area and a compositional shift to shade-tolerant and fire-intolerant species. The median point fire-return interval and extent of a fire was 10 yr and 115 ha, respectively. The pre-Euro-American settlement fire rotation of 13 yr increased to 378 yr after 1905. The position of fire scars within tree rings indicates that 79% of fires burned in the midsummer to fall period. The spatial pattern of burns exhibited self-organizing behavior. Area burned was 10-fold greater when an area had not been burned by the previous fire. Fires were frequent and widespread, but patches of similar aged trees were < 0.2 ha, suggesting small fire-caused canopy openings. Managers need to apply multiple burns at short intervals for a sustained period to reduce surface fuels and create small canopy openings characteristic of the reference forest. By coupling explicit reference conditions with consideration of current conditions and projected climate change, management activities can balance restoration and risk management.

  18. The potential predictability of fire danger provided by ECMWF forecast

    NASA Astrophysics Data System (ADS)

    Di Giuseppe, Francesca

    2017-04-01

    The European Forest Fire Information System (EFFIS), is currently being developed in the framework of the Copernicus Emergency Management Services to monitor and forecast fire danger in Europe. The system provides timely information to civil protection authorities in 38 nations across Europe and mostly concentrates on flagging regions which might be at high danger of spontaneous ignition due to persistent drought. The daily predictions of fire danger conditions are based on the US Forest Service National Fire Danger Rating System (NFDRS), the Canadian forest service Fire Weather Index Rating System (FWI) and the Australian McArthur (MARK-5) rating systems. Weather forcings are provided in real time by the European Centre for Medium range Weather Forecasts (ECMWF) forecasting system. The global system's potential predictability is assessed using re-analysis fields as weather forcings. The Global Fire Emissions Database (GFED4) provides 11 years of observed burned areas from satellite measurements and is used as a validation dataset. The fire indices implemented are good predictors to highlight dangerous conditions. High values are correlated with observed fire and low values correspond to non observed events. A more quantitative skill evaluation was performed using the Extremal Dependency Index which is a skill score specifically designed for rare events. It revealed that the three indices were more skilful on a global scale than the random forecast to detect large fires. The performance peaks in the boreal forests, in the Mediterranean, the Amazon rain-forests and southeast Asia. The skill-scores were then aggregated at country level to reveal which nations could potentiallty benefit from the system information in aid of decision making and fire control support. Overall we found that fire danger modelling based on weather forecasts, can provide reasonable predictability over large parts of the global landmass.

  19. Contributions of natural and anthropogenic sources to ambient ammonia in the Athabasca Oil Sands and north-western Canada

    NASA Astrophysics Data System (ADS)

    Whaley, Cynthia H.; Makar, Paul A.; Shephard, Mark W.; Zhang, Leiming; Zhang, Junhua; Zheng, Qiong; Akingunola, Ayodeji; Wentworth, Gregory R.; Murphy, Jennifer G.; Kharol, Shailesh K.; Cady-Pereira, Karen E.

    2018-02-01

    Atmospheric ammonia (NH3) is a short-lived pollutant that plays an important role in aerosol chemistry and nitrogen deposition. Dominant NH3 emissions are from agriculture and forest fires, both of which are increasing globally. Even remote regions with relatively low ambient NH3 concentrations, such as northern Alberta and Saskatchewan in northern Canada, may be of interest because of industrial oil sands emissions and a sensitive ecological system. A previous attempt to model NH3 in the region showed a substantial negative bias compared to satellite and aircraft observations. Known missing sources of NH3 in the model were re-emission of NH3 from plants and soils (bidirectional flux) and forest fire emissions, but the relative impact of these sources on NH3 concentrations was unknown. Here we have used a research version of the high-resolution air quality forecasting model, GEM-MACH, to quantify the relative impacts of semi-natural (bidirectional flux of NH3 and forest fire emissions) and direct anthropogenic (oil sand operations, combustion of fossil fuels, and agriculture) sources on ammonia volume mixing ratios, both at the surface and aloft, with a focus on the Athabasca Oil Sands region during a measurement-intensive campaign in the summer of 2013. The addition of fires and bidirectional flux to GEM-MACH has improved the model bias, slope, and correlation coefficients relative to ground, aircraft, and satellite NH3 measurements significantly.By running the GEM-MACH-Bidi model in three configurations and calculating their differences, we find that averaged over Alberta and Saskatchewan during this time period an average of 23.1 % of surface NH3 came from direct anthropogenic sources, 56.6 % (or 1.24 ppbv) from bidirectional flux (re-emission from plants and soils), and 20.3 % (or 0.42 ppbv) from forest fires. In the NH3 total column, an average of 19.5 % came from direct anthropogenic sources, 50.0 % from bidirectional flux, and 30.5 % from forest fires. The addition of bidirectional flux and fire emissions caused the overall average net deposition of NHx across the domain to be increased by 24.5 %. Note that forest fires are very episodic and their contributions will vary significantly for different time periods and regions.This study is the first use of the bidirectional flux scheme in GEM-MACH, which could be generalized for other volatile or semi-volatile species. It is also the first time CrIS (Cross-track Infrared Sounder) satellite observations of NH3 have been used for model evaluation, and the first use of fire emissions in GEM-MACH at 2.5 km resolution.

  20. Simulating dynamic and mixed-severity fire regimes: a process-based fire extension for LANDIS-II

    Treesearch

    Brian R. Sturtevant; Robert M. Scheller; Brian R. Miranda; Douglas Shinneman; Alexandra Syphard

    2009-01-01

    Fire regimes result from reciprocal interactions between vegetation and fire that may be further affected by other disturbances, including climate, landform, and terrain. In this paper, we describe fire and fuel extensions for the forest landscape simulation model, LANDIS-II, that allow dynamic interactions among fire, vegetation, climate, and landscape structure, and...

  1. Palaeodata-informed modelling of large carbon losses from recent burning of boreal forests

    USGS Publications Warehouse

    Kelly, Ryan; Genet, Helene; McGuire, A. David; Hu, Feng Sheng

    2016-01-01

    Wildfires play a key role in the boreal forest carbon cycle1, 2, and models suggest that accelerated burning will increase boreal C emissions in the coming century3. However, these predictions may be compromised because brief observational records provide limited constraints to model initial conditions4. We confronted this limitation by using palaeoenvironmental data to drive simulations of long-term C dynamics in the Alaskan boreal forest. Results show that fire was the dominant control on C cycling over the past millennium, with changes in fire frequency accounting for 84% of C stock variability. A recent rise in fire frequency inferred from the palaeorecord5 led to simulated C losses of 1.4 kg C m−2 (12% of ecosystem C stocks) from 1950 to 2006. In stark contrast, a small net C sink of 0.3 kg C m−2 occurred if the past fire regime was assumed to be similar to the modern regime, as is common in models of C dynamics. Although boreal fire regimes are heterogeneous, recent trends6 and future projections7 point to increasing fire activity in response to climate warming throughout the biome. Thus, predictions8 that terrestrial C sinks of northern high latitudes will mitigate rising atmospheric CO2 may be over-optimistic.

  2. Past and future changes in Canadian boreal wildfire activity.

    PubMed

    Girardin, Martin P; Mudelsee, Manfred

    2008-03-01

    Climate change in Canadian boreal forests is usually associated with increased drought severity and fire activity. However, future fire activity could well be within the range of values experienced during the preindustrial period. In this study, we contrast 21st century forecasts of fire occurrence (FireOcc, number of large forest fires per year) in the southern part of the Boreal Shield, Canada, with the historical range of the past 240 years statistically reconstructed from tree-ring width data. First, a historical relationship between drought indices and FireOcc is developed over the calibration period 1959-1998. Next, together with seven tree-ring based drought reconstructions covering the last 240 years and simulations from the CGCM3 and ECHAM4 global climate models, the calibration model is used to estimate past (prior to 1959) and future (post 1999) FireOcc. Last, time-dependent changes in mean FireOcc and in the occurrence rate of extreme fire years are evaluated with the aid of advanced methods of statistical time series analysis. Results suggest that the increase in precipitation projected toward the end of the 21st century will be insufficient to compensate for increasing temperatures and will be insufficient to maintain potential evapotranspiration at current levels. Limited moisture availability would cause FireOcc to increase as well. But will future FireOcc exceed its historical range? The results obtained from our approach suggest high probabilities of seeing future FireOcc reach the upper limit of the historical range. Predictions, which are essentially weighed on northwestern Ontario and eastern boreal Manitoba, indicate that, by 2061-2100, typical FireOcc could increase by more than 34% when compared with the past two centuries. Increases in fire activity as projected by this study could negatively affect the implementation in the next century of forest management inspired by historical or natural disturbance dynamics. This approach is indeed feasible only if current and future fire activities are sufficiently low compared with the preindustrial fire activity, so a substitution of fire by forest management could occur without elevating the overall frequency of disturbance. Conceivable management options will likely have to be directed toward minimizing the adverse impacts of the increasing fire activity.

  3. Examining Historical and Current Mixed-Severity Fire Regimes in Ponderosa Pine and Mixed-Conifer Forests of Western North America

    PubMed Central

    Odion, Dennis C.; Hanson, Chad T.; Arsenault, André; Baker, William L.; DellaSala, Dominick A.; Hutto, Richard L.; Klenner, Walt; Moritz, Max A.; Sherriff, Rosemary L.; Veblen, Thomas T.; Williams, Mark A.

    2014-01-01

    There is widespread concern that fire exclusion has led to an unprecedented threat of uncharacteristically severe fires in ponderosa pine (Pinus ponderosa Dougl. ex. Laws) and mixed-conifer forests of western North America. These extensive montane forests are considered to be adapted to a low/moderate-severity fire regime that maintained stands of relatively old trees. However, there is increasing recognition from landscape-scale assessments that, prior to any significant effects of fire exclusion, fires and forest structure were more variable in these forests. Biota in these forests are also dependent on the resources made available by higher-severity fire. A better understanding of historical fire regimes in the ponderosa pine and mixed-conifer forests of western North America is therefore needed to define reference conditions and help maintain characteristic ecological diversity of these systems. We compiled landscape-scale evidence of historical fire severity patterns in the ponderosa pine and mixed-conifer forests from published literature sources and stand ages available from the Forest Inventory and Analysis program in the USA. The consensus from this evidence is that the traditional reference conditions of low-severity fire regimes are inaccurate for most forests of western North America. Instead, most forests appear to have been characterized by mixed-severity fire that included ecologically significant amounts of weather-driven, high-severity fire. Diverse forests in different stages of succession, with a high proportion in relatively young stages, occurred prior to fire exclusion. Over the past century, successional diversity created by fire decreased. Our findings suggest that ecological management goals that incorporate successional diversity created by fire may support characteristic biodiversity, whereas current attempts to “restore” forests to open, low-severity fire conditions may not align with historical reference conditions in most ponderosa pine and mixed-conifer forests of western North America. PMID:24498383

  4. Examining historical and current mixed-severity fire regimes in ponderosa pine and mixed-conifer forests of western North America.

    PubMed

    Odion, Dennis C; Hanson, Chad T; Arsenault, André; Baker, William L; Dellasala, Dominick A; Hutto, Richard L; Klenner, Walt; Moritz, Max A; Sherriff, Rosemary L; Veblen, Thomas T; Williams, Mark A

    2014-01-01

    There is widespread concern that fire exclusion has led to an unprecedented threat of uncharacteristically severe fires in ponderosa pine (Pinus ponderosa Dougl. ex. Laws) and mixed-conifer forests of western North America. These extensive montane forests are considered to be adapted to a low/moderate-severity fire regime that maintained stands of relatively old trees. However, there is increasing recognition from landscape-scale assessments that, prior to any significant effects of fire exclusion, fires and forest structure were more variable in these forests. Biota in these forests are also dependent on the resources made available by higher-severity fire. A better understanding of historical fire regimes in the ponderosa pine and mixed-conifer forests of western North America is therefore needed to define reference conditions and help maintain characteristic ecological diversity of these systems. We compiled landscape-scale evidence of historical fire severity patterns in the ponderosa pine and mixed-conifer forests from published literature sources and stand ages available from the Forest Inventory and Analysis program in the USA. The consensus from this evidence is that the traditional reference conditions of low-severity fire regimes are inaccurate for most forests of western North America. Instead, most forests appear to have been characterized by mixed-severity fire that included ecologically significant amounts of weather-driven, high-severity fire. Diverse forests in different stages of succession, with a high proportion in relatively young stages, occurred prior to fire exclusion. Over the past century, successional diversity created by fire decreased. Our findings suggest that ecological management goals that incorporate successional diversity created by fire may support characteristic biodiversity, whereas current attempts to "restore" forests to open, low-severity fire conditions may not align with historical reference conditions in most ponderosa pine and mixed-conifer forests of western North America.

  5. High-severity fire: evaluating its key drivers and mapping its probability across western US forests

    NASA Astrophysics Data System (ADS)

    Parks, Sean A.; Holsinger, Lisa M.; Panunto, Matthew H.; Jolly, W. Matt; Dobrowski, Solomon Z.; Dillon, Gregory K.

    2018-04-01

    Wildland fire is a critical process in forests of the western United States (US). Variation in fire behavior, which is heavily influenced by fuel loading, terrain, weather, and vegetation type, leads to heterogeneity in fire severity across landscapes. The relative influence of these factors in driving fire severity, however, is poorly understood. Here, we explore the drivers of high-severity fire for forested ecoregions in the western US over the period 2002–2015. Fire severity was quantified using a satellite-inferred index of severity, the relativized burn ratio. For each ecoregion, we used boosted regression trees to model high-severity fire as a function of live fuel, topography, climate, and fire weather. We found that live fuel, on average, was the most important factor driving high-severity fire among ecoregions (average relative influence = 53.1%) and was the most important factor in 14 of 19 ecoregions. Fire weather was the second most important factor among ecoregions (average relative influence = 22.9%) and was the most important factor in five ecoregions. Climate (13.7%) and topography (10.3%) were less influential. We also predicted the probability of high-severity fire, were a fire to occur, using recent (2016) satellite imagery to characterize live fuel for a subset of ecoregions in which the model skill was deemed acceptable (n = 13). These ‘wall-to-wall’ gridded ecoregional maps provide relevant and up-to-date information for scientists and managers who are tasked with managing fuel and wildland fire. Lastly, we provide an example of the predicted likelihood of high-severity fire under moderate and extreme fire weather before and after fuel reduction treatments, thereby demonstrating how our framework and model predictions can potentially serve as a performance metric for land management agencies tasked with reducing hazardous fuel across large landscapes.

  6. Object-based Forest Fire Analysis for Pedrógão Grande Fire Using Landsat 8 OLI and Sentinel-2A Imagery

    NASA Astrophysics Data System (ADS)

    Tonbul, H.; Kavzoglu, T.

    2017-12-01

    Forest fires are among the most important natural disasters with the damage to the natural habitat and human-life. Mapping damaged forest fires is crucial for assessing ecological effects caused by fire, monitoring land cover changes and modeling atmospheric and climatic effects of fire. In this context, satellite data provides a great advantage to users by providing a rapid process of detecting burning areas and determining the severity of fire damage. Especially, Mediterranean ecosystems countries sets the suitable conditions for the forest fires. In this study, the determination of burnt areas of forest fire in Pedrógão Grande region of Portugal occurred in June 2017 was carried out using Landsat 8 OLI and Sentinel-2A satellite images. The Pedrógão Grande fire was one of the largest fires in Portugal, more than 60 people was killed and thousands of hectares were ravaged. In this study, four pairs of pre-fire and post-fire top of atmosphere (TOA) and atmospherically corrected images were utilized. The red and near infrared (NIR) spectral bands of pre-fire and post-fire images were stacked and multiresolution segmentation algorithm was applied. In the segmentation processes, the image objects were generated with estimated optimum homogeneity criteria. Using eCognition software, rule sets have been created to distinguish unburned areas from burned areas. In constructing the rule sets, NDVI threshold values were determined pre- and post-fire and areas where vegetation loss was detected using the NDVI difference image. The results showed that both satellite images yielded successful results for burned area discrimination with a very high degree of consistency in terms of spatial overlap and total burned area (over 93%). Object based image analysis (OBIA) was found highly effective in delineation of burnt areas.

  7. Interactions between atmospheric circulation, nutrient deposition, and tropical forest primary production (Invited)

    NASA Astrophysics Data System (ADS)

    Randerson, J. T.; Chen, Y.; Rogers, B. M.; Morton, D. C.; van der Werf, G.; Mahowald, N. M.

    2010-12-01

    Tropical forests influence regional and global climate by means of several pathways, including by modifying surface energy exchange and by forming clouds. High levels of precipitation, leaching, and soil weathering limit nutrient availability in these ecosystems. Phosphorus (P) is a key element limiting net primary production, and in some areas, including forests recovering from prior disturbance, nitrogen (N) also may limit some components of production. Here we quantified atmospheric P and N inputs to these forests from fires using satellite-derived estimates of emissions and atmospheric models. In Africa and South America, cross-biome transport of fire-emitted aerosols and reactive N gases from savannas and areas near the deforestation frontier increased deposition of P and N in interior forests. Equatorward atmospheric transport during the dry (fire) season in one hemisphere was linked with surface winds moving toward the inter-tropical convergence zone (ITCZ) in the other hemisphere. Deposition levels were higher in tropical forests in Africa than in South America because of large savanna areas with high levels of fire emissions in both southern and northern Africa. We conclude by describing a potential feedback loop by which equatorward transport of fire emissions, dust, and spores sustains the productivity of tropical forests. We specifically assessed evidence that savanna-to-forest atmospheric transport of nutrients increases forest productivity, height, and rates of evapotranspiration (ET). In parallel, we examined the degree to which increases in ET and surface roughness in tropical forests have the potential to strengthen several components of the Hadley circulation, including deep convection, equatorward return flow (near the surface), and the intensity of seasonal drought in the subtropics (thereby increasing fires). These interactions are important for understanding biogeochemical - climate interactions on millennial timescales and for quantifying how contemporary changes in fire activity and land use are changing the global carbon cycle.

  8. Forest dynamics in Oregon landscapes: Evaluation and application of an individual-based model

    USGS Publications Warehouse

    Busing, R.T.; Solomon, A.M.; McKane, R.B.; Burdick, C.A.

    2007-01-01

    The FORCLIM model of forest dynamics was tested against field survey data for its ability to simulate basal area and composition of old forests across broad climatic gradients in western Oregon, USA. The model was also tested for its ability to capture successional trends in ecoregions of the west Cascade Range. It was then applied to simulate present and future (1990-2050) forest landscape dynamics of a watershed in the west Cascades. Various regimes of climate change and harvesting in the watershed were considered in the landscape application. The model was able to capture much of the variation in forest basal area and composition in western Oregon even though temperature and precipitation were the only inputs that were varied among simulated sites. The measured decline in total basal area from tall coastal forests eastward to interior steppe was matched by simulations. Changes in simulated forest dominants also approximated those in the actual data. Simulated abundances of a few minor species did not match actual abundances, however. Subsequent projections of climate change and harvest effects in a west Cascades landscape indicated no change in forest dominance as of 2050. Yet, climate-driven shifts in the distributions of some species were projected. The simulation of both stand-replacing and partial-stand disturbances across western Oregon improved agreement between simulated and actual data. Simulations with fire as an agent of partial disturbance suggested that frequent fires of low severity can alter forest composition and structure as much or more than severe fires at historic frequencies. ?? 2007 by the Ecological Society of America.

  9. State of Fire Behavior Models and their Application to Ecosystem and Smoke Management Issues: Special Session Summary Report

    DTIC Science & Technology

    2013-10-24

    advance fire science: (1) fire behavior, (2) ecological effects of fire, (3) carbon accounting , (4) emissions characterization, and (5) fire plume...relates to smoke management. 3) Carbon accounting in forest management and prescribed fire programs (including tradeoffs such as prescribed burning...carbon accounting , 4) emissions characterization and 5) fire plume dispersion. 1) Fire behavior. Better characterization of wildland fire behavior is

  10. Long term effects of fire on the carbon balance in boreal forests

    NASA Astrophysics Data System (ADS)

    Berninger, Frank; Köster, Kaja; Pumpanen, Jukka

    2013-04-01

    Fire is the primary process which organizes the physical and biological attributes of the boreal biome and influences energy flows and biogeochemical cycles, particularly the carbon and nitrogen cycle. We established a forest fire chronosequence in the northern boreal forest in Lapland (Värriö Strict Nature Reserve), Finland (67°46' N, 29°35' E) that spans 160 years. Soil organic matter and its turnover were measured in and ex situ, as well as biomass of trees. The fungal biomass was assessed using soil ergosterol contents. The results indicate that fires slow down the turnover of soil organic matter for a period of at least 50 years. The turnover rate in recently burnt sites was only half of the turnover of the old forest site. Decreases in the turnover where still substantial 50 years after fire. The slow recovery of fungal biomass after fires seems to be the cause of the decrease since sites with a higher concentration of fungal biomass in the soils had shorter soil organic matter turnover rates. Increases in stand foliar biomass were less important for the turnover of soil organic matter. We tried to explore the potential importance of our finding using a simple data driven simulation model that estimates soil carbon dynamic from litter input and the measured soil carbon turnover times. The results indicate the initial post-fire slowdown of soil carbon turnover is an important component of the boreal carbon cycle. Using our fire intervals the simulated soil carbon stocks with a lower post-fire soil organic matter turnover were up to 15 % larger than simulations assuming a constant carbon turnover rate. Our sensitivity analysis indicates that the effects will be larger in areas with frequent fires. We do not know which environmental factors cause the delay in the turnover time and the effects of fires on post fire soil organic matter turnover could be considerably smaller or larger. Altogether our results fit well to published results from laboratory studies and show that post-fire depression of microbial activities are important on the ecosystem and landscape level. Since fire frequencies in boreal forests will increase in many areas as the result of climate change, it will be important to better understand the effects of fire on the soil carbon turnover and to incorporate it into carbon cycle models.

  11. Land surface temperature as potential indicator of burn severity in forest Mediterranean ecosystems

    NASA Astrophysics Data System (ADS)

    Quintano, C.; Fernández-Manso, A.; Calvo, L.; Marcos, E.; Valbuena, L.

    2015-04-01

    Forest fires are one of the most important causes of environmental alteration in Mediterranean countries. Discrimination of different degrees of burn severity is critical for improving management of fire-affected areas. This paper aims to evaluate the usefulness of land surface temperature (LST) as potential indicator of burn severity. We used a large convention-dominated wildfire, which occurred on 19-21 September, 2012 in Northwestern Spain. From this area, a 1-year series of six LST images were generated from Landsat 7 Enhanced Thematic Mapper (ETM+) data using a single channel algorithm. Further, the Composite Burn Index (CBI) was measured in 111 field plots to identify the burn severity level (low, moderate, and high). Evaluation of the potential relationship between post-fire LST and ground measured CBI was performed by both correlation analysis and regression models. Correlation coefficients were higher in the immediate post-fire LST images, but decreased during the fall of 2012 and increased again with a second maximum value in summer, 2013. A linear regression model between post-fire LST and CBI allowed us to represent spatially predicted CBI (R-squaredadj > 85%). After performing an analysis of variance (ANOVA) between post-fire LST and CBI, a Fisher's least significant difference test determined that two burn severity levels (low-moderate and high) could be statistically distinguished. The identification of such burn severity levels is sufficient and useful to forest managers. We conclude that summer post-fire LST from moderate resolution satellite data may be considered as a valuable indicator of burn severity for large fires in Mediterranean forest ecosytems.

  12. The Habitat Susceptibility of Bali Starling (Leucopsar rothschildi Stresemann> 1912) Based on Forest Fire Vulnerability Mappin in West Bali National Park

    NASA Astrophysics Data System (ADS)

    Pramatana, F.; Prasetyo, L. B.; Rushayati, S. B.

    2017-10-01

    Bali starling is an endemic and endangered species which tend to decrease of its population in the wild. West Bali National Park (WBNP) is the only habitat of bali starling, however it is threatened nowadays by forest fire. Understanding the sensitivity of habitat to forest & land fire is urgently needed. Geographic Information System (GIS) can be used for mapping the vulnerability of forest fire. This study aims to analyze the contributed factor of forest fire, to develop vulnerability level map of forest fire in WBNP, to estimate habitat vulnerability of bali starling. The variable for mapping forest fire in WBNP were road distance, village distance, land cover, NDVI, NDMI, surface temperature, and slope. Forest fire map in WBNP was created by scoring from each variable, and classified into four classes of forest fire vulnerability which are very low (9 821 ha), low (5 015.718 ha), middle (6 778.656 ha), and high (2 126.006 ha). Bali starling existence in the middle and high vulnerability forest fire class in WBNP, consequently the population and habitat of bali starling is a very vulnerable. Management of population and habitat of bali starling in WBNP must be implemented focus on forest fire impact.

  13. Decree No. 849/988 of 14 December 1988 setting forth regulations on the prevention and combat of forest fires.

    PubMed

    1989-01-01

    This Uruguayan Decree sets forth regulations on the prevention and fighting of forest fires. Among other things, it does the following: 1) requires all public and private organizations, as well as all persons, to assist personally in and provide vehicles, machines, and tools for the fighting of forest fires; 2) requires the owners of property containing forests to maintain instruction in fighting fires for an adequate number of employees; 3) requires all forests to be kept cleared of vegetation capable of spreading fires and to have fire walls; 4) requires owners of forests larger than 30 hectares in size to present to the Forest Directorate an annual plan for forest fire defense; and 5) requires owners of forests larger than 30 hectares in size to maintain specified equipment for fighting fires. Persons violating the provisions of this Decree are subject to fines.

  14. Landscape fire in East Siberia: medical, ecological and economic aspects

    NASA Astrophysics Data System (ADS)

    Efimova, N. V.; Rukavishnikov, V. S.; Zabuga, G. A.; Elfimova, T. A.

    2018-01-01

    More than 40 % of the forests in Siberia region are known to have a fire danger of high classes and high burning degrees. This paper describes air pollutants emission (PM10, nitrogen oxides, sulfur dioxide and others) in East Siberian region during a 10-year period in the forests fires focus. A total of 500 to 2000 fires occurred in Irkutsk oblast during the last ten years. At an average annual forest fires cover an area of 1 109 hectares on the model territory (Bratsk city). The plane pollutant emission source with a high productivity is formed on the significant forest fire area occurred in a relatively short-term time periods. The increase in hazard ratios was registered for the ingredients of emission-specific industrial enterprises and capable of accumulating in vegetation: carbon disulphide 1.9 times, fluorine-containing substances 1.8 times during the fire. The economic loss of energy resources resulting from reduced production of firewood was estimated at 56.6 million in Irkutsk oblast. The potential risk of negative effects for the respiratory system and cardiovascular system stipulated for the acute inhalation exposure was found to increase on the days, of the fires, as evidenced by the growth of the daily mortality and morbidity rates among the population.

  15. Linking Wildfire and Climate as Drivers of Plant Species and Community-level Change

    NASA Astrophysics Data System (ADS)

    Newingham, B. A.; Hudak, A. T.; Bright, B. C.

    2015-12-01

    Plant species distributions and community shifts after fire are affected by burn severity, elevation, aspect, and climate. However, little empirical data exists on long-term (decadal) recovery after fire across these interacting factors, limiting understanding of fire regime characteristics and climate in post-fire community trajectories. We examined plant species and community responses a decade after fire across five fires in ponderosa pine, dry mixed coniferous, and moist mixed coniferous forests across the western USA. Using field data, we determined changes in plant communities one and ten years post-fire across gradients of burn severity, elevation, and aspect. Existing published work has shown that plant species distributions can be accurately predicted from physiologically relevant climate variables using non-parametric Random Forests models; such models have also been linked to projected climate profiles in 2030, 2060, and 2090 generated from three commonly used general circulation models (GCMs). We explore the possibility that fire and climate are coupled drivers affecting plant species distributions. Climate change may not manifest as a slow shift in plant species distributions, but as sudden, localized events tied to changing fire and other disturbance regimes.

  16. Contributions to Pliocene Arctic warmth from removal of anthropogenic aerosol and enhanced forest fire emissions

    NASA Astrophysics Data System (ADS)

    Feng, R.; Otto-Bliesner, B. L.; Fletcher, T.; Ballantyne, A.; Brady, E. C.

    2016-12-01

    Changing atmosphere chemistry in the past has been hypothesized to have altered the earth's radiation budget, and hence the climate. Here, we use an advanced climate model to test whether this hypothesis can help explain the amplified warming in the northern high latitudes during the mid-Pliocene warm period (mPWP, 3.0 - 3.3 Ma). The amplified warming, suggested by terrestrial proxy records of northern high latitudes, is underestimated in previous climate simulations. This mismatch between observations and models may be partially due to proxy uncertainties, but also to insufficient model sensitivity, or incomplete knowledge of mPWP climate forcings. To explore the latter aspect, we conducted three coupled simulations using the same mPWP geography and topography, vegetation and CO2 level according to the PRISM3 reconstructions, but alternating emission scenarios among clean, polluted, and clean plus forest fire case. In the clean and polluted case, year-1850 emission and year-1850 natural plus year-2000 industrial emission are prescribed respectively. For the clean-plus-forest fire simulation, emissions from mPWP forest fire are constrained with a process-based prognostic fire model using fixed proxy SSTs. Preliminary results suggest that mPWP Arctic warmth is largely attributable to the removal of anthropogenic aerosols and enhanced deposition of the black carbon on snow and ice emitted from northern high latitude forest fires. Cloud radiative responses are shown to accelerate the summer sea ice melting from the continental margins, triggering the positive surface albedo and water vapor feedback that maintain a low perennial sea ice state in the Arctic Ocean. These results identify the important role that changes in aerosol chemistry may play in amplifying arctic surface temperatures of mPWP and insights on the role that aerosols may play in amplifying future Arctic temperatures.

  17. Fire ecology of forests and woodlands in Utah

    Treesearch

    Anne F. Bradley; Nonan V. Noste; William C. Fischer

    1992-01-01

    Provides information on fire as an ecological factor in forest habitat types, and in pinyon-juniper woodland and oak-maple brushland communities occurring in Utah. Identifies Fire Groups based on fire's role in forest succession. Describes forest fuels and suggests considerations for fire management.

  18. Fire ecology of the forest habitat types of eastern Idaho and western Wyoming

    Treesearch

    Anne F. Bradley; William C. Fischer; Nonan V. Noste

    1992-01-01

    Provides information on fire as an ecological factor in the forest habitat types occurring in eastern Idaho and western Wyoming. Identifies Fire Groups based on fire's role in forest succession. Describes forest fuels and suggests considerations for fire management.

  19. Impacts of fire on forest age and runoff in mountain ash forests

    USGS Publications Warehouse

    Wood, S.A.; Beringer, J.; Hutley, L.B.; McGuire, A.D.; Van Dijk, A.; Kilinc, M.

    2008-01-01

    Runoff from mountain ash (Eucalyptus regnans F.Muell.) forested catchments has been shown to decline significantly in the few decades following fire - returning to pre-fire levels in the following centuries - owing to changes in ecosystem water use with stand age in a relationship known as Kuczera's model. We examined this relationship between catchment runoff and stand age by measuring whole-ecosystem exchanges of water using an eddy covariance system measuring forest evapotranspiration (ET) combined with sap-flow measurements of tree water use, with measurements made across a chronosequence of three sites (24, 80 and 296 years since fire). At the 296-year old site eddy covariance systems were installed above the E. regnans overstorey and above the distinct rainforest understorey. Contrary to predictions from the Kuczera curve, we found that measurements of whole-forest ET decreased by far less across stand age between 24 and 296 years. Although the overstorey tree water use declined by 1.8 mm day-1 with increasing forest age (an annual decrease of 657 mm) the understorey ET contributed between 1.2 and 1.5 mm day-1, 45% of the total ET (3 mm day-1) at the old growth forest. ?? CSIRO 2008.

  20. Biomass and fire dynamics in a temperate forest-grassland mosaic: Integrating multi-species herbivory, climate, and fire with the FireBGCv2/GrazeBGC system

    Treesearch

    Robert A. Riggs; Robert E. Keane; Norm Cimon; Rachel Cook; Lisa Holsinger; John Cook; Timothy DelCurto; L.Scott Baggett; Donald Justice; David Powell; Martin Vavra; Bridgett Naylor

    2015-01-01

    Landscape fire succession models (LFSMs) predict spatially-explicit interactions between vegetation succession and disturbance, but these models have yet to fully integrate ungulate herbivory as a driver of their processes. We modified a complex LFSM, FireBGCv2, to include a multi-species herbivory module, GrazeBGC. The system is novel in that it explicitly...

  1. Fire detection system using random forest classification for image sequences of complex background

    NASA Astrophysics Data System (ADS)

    Kim, Onecue; Kang, Dong-Joong

    2013-06-01

    We present a fire alarm system based on image processing that detects fire accidents in various environments. To reduce false alarms that frequently appeared in earlier systems, we combined image features including color, motion, and blinking information. We specifically define the color conditions of fires in hue, saturation and value, and RGB color space. Fire features are represented as intensity variation, color mean and variance, motion, and image differences. Moreover, blinking fire features are modeled by using crossing patches. We propose an algorithm that classifies patches into fire or nonfire areas by using random forest supervised learning. We design an embedded surveillance device made with acrylonitrile butadiene styrene housing for stable fire detection in outdoor environments. The experimental results show that our algorithm works robustly in complex environments and is able to detect fires in real time.

  2. Back to the future: assessing accuracy and sensitivity of a forest growth model

    Treesearch

    Susan Hummel; Paul Meznarich

    2014-01-01

    The Forest Vegetation Simulator (FVS) is a widely used computer model that projects forest growth and predicts the effects of disturbances such as fire, insects, harvests, or disease. Land managers often use these projections to decide among silvicultural options and estimate the potential effects of these options on forest conditions. Despite FVS's popularity,...

  3. Predicting large wildfires across western North America by modeling seasonal variation in soil water balance.

    PubMed

    Waring, Richard H; Coops, Nicholas C

    A lengthening of the fire season, coupled with higher temperatures, increases the probability of fires throughout much of western North America. Although regional variation in the frequency of fires is well established, attempts to predict the occurrence of fire at a spatial resolution <10 km 2 have generally been unsuccessful. We hypothesized that predictions of fires might be improved if depletion of soil water reserves were coupled more directly to maximum leaf area index (LAI max ) and stomatal behavior. In an earlier publication, we used LAI max and a process-based forest growth model to derive and map the maximum available soil water storage capacity (ASW max ) of forested lands in western North America at l km resolution. To map large fires, we used data products acquired from NASA's Moderate Resolution Imaging Spectroradiometers (MODIS) over the period 2000-2009. To establish general relationships that incorporate the major biophysical processes that control evaporation and transpiration as well as the flammability of live and dead trees, we constructed a decision tree model (DT). We analyzed seasonal variation in the relative availability of soil water ( fASW ) for the years 2001, 2004, and 2007, representing respectively, low, moderate, and high rankings of areas burned. For these selected years, the DT predicted where forest fires >1 km occurred and did not occur at ~100,000 randomly located pixels with an average accuracy of 69 %. Extended over the decade, the area predicted burnt varied by as much as 50 %. The DT identified four seasonal combinations, most of which included exhaustion of ASW during the summer as critical; two combinations involving antecedent conditions the previous spring or fall accounted for 86 % of the predicted fires. The approach introduced in this paper can help identify forested areas where management efforts to reduce fire hazards might prove most beneficial.

  4. Comparing effects of climate warming, fire, and timber harvesting on a boreal forest landscape in northeastern China.

    PubMed

    Li, Xiaona; He, Hong S; Wu, Zhiwei; Liang, Yu; Schneiderman, Jeffrey E

    2013-01-01

    Forest management under a changing climate requires assessing the effects of climate warming and disturbance on the composition, age structure, and spatial patterns of tree species. We investigated these effects on a boreal forest in northeastern China using a factorial experimental design and simulation modeling. We used a spatially explicit forest landscape model (LANDIS) to evaluate the effects of three independent variables: climate (current and expected future), fire regime (current and increased fire), and timber harvesting (no harvest and legal harvest). Simulations indicate that this forested landscape would be significantly impacted under a changing climate. Climate warming would significantly increase the abundance of most trees, especially broadleaf species (aspen, poplar, and willow). However, climate warming would have less impact on the abundance of conifers, diversity of forest age structure, and variation in spatial landscape structure than burning and harvesting. Burning was the predominant influence in the abundance of conifers except larch and the abundance of trees in mid-stage. Harvesting impacts were greatest for the abundance of larch and birch, and the abundance of trees during establishment stage (1-40 years), early stage (41-80 years) and old- growth stage (>180 years). Disturbance by timber harvesting and burning may significantly alter forest ecosystem dynamics by increasing forest fragmentation and decreasing forest diversity. Results from the simulations provide insight into the long term management of this boreal forest.

  5. A vicious circle of fire, deforestation and climate change: an integrative study for the Amazon region

    NASA Astrophysics Data System (ADS)

    Thonicke, K.; Rammig, A.; Gumpenberger, M.; Vohland, K.; Poulter, B.; Cramer, W.

    2009-04-01

    The Amazon rainforest is threatened by deforestation due to wood extraction and agricultural production leading to increasing forest fragmentation and forest degradation. These changes in land surface characteristics and water fluxes are expected to further reduce convective precipitation. Under future climate change the stability of the Amazon rainforest is likely to decrease thus leading to forest dieback (savannization) or forest degradation (secondarization). This puts the Amazon rainforest at risk to reduce the generation of precipitation, to act as a carbon sink and biodiversity hotspot. Fires increased in the past during drought years and in open vegetation thereby further accelerating forest degradation. Deforestation as a result of socioeconomic development in the Amazon basin is projected to further increase in the 21st century and brings climate-induced changes forward. Combined effects of deforestation vs. climate change on the stability of the Amazon rainforest and the role of fire in this system need to be quantified in an integrated study. We present simulation results from future climate (AR4) and deforestation (SimAmazon) experiments using the LPJmL-SPITFIRE vegetation model. Land use change is the main driving factor of forest degradation before 2050, whereas extreme climate change scenarios lead to forest degradation by the end of 2100. Forest fires increase with increasing drought conditions during the 21st century. The resulting effects on vegetation secondarization and savannization and their feedbacks on fire spread and emissions will be presented. The effect of wildfires and intentional burning on forest degradation under future climate and socioeconomic change will be discussed, and recommendations for an integrated land use and fire management are given.

  6. Effects of fire on regional evapotranspiration in the central Canadian boreal forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond-Lamberty, Benjamin; Peckham, Scott D.; Gower, Stith T.

    2009-04-08

    Changes in fire regimes are driving the carbon balance of much of the North American boreal forest, but few studies have examined fire-driven changes in evapotranspiration (ET) at a regional scale. This study used a version of the Biome-BGC process model with dynamic and competing vegetation types, and explicit spatial representation of a large (106 km2) region, to simulate the effects of wildfire on ET and its components from 1948 to 2005 by comparing the fire dynamics of the 1948-1967 period with those of 1968-2005. Simulated ET averaged, over the entire temporal and spatial modeling domain, 323 mm yr-1; simulationmore » results indicated that changes in fire in recent decades decreased regional ET by 1.4% over the entire simulation, and by 3.9% in the last ten years (1996-2005). Conifers dominated the transpiration (EC) flux (120 mm yr-1) but decreased by 18% relative to deciduous broadleaf trees in the last part of the 20th century, when increased fire resulted in increased soil evaporation, lower canopy evaporation, lower EC and a younger and more deciduous forest. Well- and poorly-drained areas had similar rates of evaporation from the canopy and soil, but EC was twice as high in the well-drained areas. Mosses comprised a significant part of the evaporative flux to the atmosphere (22 mm yr-1). Modeled annual ET was correlated with net primary production, but not with temperature or precipitation; ET and its components were consistent with previous field and modeling studies. Wildfire is thus driving significant changes in hydrological processes, changes that may control the future carbon balance of the boreal forest.« less

  7. Using kinetic models to predict thermal degradation of fire-retardant-treated plywood roof sheathing

    Treesearch

    Patricia Lebow; Jerrold E. Winandy; Patricia K. Lebow

    2003-01-01

    Between 1985-1995 a substantial number of multifamily housing units in the Eastern and Southern U.S. experienced problems with thermally degraded fire-retardant-treated (FRT) plywood roof sheathing. A series of studies conducted at the USDA Forest Service, Forest Products Laboratory (FPL), examined the materials, chemical mechanisms, and process implications and has...

  8. Do multiple fires interact to affect vegetation structure in temperate eucalypt forests?

    PubMed

    Haslem, Angie; Leonard, Steve W J; Bruce, Matthew J; Christie, Fiona; Holland, Greg J; Kelly, Luke T; MacHunter, Josephine; Bennett, Andrew F; Clarke, Michael F; York, Alan

    2016-12-01

    Fire plays an important role in structuring vegetation in fire-prone regions worldwide. Progress has been made towards documenting the effects of individual fire events and fire regimes on vegetation structure; less is known of how different fire history attributes (e.g., time since fire, fire frequency) interact to affect vegetation. Using the temperate eucalypt foothill forests of southeastern Australia as a case study system, we examine two hypotheses about such interactions: (1) post-fire vegetation succession (e.g., time-since-fire effects) is influenced by other fire regime attributes and (2) the severity of the most recent fire overrides the effect of preceding fires on vegetation structure. Empirical data on vegetation structure were collected from 540 sites distributed across central and eastern Victoria, Australia. Linear mixed models were used to examine these hypotheses and determine the relative influence of fire and environmental attributes on vegetation structure. Fire history measures, particularly time since fire, affected several vegetation attributes including ground and canopy strata; others such as low and sub-canopy vegetation were more strongly influenced by environmental characteristics like rainfall. There was little support for the hypothesis that post-fire succession is influenced by fire history attributes other than time since fire; only canopy regeneration was influenced by another variable (fire type, representing severity). Our capacity to detect an overriding effect of the severity of the most recent fire was limited by a consistently weak effect of preceding fires on vegetation structure. Overall, results suggest the primary way that fire affects vegetation structure in foothill forests is via attributes of the most recent fire, both its severity and time since its occurrence; other attributes of fire regimes (e.g., fire interval, frequency) have less influence. The strong effect of environmental drivers, such as rainfall and topography, on many structural features show that foothill forest vegetation is also influenced by factors outside human control. While fire is amenable to human management, results suggest that at broad scales, structural attributes of these forests are relatively resilient to the effects of current fire regimes. Nonetheless, the potential for more frequent severe fires at short intervals, associated with a changing climate and/or fire management, warrant further consideration. © 2016 by the Ecological Society of America.

  9. Validating the Malheur model for predicting ponderosa pine post-fire mortality using 24 fires in the Pacific Northwest, USA

    Treesearch

    Walter G. Thies; Douglas J. Westlind

    2012-01-01

    Fires, whether intentionally or accidentally set, commonly occur in western interior forests of the US. Following fire, managers need the ability to predict mortality of individual trees based on easily observed characteristics. Previously, a two-factor model using crown scorch and bole scorch proportions was developed with data from 3415 trees for predicting the...

  10. Using an agent-based model to examine forest management outcomes in a fire-prone landscape in Oregon, USA

    Treesearch

    Thomas A. Spies; Eric White; Alan Ager; Jeffrey D. Kline; John P. Bolte; Emily K. Platt; Keith A. Olsen; Robert J. Pabst; Ana M. G. Barros; John D. Bailey; Susan Charnley; Anita T. Morzillo; Jennifer Koch; Michelle M. Steen-Adams; Peter H. Singleton; James Sulzman; Cynthia Schwartz; Blair Csuti

    2017-01-01

    Fire-prone landscapes present many challenges for both managers and policy makers in developing adaptive behaviors and institutions. We used a coupled human and natural systems framework and an agent-based landscape model to examine how alternative management scenarios affect fire and ecosystem services metrics in a fire-prone multiownership landscape in the eastern...

  11. Sensitivity analysis of a FMC model for improving forecasting forest fires: Comparison with real fires in Spain

    NASA Astrophysics Data System (ADS)

    San Jose, Roberto; Perez, Juan Luis; Gonzalez-Barras, Rosa M.; Pecci, Julia; Palacios, Marino

    2014-05-01

    Forest fires continue to be a very dangerous and extreme violent episode jeopardizing the human lives and owns. Spain is plagued by forest and brush fires every summer, when extremely dry weather sets in along with high temperatures. The use of fire behavior models requires the availability of high resolution environmental and fuel data; in absence of realistic data, errors on the simulated fire spread con be compounded to produce o decrease of the spatial and temporal accuracy of predicted data. In this work we have carried out a sensitivity analysis of different components of the fire model and particularly the fuel moisture content (FMC) such as microphysics and solar radiation model. Three different real fire models have been used: Murcia (September, 7, 2010 19h09 and 9 hours duration), Gabiel (March, 7, 2007, 22h15 and 38 hours duration) and Culla (Marzo, 7, 2007, 23h36 and 37 hours duration). We use the 100 m European Corine Land Cover map. We use the WRF-Fire model developed by NCAR (USA). The WRF mode is run using the GFS global data and over the Iberian Peninsula with 15 km spatial resolution. We apply the nesting approach over the fires areas (located in the South East of the Iberian Peninsula) with 3 km, 1 km and 200 m spatial resolution. The Fire module included into WRF is run with 20 m spatial resolution and the landuse is interpolated from the Corine 100 m land use map. The results show that the Thompson et al. microphysics scheme and the RRTM solar radiation scheme are those with the best combination using a specific counting score to classify the goodness of the results compare with the real burned area. Those pixels not burned by the simulations but burned by the observational data sets are penalized double compare with the vice versa process. The NDVI obtained by satellite on the day of starting the fire is included in the simulations and a substantial improving in the final score is obtained.

  12. Fire ecology of Montana forest habitat types east of the Continental Divide

    Treesearch

    William C. Fischer; Bruce D. Clayton

    1983-01-01

    Provides information on fire as an ecological factor for forest habitat types occurring east of the Continental Divide in Montana. Identifies "Fire Groups" of habitat types based on fire's role in forest succession. Describes forest fuels and suggests considerations for fire management.

  13. Mixed-severity fire history at a forest-grassland ecotone in west central British Columbia, Canada.

    PubMed

    Harvey, Jill E; Smith, Dan J; Veblen, Thomas T

    2017-09-01

    This study examines spatially variable stand structure and fire-climate relationships at a low elevation forest-grassland ecotone in west central British Columbia, Canada. Fire history reconstructions were based on samples from 92 fire-scarred trees and stand demography from 27 plots collected over an area of about 7 km 2 . We documented historical chronologies of widespread fires and localized grassland fires between AD 1600 and 1900. Relationships between fire events, reconstructed values of the Palmer Drought Severity Index, and annual precipitation were examined using superposed epoch and bivariate event analyses. Widespread fires occurred during warm, dry years and were preceded by multiple anomalously dry, warm years. Localized fires that affected only grassland-proximal forests were more frequent than widespread fires. These localized fires showed a lagged, positive relationship with wetter conditions. The landscape pattern of forest structure provided further evidence of complex fire activity with multiple plots shown to have experienced low-, mixed-, and/or high-severity fires over the last four centuries. We concluded that this forest-grassland ecotone was characterized by fires of mixed severity, dominated by frequent, low-severity fires punctuated by widespread fires of moderate to high severity. This landscape-level variability in fire-climate relationships and patterns in forest structure has important implications for fire and grassland management in west central British Columbia and similar environments elsewhere. Forest restoration techniques such as prescribed fire and thinning are oftentimes applied at the forest-grassland ecotone on the basis that historically high frequency, low-severity fires defined the character of past fire activity. This study provides forest managers and policy makers with important information on mixed-severity fire activity at a low elevation forest-grassland ecotone, a crucial prerequisite for the effective management of these complex ecosystems. © 2017 by the Ecological Society of America.

  14. Fuel treatment impacts on estimated wildfire carbon loss from forests in Montana, Oregon, California, and Arizona

    USGS Publications Warehouse

    Stephens, Scott L.; Boerner, Ralph E.J.; Maghaddas, Jason J.; Maghaddas, Emily E.Y.; Collins, Brandon M.; Dow, Christopher B.; Edminster, Carl; Fiedler, Carl E.; Fry, Danny L.; Hartsough, Bruce R.; Keeley, Jon E.; Knapp, Eric E.; McIver, James D.; Skinner, Carl N.; Youngblood, Andrew P.

    2012-01-01

    Using forests to sequester carbon in response to anthropogenically induced climate change is being considered across the globe. A recent U.S. executive order mandated that all federal agencies account for sequestration and emissions of greenhouse gases, highlighting the importance of understanding how forest carbon stocks are influenced by wildfire. This paper reports the effects of the most common forest fuel reduction treatments on carbon pools composed of live and dead biomass as well as potential wildfire emissions from six different sites in four western U.S. states. Additionally, we predict the median forest product life spans and uses of materials removed during mechanical treatments. Carbon loss from modeled wildfire-induced tree mortality was lowest in the mechanical plus prescribed fire treatments, followed by the prescribed fire-only treatments. Wildfire emissions varied from 10–80 Mg/ha and were lowest in the prescribed fire and mechanical followed by prescribed fire treatments at most sites. Mean biomass removals per site ranged from approximately 30–60 dry Mg/ha; the median lives of products in first use varied considerably (from <10 to >50 years). Our research suggests most of the benefits of increased fire resistance can be achieved with relatively small reductions in current carbon stocks. Retaining or growing larger trees also reduced the vulnerability of carbon loss from wildfire. In addition, modeled vulnerabilities to carbon losses and median forest product life spans varied considerably across our study sites, which could be used to help prioritize treatment implementation.

  15. [Application of spatially explicit landscape model in soil loss study in Huzhong area].

    PubMed

    Xu, Chonggang; Hu, Yuanman; Chang, Yu; Li, Xiuzhen; Bu, Renchang; He, Hongshi; Leng, Wenfang

    2004-10-01

    Universal Soil Loss Equation (USLE) has been widely used to estimate the average annual soil loss. In most of the previous work on soil loss evaluation on forestland, cover management factor was calculated from the static forest landscape. The advent of spatially explicit forest landscape model in the last decade, which explicitly simulates the forest succession dynamics under natural and anthropogenic disturbances (fire, wind, harvest and so on) on heterogeneous landscape, makes it possible to take into consideration the change of forest cover, and to dynamically simulate the soil loss in different year (e.g. 10 years and 20 years after current year). In this study, we linked a spatially explicit landscape model (LANDIS) with USLE to simulate the soil loss dynamics under two scenarios: fire and no harvest, fire and harvest. We also simulated the soil loss with no fire and no harvest as a control. The results showed that soil loss varied periodically with simulation year, and the amplitude of change was the lowest under the control scenario and the highest under the fire and no harvest scenario. The effect of harvest on soil loss could not be easily identified on the map; however, the cumulative effect of harvest on soil loss was larger than that of fire. Decreasing the harvest area and the percent of bare soil increased by harvest could significantly reduce soil loss, but had no significant effects on the dynamic of soil loss. Although harvest increased the annual soil loss, it tended to decrease the variability of soil loss between different simulation years.

  16. Influence of landscape structure, topography, and forest type on spatial variation in historical fire regimes, central Oregon, USA

    USGS Publications Warehouse

    Merschel, Andrew; Heyerdahl, Emily K.; Spies, Thomas A; Loehman, Rachel A.

    2018-01-01

    Context In the interior Northwest, debate over restoring mixed-conifer forests after a century of fire exclusion is hampered by poor understanding of the pattern and causes of spatial variation in historical fire regimes. Objectives To identify the roles of topography, landscape structure, and forest type in driving spatial variation in historical fire regimes in mixed-conifer forests of central Oregon. Methods We used tree rings to reconstruct multicentury fire and forest histories at 105 plots over 10,393 ha. We classified fire regimes into four types and assessed whether they varied with topography, the location of fuel-limited pumice basins that inhibit fire spread, and an updated classification of forest type. Results We identified four fire-regime types and six forest types. Although surface fires were frequent and often extensive, severe fires were rare in all four types. Fire regimes varied with some aspects of topography (elevation), but not others (slope or aspect) and with the distribution of pumice basins. Fire regimes did not strictly co-vary with mixed-conifer forest types. Conclusions Our work reveals the persistent influence of landscape structure on spatial variation in historical fire regimes and can help inform discussions about appropriate restoration of fire-excluded forests in the interior Northwest. Where the goal is to restore historical fire regimes at landscape scales, managers may want to consider the influence of topoedaphic and vegetation patch types that could affect fire spread and ignition frequency.

  17. Variation in tree mortality and regeneration affect forest carbon recovery following fuel treatments and wildfire in the Lake Tahoe Basin, California, USA.

    PubMed

    Carlson, Chris H; Dobrowski, Solomon Z; Safford, Hugh D

    2012-06-28

    Forest fuel treatments have been proposed as tools to stabilize carbon stocks in fire-prone forests in the Western U.S.A. Although fuel treatments such as thinning and burning are known to immediately reduce forest carbon stocks, there are suggestions that these losses may be paid back over the long-term if treatments sufficiently reduce future wildfire severity, or prevent deforestation. Although fire severity and post-fire tree regeneration have been indicated as important influences on long-term carbon dynamics, it remains unclear how natural variability in these processes might affect the ability of fuel treatments to protect forest carbon resources. We surveyed a wildfire where fuel treatments were put in place before fire and estimated the short-term impact of treatment and wildfire on aboveground carbon stocks at our study site. We then used a common vegetation growth simulator in conjunction with sensitivity analysis techniques to assess how predicted timescales of carbon recovery after fire are sensitive to variation in rates of fire-related tree mortality, and post-fire tree regeneration. We found that fuel reduction treatments were successful at ameliorating fire severity at our study site by removing an estimated 36% of aboveground biomass. Treated and untreated stands stored similar amounts of carbon three years after wildfire, but differences in fire severity were such that untreated stands maintained only 7% of aboveground carbon as live trees, versus 51% in treated stands. Over the long-term, our simulations suggest that treated stands in our study area will recover baseline carbon storage 10-35 years more quickly than untreated stands. Our sensitivity analysis found that rates of fire-related tree mortality strongly influence estimates of post-fire carbon recovery. Rates of regeneration were less influential on recovery timing, except when fire severity was high. Our ability to predict the response of forest carbon resources to anthropogenic and natural disturbances requires models that incorporate uncertainty in processes important to long-term forest carbon dynamics. To the extent that fuel treatments are able to ameliorate tree mortality rates or prevent deforestation resulting from wildfire, our results suggest that treatments may be a viable strategy to stabilize existing forest carbon stocks.

  18. Variation in tree mortality and regeneration affect forest carbon recovery following fuel treatments and wildfire in the Lake Tahoe Basin, California, USA

    PubMed Central

    2012-01-01

    Background Forest fuel treatments have been proposed as tools to stabilize carbon stocks in fire-prone forests in the Western U.S.A. Although fuel treatments such as thinning and burning are known to immediately reduce forest carbon stocks, there are suggestions that these losses may be paid back over the long-term if treatments sufficiently reduce future wildfire severity, or prevent deforestation. Although fire severity and post-fire tree regeneration have been indicated as important influences on long-term carbon dynamics, it remains unclear how natural variability in these processes might affect the ability of fuel treatments to protect forest carbon resources. We surveyed a wildfire where fuel treatments were put in place before fire and estimated the short-term impact of treatment and wildfire on aboveground carbon stocks at our study site. We then used a common vegetation growth simulator in conjunction with sensitivity analysis techniques to assess how predicted timescales of carbon recovery after fire are sensitive to variation in rates of fire-related tree mortality, and post-fire tree regeneration. Results We found that fuel reduction treatments were successful at ameliorating fire severity at our study site by removing an estimated 36% of aboveground biomass. Treated and untreated stands stored similar amounts of carbon three years after wildfire, but differences in fire severity were such that untreated stands maintained only 7% of aboveground carbon as live trees, versus 51% in treated stands. Over the long-term, our simulations suggest that treated stands in our study area will recover baseline carbon storage 10–35 years more quickly than untreated stands. Our sensitivity analysis found that rates of fire-related tree mortality strongly influence estimates of post-fire carbon recovery. Rates of regeneration were less influential on recovery timing, except when fire severity was high. Conclusions Our ability to predict the response of forest carbon resources to anthropogenic and natural disturbances requires models that incorporate uncertainty in processes important to long-term forest carbon dynamics. To the extent that fuel treatments are able to ameliorate tree mortality rates or prevent deforestation resulting from wildfire, our results suggest that treatments may be a viable strategy to stabilize existing forest carbon stocks. PMID:22741762

  19. The influence of prefire tree growth and crown condition on postfire mortality of sugar pine following prescribed fire in Sequoia National Park

    USGS Publications Warehouse

    Nesmith, Jonathan C. B.; Das, Adrian J.; O'Hara, Kevin L.; van Mantgem, Phillip J.

    2015-01-01

    Tree mortality is a vital component of forest management in the context of prescribed fires; however, few studies have examined the effect of prefire tree health on postfire mortality. This is especially relevant for sugar pine (Pinus lambertiana Douglas), a species experiencing population declines due to a suite of anthropogenic factors. Using data from an old-growth mixed-conifer forest in Sequoia National Park, we evaluated the effects of fire, tree size, prefire radial growth, and crown condition on postfire mortality. Models based only on tree size and measures of fire damage were compared with models that included tree size, fire damage, and prefire tree health (e.g., measures of prefire tree radial growth or crown condition). Immediately following the fire, the inclusion of different metrics of prefire tree health produced variable improvements over the models that included only tree size and measures of fire damage, as models that included measures of crown condition performed better than fire-only models, but models that included measures of prefire radial growth did not perform better. However, 5 years following the fire, sugar pine mortality was best predicted by models that included measures of both fire damage and prefire tree health, specifically, diameter at breast height (DBH, 1.37 m), crown scorch, 30-year mean growth, and the number of sharp declines in growth over a 30-year period. This suggests that factors that influence prefire tree health (e.g., drought, competition, pathogens, etc.) may partially determine postfire mortality, especially when accounting for delayed mortality following fire.

  20. The climatic sensitivity of the forest, savanna and forest-savanna transition in tropical South America.

    PubMed

    Hirota, Marina; Nobre, Carlos; Oyama, Marcos Daisuke; Bustamante, Mercedes M C

    2010-08-01

    *We used a climate-vegetation-natural fire (CVNF) conceptual model to evaluate the sensitivity and vulnerability of forest, savanna, and the forest-savanna transition to environmental changes in tropical South America. *Initially, under current environmental conditions, CVNF model results suggested that, in the absence of fires, tropical forests would extend c. 200 km into the presently observed savanna domain. *Environmental changes were then imposed upon the model in temperature, precipitation and lightning strikes. These changes ranged from 2 to 6 degrees C warming, +10 to -20% precipitation change and 0 to 15% increase in lightning frequency, which, in aggregate form, represent expected future climatic changes in response to global warming and deforestation. *The most critical vegetation changes are projected to take place over the easternmost portions of the basin, with a widening of the forest-savanna transition. The transition width would increase from 150 to c. 300 km, with tree cover losses ranging from 20 to 85%. This means that c. 6% of the areas currently covered by forests could potentially turn into grass-dominated savanna landscapes. The mechanism driving tree cover reduction consists of the combination of less favorable climate conditions for trees and more fire activity. In addition, this sensitivity analysis predicts that the current dry shrubland vegetation of northeast Brazil could potentially turn into a bare soil landscape.

  1. Historical dominance of low-severity fire in dry and wet mixed-conifer forest habitats of the endangered terrestrial Jemez Mountains salamander (Plethodon neomexicanus)

    USGS Publications Warehouse

    Margolis, Ellis; Malevich, Steven B.

    2016-01-01

    Anthropogenic alteration of ecosystem processes confounds forest management and conservation of rare, declining species. Restoration of forest structure and fire hazard reduction are central goals of forest management policy in the western United States, but restoration priorities and treatments have become increasingly contentious. Numerous studies have documented changes in fire regimes, forest stand structure and species composition following a century of fire exclusion in dry, frequent-fire forests of the western U.S. (e.g., ponderosa pine and dry mixed-conifer). In contrast, wet mixed-conifer forests are thought to have historically burned infrequently with mixed- or high-severity fire—resulting in reduced impacts from fire exclusion and low restoration need—but data are limited. In this study we quantified the current forest habitat of the federally endangered, terrestrial Jemez Mountains salamander (Plethodon neomexicanus) and compared it to dendroecological reconstructions of historical habitat (e.g., stand structure and composition), and fire regime parameters along a gradient from upper ponderosa pine to wet mixed-conifer forests. We found that current fire-free intervals in Jemez Mountains salamander habitat (116–165 years) are significantly longer than historical intervals, even in wet mixed-conifer forests. Historical mean fire intervals ranged from 10 to 42 years along the forest gradient. Low-severity fires were historically dominant across all forest types (92 of 102 fires). Although some mixed- or highseverity fire historically occurred at 67% of the plots over the last four centuries, complete mortality within 1.0 ha plots was rare, and asynchronous within and among sites. Climate was an important driver of temporal variability in fire severity, such that mixed- and high-severity fires were associated with more extreme drought than low-severity fires. Tree density in dry conifer forests historically ranged from open (90 trees/ha) to moderately dense (400 trees/ha), but has doubled on average since fire exclusion. Infill of fire-sensitive tree species has contributed to the conversion of historically dry mixedconifer to wet mixed-conifer forest. We conclude that low-severity fire, which has been absent for over a century, was a critical ecosystem process across the forest gradient in Jemez Mountains salamander habitat, and thus is an important element of ecosystem restoration, resilience, and rare species recovery.

  2. Effects of forest fire and logging on forest degradation in Mongolia

    Treesearch

    Yeong Dae Park; Don Koo Lee; Jamsran Tsogtbaatar; John A. Stanturf

    2010-01-01

    Forests in Mongolia have been severely degraded by forest fire and exploitive logging. This study investigate changes in vegetation and soil properties after forest fire or clearfelling. Microclimate conditions such as temperature and relative humidity (RH) changed drastically after forest fire or logging; temperature increased 1.6-1.7 ºC on average, whereas...

  3. Fuel loads, fire regimes, and post-fire fuel dynamics in Florida Keys pine forests

    USGS Publications Warehouse

    Sah, J.P.; Ross, M.S.; Snyder, J.R.; Koptur, S.; Cooley, H.C.

    2006-01-01

    In forests, the effects of different life forms on fire behavior may vary depending on their contributions to total fuel loads. We examined the distribution of fuel components before fire, their effects on fire behavior, and the effects of fire on subsequent fuel recovery in pine forests within the National Key Deer Refuge in the Florida Keys. We conducted a burning experiment in six blocks, within each of which we assigned 1-ha plots to three treatments: control, summer, and winter burn. Owing to logistical constraints, we burned only 11 plots, three in winter and eight in summer, over a 4-year period from 1998 to 2001. We used path analysis to model the effects of fuel type and char height, an indicator of fire intensity, on fuel consumption. Fire intensity increased with surface fuel loads, but was negatively related to the quantity of hardwood shrub fuels, probably because these fuels are associated with a moist microenvironment within hardwood patches, and therefore tend to resist fire. Winter fires were milder than summer fires, and were less effective at inhibiting shrub encroachment. A mixed seasonal approach is suggested for fire management, with burns applied opportunistically under a range of winter and summer conditions, but more frequently than that prevalent in the recent past. ?? IAWF 2006.

  4. Air quality impacts from prescribed forest fires under different management practices.

    PubMed

    Tian, Di; Wang, Yuhang; Bergin, Michelle; Hu, Yongtao; Liu, Yongqiang; Russell, Armistead G

    2008-04-15

    Large amounts of air pollutants are emitted during prescribed forest fires. Such emissions and corresponding air quality impacts can be modulated by different forest management practices. The impacts of changing burning seasons and frequencies and of controlling emissions during smoldering on regional air quality in Georgia are quantified using source-oriented air quality modeling, with modified emissions from prescribed fires reflecting effects of each practice. Equivalent fires in the spring and winter are found to have a greater impact on PM2.5 than those in summer, though ozone impacts are larger from spring and summer fires. If prescribed fires are less frequent more biofuel is burnt in each fire, leading to larger emissions and air quality impacts per fire. For example, emissions from a fire with a 5-year fire return interval (FRI) are 72% larger than those from a fire of the same acreage with a 2-year FRI. However, corresponding long-term regional impacts are reduced with the longer FRI since the annual burned area is reduced. Total emissions for fires in Georgia with a 5-year FRI are 32% less than those with a 2-year FRI. Smoldering emissions can lead to approximately 1.0 or 1.9 microg/m3 of PM2.5 in the Atlanta PM2.5 nonattainment area during March 2002.

  5. The pyrogeography of eastern boreal Canada from 1901 to 2012 simulated with the LPJ-LMfire model

    NASA Astrophysics Data System (ADS)

    Chaste, Emeline; Girardin, Martin P.; Kaplan, Jed O.; Portier, Jeanne; Bergeron, Yves; Hély, Christelle

    2018-03-01

    Wildland fires are the main natural disturbance shaping forest structure and composition in eastern boreal Canada. On average, more than 700 000 ha of forest burns annually and causes as much as CAD 2.9 million worth of damage. Although we know that occurrence of fires depends upon the coincidence of favourable conditions for fire ignition, propagation, and fuel availability, the interplay between these three drivers in shaping spatiotemporal patterns of fires in eastern Canada remains to be evaluated. The goal of this study was to reconstruct the spatiotemporal patterns of fire activity during the last century in eastern Canada's boreal forest as a function of changes in lightning ignition, climate, and vegetation. We addressed this objective using the dynamic global vegetation model LPJ-LMfire, which we parametrized for four plant functional types (PFTs) that correspond to the prevalent tree genera in eastern boreal Canada (Picea, Abies, Pinus, Populus). LPJ-LMfire was run with a monthly time step from 1901 to 2012 on a 10 km2 resolution grid covering the boreal forest from Manitoba to Newfoundland. Outputs of LPJ-LMfire were analyzed in terms of fire frequency, net primary productivity (NPP), and aboveground biomass. The predictive skills of LPJ-LMfire were examined by comparing our simulations of annual burn rates and biomass with independent data sets. The simulation adequately reproduced the latitudinal gradient in fire frequency in Manitoba and the longitudinal gradient from Manitoba towards southern Ontario, as well as the temporal patterns present in independent fire histories. However, the simulation led to the underestimation and overestimation of fire frequency at both the northern and southern limits of the boreal forest in Québec. The general pattern of simulated total tree biomass also agreed well with observations, with the notable exception of overestimated biomass at the northern treeline, mainly for PFT Picea. In these northern areas, the predictive ability of LPJ-LMfire is likely being affected by the low density of weather stations, which leads to underestimation of the strength of fire-weather interactions and, therefore, vegetation consumption during extreme fire years. Agreement between the spatiotemporal patterns of fire frequency and the observed data across a vast portion of the study area confirmed that fire therein is strongly ignition limited. A drier climate coupled with an increase in lightning frequency during the second half of the 20th century notably led to an increase in fire activity. Finally, our simulations highlighted the importance of both climate and fire in vegetation: despite an overarching CO2-induced enhancement of NPP in LPJ-LMfire, forest biomass was relatively stable because of the compensatory effects of increasing fire activity.

  6. Forest Fire Advanced System Technology (FFAST): A Conceptual Design for Detection and Mapping

    Treesearch

    J. David Nichols; John R. Warren

    1987-01-01

    The Forest Fire Advanced System Technology (FFAST) project is developing a data system to provide near-real-time forest fire information to fire management at the fire Incident Command Post (ICP). The completed conceptual design defined an integrated forest fire detection and mapping system that is based upon technology available in the 1990's. System component...

  7. Anthropogenic Land-use Change and the Dynamics of Amazon Forest Biomass

    NASA Technical Reports Server (NTRS)

    Laurance, William F.

    2004-01-01

    This project was focused on assessing the effects of prevailing land uses, such as habitat fragmentation, selective logging, and fire, on biomass and carbon storage in Amazonian forests, and on the dynamics of carbon sequestration in regenerating forests. Ancillary goals included developing GIs models to help predict the future condition of Amazonian forests, and assessing the effects of anthropogenic climate change and ENS0 droughts on intact and fragmented forests. Ground-based studies using networks of permanent plots were linked with remote-sensing data (including Landsat TM and AVHRR) at regional scales, and higher-resolution techniques (IKONOS imagery, videography, LIDAR, aerial photographs) at landscape and local scales. The project s specific goals were quite eclectic and included: Determining the effects of habitat fragmentation on forest dynamics, floristic composition, and the various components of above- and below-ground biomass. Assessing historical and physical factors that affect trajectories of forest regeneration and carbon sequestration on abandoned lands. Extrapolating results from local studies of biomass dynamics in fragmented and regenerating forests to landscape and regional scales in Amazonia, using remote sensing and GIS. Testing the hypothesis that intact Amazonian forests are functioning as a significant carbon sink. Examining destructive synergisms between forest fragmentation and fire. Assessing the short-term impacts of selective logging on aboveground biomass. Developing GIS models that integrate current spatial data on forest cover, deforestation, logging, mining, highway and roads, navigable rivers, vulnerability to wild fires, protected areas, and existing and planned infrastructure projects, in an effort to predict the future condition of Brazilian Amazonian forests over the next 20-25 years. Devising predictive spatial models to assess the influence of varied biophysical and anthropogenic predictors on Amazonian deforestation.

  8. Roost networks of northern myotis (Myotis septentrionalis) in a managed landscape

    USGS Publications Warehouse

    Johnson, J.B.; Mark, Ford W.; Edwards, J.W.

    2012-01-01

    Maternity groups of many bat species conform to fission-fusion models and movements among diurnal roost trees and individual bats belonging to these groups use networks of roost trees. Forest disturbances may alter roost networks and characteristics of roost trees. Therefore, at the Fernow Experimental Forest in West Virginia, we examined roost tree networks of northern myotis (Myotis septentrionalis) in forest stands subjected to prescribed fire and in unmanipulated control treatments in 2008 and 2009. Northern myotis formed social groups whose roost areas and roost tree networks overlapped to some extent. Roost tree networks largely resembled scale-free network models, as 61% had a single central node roost tree. In control treatments, central node roost trees were in early stages of decay and surrounded by greater basal area than other trees within the networks. In prescribed fire treatments, central node roost trees were small in diameter, low in the forest canopy, and surrounded by low basal area compared to other trees in networks. Our results indicate that forest disturbances, including prescribed fire, can affect availability and distribution of roosts within roost tree networks. ?? 2011 Elsevier B.V.

  9. Relation of weather forecasts to the prediction of dangerous forest fire conditions

    Treesearch

    R. H. Weidman

    1923-01-01

    The purpose of predicting dangerous forest-fire conditions, of course, is to reduce the great cost and damage caused by forest fires. In the region of Montana and northern Idaho alone the average cost to the United States Forest Service of fire protection and suppression is over $1,000,000 a year. Although the causes of forest fires will gradually be reduced by...

  10. Forecasting Fire Season Severity in South America Using Sea Surface Temperature Anomalies

    NASA Technical Reports Server (NTRS)

    Chen, Yang; Randerson, James T.; Morton, Douglas C.; DeFries, Ruth S.; Collatz, G. James; Kasibhatla, Prasad S.; Giglio, Louis; Jin, Yufang; Marlier, Miriam E.

    2011-01-01

    Fires in South America cause forest degradation and contribute to carbon emissions associated with land use change. We investigated the relationship between year-to-year changes in fire activity in South America and sea surface temperatures. We found that the Oceanic Ni o Index was correlated with interannual fire activity in the eastern Amazon, whereas the Atlantic Multidecadal Oscillation index was more closely linked with fires in the southern and southwestern Amazon. Combining these two climate indices, we developed an empirical model to forecast regional fire season severity with lead times of 3 to 5 months. Our approach may contribute to the development of an early warning system for anticipating the vulnerability of Amazon forests to fires, thus enabling more effective management with benefits for climate and air quality.

  11. Quantifying long-term changes in carbon stocks and forest structure from Amazon forest degradation

    NASA Astrophysics Data System (ADS)

    Rappaport, Danielle I.; Morton, Douglas C.; Longo, Marcos; Keller, Michael; Dubayah, Ralph; Nara dos-Santos, Maiza

    2018-06-01

    Despite sustained declines in Amazon deforestation, forest degradation from logging and fire continues to threaten carbon stocks, habitat, and biodiversity in frontier forests along the Amazon arc of deforestation. Limited data on the magnitude of carbon losses and rates of carbon recovery following forest degradation have hindered carbon accounting efforts and contributed to incomplete national reporting to reduce emissions from deforestation and forest degradation (REDD+). We combined annual time series of Landsat imagery and high-density airborne lidar data to characterize the variability, magnitude, and persistence of Amazon forest degradation impacts on aboveground carbon density (ACD) and canopy structure. On average, degraded forests contained 45.1% of the carbon stocks in intact forests, and differences persisted even after 15 years of regrowth. In comparison to logging, understory fires resulted in the largest and longest-lasting differences in ACD. Heterogeneity in burned forest structure varied by fire severity and frequency. Forests with a history of one, two, and three or more fires retained only 54.4%, 25.2%, and 7.6% of intact ACD, respectively, when measured after a year of regrowth. Unlike the additive impact of successive fires, selective logging before burning did not explain additional variability in modeled ACD loss and recovery of burned forests. Airborne lidar also provides quantitative measures of habitat structure that can aid the estimation of co-benefits of avoided degradation. Notably, forest carbon stocks recovered faster than attributes of canopy structure that are critical for biodiversity in tropical forests, including the abundance of tall trees. We provide the first comprehensive look-up table of emissions factors for specific degradation pathways at standard reporting intervals in the Amazon. Estimated carbon loss and recovery trajectories provide an important foundation for assessing the long-term contributions from forest degradation to regional carbon cycling and advance our understanding of the current state of frontier forests.

  12. Fire, humans, and climate: modeling distribution dynamics of boreal forest waterbirds.

    PubMed

    Börger, Luca; Nudds, Thomas D

    2014-01-01

    Understanding the effects of landscape change and environmental variability on ecological processes is important for evaluating resource management policies, such as the emulation of natural forest disturbances. We analyzed time series of detection/nondetection data using hierarchical models in a Bayesian multi-model inference framework to decompose the dynamics of species distributions into responses to environmental variability, spatial variation in habitat conditions, and population dynamics and interspecific interactions, while correcting for observation errors and variation in sampling regimes. We modeled distribution dynamics of 14 waterbird species (broadly defined, including wetland and riparian species) using data from two different breeding bird surveys collected in the Boreal Shield ecozone within Ontario, Canada. Temporal variation in species occupancy (2000-2006) was primarily driven by climatic variability. Only two species showed evidence of consistent temporal trends in distribution: Ring-necked Duck (Aythya collaris) decreased, and Red-winged Blackbird (Agelaius phoeniceus) increased. The models had good predictive ability on independent data over time (1997-1999). Spatial variation in species occupancy was strongly related to the distribution of specific land cover types and habitat disturbance: Fire and forest harvesting influenced occupancy more than did roads, settlements, or mines. Bioclimatic and habitat heterogeneity indices and geographic coordinates exerted negligible influence on most species distributions. Estimated habitat suitability indices had good predictive ability on spatially independent data (Hudson Bay Lowlands ecozone). Additionally, we detected effects of interspecific interactions. Species responses to fire and forest harvesting were similar for 13 of 14 species; thus, forest-harvesting practices in Ontario generally appeared to emulate the effects of fire for waterbirds over timescales of 10-20 years. Extrapolating to all 84 waterbird species breeding on the Ontario Boreal Shield, however, suggested that up to 30 species may instead have altered (short-term) distribution dynamics due to forestry practices. Hence, natural disturbances are critical components of the ecology of the boreal forest and forest practices which aim to approximate them may succeed in allowing the maintenance of the associated species, but improved monitoring and modeling of large-scale boreal forest bird distribution dynamics will be necessary to resolve existing uncertainties, especially on less-common species.

  13. Mapping forest canopy fuels in Yellowstone National Park using lidar and hyperspectral data

    NASA Astrophysics Data System (ADS)

    Halligan, Kerry Quinn

    The severity and size of wildland fires in the forested western U.S have increased in recent years despite improvements in fire suppression efficiency. This, along with increased density of homes in the wildland-urban interface, has resulted in high costs for fire management and increased risks to human health, safety and property. Crown fires, in comparison to surface fires, pose an especially high risk due to their intensity and high rate of spread. Crown fire models require a range of quantitative fuel parameters which can be difficult and costly to obtain, but advances in lidar and hyperspectral sensor technologies hold promise for delivering these inputs. Further research is needed, however, to assess the strengths and limitations of these technologies and the most appropriate analysis methodologies for estimating crown fuel parameters from these data. This dissertation focuses on retrieving critical crown fuel parameters, including canopy height, canopy bulk density and proportion of dead canopy fuel, from airborne lidar and hyperspectral data. Remote sensing data were used in conjunction with detailed field data on forest parameters and surface reflectance measurements. A new method was developed for retrieving Digital Surface Model (DSM) and Digital Canopy Models (DCM) from first return lidar data. Validation data on individual tree heights demonstrated the high accuracy (r2 0.95) of the DCMs developed via this new algorithm. Lidar-derived DCMs were used to estimate critical crown fire parameters including available canopy fuel, canopy height and canopy bulk density with linear regression model r2 values ranging from 0.75 to 0.85. Hyperspectral data were used in conjunction with Spectral Mixture Analysis (SMA) to assess fuel quality in the form of live versus dead canopy proportions. Severity and stage of insect-caused forest mortality were estimated using the fractional abundance of green vegetation, non-photosynthetic vegetation and shade obtained from SMA. Proportion of insect attack was estimated with a linear model producing an r2 of 0.6 using SMA and bark endmembers from image and reference libraries. Fraction of red attack, with a possible link to increased crown fire risk, was estimated with an r2 of 0.45.

  14. Effect of Experimentally Manipulated Fire Regimes on the Response of Forests to Drought

    NASA Astrophysics Data System (ADS)

    Refsland, T. K.; Knapp, B.; Fraterrigo, J.

    2017-12-01

    Climate change is expected to increase drought stress in many forests and alter fire regimes. Fire can reduce tree density and thus competition for limited water, but the effects of changing fire regimes on forest productivity during drought remain poorly understood. We measured the annual ring-widths of adult oak (Quercus spp.) trees in Mark Twain National Forest, Missouri USA that experienced unburned, annual or periodic (every 4 years) surface fire treatments from 1951 - 2015. Severe drought events were identified using the BILJOU water balance model. We determined the effect of fire treatment on stand-level annual growth rates as well as stand-level resistance and resilience to drought, defined as the drought-induced reduction in growth and post-drought recovery in growth, respectively. During favorable wet years, annual and periodic fire treatments reduced annual growth rates by approximately 10-15% relative to unburned controls (P < 0.001). Stand-level growth rates declined 22-40% during drought events (P < 0.001), but fire-driven changes to stand basal area had no effect on the resistance or resilience of trees to drought. The decline in annual growth rates of burned stands during favorable wet years was likely caused by increased nitrogen (N) limitation in burned plots. After 60 years of treatment, burned plots experienced 30% declines in total soil N relative to unburned plots. Our finding that drought resistance and resilience were similar across all treatments suggest that fire-driven reductions in stand density may have negligible effects on soil moisture availability during drought. Our results highlight that climate-fire interactions can have important long-term effects on forest productivity.

  15. Fire regime in Mediterranean ecosystem

    NASA Astrophysics Data System (ADS)

    Biondi, Guido; Casula, Paolo; D'Andrea, Mirko; Fiorucci, Paolo

    2010-05-01

    The analysis of burnt areas time series in Mediterranean regions suggests that ecosystems characterising this area consist primarily of species highly vulnerable to the fire but highly resilient, as characterized by a significant regenerative capacity after the fire spreading. In a few years the area burnt may once again be covered by the same vegetation present before the fire. Similarly, Mediterranean conifer forests, which often refers to plantations made in order to reforest the areas most severely degraded with high erosion risk, regenerate from seed after the fire resulting in high resilience to the fire as well. Only rarely, and usually with negligible damages, fire affects the areas covered by climax species in relation with altitude and soil types (i.e, quercus, fagus, abies). On the basis of these results, this paper shows how the simple Drossel-Schwabl forest fire model is able to reproduce the forest fire regime in terms of number of fires and burned area, describing whit good accuracy the actual fire perimeters. The original Drossel-Schwabl model has been slightly modified in this work by introducing two parameters (probability of propagation and regrowth) specific for each different class of vegetation cover. Using model selection methods based on AIC, the model with the optimal number of classes with different fire behaviour was selected. Two different case studies are presented in this work: Regione Liguria and Regione Sardegna (Italy). Both regions are situated in the center of the Mediterranean and are characterized by a high number of fires and burned area. However, the two regions have very different fire regimes. Sardinia is affected by the fire phenomenon only in summer whilst Liguria is affected by fires also in winter, with higher number of fires and larger burned area. In addition, the two region are very different in vegetation cover. The presence of Mediterranean conifers, (Pinus Pinaster, Pinus Nigra, Pinus halepensis) is quite spread in Liguria and is limited in Sardinia. What is common in the two regions is the widespread presence of shrub species frequently spread by fire. The analysis in the two regions thus allows in a rather limited area to study almost all the species that characterize the Mediterranean region. This work shows that the fire regime in Mediterranean area is strongly related with vegetation patterns, is almost totally independent by the cause of ignition, and only partially dependent by fire extinguishing actions.

  16. Mexican forest fires and their decadal variations

    NASA Astrophysics Data System (ADS)

    Velasco Herrera, Graciela

    2016-11-01

    A high forest fire season of two to three years is regularly observed each decade in Mexican forests. This seems to be related to the presence of the El Niño phenomenon and to the amount of total solar irradiance. In this study, the results of a multi-cross wavelet analysis are reported based on the occurrence of Mexican forest fires, El Niño and the total solar irradiance for the period 1970-2014. The analysis shows that Mexican forest fires and the strongest El Niño phenomena occur mostly around the minima of the solar cycle. This suggests that the total solar irradiance minima provide the appropriate climatological conditions for the occurrence of these forest fires. The next high season for Mexican forest fires could start in the next solar minimum, which will take place between the years 2017 and 2019. A complementary space analysis based on MODIS active fire data for Mexican forest fires from 2005 to 2014 shows that most of these fires occur in cedar and pine forests, on savannas and pasturelands, and in the central jungles of the Atlantic and Pacific coasts.

  17. Integration of multispectral and SAR data for monitoring forest ecosystems recovery after fire

    NASA Astrophysics Data System (ADS)

    Stankova, Nataliya; Nedkov, Roumen; Ivanova, Iva; Avetisyan, Daniela

    2017-09-01

    The aim of this study is assessing the impacts and monitoring the condition and recovery processes of forest ecosystems after fire based on remote aerospace methods and data. To achieve this goal, satellite imagery in microwave and optical range of the spectrum were used. A hybrid model for assessing the instantaneous condition of forest ecosystems after fire that uses parallel data from optical and Synthetic Aperture Radar (SAR) was developed. Based on the three Tasseled Cap components (Brightness-BR, Greenness-GR and Wetness-W), a vector describing the current condition of the forest ecosystems was obtained and used as input data from the optical range. Results obtained by implementation of the proposed approach show that the integrated composite images of VIC and SAR represent the degree of recovery.

  18. Meteorological factors in the Quartz Creek forest fire

    Treesearch

    H. T. Gisborne

    1927-01-01

    It is not often that a large forest fire occurs conveniently near a weather station specially equipped for measuring forest-fire weather. The 13,000-acre Quartz Creek fire on the Kaniksu National Forest during the summer of 1936 was close enough to the Priest River Experimental Forest of the Northern Rocky Mountain Forest Experiment Station for the roar of the flumes...

  19. Understorey fire frequency and the fate of burned forests in southern Amazonia.

    PubMed

    Morton, D C; Le Page, Y; DeFries, R; Collatz, G J; Hurtt, G C

    2013-06-05

    Recent drought events underscore the vulnerability of Amazon forests to understorey fires. The long-term impact of fires on biodiversity and forest carbon stocks depends on the frequency of fire damages and deforestation rates of burned forests. Here, we characterized the spatial and temporal dynamics of understorey fires (1999-2010) and deforestation (2001-2010) in southern Amazonia using new satellite-based estimates of annual fire activity (greater than 50 ha) and deforestation (greater than 10 ha). Understorey forest fires burned more than 85 500 km(2) between 1999 and 2010 (2.8% of all forests). Forests that burned more than once accounted for 16 per cent of all understorey fires. Repeated fire activity was concentrated in Mato Grosso and eastern Pará, whereas single fires were widespread across the arc of deforestation. Routine fire activity in Mato Grosso coincided with annual periods of low night-time relative humidity, suggesting a strong climate control on both single and repeated fires. Understorey fires occurred in regions with active deforestation, yet the interannual variability of fire and deforestation were uncorrelated, and only 2.6 per cent of forests that burned between 1999 and 2008 were deforested for agricultural use by 2010. Evidence from the past decade suggests that future projections of frontier landscapes in Amazonia should separately consider economic drivers to project future deforestation and climate to project fire risk.

  20. Understorey fire frequency and the fate of burned forests in southern Amazonia

    PubMed Central

    Morton, D. C.; Le Page, Y.; DeFries, R.; Collatz, G. J.; Hurtt, G. C.

    2013-01-01

    Recent drought events underscore the vulnerability of Amazon forests to understorey fires. The long-term impact of fires on biodiversity and forest carbon stocks depends on the frequency of fire damages and deforestation rates of burned forests. Here, we characterized the spatial and temporal dynamics of understorey fires (1999–2010) and deforestation (2001–2010) in southern Amazonia using new satellite-based estimates of annual fire activity (greater than 50 ha) and deforestation (greater than 10 ha). Understorey forest fires burned more than 85 500 km2 between 1999 and 2010 (2.8% of all forests). Forests that burned more than once accounted for 16 per cent of all understorey fires. Repeated fire activity was concentrated in Mato Grosso and eastern Pará, whereas single fires were widespread across the arc of deforestation. Routine fire activity in Mato Grosso coincided with annual periods of low night-time relative humidity, suggesting a strong climate control on both single and repeated fires. Understorey fires occurred in regions with active deforestation, yet the interannual variability of fire and deforestation were uncorrelated, and only 2.6 per cent of forests that burned between 1999 and 2008 were deforested for agricultural use by 2010. Evidence from the past decade suggests that future projections of frontier landscapes in Amazonia should separately consider economic drivers to project future deforestation and climate to project fire risk. PMID:23610169

  1. Fire ecology of the forest habitat types of northern Idaho

    Treesearch

    Jane Kapler Smith; William C. Fischer

    1997-01-01

    Provides information on fire ecology in forest habitat and community types occurring in northern Idaho. Identifies fire groups based on presettlement fire regimes and patterns of succession and stand development after fire. Describes forest fuels and suggests considerations for fire management.

  2. Fire ecology of the forest habitat types of central Idaho

    Treesearch

    M. F. Crane; William C. Fischer

    1986-01-01

    Discusses fire as an ecological factor for forest habitat types occurring in central Idaho. Identifies "Fire Groups" of habitat types based on fire's role in forest succession. Considerations for fire management are suggested.

  3. Short- and long-term effects of fire on carbon in US dry temperate forest systems

    USGS Publications Warehouse

    Hurteau, Matthew D.; Brooks, Matthew L.

    2011-01-01

    Forests sequester carbon from the atmosphere, and in so doing can mitigate the effects of climate change. Fire is a natural disturbance process in many forest systems that releases carbon back to the atmosphere. In dry temperate forests, fires historically burned with greater frequency and lower severity than they do today. Frequent fires consumed fuels on the forest floor and maintained open stand structures. Fire suppression has resulted in increased understory fuel loads and tree density; a change in structure that has caused a shift from low- to high-severity fires. More severe fires, resulting in greater tree mortality, have caused a decrease in forest carbon stability. Fire management actions can mitigate the risk of high-severity fires, but these actions often require a trade-off between maximizing carbon stocks and carbon stability. We discuss the effects of fire on forest carbon stocks and recommend that managing forests on the basis of their specific ecologies should be the foremost goal, with carbon sequestration being an ancillary benefit. ?? 2011 by American Institute of Biological Sciences. All rights reserved.

  4. Satellite Analysis of the Severe 1987 Forest Fires in Northern China and Southeastern Siberia

    NASA Technical Reports Server (NTRS)

    Cahoon, Donald R., Jr.; Stocks, Brian J.; Levine, Joel S.; Cofer, Wesley R., III; Pierson, Joseph M.

    1994-01-01

    Meteorological conditions, extremely conducive to fire development and spread in the spring of 1987, resulted in forest fires burning over extremely large areas in the boreal forest zone in northeastern China and the southeastern region of Siberia. The great China fire, one of the largest and most destructive forest fires in recent history, occurred during this period in the Heilongjiang Province of China. Satellite imagery is used to examine the development and areal distribution of 1987 forest fires in this region. Overall trace gas emissions to the atmosphere from these fires are determined using a satellite-derived estimate of area burned in combination with fuel consumption figures and carbon emission ratios for boreal forest fires.

  5. Satellite analysis of the severe 1987 forest fires in northern China and southeastern Siberia

    NASA Technical Reports Server (NTRS)

    Cahoon, Donald R, Jr.; Stocks, Brian J.; Levine, Joel S.; Cofer, Wesley R., III; Pierson, Joseph M.

    1994-01-01

    Meteorological conditions, extremely conducive to fire development and spread in the spring of 1987, resulted in forest fires burning over extremely large areas in the boreal forest zone in northeastern China and the southeastern region of Siberia. The great China fire, one of the largest and most destructive forest fires in recent history, occurred during this period in the Heilongjiang Province of China. Satellite imagery is used to examine the development and areal distribution of 1987 forest fires in this region. Overall trace gas emissions to the atmosphere from these fires are determined using a satellite-derived estimate of area burned in combination with fuel consumption figures and carbon emission ratios for boreal forest fires.

  6. Near-field emission profiling of tropical forest and Cerrado fires in Brazil during SAMBBA 2012

    NASA Astrophysics Data System (ADS)

    Hodgson, Amy K.; Morgan, William T.; O'Shea, Sebastian; Bauguitte, Stéphane; Allan, James D.; Darbyshire, Eoghan; Flynn, Michael J.; Liu, Dantong; Lee, James; Johnson, Ben; Haywood, Jim M.; Longo, Karla M.; Artaxo, Paulo E.; Coe, Hugh

    2018-04-01

    We profile trace gas and particulate emissions from near-field airborne measurements of discrete smoke plumes in Brazil during the 2012 biomass burning season. The South American Biomass Burning Analysis (SAMBBA) Project conducted during September and October 2012 sampled across two distinct fire regimes prevalent in the Amazon Basin. Combined measurements from a Compact Time-of-Flight Aerosol Mass Spectrometer (C-ToF-AMS) and a Single Particle Soot Photometer (SP2) are reported for the first time in a tropical biomass burning environment. Emissions from a mostly smouldering tropical forest wildfire in Rondônia state and numerous smaller flaming Cerrado fires in Tocantins state are presented. While the Cerrado fires appear to be representative of typical fire conditions in the existing literature, the tropical forest wildfire likely represents a more extreme example of biomass burning with a bias towards mostly smouldering emissions. We determined fire-integrated modified combustion efficiencies, emission ratios and emission factors for trace gas and particulate components for these two fire types, alongside aerosol microphysical properties. Seven times more black carbon was emitted from the Cerrado fires per unit of fuel combustion (EFBC of 0.13 ± 0.04 g kg-1) compared to the tropical forest fire (EFBC of 0.019 ± 0.006 g kg-1), and more than 6 times the amount of organic aerosol was emitted from the tropical forest fire per unit of fuel combustion (EFOM of 8.00 ± 2.53 g kg-1, EFOC of 5.00 ± 1.58 g kg-1) compared to the Cerrado fires (EFOM of 1.31 ± 0.42 g kg-1, EFOC of 0.82 ± 0.26 g kg-1). Particulate-phase species emitted from the fires sampled are generally lower than those reported in previous studies and in emission inventories, which is likely a combination of differences in fire combustion efficiency and fuel mixture, along with different measurement techniques. Previous modelling studies focussed on the biomass burning season in tropical South America have required significant scaling up of emissions to reproduce in situ and satellite aerosol concentrations over the region. Our results do not indicate that emission factors used in inventories are biased low, which could be one potential cause of the reported underestimates in modelling studies. This study supplements and updates trace gas and particulate emission factors for fire-type-specific biomass burning in Brazil for use in weather and climate models. The study illustrates that initial fire conditions can result in substantial differences in terms of their emitted chemical components, which can potentially perturb the Earth system.

  7. Forest fire management to avoid unintended consequences: a case study of Portugal using system dynamics.

    PubMed

    Collins, Ross D; de Neufville, Richard; Claro, João; Oliveira, Tiago; Pacheco, Abílio P

    2013-11-30

    Forest fires are a serious management challenge in many regions, complicating the appropriate allocation to suppression and prevention efforts. Using a System Dynamics (SD) model, this paper explores how interactions between physical and political systems in forest fire management impact the effectiveness of different allocations. A core issue is that apparently sound management can have unintended consequences. An instinctive management response to periods of worsening fire severity is to increase fire suppression capacity, an approach with immediate appeal as it directly treats the symptom of devastating fires and appeases the public. However, the SD analysis indicates that a policy emphasizing suppression can degrade the long-run effectiveness of forest fire management. By crowding out efforts to preventative fuel removal, it exacerbates fuel loads and leads to greater fires, which further balloon suppression budgets. The business management literature refers to this problem as the firefighting trap, wherein focus on fixing problems diverts attention from preventing them, and thus leads to inferior outcomes. The paper illustrates these phenomena through a case study of Portugal, showing that a balanced approach to suppression and prevention efforts can mitigate the self-reinforcing consequences of this trap, and better manage long-term fire damages. These insights can help policymakers and fire managers better appreciate the interconnected systems in which their authorities reside and the dynamics that may undermine seemingly rational management decisions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Fuel load modeling from mensuration attributes in temperate forests in northern Mexico

    Treesearch

    Maricela Morales-Soto; Marín Pompa-Garcia

    2013-01-01

    The study of fuels is an important factor in defining the vulnerability of ecosystems to forest fires. The aim of this study was to model a dead fuel load based on forest mensuration attributes from forest management inventories. A scatter plot analysis was performed and, from explanatory trends between the variables considered, correlation analysis was carried out...

  9. Modeling the effects of environmental disturbance on wildlife communities: avian responses to prescribed fire.

    PubMed

    Russell, Robin E; Royle, J Andrew; Saab, Victoria A; Lehmkuhl, John F; Block, William M; Sauer, John R

    2009-07-01

    Prescribed fire is a management tool used to reduce fuel loads on public lands in forested areas in the western United States. Identifying the impacts of prescribed fire on bird communities in ponderosa pine (Pinus ponderosa) forests is necessary for providing land management agencies with information regarding the effects of fuel reduction on sensitive, threatened, and migratory bird species. Recent developments in occupancy modeling have established a framework for quantifying the impacts of management practices on wildlife community dynamics. We describe a Bayesian hierarchical model of multi-species occupancy accounting for detection probability, and we demonstrate the model's usefulness for identifying effects of habitat disturbances on wildlife communities. Advantages to using the model include the ability to estimate the effects of environmental impacts on rare or elusive species, the intuitive nature of the modeling, the incorporation of detection probability, the estimation of parameter uncertainty, the flexibility of the model to suit a variety of experimental designs, and the composite estimate of the response that applies to the collection of observed species as opposed to merely a small subset of common species. Our modeling of the impacts of prescribed fire on avian communities in a ponderosa pine forest in Washington indicate that prescribed fire treatments result in increased occupancy rates for several bark-insectivore, cavity-nesting species including a management species of interest, Black-backed Woodpeckers (Picoides arcticus). Three aerial insectivore species, and the ground insectivore, American Robin (Turdus migratorius), also responded positively to prescribed fire, whereas three foliage insectivores and two seed specialists, Clark's Nutcracker (Nucifraga columbiana) and the Pine Siskin (Carduelis pinus), declined following treatments. Land management agencies interested in determining the effects of habitat manipulations on wildlife communities can use these methods to provide guidance for future management activities.

  10. Tree mortality following prescribed fire and a storm surge event in Slash Pine (pinus elliottii var. densa) forests in the Florida Keys, USA

    USGS Publications Warehouse

    Sah, Jay P.; Ross, Michael S.; Snyder, James R.; Ogurcak, Danielle E.

    2010-01-01

    In fire-dependent forests, managers are interested in predicting the consequences of prescribed burning on postfire tree mortality. We examined the effects of prescribed fire on tree mortality in Florida Keys pine forests, using a factorial design with understory type, season, and year of burn as factors. We also used logistic regression to model the effects of burn season, fire severity, and tree dimensions on individual tree mortality. Despite limited statistical power due to problems in carrying out the full suite of planned experimental burns, associations with tree and fire variables were observed. Post-fire pine tree mortality was negatively correlated with tree size and positively correlated with char height and percent crown scorch. Unlike post-fire mortality, tree mortality associated with storm surge from Hurricane Wilma was greater in the large size classes. Due to their influence on population structure and fuel dynamics, the size-selective mortality patterns following fire and storm surge have practical importance for using fire as a management tool in Florida Keys pinelands in the future, particularly when the threats to their continued existence from tropical storms and sea level rise are expected to increase.

  11. A Numerical Study of Atmospheric Perturbations Induced by Heat From a Wildland Fire: Sensitivity to Vertical Canopy Structure and Heat Source Strength

    NASA Astrophysics Data System (ADS)

    Kiefer, Michael T.; Zhong, Shiyuan; Heilman, Warren E.; Charney, Joseph J.; Bian, Xindi

    2018-03-01

    An improved understanding of atmospheric perturbations within and above a forest during a wildland fire has relevance to many aspects of wildland fires including fire spread, smoke transport and dispersion, and tree mortality. In this study, the ARPS-CANOPY model, a version of the Advanced Regional Prediction System (ARPS) model with a canopy parameterization, is utilized in a series of idealized numerical experiments to investigate the influence of vertical canopy structure on the atmospheric response to a stationary sensible heat flux at the ground ("fire heat flux"), broadly consistent in magnitude with the sensible heat flux from a low-intensity surface fire. Five vertical canopy structures are combined with five fire heat flux magnitudes to yield a matrix of 25 simulations. Analyses of the fire-heat-flux-perturbed u component of the wind, vertical velocity, kinetic energy, and temperature show that the spatial pattern and magnitude of the perturbations are sensitive to vertical canopy structure. Both vertical velocity and kinetic energy exhibit an increasing trend with increasing fire heat flux that is stronger for cases with some amount of overstory vegetation than cases with exclusively understory vegetation. A weaker trend in cases with exclusively understory vegetation indicates a damping of the atmospheric response to the sensible heat from a surface fire when vegetation is most concentrated near the surface. More generally, the results presented in this study suggest that canopy morphology should be considered when applying the results of a fire-atmosphere interaction study conducted in one type of forest to other forests with different canopy structures.

  12. A numerical study of atmospheric perturbations induced by heat from a wildland fire: sensitivity to vertical canopy structure and heat source strength

    Treesearch

    Michael T. Kiefer; Shiyuan Zhong; Warren E. Heilman; Joseph J. Charney; Xindi Bian

    2018-01-01

    An improved understanding of atmospheric perturbations within and above a forest during a wildland fire has relevance to many aspects of wildland fires including fire spread, smoke transport and dispersion, and tree mortality. In this study, the ARPS-CANOPY model, a version of the Advanced Regional Prediction System (ARPS) model with a canopy parameterization, is...

  13. A case study comparison of landfire fuel loading and emissions generation on a mixed conifer forest in northern Idaho, USA

    Treesearch

    Josh Hyde; Eva K. Strand; Andrew T. Hudak; Dale Hamilton

    2015-01-01

    The use of fire as a land management tool is well recognized for its ecological benefits in many natural systems. To continue to use fire while complying with air quality regulations, land managers are often tasked with modeling emissions from fire during the planning process. To populate such models, the Landscape Fire and Resource Management Planning Tools (...

  14. Fuels planning: science synthesis and integration; environmental consequences fact sheet 09: Fire and Fuels Extension to the Forest Vegetation Simulator (FFE-FVS)

    Treesearch

    Elizabeth Reinhardt

    2005-01-01

    FFE-FVS is a model linking stand development, fuel dynamics, fire behavior and fire effects. It allows comparison of mid- to long-term effects of management alternatives including harvest, mechanical fuel treatment, prescribed fire, salvage, and no action. This fact sheet identifies the intended users and uses, required inputs, what the model does, and tells the user...

  15. Spatial patterns and controls on historical fire regimes and forest structure in the Klamath Mountains

    Treesearch

    Alan H. Taylor; Carl N. Skinner

    2003-01-01

    Fire exclusion in mixed conifer forests has increased the risk of fire due to decades of fuel accumulation. Restoration of fire into altered forests is a challenge because of a poor understanding of the spatial and temporal dynamics of fire regimes. In this study the spatial and temporal characteristics of fire regimes and forest age structure are reconstructed in a...

  16. Fuel variability following wildfire in forests with mixed severity fire regimes, Cascade Range, USA

    Treesearch

    Jessica L. Hudec; David L. Peterson

    2012-01-01

    Fire severity influences post-burn structure and composition of a forest and the potential for a future fire to burn through the area. The effects of fire on forests with mixed severity fire regimes are difficult to predict and interpret because the quantity, structure, and composition of forest fuels vary considerably. This study examines the relationship between fire...

  17. Modelling the effect of wildfire on forested catchment water quality using the SWAT model

    NASA Astrophysics Data System (ADS)

    Yu, M.; Bishop, T.; van Ogtrop, F. F.; Bell, T.

    2016-12-01

    Wildfire removes the surface vegetation, releases ash, increase erosion and runoff, and therefore effects the hydrological cycle of a forested water catchment. It is important to understand chnage and how the catchment recovers. These processes are spatially sensitive and effected by interactions between fire severity and hillslope, soil type and surface vegetation conditions. Thus, a distributed hydrological modelling approach is required. In this study, the Soil and Water Analysis Tool (SWAT) is used to predict the effect of 2001/02 Sydney wild fire on catchment water quality. 10 years pre-fire data is used to create and calibrate the SWAT model. The calibrated model was then used to simulate the water quality for the 10 years post-fire period without fire effect. The simulated water quality data are compared with recorded water quality data provided by Sydney catchment authority. The mean change of flow, total suspended solid, total nitrate and total phosphate are compare on monthly, three month, six month and annual basis. Two control catchment and three burn catchment were analysed.

  18. Changing patterns of fire occurrence in proximity to forest edges, roads and rivers between NW Amazonian countries

    NASA Astrophysics Data System (ADS)

    Armenteras, Dolors; Barreto, Joan Sebastian; Tabor, Karyn; Molowny-Horas, Roberto; Retana, Javier

    2017-06-01

    Tropical forests in NW Amazonia are highly threatened by the expansion of the agricultural frontier and subsequent deforestation. Fire is used, both directly and indirectly, in Brazilian Amazonia to propagate deforestation and increase forest accessibility. Forest fragmentation, a measure of forest degradation, is also attributed to fire occurrence in the tropics. However, outside the Brazilian Legal Amazonia the role of fire in increasing accessibility and forest fragmentation is less explored. In this study, we compared fire regimes in five countries that share this tropical biome in the most north-westerly part of the Amazon Basin (Venezuela, Colombia, Ecuador, Peru and Brazil). We analysed spatial differences in the timing of peak fire activity and in relation to proximity to roads and rivers using 12 years of MODIS active fire detections. We also distinguished patterns of fire in relation to forest fragmentation by analysing fire distance to the forest edge as a measure of fragmentation for each country. We found significant hemispheric differences in peak fire occurrence with the highest number of fires in the south in 2005 vs. 2007 in the north. Despite this, both hemispheres are equally affected by fire. We also found difference in peak fire occurrence by country. Fire peaked in February in Colombia and Venezuela, whereas it peaked in September in Brazil and Peru, and finally Ecuador presented two fire peaks in January and October. We confirmed the relationship between fires and forest fragmentation for all countries and also found significant differences in the distance between the fire and the forest edge for each country. Fires were associated with roads and rivers in most countries. These results can inform land use planning at the regional, national and subnational scales to minimize the contribution of road expansion and subsequent access to the Amazonian natural resources to fire occurrence and the associated deforestation and carbon emissions.

  19. Modeling and risk assessment for soil temperatures beneath prescribed forest fires

    Treesearch

    Haiganoush K. Preisler; Sally M. Haase; Stephen S. Sackett

    2000-01-01

    Prescribed fire is a management tool used by wildland resource management organizations in many ecosystems to reduce hazardous fuels and to achieve a host of other objectives. To study the effects of fire in naturally accumulating fuel conditions, the ambient soil temperature is monitored beneath prescribed burns. In this study we developed a stochastic model for...

  20. Historical disturbance regimes as a reference for forest policy. in a multiowner province: a simulation experiment

    Treesearch

    Jonathan R. Thompson; K. Norman Johnson; Marie Lennette; Thomas A. Spies; Pete Bettinger

    2006-01-01

    Using a landscape simulation model, we examined ecological and economic implications of forest policies designed to emulate the historical fire regime across the 2 x 106 ha Oregon Coast Range. Simulated policies included two variants of the current policy and three policies reflecting aspects of the historical fire regime. Policy development was...

  1. Modeling fuel treatment costs on Forest Service Lands in the Western United States

    Treesearch

    David Calkin; Krista Gebert

    2006-01-01

    Years of successful fire suppression have led to high fuel loads on the nation's forests, and steps are being taken by the nation's land management agencies to reduce these fuel loads. However, to achieve desired outcomes in a fiscally responsible manner, the cost and effectiveness in reducing losses due to wildland fire of different fuel treatments in...

  2. Forest worker exposure to airborne herbicide residues in smoke from prescribed fires in the Southern United States

    Treesearch

    Charles K. McMahon; Parshall B. Bush

    1992-01-01

    Occupational safety and health concerns have been raised in a number of southern states by workers conducting prescribed burns on forested lands treated with herbicides. Modeling assessments coupled with laboratory experiments have shown that the risk of airborne herbicide residues to workers is insignificant, even if the fire occurs immediately after herbicide...

  3. Response of vegetation distribution, ecosystem productivity, and fire to climate change scenarios for California

    Treesearch

    James M. Lenihan; Dominique Bachelet; Ronald P. Neilson; Raymond Drapeck

    2008-01-01

    The response of vegetation distribution, carbon, and fire to three scenarios of future climate change was simulated for California using the MC1 Dynamic General Vegetation Model. Under all three scenarios, Alpine/Subalpine Forest cover declined, and increases in the productivity of evergreen hardwoods led to the displacement of Evergreen Conifer Forest by Mixed...

  4. Using the forest, people, fire agent-based social network model to investigate interactions in social-ecological systems

    Treesearch

    Paige Fischer; Adam Korejwa; Jennifer Koch; Thomas Spies; Christine Olsen; Eric White; Derric Jacobs

    2013-01-01

    Wildfire links social and ecological systems in dry-forest landscapes of the United States. The management of these landscapes, however, is bifurcated by two institutional cultures that have different sets of beliefs about wildfire, motivations for managing wildfire risk, and approaches to administering policy. Fire protection, preparedness, and response agencies often...

  5. A fuel treatment reduces fire severity and increases suppression efficiency in a mixed conifer forest

    Treesearch

    Jason J. Moghaddas; Larry Craggs

    2007-01-01

    Fuel treatments are being implemented on public and private lands across the western United States. Although scientists and managers have an understanding of how fuel treatments can modify potential fire behaviour under modelled conditions, there is limited information on how treatments perform under real wildfire conditions in Sierran mixed conifer forests. The Bell...

  6. Prescribed fire as a means of reducing forest carbon emissions in the western United States.

    PubMed

    Wiedinmyer, Christine; Hurteau, Matthew D

    2010-03-15

    Carbon sequestration by forested ecosystems offers a potential climate change mitigation benefit. However, wildfire has the potential to reverse this benefit In the western United States, climate change and land management practices have led to increases in wildfire intensity and size. One potential means of reducing carbon emissions from wildfire is the use of prescribed burning,which consumes less biomass and therefore releases less carbon to the atmosphere. This study uses a regional fire emissions model to estimate the potential reduction in fire emissions when prescribed burning is applied in dry, temperate forested systems of the western U.S. Daily carbon dioxide (CO(2)) fire emissions for 2001-2008 were calculated for the western U.S. for two cases: a default wildfire case and one in which prescribed burning was applied. Wide-scale prescribed fire application can reduce CO(2) fire emissions for the western U.S. by 18-25%1 in the western U.S., and by as much as 60% in specific forest systems. Although this work does not address important considerations such as the feasibility of implementing wide-scale prescribed fire management or the cumulative emissions from repeated prescribed burning, it does provide constraints on potential carbon emission reductions when prescribed burning is used.

  7. Assessment of Post Forest Fire Landslides in Uttarakhand Himalaya, India

    NASA Astrophysics Data System (ADS)

    Sharma, N.; Singh, R. B.

    2017-12-01

    According to Forest Survey of India-State Forest Report (2015), the total geographical area of Uttarakhand is 53, 483 covers km2 out of which 24,402 km2 area covers under total forest covers. As noticed during last week of April, 2016 forest of Uttarakhand mountains was gutted down due to major incidences of fire. This incident caused huge damage to different species of flora-fauna, human being, livestock, property and destruction of mountain ecosystem. As per media reports, six people were lost their lives and recorded several charred carcasses of livestock's due to this incident. The forest fire was affected the eleven out of total thirteen districts which roughly covers the 0.2% (approx.) of total vegetation covers.The direct impact of losses are easy to be estimated but indirect impacts of this forest fire are yet to be occurred. The threat of post Forest fire induced landslides during rainfall is themain concern. Since, after forest fire top soil and rocks are loose due to loss of vegetation as binding and protecting agent against rainfall. Therefore, the pore water pressure and weathering will be very high during rainy season which can cause many landslides in regions affected by forest fire. The demarcation of areas worse affected by forest fire is necessary for issuing alerts to habitations and important infrastructures. These alerts will be based upon region specific probable rainfall forecasting through Indian Meteorological Department (IMD). The main objective is to develop a tool for detecting early forest fire and to create awareness amongst mountain community, researchers and concerned government agencies to take an appropriate measures to minimize the incidences of Forest fire and impact of post forest fire landslides in future through implementation of sustainable mountain strategy.

  8. A robust scientific workflow for assessing fire danger levels using open-source software

    NASA Astrophysics Data System (ADS)

    Vitolo, Claudia; Di Giuseppe, Francesca; Smith, Paul

    2017-04-01

    Modelling forest fires is theoretically and computationally challenging because it involves the use of a wide variety of information, in large volumes and affected by high uncertainties. In-situ observations of wildfire, for instance, are highly sparse and need to be complemented by remotely sensed data measuring biomass burning to achieve homogeneous coverage at global scale. Fire models use weather reanalysis products to measure energy release and rate of spread but can only assess the potential predictability of fire danger as the actual ignition is due to human behaviour and, therefore, very unpredictable. Lastly, fire forecasting systems rely on weather forecasts to extend the advance warning but are currently calibrated using fire danger thresholds that are defined at global scale and do not take into account the spatial variability of fuel availability. As a consequence, uncertainties sharply increase cascading from the observational to the modelling stage and they might be further inflated by non-reproducible analyses. Although uncertainties in observations will only decrease with technological advances over the next decades, the other uncertainties (i.e. generated during modelling and post-processing) can already be addressed by developing transparent and reproducible analysis workflows, even more if implemented within open-source initiatives. This is because reproducible workflows aim to streamline the processing task as they present ready-made solutions to handle and manipulate complex and heterogeneous datasets. Also, opening the code to the scrutiny of other experts increases the chances to implement more robust solutions and avoids duplication of efforts. In this work we present our contribution to the forest fire modelling community: an open-source tool called "caliver" for the calibration and verification of forest fire model results. This tool is developed in the R programming language and publicly available under an open license. We will present the caliver R package, illustrate the main functionalities and show the results of our preliminary experiments calculating fire danger thresholds for various regions on Earth. We will compare these with the existing global thresholds and, lastly, demonstrate how these newly-calculated regional thresholds can lead to improved calibration of fire forecast models in an operational setting.

  9. Response of bird species densities to habitat structure and fire history along a Midwestern open-forest gradient

    USGS Publications Warehouse

    Grundel, R.; Pavlovic, N.B.

    2007-01-01

    Oak savannas were historically common but are currently rare in the Midwestern United States. We assessed possible associations of bird species with savannas and other threatened habitats in the region by relating fire frequency and vegetation characteristics to seasonal densities of 72 bird species distributed across an open-forest gradient in northwestern Indiana. About one-third of the species did not exhibit statistically significant relationships with any combination of seven vegetation characteristics that included vegetation cover in five vertical strata, dead tree density, and tree height. For 40% of the remaining species, models best predicting species density incorporated tree density. Therefore, management based solely on manipulating tree density may not be an adequate strategy for managing bird populations along this open-forest gradient. Few species exhibited sharp peaks in predicted density under habitat conditions expected in restored savannas, suggesting that few savanna specialists occur among Midwestern bird species. When fire frequency, measured over fifteen years, was added to vegetation characteristics as a predictor of species density, it was incorporated into models for about one-quarter of species, suggesting that fire may modify habitat characteristics in ways that are important for birds but not captured by the structural habitat variables measured. Among those species, similar numbers had peaks in predicted density at low, intermediate, or high fire frequency. For species suggested by previous studies to have a preference for oak savannas along the open-forest gradient, estimated density was maximized at an average fire return interval of about one fire every three years. ?? The Cooper Ornithological Society 2007.

  10. The Impact of Increasing Fire Frequency on Forest Transformations in the Zabaikal Region, Southern Siberia

    NASA Astrophysics Data System (ADS)

    Conard, S. G.; Kukavskaya, E. A.; Buryak, L. V.; Shvetsov, E.; Kalenskaya, O. P.; Zhila, S.

    2017-12-01

    The Zabaikal region of southern Siberia is characterized by some of the highest fire activity in Russia. There has been a significant increase of fire frequency and burned area in the region over the last two decades due to a combination of high anthropogenic pressure, decreased funding to the forestry sector, and increased fire danger, which was associated with higher frequency and intensity of extreme weather events. Central and southern parts of the Zabaikal region where population density is higher and road network is relatively more developed are the most disturbed by fires. Larch stands cover the largest proportion of fire-disturbed lands in the region, while the less common pine and birch stands are characterized by higher fire frequency. About 13% (3.9 M ha) of the total forest area in the Zabaikal region was burned more than once in the 20 years from 1996 to 2015, with many sites burned multiple times. Repeat disturbances led to inadequate tree regeneration on all but the moistest sites. Pine stands on dry soils, which are common in the forest-steppe zone, were the most vulnerable. After repeat burns and over large burned sites we observed transformation of the forests to steppe ecosystems. The most likely causes of insufficient forest regeneration are soil overheating, dominance of tall grasses, and lack of nearby seed sources. Extensive tree plantations have potential to mitigate negative fire impacts; however, due to high fire hazard in the recent decade about half of the plantation area has been burned. Changes in the SWVI index were used to assess postfire reforestation based on a combination of satellite and field data. In the southwestern part of the Zabaikal region, we estimated that reforestation had been hampered over 11% of the forest land area. Regional climate models project increasing temperatures and decreasing precipitation across Siberia by the end of the 21st century, with changes in the Zabaikal region projected to be more than twice the average rate in Siberia. This would likely lead to higher fire activity in the region. Implementation of sustainable forest management strategies has the potential to mitigate effects of changing climate and fire regimes on forest ecosystems in the Zabaikal region. This research was supported by the RFBR grant (# 15-04-06567) and the NASA LCLUC Program.

  11. Mathematical modeling of ignition of woodlands resulted from accident on the pipeline

    NASA Astrophysics Data System (ADS)

    Perminov, V. A.; Loboda, E. L.; Reyno, V. V.

    2014-11-01

    Accidents occurring at the sites of pipelines, accompanied by environmental damage, economic loss, and sometimes loss of life. In this paper we calculated the sizes of the possible ignition zones in emergency situations on pipelines located close to the forest, accompanied by the appearance of fireballs. In this paper, using the method of mathematical modeling calculates the maximum size of the ignition zones of vegetation as a result of accidental releases of flammable substances. The paper suggested in the context of the general mathematical model of forest fires give a new mathematical setting and method of numerical solution of a problem of a forest fire modeling. The boundary-value problem is solved numerically using the method of splitting according to physical processes. The dependences of the size of the forest fuel for different amounts of leaked flammable substances and moisture content of vegetation.

  12. Vegetation dynamics under fire exclusion and logging in a Rocky Mountain watershed, 1856-1996

    USGS Publications Warehouse

    Gallant, Alisa L.; Hansen, A.J.; Councilman, J.S.; Monte, D.K.; Betz, D.W.

    2003-01-01

    How have changes in land management practices affected vegetation patterns in the greater Yellowstone ecosystem? This question led us to develop a deterministic, successional, vegetation model to “turn back the clock” on a study area and assess how patterns in vegetation cover type and structure have changed through different periods of management. Our modeling spanned the closing decades of use by Native Americans, subsequent Euro-American settlement, and associated indirect methods of fire suppression, and more recent practices of fire exclusion and timber harvest. Model results were striking, indicating that the primary forest dynamic in the study area is not fragmentation of conifer forest by logging, but the transition from a fire-driven mosaic of grassland, shrubland, broadleaf forest, and mixed forest communities to a conifer-dominated landscape. Projections for conifer-dominated stands showed an increase in areal coverage from 15% of the study area in the mid-1800s to ∼50% by the mid-1990s. During the same period, projections for aspen-dominated stands showed a decline in coverage from 37% to 8%. Substantial acreage previously occupied by a variety of age classes has given way to extensive tracts of mature forest. Only 4% of the study area is currently covered by young stands, all of which are coniferous. While logging has replaced wildfire as a mechanism for cycling younger stands into the landscape, the locations, species constituents, patch sizes, and ecosystem dynamics associated with logging do not mimic those associated with fire. It is also apparent that the nature of these differences varies among biophysical settings, and that land managers might consider a biophysical class strategy for tailoring management goals and restoration efforts.

  13. Land cover change interacts with drought severity to change fire regimes in Western Amazonia.

    PubMed

    Gutiérrez-Vélez, Víctor H; Uriarte, María; DeFries, Ruth; Pinedo-Vásquez, Miguel; Fernandes, Katia; Ceccato, Pietro; Baethgen, Walter; Padoch, Christine

    Fire is becoming a pervasive driver of environmental change in Amazonia and is expected to intensify, given projected reductions in precipitation and forest cover. Understanding of the influence of post-deforestation land cover change on fires in Amazonia is limited, even though fires in cleared lands constitute a threat for ecosystems, agriculture, and human health. We used MODIS satellite data to map burned areas annually between 2001 and 2010. We then combined these maps with land cover and climate information to understand the influence of land cover change in cleared lands and dry-season severity on fire occurrence and spread in a focus area in the Peruvian Amazon. Fire occurrence, quantified as the probability of burning of individual 232-m spatial resolution MODIS pixels, was modeled as a function of the area of land cover types within each pixel, drought severity, and distance to roads. Fire spread, quantified as the number of pixels burned in 3 × 3 pixel windows around each focal burned pixel, was modeled as a function of land cover configuration and area, dry-season severity, and distance to roads. We found that vegetation regrowth and oil palm expansion are significantly correlated with fire occurrence, but that the magnitude and sign of the correlation depend on drought severity, successional stage of regrowing vegetation, and oil palm age. Burning probability increased with the area of nondegraded pastures, fallow, and young oil palm and decreased with larger extents of degraded pastures, secondary forests, and adult oil palm plantations. Drought severity had the strongest influence on fire occurrence, overriding the effectiveness of secondary forests, but not of adult plantations, to reduce fire occurrence in severely dry years. Overall, irregular and scattered land cover patches reduced fire spread but irregular and dispersed fallows and secondary forests increased fire spread during dry years. Results underscore the importance of land cover management for reducing fire proliferation in this landscape. Incentives for promoting natural regeneration and perennial crops in cleared lands might help to reduce fire risk if those areas are protected against burning in early stages of development and during severely dry years.

  14. Climate-Driven Effects of Fire on Winter Habitat for Caribou in the Alaskan-Yukon Arctic

    PubMed Central

    Gustine, David D.; Brinkman, Todd J.; Lindgren, Michael A.; Schmidt, Jennifer I.; Rupp, T. Scott; Adams, Layne G.

    2014-01-01

    Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (−21%) than the Central Arctic herd that wintered primarily in the arctic tundra (−11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas. PMID:24991804

  15. Comparison Between Surf and Multi-Shock Forest Fire High Explosive Burn Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenfield, Nicholas Alexander

    PAGOSA1 has several different burn models used to model high explosive detonation. Two of these, Multi-Shock Forest Fire and Surf, are capable of modeling shock initiation. Accurately calculating shock initiation of a high explosive is important because it is a mechanism for detonation in many accident scenarios (i.e. fragment impact). Comparing the models to pop-plot data give confidence that the models are accurately calculating detonation or lack thereof. To compare the performance of these models, pop-plots2 were created from simulations where one two cm block of PBX 9502 collides with another block of PBX 9502.

  16. Assessment of forest fire impacts and emissions in the European Union based on the European forest fire information system

    Treesearch

    Paulo Barbosa; Andrea Camia; Jan Kucera; Giorgio Libertá; Ilaria Palumbo; Jesus San-Miguel-Ayanz; Guido Schmuck

    2009-01-01

    An analysis on the number of forest fires and burned area distribution as retrieved by the European Forest Fire Information System (EFFIS) database is presented. On average, from 2000 to 2005 about...

  17. Tree cover in sub-Saharan Africa: rainfall and fire constrain forest and savanna as alternative stable states.

    PubMed

    Staver, A Carla; Archibald, Sally; Levin, Simon

    2011-05-01

    Savannas are known as ecosystems with tree cover below climate-defined equilibrium values. However, a predictive framework for understanding constraints on tree cover is lacking. We present (a) a spatially extensive analysis of tree cover and fire distribution in sub-Saharan Africa, and (b) a model, based on empirical results, demonstrating that savanna and forest may be alternative stable states in parts of Africa, with implications for understanding savanna distributions. Tree cover does not increase continuously with rainfall, but rather is constrained to low (<50%, "savanna") or high tree cover (>75%, "forest"). Intermediate tree cover rarely occurs. Fire, which prevents trees from establishing, differentiates high and low tree cover, especially in areas with rainfall between 1000 mm and 2000 mm. Fire is less important at low rainfall (<1000 mm), where rainfall limits tree cover, and at high rainfall (>2000 mm), where fire is rare. This pattern suggests that complex interactions between climate and disturbance produce emergent alternative states in tree cover. The relationship between tree cover and fire was incorporated into a dynamic model including grass, savanna tree saplings, and savanna trees. Only recruitment from sapling to adult tree varied depending on the amount of grass in the system. Based on our empirical analysis and previous work, fires spread only at tree cover of 40% or less, producing a sigmoidal fire probability distribution as a function of grass cover and therefore a sigmoidal sapling to tree recruitment function. This model demonstrates that, given relatively conservative and empirically supported assumptions about the establishment of trees in savannas, alternative stable states for the same set of environmental conditions (i.e., model parameters) are possible via a fire feedback mechanism. Integrating alternative stable state dynamics into models of biome distributions could improve our ability to predict changes in biome distributions and in carbon storage under climate and global change scenarios.

  18. Natural and social factors influencing forest fire occurrence at a local spatial scale

    Treesearch

    Maria Luisa Chas-Amil; Julia M. Touza; Jeffrey P. Prestemon; Colin J. McClean

    2012-01-01

    Development of efficient forest fire policies requires an understanding of the underlying reasons behind forest fire ignitions. Globally, there is a close relationship between forest fires and human activities, i.e., fires understood as human events due to negligence (e.g., agricultural burning escapes), and deliberate actions (e.g., pyromania, revenge, land use change...

  19. Fire risk in east-side forests.

    Treesearch

    Valerie. Rapp

    2002-01-01

    Wildfire was a natural part of ecosystems in east-side Oregon and Washington before the 20th century. The fire regimes, or characteristic patterns of fire—how often, how hot, how big, what time of year—helped create and maintain various types of forests.Forests are dynamic, and fire interacts with other ecological processes. Fires, forests...

  20. Accuracy of an IFSAR-derived digital terrain model under a conifer forest canopy.

    Treesearch

    Hans-Erik Andersen; Stephen E. Reutebuch; Robert J. McGaughey

    2005-01-01

    Accurate digital terrain models (DTMs) are necessary for a variety of forest resource management applications, including watershed management, timber harvest planning, and fire management. Traditional methods for acquiring topographic data typically rely on aerial photogrammetry, where measurement of the terrain surface below forest canopy is difficult and error prone...

  1. Landscape fragmentation, severe drought, and the new Amazon forest fire regime.

    PubMed

    Alencar, Ane A; Brando, Paulo M; Asner, Gregory P; Putz, Francis E

    2015-09-01

    Changes in weather and land use are transforming the spatial and temporal characteristics of fire regimes in Amazonia, with important effects on the functioning of dense (i.e., closed-canopy), open-canopy, and transitional forests across the Basin. To quantify, document, and describe the characteristics and recent changes in forest fire regimes, we sampled 6 million ha of these three representative forests of the eastern and southern edges of the Amazon using 24 years (1983-2007) of satellite-derived annual forest fire scar maps and 16 years of monthly hot pixel information (1992-2007). Our results reveal that changes in forest fire regime properties differentially affected these three forest types in terms of area burned and fire scar size, frequency, and seasonality. During the study period, forest fires burned 15% (0.3 million ha), 44% (1 million ha), and 46% (0.6 million ha) of dense, open, and transitional forests, respectively. Total forest area burned and fire scar size tended to increase over time (even in years of average rainfall in open canopy and transitional forests). In dense forests, most of the temporal variability in fire regime properties was linked to El Nino Southern Oscillation (ENSO)-related droughts. Compared with dense forests, transitional and open forests experienced fires twice as frequently, with at least 20% of these forests' areas burning two or more times during the 24-year study period. Open and transitional forests also experienced higher deforestation rates than dense forests. During drier years, the end of the dry season was delayed by about a month, which resulted in larger burn scars and increases in overall area burned later in the season. These observations suggest that climate-mediated forest flammability is enhanced by landscape fragmentation caused by deforestation, as observed for open and transitional forests in the Eastern portion of the Amazon Basin.

  2. [Simulating the effects of climate change and fire disturbance on aboveground biomass of boreal forests in the Great Xing'an Mountains, Northeast China].

    PubMed

    Luo, Xu; Wang, Yu Li; Zhang, Jin Quan

    2018-03-01

    Predicting the effects of climate warming and fire disturbance on forest aboveground biomass is a central task of studies in terrestrial ecosystem carbon cycle. The alteration of temperature, precipitation, and disturbance regimes induced by climate warming will affect the carbon dynamics of forest ecosystem. Boreal forest is an important forest type in China, the responses of which to climate warming and fire disturbance are increasingly obvious. In this study, we used a forest landscape model LANDIS PRO to simulate the effects of climate change on aboveground biomass of boreal forests in the Great Xing'an Mountains, and compared direct effects of climate warming and the effects of climate warming-induced fires on forest aboveground biomass. The results showed that the aboveground biomass in this area increased under climate warming scenarios and fire disturbance scenarios with increased intensity. Under the current climate and fire regime scenario, the aboveground biomass in this area was (97.14±5.78) t·hm -2 , and the value would increase up to (97.93±5.83) t·hm -2 under the B1F2 scenario. Under the A2F3 scenario, aboveground biomass at landscape scale was relatively higher at the simulated periods of year 100-150 and year 150-200, and the value were (100.02±3.76) t·hm -2 and (110.56±4.08) t·hm -2 , respectively. Compared to the current fire regime scenario, the predicted biomass at landscape scale was increased by (0.56±1.45) t·hm -2 under the CF2 scenario (fire intensity increased by 30%) at some simulated periods, and the aboveground biomass was reduced by (7.39±1.79) t·hm -2 in CF3 scenario (fire intensity increased by 230%) at the entire simulation period. There were significantly different responses between coniferous and broadleaved species under future climate warming scenarios, in that the simulated biomass for both Larix gmelinii and Betula platyphylla showed decreasing trend with climate change, whereas the simulated biomass for Pinus sylvestris var. mongolica, Picea koraiensis and Populus davidiana showed increasing trend at different degrees during the entire simulation period. There was a time lag for the direct effect of climate warming on biomass for coniferous and broadleaved species. The response time of coniferous species to climate warming was 25-30 years, which was longer than that for broadleaf species. The forest landscape in the Great Xing'an Mountains was sensitive to the interactive effect of climate warming (high CO 2 emissions) and high intensity fire disturbance. Future climate warming and high intensity forest fire disturbance would significantly change the composition and structure of forest ecosystem.

  3. Estimating forest species composition using a multi-sensor approach

    Treesearch

    P.T. Wolter

    2009-01-01

    The magnitude, duration, and frequency of forest disturbance caused by the spruce budworm and forest tent caterpillar has increased over the last century due to a shift in forest species composition linked to historical fire suppression, forest management, and pesticide application that has fostered the increase in dominance of host tree species. Modeling approaches...

  4. Assessment of boreal forest historical C dynamics in the Yukon River Basin: relative roles of warming and fire regime change.

    PubMed

    Yuan, F M; Yi, S H; McGuire, A D; Johnson, K D; Liang, J; Harden, J W; Kasischke, E S; Kurz, W A

    2012-12-01

    Carbon (C) dynamics of boreal forest ecosystems have substantial implications for efforts to mitigate the rise of atmospheric CO2 and may be substantially influenced by warming and changing wildfire regimes. In this study we applied a large-scale ecosystem model that included dynamics of organic soil horizons and soil organic matter characteristics of multiple pools to assess forest C stock changes of the Yukon River Basin (YRB) in Alaska, USA, and Canada from 1960 through 2006, a period characterized by substantial climate warming and increases in wildfire. The model was calibrated for major forests with data from long-term research sites and evaluated using a forest inventory database. The regional assessment indicates that forest vegetation C storage increased by 46 Tg C, but that total soil C storage did not change appreciably during this period. However, further analysis suggests that C has been continuously lost from the mineral soil horizon since warming began in the 1970s, but has increased in the amorphous organic soil horizon. Based on a factorial experiment, soil C stocks would have increased by 158 Tg C if the YRB had not undergone warming and changes in fire regime. The analysis also identified that warming and changes in fire regime were approximately equivalent in their effects on soil C storage, and interactions between these two suggests that the loss of organic horizon thickness associated with increases in wildfire made deeper soil C stocks more vulnerable to loss via decomposition. Subbasin analyses indicate that C stock changes were primarily sensitive to the fraction of burned forest area within each subbasin and that boreal forest ecosystems in the YRB are currently transitioning from being sinks to sources at -0.7% annual area burned. We conclude that it is important for international mitigation efforts focused on controlling atmospheric CO2 to consider how climate warming and changes in fire regime may concurrently affect the CO2 sink strength of boreal forests. It is also important for large-scale biogeochemical and earth system models to include organic soil dynamics in applications to assess regional C dynamics of boreal forests responding to warming and changes in fire regime.

  5. Assessment of boreal forest historical C dynamics in Yukon River Basin: relative roles of warming and fire regime change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Fengming; Yi, Shuhua; McGuire, A. David

    2012-01-01

    Carbon (C) dynamics of boreal forest ecosystems have substantial implications for efforts to mitigate the rise of atmospheric CO2 and may be substantially influenced by warming and changing wildfire regimes. In this study we applied a large-scale ecosystem model that included dynamics of organic soil horizons and soil organic matter characteristics of multiple pools to assess forest C stock changes of the Yukon River Basin (YRB) in Alaska, USA, and Canada from 1960 through 2006, a period characterized by substantial climate warming and increases in wildfire. The model was calibrated for major forests with data from long-term research sites andmore » evaluated using a forest inventory database. The regional assessment indicates that forest vegetation C storage increased by 46 Tg C, but that total soil C storage did not change appreciably during this period. However, further analysis suggests that C has been continuously lost from the mineral soil horizon since warming began in the 1970s, but has increased in the amorphous organic soil horizon. Based on a factorial experiment, soil C stocks would have increased by 158 Tg C if the YRB had not undergone warming and changes in fire regime. The analysis also identified that warming and changes in fire regime were approximately equivalent in their effects on soil C storage, and interactions between these two suggests that the loss of organic horizon thickness associated with increases in wildfire made deeper soil C stocks more vulnerable to loss via decomposition. Subbasin analyses indicate that C stock changes were primarily sensitive to the fraction of burned forest area within each subbasin and that boreal forest ecosystems in the YRB are currently transitioning from being sinks to sources at ;0.7% annual area burned. We conclude that it is important for international mitigation efforts focused on controlling atmospheric CO2 to consider how climate warming and changes in fire regime may concurrently affect the CO2 sink strength of boreal forests. It is also important for large-scale biogeochemical and earth system models to include organic soil dynamics in applications to assess regional C dynamics of boreal forests responding to warming and changes in fire regime.« less

  6. Assessment of boreal forest historical C dynamics in the Yukon River Basin: relative roles of warming and fire regime change

    USGS Publications Warehouse

    Yuan, F.M.; Yi, S.H.; McGuire, A.D.; Johnson, K.D.; Liang, J.; Harden, J.W.; Kasischke, E.S.; Kurz, W.A.

    2012-01-01

    Carbon (C) dynamics of boreal forest ecosystems have substantial implications for efforts to mitigate the rise of atmospheric CO2 and may be substantially influenced by warming and changing wildfire regimes. In this study we applied a large-scale ecosystem model that included dynamics of organic soil horizons and soil organic matter characteristics of multiple pools to assess forest C stock changes of the Yukon River Basin (YRB) in Alaska, USA, and Canada from 1960 through 2006, a period characterized by substantial climate warming and increases in wildfire. The model was calibrated for major forests with data from long-term research sites and evaluated using a forest inventory database. The regional assessment indicates that forest vegetation C storage increased by 46 Tg C, but that total soil C storage did not change appreciably during this period. However, further analysis suggests that C has been continuously lost from the mineral soil horizon since warming began in the 1970s, but has increased in the amorphous organic soil horizon. Based on a factorial experiment, soil C stocks would have increased by 158 Tg C if the YRB had not undergone warming and changes in fire regime. The analysis also identified that warming and changes in fire regime were approximately equivalent in their effects on soil C storage, and interactions between these two suggests that the loss of organic horizon thickness associated with increases in wildfire made deeper soil C stocks more vulnerable to loss via decomposition. Subbasin analyses indicate that C stock changes were primarily sensitive to the fraction of burned forest area within each subbasin and that boreal forest ecosystems in the YRB are currently transitioning from being sinks to sources at ∼0.7% annual area burned. We conclude that it is important for international mitigation efforts focused on controlling atmospheric CO2 to consider how climate warming and changes in fire regime may concurrently affect the CO2 sink strength of boreal forests. It is also important for large-scale biogeochemical and earth system models to include organic soil dynamics in applications to assess regional C dynamics of boreal forests responding to warming and changes in fire regime.

  7. Modeling post-fire woody carbon dynamics with data from remeasured inventory plots

    Treesearch

    Bianca N.I. Eskelson; Jeremy Fried; Vicente Monleon

    2015-01-01

    In California, the Forest Inventory and Analysis (FIA) plots within large fires were visited one year after the fire occurred resulting in a time series of measurements before and after fire. During this additional plot visit, the standard inventory measurements were augmented for these burned plots to assess fire effects. One example of the additional measurements is...

  8. A fundamental look at fire spread in California chaparral

    Treesearch

    David R. Weise; Thomas Fletcher; Larry Baxter; Shankar Mahalingam; Xiangyang Zhou; Patrick Pagni; Rod Linn; Bret Butler

    2004-01-01

    The USDA Forest Service National Fire Plan funded a research program to study fire spread in live fuels of the southwestern United States. In the U.S. current operational fire spread models do not distinguish between live and dead fuels in a sophisticated manner because the study of live fuels has been limited. The program is experimentally examining fire spread at 3...

  9. Allowing a wildfire to burn: estimating the effect on future fire suppression costs

    Treesearch

    Rachel M. Houtman; Claire A. Montgomery; Aaron R. Gagnon; David E. Calkin; Thomas G. Dietterich; Sean McGregor; Mark Crowley

    2013-01-01

    Where a legacy of aggressive wildland fire suppression has left forests in need of fuel reduction, allowing wildland fire to burn may provide fuel treatment benefits, thereby reducing suppression costs from subsequent fires. The least-cost-plus-net-value-change model of wildland fire economics includes benefits of wildfire in a framework for evaluating suppression...

  10. Creation and implementation of a certification system for insurability and fire risk classification for forest plantations

    Treesearch

    Veronica Loewe M.; Victor Vargas; Juan Miguel Ruiz; Andrea Alvarez C.; Felipe Lobo Q.

    2015-01-01

    Currently, the Chilean insurance market sells forest fire insurance policies and agricultural weather risk policies. However, access to forest fire insurance is difficult for small and medium enterprises (SMEs), with a significant proportion (close to 50%) of forest plantations being without coverage. Indeed, the insurance market that sells forest fire insurance...

  11. 77 FR 18997 - Rim Lakes Forest Restoration Project; Apache-Sitgreavese National Forest, Black Mesa Ranger...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-29

    ... uncharacteristicly high-severity wild fires, which can lead to loss of entire stands during one fire event. About 67..., fire, and wind. The purpose of the project is to restore forest health, move forests toward an uneven-aged forest structure with all age classes represented, and restore frequent, periodic surface fire as...

  12. Repeated wildfires alter forest recovery of mixed-conifer ecosystems.

    PubMed

    Stevens-Rumann, Camille; Morgan, Penelope

    2016-09-01

    Most models project warmer and drier climates that will contribute to larger and more frequent wildfires. However, it remains unknown how repeated wildfires alter post-fire successional patterns and forest structure. Here, we test the hypothesis that the number of wildfires, as well as the order and severity of wildfire events interact to alter forest structure and vegetation recovery and implications for vegetation management. In 2014, we examined forest structure, composition, and tree regeneration in stands that burned 1-18 yr before a subsequent 2007 wildfire. Three important findings emerged: (1) Repeatedly burned forests had 15% less woody surface fuels and 31% lower tree seedling densities compared with forests that only experienced one recent wildfire. These repeatedly burned areas are recovering differently than sites burned once, which may lead to alternative ecosystem structure. (2) Order of burn severity (high followed by low severity compared with low followed by high severity) did influence forest characteristics. When low burn severity followed high, forests had 60% lower canopy closure and total basal area with 92% fewer tree seedlings than when high burn severity followed low. (3) Time between fires had no effect on most variables measured following the second fire except large woody fuels, canopy closure and tree seedling density. We conclude that repeatedly burned areas meet many vegetation management objectives of reduced fuel loads and moderate tree seedling densities. These differences in forest structure, composition, and tree regeneration have implications not only for the trajectories of these forests, but may reduce fire intensity and burn severity of subsequent wildfires and may be used in conjunction with future fire suppression tactics. © 2016 by the Ecological Society of America.

  13. Bulletin of Forest Fire risk in Albania- The experience of the Albania National Centre for forecast and Monitoring of Natural Risks

    NASA Astrophysics Data System (ADS)

    Berdufi, I.; Jaupaj, O.; Marku, M.; Deda, M.; Fiori, E.; D'Andrea, M.; Biondi, G.; Fioruci, P.; Massabò, M.; Zorba, P.; Gjonaj, M.

    2012-04-01

    In the territory of Albania usually every year around 1000 ha are affected by forest fires, from which about 500 ha are completely destroyed. The number of forest fires (nf), with the burning surface (bs) in years has been like this: during the years 1988-1998: nf / bs = 2.19, 1998-2001: nf / bs = 5.66, year 2002 -2005: nf / bs = 8.2, and during the years 2005-2006: nf / bs = 11.9, while economic losses in a year by forest fires is about 2 million of Euro. The increase in years of these figures and the last floods which happened in the last two years in Shkoder, led to an international cooperation, that between the Italian Civil Protection Department and the Albania General Directorate of Civil Emergency. The focus of this cooperation was the building capacity of the Albanian National System of Civil Protection in forecasting, monitoring and prevention forest fires and floods risks. As a result of this collaboration the "National Center for the Forecast and Monitoring of Natural Risks", was set up at the Institute of Geosciences, Energy, Water and Environment. The Center is the first of its kind in Albania. The mission of the Center is the prediction and monitoring of the forest fire and flood risk in the Albanian territory, as a tools for risk reduction and mitigation. The first step to achieve this strategy was the implementation of the forest fires risk forecast model "RISICO". RISICO was adapted for whole Albania territory by CIMA Research Foundation. The Center, in the summer season, issues a daily bulletin. The bulletin reports the potential risk scenarios related with the ignition and propagation of fires in Albania. The bulletin is broadcasted through email or fax within 12.00 AM of each working day. It highlights where and when severe risk conditions may occur within the next 48 hours

  14. Fire modeling in the Brazilian arc of deforestation through nested coupling of atmosphere, dynamic vegetation, LUCC and fire spread models

    NASA Astrophysics Data System (ADS)

    Tourigny, E.; Nobre, C.; Cardoso, M. F.

    2012-12-01

    Deforestation of tropical forests for logging and agriculture, associated to slash-and-burn practices, is a major source of CO2 emissions, both immediate due to biomass burning and future due to the elimination of a potential CO2 sink. Feedbacks between climate change and LUCC (Land-Use and Land-Cover Change) can potentially increase the loss of tropical forests and increase the rate of CO2 emissions, through mechanisms such as land and soil degradation and the increase in wildfire occurrence and severity. However, current understanding of the processes of fires (including ignition, spread and consequences) in tropical forests and climatic feedbacks are poorly understood and need further research. As the processes of LUCC and associated fires occur at local scales, linking them to large-scale atmospheric processes requires a means of up-scaling higher resolutions processes to lower resolutions. Our approach is to couple models which operate at various spatial and temporal scales: a Global Climate Model (GCM), Dynamic Global Vegetation Model (DGVM) and local-scale LUCC and fire spread model. The climate model resolves large scale atmospheric processes and forcings, which are imposed on the surface DGVM and fed-back to climate. Higher-resolution processes such as deforestation, land use management and associated (as well as natural) fires are resolved at the local level. A dynamic tiling scheme allows to represent local-scale heterogeneity while maintaining computational efficiency of the land surface model, compared to traditional landscape models. Fire behavior is modeled at the regional scale (~500m) to represent the detailed landscape using a semi-empirical fire spread model. The relatively coarse scale (as compared to other fire spread models) is necessary due to the paucity of detailed land-cover information and fire history (particularly in the tropics and developing countries). This work presents initial results of a spatially-explicit fire spread model coupled to the IBIS DGVM model. Our area of study comprises selected regions in and near the Brazilian "arc of deforestation". For model training and evaluation, several areas have been mapped using high-resolution imagery from the Landsat TM/ETM+ sensors (Figure 1). This high resolution reference data is used for local-scale simulations and also to evaluate the accuracy of the global MCD45 burned area product, which will be used in future studies covering the entire "arc of deforestation".; Area of study along the arc of deforestation and cerrado: landsat scenes used and burned area (2010) from MCD45 product.

  15. Alternative characterization of forest fire regimes: incorporating spatial patterns

    Treesearch

    Brandon M. Collins; Jens T. Stevens; Jay D. Miller; Scott L. Stephens; Peter M. Brown; Malcolm P. North

    2017-01-01

    ContextThe proportion of fire area that experienced stand-replacing fire effects is an important attribute of individual fires and fire regimes in forests, and this metric has been used to group forest types into characteristic fire regimes. However, relying on proportion alone ignores important spatial characteristics...

  16. Comparing Effects of Climate Warming, Fire, and Timber Harvesting on a Boreal Forest Landscape in Northeastern China

    PubMed Central

    Li, Xiaona; He, Hong S.; Wu, Zhiwei; Liang, Yu; Schneiderman, Jeffrey E.

    2013-01-01

    Forest management under a changing climate requires assessing the effects of climate warming and disturbance on the composition, age structure, and spatial patterns of tree species. We investigated these effects on a boreal forest in northeastern China using a factorial experimental design and simulation modeling. We used a spatially explicit forest landscape model (LANDIS) to evaluate the effects of three independent variables: climate (current and expected future), fire regime (current and increased fire), and timber harvesting (no harvest and legal harvest). Simulations indicate that this forested landscape would be significantly impacted under a changing climate. Climate warming would significantly increase the abundance of most trees, especially broadleaf species (aspen, poplar, and willow). However, climate warming would have less impact on the abundance of conifers, diversity of forest age structure, and variation in spatial landscape structure than burning and harvesting. Burning was the predominant influence in the abundance of conifers except larch and the abundance of trees in mid-stage. Harvesting impacts were greatest for the abundance of larch and birch, and the abundance of trees during establishment stage (1–40 years), early stage (41–80 years) and old- growth stage (>180 years). Disturbance by timber harvesting and burning may significantly alter forest ecosystem dynamics by increasing forest fragmentation and decreasing forest diversity. Results from the simulations provide insight into the long term management of this boreal forest. PMID:23573209

  17. A study of forest fire danger district division in Lushan Mountain based on RS and GIS

    NASA Astrophysics Data System (ADS)

    Xiao, Jinxiang; Huang, Shu-E.; Zhong, Anjian; Zhu, Biqin; Ye, Qing; Sun, Lijun

    2009-09-01

    The study selected 9 factors, average maximum temperature, average temperature, average precipitation, average the longest days of continuous drought and average wind speed during fire prevention period, vegetation type, altitude, slope and aspect as the index of forest fire danger district division, which has taken the features of Lushan Mountain's forest fire history into consideration, then assigned subjective weights to each factor according to their sensitivity to fire or their fire-inducing capability. By remote sensing and GIS, vegetation information layer were gotten from Landsat TM image and DEM with a scale of 1:50000 was abstracted from the digital scanned relief map. Topography info. (elevation, slope, aspect) layers could be gotten after that. A climate resource databank that contained the data from the stations of Lushan Mountain and other nearby 7 stations was built up and extrapolated through the way of grid extrapolation in order to make the distribution map of climate resource. Finally synthetical district division maps were made by weighing and integrating all the single factor special layers,and the study area were divided into three forest fire danger district, include special fire danger district, I-fire danger district and II-fire danger district. It could be used as a basis for developing a forest fire prevention system, preparing the annual investment plan, allocating reasonably the investment of fire prevention, developing the program of forest fire prevention and handle, setting up forest fire brigade, leaders' decisions on forest fire prevention work.

  18. Analysis of zone of vulnurability and impact of forest fires in forest ecosystems in north algeria by susing remote sensing

    NASA Astrophysics Data System (ADS)

    Zegrar, Ahmed

    2010-05-01

    The Forest in steppe present ecological diversity, and seen climatic unfavourable conditions in zone and impact of forest fires; we notes deterioration of physical environment particularly, deterioration of natural forest. This deterioration of forests provokes an unbalance of environment witch provokes a process of deterioration advanced in the ultimate stadium is desertification. By elsewhere, where climatic conditions are favourable, the fire is an ecological and acted agent like integral part of evolution of the ecosystems, the specific regeneration of plants are influenced greatly by the regime of fire (season of fire, intensity, interval), witch leads to the recuperation of the vegetation of meadow- fire. In this survey we used the pictures ALSAT-1 for detection of zones with risk of forest fire and their impact on the naturals forests in region named TLEMCEN in the north west of Algeria. A thematic detailed analysis of forests well attended ecosystems some processing on the picture ALSAT-1, we allowed to identify and classifying the forests in there opinion components flowers. We identified ampleness of fire on this zone also. Some parameters as the slope, the proximity to the road and the forests formations were studied in the goal of determining the zones to risk of forest fire. A crossing of diaper of information in a GIS according to a very determined logic allowed classifying the zones in degree of risk of fire in semi arid zone witch forest zone not encouraging the regeneration but permitting the installation of cash of steppe which encourages the desertification.

  19. Decreases in net primary production and net ecosystem production along a repeated-fires induced forest/grassland gradient

    NASA Astrophysics Data System (ADS)

    Cheng, C. H.; Huang, Y. H.; Chung-Yu, L.; Menyailo, O.

    2016-12-01

    Fire is one of the most important disturbances in ecosystems. Fire rapidly releases stored carbon into atmosphere and also plays critical roles on soil properties, light and moisture regimes, and plant structures and communities. With the interventions of climate change and human activities, fire regimes become more severe and frequent. In many parts of world, forest fire regimes can be further altered by grass invasion because the invasive grasses create a positive feedback cycle through their rapid recovery after fires and their high flammability during dry periods and allow forests to be burned repeatedly in a relatively short time. For such invasive grass-fire cycle, a great change of native vegetation community can occur. In this study, we examined a C4 invasive grass () fire-induced forest/grassland gradient to quantify the changes of net primary production (NPP) and net ecosystem production (NEP) from an unburned forest to repeated fire grassland. Our results demonstrated negative effects of repeated fires on NPP and NEP. Within 4 years of the onset of repeated fires on the unburned forest, NPP declined by 14%, mainly due to the reduction in aboveground NPP but offset by increase of belowground NPP. Subsequent fires cumulatively caused reductions in both aboveground and belowground NPP. A total of 40% reduction in the long-term repeated fire induced grassland was found. Soil respiration rate were not significantly different along the forest/grassland gradient. Thus, a great reduction in NEP were shown in grassland, which shifted from 4.6 Mg C ha-1 yr-1 in unburnt forest to -2.6 Mg C ha-1 yr-1. Such great losses are critical within the context of forest carbon cycling and long-term sustainability. Forest management practices that can effectively reduce the likelihood of repeated fires and consequent likelihood of establishment of the grass fire cycle are essential for protecting the forest.

  20. Carbon emissions caused by land-use change in tropical forests of Borneo island

    NASA Astrophysics Data System (ADS)

    Hirata, R.; Ito, A.

    2016-12-01

    Tropical forests in Borneo island have disappeared by 1.5%/year during the last decade. Land-use changes have been mainly caused by plantation and wild fire in Borneo island. We estimated regional scale carbon balance of Borneo island by using a terrestrial ecosystem model, VISIT. We took into account a land-use change map developed by using MODIS data. The land-use change map includes when wild fire occurred and when artificial trees (e.g. oil palm) were planted. Southern part of Borneo island was strongly affected by wild fire. Especially in 2002, 2006 and 2015, wild fire was spread widely because of ENSO. Carbon emissions in these years were larger than other year. Carbon emission in northern part of Borneo was mainly caused by conversion from forest to oil palm.

  1. Landscape Scale Influences of Forest Area and Housing Density on House Loss in the 2009 Victorian Bushfires

    PubMed Central

    Price, Owen; Bradstock, Ross

    2013-01-01

    Previous investigations into the factors associated with house loss in wildfires have focused on the house construction and its immediate environment (e.g. gardens). Here, we examine how nearby native forest and other houses can influence house loss. Specifically, we used a sample of 3500 houses affected by the Victorian bushfires of February 7th 2009 to explore how the amount of forest, proportion of forest burned by crown fire and the number of nearby houses affected house loss and how far from the house this influence was exerted. These fires were the most destructive in Australian history and so represent the extreme of fire risk. Using generalized linear modeling we found that the probability of house loss increased with forest extent and the proportion burnt by crown fire and this relationship was strongest for forest measured 1 km from the houses. Houses were more likely to be destroyed if there were other houses within 50 m and if they were on a slope. A model containing these variables predicted house loss with 72% accuracy. Our findings have three important implications: i) management to change the occurrence of crown fire will be effective in reducing house loss; ii) this management may be required up to 1 km away from houses in some situations (a much larger zone than is currently used); iii) high density of houses may increase risk of loss. Given the potentially large width of this management zone and the hazard from nearby houses, it may be more sensible to concentrate on modification of buildings to reduce their vulnerability. PMID:24009753

  2. Shifts in functional traits elevate risk of fire-driven tree dieback in tropical savanna and forest biomes.

    PubMed

    Pellegrini, Adam F A; Franco, Augusto C; Hoffmann, William A

    2016-03-01

    Numerous predictions indicate rising CO2 will accelerate the expansion of forests into savannas. Although encroaching forests can sequester carbon over the short term, increased fires and drought-fire interactions could offset carbon gains, which may be amplified by the shift toward forest plant communities more susceptible to fire-driven dieback. We quantify how bark thickness determines the ability of individual tree species to tolerate fire and subsequently determine the fire sensitivity of ecosystem carbon across 180 plots in savannas and forests throughout the 2.2-million km(2) Cerrado region in Brazil. We find that not accounting for variation in bark thickness across tree species underestimated carbon losses in forests by ~50%, totaling 0.22 PgC across the Cerrado region. The lower bark thicknesses of plant species in forests decreased fire tolerance to such an extent that a third of carbon gains during forest encroachment may be at risk of dieback if burned. These results illustrate that consideration of trait-based differences in fire tolerance is critical for determining the climate-carbon-fire feedback in tropical savanna and forest biomes. © 2015 John Wiley & Sons Ltd.

  3. Defining fire environment zones in the boreal forests of northeastern China.

    PubMed

    Wu, Zhiwei; He, Hong S; Yang, Jian; Liang, Yu

    2015-06-15

    Fire activity in boreal forests will substantially increase with prolonged growing seasons under a warming climate. This trend poses challenges to managing fires in boreal forest landscapes. A fire environment zone map offers a basis for evaluating these fire-related problems and designing more effective fire management plans to improve the allocation of management resources across a landscape. Toward that goal, we identified three fire environment zones across boreal forest landscapes in northeastern China using analytical methods to identify spatial clustering of the environmental variables of climate, vegetation, topography, and human activity. The three fire environment zones were found to be in strong agreement with the spatial distributions of the historical fire data (occurrence, size, and frequency) for 1966-2005. This paper discusses how the resulting fire environment zone map can be used to guide forest fire management and fire regime prediction. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Efficacy of landscape scale woodland and savanna restoration at multiple spatial and temporal scales

    USGS Publications Warehouse

    Pittman, H. Tyler; Krementz, David G.

    2016-01-01

    The loss of historic ecosystem conditions has led forest managers to implement woodland and savanna ecosystem restoration on a landscape scale (≥10,000 ha) in the Ozark Plateau of Arkansas. Managers are attempting to restore and conserve these ecosystems through the reintroduction of disturbance, mainly short-rotation early-growing-season prescribed fire. Short-rotation early-growing season prescribed fire in the Ozarks typically occurs immediately before bud-break, through bud-break, and before leaf-out, and fire events occur on a three-to five-year interval. We examined short-rotation early-growing season prescribed fire as a restoration tool on vegetation characteristics. We collected vegetation measurements at 70 locations annually from 2011 to 2012 in and around the White Rock Ecosystem Restoration Area (WRERA), Ozark-St. Francis National Forest, Arkansas, and used generalized linear models to investigate the impact and efficacy of prescribed fire on vegetation structure. We found the number of large shrubs (>5 cm base diameter) decreased and small shrubs (<5 cm ground diameter) increased with prescribed fire severity. We found that horizontal understory cover from ground level to 1 m in height increased with time-since-prescribed-fire and woody ground cover decreased with the number of prescribed fire treatments. Using LANDFIRE datasets at the landscape scale, we found that since the initiation of a short-rotation early-growing season prescribed fire management regime, forest canopy cover has not reverted to levels characteristic of woodlands and savannas or reached restoration objectives over large areas. Without greater reductions in forest canopy cover and increases in forest-canopy cover heterogeneity, advanced regeneration will be limited in success, and woodland and savanna conditions will not return soon or to the extent desired.

  5. A Complex Network Theory Approach for the Spatial Distribution of Fire Breaks in Heterogeneous Forest Landscapes for the Control of Wildland Fires

    PubMed Central

    Russo, Lucia; Russo, Paola; Siettos, Constantinos I.

    2016-01-01

    Based on complex network theory, we propose a computational methodology which addresses the spatial distribution of fuel breaks for the inhibition of the spread of wildland fires on heterogeneous landscapes. This is a two-level approach where the dynamics of fire spread are modeled as a random Markov field process on a directed network whose edge weights are determined by a Cellular Automata model that integrates detailed GIS, landscape and meteorological data. Within this framework, the spatial distribution of fuel breaks is reduced to the problem of finding network nodes (small land patches) which favour fire propagation. Here, this is accomplished by exploiting network centrality statistics. We illustrate the proposed approach through (a) an artificial forest of randomly distributed density of vegetation, and (b) a real-world case concerning the island of Rhodes in Greece whose major part of its forest was burned in 2008. Simulation results show that the proposed methodology outperforms the benchmark/conventional policy of fuel reduction as this can be realized by selective harvesting and/or prescribed burning based on the density and flammability of vegetation. Interestingly, our approach reveals that patches with sparse density of vegetation may act as hubs for the spread of the fire. PMID:27780249

  6. A Complex Network Theory Approach for the Spatial Distribution of Fire Breaks in Heterogeneous Forest Landscapes for the Control of Wildland Fires.

    PubMed

    Russo, Lucia; Russo, Paola; Siettos, Constantinos I

    2016-01-01

    Based on complex network theory, we propose a computational methodology which addresses the spatial distribution of fuel breaks for the inhibition of the spread of wildland fires on heterogeneous landscapes. This is a two-level approach where the dynamics of fire spread are modeled as a random Markov field process on a directed network whose edge weights are determined by a Cellular Automata model that integrates detailed GIS, landscape and meteorological data. Within this framework, the spatial distribution of fuel breaks is reduced to the problem of finding network nodes (small land patches) which favour fire propagation. Here, this is accomplished by exploiting network centrality statistics. We illustrate the proposed approach through (a) an artificial forest of randomly distributed density of vegetation, and (b) a real-world case concerning the island of Rhodes in Greece whose major part of its forest was burned in 2008. Simulation results show that the proposed methodology outperforms the benchmark/conventional policy of fuel reduction as this can be realized by selective harvesting and/or prescribed burning based on the density and flammability of vegetation. Interestingly, our approach reveals that patches with sparse density of vegetation may act as hubs for the spread of the fire.

  7. Early forest dynamics in stand-replacing fire patches in the northern Sierra Nevada, California, USA

    Treesearch

    Brandon M. Collins; Gary B. Roller

    2013-01-01

    There is considerable concern over the occurrence of stand-replacing fire in forest types historically associated with low- to moderate-severity fire. The concern is largely over whether contemporary levels of stand-replacing fire are outside the historical range of variability, and what natural forest recovery is in these forest types following stand-replacing fire....

  8. Suppression of the Thermal Decomposition Reaction of Forest Combustible Materials in Large-Area Fires

    NASA Astrophysics Data System (ADS)

    Volkov, R. S.; Zhdanova, A. O.; Kuznetsov, G. V.; Strizhak, P. A.

    2018-05-01

    Experimental investigations on the characteristic time of suppression of the thermal decomposition reaction of typical forest combustible materials (aspen twigs, birch leaves, spruce needles, pine chips, and a mixture of these materials) and the volume of water required for this purpose have been performed for model fire hotbeds of different areas: SFCM = 0.0003-0.007 m2 and SFCM = 0.045-0.245 m2. In the experiments, aerosol water flows with droplets of size 0.01-0.25 mm were used for the spraying of model fire hotbeds, and the density of spraying was 0.02 L/(m2·s). It was established that the characteristics of suppression of a fire by an aerosol water flow are mainly determined by the sizes of the droplets in this flow. Prognostic estimates of changes in the dispersivity of a droplet cloud, formed from large (as large as 0.5 L) "drops" (water agglomerates) thrown down from a height, have been made. It is shown that these changes can influence the conditions and characteristics of suppression of a forest fire. Dependences, allowing one to forecast the characteristics of suppression of the thermal decomposition of forest combustible materials with the use of large water agglomerates thrown down from an aircraft and aerosol clouds formed from these agglomerates in the process of their movement to the earth, are presented.

  9. Suppression of the Thermal Decomposition Reaction of Forest Combustible Materials in Large-Area Fires

    NASA Astrophysics Data System (ADS)

    Volkov, R. S.; Zhdanova, A. O.; Kuznetsov, G. V.; Strizhak, P. A.

    2018-03-01

    Experimental investigations on the characteristic time of suppression of the thermal decomposition reaction of typical forest combustible materials (aspen twigs, birch leaves, spruce needles, pine chips, and a mixture of these materials) and the volume of water required for this purpose have been performed for model fire hotbeds of different areas: SFCM = 0.0003-0.007 m2 and SFCM = 0.045-0.245 m2. In the experiments, aerosol water flows with droplets of size 0.01-0.25 mm were used for the spraying of model fire hotbeds, and the density of spraying was 0.02 L/(m2·s). It was established that the characteristics of suppression of a fire by an aerosol water flow are mainly determined by the sizes of the droplets in this flow. Prognostic estimates of changes in the dispersivity of a droplet cloud, formed from large (as large as 0.5 L) "drops" (water agglomerates) thrown down from a height, have been made. It is shown that these changes can influence the conditions and characteristics of suppression of a forest fire. Dependences, allowing one to forecast the characteristics of suppression of the thermal decomposition of forest combustible materials with the use of large water agglomerates thrown down from an aircraft and aerosol clouds formed from these agglomerates in the process of their movement to the earth, are presented.

  10. Forest Fire Smoke Exposures and Out-of-Hospital Cardiac Arrests in Melbourne, Australia: A Case-Crossover Study.

    PubMed

    Dennekamp, Martine; Straney, Lahn D; Erbas, Bircan; Abramson, Michael J; Keywood, Melita; Smith, Karen; Sim, Malcolm R; Glass, Deborah C; Del Monaco, Anthony; Haikerwal, Anjali; Tonkin, Andrew M

    2015-10-01

    Millions of people can potentially be exposed to smoke from forest fires, making this an important public health problem in many countries. In this study we aimed to measure the association between out-of-hospital cardiac arrest (OHCA) and forest fire smoke exposures in a large city during a severe forest fire season, and estimate the number of excess OHCAs due to the fire smoke. We investigated the association between particulate matter (PM) and other air pollutants and OHCA using a case-crossover study of adults (≥ 35 years of age) in Melbourne, Australia. Conditional logistic regression models were used to derive estimates of the percent change in the rate of OHCA associated with an interquartile range (IQR) increase in exposure. From July 2006 through June 2007, OHCA data were collected from the Victorian Ambulance Cardiac Arrest Registry. Hourly air pollution concentrations and meteorological data were obtained from a central monitoring site. There were 2,046 OHCAs with presumed cardiac etiology during our study period. Among men during the fire season, greater increases in OHCA were observed with IQR increases in the 48-hr lagged PM with diameter ≤ 2.5 μm (PM2.5) (8.05%; 95% CI: 2.30, 14.13%; IQR = 6.1 μg/m(3)) or ≤ 10 μm (PM10) (11.1%; 95% CI: 1.55, 21.48%; IQR = 13.7 μg/m(3)) and carbon monoxide (35.7%; 95% CI: 8.98, 68.92%; IQR = 0.3 ppm). There was no significant association between the rate of OHCA and air pollutants among women. One hundred seventy-four "fire-hours" (i.e., hours in which Melbourne's air quality was affected by forest fire smoke) were identified during 12 days of the 2006/2007 fire season, and 23.9 (95% CI: 3.1, 40.2) excess OHCAs were estimated to occur due to elevations in PM2.5 during these fire-hours. This study found an association between exposure to forest fire smoke and an increase in the rate of OHCA. These findings have implications for public health messages to raise community awareness and for planning of emergency services during forest fire seasons.

  11. Simulating historical variability in the amount of old forests in the Oregon Coast Range.

    Treesearch

    M.C. Wimberly; T.M. Spies; C.J. Long; C. Whitlock

    2000-01-01

    We developed the landscape age-class demographics simulator (LADS) to model historical variability in the amount of old-growth and late-successional forest in the Oregon Coast Range over the past 3,000 years. The model simulated temporal and spatial patterns of forest fires along with the resulting fluctuations in the distribution of forest age classes across the...

  12. WILDLAND FIRE EMISSION MODELING: INTEGRATING BLUESKY AND SMOKE

    EPA Science Inventory

    This presentation is a summary of an improved method to estimate emissions from wildland fires. An interagency agreement between the US Forest Service and the US EPA has made it possible for these two agencies to collaborate in the study of wildland fires.

  13. Spatiotemporal patterns of fire-induced forest mortality in boreal regions and its potential drivers

    NASA Astrophysics Data System (ADS)

    Yang, J.; Tian, H.; Pan, S.; Hansen, M.; Wang, Y.

    2017-12-01

    Wildfire is the major natural disturbance in boreal forests, which have substantially affected various biological and biophysical processes. Although a few previous studies examined fire severity in boreal regions and reported a higher fire-induced forest mortality in boreal North America than in boreal Eurasia, it remains unclear how this mortality changes over time and how environmental factors affect the temporal dynamics of mortality at a large scale. By using a combination of multiple sources of satellite observations, we investigate the spatiotemporal patterns of fire-induced forest mortality in boreal regions, and examine the contributions of potential drivers. Our results show that forest composition is the key factor influencing the spatial variations of fire mortality across ecoregions. For the temporal variations, we find that the late-season burning was associated with higher fire intensity, which lead to greater forest mortality than the early-season burning. Forests burned in the warm and dry years had greater mortality than those burned in the cool and wet years. Our findings suggest that climate warming and drying not only stimulated boreal fire frequency, but also enhanced fire severity and forest mortality. Due to the significant effects of forest mortality on vegetation structure and ecosystem carbon dynamics, the spatiotemporal changes of fire-induced forest mortality should be explicitly considered to better understand fire impacts on regional and global climate change.

  14. Climate-Driven Risk of Large Fire Occurrence in the Western United States, 1500 to 2003

    NASA Astrophysics Data System (ADS)

    Crockett, J.; Westerling, A. L.

    2017-12-01

    Spatially comprehensive fire climatology has provided managers with tools to understand thecauses and consequences of large forest wildfires, but a paleoclimate context is necessary foranticipating the trajectory of future climate-fire relationships. Although accumulated charcoalrecords and tree scars have been utilized in high resolution, regional fire reconstructions, there isuncertainty as to how current climate-fire relationships of the western United States (WUS) fitwithin the natural long-term variability. While contemporary PDSI falls within the naturalvariability of the past, contemporary temperatures skew higher. Here, we develop a WUSfire reconstruction by applying climate-fire-topography model built on the 1972 to 2003 periodto the past 500 years, validated by recently updated fire-scar histories from WUS forests. Theresultant narrative provides insight into changing climate-fire relationships during extendedperiods of high aridity and temperature, providing land managers with historical precedent toeffectively anticipate disturbances during future climate change.

  15. Development at the wildland-urban interface and the mitigation of forest-fire risk.

    PubMed

    Spyratos, Vassilis; Bourgeron, Patrick S; Ghil, Michael

    2007-09-04

    This work addresses the impacts of development at the wildland-urban interface on forest fires that spread to human habitats. Catastrophic fires in the western United States and elsewhere make these impacts a matter of urgency for decision makers, scientists, and the general public. Using a simple fire-spread model, along with housing and vegetation data, we show that fire size probability distributions can be strongly modified by the density and flammability of houses. We highlight a sharp transition zone in the parameter space of vegetation flammability and house density. Many actual fire landscapes in the United States appear to have spreading properties close to this transition. Thus, the density and flammability of buildings should be taken into account when assessing fire risk at the wildland-urban interface. Moreover, our results highlight ways for regulation at this interface to help mitigate fire risk.

  16. Topographic and fire weather controls of fire refugia in forested ecosystems of northwestern North America

    USGS Publications Warehouse

    Krawchuk, Meg A.; Haire, Sandra L.; Coop, Jonathan D.; Parisien, Marc-Andre; Whitman, Ellen; Chong, Geneva W.; Miller, Carol

    2016-01-01

    for seven study fires that burned in conifer-dominated forested landscapes of the Western Cordillera of Canada between 2001 and 2014. We fit nine models, each for distinct levels of fire weather and terrain ruggedness. Our framework revealed that the predictability and abundance of fire refugia varied among these environmental settings. We observed highest predictability under moderate fire weather conditions and moderate terrain ruggedness (ROC-AUC = 0.77), and lowest predictability in flatter landscapes and under high fire weather conditions (ROC-AUC = 0.63–0.68). Catchment slope, local aspect, relative position, topographic wetness, topographic convergence, and local slope all contributed to discriminating where refugia occur but the relative importance of these topographic controls differed among environments. Our framework allows us to characterize the predictability of contemporary fire refugia across multiple environmental settings and provides important insights for ecosystem resilience, wildfire management, conservation planning, and climate change adaptation.

  17. Effects of fire on small mammal communities in frequent-fire forests in California

    USGS Publications Warehouse

    Roberts, Susan L.; Kelt, Douglas A.; Van Wagtendonk, Jan W.; Miles, A. Keith; Meyer, Marc D.

    2015-01-01

    Fire is a natural, dynamic process that is integral to maintaining ecosystem function. The reintroduction of fire (e.g., prescribed fire, managed wildfire) is a critical management tool for protecting many frequent-fire forests against stand-replacing fires while restoring an essential ecological process. Understanding the effects of fire on forests and wildlife communities is important in natural resource planning efforts. Small mammals are key components of forest food webs and essential to ecosystem function. To investigate the relationship of fire to small mammal assemblages, we live trapped small mammals in 10 burned and 10 unburned forests over 2 years in the central Sierra Nevada, California. Small mammal abundance was higher in unburned forests, largely reflecting the greater proportion of closed-canopy species such as Glaucomys sabrinus in unburned forests. The most abundant species across the entire study area was the highly adaptable generalist species, Peromyscus maniculatus. Species diversity was similar between burned and unburned forests, but burned forests were characterized by greater habitat heterogeneity and higher small mammal species evenness. The use and reintroduction of fire to maintain a matrix of burn severities, including large patches of unburned refugia, creates a heterogeneous and resilient landscape that allows for fire-sensitive species to proliferate and, as such, may help maintain key ecological functions and diverse small mammal assemblages.

  18. Potential shifts in dominant forest cover in interior Alaska driven by variations in fire severity

    Treesearch

    K. Barrett; A.D. McGuire; E.E. Hoy; E.S. Kasischke

    2011-01-01

    Large fire years in which >1% of the landscape burns are becoming more frequent in the Alaskan (USA) interior, with four large fire years in the past 10 years, and 79000 km2 (17% of the region) burned since 2000. We modeled fire severity conditions for the entire area burned in large fires during a large fire year (2004) to determine the...

  19. Development and demonstration of smoke plume, fire emissions, and pre- and postprescribed fire fuel models on North Carolina Coastal Plain forest ecosystems

    Treesearch

    Robert A. Mickler; Miriam Rorig; Christopher D. Geron; Gary L. Achtemier; Andrew D. Bailey; Candice Krull; David Brownlie

    2007-01-01

    Wildland fuels have been accumulating in the United States during at least the past half-century due to wildland fire management practices and policies. The additional fuels contribute to intense fire behavior, increase the costs of wildland fire control, and contribute to the degradation of local and regional air quality. The management of prescribed and wildland fire...

  20. The influence of fire on lepidopteran abundance and community structure in forested habitats of eastern Texas

    Treesearch

    D. Craig Rudolph; Charles A. Ely

    2000-01-01

    Transect surveys were used to examine the influence of fire on lepidopteran communities (Papilionoidea and Hesperioidea) in forested habitats in eastern Texas. Lepidopteran abundance was greater in pine forests where prescribed fire maintained an open mid- and understory compared to forests where fire had less impact on forest structure. Ahundance of nectar sources...

  1. Assessing three fuel classification systems and their maps using Forest Inventory and Analysis (FIA) surface fuel measurements

    Treesearch

    Robert E. Keane; Jason M. Herynk; Chris Toney; Shawn P. Urbanski; Duncan C. Lutes; Roger D. Ottmar

    2015-01-01

    Fuel classifications are integral tools in fire management and planning because they are used as inputs to fire behavior and effects simulation models. Fuel Loading Models (FLMs) and Fuel Characteristic Classification System (FCCSs) fuelbeds are the most popular classifications used throughout wildland fire science and management, but they have yet to be thoroughly...

  2. Proceedings of the 20th Central Hardwood Forest Conference

    Treesearch

    John M. Kabrick; Daniel C. Dey; Benjamin O. Knapp; David R. Larsen; Stephen R. Shifley; Henry E. Stelzer

    2017-01-01

    Proceedings from the 2016 Central Hardwood Forest Conference in Columbia, MO. The published proceedings include 31 papers pertaining to research conducted on artificial and natural regeneration, biomass and carbon, forest dynamics, forest health, modeling and utilization, prescribed fire, soils and nutrients, and wind disturbance. A correction to Table 2,...

  3. The Bee Fire: a case study validation of BEHAVE in chaparral fuels

    Treesearch

    David Weise; A. Gelobter; J. Regelbrugge; J. Millar

    2002-01-01

    The Bee Fire burned 9,620 acres of grass and chaparral in the San Bernardino National Forest in southern California from June 29 to July 2, 1996. Rate of spread data were determined from successive fire perimeters and compared with rate of spread predicted by the Rothermel rate of spread model using fuel model 4 (heavy brush) and a custom fuel model for chamise...

  4. Evaluation of FOFEM fuel loading and consumption estimates in pine-oak forests and woodlands of the Ouachita Mountains, Arkansas, USA

    Treesearch

    Virginia L. McDaniel; Roger W. Perry; Nancy E. Koerth; James M. Guldin

    2016-01-01

    Accurate fuel load and consumption predictions are important to estimate fire effects and air pollutant emissions. The FOFEM (First Order Fire Effects Model) is a commonly used model developed in the western United States to estimate fire effects such as fuel consumption, soil heating, air pollutant emissions, and tree mortality. However, the accuracy of the model in...

  5. Effects of mountain pine beetle on fuels and expected fire behavior in lodgepole pine forests, Colorado, USA

    Treesearch

    Tania Schoennagel; Thomas T. Veblen; Jose F. Negron; Jeremy M. Smith

    2012-01-01

    In Colorado and southern Wyoming, mountain pine beetle (MPB) has affected over 1.6 million ha of predominantly lodgepole pine forests, raising concerns about effects of MPB-caused mortality on subsequent wildfire risk and behavior. Using empirical data we modeled potential fire behavior across a gradient of wind speeds and moisture scenarios in Green stands compared...

  6. Scale-dependent controls on the area burned in the boreal forest of Canada, 1980-2005

    Treesearch

    Marc-Andre Parisien; Sean A. Parks; Meg A. Krawchuck; Mike D. Flannigan; Lynn M. Bowman; Max A. Moritz

    2011-01-01

    In the boreal forest of North America, as in any fire-prone biome, three environmental factors must coincide for a wildfire to occur: an ignition source, flammable vegetation, and weather that is conducive to fire. Despite recent advances, the relative importance of these factors remains the subject of some debate. The aim of this study was to develop models that...

  7. Seeking common ground: protecting homes from wildfires while making forests more resilient to fire

    Treesearch

    Noreen Parks; Alan Ager

    2011-01-01

    Federal policies direct public-land managers to reduce wildfire risks for urban areas close to wildlands, while broader agency goals call for landscape restoration to create fire-resilient forests. This study used wildfires simulation modeling to examine the tradeoffs between focusing fuel reduction efforts on a wildland-urban interface (WUI) in Oregon’s Blue Mountains...

  8. The Zoning of Forest Fire Potential of Gulestan Province Forests Using Granular Computing and MODIS Images

    NASA Astrophysics Data System (ADS)

    Jalilzadeh Shadlouei, A.; Delavar, M. R.

    2013-09-01

    There are many vegetation in Iran. This is because of extent of Iran and its width. One of these vegetation is forest vegetation most prevalent in Northern provinces named Guilan, Mazandaran, Gulestan, Ardebil as well as East Azerbaijan. These forests are always threatened by natural forest fires so much so that there have been reports of tens of fires in recent years. Forest fires are one of the major environmental as well as economic, social and security concerns in the world causing much damages. According to climatology, forest fires are one of the important factors in the formation and dispersion of vegetation. Also, regarding the environment, forest fires cause the emission of considerable amounts of greenhouse gases, smoke and dust into the atmosphere which in turn causes the earth temperature to rise up and are unhealthy to humans, animals and vegetation. In agriculture droughts are the usual side effects of these fires. The causes of forest fires could be categorized as either Human or Natural Causes. Naturally, it is impossible to completely contain forest fires; however, areas with high potentials of fire could be designated and analysed to decrease the risk of fires. The zoning of forest fire potential is a multi-criteria problem always accompanied by inherent uncertainty like other multi-criteria problems. So far, various methods and algorithm for zoning hazardous areas via Remote Sensing (RS) and Geospatial Information System (GIS) have been offered. This paper aims at zoning forest fire potential of Gulestan Province of Iran forests utilizing Remote Sensing, Geospatial Information System, meteorological data, MODIS images and granular computing method. Granular computing is part of granular mathematical and one way of solving multi-criteria problems such forest fire potential zoning supervised by one expert or some experts , and it offers rules for classification with the least inconsistencies. On the basis of the experts' opinion, 6 determinative criterias contributing to forest fires have been designated as follows: vegetation (NDVI), slope, aspect, temperature, humidity and proximity to roadways. By applying these variables on several tentatively selected areas and formation information tables and producing granular decision tree and extraction of rules, the zoning rules (for the areas in question) were extracted. According to them the zoning of the entire area has been conducted. The zoned areas have been classified into 5 categories: high hazard, medium hazard (high), medium hazard (low), low hazard (high), low hazard (low). According to the map, the zoning of most of the areas fall into the low hazard (high) class while the least number of areas have been classified as low hazard (low). Comparing the forest fires in these regions in 2010 with the MODIS data base for forest fires, it is concluded that areas with high hazards of forest fire have been classified with a 64 percent precision. In other word 64 percent of pixels that are in high hazard classification are classified according to MODIS data base. Using this method we obtain a good range of Perception. Manager will reduce forest fire concern using precautionary proceeding on hazardous area.

  9. Compatible above-ground biomass equations and carbon stock estimation for small diameter Turkish pine (Pinus brutia Ten.).

    PubMed

    Sakici, Oytun Emre; Kucuk, Omer; Ashraf, Muhammad Irfan

    2018-04-15

    Small trees and saplings are important for forest management, carbon stock estimation, ecological modeling, and fire management planning. Turkish pine (Pinus brutia Ten.) is a common coniferous species and comprises 25.1% of total forest area of Turkey. Turkish pine is also important due to its flammable fuel characteristics. In this study, compatible above-ground biomass equations were developed to predict needle, branch, stem wood, and above-ground total biomass, and carbon stock assessment was also described for Turkish pine which is smaller than 8 cm diameter at breast height or shorter than breast height. Compatible biomass equations are useful for biomass prediction of small diameter individuals of Turkish pine. These equations will also be helpful in determining fire behavior characteristics and calculating their carbon stock. Overall, present study will be useful for developing ecological models, forest management plans, silvicultural plans, and fire management plans.

  10. Long-term effects of prescribed fire on mixed conifer forest structure in the Sierra Nevada, California

    USGS Publications Warehouse

    van Mantgem, Phillip J.; Stephenson, Nathan L.; Knapp, Eric; Keeley, Jon E.

    2011-01-01

    The capacity of prescribed fire to restore forest conditions is often judged by changes in forest structure within a few years following burning. However, prescribed fire might have longer-term effects on forest structure, potentially changing treatment assessments. We examined annual changes in forest structure in five 1 ha old-growth plots immediately before prescribed fire and up to eight years after fire at Sequoia National Park, California. Fire-induced declines in stem density (67% average decrease at eight years post-fire) were nonlinear, taking up to eight years to reach a presumed asymptote. Declines in live stem biomass were also nonlinear, but smaller in magnitude (32% average decrease at eight years post-fire) as most large trees survived the fires. The preferential survival of large trees following fire resulted in significant shifts in stem diameter distributions. Mortality rates remained significantly above background rates up to six years after the fires. Prescribed fire did not have a large influence on the representation of dominant species. Fire-caused mortality appeared to be spatially random, and therefore did not generally alter heterogeneous tree spatial patterns. Our results suggest that prescribed fire can bring about substantial changes to forest structure in old-growth mixed conifer forests in the Sierra Nevada, but that long-term observations are needed to fully describe some measures of fire effects.

  11. Plant traits determine forest flammability

    NASA Astrophysics Data System (ADS)

    Zylstra, Philip; Bradstock, Ross

    2016-04-01

    Carbon and nutrient cycles in forest ecosystems are influenced by their inherent flammability - a property determined by the traits of the component plant species that form the fuel and influence the micro climate of a fire. In the absence of a model capable of explaining the complexity of such a system however, flammability is frequently represented by simple metrics such as surface fuel load. The implications of modelling fire - flammability feedbacks using surface fuel load were examined and compared to a biophysical, mechanistic model (Forest Flammability Model) that incorporates the influence of structural plant traits (e.g. crown shape and spacing) and leaf traits (e.g. thickness, dimensions and moisture). Fuels burn with values of combustibility modelled from leaf traits, transferring convective heat along vectors defined by flame angle and with plume temperatures that decrease with distance from the flame. Flames are re-calculated in one-second time-steps, with new leaves within the plant, neighbouring plants or higher strata ignited when the modelled time to ignition is reached, and other leaves extinguishing when their modelled flame duration is exceeded. The relative influence of surface fuels, vegetation structure and plant leaf traits were examined by comparing flame heights modelled using three treatments that successively added these components within the FFM. Validation was performed across a diverse range of eucalypt forests burnt under widely varying conditions during a forest fire in the Brindabella Ranges west of Canberra (ACT) in 2003. Flame heights ranged from 10 cm to more than 20 m, with an average of 4 m. When modelled from surface fuels alone, flame heights were on average 1.5m smaller than observed values, and were predicted within the error range 28% of the time. The addition of plant structure produced predicted flame heights that were on average 1.5m larger than observed, but were correct 53% of the time. The over-prediction in this case was the result of a small number of large errors, where higher strata such as forest canopy were modelled to ignite but did not. The addition of leaf traits largely addressed this error, so that the mean flame height over-prediction was reduced to 0.3m and the fully parameterised FFM gave correct predictions 62% of the time. When small (<1m) flames were excluded, the fully parameterised model correctly predicted flame heights 12 times more often than could be predicted using surface fuels alone, and the Mean Absolute Error was 4 times smaller. The inadequate consideration of plant traits within a mechanistic framework introduces significant error to forest fire behaviour modelling. The FFM provides a solution to this, and an avenue by which plant trait information can be used to better inform Global Vegetation Models and decision-making tools used to mitigate the impacts of fire.

  12. Avian community responses to post-fire forest structure: implications for fire management in mixed conifer forests

    Treesearch

    Angela White; Patricia Manley; Gina Tarbill; T. W. Richardson; R. E. Russell; H. D. Safford; S. Z. Dobrowski

    2016-01-01

    Fire is a natural process and the dominant disturbance shaping plant and animal communities in many coniferous forests of the western US. Given that fire size and severity are predicted to increase in the future, it has become increasingly important to understand how wildlife responds to fire and post-fire management. The Angora Fire...

  13. Forest fires impact in semi arid lands in Algeria, analysis and followed of desertification by using remote sensing and GIS

    NASA Astrophysics Data System (ADS)

    Zegrar, Ahmed

    The Forest in steppe present ecological diversity, and seen climatic unfavourable conditions in zone and impact of forest fires; we notes deterioration of physical environment particularly, deterioration of natural forest. This deterioration of forests provokes an unbalance of environment witch provokes a process of deterioration advanced in the ultimate stadium is desertification. By elsewhere, where climatic conditions are favourable, the fire is an ecological and acted agent like integral part of evolution of the ecosystems, the specific regeneration of plants are influenced greatly by the regime of fire (season of fire, intensity, interval), who leads to the recuperation of the vegetation of meadow- fire. In this survey we used the pictures ALSAT-1 for detection of zones with risk of forest fire and their impact on the naturals forests in region of Tlemcen. A thematic detailed analysis of forests well attended ecosystems some processing on the picture ALSAT-1, we allowed to identify and classifying the forests in there opinion components flowers. we identified ampleness of fire on this zone also. Some parameters as the slope, the proximity to the road and the forests formations were studied in the goal of determining the zones to risk of forest fire. A crossing of diaper of information in a SIG according to a very determined logic allowed to classify the zones in degree of risk of fire in a middle arid in a forest zone not encouraging the regeneration on the other hand permitting the installation of cash of steppe which encourages the desertification.

  14. Using ecological forecasting of future vegetation transition and fire frequency change in the Sierra Nevada to assess fire management strategies

    NASA Astrophysics Data System (ADS)

    Thorne, J. H.; Schwartz, M. W.; Holguin, A. J.; Moritz, M.; Batllori, E.; Folger, K.; Nydick, K.

    2013-12-01

    Ecological systems may respond in complex manners as climate change progresses. Among the responses, site-level climate conditions may cause a shift in vegetation due to the physiological tolerances of plant species, and the fire return interval may change. Natural resource managers challenged with maintaining ecosystem health need a way to forecast how these processes may affect every location, in order to determine appropriate management actions and prioritize locations for interventions. We integrated climate change-driven vegetation type transitions with projected change in fire frequency for 45,203 km2 of the southern Sierra Nevada, California, containing over 10 land management agencies as well as private lands. This Magnitude of Change (MOC) approach involves classing vegetation types in current time according to their climate envelopes, and identifying which sites will in the future have climates beyond what that vegetation currently occurs in. Independently, fire models are used to determine the change in fire frequency for each site. We examined 82 vegetation types with >50 grid cell occurrences. We found iconic resources such as the giant sequoia, lower slope oak woodlands, and high elevation conifer forests are projected as highly vulnerable by models that project a warmer drier future, but not as much by models that project a warmer future that is not drier than current conditions. Further, there were strongly divergent vulnerabilities of these forest types across land ownership (National Parks versus US Forest Service lands), and by GCM. For example, of 50 giant sequoia (Sequoiadendron giganteum) groves and complexes, all but 3 (on Sierra National Forest) were in the 2 highest levels of risk of climate and fire under the GFDL A2 projection, while 15 groves with low-to-moderate risk were found on both the National Parks and National Forests 18 in the 2 under PCM A2. Landscape projections of potential MOC suggest that the region is likely to experience strong upslope shifting of open grassland, chaparral and hardwood types, which may be initiated by increased fire frequencies, particularly where fires have not recently burned within normal fire recurrence interval departures (FRID). An evaluation of four fire management strategies (business as usual; resist change; foster orderly change; protect vital resources) across four combinations of future climate and fire frequency found that no single management strategy was uniformly successful in protecting critical resources across the range of future conditions examined. This limitation is somewhat driven by current management constraints on the amount of management available to resource managers, which suggests management will need to use a triage approach to application of proactive fire management strategies, wherein MOC landscape projections can be used in decision support.

  15. Multi-Scale Modeling of Boreal Forest Vegetation Growth Under the Influence of Permafrost and Wildfire Interactions

    NASA Astrophysics Data System (ADS)

    Foster, A.; Armstrong, A. H.; Shuman, J. K.; Ranson, K.; Shugart, H. H., Jr.; Rogers, B. M.; Goetz, S. J.

    2017-12-01

    Global temperatures have increased about 0.2°C per decade since 1979, and the high latitudes are warming faster than the rest of the globe. Climate change within Alaska is likely to bring about increased drought and longer fire seasons, as well as increases in the severity and frequency of fires. These changes in disturbance regimes and their associated effects on ecosystem C stocks, including permafrost, may lead to a positive feedback to further climate warming. As of now, it is uncertain how vegetation will respond to ongoing climate change, and the addition of disturbance effects leads to even more complicated and varied scenarios. Through ecological modeling, we have the capacity to examine forest processes at multiple temporal and spatial scales, allowing for the testing of complex interactions between vegetation, climate, and disturbances. The University of Virginia Forest Model Enhanced (UVAFME) is an individual tree-based forest model that has been updated for use in interior boreal Alaska, with a new permafrost model and updated fire simulation. These updated submodels allow for feedback between soils, vegetation, and fire severity through fuels tracking and impact of depth of burn on permafrost dynamics. We present these updated submodels as well as calibration and validation of UVAFME to the Yukon River Basin in Alaska, with comparisons to inventory data. We also present initial findings from simulations of potential future forest biomass, structure, and species composition across the Yukon River Basin under expected changes in precipitation, temperature, and disturbances. We predict changing climate and the associated impacts on wildfire and permafrost dynamics will result in shifts in biomass and species composition across the region, with potential for further feedback to the climate-vegetation-disturbance system. These simulations advance our understanding of the possible futures for the Alaskan boreal forest, which is a valuable part of the global carbon budget.

  16. Thirty-Two Years of Forest Service Research at the Southern Forest Fire Laboratory in Macon, GA

    Treesearch

    USDA Forest Service

    1991-01-01

    When completed in 1959, the Southern Forest Fire Laboratory was the world?s first devoted entirely to the study of forest fires, Since then the scientists at the Laboratory have: 1) performed basic and applied research on critical fire problems of national interest, 2) conducted special regional research on fire problems peculiar to the 13 Southern States, and 3)...

  17. Modern fire regime resembles historical fire regime in a ponderosa pine forest on Native American land

    Treesearch

    Amanda B. Stan; Peter Z. Fule; Kathryn B. Ireland; Jamie S. Sanderlin

    2014-01-01

    Forests on tribal lands in the western United States have seen the return of low-intensity surface fires for several decades longer than forests on non-tribal lands. We examined the surface fire regime in a ponderosa pinedominated (Pinus ponderosa) forest on the Hualapai tribal lands in the south-western United States. Using fire-scarred trees, we inferred temporal (...

  18. Flame characteristics for fires in southern fuels

    Treesearch

    Ralph M. Nelson

    1980-01-01

    A flame model and analytical method are used to derive forest fire flame characteristics. Approximate solutions are used to express flame lengths, angles, heights, and tip velocities of headfires and calm-air fires in terms of fire intensity. Equations are compared with data from low-intensity controlled burns in southern fuels and with data from the literature.

  19. Research efforts on fuels, fuel models, and fire behavior in eastern hardwood forests

    Treesearch

    Thomas A. Waldrop; Lucy Brudnak; Ross J. Phillips; Patrick H. Brose

    2006-01-01

    Although fire was historically important to most eastern hardwood systems, its reintroduction by prescribed burning programs has been slow. As a result, less information is available on these systems to fire managers. Recent research and nationwide programs are beginning to produce usable products to predict fuel accumulation and fire behavior. We introduce some of...

  20. Estimating release of carbon from 1990 and 1991 forest fires in Alaska

    NASA Technical Reports Server (NTRS)

    Kaisischke, Eric S.; French, Nancy H. F.; Bourgeau-Chavez, Laura L.; Christensen, N. L., Jr.

    1995-01-01

    An improved method to estimate the amounts of carbon released during fires in the boreal forest zone of Alaska in 1990 and 1991 is described. This method divides the state into 64 distinct physiographic regions and estimates areal extent of five different land covers: two forest types, peat land, tundra, and nonvegetated. The areal extent of each cover type was estimated from a review of topographic maps of each region and observations on the distribution of foreat types within the state. Using previous observations and theoretical models for the two forest types found in interior Alaska, models of biomass accumulation as a function of stand age were developed. Stand age distributions for each region were determined using a statistical distribution based on fire frequency, which was from available long-term historical records. Estimates of the degree of biomass combusted were based on recent field observations as well as research reported in the literature. The location and areal extent of fires in this region for 1990 and 1991 were based on both field observations and analysis of satellite (advanced very high resolution radiometer (AVHRR)) data sets. Estimates of average carbon release for the two study years ranged between 2.54 and 3.00 kg/sq m, which are 2.2 to 2.6 times greater than estimates used in other studies of carbon release through biomass burning in boreal forests. Total average annual carbon release for the two years ranged between 0.012 and 0.018 Pg C/yr, with the lower value resulting from the AVHRR estimates of fire location and area.

Top