Sample records for modelling intercrop management

  1. [Main interspecific competition and land productivity of fruit-crop intercropping in Loess Region of West Shauxi].

    PubMed

    Yun, Lei; Bi, Hua-Xing; Tian, Xiao-Ling; Cui, Zhe-Wei; Zhou, Hui-Zi; Gao, Lu-Bo; Liu, Li-Xia

    2011-05-01

    Taking the four typical fruit-crop intercropping models, i.e., walnut-peanut, walnut-soybean, apple-peanut, and apple-soybean, in the Loess Region of western Shanxi Province as the objects, this paper analyzed the crop (peanut and soybean) photosynthetic active radiation (PAR), net photosynthetic rate (P(n)), yield, and soil moisture content. Comparing with crop monoculture, fruit-crop intercropping decreased the crop PAR and P(n). The smaller the distance from tree rows, the smaller the crop PAR and P(n). There was a significantly positive correlation between the P(n) and crop yield, suggesting that illumination was one of the key factors affecting crop yield. From the whole trend, the 0-100 cm soil moisture content had no significant differences between walnut-crop intercropping systems and corresponding monoculture cropping systems, but had significant differences between apple-crop intercropping systems and corresponding monoculture cropping systems, indicating that the competition for soil moisture was more intense in apple-crop intercropping systems than in walnut-crop intercropping systems. Comparing with monoculture, fruit-crop intercropping increased the land use efficiency and economic benefit averagely by 70% and 14%, respectively, and walnut-crop intercropping was much better than apple-crop intercropping. To increase the crop yield in fruit-crop intercropping systems, the following strategies should be taken: strengthening the management of irrigation and fertilization, increasing the distances or setting root barriers between crop and tree rows, regularly and properly pruning, and planting shade-tolerant crops in intercropping.

  2. Nest survival modelling using a multi-species approach in forests managed for timber and biofuel feedstock

    USGS Publications Warehouse

    Loman, Zachary G.; Monroe, Adrian; Riffell, Samuel K.; Miller, Darren A.; Vilella, Francisco; Wheat, Bradley R.; Rush, Scott A.; Martin, James A.

    2018-01-01

    Switchgrass (Panicum virgatum) intercropping is a novel forest management practice for biomass production intended to generate cellulosic feedstocks within intensively managed loblolly pine‐dominated landscapes. These pine plantations are important for early‐successional bird species, as short rotation times continually maintain early‐successional habitat. We tested the efficacy of using community models compared to individual surrogate species models in understanding influences on nest survival. We analysed nest data to test for differences in habitat use for 14 bird species in plots managed for switchgrass intercropping and controls within loblolly pine (Pinus taeda) plantations in Mississippi, USA.We adapted hierarchical models using hyper‐parameters to incorporate information from both common and rare species to understand community‐level nest survival. This approach incorporates rare species that are often discarded due to low sample sizes, but can inform community‐level demographic parameter estimates. We illustrate use of this approach in generating both species‐level and community‐wide estimates of daily survival rates for songbird nests. We were able to include rare species with low sample size (minimum n = 5) to inform a hyper‐prior, allowing us to estimate effects of covariates on daily survival at the community level, then compare this with a single‐species approach using surrogate species. Using single‐species models, we were unable to generate estimates below a sample size of 21 nests per species.Community model species‐level survival and parameter estimates were similar to those generated by five single‐species models, with improved precision in community model parameters.Covariates of nest placement indicated that switchgrass at the nest site (<4 m) reduced daily nest survival, although intercropping at the forest stand level increased daily nest survival.Synthesis and applications. Community models represent a viable method for estimating community nest survival rates and effects of covariates while incorporating limited data for rarely detected species. Intercropping switchgrass in loblolly pine plantations slightly increased daily nest survival at the research plot scale (0.1 km2), although at a local scale (50 m2) switchgrass negatively influenced nest survival. A likely explanation is intercropping shifted community composition, favouring species with greater disturbance tolerance.

  3. Temporal dynamics of the arthropod community in pear orchards intercropped with aromatic plants.

    PubMed

    Beizhou, Song; Jie, Zhang; Jinghui, Hu; Hongying, Wu; Yun, Kong; Yuncong, Yao

    2011-09-01

    Increasing attention has been paid to enhancing biological control through habitat management in agricultural systems for enhanced pest management. Pest management benefits can be realised by intercropping, which can increase natural enemy abundance and, in turn, reduce pest abundance. In this study, the composition and temporal dynamics of arthropod communities in pear orchards when intercropped with aromatic plants were investigated, and the effectiveness and applicability of aromatic plants as intercrops for enhancing insect control were assessed. When compared with natural grasses or clean tillage, intercropping significantly reduced pest abundance and increased the ratio of natural enemies to pests. Intercropping also shortened the occurrence duration and depressed the incidence peak in annual dynamics curves of the pest subcommunity and the arthropod community, mainly because of the repellent effects of aromatic plants. Equally important, intercropping significantly reduced the numbers of major pests, such as Psylla chinensis, Aphis citricola and Pseudococcus comstocki, while their incidence period was delayed to varying degrees, and the numbers of their dominant natural enemies (Coccinella septempunctata, Phytoseiulus persimilis and Chrysoperla sinica) increased. Intercropping with aromatic plants led to a considerable improvement in arthropod pest management by enhancing the activity of the beneficial arthropod community within the pear orchard ecosystem. Copyright © 2011 Society of Chemical Industry.

  4. Breeding bird community response to establishing intercropped switchgrass in intensively-managed pine stands

    USGS Publications Warehouse

    Loman, Zachary G.; Riffell, Samuel K.; Wheat, Bradley R.; Miller, Darrin A.; Martin, James A.; Vilella, Francisco

    2014-01-01

    Intercropping switchgrass (Panicum virgatum L.) between tree rows within young pine (Pinus spp.) plantations is a potential method to generate lignocellulosic biofuel feedstocks within intensively managed forests. Intensively managed pine supports a diverse avian assemblage potentially affected by establishment and maintenance of an annual biomass feedstock via changes in plant communities, dead wood resources, and habitat structure. We sought to understand how establishing switchgrass on an operational scale affects bird communities within intercropped plantations as compared to typical intensively managed loblolly pine (Pinus taeda L.) forest. We conducted breeding bird point counts using distance sampling for three years (2011–2013) following establishment of intercropped switchgrass stands (6 replicates), traditionally-managed pine plantations, and switchgrass-only plots (0.1 km2 minimum) in Kemper Co., MS. We detected 59 breeding bird species from 11,195 detections. Neotropical migrants and forest-edge associated species were less abundant in intercropped plots than controls the first two years after establishment and more abundant in year three. Short distance migrants and residents were scarce in intercropped and control plots initially, and did not differ between these two treatments in any year. Species associated with pine-grass habitat structure were less abundant initially in intercropped plots, but converged with pine controls in subsequent years. Switchgrass monocultures provided minimal resources for birds. If songbird conservation is a management priority, managers should consider potential reductions of some breeding birds for one to two years following intercropping. It is unclear how these relationships may change outside the breeding season and as stands age.

  5. Switchgrass (Panicum virgatum) Intercropping within Managed Loblolly Pine (Pinus taeda) Does Not Affect Wild Bee Communities.

    PubMed

    Campbell, Joshua W; Miller, Darren A; Martin, James A

    2016-11-04

    Intensively-managed pine ( Pinus spp.) have been shown to support diverse vertebrate communities, but their ability to support invertebrate communities, such as wild bees, has not been well-studied. Recently, researchers have examined intercropping switchgrass ( Panicum virgatum ), a native perennial, within intensively managed loblolly pine ( P. taeda ) plantations as a potential source for cellulosic biofuels. To better understand potential effects of intercropping on bee communities, we investigated visitation of bees within three replicates of four treatments of loblolly pine in Mississippi, U.S.A.: 3-4 year old pine plantations and 9-10 year old pine plantations with and without intercropped switchgrass. We used colored pan traps to capture bees during the growing seasons of 2013 and 2014. We captured 2507 bees comprised of 18 different genera during the two-year study, with Lasioglossum and Ceratina being the most common genera captured. Overall, bee abundances were dependent on plantation age and not presence of intercropping. Our data suggests that switchgrass does not negatively impact or promote bee communities within intensively-managed loblolly pine plantations.

  6. [Changes of soil physical properties during the conversion of cropland to agroforestry system].

    PubMed

    Wang, Lai; Gao, Peng Xiang; Liu, Bin; Zhong, Chong Gao; Hou, Lin; Zhang, Shuo Xin

    2017-01-01

    To provide theoretical basis for modeling and managing agroforestry systems, the influence of conversion of cropland to agroforestry system on soil physical properties was investigated via a walnut (Juglans regia)-wheat (Triticum aestivum) intercropping system, a wide spreading local agroforestry model in northern Weihe River of loess area, with the walnut and wheat monoculture systems as the control. The results showed that the improvement of the intercropping system on soil physical properties mainly appeared in the 0-40 cm soil layer. The intercropping system could prevent soil bulk density rising in the surface soil (0-20 cm), and the plow pan in the 20-40 cm soil layer could be significantly alleviated. The intercropping system had conti-nuous improvement on soil field capacity in each soil layer with the planting age increase, and the soil field capacity was higher than that of each monoculture system in each soil layer (except 20-40 cm soil layer) since the 5th year after planting. The intercropping system had continuous improvement on soil porosity in each soil layer, but mainly in the 0-20 and 20-40 cm soil layer, and the ratio of capillary porosity was also improved. The soil bulk density, field capacity and soil porosity obtained continuous improvement during the conversion of cropland to agroforestry system, and the improvement on soil physical properties was stronger in shallow soil layer than in deep soil.

  7. Modeling large-scale adoption of intercropping as a sustainable agricultural practice for food security and air pollution mitigation around the globe

    NASA Astrophysics Data System (ADS)

    Fung, K. M.; Tai, A. P. K.; Yong, T.; Liu, X.

    2017-12-01

    The fast-growing world population will impose a severe pressure on our current global food production system. Meanwhile, boosting crop yield by increasing fertilizer use comes with a cascade of environmental problems including air pollution. In China, agricultural activities contribute to 95% of total ammonia emissions. Such emissions are attributable to 20% of the fine particulate matter (PM2.5) formed in the downwind regions, which imposes severe health risks to the citizens. Field studies of soybean intercropping have demonstrated its potential to enhance crop yield, lower fertilizer use, and thus reduce ammonia emissions by taking advantage of legume nitrogen fixation and enabling mutualistic crop-crop interactions between legumes and non-legume crops. In our work, we revise the process-based biogeochemical model, DeNitrification-DeComposition (DNDC) to capture the belowground interactions of intercropped crops and show that with intercropping, only 58% of fertilizer is required to yield the same maize production of its monoculture counterpart, corresponding to a reduction in ammonia emission by 43% over China. Using the GEOS-Chem global 3-D chemical transport model, we estimate that such ammonia reduction can lessen downwind inorganic PM2.5 by up to 2.1% (equivalent to 1.3 μg m-3), which saves the Chinese air pollution-related health costs by up to US$1.5 billion each year. With the more enhanced crop growth and land management algorithms in the Community Land Model (CLM), we also implement into CLM the new parametrization of the belowground interactions to simulate large-scale adoption of intercropping around the globe and study their beneficial effects on food production, fertilizer usage and ammonia reduction. This study can serve as a scientific basis for policy makers and intergovernmental organizations to consider promoting large-scale intercropping to maintain a sustainable global food supply to secure both future crop production and air quality.

  8. Effect of intercropping period management on runoff and erosion in a maize cropping system.

    PubMed

    Laloy, Eric; Bielders, C L

    2010-01-01

    The management of winter cover crops is likely to influence their performance in reducing runoff and erosion during the intercropping period that precedes spring crops but also during the subsequent spring crop. This study investigated the impact of two dates of destruction and burial of a rye (Secale cereale L.) and ryegrass (Lolium multiflorum Lam.) cover crop on runoff and erosion, focusing on a continuous silage maize (Zea mays L.) cropping system. Thirty erosion plots with various intercrop management options were monitored for 3 yr at two sites. During the intercropping period, cover crops reduced runoff and erosion by more than 94% compared with untilled, post-maize harvest plots. Rough tillage after maize harvest proved equally effective as a late sown cover crop. There was no effect of cover crop destruction and burial dates on runoff and erosion during the intercropping period, probably because rough tillage for cover crop burial compensates for the lack of soil cover. During two of the monitored maize seasons, it was observed that plots that had been covered during the previous intercropping period lost 40 to 90% less soil compared with maize plots that had been left bare during the intercropping period. The burial of an aboveground cover crop biomass in excess of 1.5 t ha(-1) was a necessary, yet not always sufficient, condition to induce a residual effect. Because of the possible beneficial residual effect of cover crop burial on erosion reduction, the sowing of a cover crop should be preferred over rough tillage after maize harvest.

  9. Sustainable, alternative farming practices as a means to simultaneously secure food production and reduce air pollution in East Asia

    NASA Astrophysics Data System (ADS)

    Tai, A. P. K.; Fung, K. M.; Yong, T.; Liu, X.

    2015-12-01

    Proper agricultural land management is essential for securing food supply and minimizing damage to the environment. Among available farming practices, relay strip intercropping and fertilizer application are commonly used, but to study their wider environmental implications and possible feedbacks we require an Earth system modeling framework. In this study, the effectiveness of a maize-soybean relay strip intercropping system and fertilizer reduction is investigated using a multi-model method. The DNDC (DeNitrification-DeComposition) model is used to simulate agricultural activities and their impacts on the environment through nitrogen emissions and changes in soil chemical composition. Crop yield, soil nutrient content and nitrogen emissions to the atmosphere in major agricultural regions of China are predicted under various cultivation scenarios. The GEOS-Chem global chemical transport model is then used to estimate the effects on downwind particle and ozone air pollution. We show that relay strip intercropping and optimal fertilization not only improve crop productivity, but also retain soil nutrients, reduce ammonia emission and mitigate downwind air pollution. By cutting 25% fertilization inputs but cultivating maize and soybean together in a relay strip intercropping system used with field studies, total crop production was improved slightly by 4.4% compared to monoculture with conventional amount of fertilizers. NH3 volatilization decreases by 29%, equivalent to saving the pollution-induced health damage costs by about US$2.5 billion per year. The possible feedback effects from atmospheric nitrogen deposition onto the croplands are also investigated. We show that careful management and better quantitative understanding of alternative farming practices hold huge potential in simultaneously addressing different global change issues including the food crisis, air pollution and climate change, and calls for greater collaboration between scientists, farmers and policy makers concerning these issues.

  10. Intercropping for Management of Insect Pests of Castor, Ricinus communis, in the Semi—Arid Tropics of India

    PubMed Central

    Srinivasa Rao, M.; Venkateswarlu, B.

    2012-01-01

    Intercropping is one of the important cultural practices in pest management and is based on the principle of reducing insect pests by increasing the diversity of an ecosystem. On—farm experiments were conducted in villages of semi—arid tropical (SAT) India to identify the appropriate combination of castor (Ricinus communis L.) (Malpighiales: Euphorbiaceae) and intercropping in relation to pest incidence. The diversity created by introducing cluster bean, cowpea, black gram, or groundnut as intercrops in castor (1:2 ratio proportions) resulted in reduction of incidence of insect pests, namely semilooper (Achaea janata L.), leaf hopper (Empoasca flavescens Fabricius), and shoot and capsule borer (Conogethes punctiferalis Guenee). A buildup of natural enemies (Microplitis, coccinellids, and spiders) of the major pests of castor was also observed in these intercropping systems and resulted in the reduction of insect pests. Further, these systems were more efficient agronomically and economically, and were thus more profitable than a castor monocrop. PMID:22934569

  11. Plant community and white-tailed deer nutritional carrying capacity response to intercropping switchgrass in loblolly pine plantations

    NASA Astrophysics Data System (ADS)

    Greene, Ethan Jacob

    Switchgrass (Panicum virgatum L.) is a cellulosic feedstock for alternative energy production that could grow well between planted pines (Pinus spp.). Southeastern planted pine occupies 15.8 million hectares and thus, switchgrass intercropping could affect biodiversity if broadly implemented. Therefore, I evaluated effects of intercropping switchgrass in loblolly pine (P. taeda L.) plantations on plant community diversity, plant biomass production, and white-tailed deer (Odocoileus virginianus Zimmerman) nutritional carrying capacity. In a randomized complete block design, I assigned three treatments (switchgrass intercropped, switchgrass monoculture, and a "control" of traditional pine management) to 4 replicates of 10-ha experimental units in Kemper County, Mississippi during 2014-2015. I detected 246 different plant species. Switchgrass intercropping reduced plant species richness and diversity but maintained evenness. I observed reduced forb and high-use deer forage biomass but only in intercropped alleys (interbeds). Soil micronutrient interactions affected forage protein of deer plants. White-tailed deer nutritional carrying capacity remained unaffected.

  12. Remediation of Arsenic contaminated soil using malposed intercropping of Pteris vittata L. and maize.

    PubMed

    Ma, Jie; Lei, En; Lei, Mei; Liu, Yanhong; Chen, Tongbin

    2018-03-01

    Intercropping of arsenic (As) hyperaccumulator and cash crops during remediation of contaminated soil has been applied in farmland remediation project. However, little is known about the fate of As fractions in the soil profile and As uptake within the intercropping plants under field condition. In this study, As removal, uptake, and translocation were investigated within an intercropping system of Pteris vittata L. (P. vittata) and maize (Zea mays). Results indicated that the concentration of As associated with amorphous Fe (hydr)oxides in the 10-20 cm soil layer was significantly lower under malposed intercropping of P. vittata and maize, and As accumulation in P. vittata and biomass of P. vittata were simultaneously higher under malposed intercropping than under coordinate intercropping, leading to a 2.4 times higher rate of As removal. Although maize roots absorbed over 13.4 mg kg -1 As and maize leaves and flowers accumulated over 21.5 mg kg -1 As (translocation factor higher than 1), grains produced in all intercropping modes accumulated lower levels of As, satisfying the standard for human consumption. Our results suggested that malposed intercropping of a hyperaccumulator and a low-accumulation cash crop was an ideal planting pattern for As remediation in soil. Furthermore, timely harvest of P. vittata, agronomic strategies during remediation, and appropriate management of the above ground parts of P. vittata and high-As tissues of cash crops may further improve remediation efficiency. Copyright © 2017. Published by Elsevier Ltd.

  13. The Dynamic Process of Interspecific Interactions of Competitive Nitrogen Capture between Intercropped Wheat (Triticum aestivum L.) and Faba Bean (Vicia faba L.)

    PubMed Central

    2014-01-01

    Wheat (Triticum aestivum L.)/faba bean (Vicia faba L.) intercropping shows significant overyielding and high nitrogen (N)-use efficiency, but the dynamics of plant interactions have rarely been estimated. The objective of the present study was to investigate the temporal dynamics of competitive N acquisition between intercropped wheat and faba bean with the logistic model. Wheat and faba bean were grown together or alone with limited N supply in pots. Data of shoot and root biomass and N content measured from 14 samplings were fitted to logistic models to determine instantaneous rates of growth and N uptake. The superiority of instantaneous biomass production and N uptake shifted from faba bean to wheat with their growth. Moreover, the shift of superiority on N uptake occurred 7–12 days earlier than that of biomass production. Interspecific competition stimulated intercropped wheat to have a much earlier and stronger superiority on instantaneous N uptake compared with isolated wheat. The modeling methodology characterized the temporal dynamics of biomass production and N uptake of intercropped wheat and faba bean in different planting systems, which helps to understand the underlying process of plant interaction for intercropping plants. PMID:25541699

  14. The dynamic process of interspecific interactions of competitive nitrogen capture between intercropped wheat (Triticum aestivum L.) and Faba Bean (Vicia faba L.).

    PubMed

    Li, Chunjie; Dong, Yan; Li, Haigang; Shen, Jianbo; Zhang, Fusuo

    2014-01-01

    Wheat (Triticum aestivum L.)/faba bean (Vicia faba L.) intercropping shows significant overyielding and high nitrogen (N)-use efficiency, but the dynamics of plant interactions have rarely been estimated. The objective of the present study was to investigate the temporal dynamics of competitive N acquisition between intercropped wheat and faba bean with the logistic model. Wheat and faba bean were grown together or alone with limited N supply in pots. Data of shoot and root biomass and N content measured from 14 samplings were fitted to logistic models to determine instantaneous rates of growth and N uptake. The superiority of instantaneous biomass production and N uptake shifted from faba bean to wheat with their growth. Moreover, the shift of superiority on N uptake occurred 7-12 days earlier than that of biomass production. Interspecific competition stimulated intercropped wheat to have a much earlier and stronger superiority on instantaneous N uptake compared with isolated wheat. The modeling methodology characterized the temporal dynamics of biomass production and N uptake of intercropped wheat and faba bean in different planting systems, which helps to understand the underlying process of plant interaction for intercropping plants.

  15. Intercropping Enhances Productivity and Maintains the Most Soil Fertility Properties Relative to Sole Cropping

    PubMed Central

    Wang, Zhi-Gang; Jin, Xin; Bao, Xing-Guo; Li, Xiao-Fei; Zhao, Jian-Hua; Sun, Jian-Hao; Christie, Peter; Li, Long

    2014-01-01

    Yield and nutrient acquisition advantages are frequently found in intercropping systems. However, there are few published reports on soil fertility in intercropping relative to monocultures. A field experiment was therefore established in 2009 in Gansu province, northwest China. The treatments comprised maize/faba bean, maize/soybean, maize/chickpea and maize/turnip intercropping, and their correspoding monocropping. In 2011 (the 3rd year) and 2012 (the 4th year) the yields and some soil chemical properties and enzyme activities were examined after all crop species were harvested or at later growth stages. Both grain yields and nutrient acquisition were significantly greater in all four intercropping systems than corresponding monocropping over two years. Generally, soil organic matter (OM) did not differ significantly from monocropping but did increase in maize/chickpea in 2012 and maize/turnip in both years. Soil total N (TN) did not differ between intercropping and monocropping in either year with the sole exception of maize/faba bean intercropping receiving 80 kg P ha−1 in 2011. Intercropping significantly reduced soil Olsen-P only in 2012, soil exchangeable K in both years, soil cation exchangeable capacity (CEC) in 2012, and soil pH in 2012. In the majority of cases soil enzyme activities did not differ across all the cropping systems at different P application rates compared to monocrops, with the exception of soil acid phosphatase activity which was higher in maize/legume intercropping than in the corresponding monocrops at 40 kg ha−1 P in 2011. P fertilization can alleviate the decline in soil Olsen-P and in soil CEC to some extent. In summary, intercropping enhanced productivity and maintained the majority of soil fertility properties for at least three to four years, especially at suitable P application rates. The results indicate that maize-based intercropping may be an efficient cropping system for sustainable agriculture with carefully managed fertilizer inputs. PMID:25486249

  16. [Interspecific relationship and Si, N nutrition of rice in rice-water spinach intercropping system.

    PubMed

    Ning, Chuan Chuan; Yang, Rong Shuang; Cai, Mao Xia; Wang, Jian Wu; Luo, Shi Ming; Cai, Kun Zheng

    2017-02-01

    Intercropping is a sound eco-agriculture model, but aquatic crops (e.g., rice) intercropping is seldom researched. In the present study, rice and water spinach were chosen as the research objects, a field trial was conducted to explore the yields, interspecific relationship and Si, N nutrition of rice under rice-water spinach intercropping for four seasons during two consecutive years (2014-2015). The experiment had five treatments: rice monoculture, water spinach monoculture, and rice-water spinach intercropping ratios of 2:2, 3:2, 4:2, respectively. The results showed that rice-water spinach intercropping significantly increased rice yield, and the increase rates of 2:2, 3:2 and 4:2 intercropping per unit area were 77.5%-120.6%, 64.9%-80.9%, 37.7%-56.0%, respectively. However, intercropping resulted in reduction of water spinach yield. Intercropping significantly increased total yield of rice and water spinach from land equivalent ratios (LER) analysis. The values of LER were more than 1.0, and the ratio of 3:2 intercropping had the best effect. As for the competitive index, rice was more competitive than water spinach in intercropping system, especially in early season. Compared with rice monoculture, rice-water spinach intercropping significantly increased the absorption of Si and N in rice leaves, and Si content of rice leaves during ripening stage, but didn't increase its N content and even slightly reduced it during ripening stage. Intercropping had no significant effect on available Si, ammonium N and nitrate N content in soil. Compared with rice monoculture and intercropping, water spinach monoculture had always the highest available Si, ammonium N and nitrate N contents in soil through the experiment period. The results suggested that rice-spinach intercropping could promote rice to absorb silicon and nitrogen and increase the competitive ability of rice.

  17. Population dynamics of Aphis gossypii Glover and in sole and intercropping systems of cotton and cowpea.

    PubMed

    Fernandes, Francisco S; Godoy, Wesley A C; Ramalho, Francisco S; Garcia, Adriano G; Santos, Bárbara D B; Malaquias, José B

    2018-01-01

    Population dynamics of aphids have been studied in sole and intercropping systems. These studies have required the use of more precise analytical tools in order to better understand patterns in quantitative data. Mathematical models are among the most important tools to explain the dynamics of insect populations. This study investigated the population dynamics of aphids Aphis gossypii and Aphis craccivora over time, using mathematical models composed of a set of differential equations as a helpful analytical tool to understand the population dynamics of aphids in arrangements of cotton and cowpea. The treatments were sole cotton, sole cowpea, and three arrangements of cotton intercropped with cowpea (t1, t2 and t3). The plants were infested with two aphid species and were evaluated at 7, 14, 28, 35, 42, and 49 days after the infestations. Mathematical models were used to fit the population dynamics of two aphid species. There were good fits for aphid dynamics by mathematical model over time. The highest population peak of both species A. gossypii and A. craccivora was found in the sole crops, and the lowest population peak was found in crop system t2. These results are important for integrated management programs of aphids in cotton and cowpea.

  18. [Effects of nitrogen management on maize nitrogen utilization and residual nitrate nitrogen in soil under maize/soybean and maize/sweet potato relay strip intercropping systems].

    PubMed

    Wang, Xiao-Chun; Yang, Wen-Yu; Deng, Xiao-Yan; Zhang, Qun; Yong, Tai-Wen; Liu, Wei-Guo; Yang, Feng; Mao, Shu-Ming

    2014-10-01

    A large amount of nitrogen (N) fertilizers poured into the fields severely pollute the environment. Reasonable application of N fertilizer has always been the research hotpot. The effects of N management on maize N utilization and residual nitrate N in soil under maize/soybean and maize/ sweet potato relay strip intercropping systems were reported in a field experiment in southwest China. It was found that maize N accumulation, N harvest index, N absorption efficiency, N contribution proportion after the anthesis stage in maize/soybean relay strip intercropping were increased by 6.1%, 5.4%, 4.3%, and 15.1% than under maize/sweet potato with an increase of 22.6% for maize yield after sustainable growing of maize/soybean intercropping system. Nitrate N accumulation in the 0-60 cm soil layer was 12.9% higher under maize/soybean intercropping than under maize/sweet potato intercropping. However, nitrate N concentration in the 60-120 cm soil layer when intercropped with soybean decreased by 10.3% than when intercropped with sweet potato, indicating a decrease of N leaching loss. Increasing of N application rate enhanced N accumulation of maize and decreased N use efficiency and significantly increased nitrate concentration in the soil profile except in the 60-100 cm soil layer, where no significant difference was observed with nitrogen application rate at 0 to 270 kg · hm(-2). Further application of N fertilizer significantly enhanced nitrate leaching loss. Postponing N application increased nitrate accumulation in the 60-100 cm soil layer. The results suggested that N application rates and ratio of base to top dressing had different influences on maize N concentration and nitrate N between maize/soybean and maize/sweet potato intercropping. Maize N concentration in the late growing stage, N harvest index and N use efficiency under maize/soybean intercropping increased (with N application rate at 180-270 kg · hm(-2) and ratio of base to top dressing = 3:2:5) and decreased nitrate leaching loss with yield reaching 7757 kg · hm(-2) on average. However, for maize/sweet potato, N concentration and use efficiency and maize yield increased significantly with N application rate at 180 kg · hm(-2) and ratio of base to top dressing = 5:5 than that under other treatments with yield reaching 6572 kg · hm(-2). Under these circumstances, it would be possible to realize maize high yield, high efficiency and safety of N man- agement under maize/soybean and maize/sweet potato relay strip intercropping systems.

  19. Root Interactions in a Maize/Soybean Intercropping System Control Soybean Soil-Borne Disease, Red Crown Rot

    PubMed Central

    Gao, Xiang; Wu, Man; Xu, Ruineng; Wang, Xiurong; Pan, Ruqian; Kim, Hye-Ji; Liao, Hong

    2014-01-01

    Background Within-field multiple crop species intercropping is well documented and used for disease control, but the underlying mechanisms are still unclear. As roots are the primary organ for perceiving signals in the soil from neighboring plants, root behavior may play an important role in soil-borne disease control. Principal Findings In two years of field experiments, maize/soybean intercropping suppressed the occurrence of soybean red crown rot, a severe soil-borne disease caused by Cylindrocladium parasiticum (C. parasiticum). The suppressive effects decreased with increasing distance between intercropped plants under both low P and high P supply, suggesting that root interactions play a significant role independent of nutrient status. Further detailed quantitative studies revealed that the diversity and intensity of root interactions altered the expression of important soybean PR genes, as well as, the activity of corresponding enzymes in both P treatments. Furthermore, 5 phenolic acids were detected in root exudates of maize/soybean intercropped plants. Among these phenolic acids, cinnamic acid was released in significantly greater concentrations when intercropped maize with soybean compared to either crop grown in monoculture, and this spike in cinnamic acid was found dramatically constrain C. parasiticum growth in vitro. Conclusions To the best of our knowledge, this study is the first report to demonstrate that intercropping with maize can promote resistance in soybean to red crown rot in a root-dependent manner. This supports the point that intercropping may be an efficient ecological strategy to control soil-borne plant disease and should be incorporated in sustainable agricultural management practices. PMID:24810161

  20. Water use efficiency and evapotranspiration in maize-soybean relay strip intercrop systems as affected by planting geometries.

    PubMed

    Rahman, Tanzeelur; Liu, Xin; Hussain, Sajad; Ahmed, Shoaib; Chen, Guopeng; Yang, Feng; Chen, Lilian; Du, Junbo; Liu, Weiguo; Yang, Wenyu

    2017-01-01

    Optimum planting geometries have been shown to increase crop yields in maize-soybean intercrop systems. However, little is known about whether changes in planting geometry improve the seasonal water use of maize and soybean intercrops. We conducted two different field experiments in 2013 and 2014 to investigate the effects of changes in planting geometry on water use efficiency (WUE) and evapotranspiration (ETc) of maize (Zea mays L.) and soybean [Glycine max (L.) Merr.] relay strip intercrop systems. Our results showed that the leaf area index of maize for both years where intercropping occurred was notably greater compared to sole maize, thus the soil water content (SWC), soil evaporation (E), and throughfall followed a decreasing trend in the following order: central row of maize strip (CRM) < adjacent row between maize and soybean strip (AR) < central row of soybean strip (CRS). When intercropped, the highest grain yield for maize and total yields were recorded for the 40:120 cm and 40:160 cm planting geometries using 160 cm and 200 cm bandwidth, respectively. By contrast, the highest grain yield of intercropped soybean was appeared for the 20:140 cm and 20:180 cm planting geometries. The largest land equivalent ratios were 1.62 for the 40:120 cm planting geometry and 1.79 for the 40:160 cm planting geometry, indicating that both intercropping strategies were advantageous. Changes in planting geometries did not show any significant effect on the ETc of the maize and soybean intercrops. WUEs in the different planting geometries of intercrop systems were lower compared to sole cropping. However, the highest group WUEs of 23.06 and 26.21 kg ha-1 mm-1 for the 40:120 cm and 40:160 cm planting geometries, respectively, were 39% and 23% higher than those for sole cropping. Moreover, the highest water equivalent ratio values of 1.66 and 1.76 also appeared for the 40:120 cm and 40:160 cm planting geometries. We therefore suggest that an optimum planting geometry of 40:160 cm and bandwidth of 200 cm could be a viable planting pattern management method for attaining high group WUE in maize-soybean intercrop systems.

  1. The behavior of Aphis gossypii and Aphis craccivora (Hemiptera: Aphididae) and of their predator Cycloneda sanguinea (Coleoptera: Coccinellidae) in cotton-cowpea intercropping systems.

    PubMed

    Fernandes, Francisco S; Godoy, Wesley A C; Ramalho, Francisco S; Malaquias, José B; Santos, Bárbara D B

    2018-01-01

    The intercropping is an important cultural practice commonly used in pest management. It is based on the principle that increased plant diversity in the agro-ecosystem can lead to reductions of pest populations in the crop. The current study aimed to assess the impact the colored fiber cotton-cowpea intercropped systems on Aphis gossypii and Aphis craccivora and on their predator Cycloneda sanguinea and the losses and the dispersion behavior of these aphids and their predator in these cropping systems. The experiment had a randomized block experimental design with two bioassays and four treatments. The number of apterous and alate aphids (A. gossypii) per cotton plant was 1.46 and 1.73 or 1.97 and 2.19 times highest in the solid cotton system than that found in the cotton-cowpea intercropped systems (S1) and (S2), respectively. On the other hand, the cotton-cowpea intercropped systems (S1 and S2) reduced, respectively, in 43% and 31% the number of apterousA. gossypiiper cotton plant compared to the control. Implementing cotton-cowpea intercropped system in the S1 scheme reduced A. gossypii infestation, favored the multiplication of C. sanguinea, and allowed obtaining heavier open bolls.

  2. Water Quality and Quantity Implications of Biofuel Intercropping at a Regional Scale (Invited)

    NASA Astrophysics Data System (ADS)

    Christopher, S. F.; Schoenholtz, S. H.; Nettles, J.

    2010-12-01

    Because of a strong national interest in greater energy independence and concern for the role of fossil fuels in global climate change, the importance of biofuels as an alternative renewable energy source has developed rapidly. The U.S. government has mandated production of 36 billion gallons of renewable fuels by 2022, which compromises 15 % of U.S. liquid transportation fuels. Large-scale production of corn-based ethanol often requires irrigation and is associated with erosion, excess sediment export, and leaching of nitrogen and phosphorus. Production of cellulosic biomass offers a promising alternative to corn-based systems. Although cultivation of switchgrass using standard agricultural practices is one option being considered for production of cellulosic biomass, intercropping cellulosic biofuel crops within managed forests could provide feedstock without primary land use change or the water quality impacts associated with annual crops. Catchlight Energy LLC is examining the feasibility and sustainability of intercropping switchgrass in loblolly pine plantations in the southeastern US. While ongoing research is determining efficient operational techniques, information needed to evaluate the effects of these practices on water resources, such as field-scale evapotranspiration rates, nutrient cycling, and soil erosion rates are being examined in a large watershed study. Three sets of four to five sub-watersheds are fully instrumented and currently collecting calibration data, with forest-based biofuel treatments to be installed in 2011 and 2012. These watershed studies will give us detailed information to understand processes and guide management decisions. However, environmental implications of these systems need to be examined at a regional scale. We used the Soil Water Assessment Tool (SWAT), a physically-based hydrologic model, to examine various scenarios ranging from switchgrass intercropping a small percentage of managed pine forest land to conversion of all managed forested land to switchgrass. The current results are based on early indicators from operational trials, but will be refined as the watershed studies progress. Our results will be essential to public policy makers as they influence and plan for large-scale production of cellulosic biofuels while sustaining water quality and quantity.

  3. [Effect of agroforestry model on inhibition of Oncomelania snails in plateau mountainous area of Yunnan Province].

    PubMed

    Zhang, Chun-Hua; Tang, Guo-Yong; Liu, Fang-Yan; Li, Kun

    2012-10-01

    To evaluate the effect of agroforestry models on the inhibition of Oncomelania snails in the plateau mountainous area of Yunnan Province. The experimental field was established at Sanying Village of Eryuan County, Yunnan Province, where the "Flourishing Forest and Controlling Snails Project" was implemented. Different drought crops (alfalfa, vegetables, broad bean, garlic, lettuce, celery, green onions, and wheat) were intercropped under walnut forest in experimental groups, and the crops were not intercropped under walnut forest in a control group. The growth of forest, the change of snails and short-term income of residents were investigated. Agroforestry models promoted the forestry growth and effectively inhibited the growth of snails. There was a little snail in one of the experimental group that forest was intercropped with alfalfa (the occurrence rate of frames with living snails was 3.33%, the average density of living snails was 0.004/0.1 m2, and the declining rates were both 50.00%). The snails were not found in other intercropped models. The income of residents in the experimental groups increased (900-6 800 Yuan per year) compared with that in the control group. The model of walnut forest intercropped with crops not only has the obvious effect on inhibition of snails, but also has good economic and ecological benefits in the plateau mountainous area of Yunnan Province.

  4. Intercropping With Fruit Trees Increases Population Abundance and Alters Species Composition of Spider Mites on Cotton.

    PubMed

    Li, Haiqiang; Pan, Hongsheng; Wang, Dongmei; Liu, Bing; Liu, Jian; Zhang, Jianping; Lu, Yanhui

    2018-05-05

    With the recent increase in planting of fruit trees in southern Xinjiang, the intercropping of fruit trees and cotton has been widely adopted. From 2014 to 2016, a large-scale study was conducted in Aksu, an important agricultural area in southern Xinjiang, to compare the abundance and species composition of spider mites in cotton fields under jujube-cotton, apple-cotton, and cotton monocrop systems. The abundance of spider mites in cotton fields under both intercropping systems was generally higher than in the cotton monocrop. The species composition of spider mites also differed greatly between cotton intercropped with apple or jujube compared to the cotton monocrop. The relative proportion of Tetranychus truncates Ehara (Acari: Tetranychidae) in the species complex generally increased while that of another spider mite, Tetranychus dunhuangensis Wang (Acari: Tetranychidae), decreased under fruit tree-cotton systems. More attention should be paid to the monitoring and management of spider mites, especially T. truncates in this important region of China.

  5. Variation of Bacterial Community Diversity in Rhizosphere Soil of Sole-Cropped versus Intercropped Wheat Field after Harvest.

    PubMed

    Yang, Zhenping; Yang, Wenping; Li, Shengcai; Hao, Jiaomin; Su, Zhifeng; Sun, Min; Gao, Zhiqiang; Zhang, Chunlai

    2016-01-01

    As the major crops in north China, spring crops are usually planted from April through May every spring and harvested in fall. Wheat is also a very common crop traditionally planted in fall or spring and harvested in summer year by year. This continuous cropping system exhibited the disadvantages of reducing the fertility of soil through decreasing microbial diversity. Thus, management of microbial diversity in the rhizosphere plays a vital role in sustainable crop production. In this study, ten common spring crops in north China were chosen sole-cropped and four were chosen intercropped with peanut in wheat fields after harvest. Denaturing gradient gel electrophoresis (DGGE) and DNA sequencing of one 16S rDNA fragment were used to analyze the bacterial diversity and species identification. DGGE profiles showed the bacterial community diversity in rhizosphere soil samples varied among various crops under different cropping systems, more diverse under intercropping system than under sole-cropping. Some intercropping-specific bands in DGGE profiles suggested that several bacterial species were stimulated by intercropping systems specifically. Furthermore, the identification of these dominant and functional bacteria by DNA sequencing indicated that intercropping systems are more beneficial to improve soil fertility. Compared to intercropping systems, we also observed changes in microbial community of rhizosphere soil under sole-crops. The rhizosphere bacterial community structure in spring crops showed a strong crop species-specific pattern. More importantly, Empedobacter brevis, a typical plant pathogen, was only found in the carrot rhizosphere, suggesting carrot should be sown prudently. In conclusion, our study demonstrated that crop species and cropping systems had significant effects on bacterial community diversity in the rhizosphere soils. We strongly suggest sorghum, glutinous millet and buckwheat could be taken into account as intercropping crops with peanut; while hulled oat, mung bean or foxtail millet could be considered for sowing in wheat fields after harvest in North China.

  6. The intercropping partner affects arbuscular mycorrhizal fungi and Fusarium oxysporum f. sp. lycopersici interactions in tomato.

    PubMed

    Hage-Ahmed, Karin; Krammer, Johannes; Steinkellner, Siegrid

    2013-10-01

    Arbuscular mycorrhizal fungi (AMF) and their bioprotective aspects are of great interest in the context of sustainable agriculture. Combining the benefits of AMF with the utilisation of plant species diversity shows great promise for the management of plant diseases in environmentally compatible agriculture. In the present study, AMF were tested against Fusarium oxysporum f. sp. lycopersici with tomato intercropped with either leek, cucumber, basil, fennel or tomato itself. Arbuscular mycorrhizal (AM) root colonisation of tomato was clearly affected by its intercropping partners. Tomato intercropped with leek showed even a 20 % higher AM colonisation rate than tomato intercropped with tomato. Positive effects of AMF expressed as an increase of tomato biomass compared to the untreated control treatment could be observed in root as well as in shoot weights. A compensation of negative effects of F. oxysporum f. sp. lycopersici on tomato biomass by AMF was observed in the tomato/leek combination. The intercropping partners leek, cucumber, basil and tomato had no effect on F. oxysporum f. sp. lycopersici disease incidence or disease severity indicating no allelopathic suppression; however, tomato co-cultivated with tomato clearly showed a negative effect on one plant/pot with regard to biomass and disease severity of F. oxysporum f. sp. lycopersici. Nonetheless, bioprotective effects of AMF resulting in the decrease of F. oxysporum f. sp. lycopersici disease severity were evident in treatments with AMF and F. oxysporum f. sp. lycopersici co-inoculation. However, these bioprotective effects depended on the intercropping partner since these effects were only observed in the tomato/leek and tomato/basil combination and for the better developed plant of tomato/tomato. In conclusion, the effects of the intercropping partner on AMF colonisation of tomato are of great interest for crop plant communities and for the influences on each other. The outcome of the bioprotective effects of AMF resulting in the decrease on F. oxysporum f. sp. lycopersici disease severity and/or compensation of plant biomass does not depend on the degree of AM colonisation but more on the intercropping partner.

  7. Exposure to Guava Affects Citrus Olfactory Cues and Attractiveness to Diaphorina citri (Hemiptera: Psyllidae).

    PubMed

    Barman, Jagadish Chandra; Campbell, Stuart A; Zeng, Xinnian

    2016-06-01

    Intercropping can reduce agricultural pest incidence, and represents an important sustainable alternative to conventional pest control methods. Understanding the ecological mechanisms for intercropping could help optimize its use, particularly in tropical systems which present a large number of intercropping possibilities. Citrus is threatened worldwide by greening disease (huanglongbing, HLB) vectored by the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae). Control of HLB and citrus psyllid can be partially achieved through intercropping with guava, Psidium guajava L., but the mechanisms remain unclear. We tested the hypothesis that guava olfactory cues affect psyllid behavior by altering the attractiveness of citrus through plant-plant interactions. In choice and no-choice cage experiments, psyllid settlement was reduced on citrus shoots that had been exposed to guava shoot odors for at least 2 h. In Y-tube olfactometer experiments, psyllids oriented to odors of unexposed, compared with guava-exposed, citrus shoots. These behavioral results indicate that a mechanism for the success of guava intercropping for sustainable, ecological disease management may be the indirect effect of guava on citrus attractiveness. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Optimization of Southeastern Forest Biomass Crop Production: A Watershed Scale Evaluation of the Sustainability and Productivity of Dedicated Energy Crop and Woody Biomass Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chescheir, George M.; Nettles, Jami E,; Youssef, Mohamed

    Growing switchgrass (Panicum virgatum L.) as an intercrop in managed loblolly pine (Pinus taeda L.) plantations has emerged as a potential source of bioenergy feedstock. Utilizing land resources between pine trees to produce an energy crop can potentially reduce the demand for land resources used to produce food; however, converting conventionally managed forest land to this new intercropping system constitutes changes in land use and associated management practices, which may affect the environmental and economic sustainability of the land. The overall objective of this project is to evaluate the environmental effects of large-scale forest bioenergy crop production and utilize thesemore » results to optimize cropping systems in a manner that protects the important ecosystem services provided by forests while contributing to the development of a sustainable and economically-viable biomass industry in the southeastern United States. Specific objectives are to: Quantify the hydrology of different energy crop production systems in watershed scale experiments on different landscapes in the southeast. Quantify the nutrient dynamics of energy crop production systems in watershed scale experiments to determine the impact of these systems on water quality. Evaluate the impacts of energy crop production on soil structure, fertility, and organic matter. Evaluate the response of flora and fauna populations and habitat quality to energy crop production systems. Develop watershed and regional scale models to evaluate the environmental sustainability and productivity of energy crop and woody biomass operations. Quantify the production systems in terms of bioenergy crop yield versus the energy and economic costs of production. Develop and evaluate best management practice guidelines to ensure the environmental sustainability of energy crop production systems. Watershed and plot scale studies formed the core of this research platform. Matched-watershed studies were established in North Carolina, Mississippi and Alabama. A plot scale study was also established in North Carolina to more intensive examination of the effects of biomass production on hydrology, soil properties, productivity wildlife habitat, and biodiversity on replicate 0.8 ha plots. Studies were also conducted on selected sites to define and quantify the environmental effects of biomass production on wildlife habitat, biodiversity, soil properties and productivity, and carbon storage and flux. Treatments on the sub-watersheds and plots included potential operational systems ranging from monoculture switchgrass to interplanted switchgrass to conventional managed forests as a controls. The hydrology, water quality, soil property, and productivity data collected in the watershed and plot scale experiments were used to develop process based watershed scale models. Existing models (DRAINMOD and APEX) were modified to more effectively simulate the intercropped systems. More regional scale models (DRAINMOD-INTERCROP) with GIS interface and SWAT) were used to simulate the impacts of intercropping switchgrass in pine plantations on the hydrology and water quality of larger scale watersheds. Results from the watershed and plot scale studies, and the modeling studies were used to develop Best Management Practice (BMP) guidelines to ensure environmentally sustainable bioenergy production in the forestry setting. While the results of the environmental sustainability research for this project have become publically available, many of the planning decisions and operational trial results were not public. Personnel in management, planning, operations, and logistics were interviewed to capture the important economic and operational lessons from internal operational research on approximately 30 full-scale operational tracts. This project produced a very large database documenting the impact of interplanting switchgrass with pine trees on hydrology, water quality, soil quality, and biodiversity. Some environmental impacts were observed in response to additional operations required for interplanting, but these impacts were small and short lived. Given that existing forestry BMPs provide a flexible system that can be adapted to protect water quality and biodiversity in forestry settings, interplanting switchgrass with pine trees can be considered environmentally sustainable. The project also developed models that can simulate switchgrass growth when it is in competition with pine trees as well as the hydrology and nutrient dynamics that result from this interplanted system. The models predicted switchgrass production, water use, and the quality of the water leaving the system over a range of climatological and geographic conditions. These models can be used to guide decisions toward sustainability. The project also documented the limitations of switchgrass production in the forestry setting and the challenges and increased costs arising from this practice. These challenges led to the conclusion that intercropping switchgrass with pine trees is not economically feasible in the current economic climate. Despite the barriers obstructing use of this system at this point in time, economic and technological changes may occur that will make this a feasible system for bioenergy production in the future. The data, models, BMPs and experiences documented in this report and in publications resulting from this project will be highly valuable to those implementing this system.« less

  9. The influence of crop management on banana weevil, Cosmopolites sordidus (Coleoptera: Curculionidae) populations and yield of highland cooking banana (cv. Atwalira) in Uganda.

    PubMed

    Rukazambuga, N D T M; Gold, C S; Gowen, S R; Ragama, P

    2002-10-01

    A field study was undertaken in Uganda using highland cooking banana (cv. Atwalira) to test the hypothesis that bananas grown under stressed conditions are more susceptible to attack by Cosmopolites sordidus (Germar). Four banana treatments were employed to create different levels of host-plant vitality: (1) high stress: intercrop with finger millet; (2) moderate stress: monoculture without soil amendments; (3) low stress: monoculture with manure; (4) high vigour: monoculture with continuous mulch and manure. Adult C. sordidus were released at the base of banana mats 11 months after planting and populations were monitored for three years using mark and recapture methods. Cosmopolites sordidus density was greatest in the mulched plots which may have reflected increased longevity and/or longer tenure time in moist soils. Lowest C. sordidus numbers were found in intercropped banana. Damage, estimated as percentage corm tissue consumed by larvae, was similar among treatments. However, the total amount of tissue consumed was greater in mulched banana than in other systems. Plants supporting the heaviest levels of C. sordidus damage displayed bunch size reductions of 40-55%. Banana yield losses ranged from 14-20% per plot with similar levels in the intercropped and mulched systems. Yield reductions, reported as t ha-1, were twice as high in the mulched system as in the intercrop. The results from this study indicate that C. sordidus problems are not confined to stressed banana systems or those with low levels of management, but that the weevil can also attain pest status in well-managed and productive banana stands.

  10. Chinese chives and garlic in intercropping in strawberry high tunnels for Neopamera bilobata Say (Hemiptera: Rhyparochromidae) control.

    PubMed

    Hata, F T; Ventura, M U; Béga, V L; Camacho, I M; de Paula, M T

    2018-05-08

    Strawberry is affected by several pests and diseases. Neopamera bilobata is an emerging pest that has been reported by several strawberry growers, usually associated with catfacing symptoms in fruits. We evaluated intercropping garlic or Chinese chives on N. bilobata populations on strawberry crops grown in high tunnels in two experiments. In the first experiment, we evaluated N. bilobata populations on strawberry intercropping with garlic plants (three densities: 8, 16, 24 GP - garlic plant per plot) on the bags by taking 12 samples from December 2015 to April 2017. N. bilobata populations on strawberry were also assessed when Chinese chives were grown under the suspended wooden structures in which strawberry plants are grown ('undercropping') (14 samples), in two high tunnels, from November 2016 to March 2017. The number of nymphs and adults on 14 randomly selected fruits per plot were assessed. During the garlic intercropping experiment, the treatments of three densities of garlic reduced N. bilobata populations; however, the 24 GP treatment caused a greater reduction than the 8 GP treatment. Garlic densities reduced N. bilobata populations by 35, 50, and 64% for the 8, 16, and 24 GP treatments, respectively. Chinese chives cultivated under the structures reduced N. bilobata populations by 47%. The results suggest that intercropping garlic or undercropping Chinese chives are suitable tools to be tested in integrated pest management in strawberry crops.

  11. Watershed-scale Hydrology and Water Quality Impact of Switchgrass Intercropping in Southern Managed Pine Forests

    NASA Astrophysics Data System (ADS)

    Chescheir, G. M.; Birgand, F.; Allen, E.; Bennett, E.; Carter, T.; Dobbs, N.; Muwamba, A.; Amatya, D. M.; Youssef, M.; Nettles, J. E.

    2016-12-01

    The use of marginal land for cellulosic biofuel crop production is an attractive solution to preserve agricultural land for food production. The space available between rows of young loblolly pine (Pinus taeda) trees offers enough light to support growth of biofuel crops for several years. A five year field study was conducted to assess the hydrology and water quality impacts of switchgrass (Panicum virgatum) intercropping with pine trees in watersheds of the southeastern US. Paired-watershed studies were replicated in Mississippi and Alabama on upland sites, and in North Carolina on a flat lowland site. In each state, the impact of switchgrass intercropping was assessed from differences in water and nutrient yields from contiguous 20-40 ha watersheds established as: conventional young pine plantation, switchgrass intercropped in young pine plantation, switchgrass only, and mid-rotation mature pine plantation. A total of 14 watersheds were equipped with continuous flow monitoring stations, flow proportional water samplers, groundwater wells, soil moisture sensors and weather stations. Data collection continued through a two year pre-treatment period, a one year treatment period when field operations were conducted to establish switchgrass, and a two year post-treatment period when the established switchgrass was fertilized and harvested annually. Our results showed that significant increases in total suspended solids (TSS) and nitrogen (N) loading occurred during the treatment periods at the upland sites in MS and AL. During the post treatment periods, TSS and N loading decreased to levels near those observed in pretreatment. At the lowland site, only nitrogen loading was increased during the treatment period. Concentrations of TSS at the lowland site were two orders of magnitude lower than those observed at the upland sites and were not significantly affected by the treatment. Inherent flow variability between watersheds within sites made detection of subtle differences in hydrology and water quality difficult to detect. Increases in N loading were not significant in response to annual fertilization of switchgrass. Our results suggest that intercropping switchgrass in managed pine forests does not significantly change the typically benign hydrology and water quality of the managed forests.

  12. Intercropped Silviculture Systems, a Key to Achieving Soil Fungal Community Management in Eucalyptus Plantations

    PubMed Central

    Rachid, Caio T. C. C.; Balieiro, Fabiano C.; Fonseca, Eduardo S.; Peixoto, Raquel Silva; Chaer, Guilherme M.; Tiedje, James M.; Rosado, Alexandre S.

    2015-01-01

    Fungi are ubiquitous and important contributors to soil nutrient cycling, playing a vital role in C, N and P turnover, with many fungi having direct beneficial relationships with plants. However, the factors that modulate the soil fungal community are poorly understood. We studied the degree to which the composition of tree species affected the soil fungal community structure and diversity by pyrosequencing the 28S rRNA gene in soil DNA. We were also interested in whether intercropping (mixed plantation of two plant species) could be used to select fungal species. More than 50,000 high quality sequences were analyzed from three treatments: monoculture of Eucalyptus; monoculture of Acacia mangium; and a mixed plantation with both species sampled 2 and 3 years after planting. We found that the plant type had a major effect on the soil fungal community structure, with 75% of the sequences from the Eucalyptus soil belonging to Basidiomycota and 19% to Ascomycota, and the Acacia soil having a sequence distribution of 28% and 62%, respectively. The intercropping of Acacia mangium in a Eucalyptus plantation significantly increased the number of fungal genera and the diversity indices and introduced or increased the frequency of several genera that were not found in the monoculture cultivation samples. Our results suggest that management of soil fungi is possible by manipulating the composition of the plant community, and intercropped systems can be a means to achieve that. PMID:25706388

  13. Intercropped silviculture systems, a key to achieving soil fungal community management in eucalyptus plantations.

    PubMed

    Rachid, Caio T C C; Balieiro, Fabiano C; Fonseca, Eduardo S; Peixoto, Raquel Silva; Chaer, Guilherme M; Tiedje, James M; Rosado, Alexandre S

    2015-01-01

    Fungi are ubiquitous and important contributors to soil nutrient cycling, playing a vital role in C, N and P turnover, with many fungi having direct beneficial relationships with plants. However, the factors that modulate the soil fungal community are poorly understood. We studied the degree to which the composition of tree species affected the soil fungal community structure and diversity by pyrosequencing the 28S rRNA gene in soil DNA. We were also interested in whether intercropping (mixed plantation of two plant species) could be used to select fungal species. More than 50,000 high quality sequences were analyzed from three treatments: monoculture of Eucalyptus; monoculture of Acacia mangium; and a mixed plantation with both species sampled 2 and 3 years after planting. We found that the plant type had a major effect on the soil fungal community structure, with 75% of the sequences from the Eucalyptus soil belonging to Basidiomycota and 19% to Ascomycota, and the Acacia soil having a sequence distribution of 28% and 62%, respectively. The intercropping of Acacia mangium in a Eucalyptus plantation significantly increased the number of fungal genera and the diversity indices and introduced or increased the frequency of several genera that were not found in the monoculture cultivation samples. Our results suggest that management of soil fungi is possible by manipulating the composition of the plant community, and intercropped systems can be a means to achieve that.

  14. Intercropped silviculture systems, a key to achieving soil fungal community management in eucalyptus plantations

    DOE PAGES

    Caio T.C.C. Rachid; Balieiro, Fabiano C.; Fonseca, Eduardo S.; ...

    2015-02-23

    Fungi are ubiquitous and important contributors to soil nutrient cycling, playing a vital role in C, N and P turnover, with many fungi having direct beneficial relationships with plants. However, the factors that modulate the soil fungal community are poorly understood. We studied the degree to which the composition of tree species affected the soil fungal community structure and diversity by pyrosequencing the 28S rRNA gene in soil DNA. We were also interested in whether intercropping (mixed plantation of two plant species) could be used to select fungal species. More than 50,000 high quality sequences were analyzed from three treatments:more » monoculture of Eucalyptus; monoculture of Acacia mangium; and a mixed plantation with both species sampled 2 and 3 years after planting. We found that the plant type had a major effect on the soil fungal community structure, with 75% of the sequences from the Eucalyptus soil belonging to Basidiomycota and 19% to Ascomycota, and the Acacia soil having a sequence distribution of 28% and 62%, respectively. The intercropping of Acacia mangium in a Eucalyptus plantation significantly increased the number of fungal genera and the diversity indices and introduced or increased the frequency of several genera that were not found in the monoculture cultivation samples. Our results suggest that management of soil fungi is possible by manipulating the composition of the plant community, and intercropped systems can be a means to achieve that.« less

  15. Effectiveness of intercropping with soybean as a sustainable farming practice to maintain food production and reduce air pollution in China

    NASA Astrophysics Data System (ADS)

    Fung, K. M.; Tai, A. P. K.; Yong, T.; Liu, X.

    2016-12-01

    Agriculture provides the majority of human food sources, but is also an important contributor to an array of environmental problems including air pollution. In China, 96% of ammonia emissions come from agricultural activities, and emitted ammonia contributes more than 20% of fine particulate matter (PM2.5) mass concentrations, with substantial ramification for human health and visibility. Sustainable farming practices that reduce ammonia emissions may therefore have the potential to secure both food production and environmental quality. Intercropping, as such a practice, allows different crops to grow on the same field simultaneously side-by-side. Studies show that it enhances crop yield due to mutualistic crop-crop interactions especially when one of the crops is a legume such as soybean. Below-ground nutrient competition promotes greater nitrogen fixation by soybean, which then induces a greater supply of soil nitrogen not only for soybean itself but also for the other non-nitrogen-fixing crop. To capture this co-benefit, the DNDC biogeochemical model is modified to include the interactive effects between intercropped soybean and maize. We conduct model experiments to compare the performance of a maize-soybean intercropping system and their respective monoculture system in different regions of China. We find that, with intercropping, maize yield can be maintained with only 64% of default fertilizer input, an extra batch of soybean production, and a 52% reduction in ammonia emission, which we calculate to be equivalent to a US$0.94 billion saving per year in terms of pollution-induced health costs. We further estimate the downstream effects on air quality in China using the GEOS-Chem chemical transport model. By reducing ammonia emissions according to the DNDC-simulated results, we find that if maize-soybean intercropping is practiced nationwide, concentrations of ammonium and nitrate in eastern China can be reduced by approximately 4.9% (0.63 μg m-3) and 6.8% (2.1 μg m-3), respectively, and total inorganic PM2.5 decreases by about 3.5% (2.8 μg m-3). This study shows that implementing sustainable farming practices such as maize-soybean intercropping as a national standard in China can possibly relieve air pollution problems while securing a steady food supply with enhanced land-use efficiency.

  16. Intercropped Pteris vittata L. and Morus alba L. presents a safe utilization mode for arsenic-contaminated soil.

    PubMed

    Wan, Xiaoming; Lei, Mei; Chen, Tongbin; Yang, Junxing

    2017-02-01

    Intercropping technology provides income for owners of contaminated soil without increasing environmental risk. Therefore, intercropping of arsenic (As) hyperaccumulator Pteris vittata L. with economic crops is now widely utilized in slightly or moderately As-contaminated farmlands. However, the mechanisms for As mobilization and absorption within the intercropping system are still unclear. To clarify As mobilization and absorption within an intercropping system, portable X-ray fluorescence spectrometry and sequential extraction were utilized to detect the spatial distribution and speciation of As in an intercropped system of P. vittata and cash crop mulberry (Morus alba L.). Compared with the P. vittata monoculture, P. vittata intercropping had higher As concentration, which may have been caused by the efficient exploitation of a greater As source in soil. Compared with the M. alba monoculture, M. alba intercropping had lower As concentration, which may have been caused by the As depletion by P. vittata roots. Spatial distribution of As in the soil indicated a "valley" around the P. vittata roots in both monocultured and intercropped systems, implying that As was depleted around the P. vittata roots. Continuous As extraction confirmed that both P. vittata monoculture and P. vittata and M. alba intercropping can efficiently control the risk of As soil contamination. Moreover, the properties of M. alba leaves were further studied. Mulberry leaves in the intercropping system satisfied the national feed standards. Therefore, intercropping presents a safe utilization mode for As-contaminated soil and can increase the income from silkworm-rearing M. alba leaves, without extra environmental risk. Copyright © 2016. Published by Elsevier B.V.

  17. Push-Pull: Chemical Ecology-Based Integrated Pest Management Technology.

    PubMed

    Khan, Zeyaur; Midega, Charles A O; Hooper, Antony; Pickett, John

    2016-07-01

    Lepidopterous stemborers, and parasitic striga weeds belonging to the family Orobanchaceae, attack cereal crops in sub-Saharan Africa causing severe yield losses. The smallholder farmers are resource constrained and unable to afford expensive chemicals for crop protection. The push-pull technology, a chemical ecology- based cropping system, is developed for integrated pest and weed management in cereal-livestock farming systems. Appropriate plants were selected that naturally emit signaling chemicals (semiochemicals). Plants highly attractive for stemborer egg laying were selected and employed as trap crops (pull), to draw pests away from the main crop. Plants that repelled stemborer females were selected as intercrops (push). The stemborers are attracted to the trap plant, and are repelled from the main cereal crop using a repellent intercrop (push). Root exudates of leguminous repellent intercrops also effectively control the parasitic striga weed through an allelopathic mechanism. Their root exudates contain flavonoid compounds some of which stimulate germination of Striga hermonthica seeds, such as Uncinanone B, and others that dramatically inhibit their attachment to host roots, such as Uncinanone C and a number of di-C-glycosylflavones (di-CGFs), resulting in suicidal germination. The intercrop also improves soil fertility through nitrogen fixation, natural mulching, improved biomass, and control of erosion. Both companion plants provide high value animal fodder, facilitating milk production and diversifying farmers' income sources. The technology is appropriate to smallholder mixed cropping systems in Africa. Adopted by about 125,000 farmers to date in eastern Africa, it effectively addresses major production constraints, significantly increases maize yields, and is economical as it is based on locally available plants, not expensive external inputs.

  18. Water Resources Implications of Cellulosic Biofuel Production at a Regional Scale

    NASA Astrophysics Data System (ADS)

    Christopher, S. F.; Schoenholtz, S. H.; Nettles, J. E.

    2011-12-01

    Recent increases in oil prices, a strong national interest in greater energy independence, and a concern for the role of fossil fuels in global climate change, have led to a dramatic expansion in use of alternative renewable energy sources in the U.S. The U.S. government has mandated production of 36 billion gallons of renewable fuels by 2022, of which 16 billion gallons are required to be cellulosic biofuels. Production of cellulosic biomass offers a promising alternative to corn-based systems because large-scale production of corn-based ethanol often requires irrigation and is associated with increased erosion, excess sediment export, and enhanced leaching of nitrogen and phosphorus. Although cultivation of switchgrass using standard agricultural practices is one option being considered for production of cellulosic biomass, intercropping cellulosic biofuel crops within managed forests could provide feedstock without primary land use change or the water quality impacts associated with annual crops. Catchlight Energy LLC is examining the feasibility and sustainability of intercropping switchgrass in loblolly pine plantations in the southeastern U.S. Ongoing research is determining efficient operational techniques and information needed to evaluate effects of these practices on water resources in small watershed-scale (~25 ha) studies. Three sets of four to five sub-watersheds are fully instrumented and currently collecting calibration data in North Carolina, Alabama, and Mississippi. These watershed studies will provide detailed information to understand processes and guide management decisions. However, environmental implications of cellulosic systems need to be examined at a regional scale. We used the Soil Water Assessment Tool (SWAT), a physically-based hydrologic model, to examine water quantity effects of various land use change scenarios ranging from switchgrass intercropping a small percentage of managed pine forest land to conversion of all managed forested land to switchgrass. The regional-scale SWAT model was successfully run and calibrated on the ~ 5 million ha Tombigbee Watershed located in Mississippi and Alabama. Publically available datasets were used as input to the model and for calibration. To improve calibration statistics, five tree age classes (0-4 yr, 4-10 yr, 10-17 yr, 17-24 yr, 24-30 yr) were added to the model to more appropriately represent existing forested systems in the region, which are not included within the standard SWAT set-up. Our results will be essential to public policy makers as they influence and plan for large-scale production of cellulosic biofuels, while sustaining water quality and quantity.

  19. Cropping system diversification for food production in Mindanao rubber plantations: a rice cultivar mixture and rice intercropped with mungbean

    PubMed Central

    Elazegui, Francisco; Duque, Jo-Anne Lynne Joy E.; Mundt, Christopher C.; Vera Cruz, Casiana M.

    2017-01-01

    Including food production in non-food systems, such as rubber plantations and biofuel or bioenergy crops, may contribute to household food security. We evaluated the potential for planting rice, mungbean, rice cultivar mixtures, and rice intercropped with mungbean in young rubber plantations in experiments in the Arakan Valley of Mindanao in the Philippines. Rice mixtures consisted of two- or three-row strips of cultivar Dinorado, a cultivar with higher value but lower yield, and high-yielding cultivar UPL Ri-5. Rice and mungbean intercropping treatments consisted of different combinations of two- or three-row strips of rice and mungbean. We used generalized linear mixed models to evaluate the yield of each crop alone and in the mixture or intercropping treatments. We also evaluated a land equivalent ratio for yield, along with weed biomass (where Ageratum conyzoides was particularly abundant), the severity of disease caused by Magnaporthe oryzae and Cochliobolus miyabeanus, and rice bug (Leptocorisa acuta) abundance. We analyzed the yield ranking of each cropping system across site-year combinations to determine mean relative performance and yield stability. When weighted by their relative economic value, UPL Ri-5 had the highest mean performance, but with decreasing performance in low-yielding environments. A rice and mungbean intercropping system had the second highest performance, tied with high-value Dinorado but without decreasing relative performance in low-yielding environments. Rice and mungbean intercropped with rubber have been adopted by farmers in the Arakan Valley. PMID:28194318

  20. Rational Phosphorus Application Facilitates the Sustainability of the Wheat/Maize/Soybean Relay Strip Intercropping System

    PubMed Central

    Wang, Ke; Liu, Jing; Lu, Junyu; Xu, Kaiwei

    2015-01-01

    Wheat (Triticum aestivum L.)/maize (Zea mays L.)/soybean (Glycine max L.) relay strip intercropping (W/M/S) system is commonly used by the smallholders in the Southwest of China. However, little known is how to manage phosphorus (P) to enhance P use efficiency of the W/M/S system and to mitigate P leaching that is a major source of pollution. Field experiments were carried out in 2011, 2012, and 2013 to test the impact of five P application rates on yield and P use efficiency of the W/M/S system. The study measured grain yield, shoot P uptake, apparent P recovery efficiency (PRE) and soil P content. A linear-plateau model was used to determine the critical P rate that maximizes gains in the indexes of system productivity. The results show that increase in P application rates aggrandized shoot P uptake and crops yields at threshold rates of 70 and 71.5 kg P ha-1 respectively. With P application rates increasing, the W/M/S system decreased the PRE from 35.9% to 12.3% averaged over the three years. A rational P application rate, 72 kg P ha-1, or an appropriate soil Olsen-P level, 19.1 mg kg-1, drives the W/M/S system to maximize total grain yield while minimizing P surplus, as a result of the PRE up to 28.0%. We conclude that rational P application is an important approach for relay intercropping to produce high yield while mitigating P pollution and the rational P application-based integrated P fertilizer management is vital for sustainable intensification of agriculture in the Southwest of China. PMID:26540207

  1. [Effect of soil preparation and fertilization on foliage and shoot growth of Ginkgo biloba and its medicine content].

    PubMed

    He, Binghui; Zhong, Zhangcheng

    2004-06-01

    The study showed that the efficiency of various treatments in improving the height growth of Ginkgo biloba was organic fertilizer plus intercropping > soil preparation by blasting plus intercropping > organic fertilizer > soil preparation by blasting > intercropping, and the height growth increased by 14.5%, 8.6%, 5.7%, 3.2% and 0, respectively. The efficiency of the treatments in improving new shoot growth was organic fertilizer plus intercropping > soil preparation by blasting plus intercropping > intercropping > organic fertilizer > soil preparation by blasting, and the new shoot growth increased by 58.1%, 36.6%, 33.1%, 30.2% and 14.0%, respectively. Soil preparation, organic fertilization and intercropping had no different effect on the number of long shoots, but their effect on the numbers of short shoots and leaves was significantly different. The most efficient treatment in improving the medicine content was organic fertilization plus intercropping. Compared with control, the content of quercetin and rutin in Ginkgo biloba leaves increased by 420% and 220%, respectively.

  2. Mapping Farming Practices in Belgian Intensive Cropping Systems from Sentinel-1 SAR Time Series

    NASA Astrophysics Data System (ADS)

    Chome, G.; Baret, P. V.; Defourny, P.

    2016-08-01

    The environmental impact of the so-called conventional farming system calls for new farming practices reducing negative externalities. Emerging farming practices such as no-till and new inter-cropping management are promising tracks. The development of methods to characterize crop management across an entire region and to understand their spatial dimension offers opportunities to accompany the transition towards a more sustainable agriculture.This research takes advantage of the unmatched polarimetric and temporal resolutions of Sentinel-1 SAR C- band to develop a method to identify farming practices at the parcel level. To this end, the detection of changes in backscattering due to surface roughness modification (tillage, inter-crop cover destruction ...) is used to detect the farming management. The final results are compared to a reference dataset collected through an intensive field campaign. Finally, the performances are discussed in the perspective of practices monitoring of cropping systems through remote sensing.

  3. Maize-grain legume intercropping for enhanced resource use efficiency and crop productivity in the Guinea savanna of northern Ghana.

    PubMed

    Kermah, Michael; Franke, Angelinus C; Adjei-Nsiah, Samuel; Ahiabor, Benjamin D K; Abaidoo, Robert C; Giller, Ken E

    2017-11-01

    Smallholder farmers in the Guinea savanna practise cereal-legume intercropping to mitigate risks of crop failure in mono-cropping. The productivity of cereal-legume intercrops could be influenced by the spatial arrangement of the intercrops and the soil fertility status. Knowledge on the effect of soil fertility status on intercrop productivity is generally lacking in the Guinea savanna despite the wide variability in soil fertility status in farmers' fields, and the productivity of within-row spatial arrangement of intercrops relative to the distinct-row systems under on-farm conditions has not been studied in the region. We studied effects of maize-legume spatial intercropping patterns and soil fertility status on resource use efficiency, crop productivity and economic profitability under on-farm conditions in the Guinea savanna. Treatments consisted of maize-legume intercropped within-row, 1 row of maize alternated with one row of legume, 2 rows of maize alternated with 2 rows of legume, a sole maize crop and a sole legume crop. These were assessed in the southern Guinea savanna (SGS) and the northern Guinea savanna (NGS) of northern Ghana for two seasons using three fields differing in soil fertility in each agro-ecological zone. Each treatment received 25 kg P and 30 kg K ha -1 at sowing, while maize received 25 kg (intercrop) or 50 kg (sole) N ha -1 at 3 and 6 weeks after sowing. The experiment was conducted in a randomised complete block design with each block of treatments replicated four times per fertility level at each site. Better soil conditions and rainfall in the SGS resulted in 48, 38 and 9% more maize, soybean and groundnut grain yield, respectively produced than in the NGS, while 11% more cowpea grain yield was produced in the NGS. Sole crops of maize and legumes produced significantly more grain yield per unit area than the respective intercrops of maize and legumes. Land equivalent ratios (LERs) of all intercrop patterns were greater than unity indicating more efficient and productive use of environmental resources by intercrops. Sole legumes intercepted more radiation than sole maize, while the interception by intercrops was in between that of sole legumes and sole maize. The intercrop however converted the intercepted radiation more efficiently into grain yield than the sole crops. Economic returns were greater for intercrops than for either sole crop. The within-row intercrop pattern was the most productive and lucrative system. Larger grain yields in the SGS and in fertile fields led to greater economic returns. However, intercropping systems in poorly fertile fields and in the NGS recorded greater LERs (1.16-1.81) compared with fertile fields (1.07-1.54) and with the SGS. This suggests that intercropping is more beneficial in less fertile fields and in more marginal environments such as the NGS. Cowpea and groundnut performed better than soybean when intercropped with maize, though the larger absolute grain yields of soybean resulted in larger net benefits.

  4. Nitrogen and phosphorus economy of a legume tree-cereal intercropping system under controlled conditions.

    PubMed

    Isaac, M E; Hinsinger, P; Harmand, J M

    2012-09-15

    Considerable amounts of nitrogen (N) and phosphorus (P) fertilizers have been mis-used in agroecosystems, with profound alteration to the biogeochemical cycles of these two major nutrients. To reduce excess fertilizer use, plant-mediated nutrient supply through N(2)-fixation, transfer of fixed N and mobilization of soil P may be important processes for the nutrient economy of low-input tree-based intercropping systems. In this study, we quantified plant performance, P acquisition and belowground N transfer from the N(2)-fixing tree to the cereal crop under varying root contact intensity and P supplies. We cultivated Acacia senegal var senegal in pot-culture containing 90% sand and 10% vermiculite under 3 levels of exponentially supplied P. Acacia plants were then intercropped with durum wheat (Triticum turgidum durum) in the same pots with variable levels of adsorbed P or transplanted and intercropped with durum wheat in rhizoboxes excluding direct root contact on P-poor red Mediterranean soils. In pot-culture, wheat biomass and P content increased in relation to the P gradient. Strong isotopic evidence of belowground N transfer, based on the isotopic signature (δ(15)N) of tree foliage and wheat shoots, was systematically found under high P in pot-culture, with an average N transfer value of 14.0% of wheat total N after 21 days of contact between the two species. In the rhizoboxes, we observed limitations on growth and P uptake of intercropped wheat due to competitive effects on soil resources and minimal evidence of belowground N transfer of N from acacia to wheat. In this intercrop, specifically in pot-culture, facilitation for N transfer from the legume tree to the crop showed to be effective especially when crop N uptake was increased (or stimulated) as occurred under high P conditions and when competition was low. Understanding these processes is important to the nutrient economy and appropriate management of legume-based agroforestry systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Weed Dynamics during Transition to Conservation Agriculture in Western Kenya Maize Production

    PubMed Central

    Odhiambo, Judith A.; Norton, Urszula; Ashilenje, Dennis; Omondi, Emmanuel C.; Norton, Jay B.

    2015-01-01

    Weed competition is a significant problem in maize (Zea mays, L.) production in Sub-Saharan Africa. Better understanding of weed management and costs in maize intercropped with beans (Phaseolus vulgaris, L.) during transition to conservation agricultural systems is needed. Changes in weed population and maize growth were assessed for a period of three years at Bungoma where crops are grown twice per year and at Trans-Nzoia where crops are grown once per year. Treatments included three tillage practices: minimum (MT), no-till (NT) and conventional (CT) applied to three cropping systems: continuous maize/bean intercropping (TYPICAL), maize/bean intercropping with relayed mucuna after bean harvest (RELAY) and maize, bean and mucuna planted in a strip intercropping arrangement (STRIP). Herbicides were used in NT, shallow hand hoeing and herbicides were used in MT and deep hoeing with no herbicides were used in CT. Weed and maize performance in the maize phase of each cropping system were assessed at both locations and costs of weed control were estimated at Manor House only. Weed density of grass and forb species declined significantly under MT and NT at Manor House and of grass species only at Mabanga. The greatest declines of more than 50% were observed as early as within one year of the transition to MT and NT in STRIP and TYPICAL cropping systems at Manor House. Transitioning to conservation based systems resulted in a decline of four out of five most dominant weed species. At the same time, no negative impact of MT or NT on maize growth was observed. Corresponding costs of weed management were reduced by $148.40 ha-1 in MT and $149.60 ha-1 in NT compared with CT. In conclusion, farmers can benefit from effective and less expensive weed management alternatives early in the process of transitioning to reduced tillage operations. PMID:26237404

  6. Weed Dynamics during Transition to Conservation Agriculture in Western Kenya Maize Production.

    PubMed

    Odhiambo, Judith A; Norton, Urszula; Ashilenje, Dennis; Omondi, Emmanuel C; Norton, Jay B

    2015-01-01

    Weed competition is a significant problem in maize (Zea mays, L.) production in Sub-Saharan Africa. Better understanding of weed management and costs in maize intercropped with beans (Phaseolus vulgaris, L.) during transition to conservation agricultural systems is needed. Changes in weed population and maize growth were assessed for a period of three years at Bungoma where crops are grown twice per year and at Trans-Nzoia where crops are grown once per year. Treatments included three tillage practices: minimum (MT), no-till (NT) and conventional (CT) applied to three cropping systems: continuous maize/bean intercropping (TYPICAL), maize/bean intercropping with relayed mucuna after bean harvest (RELAY) and maize, bean and mucuna planted in a strip intercropping arrangement (STRIP). Herbicides were used in NT, shallow hand hoeing and herbicides were used in MT and deep hoeing with no herbicides were used in CT. Weed and maize performance in the maize phase of each cropping system were assessed at both locations and costs of weed control were estimated at Manor House only. Weed density of grass and forb species declined significantly under MT and NT at Manor House and of grass species only at Mabanga. The greatest declines of more than 50% were observed as early as within one year of the transition to MT and NT in STRIP and TYPICAL cropping systems at Manor House. Transitioning to conservation based systems resulted in a decline of four out of five most dominant weed species. At the same time, no negative impact of MT or NT on maize growth was observed. Corresponding costs of weed management were reduced by $148.40 ha(-1) in MT and $149.60 ha(-1) in NT compared with CT. In conclusion, farmers can benefit from effective and less expensive weed management alternatives early in the process of transitioning to reduced tillage operations.

  7. Alfalfa (Medicago sativa L.)/maize (Zea mays L.) intercropping provides a feasible way to improve yield and economic incomes in farming and pastoral areas of northeast China.

    PubMed

    Sun, Baoru; Peng, Yi; Yang, Hongyu; Li, Zhijian; Gao, Yingzhi; Wang, Chao; Yan, Yuli; Liu, Yanmei

    2014-01-01

    Given the growing challenges to food and eco-environmental security as well as sustainable development of animal husbandry in the farming and pastoral areas of northeast China, it is crucial to identify advantageous intercropping modes and some constraints limiting its popularization. In order to assess the performance of various intercropping modes of maize and alfalfa, a field experiment was conducted in a completely randomized block design with five treatments: maize monoculture in even rows, maize monoculture in alternating wide and narrow rows, alfalfa monoculture, maize intercropped with one row of alfalfa in wide rows and maize intercropped with two rows of alfalfa in wide rows. Results demonstrate that maize monoculture in alternating wide and narrow rows performed best for light transmission, grain yield and output value, compared to in even rows. When intercropped, maize intercropped with one row of alfalfa in wide rows was identified as the optimal strategy and the largely complementary ecological niches of alfalfa and maize were shown to account for the intercropping advantages, optimizing resource utilization and improving yield and economic incomes. These findings suggest that alfalfa/maize intercropping has obvious advantages over monoculture and is applicable to the farming and pastoral areas of northeast China.

  8. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology.

    PubMed

    Brooker, Rob W; Bennett, Alison E; Cong, Wen-Feng; Daniell, Tim J; George, Timothy S; Hallett, Paul D; Hawes, Cathy; Iannetta, Pietro P M; Jones, Hamlyn G; Karley, Alison J; Li, Long; McKenzie, Blair M; Pakeman, Robin J; Paterson, Eric; Schöb, Christian; Shen, Jianbo; Squire, Geoff; Watson, Christine A; Zhang, Chaochun; Zhang, Fusuo; Zhang, Junling; White, Philip J

    2015-04-01

    Intercropping is a farming practice involving two or more crop species, or genotypes, growing together and coexisting for a time. On the fringes of modern intensive agriculture, intercropping is important in many subsistence or low-input/resource-limited agricultural systems. By allowing genuine yield gains without increased inputs, or greater stability of yield with decreased inputs, intercropping could be one route to delivering ‘sustainable intensification’. We discuss how recent knowledge from agronomy, plant physiology and ecology can be combined with the aim of improving intercropping systems. Recent advances in agronomy and plant physiology include better understanding of the mechanisms of interactions between crop genotypes and species – for example, enhanced resource availability through niche complementarity. Ecological advances include better understanding of the context-dependency of interactions, the mechanisms behind disease and pest avoidance, the links between above- and below-ground systems, and the role of microtopographic variation in coexistence. This improved understanding can guide approaches for improving intercropping systems, including breeding crops for intercropping. Although such advances can help to improve intercropping systems, we suggest that other topics also need addressing. These include better assessment of the wider benefits of intercropping in terms of multiple ecosystem services, collaboration with agricultural engineering, and more effective interdisciplinary research.

  9. Alfalfa (Medicago sativa L.)/Maize (Zea mays L.) Intercropping Provides a Feasible Way to Improve Yield and Economic Incomes in Farming and Pastoral Areas of Northeast China

    PubMed Central

    Sun, Baoru; Peng, Yi; Yang, Hongyu; Li, Zhijian; Gao, Yingzhi; Wang, Chao; Yan, Yuli; Liu, Yanmei

    2014-01-01

    Given the growing challenges to food and eco-environmental security as well as sustainable development of animal husbandry in the farming and pastoral areas of northeast China, it is crucial to identify advantageous intercropping modes and some constraints limiting its popularization. In order to assess the performance of various intercropping modes of maize and alfalfa, a field experiment was conducted in a completely randomized block design with five treatments: maize monoculture in even rows, maize monoculture in alternating wide and narrow rows, alfalfa monoculture, maize intercropped with one row of alfalfa in wide rows and maize intercropped with two rows of alfalfa in wide rows. Results demonstrate that maize monoculture in alternating wide and narrow rows performed best for light transmission, grain yield and output value, compared to in even rows. When intercropped, maize intercropped with one row of alfalfa in wide rows was identified as the optimal strategy and the largely complementary ecological niches of alfalfa and maize were shown to account for the intercropping advantages, optimizing resource utilization and improving yield and economic incomes. These findings suggest that alfalfa/maize intercropping has obvious advantages over monoculture and is applicable to the farming and pastoral areas of northeast China. PMID:25329376

  10. Changes in soil physicochemical properties and soil bacterial community in mulberry (Morus alba L.)/alfalfa (Medicago sativa L.) intercropping system.

    PubMed

    Zhang, Meng-Meng; Wang, Ning; Hu, Yan-Bo; Sun, Guang-Yu

    2018-04-01

    A better understanding of tree-based intercropping effects on soil physicochemical properties and bacterial community has a potential contribution to improvement of agroforestry productivity and sustainability. In this study, we investigated the effects of mulberry/alfalfa intercropping on soil physicochemical properties and soil bacterial community by MiSeq sequencing of bacterial 16S rRNA gene. The results showed a significant increase in the contents of available nitrogen, available phosphate, available potassium, and total carbon in the rhizosphere soil of the intercropped alfalfa. Sequencing results showed that intercropping improved bacterial richness and diversity of mulberry and alfalfa based on richness estimates and diversity indices. The relative abundances of Proteobacteria, Actinobacteria, and Firmicutes were significantly higher in intercropping mulberry than in monoculture mulberry; and the abundances of Proteobacteria, Bacteroidetes, and Gemmatimonadetes in the intercropping alfalfa were markedly higher than that in monoculture alfalfa. Bacterial taxa with soil nutrients cycling were enriched in the intercropping system. There were higher relative abundances of Bacillus (0.32%), Pseudomonas (0.14%), and Microbacterium (0.07%) in intercropping mulberry soil, and Bradyrhizobium (1.0%), Sphingomonas (0.56%), Pseudomonas (0.18%), Microbacterium (0.15%), Rhizobium (0.09%), Neorhizobium (0.08%), Rhodococcus (0.06%), and Burkholderia (0.04%) in intercropping alfalfa soil. Variance partition analysis showed that planting pattern contributed 26.7% of the total variation of bacterial community, and soil environmental factors explained approximately 56.5% of the total variation. This result indicated that the soil environmental factors were more important than the planting pattern in shaping the bacterial community in the field soil. Overall, mulberry/alfalfa intercropping changed soil bacterial community, which was related to changes in soil total carbon, available phosphate, and available potassium. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  11. Diagnosis of nutrient imbalances with vector analysis in agroforestry systems.

    PubMed

    Isaac, Marney E; Kimaro, Anthony A

    2011-01-01

    Agricultural intensification has had unintended environmental consequences, including increased nutrient leaching and surface runoff and other agrarian-derived pollutants. Improved diagnosis of on-farm nutrient dynamics will have the advantage of increasing yields and will diminish financial and environmental costs. To achieve this, a management support system that allows for site-specific rapid evaluation of nutrient production imbalances and subsequent management prescriptions is needed for agroecological design. Vector diagnosis, a bivariate model to depict changes in yield and nutritional response simultaneously in a single graph, facilitates identification of nutritional status such as growth dilution, deficiency, sufficiency, luxury uptake, and toxicity. Quantitative data from cocoa agroforestry systems and pigeonpea intercropping trials in Ghana and Tanzania, respectively, were re-evaluated with vector analysis. Relative to monoculture, biomass increase in cocoa ( L.) under shade (35-80%) was accompanied by a 17 to 25% decline in P concentration, the most limiting nutrient on this site. Similarly, increasing biomass with declining P concentrations was noted for pigeonpea [ (L). Millsp.] in response to soil moisture availability under intercropping. Although vector analysis depicted nutrient responses, the current vector model does not consider non-nutrient resource effects on growth, such as ameliorated light and soil moisture, which were particularly active in these systems. We revisit and develop vector analysis into a framework for diagnosing nutrient and non-nutrient interactions in agroforestry systems. Such a diagnostic technique advances management decision-making by increasing nutrient precision and reducing environmental issues associated with agrarian-derived soil contamination. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  12. [Effects of Morus alba and Setaria italica intercropping on their plant growth and diurnal variation of photosynthesis].

    PubMed

    Zhu, Wen-Xu; Zhang, Hui-Hui; Xu, Nan; Wang, Peng; Wang, Shi-Dan; Mu, Shi-Nan; Liang, Ming; Sun, Guang-Yu

    2012-07-01

    A field investigation was conducted to study the effects of intercropping Morus aIba and Setaria italica on their dry matter production, land use efficiency, and diurnal variation of leaf photosynthesis. Under intercropping, the plant height, basal diameter, root length, and branch number of M. alba increased by 6.0%, 13.7%, 6.8%, and 14.8%, respectively, and the leaf yield of M. alba was increased by 31.3%, as compared with monoculture M. alba. In contrast, the plant height and root length of intercropped S. italica had no significant difference with those of monoculture S. italica. Intercropping enhanced the equivalent ratio and use efficiency of arable land. For both M. alba and S. italica in monoculture or intercropping, their leaf photosynthetic depression all occurred at midday (12 :00), but the leaf photosynthetic depression of monoculture M. alba was heavier than that of intercropped M. alba. Intercropping promoted the leaf stomatal conductance (g(s)) and water use efficiency (WUE) of M. alba at midday, increased the photosynthetic carbon assimilation of M. alba, and inhibited the decline of M. alba leaf actual photochemical efficiency of PS II (phi(PS II)), photosynthetic electron transport rate (ETR), and the maximal photochemical of PS II (F(v)/F(m)) , which might contribute to alleviate the leaf photosynthetic depression of M. alba at midday. It was concluded that M. alba and S. italica intercropping could obviously improve the leaf photosynthetic capacity of M. alba.

  13. Soil microflora and enzyme activities in rhizosphere of Transgenic Bt cotton hybrid under different intercropping systems and plant protection schedules

    NASA Astrophysics Data System (ADS)

    Biradar, D. P.; Alagawadi, A. R.; Basavanneppa, M. A.; Udikeri, S. S.

    2012-04-01

    Field experiments were conducted over three rainy seasons of 2005-06 to 2007-08 on a Vertisol at Dharwad, Karnataka, India to study the effect of intercropping and plant protection schedules on productivity, soil microflora and enzyme activities in the rhizosphere of transgenic Bt cotton hybrid. The experiment consisted of four intercropping systems namely, Bt cotton + okra, Bt cotton + chilli, Bt cotton + onion + chilli and Bt cotton + redgram with four plant protection schedules (zero protection, protection for Bt cotton, protection for intercrop and protection for both crops). Observations on microbial populations and enzyme activities were recorded at 45, 90, 135 and 185 (at harvest) days after sowing (DAS). Averaged over years, Bt cotton + okra intercropping had significantly higher total productivity than Bt cotton + chilli and Bt cotton + redgram intercropping system and was similar to Bt cotton + chilli + onion intercropping system. With respect to plant protection schedules for bollworms, protection for both cotton and intercrops recorded significantly higher yield than the rest of the treatments. Population of total bacteria, fungi, actinomycetes, P-solubilizers, free-living N2 fixers as well as urease, phosphatase and dehydrogenase enzyme activities increased up to 135 days of crop growth followed by a decline. Among the intercropping systems, Bt cotton + chilli recorded significantly higher population of microorganisms and enzyme activities than other cropping systems. While Bt cotton with okra as intercrop recorded the least population of total bacteria and free-living N2 fixers as well as urease activity. Intercropping with redgram resulted in the least population of actinomycetes, fungi and P-solubilizers, whereas Bt cotton with chilli and onion recorded least activities of dehydrogenase and phosphatase. Among the plant protection schedules, zero protection recorded maximum population of microorganisms and enzyme activities. This was followed by the plant protection schedule taken up for main crop and for intercrops, but was least in the insecticide sprayed to both the crops. Data on interaction of intercropping and plant protection schedules indicated that Bt cotton with chilli as intercrop and with zero plant protection showed the highest population of P-solubilizers, N2 fixers as well as urease and phosphatase activities at 135 days of crop growth. Similarly, population of total bacteria, fungi and actinomycetes were highest in the treatment of Bt cotton + chilli + onion with zero protection but were on par with the treatment Bt cotton + chilli with zero protection at 135 days of crop growth. Dehydrogenase activity was found to be the highest in the treatment of Bt cotton + redgram with zero protection at 135 days of crop growth. Our studies showed harmful effects of insecticide sprays on soil microflora and enzyme activities.

  14. Belowground Interactions Impact the Soil Bacterial Community, Soil Fertility, and Crop Yield in Maize/Peanut Intercropping Systems

    PubMed Central

    Li, Qisong; Chen, Jun; Wu, Linkun; Luo, Xiaomian; Li, Na; Arafat, Yasir; Lin, Sheng; Lin, Wenxiong

    2018-01-01

    Intercropping has been widely used to control disease and improve yield in agriculture. In this study, maize and peanut were used for non-separation intercropping (NS), semi-separation intercropping (SS) using a nylon net, and complete separation intercropping (CS) using a plastic sheet. In field experiments, two-year land equivalent ratios (LERs) showed yield advantages due to belowground interactions when using NS and SS patterns as compared to monoculture. In contrast, intercropping without belowground interactions (CS) showed a yield disadvantage. Meanwhile, in pot experiments, belowground interactions (found in NS and SS) improved levels of soil-available nutrients (nitrogen (N) and phosphorus (P)) and enzymes (urease and acid phosphomonoesterase) as compared to intercropping without belowground interactions (CS). Soil bacterial community assay showed that soil bacterial communities in the NS and SS crops clustered together and were considerably different from the CS crops. The diversity of bacterial communities was significantly improved in soils with NS and SS. The abundance of beneficial bacteria, which have the functions of P-solubilization, pathogen suppression, and N-cycling, was improved in maize and peanut soils due to belowground interactions through intercropping. Among these bacteria, numbers of Bacillus, Brevibacillus brevis, and Paenibacillus were mainly increased in the maize rhizosphere. Burkholderia, Pseudomonas, and Rhizobium were mainly increased in the peanut rhizosphere. In conclusion, using maize and peanut intercropping, belowground interactions increased the numbers of beneficial bacteria in the soil and improved the diversity of the bacterial community, which was conducive to improving soil nutrient (N and P) supply capacity and soil microecosystem stability. PMID:29470429

  15. Integrated double mulching practices optimizes soil temperature and improves soil water utilization in arid environments

    NASA Astrophysics Data System (ADS)

    Yin, Wen; Feng, Fuxue; Zhao, Cai; Yu, Aizhong; Hu, Falong; Chai, Qiang; Gan, Yantai; Guo, Yao

    2016-09-01

    Water shortage threatens agricultural sustainability in many arid and semiarid areas of the world. It is unknown whether improved water conservation practices can be developed to alleviate this issue while increasing crop productivity. In this study, we developed a "double mulching" system, i.e., plastic film coupled with straw mulch, integrated together with intensified strip intercropping. We determined (i) the responses of soil evaporation and moisture conservation to the integrated double mulching system and (ii) the change of soil temperature during key plant growth stages under the integrated systems. Experiments were carried out in northwest China in 2009 to 2011. Results show that wheat-maize strip intercropping in combination with plastic film and straw covering on the soil surface increased soil moisture (mm) by an average of 3.8 % before sowing, 5.3 % during the wheat and maize co-growth period, 4.4 % after wheat harvest, and 4.9 % after maize harvest, compared to conventional practice (control). The double mulching decreased total evapotranspiration of the two intercrops by an average of 4.6 % ( P < 0.05), compared to control. An added feature was that the double mulching system decreased soil temperature in the top 10-cm depth by 1.26 to 1.31 °C in the strips of the cool-season wheat, and by 1.31 to 1.51 °C in the strips of the warm-season maize through the 2 years. Soil temperature of maize strips higher as 1.25 to 1.94 °C than that of wheat strips in the top 10-cm soil depth under intercropping with the double mulching system; especially higher as 1.58 to 2.11 °C under intercropping with the conventional tillage; this allows the two intercrops to grow in a well "collaborative" status under the double mulching system during their co-growth period. The improvement of soil moisture and the optimization of soil temperature for the two intercrops allow us to conclude that wheat-maize intensification with the double mulching system can be used as an effective farming model in alleviating water shortage issues experiencing in water shortage areas.

  16. Intercropping Induces Changes in Specific Secondary Metabolite Concentration in Ethiopian Kale (Brassica carinata) and African Nightshade (Solanum scabrum) under Controlled Conditions.

    PubMed

    Ngwene, Benard; Neugart, Susanne; Baldermann, Susanne; Ravi, Beena; Schreiner, Monika

    2017-01-01

    Intercropping is widespread in small-holder farming systems in tropical regions and is also practiced in the cultivation of indigenous vegetables, to alleviate the multiple burdens of malnutrition. Due to interspecific competition and/or complementation between intercrops, intercropping may lead to changes in plants accumulation of minerals and secondary metabolites and hence, alter nutritional quality for consumers. Intercropping aims to intensify land productivity, while ensuring that nutritional quality is not compromised. This study aimed to investigate changes in minerals and secondary plant metabolites in intercropped Brassica carinata and Solanum scabrum , two important African indigenous vegetables, and evaluated the suitability of this combination for dryer areas. B. carinata and S. scabrum were grown for 6 weeks under controlled conditions in a greenhouse trial. Large rootboxes (8000 cm 3 volume) were specifically designed for this experiment. Each rootbox was planted with two plants, either of the same plant species (mono) or one of each plant species (mixed). A quartz sand/soil substrate was used and fertilized adequately for optimal plant growth. During the last 4 weeks of the experiment, the plants were either supplied with optimal (65% WHC) or low (30% WHC) irrigation, to test the effect of a late-season drought. Intercropping increased total glucosinolate content in B. carinata , while maintaining biomass production and the contents of other health related minerals in both B. carinata and S. scabrum . Moreover, low irrigation led to an increase in carotene accumulation in both mono and intercropped S. scabrum , but not in B. carinata , while the majority of kaempferol glycosides and hydroxycinnamic acid derivatives of both species were decreased by intercropping and drought treatment. This study indicates that some health-related phytochemicals can be modified by intercropping or late-season drought, but field validation of these results is necessary before definite recommendation can be made to stakeholders.

  17. Agronomic viability of New Zealand spinach and kale intercropping.

    PubMed

    Cecílio, Arthur B; Bianco, Matheus S; Tardivo, Caroline F; Pugina, Gabriel C M

    2017-01-01

    The intercropping is a production system that aims to provide increased yield with less environmental impact, due to greater efficiency in the use of natural resources and inputs involved in the production process. An experiment was carried out to evaluate the agronomic viability of kale and New Zealand spinach intercropping as a function of the spinach transplanting time. (0, 14, 28, 42, 56, 70, 84 and 98 days after transplanting of the kale). The total yield (TY) and yield per harvest (YH) of the kale in intercropping did not differ from those obtained in monoculture. The spinach TY was influenced by the transplanting time, the earlier the transplanting, the higher the TY. The spinach YH was not influenced by the transplanting time, but rather by the cultivation system. In intercropping, the spinach YH was 13.5% lower than in monoculture. The intercropping was agronomically feasible, since the land use efficiency index, which was not influenced by the transplanting time, had an average value of 1.71, indicating that the intercropping produced 71% more kale and spinach than the same area in monoculture. Competitiveness coefficient, aggressiveness and yield loss values showed that kale is the dominating species and spinach is the dominated.

  18. Wheat (Triticum aestivum L.)-based intercropping systems for biological pest control.

    PubMed

    Lopes, Thomas; Hatt, Séverin; Xu, Qinxuan; Chen, Julian; Liu, Yong; Francis, Frédéric

    2016-12-01

    Wheat (Triticum aestivum L.) is one of the most cultivated crops in temperate climates. As its pests are mainly controlled with insecticides that are harmful to the environment and human health, alternative practices such as intercropping have been studied for their potential to promote biological control. Based on the published literature, this study aimed to review the effect of wheat-based intercropping systems on insect pests and their natural enemies. Fifty original research papers were obtained from a systematic search of the peer-reviewed literature. Results from a vote-counting analysis indicated that, in the majority of studies, pest abundance was significantly reduced in intercropping systems compared with pure stands. However, the occurrence of their natural enemies as well as predation and parasitism rates were not significantly increased. The country where the studies took place, the type of intercropping and the crop that was studied in the association had significant effects on these results. These findings show that intercropping is a viable practice to reduce insecticide use in wheat production systems. Nevertheless, other practices could be combined with intercropping to favour natural enemies and enhance pest control. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. [Effects of intercropping Chinese milk vetch on functional characteristics of soil microbial community in rape rhizosphere].

    PubMed

    Zhou, Quan; Wang, Long Chang; Xing, Yi; Ma, Shu Min; Zhang, Xiao Duan; Chen, Jiao; Shi, Chao

    2018-03-01

    The application of green manure is facing serious problems in purple soil region of southwest China. With the aim to explore the potential application of green manure, we examined the functional characteristics of soil microbial community in a system of Chinese milk vetch intercropped with rape. The innovations are the application of Chinese milk vetch in dry land of the southwest China and the establishment of new planting pattern of rape by providing empirical data. Results showed that the intercropping with Chinese milk vetch decreased the carbon resource use efficiency of microbial community in rape rhizosphere, especially for the utilization of carbohydrates. At the same time, Shannon index, Simpson index, and richness were reduced, but evenness index was increased by intercropping. Those results from cluster analysis and principal component analysis suggest that the soil microbial community composition was significantly different between monocropping and intercropping. The carbohydrates, amino acids and carboxylic acids were the sensitive carbon sources for differentiating the changes of the microbial community induced by monocropping and intercropping. Intercropping Chinese milk vetch could decrease functional activity, change community composition, and reduce diversity of soil microbial community in rape rhizosphere.

  20. Economic Performance and Sustainability of a Novel Intercropping System on the North China Plain

    PubMed Central

    Huang, Chengdong; Liu, Quanqing; Heerink, Nico; Stomph, TjeerdJan; Li, Baoshen; Liu, Ruili; Zhang, Hongyan; Wang, Chong; Li, Xiaolin; Zhang, Chaochun; van der Werf, Wopke; Zhang, Fusuo

    2015-01-01

    Double cropping of wheat and maize is common on the North China Plain, but it provides limited income to rural households due to the small farm sizes in the region. Local farmers in Quzhou County have therefore innovated their production system by integration of watermelon as a companion cash crop into the system. We examine the economic performance and sustainability of this novel intercropping system using crop yield data from 2010 to 2012 and farm household survey data collected in 2012. Our results show that the gross margin of the intercropping system exceeded that of the double cropping system by more than 50% in 2012. Labor use in the intercropping system was more than three times that in double cropping. The lower returns per labor hour in intercropping, however, exceeded the average off-farm wage in the region by a significant margin. Nutrient surpluses and irrigation water use are significant larger under the intercropping system. We conclude that the novel wheat-maize/watermelon intercropping system contributes to rural poverty alleviation and household-level food security, by raising farm incomes and generating more employment, but needs further improvement to enhance its sustainability. PMID:26275297

  1. Economic Performance and Sustainability of a Novel Intercropping System on the North China Plain.

    PubMed

    Huang, Chengdong; Liu, Quanqing; Heerink, Nico; Stomph, TjeerdJan; Li, Baoshen; Liu, Ruili; Zhang, Hongyan; Wang, Chong; Li, Xiaolin; Zhang, Chaochun; van der Werf, Wopke; Zhang, Fusuo

    2015-01-01

    Double cropping of wheat and maize is common on the North China Plain, but it provides limited income to rural households due to the small farm sizes in the region. Local farmers in Quzhou County have therefore innovated their production system by integration of watermelon as a companion cash crop into the system. We examine the economic performance and sustainability of this novel intercropping system using crop yield data from 2010 to 2012 and farm household survey data collected in 2012. Our results show that the gross margin of the intercropping system exceeded that of the double cropping system by more than 50% in 2012. Labor use in the intercropping system was more than three times that in double cropping. The lower returns per labor hour in intercropping, however, exceeded the average off-farm wage in the region by a significant margin. Nutrient surpluses and irrigation water use are significant larger under the intercropping system. We conclude that the novel wheat-maize/watermelon intercropping system contributes to rural poverty alleviation and household-level food security, by raising farm incomes and generating more employment, but needs further improvement to enhance its sustainability.

  2. [Environmental quality assessment of regional agro-ecosystem in Loess Plateau].

    PubMed

    Wang, Limei; Meng, Fanping; Zheng, Jiyong; Wang, Zhonglin

    2004-03-01

    Based on the detection and analysis of the contamination status of agro-ecosystem with apple-crops intercropping as the dominant cropping model in Loess Plateau, the individual factor and comprehensive environmental quality were assessed by multilevel fuzzy synthetic evaluation model, analytical hierarchy process(AHP), and improved standard weight deciding method. The results showed that the quality of soil, water and agricultural products was grade I, the social economical environmental quality was grade II, the ecological environmental quality was grade III, and the comprehensive environmental quality was grade I. The regional agro-ecosystem dominated by apple-crops intercropping was not the best model for the ecological benefits, but had the better social economical benefits.

  3. Effects of reduced nitrogen inputs on crop yield and nitrogen use efficiency in a long-term maize-soybean relay strip intercropping system.

    PubMed

    Chen, Ping; Du, Qing; Liu, Xiaoming; Zhou, Li; Hussain, Sajad; Lei, Lu; Song, Chun; Wang, Xiaochun; Liu, Weiguo; Yang, Feng; Shu, Kai; Liu, Jiang; Du, Junbo; Yang, Wenyu; Yong, Taiwen

    2017-01-01

    The blind pursuit of high yields via increased fertilizer inputs increases the environmental costs. Relay intercropping has advantages for yield, but a strategy for N management is urgently required to decrease N inputs without yield loss in maize-soybean relay intercropping systems (IMS). Experiments were conducted with three levels of N and three planting patterns, and dry matter accumulation, nitrogen uptake, nitrogen use efficiency (NUE), competition ratio (CR), system productivity index (SPI), land equivalent ratio (LER), and crop root distribution were investigated. Our results showed that the CR of soybean was greater than 1, and that the change in root distribution in space and time resulted in an interspecific facilitation in IMS. The maximum yield of maize under monoculture maize (MM) occurred with conventional nitrogen (CN), whereas under IMS, the maximum yield occurred with reduced nitrogen (RN). The yield of monoculture soybean (MS) and of soybean in IMS both reached a maximum under RN. The LER of IMS varied from 1.85 to 2.36, and the SPI peaked under RN. Additionally, the NUE of IMS increased by 103.7% under RN compared with that under CN. In conclusion, the separation of the root ecological niche contributed to a positive interspecific facilitation, which increased the land productivity. Thus, maize-soybean relay intercropping with reduced N input provides a very useful approach to increase land productivity and avert environmental pollution.

  4. Does soil C accrual under perennial grasses managed for bioenergy offset fertilizer induced N2O emission?

    USDA-ARS?s Scientific Manuscript database

    Perennial grasses (e.g., switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerdardii Vitman) are often touted as being low input and as having a C-neutral foot print, but managing them as bioenergy feedstock means adding nitrogenous fertilizer or inter-cropping with legumes, which can i...

  5. Switchgrass growth and pine-switchgrass interactions in established intercropping systems

    DOE PAGES

    Tian, Shiying; Cacho, Julian F.; Youssef, Mohamed A.; ...

    2016-06-22

    Intercropping switchgrass ( Panicum virgatum L.) with loblolly pine ( Pinus taeda L.) has been proposed for producing bioenergy feedstock in the southeastern United States. This study investigated switchgrass growth and pine–switchgrass interactions at two established experimental fields (7-year-old Lenoir site and 5-year-old Carteret site) located on the coastal plain of eastern United States. Position effects (edge and center of switchgrass alley in intercropping plots) and treatment effects (intercropping vs. grass-only) on above ground switchgrass growth were evaluated. Interspecific interactions with respect to capturing resources (light, soil water, and nitrogen) were investigated by measuring photosynthetically active radiation (PAR) above grassmore » canopy, soil moisture, and soil mineral nitrogen contents. Switchgrass growth was significantly (P = 0.001) affected by treatments in Lenoir and by position (P < 0.0001) in both study sites. Relative to the center, PAR above grass canopy at edge in both sites was about 48% less during the growing season. Soil water content during the growing season at the edge of grass alley was significantly (P = 0.0001) lower by 23% than at the center in Lenoir, while no significant (P = 0.42) difference was observed in Carteret, in spite of more grass growth at center at both sites. Soil mineral nitrogen content at the center of intercropping plots in Lenoir (no fertilization during 2015) was significantly (P < 0.07) lower than at the edge during the peak of growing season (June, July, and August), but not during early and late parts of growing season (May, September, and November). Position effects on soil water and mineral nitrogen were less evident under conditions with higher external inputs (rainfall and fertilization) and lower plant uptake during nongrowing seasons. Here, results from this study contributed to a better understanding of above- and belowground pine–switchgrass interactions which is necessary to properly manage this new cultivation system for bioenergy production in the southeastern United States.« less

  6. Intercropped watermelon for weed suppression in a low-input organic system.

    USDA-ARS?s Scientific Manuscript database

    A multi-layered canopy provided by intercropping species with different growth forms can provide barriers for the germination of weed seeds and can allow for a more efficient utilization of resources that reduce competition to target crops from weeds. Intercropping can thus be an effective cultural ...

  7. [Effects of reduced N application rate on yield and nutrient uptake and utilization in maize-soybean relay strip intercropping system].

    PubMed

    Yong, Tai-Wen; Liu, Xiao-Ming; Wen-Yu, Liu; Su, Ben-Ying; Song, Chun; Yang, Feng; Wang, Xiao-Chun; Yang, Wen-Yu

    2014-02-01

    A field experiment with three N application rates (0, 180, 240 N kg x hm(-2), representing zero, reduced and conventional N application, respectively) and three planting patterns (maize monoculture, soybean monoculture and maize-soybean relay strip intercropping) was conducted to reveal the effects of cropping patterns and N application rates on yield, nutrient uptake and nitrogen use efficiency of maize and soybean. The results showed that the grain yield, N, P and K uptake and harvest index of the intercropped maize reduced slightly compared with the monoculture maize, however these indices of the intercropped soybean increased significantly compared with the monoculture. With the increase in nitrogen fertilizer application, the excellence of relay strip intercropping was weakened in the maize-soybean intercropping system. The grain yield, economic coefficient, N, P and K uptake, harvest index, N agronomy efficiency and N uptake efficiency of maize and soybean increased significantly at the reduced nitrogen rate (180 N kg x hm(-2)), but the rate of soil N contribution declined, compared with the conventional rate of N application by local farmers (240 N kg x hm(-2)). In the reduced nitrogen rate treatment, total soil N and P contents of the maize strip reduced, whereas the total soil N, P and K contents of soybean strip and the total K content of maize strip increased compared with the zero N application treatment. With the reduced N application, the annual total grain yield, N, P and K uptake of above-ground biomass in the maize-soybean relay strip intercropping system were higher than in the monoculture, and the land equivalent ratio (LER) was 2.28. N uptake efficiency of maize in the relay strip intercropping system was 20.2% higher than in the maize monoculture, and the index of soybean was 30.5% lower than in the monoculture. The rate of soil N contribution in the relay strip intercropping system was 20.0% and 8.8% lower than in the maize and soybean monoculture, respectively. The reduced N application in the maize-soybean relay strip intercropping system was helpful to promote annual grain yield and improve N utilization efficiency.

  8. Legume-Cereal Intercropping Improves Forage Yield, Quality and Degradability.

    PubMed

    Zhang, Jie; Yin, Binjie; Xie, Yuhuai; Li, Jing; Yang, Zaibin; Zhang, Guiguo

    2015-01-01

    Intercropping legume with cereal is an extensively applied planting pattern in crop cultivation. However, forage potential and the degradability of harvested mixtures from intercropping system remain unclear. To investigate the feasibility of applying an intercropping system as a forage supply source to ruminants, two consecutive experiments (experiments 1 and 2) involving a field cultivation trial and a subsequent in vivo degradable experiment were conducted to determine the forage production performance and the ruminally degradable characteristics of a harvested mixture from an alfalfa/corn-rye intercropping system. In experiment 1, the intercropping system was established by alternating alfalfa and corn or rye with a row ratio of 5:2. Dry matter (DM) and nutrient yields were determined. In experiment 2, forages harvested from the different treatments were used as feedstuff to identify nutrient degradation kinetics and distribution of components between the rapidly degradable (a), potentially degradable (b) and the degradation rate constant (c) of 'b' fraction by in sacco method in Small-Tail Han wether Sheep. The intercropping system of alfalfa and corn-rye provided higher forage production performance with net increases of 9.52% and 34.81% in DM yield, 42.13% and 16.74% in crude protein (CP) yield, 25.94% and 69.99% in degradable DM yield, and 16.96% and 5.50% in degradable CP yield than rotation and alfalfa sole cropping systems, respectively. In addition, the harvest mixture from intercropping system also had greater 'a' fraction, 'b' fraction, 'c' values, and effective degradability (E value) of DM and CP than corn or rye hay harvested from rotation system. After 48-h exposure to rumen microbes, intercropping harvest materials were degraded to a higher extent than separately degraded crop stems from the sole system as indicated by visual microscopic examination with more tissues disappeared. Thus, the intercropping of alfalfa and corn-rye exhibited a greater forage production potential, and could be applied as forage supply source for ruminants. The improved effective degradability of harvest mixture material could be attributed to greater degradable components involving the rapidly degradable fractions (a), potentially degradable (b) fractions, and degradable rate constant (c), than that of corn and rye hay.

  9. Impacts of switchgrass intercropping in traditional pine forests on hydrology and water quality in the southeastern United States.

    Treesearch

    Devendra Amatya; G.M. Chescheir; J.E. Nettles

    2016-01-01

    Preliminary results indicate that switchgrass (Panicum virgatum L.), grown as a cellulosic biofuel between managed loblolly pine (Pinus taeda L.) beds on the Atlantic Coastal Plain forests has no significant effect on shallow ground water table and stream outflows. Although management operations (e.g. harvesting, shearing between pine rows, raking, and bedding)...

  10. Integrated double mulching practices optimizes soil temperature and improves soil water utilization in arid environments.

    PubMed

    Yin, Wen; Feng, Fuxue; Zhao, Cai; Yu, Aizhong; Hu, Falong; Chai, Qiang; Gan, Yantai; Guo, Yao

    2016-09-01

    Water shortage threatens agricultural sustainability in many arid and semiarid areas of the world. It is unknown whether improved water conservation practices can be developed to alleviate this issue while increasing crop productivity. In this study, we developed a "double mulching" system, i.e., plastic film coupled with straw mulch, integrated together with intensified strip intercropping. We determined (i) the responses of soil evaporation and moisture conservation to the integrated double mulching system and (ii) the change of soil temperature during key plant growth stages under the integrated systems. Experiments were carried out in northwest China in 2009 to 2011. Results show that wheat-maize strip intercropping in combination with plastic film and straw covering on the soil surface increased soil moisture (mm) by an average of 3.8 % before sowing, 5.3 % during the wheat and maize co-growth period, 4.4 % after wheat harvest, and 4.9 % after maize harvest, compared to conventional practice (control). The double mulching decreased total evapotranspiration of the two intercrops by an average of 4.6 % (P < 0.05), compared to control. An added feature was that the double mulching system decreased soil temperature in the top 10-cm depth by 1.26 to 1.31 °C in the strips of the cool-season wheat, and by 1.31 to 1.51 °C in the strips of the warm-season maize through the 2 years. Soil temperature of maize strips higher as 1.25 to 1.94 °C than that of wheat strips in the top 10-cm soil depth under intercropping with the double mulching system; especially higher as 1.58 to 2.11 °C under intercropping with the conventional tillage; this allows the two intercrops to grow in a well "collaborative" status under the double mulching system during their co-growth period. The improvement of soil moisture and the optimization of soil temperature for the two intercrops allow us to conclude that wheat-maize intensification with the double mulching system can be used as an effective farming model in alleviating water shortage issues experiencing in water shortage areas.

  11. Regulation of Population Densities of Heterodera cajani and Other Plant-Parasitic Nematodes by Crop Rotations on Vertisols, in Semi-Arid Tropical Production Systems in India

    PubMed Central

    Sharma, S. B.; Rego, T. J.; Mohiuddin, M.; Rao, V. N.

    1996-01-01

    The significance of double crop (intercrop and sequential crop), single crop (rainy season crop fallow from June to September), and rotations on densities of Heterodera cajani, Helicotylenchus retusus, and Rotylenchulus reniformis was studied on Vertisol (Typic Pellusterts) between 1987 and 1993. Cowpea (Vigna sinensis), mungbean (Phaseolus aureus), and pigeonpea (Cajanus cajan) greatly increased the population densities of H. cajani and suppressed the population densities of other plant-parasitic nematodes. Mean population densities of H. cajani were about 8 times lower in single crop systems than in double crop systems, with pigeonpea as a component intercrop. Plots planted to sorghum, safflower, and chickpea in the preceding year contained fewer H. cajani eggs and juveniles than did plots previously planted to pigeonpea, cowpea, or mungbean. Continuous cropping of sorghum in the rainy season and safflower in the post-rainy season markedly reduced the population density of H. cajani. Sorghum, safflower, and chickpea favored increased population densities of H. retusus. Adding cowpea to the system resulted in a significant increase in the densities of R. reniformis. Mean densities of total plant-parasitic nematodes were three times greater in double crop systems, with pigeonpea as a component intercrop than in single crop systems with rainy season fallow component. Cropping systems had a regulatory effect on the nematode populations and could be an effective nematode management tactic. Intercropping of sorghum with H. cajani tolerant pigeonpea could be effective in increasing the productivity of traditional production systems in H. cajani infested regions. PMID:19277141

  12. Intercrop movement of convergent lady beetle, Hippodamia convergens (Coleoptera: Coccinellidae), between adjacent cotton and alfalfa.

    PubMed

    Bastola, Anup; Parajulee, Megha N; Porter, R Patrick; Shrestha, Ram B; Chen, Fa-Jun; Carroll, Stanley C

    2016-02-01

    A 2-year study was conducted to characterize the intercrop movement of convergent lady beetle, Hippodamia convergens Guerin-Meneville (Coleoptera: Coccinellidae) between adjacent cotton and alfalfa. A dual protein-marking method was used to assess the intercrop movement of the lady beetles in each crop. In turns field collected lady beetles in each crop were assayed by protein specific ELISA to quantify the movement of beetles between the crops. Results indicated that a high percentage of convergent lady beetles caught in cotton (46% in 2008; 56% in 2009) and alfalfa (46% in 2008; 71% in 2009) contained a protein mark, thus indicating that convergent lady beetle movement was largely bidirectional between the adjacent crops. Although at a much lower proportion, lady beetles also showed unidirectional movement from cotton to alfalfa (5% in 2008 and 6% in 2009) and from alfalfa to cotton (9% in 2008 and 14% in 2009). The season-long bidirectional movement exhibited by the beetles was significantly higher in alfalfa than cotton during both years of the study. The total influx of lady beetles (bidirectional and unidirectional combined) was significantly higher in alfalfa compared with that in cotton for both years. While convergent lady beetles moved between adjacent cotton and alfalfa, they were more attracted to alfalfa when cotton was not flowering and/or when alfalfa offered more opportunities for prey. This study offers much needed information on intercrop movement of the convergent lady beetle that should facilitate integrated pest management decisions in cotton utilizing conservation biological control. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  13. Intercropping of green garlic (Allium sativum L.) induces nutrient concentration changes in the soil and plants in continuously cropped cucumber (Cucumis sativus L.) in a plastic tunnel.

    PubMed

    Xiao, Xuemei; Cheng, Zhihui; Meng, Huanwen; Liu, Lihong; Li, Hezi; Dong, Yinxin

    2013-01-01

    A pot-based experiment was conducted to investigate nutrient concentrations in cucumber plants intercropped with various amounts of green garlic. In addition, the soil nutrient contents were studied over two consecutive growing seasons. The results revealed that the accumulation of biomass and the nutritional elements nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and manganese (Mn) in cucumber plants were significantly increased for intercropping treatments during the two growing seasons compared to monoculture. Conversely, magnesium (Mg) concentrations were decreased in the cucumber plants. Shoot iron (Fe) concentrations decreased whereas root Fe concentrations increased in the intercropping system. Shoot and root zinc (Zn) concentrations decreased during the fall of 2011 but increased during the spring of 2012. Soil organic matter and available N, P and K were significantly increased as the proportion of intercropped green garlic increasing. Medium levels of intercropping green garlic improved cucumber nutrient concentrations the most. The regression analysis showed that the concentrations of most elements were significantly related to the amounts of garlic bulbs, especially the microelements in the spring 2011. The available soil N and organic matter were linearly related to the amounts of garlic bulbs. The results indicate that the nutritional status of the soil and plants of continuously cropped cucumber could be improved by intercropping with green garlic.

  14. Intercropping of Green Garlic (Allium sativum L.) Induces Nutrient Concentration Changes in the Soil and Plants in Continuously Cropped Cucumber (Cucumis sativus L.) in a Plastic Tunnel

    PubMed Central

    Xiao, Xuemei; Cheng, Zhihui; Meng, Huanwen; Liu, Lihong; Li, Hezi; Dong, Yinxin

    2013-01-01

    A pot-based experiment was conducted to investigate nutrient concentrations in cucumber plants intercropped with various amounts of green garlic. In addition, the soil nutrient contents were studied over two consecutive growing seasons. The results revealed that the accumulation of biomass and the nutritional elements nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and manganese (Mn) in cucumber plants were significantly increased for intercropping treatments during the two growing seasons compared to monoculture. Conversely, magnesium (Mg) concentrations were decreased in the cucumber plants. Shoot iron (Fe) concentrations decreased whereas root Fe concentrations increased in the intercropping system. Shoot and root zinc (Zn) concentrations decreased during the fall of 2011 but increased during the spring of 2012. Soil organic matter and available N, P and K were significantly increased as the proportion of intercropped green garlic increasing. Medium levels of intercropping green garlic improved cucumber nutrient concentrations the most. The regression analysis showed that the concentrations of most elements were significantly related to the amounts of garlic bulbs, especially the microelements in the spring 2011. The available soil N and organic matter were linearly related to the amounts of garlic bulbs. The results indicate that the nutritional status of the soil and plants of continuously cropped cucumber could be improved by intercropping with green garlic. PMID:23637994

  15. Site preparation for switchgrass intercropping in loblolly pine plantations reduces retained trees and snags, but maintains downed woody debris

    USGS Publications Warehouse

    Loman, Zachary G.; Riffell, Samuel K.; Miller, Darrin A.; Martin, James A.; Vilella, Francisco

    2013-01-01

    Within young pine (Pinus spp.) plantations, coarse woody debris (CWD) and green trees are important habitat structures that may be impacted by the production of biofuel feedstock. Therefore, we compared site preparation procedures associated with switchgrass (Panicum virgatum L.) intercropping to determine effects on CWD and green trees in stands (n = 24) site-prepared for intercropping, with switchgrass only, or pine plantation in Mississippi, USA. Following site preparation, CWD dispersal or volume did not differ between intercropped and control stands. Intercropped stands had significantly fewer retained trees and snags. Switchgrass monocultures had no retained trees or piles and significantly fewer pieces and less volume of CWD than the other treatments. Our results suggest switchgrass intercropping may provide similar habitat quality to traditional pine plantations for wildlife species using these areas in the year following disturbance, but may provide a less suitable habitat for species that require snags. However, the relationship between snag reduction and wildlife population response in an intercropped setting is not clear and should be further investigated. Regardless, if retaining snags is a desired outcome, site preparation for switchgrass should be restricted to the interbed area where it will be cultivated as opposed to extensive debris removal from the entire site.                   

  16. Intercropping of oat and field pea in Alaska: an alternative approach to quality forage production and weed control

    USDA-ARS?s Scientific Manuscript database

    Intercropping of legumes with non-legumes is an ancient crop production method used to improve quality and dry matter (DM) yields of forage and grain, and to control weeds. However, there is little information regarding intercropping at high latitudes. The objectives of this field study were to eval...

  17. [Effect of reduced N application on soil N residue and N loss in maize-soybean relay strip intercropping system].

    PubMed

    Liu, Xiao-Ming; Yong, Tai-Wen; Liu, Wen-Yu; Su, Ben-Ying; Song, Chun; Yang, Feng; Wang, Xiao-Chun; Yang, Wen-Yu

    2014-08-01

    A field experiment was conducted in 2012, including three planting pattern (maize-soybean relay strip intercropping, mono-cultured maize and soybean) and three nitrogen application level [0 kg N x hm(-2), 180 kg N x hm(-2) (reduced N) and 240 kg N x hm(-2) (normal N)]. Fields were assigned to different treatments in a randomized block design with three replicates. The objective of this work was to analyze the effects of planting patterns and nitrogen application rates on plant N uptake, soil N residue and N loss. After fertilization applications, NH4(+)-N and NO3(-)-N levels increased in the soil of intercropped maize but decreased in the soil of intercropped soybean. Compared with mono-crops, the soil N residue and loss of intercropped soybean were reduced, while those of intercropped maize were increased and decreased, respectively. With the reduced rate of N application, N residue rate, N loss rate and ammonia volatilization loss rate of the maize-soybean intercropping relay strip system were decreased by 17.7%, 21.5% and 0.4% compared to mono-cultured maize, but increased by 2.0%, 19.8% and 0.1% compared to mono-cultured soybean, respectively. Likewise, the reduced N application resulted in reductions in N residue, N loss, and the N loss via ammonia volatilization in the maize-soybean relay strip intercropping system compared with the conventional rate of N application adopted by local farmers, and the N residue rate, N loss rate and ammonia volatilization loss rate reduced by 12.0%, 15.4% and 1.2%, respectively.

  18. Conservation Agriculture Improves Soil Quality, Crop Yield, and Incomes of Smallholder Farmers in North Western Ghana

    PubMed Central

    Naab, Jesse B.; Mahama, George Y.; Yahaya, Iddrisu; Prasad, P. V. V.

    2017-01-01

    Conservation agriculture (CA) practices are being widely promoted in many areas in sub-Saharan Africa to recuperate degraded soils and improve ecosystem services. This study examined the effects of three tillage practices [conventional moldboard plowing (CT), hand hoeing (MT) and no-tillage (NT)], and three cropping systems (continuous maize, soybean–maize annual rotation, and soybean/maize intercropping) on soil quality, crop productivity, and profitability in researcher and farmer managed on-farm trials from 2010 to 2013 in northwestern Ghana. In the researcher managed mother trial, the CA practices of NT, residue retention and crop rotation/intercropping maintained higher soil organic carbon, and total soil N compared to conventional tillage practices after 4 years. Soil bulk density was higher under NT than under CT soils in the researcher managed mother trails or farmers managed baby trials after 4 years. In the researcher managed mother trial, there was no significant difference between tillage systems or cropping systems in maize or soybean yields in the first three seasons. In the fourth season, crop rotation had the greatest impact on maize yields with CT maize following soybean increasing yields by 41 and 49% compared to MT and NT maize, respectively. In the farmers’ managed trials, maize yield ranged from 520 to 2700 kg ha-1 and 300 to 2000 kg ha-1 for CT and NT, respectively, reflecting differences in experience of farmers with NT. Averaged across farmers, CT cropping systems increased maize and soybean yield ranging from 23 to 39% compared with NT cropping systems. Partial budget analysis showed that the cost of producing maize or soybean is 20–29% cheaper with NT systems and gives higher returns to labor compared to CT practice. Benefit-to-cost ratios also show that NT cropping systems are more profitable than CT systems. We conclude that with time, implementation of CA practices involving NT, crop rotation, intercropping of maize and soybean along with crop residue retention presents a win–win scenario due to improved crop yield, increased economic return, and trends of increasing soil fertility. The biggest challenge, however, remains with producing enough biomass and retaining same on the field. PMID:28680427

  19. Evaluation of vegetable-faba bean (Vicia faba L.) intercropping under Latvian agro-ecological conditions.

    PubMed

    Lepse, Līga; Dane, Sandra; Zeipiņa, Solvita; Domínguez-Perles, Raul; Rosa, Eduardo As

    2017-10-01

    Monoculture is used mostly in conventional agriculture, where a single crop is cultivated on the same land for a period of at least 12 months. In an organic and integrated growing approach, more attention is paid to plant-environment interactions and, as a result, diverse growing systems applying intercropping, catch crops, and green manure are being implemented. Thus, field experiments for evaluation of vegetable/faba bean full intercropping efficiency, in terms of vegetable and faba bean yield and protein content, were set up during two consecutive growing seasons (2014 and 2015). Data obtained showed that the most efficient intercropping variants were cabbage/faba bean (cabbage yield 1.27-2.91 kg m -2 , immature faba bean pods 0.20-0.43 kg m -2 ) and carrot/faba bean (carrot yield 1.67-2.28 kg m -2 , immature faba bean pods 0.10-0.52 kg m -2 ), whilst onion and faba bean intercrop is not recommended for vegetable growing since it induces a very low onion yield (0.66-1.09 kg m -2 ), although the highest immature faba bean pod yield was found in the onion/faba bean intercropping scheme (up to 0.56 kg m -2 ). Vegetable/faba bean intercropping can be used in practical horticulture for carrot and cabbage growing in order to ensure sustainable farming and environmentally friendly horticultural production. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. The effect of monoculture peanut and cassava/peanut intercropping on physical and chemical properties in peanut rhizosphere soil under the biochar application and straw mulching

    NASA Astrophysics Data System (ADS)

    Chen, X.; Tian, Y.; Guo, X. F.; Chen, G. K.; He, H. Z.; Li, H. S.

    2017-03-01

    Cassava/peanut intercropping is a popular cultivation method in the south China, with the advantage of apparent yield increase. In order to analyze the effect of cassava/peanut intercropping on physical and chemical properties in peanut rhizosphere soil, the physical and chemical properties were investigated under the biochar application and straw mulching. The result showed that the Ph, organic materials content, available phosphorus content, available potassium content in peanut rhizosphere under the biochar application increased by 7.06%, 94.52%, 17.53%, 25.08% (monoculture peanut) and 8.47%, 89.94%, 17.93%, 22.87% (cassava/peanut intercropping) compared with Ck in the same planting patterns. In addition, the available nitrogen content, organic materials content, available phosphorus content, and available potassium content in peanut rhizosphere under the straw mulching increased by 89.80%, 60.92%, 5.95%, 9.98% (monoculture peanut) and 67.09%, 52.34%, 6.96%, 11.94% (cassava/peanut intercropping) compared with Ck in the same planting patterns. In the same treatment conditions, bulk density in peanut rhizosphere soil decreased and porosity and saturated permeability coefficient increased slightly. But there was no significant difference between the two. At the same time, cassava/peanut intercropping could increase soil nutrients. Therefore, it is beneficial to apply biochar and straw mulching, and the suitable intercropping row spacing is more beneficial to increase soil nutrient contents.

  1. Comparison of measured changes in seasonal soil water content by rainfed maize-bean intercrop and component cropping systems in a semi-arid region of southern Africa

    NASA Astrophysics Data System (ADS)

    Ogindo, H. O.; Walker, S.

    Seasonal water content fluctuation within the effective root zone was monitored during the growing season for a maize-bean intercrop (IMB), sole maize (SM) and sole bean (SB) in Free State Province, Republic of South Africa. Comparisons were undertaken for progressive depths of extraction 0-300 mm; 300-600 mm and 600-900 mm respectively. These enabled the understanding of water extraction behavior of the cropping systems within the different soil layers including the topsoil surface normally influenced by soil surface evaporation. Additive intercrops have been known to conserve water, largely due to the early high leaf area index and the higher total leaf area. In this study, the combined effect of the intercrop components seemed to lower the total water demand by the intercrop compared to the sole crops. During the two seasons (2000/2001 and 2001/2002) the drained upper limit (DUL) and crop lower limits (CLL) were determined. The maize-bean intercrop, sole maize and sole bean had CLL of 141 mm/m, 149 mm/m and 159 mm/m respectively. The DUL was 262 mm/m for the site and therefore the potential plant extractable soil water for the cropping systems were: 121 mm/m (IMB); 114 mm/m (SM) and 103 mm/m (SB). Overall, the intercrop did not have significantly different total soil water extraction during both seasons, although it was additive, showing that it had higher water to biomass conversion.

  2. Greenhouse gas emissions and stocks of soil carbon and nitrogen from a 20-year fertilised wheat-maize intercropping system: A model approach.

    PubMed

    Zhang, Xubo; Xu, Minggang; Liu, Jian; Sun, Nan; Wang, Boren; Wu, Lianhai

    2016-02-01

    Accurate modelling of agricultural management impacts on greenhouse gas emissions and the cycling of carbon and nitrogen is complicated due to interactions between various processes and the disturbance caused by field management. In this study, a process-based model, the Soil-Plant-Atmosphere Continuum System (SPACSYS), was used to simulate the effects of different fertilisation regimes on crop yields, the dynamics of soil organic carbon (SOC) and total nitrogen (SN) stocks from 1990 to 2010, and soil CO2 (2007-2010) and N2O (2007-2008) emissions based on a long-term fertilisation experiment with a winter-wheat (Triticum Aestivum L.) and summer-maize (Zea mays L.) intercropping system in Eutric Cambisol (FAO) soil in southern China. Three fertilisation treatments were 1) unfertilised (Control), 2) chemical nitrogen, phosphorus and potassium (NPK), and 3) NPK plus pig manure (NPKM). Statistical analyses indicated that the SPACSYS model can reasonably simulate the yields of wheat and maize, the evolution of SOC and SN stocks and soil CO2 and N2O emissions. The simulations showed that the NPKM treatment had the highest values of crop yields, SOC and SN stocks, and soil CO2 and N2O emissions were the lowest from the Control treatment. Furthermore, the simulated results showed that manure amendment along with chemical fertiliser applications led to both C (1017 ± 470 kg C ha(-1) yr(-1)) and N gains (91.7 ± 15.1 kg N ha(-1) yr(-1)) in the plant-soil system, while the Control treatment caused a slight loss in C and N. In conclusion, the SPACSYS model can accurately simulate the processes of C and N as affected by various fertilisation treatments in the red soil. Furthermore, application of chemical fertilisers plus manure could be a suitable management for ensuring crop yield and sustaining soil fertility in the red soil region, but the ratio of chemical fertilisers to manure should be optimized to reduce C and N losses to the environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Effects of Intercropping with Potato Onion on the Growth of Tomato and Rhizosphere Alkaline Phosphatase Genes Diversity

    PubMed Central

    Wu, Xia; Wu, Fengzhi; Zhou, Xingang; Fu, Xuepeng; Tao, Yue; Xu, Weihui; Pan, Kai; Liu, Shouwei

    2016-01-01

    Background and Aims: In China, excessive fertilization has resulted in phosphorus (P) accumulation in most greenhouse soils. Intercropping can improve the efficiency of nutrient utilization in crop production. In this study, pot experiments were performed to investigate the effects of intercropping with potato onion (Allium cepa L. var. aggregatum G. Don) on tomato (Solanum lycopersicum L.) seedlings growth and P uptake, the diversity of rhizosphere phosphobacteria and alkaline phosphatase (ALP) genes in phosphorus-rich soil. Methods: The experiment included three treatments, namely tomato monoculture (TM), potato onion monoculture (OM), and tomato/potato onion intercropping (TI-tomato intercropping and OI-potato onion intercropping). The growth and P uptake of tomato and potato onion seedlings were evaluated. The dilution plating method was used to determine the population of phosphate-solubilizing bacteria (PSB) and phosphate-mineralizing bacteria (PMB). The genomic DNAs of PSB and PMB in the rhizosphere of tomato and potato onions were extracted and purified, and then, with the primer set of 338f /518r, the PCR amplification of partial bacterial 16S rDNA sequence was performed and sequenced to determine the diversities of PSB and PMB. After extracting the total genomic DNAs from the rhizosphere, the copy numbers and diversities of ALP genes were investigated using real-time PCR and PCR-DGGE, respectively. Results: Intercropping with potato onion promoted the growth and P uptake of tomato seedlings, but inhibited those of potato onion. After 37 days of transplanting, compared to the rhizosphere of TM, the soil pH increased, while the electrolytic conductivity and Olsen P content decreased (p < 0.05) in the rhizosphere of TI. The populations and diversities of PSB, PMB, and ALP genes increased significantly in the rhizosphere of TI, compared to the rhizosphere of TM. Conclusion: The results indicated that intercropping with potato onion promoted the growth and P uptake of tomato in phosphorus-rich soil and affected the community structure and function of phosphobacteria in tomato rhizosphere. Intercropping with potato onion also improved soil quality by lowering levels of soil acidification and salinization. PMID:27379133

  4. Effects of Intercropping with Potato Onion on the Growth of Tomato and Rhizosphere Alkaline Phosphatase Genes Diversity.

    PubMed

    Wu, Xia; Wu, Fengzhi; Zhou, Xingang; Fu, Xuepeng; Tao, Yue; Xu, Weihui; Pan, Kai; Liu, Shouwei

    2016-01-01

    In China, excessive fertilization has resulted in phosphorus (P) accumulation in most greenhouse soils. Intercropping can improve the efficiency of nutrient utilization in crop production. In this study, pot experiments were performed to investigate the effects of intercropping with potato onion (Allium cepa L. var. aggregatum G. Don) on tomato (Solanum lycopersicum L.) seedlings growth and P uptake, the diversity of rhizosphere phosphobacteria and alkaline phosphatase (ALP) genes in phosphorus-rich soil. The experiment included three treatments, namely tomato monoculture (TM), potato onion monoculture (OM), and tomato/potato onion intercropping (TI-tomato intercropping and OI-potato onion intercropping). The growth and P uptake of tomato and potato onion seedlings were evaluated. The dilution plating method was used to determine the population of phosphate-solubilizing bacteria (PSB) and phosphate-mineralizing bacteria (PMB). The genomic DNAs of PSB and PMB in the rhizosphere of tomato and potato onions were extracted and purified, and then, with the primer set of 338f /518r, the PCR amplification of partial bacterial 16S rDNA sequence was performed and sequenced to determine the diversities of PSB and PMB. After extracting the total genomic DNAs from the rhizosphere, the copy numbers and diversities of ALP genes were investigated using real-time PCR and PCR-DGGE, respectively. Intercropping with potato onion promoted the growth and P uptake of tomato seedlings, but inhibited those of potato onion. After 37 days of transplanting, compared to the rhizosphere of TM, the soil pH increased, while the electrolytic conductivity and Olsen P content decreased (p < 0.05) in the rhizosphere of TI. The populations and diversities of PSB, PMB, and ALP genes increased significantly in the rhizosphere of TI, compared to the rhizosphere of TM. The results indicated that intercropping with potato onion promoted the growth and P uptake of tomato in phosphorus-rich soil and affected the community structure and function of phosphobacteria in tomato rhizosphere. Intercropping with potato onion also improved soil quality by lowering levels of soil acidification and salinization.

  5. Row Ratios of Intercropping Maize and Soybean Can Affect Agronomic Efficiency of the System and Subsequent Wheat

    PubMed Central

    Zhang, Yitao; Liu, Jian; Zhang, Jizong; Liu, Hongbin; Liu, Shen; Zhai, Limei; Wang, Hongyuan; Lei, Qiuliang; Ren, Tianzhi; Yin, Changbin

    2015-01-01

    Intercropping is regarded as an important agricultural practice to improve crop production and environmental quality in the regions with intensive agricultural production, e.g., northern China. To optimize agronomic advantage of maize (Zea mays L.) and soybean (Glycine max L.) intercropping system compared to monoculture of maize, two sequential experiments were conducted. Experiment 1 was to screening the optimal cropping system in summer that had the highest yields and economic benefits, and Experiment 2 was to identify the optimum row ratio of the intercrops selected from Experiment 1. Results of Experiment 1 showed that maize intercropping with soybean (maize || soybean) was the optimal cropping system in summer. Compared to conventional monoculture of maize, maize || soybean had significant advantage in yield, economy, land utilization ratio and reducing soil nitrate nitrogen (N) accumulation, as well as better residual effect on the subsequent wheat (Triticum aestivum L.) crop. Experiment 2 showed that intercropping systems reduced use of N fertilizer per unit land area and increased relative biomass of intercropped maize, due to promoted photosynthetic efficiency of border rows and N utilization during symbiotic period. Intercropping advantage began to emerge at tasseling stage after N topdressing for maize. Among all treatments with different row ratios, alternating four maize rows with six soybean rows (4M:6S) had the largest land equivalent ratio (1.30), total N accumulation in crops (258 kg ha-1), and economic benefit (3,408 USD ha-1). Compared to maize monoculture, 4M:6S had significantly lower nitrate-N accumulation in soil both after harvest of maize and after harvest of the subsequent wheat, but it did not decrease yield of wheat. The most important advantage of 4M:6S was to increase biomass of intercropped maize and soybean, which further led to the increase of total N accumulation by crops as well as economic benefit. In conclusion, alternating four maize rows with six soybean rows was the optimum row ratio in maize || soybean system, though this needs to be further confirmed by pluri-annual trials. PMID:26061566

  6. Intercropping with switchgrass improves net greenhouse gas balance in hybrid poplar plantations on a sand soil

    USDA-ARS?s Scientific Manuscript database

    Highly productive, commercial hybrid poplar plantations are being managed in the Pacific Northwest for high-value timber production at relatively low stocking densities under irrigation. The open understory was used to produce switchgrass (Panicum virgatum) prior to canopy closure. The objectives ...

  7. [Effects of intercropping Sedum plumbizincicola and Apium graceolens on the soil chemical and microbiological properties under the contamination of zinc and cadmium from sewage sludge application].

    PubMed

    Nai, Feng-Jiao; Wu, Long-Hua; Liu, Hong-Yan; Ren, Jing; Liu, Wu-Xing; Luo, Yong-Ming

    2013-05-01

    Taking the vegetable soil with zinc- and cadmium contamination from a long-term sewage sludge application as the object, a pot experiment was conducted to study the remediation effect of Sedum plumbizincicola and Apium graceolens under continuous monoculture and intercropping. With the remediation time increased, both S. plumbizincicola and A. graceolens under monoculture grew poorly, but S. plumbizincicola under intercropping grew well. Under intercropping, the soil organic matter, total N, extractable N, and total P contents decreased significantly while the soil extractable K content had a significant increase, the counts of soil bacteria and fungi increased by 7.9 and 18.4 times and 3.7 and 4.3 times, respectively, but the soil urease and catalase activities remained unchanged, as compared with those under A. graceolens and S. plumbizincicola monoculture. The BIOLOG ECO micro-plates also showed that the carbon sources utilization level and the functional diversity index of soil microbial communities were higher under intercropping than under monoculture, and the concentrations of soil zinc and cadmium under intercropping decreased by 5.8% and 50.0%, respectively, with the decrements being significantly higher than those under monoculture. It was suggested that soil microbial effect could be one of the important factors affecting plant growth.

  8. A field study on heavy metals phytoattenuation potential of monocropping and intercropping of maize and/or legumes in weakly alkaline soils.

    PubMed

    Zhu, Saiyong; Ma, Xinwang; Guo, Rui; Ai, Shiwei; Liu, Bailin; Zhang, Wenya; Zhang, Yingmei

    2016-10-02

    The study focused on the phytoattenuation effects of monocropping and intercropping of maize (Zea mays) and/or legumes on Cu, Zn, Pb, and Cd in weakly alkaline soils. Nine growth stages of monocropping maize were chosen to study the dynamic process of extraction of heavy metals. The total content of heavy metals extracted by the aerial part of monocropped maize increased in a sigmoidal pattern over the effective accumulative temperature. The biggest biomass, highest extraction content, and lowest heavy metals bioaccumulation level occurred at physiological maturity. Among the different planting patterns, including monocropping and intercropping of maize and/or soybean (Glycine max), pea (Pisum sativum), and alfalfa (Medicago sativa), the extraction efficiency of Cu, Zn, Pb, and Cd varied greatly. Only intercropping of maize and soybean yielded relatively higher extraction efficiency for the four metals with no significant difference in the total biomass. Moreover, the heavy metals concentrations in dry biomass from all the planting patterns in the present study were within China's national legal thresholds for fodder use. Therefore, slightly polluted alkaline soils can be safely used through monocropping and intercropping of maize and/or legumes for a range of purposes. In particular, this study indicated that intercropping improves soil ecosystems polluted by heavy metals compared with monocropping.

  9. Association of Shifting Populations in the Root Zone Microbiome of Millet with Enhanced Crop Productivity in the Sahel Region (Africa)

    PubMed Central

    Assigbetse, Komi; Bayala, Roger; Chapuis-Lardy, Lydie; Dick, Richard P.; McSpadden Gardener, Brian B.

    2015-01-01

    This study characterized specific changes in the millet root zone microbiome stimulated by long-term woody-shrub intercropping at different sites in Senegal. At the two study sites, intercropping with woody shrubs and shrub residue resulted in a significant increase in millet [Pennisetum glaucum (L.) R. Br.] yield (P < 0.05) and associated patterns of increased diversity in both bacterial and fungal communities in the root zone of the crop. Across four experiments, operational taxonomic units (OTUs) belonging to Chitinophaga were consistently significantly (P < 0.001) enriched in the intercropped samples, and “Candidatus Koribacter” was consistently significantly enriched in samples where millet was grown alone. Those OTUs belonging to Chitinophaga were enriched more than 30-fold in residue-amended samples and formed a distinct subgroup from all OTUs detected in the genus. Additionally, OTUs belonging to 8 fungal genera (Aspergillus, Coniella, Epicoccum, Fusarium, Gibberella, Lasiodiplodia, Penicillium, and Phoma) were significantly (P < 0.005) enriched in all experiments at all sites in intercropped samples. The OTUs of four genera (Epicoccum, Fusarium, Gibberella, and Haematonectria) were consistently enriched at sites where millet was grown alone. Those enriched OTUs in intercropped samples showed consistently large-magnitude differences, ranging from 30- to 1,000-fold increases in abundance. Consistently enriched OTUs in intercropped samples in the genera Aspergillus, Fusarium, and Penicillium also formed phylogenetically distinct subgroups. These results suggest that the intercropping system used here can influence the recruitment of potentially beneficial microorganisms to the root zone of millet and aid subsistence farmers in producing higher-yielding crops. PMID:25681183

  10. Growth and physiological changes in continuously cropped eggplant (Solanum melongena L.) upon relay intercropping with garlic (Allium sativum L.)

    PubMed Central

    Wang, Mengyi; Wu, Cuinan; Cheng, Zhihui; Meng, Huanwen

    2015-01-01

    Relay intercropping represents an alternative for sustainable production of vegetables, but the changes of internally antioxidant defense combined with the growth and yield are not clear. Field experiment was carried out to investigate the malondialdehyde (MDA) content and activity levels of superoxide dismutase (SOD), peroxidase (POD), polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL) in eggplant (Solanum melongena L.) and plant height, stem diameter, maximal leaf area, and yield of eggplant grown under successive cropping in the year 2011 and 2012 to see if relay intercropping with garlic (Allium sativum L.) could benefit to eggplant growth and yield. Three experimental treatments with three repeats in each were carried out (completely randomized block design): eggplant monoculture (CK), eggplant relay intercropping with normal garlic (NG), and eggplant relay intercropping with green garlic (GG). In both years, the MDA content was significantly lower and SOD and POD activities were generally lower in NG and GG compared with CK in most sampling dates. PPO activity trends were generally opposite to those of POD. The general trend of PAL activity was similar to MDA. The plant height and stem of eggplant was lower, but the maximal leaf area was larger in NG and GG in 2011; in 2012 the plant growth was stronger in relay intercropping treatments. For eggplant yield in 2011, NG was 2.85% higher than CK; after the time for the green garlic pulled out was moved forward in 2012, the yield was increased by 6.26 and 7.80%, respectively, in NG and GG. The lower MDA content and enzyme activities in relay intercropping treatments showed that the eggplant suffered less damage from environment and continuous cropping obstacles, which promoted healthier plant. Thus from both the growth and physiological perspective, it was concluded that eggplant/garlic relay intercropping is a beneficial cultivation practice maintaining stronger plant growth and higher yield. PMID:25964788

  11. Growth and physiological changes in continuously cropped eggplant (Solanum melongena L.) upon relay intercropping with garlic (Allium sativum L.).

    PubMed

    Wang, Mengyi; Wu, Cuinan; Cheng, Zhihui; Meng, Huanwen

    2015-01-01

    Relay intercropping represents an alternative for sustainable production of vegetables, but the changes of internally antioxidant defense combined with the growth and yield are not clear. Field experiment was carried out to investigate the malondialdehyde (MDA) content and activity levels of superoxide dismutase (SOD), peroxidase (POD), polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL) in eggplant (Solanum melongena L.) and plant height, stem diameter, maximal leaf area, and yield of eggplant grown under successive cropping in the year 2011 and 2012 to see if relay intercropping with garlic (Allium sativum L.) could benefit to eggplant growth and yield. Three experimental treatments with three repeats in each were carried out (completely randomized block design): eggplant monoculture (CK), eggplant relay intercropping with normal garlic (NG), and eggplant relay intercropping with green garlic (GG). In both years, the MDA content was significantly lower and SOD and POD activities were generally lower in NG and GG compared with CK in most sampling dates. PPO activity trends were generally opposite to those of POD. The general trend of PAL activity was similar to MDA. The plant height and stem of eggplant was lower, but the maximal leaf area was larger in NG and GG in 2011; in 2012 the plant growth was stronger in relay intercropping treatments. For eggplant yield in 2011, NG was 2.85% higher than CK; after the time for the green garlic pulled out was moved forward in 2012, the yield was increased by 6.26 and 7.80%, respectively, in NG and GG. The lower MDA content and enzyme activities in relay intercropping treatments showed that the eggplant suffered less damage from environment and continuous cropping obstacles, which promoted healthier plant. Thus from both the growth and physiological perspective, it was concluded that eggplant/garlic relay intercropping is a beneficial cultivation practice maintaining stronger plant growth and higher yield.

  12. [Faba bean fusarium wilt (Fusarium oxysporum )control and its mechanism in different wheat varieties and faba bean intercropping system].

    PubMed

    Dong, Yan; Dong, Kun; Zheng, Yi; Tang, Li; Yang, Zhi-Xian

    2014-07-01

    Field experiment and hydroponic culture were conducted to investigate effects of three wheat varieties (Yunmai 42, Yunmai 47 and Mianyang 29) and faba bean intercropping on the shoot biomass, disease index of fusarium wilt, functional diversity of microbial community and the amount of Fusarium oxysporum in rhizosphere of faba bean. Contents and components of the soluble sugars, free amino acids and organic acids in the root exudates were also examined. Results showed that, compared with monocropped faba bean, shoot biomass of faba bean significantly increased by 16.6% and 13.4%, disease index of faba bean fusarium wilt significantly decreased by 47.6% and 23.3% as intercropped with Yunmai 42 and Yunmai 47, but no significant differences of both shoot biomass and disease index were found as intercropped with Mianyang 29. Compared with monocropped faba bean, the average well color development (AWCD value) and total utilization ability of carbon sources of faba bean significantly increased, the amount of Fusarium oxysporum of faba bean rhizosphere significantly decreased, and the microbial community structures of faba bean rhizosphere changed as intercropped with YM42 and YM47, while no significant effects as intercropped with MY29. Total contents of soluble sugar, free amino acids and organic acids in root exudates were in the trend of MY29>YM47>YM42. Contents of serine, glutamic, glycine, valine, methionine, phenylalanine, lysine in root exudates of MY29 were significantly higher than that in YM42 and YM47. The arginine was detected only in the root exudates of YM42 and YM47, and leucine was detected only in the root exudates of MY29. Six organic acids of tartaric acid, malic acid, citric acid, succinic acid, fumaric acid, t-aconitic acid were detected in root exudates of MY29 and YM47, and four organic acids of tartaric acid, malic acid, citric acid, fumaric acid were detected in root exudates of YM42. Malic acid content in root exudates of YM47 and MY29 was significantly higher than that of YM42. In conclusion, intercropping influenced the microbial activity and substrate utilization of soil microorganisms, altered the microbial community diversity in rhizosphere of faba bean, reduced the amount of F. oxysporum and disease index of faba bean fusarium wilt, and promoted faba bean growth. Effects of intercropping on disease control were influenced by the intercropped wheat variety, suggesting that the differences of root exudates of wheat were important factors that affected soil-borne diseases control in intercropping.

  13. [Effects of tobacco garlic crop rotation and intercropping on tobacco yield and rhizosphere soil phosphorus fractions].

    PubMed

    Tang, Biao; Zhang, Xi-zhou; Yang, Xian-bin

    2015-07-01

    A field plot experiment was conducted to investigate the tobacco yield and different forms of soil phosphorus under tobacco garlic crop rotation and intercropping patterns. The results showed that compared with tobacco monoculture, the tobacco yield and proportion of middle/high class of tobacco leaves to total leaves were significantly increased in tobacco garlic crop rotation and intercropping, and the rhizosphere soil available phosphorus contents were 1.3 and 1.7 times as high as that of tobacco monoculture at mature stage of lower leaf. For the inorganic phosphorus in rhizosphere and non-rhizosphere soil in different treatments, the contents of O-P and Fe-P were the highest, followed by Ca2-P and Al-P, and Ca8-P and Ca10-P were the lowest. Compared with tobacco monoculture and tobacco garlic crop intercropping, the Ca2-P concentration in rhizosphere soil under tobacco garlic crop rotation at mature stage of upper leaf, the Ca8-P concentration at mature stage of lower leaf, and the Ca10-P concentration at mature stage of middle leaf were lowest. The Al-P concentrations under tobacco garlic crop rotation and intercropping were 1.6 and 1.9 times, and 1.2 and 1.9 times as much as that under tobacco monoculture in rhizosphere soil at mature stages of lower leaf and middle leaf, respectively. The O-P concentrations in rhizosphere soil under tobacco garlic crop rotation and intercropping were significantly lower than that under tobacco monoculture. Compared with tobacco garlic crop intercropping, the tobacco garlic crop rotation could better improve tobacco yield and the proportion of high and middle class leaf by activating O-P, Ca10-P and resistant organic phosphorus in soil.

  14. Interplanting Annual Ryegrass, Wheat, Oat, and Corn to Mitigate Iron Deficiency in Dry Beans

    PubMed Central

    Omondi, Emmanuel Chiwo; Kniss, Andrew R.

    2014-01-01

    This study evaluated whether grass intercropping can be used to alleviate Fe deficiency chlorosis in dry beans (Phaseolus vulgaris L.) grown in high pH, calcareous soils with low organic matter. Field studies were conducted at the University of Wyoming Sustainable Agriculture Research and Extension Center in 2009 and 2010. Black- and navy beans were grown alone or intercropped with annual ryegrass (Lolium multiflorum Lam.), oat (Avena sativa L.), corn (Zea mays L.), or spring wheat (Triticum aestivum L.) in a two-factor factorial strip-plot randomized complete block design. All four grass species increased chlorophyll intensity in dry beans. However, grass species did not increase iron (Fe) concentration in dry bean tissues suggesting inefficient utilization of Fe present in the dry bean tissues. In 2009, nitrate-nitrogen (NO3-N) and manganese (Mn) concentration in bean tissue were greater in bean monoculture than in grass intercropped beans. Bean monoculture also had greater soil NO3-N concentrations than grass intercropped treatments. In 2009, grass intercrops reduced dry bean yield >25% compared to bean monoculture. Annual ryegrass was the least competitive of the four annual grass species. This suggests that competition from grasses for nutrients, water, or light may have outweighed benefits accruing from grass intercropping. Additional studies are required to determine the appropriate grass and dry bean densities, as well as the optimum time of grass removal. PMID:25536084

  15. Interplanting annual ryegrass, wheat, oat, and corn to mitigate iron deficiency in dry beans.

    PubMed

    Omondi, Emmanuel Chiwo; Kniss, Andrew R

    2014-01-01

    This study evaluated whether grass intercropping can be used to alleviate Fe deficiency chlorosis in dry beans (Phaseolus vulgaris L.) grown in high pH, calcareous soils with low organic matter. Field studies were conducted at the University of Wyoming Sustainable Agriculture Research and Extension Center in 2009 and 2010. Black- and navy beans were grown alone or intercropped with annual ryegrass (Lolium multiflorum Lam.), oat (Avena sativa L.), corn (Zea mays L.), or spring wheat (Triticum aestivum L.) in a two-factor factorial strip-plot randomized complete block design. All four grass species increased chlorophyll intensity in dry beans. However, grass species did not increase iron (Fe) concentration in dry bean tissues suggesting inefficient utilization of Fe present in the dry bean tissues. In 2009, nitrate-nitrogen (NO3-N) and manganese (Mn) concentration in bean tissue were greater in bean monoculture than in grass intercropped beans. Bean monoculture also had greater soil NO3-N concentrations than grass intercropped treatments. In 2009, grass intercrops reduced dry bean yield >25% compared to bean monoculture. Annual ryegrass was the least competitive of the four annual grass species. This suggests that competition from grasses for nutrients, water, or light may have outweighed benefits accruing from grass intercropping. Additional studies are required to determine the appropriate grass and dry bean densities, as well as the optimum time of grass removal.

  16. Effect of population density of lettuce intercropped with rocket on productivity and land-use efficiency

    PubMed Central

    2018-01-01

    The objective of this study was to evaluate the influence of the spacing of lettuce rows on the production of a lettuce-rocket intercropping system over two growing seasons (11 August to 25 September 2011 and 12 January to 24 February 2012) in Jaboticabal, São Paulo, Brazil. We evaluated 11 treatments in each season: lettuce-rocket intercrops with five row spacings for the lettuce (0.20, 0.25, 0.30, 0.35 and 0.40 m) and the rocket planted midway between the lettuce rows, sole crops of lettuce at the same five row spacings and a sole crop of rocket. Fresh and dry masses of the lettuce and rocket and number of lettuce leaves per plant were highest with a lettuce row spacing of 0.40 m, but the productivities of the lettuce and rocket were higher with a lettuce row spacing of 0.20 m. The productivities and fresh and dry weights of the lettuce and rocket and the number of lettuce leaves per plant were highest in the sole crops, but the fresh and dry weights of the rocket were higher with intercropping. The land equivalent ratios were >1.0 in both seasons in all intercrops and were highest for the densest crop (1.41). Intercropping was therefore 41% more efficient than sole cropping for the production of lettuce and rocket. PMID:29698401

  17. Effect of population density of lettuce intercropped with rocket on productivity and land-use efficiency.

    PubMed

    Nascimento, Camila Seno; Cecílio Filho, Arthur Bernardes; Mendoza-Cortez, Juan Waldir; Nascimento, Carolina Seno; Bezerra Neto, Francisco; Grangeiro, Leilson Costa

    2018-01-01

    The objective of this study was to evaluate the influence of the spacing of lettuce rows on the production of a lettuce-rocket intercropping system over two growing seasons (11 August to 25 September 2011 and 12 January to 24 February 2012) in Jaboticabal, São Paulo, Brazil. We evaluated 11 treatments in each season: lettuce-rocket intercrops with five row spacings for the lettuce (0.20, 0.25, 0.30, 0.35 and 0.40 m) and the rocket planted midway between the lettuce rows, sole crops of lettuce at the same five row spacings and a sole crop of rocket. Fresh and dry masses of the lettuce and rocket and number of lettuce leaves per plant were highest with a lettuce row spacing of 0.40 m, but the productivities of the lettuce and rocket were higher with a lettuce row spacing of 0.20 m. The productivities and fresh and dry weights of the lettuce and rocket and the number of lettuce leaves per plant were highest in the sole crops, but the fresh and dry weights of the rocket were higher with intercropping. The land equivalent ratios were >1.0 in both seasons in all intercrops and were highest for the densest crop (1.41). Intercropping was therefore 41% more efficient than sole cropping for the production of lettuce and rocket.

  18. [Relationships between soil nutrients and rhizospheric soil microbial communities and enzyme activities in a maize-capsicum intercropping system].

    PubMed

    Xu, Qiang; Cheng, Zhi-Hui; Meng, Huan-Wen; Zhang, Yu

    2007-12-01

    By using plastic sheet and nylon mesh to partition the root systems of maize and capsicum in a maize-capsicum intercropping system, this paper studied the relationships between soil biological factors and nutritive status in the intercropping system, with no partitioning and maize monoculture and capsicum monoculture as the control. The results showed that intercropping maize and capsicum had its high superiority. In the treatments of no partitioning and nylon mesh portioning in the intercropping system, soil enzyme activities, microbial individuals and nutrient contents were significantly higher, compared with those in the treatments of nylon mesh partitioning and monocultures. All kinds of soil available nutrients showed significant or very significant positive correlations with soil biological factors, except that soil available Mg was negatively correlated with soil fungi and catalase activity. Pathway analysis indicated that in the intercropping system, soil urease, catalase, protease, and bacteria were the main factors affecting the accumulation of soil organic matter, saccharase was the most important factor affecting soil alkali-hydrolyzable N, urease was the most important factor affecting soil available P, and bacteria largely determined soil available K. Soil alkaline phosphatase and fungi selectively affected the accumulation of soil organic matter and available N, P and K. There was a slight negative correlation between soil actinomycetes and soil nutrients, suggesting that actinomycetes had little effect on soil nutrient formation.

  19. [Effects of intercropping Chinese onion cultivars of different allelopathic potential on cucumber growth and soil micro-environment].

    PubMed

    Yang, Yang; Wu, Feng-zhi

    2011-10-01

    A pot experiment was conducted to study the effects of intercropping various Chinese onion cultivars of different allelopathic potential on the cucumber growth and rhizospheric soil environment. When intercropped with high allelopathic Chinese onion cultivars, the EC value and peroxidase activity of cucumber rhizospheric soil decreased, while the pH value, invertase and catalase activities, and bacterial community diversity increased. The cloning and sequencing results indicated that most DGGE bands amplified from cucumber rhizospheric soil samples showed a high homology to uncultured bacterial species. The common bands were affiliated with Actinobacteria and Proteobacteria, and the differential bacteria bands were affiliated with Proteobacteria and Anaerolineaceae. Rhodospirillales and Acidobacteria were only found in the cucumber rhizospheric soil intercropped with low allelopathic Chinese onion cultivars. Correlation analysis showed that there were significant positive correlations between rhizospheric soil urease activity and cucumber seedlings height, total dry biomass, leaf area, and DGGE band number. It was suggested that intercropping high allelopathic Chinese onion cultivars could establish a good rhizospheric soil micro-environment for cucumber growth, and promote the growth of cucumber seedlings markedly.

  20. Gas exchange and stand-level estimates of water use and gross primary productivity in an experimental pine and switchgrass intercrop forestry system on the Lower Coastal Plain of North Carolina, U.S.A

    Treesearch

    Janine M. Albaugha; Jean-Christophe Domeca; Chris A. Maier; Eric B. Sucre; Zakiya H. Leggett; John S. King

    2014-01-01

    Despite growing interest in using switchgrass (Panicum virgatum L.) as a biofuel, there are limiteddata on the physiology of this species and its effect on stand water use and carbon (C) assimilationwhen grown as a forest intercrop for bioenergy. Therefore, we quantified gas exchange rates of switch-grass within intercropped plots and in pure switchgrass plots during...

  1. [Effects of N application on wheat powdery mildew occurrence, nitrogen accumulation and allocation in intercropping system].

    PubMed

    Zhu, Jin Hui; Dong, Yan; Xiao, Jing Xiu; Zheng, Yi; Tang, Li

    2017-12-01

    The main objective of this field experiment was to study the effects of wheat and faba bean intercropping on occurrence of wheat powdery mildew, nitrogen content, accumulation and allocation of wheat plant at 4 nitrogen levels of N 0 (0 kg·hm -2 ), N 1 (112.5 kg·hm -2 ), N 2 (225 kg·hm -2 ), N 3 (337.5 kg·hm -2 ), and to explore the relationship between N content, accumulation, allocation and the occurrence of wheat powdery mildew. The results showed that both monocropped and intercropped wheat yields increased with nitrogen application, with the highest yields of monocropped and intercropped wheat being 4146 kg·hm -2 and 4679 kg·hm -2 at N 2 le-vel, respectively. The occurrence and development of wheat powdery mildew become more severe with the increase of N application and area under disease progression curve (AUDPC) were averagely increased by 39.6%-55.6%(calculated with disease incidence, DI) and 92.5%-217.0% (calculated with disease severity index, DSI) with N 1 , N 2 and N 3 treatments. The disease severity index was more affected by nitrogen regulation than by disease incidence. The nitrogen content and accumulation of wheat plant were significantly increased by 8.4%-51.6% and 19.7%-133.7% with nitrogen application, but there was no significant effect on N allocation ratio. Compared with monocropped wheat, yield of intercropped wheat was averagely increased by 12%, whereas, the AUDPC(DI) and AUDPC(DSI) of intercropped wheat were averagely decreased by 11.5% and 30.7%, respectively. The control effect of the disease severity index by intercropping was better than disease incidence. The nitrogen content, accumulation and nitrogen allocation ratio in intercropped wheat leaves were significantly decreased by 6.6%-12.5%, 1.4%-6.9% and 9.0%-15.5% respectively at the peak infection stage of powdery mildew. Overall findings showed that the maximum rate of nitrogen application for wheat should not exceed 225 kg·hm -2 when taking into account both disease control and yield effect.

  2. [Water-saving mechanisms of intercropping system in improving cropland water use efficiency].

    PubMed

    Zhang, Feng-Yun; Wu, Pu-Te; Zhao, Xi-Ning; Cheng, Xue-Feng

    2012-05-01

    Based on the multi-disciplinary researches, and in terms of the transformation efficiency of surface water to soil water, availability of cropland soil water, crop canopy structure, total irrigation volume needed on a given area, and crop yield, this paper discussed the water-saving mechanisms of intercropping system in improving cropland water use efficiency. Intercropping system could promote the full use of cropland water by plant roots, increase the water storage in root zone, reduce the inter-row evaporation and control excessive transpiration, and create a special microclimate advantageous to the plant growth and development. In addition, intercropping system could optimize source-sink relationship, provide a sound foundation for intensively utilizing resources temporally and spatially, and increase the crop yield per unit area greatly without increase of water consumption, so as to promote the crop water use efficiency effectively.

  3. Intercropping Competition between Apple Trees and Crops in Agroforestry Systems on the Loess Plateau of China

    PubMed Central

    Gao, Lubo; Xu, Huasen; Bi, Huaxing; Xi, Weimin; Bao, Biao; Wang, Xiaoyan; Bi, Chao; Chang, Yifang

    2013-01-01

    Agroforestry has been widely practiced in the Loess Plateau region of China because of its prominent effects in reducing soil and water losses, improving land-use efficiency and increasing economic returns. However, the agroforestry practices may lead to competition between crops and trees for underground soil moisture and nutrients, and the trees on the canopy layer may also lead to shortage of light for crops. In order to minimize interspecific competition and maximize the benefits of tree-based intercropping systems, we studied photosynthesis, growth and yield of soybean (Glycine max L. Merr.) and peanut (Arachis hypogaea L.) by measuring photosynthetically active radiation, net photosynthetic rate, soil moisture and soil nutrients in a plantation of apple (Malus pumila M.) at a spacing of 4 m × 5 m on the Loess Plateau of China. The results showed that for both intercropping systems in the study region, soil moisture was the primary factor affecting the crop yields followed by light. Deficiency of the soil nutrients also had a significant impact on crop yields. Compared with soybean, peanut was more suitable for intercropping with apple trees to obtain economic benefits in the region. We concluded that apple-soybean and apple-peanut intercropping systems can be practical and beneficial in the region. However, the distance between crops and tree rows should be adjusted to minimize interspecies competition. Agronomic measures such as regular canopy pruning, root barriers, additional irrigation and fertilization also should be applied in the intercropping systems. PMID:23936246

  4. Reduce pests, enhance production: benefits of intercropping at high densities for okra farmers in Cameroon.

    PubMed

    Singh, Akanksha; Weisser, Wolfgang W; Hanna, Rachid; Houmgny, Raissa; Zytynska, Sharon E

    2017-10-01

    Intercropping can help reduce insect pest populations. However, the results of intercropping can be pest- and crop-species specific, with varying effects on crop yield, and pest suppression success. In Cameroon, okra vegetable is often grown in intercropped fields and sown with large distances between planting rows (∼ 2 m). Dominant okra pests include cotton aphids, leaf beetles and whiteflies. In a field experiment, we intercropped okra with maize and bean in different combinations (okra monoculture, okra-bean, okra-maize and okra-bean-maize) and altered plant densities (high and low) to test for the effects of diversity, crop identity and planting distances on okra pests, their predators and yield. We found crop identity and plant density, but not crop diversity to influence okra pests, their predators and okra yield. Only leaf beetles decreased okra yield and their abundance reduced at high plant density. Overall, okra grown with bean at high density was the most economically profitable combination. We suggest that when okra is grown at higher densities, legumes (e.g. beans) should be included as an additional crop. Intercropping with a leguminous crop can enhance nitrogen in the soil, benefiting other crops, while also being harvested and sold at market for additional profit. Manipulating planting distances and selecting plants based on their beneficial traits may thus help to eliminate yield gaps in sustainable agriculture. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Crop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: a critical review

    PubMed Central

    Xue, Yanfang; Xia, Haiyong; Christie, Peter; Zhang, Zheng; Li, Long; Tang, Caixian

    2016-01-01

    Background Phosphorus (P), iron (Fe) and zinc (Zn) are essential elements for plant growth and development, but their availability in soil is often limited. Intercropping contributes to increased P, Fe and Zn uptake and thereby increases yield and improves grain nutritional quality and ultimately human health. A better understanding of how intercropping leads to increased plant P, Fe and Zn availability will help to improve P-fertilizer-use efficiency and agronomic Fe and Zn biofortification. Scope This review synthesizes the literature on how intercropping of legumes with cereals increases acquisition of P, Fe and Zn from soil and recapitulates what is known about root-to-shoot nutrient translocation, plant-internal nutrient remobilization and allocation to grains. Conclusions Direct interspecific facilitation in intercropping involves below-ground processes in which cereals increase Fe and Zn bioavailability while companion legumes benefit. This has been demonstrated and verified using isotopic nutrient tracing and molecular analysis. The same methodological approaches and field studies should be used to explore direct interspecific P facilitation. Both niche complementarity and interspecific facilitation contribute to increased P acquisition in intercropping. Niche complementarity may also contribute to increased Fe and Zn acquisition, an aspect poorly understood. Interspecific mobilization and uptake facilitation of sparingly soluble P, Fe and Zn from soil, however, are not the only determinants of the concentrations of P, Fe and Zn in grains. Grain yield and nutrient translocation from roots to shoots further influence the concentrations of these nutrients in grains. PMID:26749590

  6. Intercropping competition between apple trees and crops in agroforestry systems on the Loess Plateau of China.

    PubMed

    Gao, Lubo; Xu, Huasen; Bi, Huaxing; Xi, Weimin; Bao, Biao; Wang, Xiaoyan; Bi, Chao; Chang, Yifang

    2013-01-01

    Agroforestry has been widely practiced in the Loess Plateau region of China because of its prominent effects in reducing soil and water losses, improving land-use efficiency and increasing economic returns. However, the agroforestry practices may lead to competition between crops and trees for underground soil moisture and nutrients, and the trees on the canopy layer may also lead to shortage of light for crops. In order to minimize interspecific competition and maximize the benefits of tree-based intercropping systems, we studied photosynthesis, growth and yield of soybean (Glycine max L. Merr.) and peanut (Arachis hypogaea L.) by measuring photosynthetically active radiation, net photosynthetic rate, soil moisture and soil nutrients in a plantation of apple (Malus pumila M.) at a spacing of 4 m × 5 m on the Loess Plateau of China. The results showed that for both intercropping systems in the study region, soil moisture was the primary factor affecting the crop yields followed by light. Deficiency of the soil nutrients also had a significant impact on crop yields. Compared with soybean, peanut was more suitable for intercropping with apple trees to obtain economic benefits in the region. We concluded that apple-soybean and apple-peanut intercropping systems can be practical and beneficial in the region. However, the distance between crops and tree rows should be adjusted to minimize interspecies competition. Agronomic measures such as regular canopy pruning, root barriers, additional irrigation and fertilization also should be applied in the intercropping systems.

  7. Soil Chemical Property Changes in Eggplant/Garlic Relay Intercropping Systems under Continuous Cropping

    PubMed Central

    Wang, Mengyi; Wu, Cuinan; Cheng, Zhihui; Meng, Huanwen; Zhang, Mengru; Zhang, Hongjing

    2014-01-01

    Soil sickness is a critical problem for eggplant (Solanum melongena L.) under continuous cropping that affects sustainable eggplant production. Relay intercropping is a significant technique on promoting soil quality, improving eco-environment, and raising output. Field experiments were conducted from September 2010 to November 2012 in northwest China to determine the effects of relay intercropping eggplant with garlic (Allium sativum L.) on soil enzyme activities, available nutrient contents, and pH value under a plastic tunnel. Three treatments were in triplicate using randomized block design: eggplant monoculture (CK), eggplant relay intercropping with normal garlic (NG) and eggplant relay intercropping with green garlic (GG). The major results are as follows: (1) the activities of soil invertase, urease, and alkaline phosphatase were generally enhanced in NG and GG treatments; (2) relay intercropping significantly increased the soil available nutrient contents, and they were mostly higher in GG than NG. On April 11, 2011, the eggplant/garlic co-growth stage, the available nitrogen content in GG was 76.30 mg·kg−1, significantly higher than 61.95 mg·kg−1 in NG. For available potassium on April 17, 2012, they were 398.48 and 387.97 mg·kg−1 in NG and GG, both were significantly higher than 314.84 mg·kg−1 in CK; (3) the soil pH showed a significantly higher level in NG treatment, but lower in GG treatment compared with CK. For the last samples in 2012, soil pH in NG and GG were 7.70 and 7.46, the highest and lowest one among them; (4) the alkaline phosphatase activity and pH displayed a similar decreasing trend with continuous cropping. These findings indicate that relay intercropping eggplant with garlic could be an ideal farming system to effectively improve soil nutrient content, increase soil fertility, and alleviate soil sickness to some extent. These findings are important in helping to develop sustainable eggplant production. PMID:25340875

  8. Soil chemical property changes in eggplant/garlic relay intercropping systems under continuous cropping.

    PubMed

    Wang, Mengyi; Wu, Cuinan; Cheng, Zhihui; Meng, Huanwen; Zhang, Mengru; Zhang, Hongjing

    2014-01-01

    Soil sickness is a critical problem for eggplant (Solanum melongena L.) under continuous cropping that affects sustainable eggplant production. Relay intercropping is a significant technique on promoting soil quality, improving eco-environment, and raising output. Field experiments were conducted from September 2010 to November 2012 in northwest China to determine the effects of relay intercropping eggplant with garlic (Allium sativum L.) on soil enzyme activities, available nutrient contents, and pH value under a plastic tunnel. Three treatments were in triplicate using randomized block design: eggplant monoculture (CK), eggplant relay intercropping with normal garlic (NG) and eggplant relay intercropping with green garlic (GG). The major results are as follows: (1) the activities of soil invertase, urease, and alkaline phosphatase were generally enhanced in NG and GG treatments; (2) relay intercropping significantly increased the soil available nutrient contents, and they were mostly higher in GG than NG. On April 11, 2011, the eggplant/garlic co-growth stage, the available nitrogen content in GG was 76.30 mg·kg(-1), significantly higher than 61.95 mg·kg(-1) in NG. For available potassium on April 17, 2012, they were 398.48 and 387.97 mg·kg(-1) in NG and GG, both were significantly higher than 314.84 mg·kg(-1) in CK; (3) the soil pH showed a significantly higher level in NG treatment, but lower in GG treatment compared with CK. For the last samples in 2012, soil pH in NG and GG were 7.70 and 7.46, the highest and lowest one among them; (4) the alkaline phosphatase activity and pH displayed a similar decreasing trend with continuous cropping. These findings indicate that relay intercropping eggplant with garlic could be an ideal farming system to effectively improve soil nutrient content, increase soil fertility, and alleviate soil sickness to some extent. These findings are important in helping to develop sustainable eggplant production.

  9. Efficiency of repeated phytoextraction of cadmium and zinc from an agricultural soil contaminated with sewage sludge.

    PubMed

    Luo, Kai; Ma, Tingting; Liu, Hongyan; Wu, Longhua; Ren, Jing; Nai, Fengjiao; Li, Rui; Chen, Like; Luo, Yongming; Christie, Peter

    2015-01-01

    Long-term application of sewage sludge resulted in soil cadmium (Cd) and zinc (Zn) contamination in a pot experiment conducted to phytoextract Cd/Zn repeatedly using Sedum plumbizincicola and Apium graceolens in monoculture or intercropping mode eight times. Shoot yields and soil physicochemical properties changed markedly with increasing number of remediation crops when the two plant species were intercropped compared with the unplanted control soil and the two monoculture treatments. Changes in soil microbial indices such as average well colour development, soil enzyme activity and soil microbial counts were also significantly affected by the growth of the remediation plants, especially intercropping with S. plumbizincicola and A. graveolens. The higher yields and amounts of Cd taken up indicated that intercropping of the hyperaccumulator and the vegetable species may be suitable for simultaneous agricultural production and soil remediation, with larger crop yields and higher phytoremediation efficiencies than under monoculture conditions.

  10. [Effects of intercropping Sedum plumbizincicola in wheat growth season under wheat-rice rotation on the crops growth and their heavy metals uptake from different soil types].

    PubMed

    Zhao, Bing; Shen, Li-bo; Cheng, Miao-miao; Wang, Song-feng; Wu, Long-hua; Zhou, Shou-biao; Luo, Yong-ming

    2011-10-01

    A pot experiment with heavy metals- contaminated black soil from Heilongjiang Province, alluvial soil from Henan Province, and paddy soil from Zhejiang Province was conducted to study the effects of intercropping Sedum plumbizincicola in wheat growth season under wheat (Triticum aestivum) - rice (Oryza sativa) rotation on the growth of the crops and their heavy metals uptake, aimed to explore the feasibility of simultaneous grain production and heavy metals-contaminated soil phytoremediation in main food crop production areas of this country. Comparing with monoculture T. aestivum, intercropping S. plumbizincicola increased the soil NaNO3 -extractable Zn and Cd significantly, with the increment of extractable Zn in test paddy soil, alluvial soil, and black soil being 55%, 32% and 110%, and that of extractable Cd in test paddy soil and black soil being 38% and 110%, respectively. The heavy metals concentration in T. aestivum shoots under intercropping S. plumbizincicola was 0.1-0.9 times higher than that under monoculture T. aestivum, but the intercropping had little effects on the rice growth and its heavy metals uptake. Though the Cd concentration in rice grain after S. plumbizincicola planting was still higher than 0.2 mg kg(-1) (the limit of Cd in food standard), it presented a decreasing trend, as compared with that after monoculture T. aestivum. Therefore, intercropping S. plumbizincicola in wheat growth season under wheat-rice rota- tion could benefit the phytoremediation of heavy metals-contaminated soil, and decrease the food-chain risk of rotated rice.

  11. Soil organic matter fractions in loblolly pine forests of Coastal North Carolina managed for bioenergy production

    Treesearch

    Kevan J. Minick; Brian D. Strahm; Thomas R. Fox; Eric B. Surce; Zakiya H. Leggett

    2015-01-01

    Dependence on foreign oil continues to increase, and concern over rising atmospheric CO2 and other greenhouse gases has intensified research into sustainable biofuel production. Intercropping switchgrass (Panicum virgatum L.) between planted rows of loblolly pine (Pinus taeda L.) offers an opportunity to utilize inter-row space that typically contains herbaceous and...

  12. Lighting a dark corner.

    PubMed

    Choto, R

    1998-01-01

    In Karanga community, 410 km south of Harare, Zimbabwe, the Intermediate Technology Development Group's (ITDG) farming project has successfully improved household food security through its farming project. The ITDG encouraged the formation of 35 women's garden clubs that have allowed women to reduce their individual labor, become closer to each other, and incorporate improved farming methods to increase crop production. The ITDG started work in 1991, just before a severe drought in 1992 forced over 770,000 people to rely on aid for food. ITDG changed the unsuccessful, top-down approach of state agricultural workers to a more successful, bottom-up approach. It also reintroduced intercropping and integrated farming systems to compensate for the fact that the average number of households of six people manages with only about a hectare of land. Indigenous methods, such as intercropping onions for pest management, are reducing reliance on chemicals, and chicken and goal manure is used for fertilizer. In addition to improving food security and nutrition, the gardens are producing enough surplus vegetables for sale. ITDG has also assisted the drought-prone community in developing water conservation techniques that use infiltration pits and gravity to nourish the soil after the rains have stopped.

  13. Dataset on the abundance of ants and Cosmopolites sordidus damage in plantain fields with intercropped plants.

    PubMed

    Dassou, Anicet Gbèblonoudo; Carval, Dominique; Dépigny, Sylvain; Fansi, Gabriel; Tixier, Philippe

    2016-12-01

    The data presented in this article are related to the research article entitled "Ant abundance and Cosmopolites sordidus damage in plantain fields as affected by intercropping" (A.G. Dassou, D. Carval, S. Dépigny, G.H Fansi, P. Tixier, 2015) [1]. This article describes how associated crops maize (Zea mays), cocoyam (Xanthosoma sagittifolium) and bottle gourd (Lagenaria siceraria) intercropped in the plantain fields in Cameroun modify ant community structure and damages of banana weevil Cosmopolites sordidus. The field data set is made publicly available to enable critical or extended analyzes.

  14. An endophytic bacterium Acinetobacter calcoaceticus Sasm3-enhanced phytoremediation of nitrate-cadmium compound polluted soil by intercropping Sedum alfredii with oilseed rape.

    PubMed

    Chen, Bao; Ma, Xiaoxiao; Liu, Guiqing; Xu, Xiaomeng; Pan, Fengshan; Zhang, Jie; Tian, Shengke; Feng, Ying; Yang, Xiaoe

    2015-11-01

    Intensive agricultural system with high input of fertilizer results in high agricultural output. However, excessive fertilization in intensive agricultural system has great potential to cause nitrate and heavy metal accumulation in soil, which is adverse to human health. The main objective of the present study was to observe the effects of intercropping and inoculation of endophytic bacterium Acinetobacter calcoaceticus Sasm3 on phytoremediation of combined contaminated soil in oilseed rape (Brassica napus L.). The results showed that with Sasm3 inoculation, the biomass of rape was increased by 10-20% for shoot, 64% for root, and 23-29% for seeds while the nitrate accumulation in rape was decreased by 14% in root and by 12% in shoot. The cadmium concentration in rape increased significantly with mono-inoculating treatment, whereas it decreased significantly after intercropping treatment. By denaturing gradient gel electrophoresis (DGGE) and real-time quantitative PCR analysis, the diversity of bacterial community and the number of nirS and nirK gene copies increased significantly with inoculation or/and intercropping treatment. In conclusion, the endophytic bacterium Sasm3-inoculated intercropping system not only improved the efficiency of clearing cadmium from soil without obstructing crop production, but also improved the quality of crop.

  15. Allocation of Nitrogen and Carbon Is Regulated by Nodulation and Mycorrhizal Networks in Soybean/Maize Intercropping System

    PubMed Central

    Wang, Guihua; Sheng, Lichao; Zhao, Dan; Sheng, Jiandong; Wang, Xiurong; Liao, Hong

    2016-01-01

    Soybean/maize intercropping has remarkable advantages in increasing crop yield and nitrogen (N) efficiency. However, little is known about the contributions of rhizobia or arbuscular mycorrhizal fungi (AMF) to yield increases and N acquisition in the intercropping system. Plus, the mechanisms controlling carbon (C) and N allocation in intercropping systems remain unsettled. In the present study, a greenhouse experiment combined with 15N and 13C labeling was conducted using various inoculation and nutrient treatments. The results showed that co-inoculation with AMF and rhizobia dramatically increased biomass and N content of soybean and maize, and moderate application of N and phosphorus largely amplified the effect of co-inoculation. Maize had a competitive advantage over soybean only under co-inoculation and moderate nutrient availability conditions, indicating that the effects of AMF and rhizobia in intercropping systems are closely related to nutrient status. Results from 15N labeling showed that the amount of N transferred from soybean to maize in co-inoculations was 54% higher than that with AMF inoculation alone, with this increased N transfer partly resulting from symbiotic N fixation. The results from 13C labeling showed that 13C content increased in maize shoots and decreased in soybean roots with AMF inoculation compared to uninoculated controls. Yet, with co-inoculation, 13C content increased in soybean. These results indicate that photosynthate assimilation is stimulated by AM symbiosis in maize and rhizobial symbiosis in soybean, but AMF inoculation leads to soybean investing more carbon than maize into common mycorrhizal networks (CMNs). Overall, the results herein demonstrate that the growth advantage of maize when intercropped with soybean is due to acquisition of N by maize via CMNs while this crop contributes less C into CMNs than soybean under co-inoculation conditions. PMID:28018420

  16. Allocation of Nitrogen and Carbon Is Regulated by Nodulation and Mycorrhizal Networks in Soybean/Maize Intercropping System.

    PubMed

    Wang, Guihua; Sheng, Lichao; Zhao, Dan; Sheng, Jiandong; Wang, Xiurong; Liao, Hong

    2016-01-01

    Soybean/maize intercropping has remarkable advantages in increasing crop yield and nitrogen (N) efficiency. However, little is known about the contributions of rhizobia or arbuscular mycorrhizal fungi (AMF) to yield increases and N acquisition in the intercropping system. Plus, the mechanisms controlling carbon (C) and N allocation in intercropping systems remain unsettled. In the present study, a greenhouse experiment combined with 15 N and 13 C labeling was conducted using various inoculation and nutrient treatments. The results showed that co-inoculation with AMF and rhizobia dramatically increased biomass and N content of soybean and maize, and moderate application of N and phosphorus largely amplified the effect of co-inoculation. Maize had a competitive advantage over soybean only under co-inoculation and moderate nutrient availability conditions, indicating that the effects of AMF and rhizobia in intercropping systems are closely related to nutrient status. Results from 15 N labeling showed that the amount of N transferred from soybean to maize in co-inoculations was 54% higher than that with AMF inoculation alone, with this increased N transfer partly resulting from symbiotic N fixation. The results from 13 C labeling showed that 13 C content increased in maize shoots and decreased in soybean roots with AMF inoculation compared to uninoculated controls. Yet, with co-inoculation, 13 C content increased in soybean. These results indicate that photosynthate assimilation is stimulated by AM symbiosis in maize and rhizobial symbiosis in soybean, but AMF inoculation leads to soybean investing more carbon than maize into common mycorrhizal networks (CMNs). Overall, the results herein demonstrate that the growth advantage of maize when intercropped with soybean is due to acquisition of N by maize via CMNs while this crop contributes less C into CMNs than soybean under co-inoculation conditions.

  17. Agronomy of strip intercropping broccoli with alyssum for biological control of aphids

    USDA-ARS?s Scientific Manuscript database

    Organic broccoli growers in California typically control aphids by intercropping broccoli with strips of alyssum (Lobularia maritima (L.) Desv.) which attracts hoverflies (Diptera: Syrphidae) that are important predators of aphids. A three year study with transplanted organic broccoli in Salinas, ...

  18. Long-term field phytoextraction of zinc/cadmium contaminated soil by Sedum plumbizincicola under different agronomic strategies.

    PubMed

    Deng, Lin; Li, Zhu; Wang, Jie; Liu, Hongyan; Li, Na; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Christie, Peter

    2016-01-01

    In two long-term field experiments the zinc (Zn)/cadmium (Cd) hyperaccumulator Sedum plumbizincicola (S. plumbizincicola) was examined to optimize the phytoextraction of metal contaminated soil by two agronomic strategies of intercropping with maize (Zea mays) and plant densities. Soil total Zn and Cd concentrations decreased markedly after long-term phytoextraction. But shoot biomass and Cd and Zn concentrations showed no significant difference with increasing remediation time. In the intercropping experiment the phytoremediation efficiency in the treatment "S. plumbizincicola intercropped with maize" was higher than in S. plumbizincicola monocropping, and Cd concentrations of corn were below the maximum national limit. In the plant density experiment the phytoremediation efficiency increased with increasing plant density and 440,000 plants ha(-1) gave the maximum rate. These results indicated that S. plumbizincicola at an appropriate planting density and intercropped with maize can achieve high remediation efficiency to contaminated soil without affecting the cereal crop productivity. This cropping system combines adequate agricultural production with soil heavy metal phytoextraction.

  19. [Microbial and physiological mechanisms for alleviating fusarium wilt of faba bean in intercropping system.

    PubMed

    Dong, Yan; Dong, Kun; Yang, Zhi Xian; Zheng, Yi; Tang, Li

    2016-06-01

    A field trial was conducted to investigate effects of wheat and faba bean intercropping on incidence and index of fusarium wilt, amount of Fusarium oxysporum of faba bean, oxidase activity and membrane peroxidation of faba bean roots. Functional diversity of microbial community in rhizosphere soil of faba bean was analyzed by using Biolog microbial analysis system, contents of pheno-lic acids in faba bean rhizosphere soil were determined with high performance liquid chromatography (HPLC). Results showed that in comparison with that of monocropped faba bean, wheat and faba bean intercropping tended to reduce the incidence and disease index of faba bean. The fusarium wilt was significantly decreased by 15.8% and 22.8% during the peak infection and late infection stages, and the average well color development (AWCD value) was promoted obviously. The Shannon diversity (H) and richness (S) increased by 4.4% and 19.4% during the peak infection stage and 5.3% and 37.1% during the late infection stage, respectively. Principal component analysis demonstrated that intercropping significantly changed the rhizospheric microbial community composition. The amount of F. oxysporum in rhizosphere soil of intercropped faba bean was significantly decreased by 53.8% and 33.1%, respectively, during the peak infection and late infection stages, and contents of 4-hydroxy benzoic acid, vanillic acid, syringic acid, ferulic acid, benzoic acid and cinnamic acid also significantly decreased, peroxidase (POD), catalases (CAT) activities in roots of intercropped faba bean increased significantly by 20.0% and 31.3%, respectively during the peak infection stage and 38.5% and 66.7% respectively during the late infection stage, and the malondialdehyd (MDA) content decreased significantly by 36.3% and 46.3%, respectively during peak infection stage and late infection stage. It was concluded that wheat with faba bean intercropping could significantly promote the soil microbial activity and diversity, reduce the accumulation of phenolic allelochemicals and the amount of F. oxysporum in rhizosphere soil, increase the activities of CAT and POD, reduce MDA content in roots, and thus promote the resistance of faba bean to F. oxysporum infection.

  20. Phosphorous fractions in soils of rubber-based agroforestry systems: Influence of season, management and stand age.

    PubMed

    Liu, Chenggang; Jin, Yanqiang; Liu, Changan; Tang, Jianwei; Wang, Qingwei; Xu, Mingxi

    2018-03-01

    Rubber-based agroforestry system is a vital management practice and its productivity is often controlled by soil phosphorus (P) nutrient, but little information is available on P fractions dynamics in such system. The aim of this study was to examine the seasonal, management and stand age effects on P fractions, acid phosphatase activity, microbial biomass P, other physical-chemical properties and litter and roots in four systems: 10-year-old rubber mono- (YM) and intercropping (YI) with N-fixing species (NFS), 22-year-old mono- (MM) and intercropping (MI) in Xishuangbanna, Southwestern China. Most P fractions varied seasonally at different depths, with highest values in the fog-cool season (i.e. labile P at 5-60cm, non-labile P and total P at 30-60cm). By contrast, moderately labile P varied little over time, except in MI that had lower values in the rainy season. Compared with their monoculture counterparts, YI doubled resin-P i concentration but decreased NaHCO 3 -extractable P, HCl-P i and residual-P o at the 0-30cm depth, whereas MI had hardly any changes in P species at the 60-cm depth. Surprisingly, residual-P o was enriched down to the deepest soil (30-60cm) in both YI and MI in the fog-cool season. All P fractions, except NaOH 0.1 -P i , were greatly reduced with increasing stand age. In addition to plants uptake, these changes can be explained by seasonality in soil environments (e.g. moisture, temperature, pH and microbial activity) and decomposition of litter and roots. Moreover, YI decreased labile P o stock, but MI increased moderately labile P i at the 60-cm depth across seasons. The results imply that a large amount of residual-P o exists in acidic Oxisol from China and that they can be reasonably exploited to reduce the application of P fertilizers, highlighting the importance of P o pool. Taken together, intercropping mature rubber plantation with NFS appears to be an effective way to enhance productivity while maintaining adequate soil P concentration over the long run. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Crop Diversity for Yield Increase

    PubMed Central

    Li, Chengyun; He, Xiahong; Zhu, Shusheng; Zhou, Huiping; Wang, Yunyue; Li, Yan; Yang, Jing; Fan, Jinxiang; Yang, Jincheng; Wang, Guibin; Long, Yunfu; Xu, Jiayou; Tang, Yongsheng; Zhao, Gaohui; Yang, Jianrong; Liu, Lin; Sun, Yan; Xie, Yong; Wang, Haining; Zhu, Youyong

    2009-01-01

    Traditional farming practices suggest that cultivation of a mixture of crop species in the same field through temporal and spatial management may be advantageous in boosting yields and preventing disease, but evidence from large-scale field testing is limited. Increasing crop diversity through intercropping addresses the problem of increasing land utilization and crop productivity. In collaboration with farmers and extension personnel, we tested intercropping of tobacco, maize, sugarcane, potato, wheat and broad bean – either by relay cropping or by mixing crop species based on differences in their heights, and practiced these patterns on 15,302 hectares in ten counties in Yunnan Province, China. The results of observation plots within these areas showed that some combinations increased crop yields for the same season between 33.2 and 84.7% and reached a land equivalent ratio (LER) of between 1.31 and 1.84. This approach can be easily applied in developing countries, which is crucial in face of dwindling arable land and increasing food demand. PMID:19956624

  2. Soil Quality in a Pecan Agroforestry System is Improved with Intercropped Kura Clover

    USDA-ARS?s Scientific Manuscript database

    Intercropping alleys of agroforestry systems provides an income source until the tree crop produces harvestable yields. However, cultivation of annual crops decreases soil organic matter and increases soil erosion, especially on sloping landscapes. Perennial crops maintain a continuous soil cover, m...

  3. Intercropping with Kura Clover Improves Soil Quality in a Pecan Agroforestry System

    USDA-ARS?s Scientific Manuscript database

    Intercropping the alleys of agroforestry systems provides income until the tree crop begins to yield. However, cultivation of annual crops or intensive herbicidal control of vegetation in the alleys decreases soil organic matter and increases soil erosion, especially on sloping landscapes. Perennial...

  4. Phytoremediation of soil contaminated with cadmium, copper and polychlorinated biphenyls.

    PubMed

    Wu, Longhua; Li, Zhu; Han, Cunliang; Liu, Ling; Teng, Ying; Sun, Xianghui; Pan, Cheng; Huang, Yujuan; Luo, Yongming; Christie, Peter

    2012-07-01

    A pot experiment and afield trial were conducted to study the remediation of an aged field soil contaminated with cadmium, copper and polychlorinated biphenyls (PCBs) (7.67 +/- 0.51 mg kg(-1) Cd, 369 +/- 1 mg kg(-1) Cu in pot experiment; 8.46 +/- 0.31 mg kg(-1) Cd, 468 +/- 7 mg kg(-1) Cu, 323 +/- 12 microg kg(-1) PCBs for field experiment) under different cropping patterns. In the pot experiment Sedum plumbizincicola showed pronounced Cd phytoextraction. After two periods (14 months) of cropping the Cd removal rates in these two treatments were 52.2 +/- 12.0 and 56.1 +/- 9.1%, respectively. Total soil PCBs in unplanted control pots decreased from 323 +/- 11 to 49.3 +/- 6.6 microg kg(-1), but with no significant difference between treatments. The field microcosm experiment intercropping of three plant species reduced the yield of S. plumbizincicola, with a consequent decrease in soil Cd removal. S. plumbizincicola intercropped with E. splendens had the highest shoot Cd uptake (18.5 +/- 1.8 mg pot(-1)) after 6 months planting followed by intercropping with M. sativa (15.9 +/- 1.9 mg pot(-1)). Liming with S. plumbizincicola intercropped with M. sativa significantly promoted soil PCB degradation by 25.2%. Thus, adjustment of soil pH to 5.56 combined with intercropping with S. plumbizincicola and M. sativagave high removal rates of Cd, Cu, and PCBs.

  5. Potential of Legume–Brassica Intercrops for Forage Production and Green Manure: Encouragements from a Temperate Southeast European Environment

    PubMed Central

    Jeromela, Ana M.; Mikić, Aleksandar M.; Vujić, Svetlana; Ćupina, Branko; Krstić, Đorđe; Dimitrijević, Aleksandra; Vasiljević, Sanja; Mihailović, Vojislav; Cvejić, Sandra; Miladinović, Dragana

    2017-01-01

    Legumes and brassicas have much in common: importance in agricultural history, rich biodiversity, numerous forms of use, high adaptability to diverse farming designs, and various non-food applications. Rare available resources demonstrate intercropping legumes and brassicas as beneficial to both, especially for the latter, profiting from better nitrogen nutrition. Our team aimed at designing a scheme of the intercrops of autumn- and spring-sown annual legumes with brassicas for ruminant feeding and green manure, and has carried out a set of field trials in a temperate Southeast European environment and during the past decade, aimed at assessing their potential for yields of forage dry matter and aboveground biomass nitrogen and their economic reliability via land equivalent ratio. This review provides a cross-view of the most important deliverables of our applied research, including eight annual legume crops and six brassica species, demonstrating that nearly all the intercrops were economically reliable, as well as that those involving hairy vetch, Hungarian vetch, Narbonne vetch and pea on one side, and fodder kale and rapeseed on the other, were most productive in both manners. Feeling encouraged that this pioneering study may stimulate similar analyses in other environments and that intercropping annual legume and brassicas may play a large-scale role in diverse cropping systems, our team is heading a detailed examination of various extended research. PMID:28326095

  6. Spatial arrangement, population density and legume species effect of yield of forage sorghum-legume intercropping

    USDA-ARS?s Scientific Manuscript database

    Sorghum (Sorghum bicolor) is a stress tolerant forage crop grown extensively in the Southern High Plains. However, sorghum forage quality is lower than that of corn. Intercropping sorghum with legumes can improve quality and productivity of forage. However, tall statured sorghum limits the resources...

  7. Effects of site preparation for pine forest/switchgrass Intercropping on water quality

    Treesearch

    A. Muwamba; D. M. Amatya; H. Ssegane; G.M. Chescheir; T. Appelboom; E.W. Tollner; J. E. Nettles; M. A. Youssef; F. Birgand; R. W. Skaggs; S. Tian

    2015-01-01

    A study was initiated to investigate the sustainability effects of intercropping switchgrass (Panicum virgatum L.) in a loblolly pine (Pinus taeda L.) plantation. This forest-based biofuel system could possibly provide biomass from the perennial energy grass while maintaining the economics and environmental benefits of a forest...

  8. How good is the turbid medium-based approach for accounting for light partitioning in contrasted grass--legume intercropping systems?

    PubMed

    Barillot, Romain; Louarn, Gaëtan; Escobar-Gutiérrez, Abraham J; Huynh, Pierre; Combes, Didier

    2011-10-01

    Most studies dealing with light partitioning in intercropping systems have used statistical models based on the turbid medium approach, thus assuming homogeneous canopies. However, these models could not be directly validated although spatial heterogeneities could arise in such canopies. The aim of the present study was to assess the ability of the turbid medium approach to accurately estimate light partitioning within grass-legume mixed canopies. Three contrasted mixtures of wheat-pea, tall fescue-alfalfa and tall fescue-clover were sown according to various patterns and densities. Three-dimensional plant mock-ups were derived from magnetic digitizations carried out at different stages of development. The benchmarks for light interception efficiency (LIE) estimates were provided by the combination of a light projective model and plant mock-ups, which also provided the inputs of a turbid medium model (SIRASCA), i.e. leaf area index and inclination. SIRASCA was set to gradually account for vertical heterogeneity of the foliage, i.e. the canopy was described as one, two or ten horizontal layers of leaves. Mixtures exhibited various and heterogeneous profiles of foliar distribution, leaf inclination and component species height. Nevertheless, most of the LIE was satisfactorily predicted by SIRASCA. Biased estimations were, however, observed for (1) grass species and (2) tall fescue-alfalfa mixtures grown at high density. Most of the discrepancies were due to vertical heterogeneities and were corrected by increasing the vertical description of canopies although, in practice, this would require time-consuming measurements. The turbid medium analogy could be successfully used in a wide range of canopies. However, a more detailed description of the canopy is required for mixtures exhibiting vertical stratifications and inter-/intra-species foliage overlapping. Architectural models remain a relevant tool for studying light partitioning in intercropping systems that exhibit strong vertical heterogeneities. Moreover, these models offer the possibility to integrate the effects of microclimate variations on plant growth.

  9. Economics of intercropping loblolly pine and switchgrass for bioenergy markets in the southeastern United States

    Treesearch

    Andres Susaeta; Janaki Alavalapati Pankaj Lal; D. Evan Mercer; Douglas Carter

    2012-01-01

    Abstract The main objective of this study was to assess the economics of alley cropping of loblolly pine (Pinus taeda L.) and switchgrass (Panicum virgatum) in the southern United States. Assuming a price range of switchgrass between $15 and $50 Mg-1 and yield of 12 Mg ha-1 year-1, we investigated the effect of switchgrass production on the optimal forest management...

  10. Functional diversity in summer annual grass and legume intercrops in the Northeastern United States

    USDA-ARS?s Scientific Manuscript database

    A warm-season annual intercropping experiment was conducted across the Northeastern United States with four trials in 2013 and five trials in 2014 with four crop species selected based on differences in stature and nitrogen acquisition traits: 1) pearl millet (Pennisetum glaucum L.); 2) sorghum suda...

  11. Intercropping Corn with Lablab bean, Velvet Bean, and Scarlet Runner Bean for Forage

    USDA-ARS?s Scientific Manuscript database

    Low crude protein (CP) concentration in corn (Zea mays L.) forage is its major limitation in dairy rations. This experiment was designed to determine if intercropping corn with climbing beans is a viable option to increase CP concentration in forage rather than purchasing costly CP supplements for ...

  12. Environmental sustainability of intercropping switchgrass in a loblolly pine forest

    Treesearch

    George Chescheir; Francois Birgand; Mohamed Youssef; Jami Nettles; Devendra Amatya

    2016-01-01

    A multi-institutional watershed study has been conducted since 2010 to quantify the environmental sustainability of planting switchgrass (Panicum virgatum L.) between wide rows of loblolly pine (Pinus taeda L.). The hypothesized advantage of this intercropping system is the production of biofuel feedstock to provide additional...

  13. Greenhouse gas fluxes and root productivity in a switchgrass and loblolly pine intercropping system for bioenergy production

    Treesearch

    Paliza Shrestha; John R. Seiler; Brian D. Strahm; Eric B. Sucre; Zakiya H. Leggett

    2015-01-01

    This study is part of a larger collaborative effort to determine the overall environmental sustainability of intercropping pine (Pinus taeda L.) and switchgrass (Panicum virgatum L.), both of which are promising feedstock for bioenergy production in the Lower Coastal Plain in North Carolina.

  14. Arbuscular mycorrhizal fungi and rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercropping system

    PubMed Central

    Meng, Lingbo; Zhang, Aiyuan; Wang, Fei; Han, Xiaoguang; Wang, Dejiang; Li, Shumin

    2015-01-01

    The tripartite symbiosis between legumes, rhizobia and mycorrhizal fungi are generally considered to be beneficial for the nitrogen (N) uptake of legumes, but the facilitation of symbiosis in legume/non-legume intercropping systems is not clear. Therefore, the aims of the research are as follows: (1) to verify if the dual inoculation can facilitate the N uptake and N transfer in maize/soybean intercropping systems and (2) to calculate how much N will be transferred from soybean to maize. A pot experiment with different root separations [solid barrier, mesh (30 μm) barrier and no barrier] was conducted, and the 15N isotopic tracing method was used to calculate how much N transferred from soybean to maize inoculated with arbuscular mycorrhizal fungi (AMF) and rhizobium in a soybean (Glycine max L.cv. Dongnong No. 42)/maize (Zea mays L.cv. Dongnong No. 48) intercropping system. Compared with the Glomus mosseae inoculation (G.m.), Rhizobium SH212 inoculation (SH212), no inoculation (NI), the dual inoculation (SH212+G.m.) increased the N uptake of soybean by 28.69, 39.58, and 93.07% in a solid barrier system. N uptake of maize inoculated with both G. mosseae and rhizobium was 1.20, 1.28, and 1.68 times more than that of G.m., SH212 and NI, respectively, in solid barrier treatments. In addition, the amount of N transferred from soybean to maize in a dual inoculation system with a mesh barrier was 7.25, 7.01, and 11.45 mg more than that of G.m., SH212 and NI and similarly, 6.40, 7.58, and 12.46 mg increased in no barrier treatments. Inoculating with both AMF and rhizobium in the soybean/maize intercropping system improved the N fixation efficiency of soybean and promoted N transfer from soybean to maize, resulting in the improvement of yield advantages of legume/non-legume intercropping. PMID:26029236

  15. Arbuscular mycorrhizal fungi and rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercropping system.

    PubMed

    Meng, Lingbo; Zhang, Aiyuan; Wang, Fei; Han, Xiaoguang; Wang, Dejiang; Li, Shumin

    2015-01-01

    The tripartite symbiosis between legumes, rhizobia and mycorrhizal fungi are generally considered to be beneficial for the nitrogen (N) uptake of legumes, but the facilitation of symbiosis in legume/non-legume intercropping systems is not clear. Therefore, the aims of the research are as follows: (1) to verify if the dual inoculation can facilitate the N uptake and N transfer in maize/soybean intercropping systems and (2) to calculate how much N will be transferred from soybean to maize. A pot experiment with different root separations [solid barrier, mesh (30 μm) barrier and no barrier] was conducted, and the (15)N isotopic tracing method was used to calculate how much N transferred from soybean to maize inoculated with arbuscular mycorrhizal fungi (AMF) and rhizobium in a soybean (Glycine max L.cv. Dongnong No. 42)/maize (Zea mays L.cv. Dongnong No. 48) intercropping system. Compared with the Glomus mosseae inoculation (G.m.), Rhizobium SH212 inoculation (SH212), no inoculation (NI), the dual inoculation (SH212+G.m.) increased the N uptake of soybean by 28.69, 39.58, and 93.07% in a solid barrier system. N uptake of maize inoculated with both G. mosseae and rhizobium was 1.20, 1.28, and 1.68 times more than that of G.m., SH212 and NI, respectively, in solid barrier treatments. In addition, the amount of N transferred from soybean to maize in a dual inoculation system with a mesh barrier was 7.25, 7.01, and 11.45 mg more than that of G.m., SH212 and NI and similarly, 6.40, 7.58, and 12.46 mg increased in no barrier treatments. Inoculating with both AMF and rhizobium in the soybean/maize intercropping system improved the N fixation efficiency of soybean and promoted N transfer from soybean to maize, resulting in the improvement of yield advantages of legume/non-legume intercropping.

  16. Cover crops do not increase C sequestration in production crops: evidence from 12 years of continuous measurements

    NASA Astrophysics Data System (ADS)

    Buysse, Pauline; Bodson, Bernard; Debacq, Alain; De Ligne, Anne; Heinesch, Bernard; Manise, Tanguy; Moureaux, Christine; Aubinet, Marc

    2017-04-01

    The numerous reports on carbon (C) loss from cropland soils have recently raised awareness on the climate change mitigation potential of these ecosystems, and on the necessity to improve C sequestration in these soils. Among the multiple solutions that are proposed, several field measurement and modelling studies reported that growing cover crops over fall and winter time could appear as an efficient solution. However, while the large majority of these studies are based on SOC stock inventories and very few information exists from the CO2 flux dynamics perspective. In the present work, we use the results from long-term (12 years) eddy-covariance measurements performed at the Lonzée Terrestrial Observatory (LTO, candidate ICOS site, Belgium) and focus on six intercrop periods managed with (3) and without (3) cover crops after winter wheat main crops, in order to compare their response to environmental factors and to investigate the impact of cover crops on Net Ecosystem Exchange (NEE). Our results showed that cumulated NEE was not significantly affected by the presence of cover crops. Indeed, while larger CO2 assimilation occurred during cover crop growth, this carbon gain was later lost by larger respiration rates due to larger crop residue amounts brought to the soil. As modelled by a Q10-like relationship, significantly larger R10 values were indeed observed during the three intercrop periods cultivated with cover crops. These CO2 flux-based results therefore tend to moderate the generally acknowledged positive impact of cover crops on net C sequestration by croplands. Our results indicate that the effect of growing cover crops on C sequestration could be less important than announced, at least at certain sites.

  17. Crop biomass not species richness drives weed suppression in warm-season annual grass-legume intercrops in the Northeast

    USDA-ARS?s Scientific Manuscript database

    Intercropping with functionally diverse crops can reduce the availability of resources that could otherwise be used by weeds. An experiment was conducted six times across the northeastern United States in 2013 and 2014 to examine the effects of functional diversity and species richness on weed suppr...

  18. Site-improving intercrops for black walnut

    Treesearch

    J.W. Van Sambeek

    1988-01-01

    Broadly defined, intercropping of black walnut (Juglans nigra L.) refers to the production of one or more additional crops for food and/or fiber during all or part of the walnut rotation. lntercropping of walnut has been proposed for two main reasons: (1) to increase growth and/or quality of the walnut trees or (2) to provide an early financial...

  19. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation

    PubMed Central

    Li, Bai; Li, Yu-Ying; Wu, Hua-Mao; Zhang, Fang-Fang; Li, Chun-Jie; Li, Xue-Xian; Lambers, Hans; Li, Long

    2016-01-01

    Plant diversity in experimental systems often enhances ecosystem productivity, but the mechanisms causing this overyielding are only partly understood. Intercropping faba beans (Vicia faba L.) and maize (Zea mays L.) result in overyielding and also, enhanced nodulation by faba beans. By using permeable and impermeable root barriers in a 2-y field experiment, we show that root–root interactions between faba bean and maize significantly increase both nodulation and symbiotic N2 fixation in intercropped faba bean. Furthermore, root exudates from maize promote faba bean nodulation, whereas root exudates from wheat and barley do not. Thus, a decline of soil nitrate concentrations caused by intercropped cereals is not the sole mechanism for maize promoting faba bean nodulation. Intercropped maize also caused a twofold increase in exudation of flavonoids (signaling compounds for rhizobia) in the systems. Roots of faba bean treated with maize root exudates exhibited an immediate 11-fold increase in the expression of chalcone–flavanone isomerase (involved in flavonoid synthesis) gene together with a significantly increased expression of genes mediating nodulation and auxin response. After 35 d, faba beans treated with maize root exudate continued to show up-regulation of key nodulation genes, such as early nodulin 93 (ENOD93), and promoted nitrogen fixation. Our results reveal a mechanism for how intercropped maize promotes nitrogen fixation of faba bean, where maize root exudates promote flavonoid synthesis in faba bean, increase nodulation, and stimulate nitrogen fixation after enhanced gene expression. These results indicate facilitative root–root interactions and provide a mechanism for a positive relationship between species diversity and ecosystem productivity. PMID:27217575

  20. [Effects of reduced nitrogen application and soybean intercropping on nitrogen balance of sugarcane field].

    PubMed

    Liu, Yu; Zhang, Ying; Yang, Wen-ting; Li, Zhi-xian; Guan, Ao-mei

    2015-03-01

    A four-year (2010-2013) field experiment was carried out to explore the effects of three planting patterns (sugarcane, soybean monoculture and sugarcane-soybean 1:2 intercropping) with two nitrogen input levels (300 and 525 kg . hm-2) on soybean nitrogen fixation, sugarcane and soybean nitrogen accumulation, and ammonia volatilization and nitrogen leaching in sugarcane field. The results showed that the soybean nitrogen fixation efficiency (NFE) of sugarcane-soybean inter-cropping was lower than that of soybean monoculture. There was no significant difference in NFE among the treatments with the two nitrogen application rates. The nitrogen application rate and inter-cropping did not remarkably affect nitrogen accumulation of sugarcane and soybean. The ammonia volatilization of the reduced nitrogen input treatment was significantly lower than that of the conventional nitrogen input treatment. Furthermore, there was no significant difference in nitrogen leaching at different nitrogen input levels and among different planting patterns. The sugarcane field nitrogen balance analysis indicated that the nitrogen application rate dominated the nitrogen budget of sugarcane field. During the four-year experiment, all treatments leaved a nitrogen surplus (from 73.10 to 400.03 kg . hm-2) , except a nitrogen deficit of 66.22 kg . hm-2 in 2011 in the treatment of sugarcane monoculture with the reduced nitrogen application. The excessive nitrogen surplus might increase the risk of nitrogen pollution in the field. In conclusion, sugarcane-soybean intercropping with reduced nitrogen application is feasible to practice in consideration of enriching the soil fertility, reducing nitrogen pollution and saving production cost in sugarcane field.

  1. Changes in soil organic carbon and total nitrogen in croplands converted to walnut-based agroforestry systems and orchards in southeastern Loess Plateau of China.

    PubMed

    Lu, Sen; Meng, Ping; Zhang, Jinsong; Yin, Changjun; Sun, Shiyou

    2015-11-01

    Limited information is available on the effects of agroforestry system practices on soil properties in the Loess Plateau of China. Over the last decade, a vegetation restoration project has been conducted in this area by converting cropland into tree-based agroforestry systems and orchards to combat soil erosion and degradation. The objective of the present study was to determine the effects of land use conversion on soil organic carbon and total nitrogen in southeastern Loess Plateau. The experiment included three treatments: walnut intercropping system (AF), walnut orchard (WO), and traditional cropland (CR). After 7 years of continual management, soil samples were collected at 0-10, 10-30, and 30-50-cm depths for three treatments, and soil organic carbon (SOC) and total nitrogen (TN) were measured. Results showed that compared with the CR and AF treatments, WO treatment decreased both SOC and TN concentrations in the 0-50-cm soil profile. However, similar patterns of SOC and TN concentrations were observed in the AF and CR treatments across the entire profile. The SOC stocks at 0-50-cm depth were 5.42, 5.52, and 4.67 kg m(-2) for CR, AF, and WO treatments, respectively. The calculated TN stocks at 0-50-cm depth were 0.63, 0.62, and 0.57 kg m(-2) for CR, AF, and WO treatments, respectively. This result demonstrated that the stocks of SOC and TN in WO were clearly lower than those of AF and CR and that the walnut-based agroforestry system was more beneficial than walnut monoculture in terms of SOC and TN sequestration. Owing to the short-term intercropping practice, the changes in SOC and TN stocks were slight in AF compared with those in CR. However, a significant decrease in SOC and TN stocks was observed during the conversion of cropland to walnut orchard after 7 years of management. We also found that land use types had no significant effect on soil C/N ratio. These findings demonstrated that intercropping between walnut rows can potentially maintain more SOC and TN stocks than walnut monoculture and that agroforestry is a sustainable management pattern for vegetation restoration in the Loess Plateau area.

  2. Acacia Changes Microbial Indicators and Increases C and N in Soil Organic Fractions in Intercropped Eucalyptus Plantations.

    PubMed

    Pereira, Arthur P A; Zagatto, Maurício R G; Brandani, Carolina B; Mescolotti, Denise de Lourdes; Cotta, Simone R; Gonçalves, José L M; Cardoso, Elke J B N

    2018-01-01

    Intercropping forest plantations of Eucalyptus with nitrogen-fixing trees can increase soil N inputs and stimulate soil organic matter (OM) cycling. However, microbial indicators and their correlation in specific fractions of soil OM are unclear in the tropical sandy soils. Here, we examined the microbial indicators associated with C and N in the soil resulting from pure and intercropped Eucalyptus grandis and Acacia mangium plantations. We hypothesized that introduction of A. mangium in a Eucalyptus plantation promotes changes in microbial indicators and increases C and N concentrations on labile fractions of the soil OM, when compared to pure eucalyptus plantations. We determined the microbial and enzymatic activity, and the potential for C degradation by the soil microbial community. Additionally, we evaluated soil OM fractions and litter parameters. Soil (0-20 cm) and litter samples were collected at 27 and 39 months after planting from the following treatments: pure E. grandis (E) and A. mangium (A) plantations, pure E. grandis plantations with N fertilizer (E+N) and an E. grandis , and A. mangium intercropped plantations (E+A). The results showed that intercropped plantations (E+A) increase 3, 45, and 70% microbial biomass C as compared to A, E+N, and E, at 27 months after planting. The metabolic quotient ( q CO 2 ) showed a tendency toward stressful values in pure E. grandis plantations and a strong correlation with dehydrogenase activity. A and E+A treatments also exhibited the highest organic fractions (OF) and C and N contents. A canonical redundancy analysis revealed positive correlations between microbial indicators of soil and litter attributes, and a strong effect of C and N variables in differentiating A and E+A from E and E+N treatments. The results suggested that a significant role of A. mangium enhance the dynamics of soil microbial indicators which help in the accumulation of C and N in soil OF in intercropped E. grandis plantations. Our results are mostly relevant to plantations in sandy soil areas with low levels of OM, suggesting and efficient method for improving nutrient availability in the soil and optimizing eucalyptus growth and development.

  3. Evapotranspiration of a pine-switchgrass intercropping bioenergy system measured by combined surface renewal and energy balance method

    NASA Astrophysics Data System (ADS)

    Fischer, M.; Noormets, A.; Domec, J. C.; Rosa, R.; Williamson, J.; Boone, J.; Sucre, E.; Trnka, M.; King, J.

    2015-12-01

    Intercropping bioenergy grasses within traditional pine silvicultural systems provides an opportunity for economic diversification and regional bioenergy production in a way that complements existing land use systems. Bioenergy intercropping in pine plantations does not compete with food production for land and it is thought will increase ecosystem resource-use efficiencies. As the frequency and intensity of drought is expected to increase with the changing climate, maximizing water use-efficiency of intercropped bioenergy systems will become increasingly important for long-term economic and environmental sustainability. The presented study is focused on evapotranspiration (ET) of an experimental pine-switchgrass intercropping system in the Lower Coastal Plain of North Carolina. We measured ET of two pure switchgrass fields, two pure pine stands and two pine-switchgrass intercropping systems using combined surface renewal (SR) and energy balance (EB) method throughout 2015. SR is based on high-frequency measurement of air temperature at or above canopy. As previously demonstrated, temperature time series are associated with identifiable, repeated patterns called "turbulent coherent structures". These coherent structures are considered to be responsible for most of the turbulent transport. Statistical analysis of the coherent structures in temperature time series allows quantification of sensible heat flux density (H) from the investigated area. Information about H can be combined with measurement of net radiation and soil heat flux density to indirectly obtain ET estimates as a residual of the energy balance equation. Despite the recent progress in the SR method, there is no standard methodology and each method available includes assumptions which require more research. To validate our SR estimates of ET, we used an eddy covariance (EC) system placed temporarily next to the each SR station as a comparative measurement of H. The conference contribution will include: i) evaluation of SR method compared to EC; ii) comparison of different SR calculation procedures including application of various thermocouples sizes and measurement heights; iii) quantification of ET of the three investigated ecosystems; iv) analysis of ET diurnal and seasonal variation with respect to weather conditions.

  4. Acacia Changes Microbial Indicators and Increases C and N in Soil Organic Fractions in Intercropped Eucalyptus Plantations

    PubMed Central

    Pereira, Arthur P. A.; Zagatto, Maurício R. G.; Brandani, Carolina B.; Mescolotti, Denise de Lourdes; Cotta, Simone R.; Gonçalves, José L. M.; Cardoso, Elke J. B. N.

    2018-01-01

    Intercropping forest plantations of Eucalyptus with nitrogen-fixing trees can increase soil N inputs and stimulate soil organic matter (OM) cycling. However, microbial indicators and their correlation in specific fractions of soil OM are unclear in the tropical sandy soils. Here, we examined the microbial indicators associated with C and N in the soil resulting from pure and intercropped Eucalyptus grandis and Acacia mangium plantations. We hypothesized that introduction of A. mangium in a Eucalyptus plantation promotes changes in microbial indicators and increases C and N concentrations on labile fractions of the soil OM, when compared to pure eucalyptus plantations. We determined the microbial and enzymatic activity, and the potential for C degradation by the soil microbial community. Additionally, we evaluated soil OM fractions and litter parameters. Soil (0–20 cm) and litter samples were collected at 27 and 39 months after planting from the following treatments: pure E. grandis (E) and A. mangium (A) plantations, pure E. grandis plantations with N fertilizer (E+N) and an E. grandis, and A. mangium intercropped plantations (E+A). The results showed that intercropped plantations (E+A) increase 3, 45, and 70% microbial biomass C as compared to A, E+N, and E, at 27 months after planting. The metabolic quotient (qCO2) showed a tendency toward stressful values in pure E. grandis plantations and a strong correlation with dehydrogenase activity. A and E+A treatments also exhibited the highest organic fractions (OF) and C and N contents. A canonical redundancy analysis revealed positive correlations between microbial indicators of soil and litter attributes, and a strong effect of C and N variables in differentiating A and E+A from E and E+N treatments. The results suggested that a significant role of A. mangium enhance the dynamics of soil microbial indicators which help in the accumulation of C and N in soil OF in intercropped E. grandis plantations. Our results are mostly relevant to plantations in sandy soil areas with low levels of OM, suggesting and efficient method for improving nutrient availability in the soil and optimizing eucalyptus growth and development. PMID:29670606

  5. Conservation Agriculture Practices in Rainfed Uplands of India Improve Maize-Based System Productivity and Profitability

    PubMed Central

    Pradhan, Aliza; Idol, Travis; Roul, Pravat K.

    2016-01-01

    Traditional agriculture in rainfed uplands of India has been experiencing low agricultural productivity as the lands suffer from poor soil fertility, susceptibility to water erosion and other external pressures of development and climate change. A shift toward more sustainable cropping systems such as conservation agriculture production systems (CAPSs) may help in maintaining soil quality as well as improving crop production and farmer’s net economic benefit. This research assessed the effects over 3 years (2011–2014) of reduced tillage, intercropping, and cover cropping practices customized for maize-based production systems in upland areas of Odisha, India. The study focused on crop yield, system productivity and profitability through maize equivalent yield and dominance analysis. Results showed that maize grain yield did not differ significantly over time or among CAPS treatments while cowpea yield was considered as an additional yield in intercropping systems. Mustard and horsegram grown in plots after maize cowpea intercropping recorded higher grain yields of 25 and 37%, respectively, as compared to those without intercropping. Overall, the full CAPS implementation, i.e., minimum tillage, maize–cowpea intercropping and mustard residue retention had significantly higher system productivity and net benefits than traditional farmer practices, i.e., conventional tillage, sole maize cropping, and no mustard residue retention. The dominance analysis demonstrated increasing benefits of combining conservation practices that exceeded thresholds for farmer adoption. Given the use of familiar crops and technologies and the magnitude of yield and income improvements, these types of CAPS should be acceptable and attractive for smallholder farmers in the area. This in turn should support a move toward sustainable intensification of crop production to meet future household income and nutritional needs. PMID:27471508

  6. Conservation Agriculture Practices in Rainfed Uplands of India Improve Maize-Based System Productivity and Profitability.

    PubMed

    Pradhan, Aliza; Idol, Travis; Roul, Pravat K

    2016-01-01

    Traditional agriculture in rainfed uplands of India has been experiencing low agricultural productivity as the lands suffer from poor soil fertility, susceptibility to water erosion and other external pressures of development and climate change. A shift toward more sustainable cropping systems such as conservation agriculture production systems (CAPSs) may help in maintaining soil quality as well as improving crop production and farmer's net economic benefit. This research assessed the effects over 3 years (2011-2014) of reduced tillage, intercropping, and cover cropping practices customized for maize-based production systems in upland areas of Odisha, India. The study focused on crop yield, system productivity and profitability through maize equivalent yield and dominance analysis. Results showed that maize grain yield did not differ significantly over time or among CAPS treatments while cowpea yield was considered as an additional yield in intercropping systems. Mustard and horsegram grown in plots after maize cowpea intercropping recorded higher grain yields of 25 and 37%, respectively, as compared to those without intercropping. Overall, the full CAPS implementation, i.e., minimum tillage, maize-cowpea intercropping and mustard residue retention had significantly higher system productivity and net benefits than traditional farmer practices, i.e., conventional tillage, sole maize cropping, and no mustard residue retention. The dominance analysis demonstrated increasing benefits of combining conservation practices that exceeded thresholds for farmer adoption. Given the use of familiar crops and technologies and the magnitude of yield and income improvements, these types of CAPS should be acceptable and attractive for smallholder farmers in the area. This in turn should support a move toward sustainable intensification of crop production to meet future household income and nutritional needs.

  7. Estimating demand for perennial pigeon pea in Malawi using choice experiments.

    PubMed

    Waldman, Kurt B; Ortega, David L; Richardson, Robert B; Snapp, Sieglinde S

    2017-01-01

    Perennial crops have numerous ecological and agronomic advantages over their annual counterparts. We estimate discrete choice models to evaluate farmers' preferences for perennial attributes of pigeon pea intercropped with maize in central and southern Malawi. Pigeon pea is a nitrogen-fixing leguminous crop, which has the potential to ameliorate soil fertility problems related to continuous maize cultivation, which are common in Southern Africa. Adoption of annual pigeon pea is relatively low but perennial production of pigeon pea may be more appealing to farmers due to some of the ancillary benefits associated with perenniality. We model perennial production of pigeon pea as a function of the attributes that differ between annual and perennial production: lower labor and seed requirements resulting from a single planting with multiple harvests, enhanced soil fertility and higher levels of biomass production. The primary tradeoff associated with perennial pigeon pea intercropped with maize is competition with maize in subsequent years of production. While maize yield is approximately twice as valuable to farmers as pigeon pea yield, we find positive yet heterogeneous demand for perenniality driven by soil fertility improvements and pigeon pea grain yield.

  8. Effects of intercropping of oat (Avena sativa L.) with white lupin (Lupinus albus L.) on the mobility of target elements for phytoremediation and phytomining in soil solution.

    PubMed

    Wiche, Oliver; Székely, Balazs; Kummer, Nicolai-Alexeji; Moschner, Christin; Heilmeier, Hermann

    2016-09-01

    This study aims to investigate how intercropping of oat (Avena sativa L.) with white lupin (Lupinus albus L.) affects the mobile fractions of trace metals (Fe, Mn, Pb, Cd, Th, U, Sc, La, Nd, Ge) in soil solution. Oat and white lupin were cultivated in monocultures and mixed cultures with differing oat/white lupin ratios (11% and 33% lupin, respectively). Temporal variation of soil solution chemistry was compared with the mobilization of elements in the rhizosphere of white lupin and concentrations in plant tissues. Relative to the monocrops, intercropping of oat with 11% white lupin significantly increased the concentrations of Fe, Pb, Th, La and Nd in soil solution as well as the concentrations of Fe, Pb, Th, Sc, La and Nd in tissues of oat. Enhanced mobility of the mentioned elements corresponded to a depletion of elements in the rhizosphere soil of white lupin. In mixed cultures with 33% lupin, concentrations in soil solution only slightly increased. We conclude that intercropping with 11% white lupin might be a promising tool for phytoremediation and phytomining research enhancing mobility of essential trace metals as well as elements with relevance for phytoremediation (Pb, Th) and phytomining (La, Nd, Sc) in soil.

  9. Evaluation of intercropped switchgrass establishment under a range of experimental site preparation treatments in a forested setting on the Lower Coastal Plain of North Carolina, U.S.A

    Treesearch

    Janine M. Albaugh; Eric B. Sucre; Zakiya H. Leggett; Jean-Christophe Domec; John S. King

    2012-01-01

    There is growing interest in using switchgrass (Panicum virgatum L.) as a biofuel crop and for its potential to sequester carbon. However, there are limited data on the establishment success of this species when grown as a forest intercrop in coastal plain settings of the U.S. Southeast. Therefore, we studied establishment success of switchgrass...

  10. Conservation agriculture among small scale farmers in semi-arid region of Kenya does improve soil biological quality and soil organic carbon

    NASA Astrophysics Data System (ADS)

    Waweru, Geofrey; Okoba, Barrack; Cornelis, Wim

    2016-04-01

    The low food production in Sub-Saharan Africa (SSA) has been attributed to declining soil quality. This is due to soil degradation and fertility depletion resulting from unsustainable conventional farming practices such as continuous tillage, crop residue burning and mono cropping. To overcome these challenges, conservation agriculture (CA) is actively promoted. However, little has been done in evaluating the effect of each of the three principles of CA namely: minimum soil disturbance, maximum surface cover and diversified/crop rotation on soil quality in SSA. A study was conducted for three years from 2012 to 2015 in Laikipia East sub county in Kenya to evaluate the effect of tillage, surface cover and intercropping on a wide variety of physical, chemical and biological soil quality indicators, crop parameters and the field-water balance. This abstract reports on soil microbial biomass carbon (SMBC) and soil organic carbon (SOC). The experimental set up was a split plot design with tillage as main treatment (conventional till (CT), no-till (NT) and no-till with herbicide (NTH)), and intercropping and surface cover as sub treatment (intercropping maize with: beans, MB; beans and leucaena, MBL; beans and maize residues at 1.5 Mg ha-1 MBMu, and dolichos, MD). NT had significantly higher SMBC by 66 and 31% compared with CT and NTH respectively. SOC was significantly higher in NTH than CT and NT by 15 and 4%, respectively. Intercropping and mulching had significant effect on SMBC and SOC. MBMu resulted in higher SMBC by 31, 38 and 43%, and SOC by 9, 20 and 22% as compared with MBL, MD and MB, respectively. SMBC and SOC were significantly affected by the interaction between tillage, intercropping and soil cover with NTMBMu and NTHMBMu having the highest SMBC and SOC, respectively. We conclude that indeed tillage, intercropping and mulching substantially affect SMBC and SOC. On the individual components of CA, tillage and surface cover had the highest effect on SMBC and SOC, respectively, but the highest positive effect was realized when all the three principles were applied consecutively. Therefore, CA has the potential to improve biological soil quality among small scale rainfed farmers and thus promote sustainable production.

  11. Sward characteristics and performance of dairy cows in organic grass-legume pastures shaded by tropical trees.

    PubMed

    Paciullo, D S C; Pires, M F A; Aroeira, L J M; Morenz, M J F; Maurício, R M; Gomide, C A M; Silveira, S R

    2014-08-01

    The silvopastoral system (SPS) has been suggested to ensure sustainability in animal production systems in tropical ecosystems. The objective of this study was to evaluate pasture characteristics, herbage intake, grazing activity and milk yield of Holstein×Zebu cows managed in two grazing systems (treatments): SPS dominated by a graminaceous forage (Brachiaria decumbens) intercropped with different leguminous herbaceous forages (Stylosanthes spp., Pueraria phaseoloides and Calopogonium mucunoides) and legume trees (Acacia mangium, Gliricidia sepium and Leucaena leucocephala), and open pasture (OP) of B. decumbens intercropped only with Stylosanthes spp. Pastures were managed according to the rules for organic cattle production. The study was carried out by following a switch back format with 12 cows, 6 for each treatment, over 3 experimental years. Herbage mass was similar (P>0.05) for both treatments, supporting an average stocking rate of 1.23 AU/ha. Daily dry matter intake did not vary (P>0.05) between treatments (average of 11.3±1.02 kg/cow per day, corresponding to 2.23±0.2% BW). Milk yield was higher (P0.05) in subsequent years. The highest (P0.05) milk yields. Low persistence of Stylosanthes guianensis was observed over the experimental period, indicating that the persistence of forage legumes under grazing could be improved using adapted cultivars that have higher annual seed production. The SPS and a diversified botanical composition of the pasture using legume species mixed with grasses are recommended for organic milk production.

  12. Agroforestry management in vineyards: effects on soil microbial communities

    NASA Astrophysics Data System (ADS)

    Montagne, Virginie; Nowak, Virginie; Guilland, Charles; Gontier, Laure; Dufourcq, Thierry; Guenser, Josépha; Grimaldi, Juliette; Bourgade, Emilie; Ranjard, Lionel

    2017-04-01

    Some vineyard practices (tillage, chemical weeding or pest management) are generally known to impact the environment with particular negative effects on the diversity and the abundance of soil microorganisms, and cause water and soil pollutions. In an agro-ecological context, innovative cropping systems have been developed to improve ecosystem services. Among them, agroforestry offers strategies of sustainable land management practices. It consists in intercropping trees with annual/perennial/fodder crop on the same plot but it is weakly referenced with grapevine. The present study assesses the effects of intercropped and neighbouring trees on the soil of three agroforestry vineyards, in south-western France regions. More precisely soils of the different plots were sampled and the impact of the distance to the tree or to the neighbouring trees (forest) on soil microbial community has been considered. Indigenous soil microbial communities were characterized by a metagenomic approach that consisted in extracting the molecular microbial biomass, then in calculating the soil fungi/bacteria ratio - obtained by qPCR - and then in characterizing the soil microbial diversity - through Illumina sequencing of 16S and 18S regions. Our results showed a significant difference between the soil of agroforestry vineyards and the soil sampled in the neighbouring forest in terms of microbial abundance and diversity. However, only structure and composition of bacterial community seem to be influenced by the implanted trees in the vine plots. In addition, the comparison of microbial co-occurrence networks between vine and forest plots as well as inside vine plots according to distance to the tree allow revealing a more sensitive impact of agroforestry practices. Altogether, the results we obtained build up the first references for concerning the soil of agroforestry vineyards which will be interpreted in terms of soil quality, functioning and sustainability.

  13. Acid phosphatase role in chickpea/maize intercropping.

    PubMed

    Li, S M; Li, L; Zhang, F S; Tang, C

    2004-08-01

    Organic P comprises 30-80 % of the total P in most agricultural soils. It has been proven that chickpea facilitates P uptake from an organic P source by intercropped wheat. In this study, acid phosphatase excreted from chickpea roots is quantified and the contribution of acid phosphatase to the facilitation of P uptake by intercropped maize receiving phytate is examined. For the first experiment using hydroponics, maize (Zea mays 'Zhongdan No. 2') and chickpea (Cicer arietinum 'Sona') were grown in either the same or separate containers, and P was supplied as phytate, KH2PO4 at 0.25 mmol P L(-1), or not at all. The second experiment involved soil culture with three types of root separation between the two species: (1) plastic sheet, (2) nylon mesh, and (3) no barrier. Maize plants were grown in one compartment and chickpea in the other. Phosphorus was supplied as phytate, Ca(H2PO4)2 at 50 mg P kg(-1), or no P added. In the hydroponics study, the total P uptake by intercropped maize supplied with phytate was 2.1-fold greater than when it was grown as a monoculture. In the soil experiment, when supplied with phytate, total P uptake by maize with mesh barrier and without root barrier was 2.2 and 1.5 times, respectively, as much as that with solid barrier. In both experiments, roots of both maize and chickpea supplied with phytate and no P secreted more acid phosphatase than those with KH2PO4 or Ca(H2PO4)2. However, average acid phosphatase activity of chickpea roots supplied with phytate was 2-3-fold as much as maize. Soil acid phosphatase activity in the rhizosphere of chickpea was also significantly higher than maize regardless of P sources. Chickpea can mobilize organic P in both hydroponic and soil cultures, leading to an interspecific facilitation in utilization of organic P in maize/chickpea intercropping.

  14. Energizing marginal soils: A perennial cropping system for Sida hermaphrodita

    NASA Astrophysics Data System (ADS)

    Nabel, Moritz; Poorter, Hendrik; Temperton, Vicky; Schrey, Silvia D.; Koller, Robert; Schurr, Ulrich; Jablonowski, Nicolai D.

    2017-04-01

    As a way to avoid land use conflicts, the use of marginal soils for the production of plant biomass can be a sustainable alternative to conventional biomass production (e.g. maize). However, new cropping strategies have to be found that meet the challenge of crop production under marginal soil conditions. We aim for increased soil fertility by the use of the perennial crop Sida hermaphrodita in combination with organic fertilization and legume intercropping to produce substantial biomass yield. We present results of a three-year outdoor mesocosm experiment testing the perennial energy crop Sida hermaphrodita grown on a marginal model substrate (sand) with four kinds of fertilization (Digestate broadcast, Digestate Depot, mineral NPK and unfertilized control) in combination with legume intercropping. After three years, organic fertilization (via biogas digestate) compared to mineral fertilization (NPK), reduced the nitrate concentration in leachate and increased the soil carbon content. Biomass yields of Sida were 25% higher when fertilized organically, compared to mineral fertilizer. In general, digestate broadcast application reduced root growth and the wettability of the sandy substrate. However, when digestate was applied locally as depot to the rhizosphere, root growth increased and the wettability of the sandy substrate was preserved. Depot fertilization increased biomass yield by 10% compared to digestate broadcast fertilization. We intercropped Sida with various legumes (Trifolium repens, Trifolium pratense, Melilotus spp. and Medicago sativa) to enable biological nitrogen fixation and make the cropping system independent from synthetically produced fertilizers. We could show that Medicago sativa grown on marginal substrate fixed large amounts of N, especially when fertilized organically, whereas mineral fertilization suppressed biological nitrogen fixation. We conclude that the perennial energy crop Sida in combination with organic fertilization has great potential to increase the soil fertility of marginal substrates and produce substantial biomass yields.

  15. [Effects of legume-oat intercropping on abundance and community structure of soil N2-fixing bacteria].

    PubMed

    Yang, Ya Dong; Feng, Xiao Min; Hu, Yue Gao; Ren, Chang Zhong; Zeng, Zhao Hai

    2017-03-18

    In this study, real-time PCR and high-throughput sequencing approaches were employed to investigate the abundance and community structure of N 2 -fixing bacteria in a field experiment with three planting patterns (Oat monoculture, O; Soybean-oat intercropping, OSO; Mung bean-oat intercropping, OMO). The results showed that soil chemical properties varied significantly in different soil samples (P<0.05). The abundance of nifH gene varied from 1.75×10 10 to 7.37×10 10 copies·g -1 dry soil in all soil samples. The copy numbers of nifH gene in OSO and OMO were 2.18, 2.64, and 1.92, 2.57 times as much as that in O at jointing and mature stages, with a significant decline from jointing to mature stage for all treatments (P<0.05). Rarefaction curve and cove-rage results proved the nifH gene sequencing results were reliable, and the diversity index showed that the N 2 -fixing bacteria diversity of OSO was much higher than that of O. Azohydromonas, Azotobacter, Bradyrhizobium, Skermanella and other groups that could not be classified are the dominant genera, with significant differences in proportion of these dominant groups observed among all soil samples (P<0.05). Venn and PCA analysis indicated that there were greater differences of nifH gene communities between jointing and mature stages; however, the OSO and OMO had similar communities in both stages. All these results confirmed that legume-oat intercropping significantly increased the abundance and changed the community composition of N 2 -fixing bacteria in oat soils.

  16. [Effect of Astragalus membranaceus var. mongholicus seed extracts on seed germination and seedling growth of different Codonopsis pilosula caltiver].

    PubMed

    Guo, Feng-Xia; Wu, Zhi-Jiang; Chen, Yuan; Xi, Zhuo-Xia; Zhang, Xiao-Hu; Yao, Li-Rong; Chen, Xiang

    2012-11-01

    To reveal the allelopathy effect of Astragalus membranaceus var. mongholicus seeds and provide information for the intercrop production. The A. membranaceus. var. mongholicus seeds were soaked in distilled water for different time (12, 24, 36, 48, 60 h) , and then the seed extracts were used to study their effects on the seed germination, seedling growth and development of two Codonopsis pilosula. The A. membranaceus var. mongholicus seeds contained some allelopathy compounds. Their soaked liquid had significantly influence on the seed germination and seedling growth of C. pilosula. The seed germination rate, germination power, germination index and vigor index of two C. pilosula calrivar were improved and then inhabited with soaking time elongation. The extract soaking for 24 h significantly improved the germination traits but the extract for 60 h appeared different degrees of inhibiting vigor. The seed extracts soaking ranging between 12 and 60 h all significantly improved the above plant growth of C. pilosula but significant inhibited their radicle growth in length. And with the soaking time elongation the facilitation effect weakened and the inhibiting effect enhanced, especially more significant in the C. pilosula caltivar (Baitiaodangshen). The A. membranaceus var. mongholicus seeds have allelopathic compounds and the endogenous inhibitor can be extracted when soaked for more than 24 h in water with intact seeds, resulting in improvement of seed germination rate. The C. pilosula could be intercropped in A. membranaceus var. mongholicus field, however, when intercroped it should notice that the intercrop proportion should vary with the caltivar.

  17. Biochar and Glomus caledonium Influence Cd Accumulation of Upland Kangkong (Ipomoea aquatica Forsk.) Intercropped with Alfred Stonecrop (Sedum alfredii Hance)

    NASA Astrophysics Data System (ADS)

    Hu, Junli; Wu, Fuyong; Wu, Shengchun; Lam, Cheung Lung; Lin, Xiangui; Wong, Ming Hung

    2014-04-01

    Both biochar application and mycorrhizal inoculation have been proposed to improve plant growth and alter bioaccumulation of toxic metals. A greenhouse pot trial was conducted to investigate growth and Cd accumulation of upland kangkong (Ipomoea aquatica Forsk.) intercropped with Alfred stonecrop (Sedum alfredii Hance) in a Cd-contaminated soil inoculated with Glomus caledonium and/or applied with biochar. Compared with the monocultural control, intercropping with stonecrop (IS) decreased kangkong Cd acquisition via rhizosphere competition, and also decreased kangkong yield. Gc inoculation (+M) accelerated growth and Cd acquisition of stonecrop, and hence resulted in further decreases in kangkong Cd acquisition. Regardless of IS and +M, biochar addition (+B) increased kangkong yield via elevating soil available P, and decreased soil Cd phytoavailability and kangkong Cd concentration via increasing soil pH. Compared with the control, the treatment of IS + M + B had a substantially higher kangkong yield (+25.5%) with a lower Cd concentration (-62.7%). Gc generated additive effects on soil alkalinization and Cd stabilization to biochar, causing lower DTPA-extractable (phytoavailable) Cd concentrations and post-harvest transfer risks.

  18. [Effects of mulberry/soybean intercropping on the plant growth and rhizosphere soil microbial number and enzyme activities].

    PubMed

    Hu, Ju-Wei; Zhu, Wen-Xu; Zhang, Hui-Hui; Xu, Nan; Li, Xin; Yue, Bing-Bing; Sun, Guang-yu

    2013-05-01

    A root separation experiment was conducted to investigate the plant growth and rhizosphere soil microbes and enzyme activities in a mulberry/soybean intercropping system. As compared with those in plastic barrier and nylon mesh barrier treatments, the plant height, leaf number, root length, root nodule number, and root/shoot ratio of mulberry and soybean in non-barrier treatment were significantly higher, and the soybean's effective nodule number was larger. The available phosphorous content in the rhizosphere soils of mulberry and soybean in no barrier and nylon mesh barrier treatments was increased by 10.3% and 11.1%, and 5.1% and 4.6%, respectively, as compared with that in plastic barrier treatment. The microbial number, microbial diversity, and enzyme activities in the rhizosphere soils of mulberry and soybean were higher in the treatments of no barrier and nylon mesh barrier than in the treatment of plastic barrier. All the results indicated that there was an obvious interspecific synergistic effect between mulberry and soybean in the mulberry/soybean intercropping system.

  19. Assessment of the GHG budget mitigation potential of intercrops: analysis on several trials and intercrops species in the Southwest of France.

    NASA Astrophysics Data System (ADS)

    Ferlicoq, M.; Ceschia, E.; Brut, A.; VandeWalle, A.

    2012-04-01

    To reduce organic carbon loss from the soil and nitrate leaching to groundwater, the European directives have promoted Good Agricultural Practices (GAP), such as the use of intercrops (IC). As shown by Béziat et al. 2009, Ceschia et al. 2010, the IC (or voluntary regrowth from the previous crop) limit net CO2 release from the ecosystem or even contribute to carbon storage during their development. However, the seeding and destruction of IC can be difficult on soil with high clay content, especially when soil is wet, and they must be destroyed early enough so that the nitrogen they contain can be released in the soil and used by the following crops. For these reasons, the Midi-Pyrenees Agriculture Department obtained a 2-year temporary derogation to test the implementation of several nitrates catch crops (mustard, diploïd oat, black oat, oat/vetch, oat/phacelia) on clay soils in order to evaluate the best management practices for growing and destroying them. Their impact on the next crop development was also analysed. In this study, the CESBIO helped the Midi-Pyrénées Agriculture Department to 1) calculate a carbon budget for the different trials and 2) to estimate GHG budgets for those trials by using a life cycle analysis (LCA) approach. Emissions associated to Field Operations (FO) were estimated based on study by Ceschia et al. (2010). During long periods of bare soil, the net CO2 flux is reduced to heterotrophic respiration. Since this component of NEE is not measured on the IC sites, it has been estimated using data from a GHG-Europe instrumented site in the same region, the same year and on similar soils (Auradé site, Gers). Heterotrophic respiration was estimated to range between 96.4 and 131 g eq-C m-2 during the IC cycle that lasted between 65 and 89 days. At the end of the IC period, biomass was (in g eq-C) 0.77, 0.18, 9.89, 0.42, 0.48 for mustard, diploïd oat, black oat, oat/vetch, oat/phacelia respectively. The low amount of biomass is explained by a very dry summer in 2009. FO ranged between 9.9 and 12.7 for the different trials. Compared to the other terms, they have a relative low impact on the GHG budget. They represented at most 13g eq-C during the IC period, 60% of those emissions are caused by the use of machinery. GHG budgets over the IC period are largely positive (source effect), due to low biomass production, mainly because of poor emergence and/or development. Still carbon fixation in the biomass mitigated the emissions. To balance the GHG budget, biomass production should be doubled for mustard (1.5 ton biomass ha-1) which is realistic and increased by a factor 4 for oat/phacelia and oat/vetch associations. In general, we can conclude that except for the black oat (biomass production is too low), these intercrops improve the GHG budget. Nevertheless, to get real advantages from these intercrops, they need to produce more than 0.26 t/ ha to compensate technical operations and additional CO2 emissions associated to IC decomposition will have to be assessed.

  20. Intercropping with white lupin (Lupinus albus L.); a promising tool for phytoremediation and phytomining research

    NASA Astrophysics Data System (ADS)

    Wiche, Oliver; Székely, Balazs; Moschner, Christin; Heilmeier, Hermann

    2015-04-01

    In recent studies root-soil interactions of white lupine (Lupinus albus L.) have drawn special attention to researchers due to its particularly high potential to increase bioavailability of phosphorous (P) and trace nutrients in soils. In mixed cultures, white lupine has the ability to mobilize P and trace nutrients in soil in excess of its own need and make this excess available for other intercropped companion species. While improved acquisition of P and improved yield parameters have mostly been documented in cereal-lupine intercrops, compared to sole crops, only a few recent studies have evidenced similar effects for trace elements e.g. Fe, Zn and Mn. In this preliminary study we tried to obtain more information about the mobilization of trace elements due to intercropping under field conditions. We hypothesize, that processes that lead to a better acquisition of trace nutrients might also affect other trace elements what could be useful for phytoremediation and phytomining research. Here we report the results of a semi-field experiment were we investigated the effects of an intercropping of white lupine with oat (Avena sativa L.) on the concentrations of trace metals in shoots of oat. We investigated the effects on 12 trace elements, including 4 elements with relevance for plant nutrition (P, Fe, Mn, Zn) and 8 trace elements, belonging to the group of metalloids, lanthanides and actinides with high relevance in phytoremediation (Cd, Pb Th, U) and phytomining research (Sc, La, Nd, Ge). The experiment was carried out on a semi-field lysimer at the off-site soil recycling and remediation center in Hirschfeld (Saxony, Germany). To test the intercropping-dependent mobilization of trace metals in soil and enhanced uptake of elements by oat, white lupine and oat were cultivated on 20 plots (4 m² each) in monocultures and mixed cultures and two different white lupin /oat-ratios (11% and 33%, respectively) applying various treatments. The geometrical arrangement of plots was randomized and every treatment was fivefold replicated. Soil solution was collected weekly with plastic suction cups. Concentrations of trace metals in shoots of oat and soil solution were measured with ICP-MS. As a result, we found that both, concentrations of trace elements in oat plants, as well as the mobility of P and trace metals in soil solution was increased by an intercropping with white lupine. Mixed culture of oat with 11% white lupin significantly increased the concentrations of the trace nutrients Fe, Mn and Zn, as well as the concentrations of the trace metals Pb, La, Nd, Sc, Th and U in tissues of oat. Surprisingly, mixed cultures with 33 % white lupin did not significantly affect trace metal concentrations in oat, what might be the consequence of an increasing competition of roots of white lupin and oat for nutrients and trace metals. In conclusion we found that mixed cultures of white lupin with cereals might be a powerful tool for enhanced phytoremediation and phytomining. However, processes involved in the physiochemical mechanism of element uptake as affected by the oat/white lupin co-cultivation remain unknown and further studies on this topic are planned. These studies have been carried out in the framework of the PhytoGerm project, financed by the Federal Ministry of Education and Research, Germany. The authors are grateful to students and laboratory assistants contributing in the field work and sample preparation.

  1. Effect of chemical and mechanical weed control on cassava yield, soil quality and erosion under cassava cropping system

    NASA Astrophysics Data System (ADS)

    Islami, Titiek; Wisnubroto, Erwin; Utomo, Wani

    2016-04-01

    Three years field experiments were conducted to study the effect of chemical and mechanical weed control on soil quality and erosion under cassava cropping system. The experiment were conducted at University Brawijaya field experimental station, Jatikerto, Malang, Indonesia. The experiments were carried out from 2011 - 2014. The treatments consist of three cropping system (cassava mono culture; cassava + maize intercropping and cassava + peanut intercropping), and two weed control method (chemical and mechanical methods). The experimental result showed that the yield of cassava first year and second year did not influenced by weed control method and cropping system. However, the third year yield of cassava was influence by weed control method and cropping system. The cassava yield planted in cassava + maize intercropping system with chemical weed control methods was only 24 t/ha, which lower compared to other treatments, even with that of the same cropping system used mechanical weed control. The highest cassava yield in third year was obtained by cassava + peanuts cropping system with mechanical weed control method. After three years experiment, the soil of cassava monoculture system with chemical weed control method possessed the lowest soil organic matter, and soil aggregate stability. During three years of cropping soil erosion in chemical weed control method, especially on cassava monoculture, was higher compared to mechanical weed control method. The soil loss from chemical control method were 40 t/ha, 44 t/ha and 54 t/ha for the first, second and third year crop. The soil loss from mechanical weed control method for the same years was: 36 t/ha, 36 t/ha and 38 t/ha. Key words: herbicide, intercropping, soil organic matter, aggregate stability.

  2. Citrus stand ages regulate the fraction alteration of soil organic carbon under a citrus/Stropharua rugodo-annulata intercropping system in the Three Gorges Reservoir area, China.

    PubMed

    Zhang, Yang; Ni, Jiupai; Yang, John; Zhang, Tong; Xie, Deti

    2017-08-01

    Soil carbon fractionation is a valuable indicator in assessing stabilization of soil organic matter and soil quality. However, limited studies have addressed how different vegetation stand ages under intercropping agroforestry systems, could affect organic carbon (OC) accumulation in bulk soil and its physical fractions. A field study thus investigated the impact of citrus plantation age (15-, 25-, and 45-year citrus) on the bulk soil organic carbon (SOC) and SOC fractions and yields of Stropharia rugoso-annulata (SRA) in the Three Gorges Reservoir area, Chongqing, China. Results indicated that the intercropping practice of SRA with citrus significantly increased the SOC by 57.4-61.6% in topsoil (0-10 cm) and by 24.8-39.9% in subsoil (10-30 cm). With a significantly higher enhancement under the 25-year citrus stand than the other two stands, all these citrus stands of three ages also resulted in a significant increase of free particulate OC (fPOC, 60.1-62.4% in topsoil and 34.8-46.7% in subsoil), intra-micro aggregate particulate OC (iPOC, 167.6-206.0% in topsoil and 2.77-61.09% in subsoil), and mineral-associated OC (MOC, 43.6-46.5% in topsoil and 26.0-51.5% in subsoil). However, there were no significant differences in yields of SRA under three citrus stands. Our results demonstrated that citrus stand ages did play an important role in soil carbon sequestration and fractionation under a citrus/SRA intercropping system, which could therefore provide a sustainable agroforestry system to enhance concurrently the SOC accumulation while mitigating farmland CO 2 emission.

  3. Effect of plant density and mixing ratio on crop yield in sweet corn/mungbean intercropping.

    PubMed

    Sarlak, S; Aghaalikhani, M; Zand, B

    2008-09-01

    In order to evaluate the ear and forage yield of sweet corn (Zea mays L. var. Saccarata) in pure stand and intercropped with mung bean (Vigna radiata L.), a field experiment was conducted at Varamin region on summer 2006. Experiment was carried out in a split plot design based on randomized complete blocks with 4 replications. Plant density with 3 levels [Low (D1), Mean (D2) and High (D3) respecting 6, 8 and 10 m(-2) for sweet corn, cultivar S.C.403 and 10, 20 and 30 m(-2) for mung bean cultivar, Partow] was arranged in main plots and 5 mixing ratios [(P1) = 0/100, (P2) = 25/75, (P3) = 50/50, (P4) = 75/25, (P5) = 100/0% for sweet corn/mung bean, respectively] were arranged in subplots. Quantitative attributes such as plant height, sucker numbers, LER, dry matter distribution in different plant organs were measured in sweet corn economical maturity. Furthermore the yield of cannable ear corn and yield components of sweet corn and mung bean were investigated. Results showed that plant density has not any significant effect on evaluated traits, while the effect of mixing ratio was significant (p < 0.01). Therefore, the mixing ratio of 75/25 (sweet corn/mung bean) could be introduced as the superior mixing ratio; because of it's maximum rate of total sweet corn's biomass, forage yield, yield and yield components of ear corn in intercropping. Regarding to profitability indices of intercropping, the mixing ratio 75/25 (sweet corn/mung bean) in low density (D1P2) which showed the LER = 1.03 and 1.09 for total crop yield before ear harvesting and total forage yield after ear harvest respectively, was better than corn or mung bean monoculture.

  4. [Effects of phosphorus application rates and depths on P utilization and loss risk in a maize-soybean intercropping system].

    PubMed

    Zhao, Wei; Song, Chun; Zhou, Pan; Wang, Jia Yu; Xui, Feng; Ye, Fang; Wang, Xiao Chun; Yang, Wen Yu

    2018-04-01

    In order to explore the advantage of intercropping on phosphorus (P) efficient utilization and the reduction of soil P loss, a field experiment in a maize-soybean intercropping system, which included three P application (P 2 O 5 ) rates (CP: 168 kg·hm -2 ; RP 1 : 135 kg·hm -2 ; RP 2 : 101 kg·hm -2 ) and three P application depths (D 1 : applied in 5 cm depth; D 2 : applied in 15 cm depth; D 3 : 1/2 of P fertilizer applied in 5 cm depth and another 1/2 in 15 cm depth) was carried out to analyze the effects of P application rates and depth on crop aboveground biomass, grain yield, crop P uptake, soil total and available P contents, and soil P adsorption-desorption characteristics. Compared with control treatment, the aboveground biomass, grain yield, crop P uptake, soil total P, and available P content were increased significantly by P application, regardless of P rate and application depth. Under the same application depth, RP 1 had similar grain yield but higher crop P uptake compared with CP, and thus higher P apparent utilization efficiency. Under the same P application rate, the application depth of D 2 had the highest crop aboveground biomass, grain yield, P uptake, soil total P, and available P. According to the characteristic of soil P adsorption-desorption, the treatment with the rate of RP 1 and the depth of D 2 had the strongest soil P retention capacity, which had advantage in alleviating P loss. These results suggested that reducing application rate but increasing application depth of P fertilizer could improve P use efficiency and reduce soil P loss without sacrifice in crop production in maize-soybean relay intercropping system.

  5. Effects of applying molasses, lactic acid bacteria and propionic acid on fermentation quality, aerobic stability and in vitro gas production of total mixed ration silage prepared with oat-common vetch intercrop on the Tibetan Plateau.

    PubMed

    Chen, Lei; Guo, Gang; Yuan, Xianjun; Zhang, Jie; Li, Junfeng; Shao, Tao

    2016-03-30

    The objective of this study was to investigate the effect of molasses, lactic acid bacteria and propionic acid on the fermentation quality, aerobic stability and in vitro gas production of total mixed ration (TMR) silage prepared with oat-common vetch intercrop on the Tibetan plateau. TMR (436 g kg(-1) dry matter (DM)) was ensiled with six experimental treatments: (1) no additives (control); (2) molasses (M); (3) an inoculant (Lactobacillus plantarum) (L); (4) propionic acid (P); (5) molasses + propionic acid (MP); (6) inoculant + propionic acid (LP). All silages were well preserved with low pH (< 4.19) and NH3-N contents, and high lactic acid contents after ensiling for 45 days. L and PL silages underwent a more efficient fermentation than silages without L. P and MP silages inhibited lactic acid production. Under aerobic conditions, M and L silage reduced aerobic stability for 15 and 74 h, respectively. All silages that had propionic acid in their treatments markedly (P < 0.05) improved the aerobic stability. After 72 h incubation, all additives treatments increased (P < 0.05) the 72 h cumulative gas production and in vitro DM digestibility (IVDMD) as compared with the control. L treatment decreased (P < 0.05) in vitro neutral detergent fibre degradability. Our findings show that TMR prepared with oat-common vetch intercrop can be well preserved. Although propionic acid is compatible with lactic acid bacteria, and when used together, they had minor effects on fermentation, aerobic stability and in vitro digestibility of TMR silage prepared with oat-common vetch intercrop. © 2015 Society of Chemical Industry.

  6. Evaluation of ecofriendly management practices of french beanrust (Uromyces appendiculatus) in organic farming system

    NASA Astrophysics Data System (ADS)

    Chhetry, G. K. N.; Mangang, H. C.

    2012-09-01

    Organic farming system emphasises on sustainable development of agriculture. The traditional agriculture system was much akin to the organic system but modernization of agriculture made a shift to this trend. The north east region of India is potential organic farming sites. Most of the farming systems are traditional and are organic by default; however crops in organic farming are prone to many fungal diseases. Hence for validation of the impact of organic practices on the disease development of plants, a study has been conducted for three years under natural environmental conditions on bean rust (Uromyces appendiculatus). Study includes ecofriendly practices like: plant extract treatment, intercropping of beans with maize, organic manure application, influence of cropping season and Trichoderma treatment. Rust is a major prevalent disease in the cultivation of beans as in other parts of the world. Detailed study of the disease in the organic environment and the impact of various treatments and agricultural agronomic practices would help in validation of the practices for the management of the disease in the organic farming system. In our study for three consecutive years it has been revealed that the practices of the traditional farmers likeplant extract application, intercropping, and manure application were found to have significant positive effects in reducing rust development in the bean fields. The treatment of farm yard manure resulted in development of lesser area under disease progress curve. The plant extract of Artemisia vulgaris has marked positive impact on reducing rust disease parameters. Foliar application of Trichoderma reduces the disease parameters of rust. This study would enhance information in understanding the impact of organic farming system on bean rust and would help in validitation of sustainable agricultural practices for use in organic farming system.

  7. Spatial variability of soil carbon and nitrogen in two hybrid poplar-hay crop systems in southern Quebec, Canada

    NASA Astrophysics Data System (ADS)

    Winans, K. S.

    2013-12-01

    Canadian agricultural operations contribute approximately 8% of national GHG emissions each year, mainly from fertilizers, enteric fermentation, and manure management (Environment Canada, 2010). With improved management of cropland and forests, it is possible to mitigate GHG emissions through carbon (C) sequestration while enhancing soil and crop productivity. Tree-based intercropped (TBI) systems, consisting of a fast-growing woody species such as poplar (Populus spp.) planted in widely-spaced rows with crops cultivated between tree rows, were one of the technologies prioritized for investigation by the Agreement for the Agricultural Greenhouse Gases Program (AAGGP), because fast growing trees can be a sink for atmospheric carbon-dioxide (CO2) as well as a long-term source of farm income (Montagnini and Nair, 2004). However, there are relatively few estimates of the C sequestration in the trees or due to tree inputs (e.g., fine root turnover, litterfall that gets incorporated into SOC), and hybrid poplars grow exponentially in the first 8-10 years after planting. With the current study, our objectives were (1) to evaluate spatial variation in soil C and nitrogen (N) storage, CO2 and nitrogen oxide (N20), and tree and crop productivity for two hybrid poplar-hay intercrop systems at year 9, comparing TBI vs. non-TBI systems, and (2) to evaluate TBI systems in the current context of C trading markets, which value C sequestration in trees, unharvested crop components, and soils of TBI systems. The study results will provide meaningful measures that indicate changes due to TBI systems in the short-term and in the long-term, in terms of GHG mitigation, enhanced soil and crop productivity, as well as the expected economic returns in TBI systems.

  8. Effect of cover crops on greenhouse gas emissions in an irrigated field under integrated soil fertility management

    NASA Astrophysics Data System (ADS)

    Guardia, Guillermo; Abalos, Diego; García-Marco, Sonia; Quemada, Miguel; Alonso-Ayuso, María; Cárdenas, Laura M.; Dixon, Elizabeth R.; Vallejo, Antonio

    2016-09-01

    Agronomical and environmental benefits are associated with replacing winter fallow by cover crops (CCs). Yet, the effect of this practice on nitrous oxide (N2O) emissions remains poorly understood. In this context, a field experiment was carried out under Mediterranean conditions to evaluate the effect of replacing the traditional winter fallow (F) by vetch (Vicia sativa L.; V) or barley (Hordeum vulgare L.; B) on greenhouse gas (GHG) emissions during the intercrop and the maize (Zea mays L.) cropping period. The maize was fertilized following integrated soil fertility management (ISFM) criteria. Maize nitrogen (N) uptake, soil mineral N concentrations, soil temperature and moisture, dissolved organic carbon (DOC) and GHG fluxes were measured during the experiment. Our management (adjusted N synthetic rates due to ISFM) and pedo-climatic conditions resulted in low cumulative N2O emissions (0.57 to 0.75 kg N2O-N ha-1 yr-1), yield-scaled N2O emissions (3-6 g N2O-N kg aboveground N uptake-1) and N surplus (31 to 56 kg N ha-1) for all treatments. Although CCs increased N2O emissions during the intercrop period compared to F (1.6 and 2.6 times in B and V, respectively), the ISFM resulted in similar cumulative emissions for the CCs and F at the end of the maize cropping period. The higher C : N ratio of the B residue led to a greater proportion of N2O losses from the synthetic fertilizer in these plots when compared to V. No significant differences were observed in CH4 and CO2 fluxes at the end of the experiment. This study shows that the use of both legume and nonlegume CCs combined with ISFM could provide, in addition to the advantages reported in previous studies, an opportunity to maximize agronomic efficiency (lowering synthetic N requirements for the subsequent cash crop) without increasing cumulative or yield-scaled N2O losses.

  9. Managing for Multifunctionality in Perennial Grain Crops

    PubMed Central

    Ryan, Matthew R; Crews, Timothy E; Culman, Steven W; DeHaan, Lee R; Hayes, Richard C; Jungers, Jacob M; Bakker, Matthew G

    2018-01-01

    Abstract Plant breeders are increasing yields and improving agronomic traits in several perennial grain crops, the first of which is now being incorporated into commercial food products. Integration strategies and management guidelines are needed to optimize production of these new crops, which differ substantially from both annual grain crops and perennial forages. To offset relatively low grain yields, perennial grain cropping systems should be multifunctional. Growing perennial grains for several years to regenerate soil health before rotating to annual crops and growing perennial grains on sloped land and ecologically sensitive areas to reduce soil erosion and nutrient losses are two strategies that can provide ecosystem services and support multifunctionality. Several perennial cereals can be used to produce both grain and forage, and these dual-purpose crops can be intercropped with legumes for additional benefits. Highly diverse perennial grain polycultures can further enhance ecosystem services, but increased management complexity might limit their adoption. PMID:29662249

  10. Fitness trade-offs in pest management and intercropping with colour: an evolutionary framework and potential application

    PubMed Central

    Farkas, Timothy E

    2015-01-01

    An important modern goal of plant science research is to develop tools for agriculturalists effective at curbing yield losses to insect herbivores, but resistance evolution continuously threatens the efficacy of pest management strategies. The high-dose/refuge strategy has been employed with some success to curb pest adaptation, and has been shown to be most effective when fitness costs (fitness trade-offs) of resistance are high. Here, I use eco-evolutionary reasoning to demonstrate the general importance of fitness trade-offs for pest control, showing that strong fitness trade-offs mitigate the threat of pest adaptation, even if adaptation were to occur. I argue that novel pest management strategies evoking strong fitness trade-offs are the most likely to persist in the face of unbridled pest adaptation, and offer the manipulation of crop colours as a worked example of one potentially effective strategy against insect herbivores. PMID:26495038

  11. Fitness trade-offs in pest management and intercropping with colour: an evolutionary framework and potential application.

    PubMed

    Farkas, Timothy E

    2015-10-01

    An important modern goal of plant science research is to develop tools for agriculturalists effective at curbing yield losses to insect herbivores, but resistance evolution continuously threatens the efficacy of pest management strategies. The high-dose/refuge strategy has been employed with some success to curb pest adaptation, and has been shown to be most effective when fitness costs (fitness trade-offs) of resistance are high. Here, I use eco-evolutionary reasoning to demonstrate the general importance of fitness trade-offs for pest control, showing that strong fitness trade-offs mitigate the threat of pest adaptation, even if adaptation were to occur. I argue that novel pest management strategies evoking strong fitness trade-offs are the most likely to persist in the face of unbridled pest adaptation, and offer the manipulation of crop colours as a worked example of one potentially effective strategy against insect herbivores.

  12. Plant disease management in organic farming systems.

    PubMed

    van Bruggen, Ariena H C; Gamliel, Abraham; Finckh, Maria R

    2016-01-01

    Organic farming (OF) has significantly increased in importance in recent decades. Disease management in OF is largely based on the maintenance of biological diversity and soil health by balanced crop rotations, including nitrogen-fixing and cover crops, intercrops, additions of manure and compost and reductions in soil tillage. Most soil-borne diseases are naturally suppressed, while foliar diseases can sometimes be problematic. Only when a severe disease outbreak is expected are pesticides used that are approved for OF. A detailed overview is given of cultural and biological control measures. Attention is also given to regulated pesticides. We conclude that a systems approach to disease management is required, and that interdisciplinary research is needed to solve lingering disease problems, especially for OF in the tropics. Some of the organic regulations are in need of revision in close collaboration with various stakeholders. © 2015 Society of Chemical Industry.

  13. Biochar and Glomus caledonium Influence Cd Accumulation of Upland Kangkong (Ipomoea aquatica Forsk.) Intercropped with Alfred Stonecrop (Sedum alfredii Hance)

    PubMed Central

    Hu, Junli; Wu, Fuyong; Wu, Shengchun; Lam, Cheung Lung; Lin, Xiangui; Wong, Ming Hung

    2014-01-01

    Both biochar application and mycorrhizal inoculation have been proposed to improve plant growth and alter bioaccumulation of toxic metals. A greenhouse pot trial was conducted to investigate growth and Cd accumulation of upland kangkong (Ipomoea aquatica Forsk.) intercropped with Alfred stonecrop (Sedum alfredii Hance) in a Cd-contaminated soil inoculated with Glomus caledonium and/or applied with biochar. Compared with the monocultural control, intercropping with stonecrop (IS) decreased kangkong Cd acquisition via rhizosphere competition, and also decreased kangkong yield. Gc inoculation (+M) accelerated growth and Cd acquisition of stonecrop, and hence resulted in further decreases in kangkong Cd acquisition. Regardless of IS and +M, biochar addition (+B) increased kangkong yield via elevating soil available P, and decreased soil Cd phytoavailability and kangkong Cd concentration via increasing soil pH. Compared with the control, the treatment of IS + M + B had a substantially higher kangkong yield (+25.5%) with a lower Cd concentration (−62.7%). Gc generated additive effects on soil alkalinization and Cd stabilization to biochar, causing lower DTPA-extractable (phytoavailable) Cd concentrations and post-harvest transfer risks. PMID:24728157

  14. Modeling Hydrological Services in Shade Grown Coffee Systems: Case Study of the Pico Duarte Region of the Dominican Republic

    NASA Astrophysics Data System (ADS)

    Erickson, J. D.; Gross, L.; Agosto Filion, N.; Bagstad, K.; Voigt, B. G.; Johnson, G.

    2010-12-01

    The modification of hydrologic systems in coffee-dominated landscapes varies widely according to the degree of shade trees incorporated in coffee farms. Compared to mono-cropping systems, shade coffee can produce both on- and off-farm benefits in the form of soil retention, moderation of sediment transport, and lower hydropower generating costs. The Pico Duarte Coffee Region and surrounding Madres de Las Aguas (Mother of Waters) Conservation Area in the Dominican Republic is emblematic of the challenges and opportunities of ecosystem service management in coffee landscapes. Shade coffee poly-cultures in the region play an essential role in ensuring ecosystem function to conserve water resources, as well as provide habitat for birds, sequester carbon, and provide consumptive resources to households. To model the provision, use, and flow of ecosystem services from coffee farms in the region, an application of the Artificial Intelligence for Ecosystem Services (ARIES) model was developed with particular focus on sediment regulation. ARIES incorporates an array of techniques from data mining, image analysis, neural networks, Bayesian statistics, information theory, and expert systems to model the production, delivery, and demand for ecosystem services. Geospatial data on slope, soils, and vegetation cover is combined with on-farm data collection of coffee production, tree diversity, and intercropping of household food. Given hydropower production and river recreation in the region, the management of sedimentation through on-farm practices has substantial, currently uncompensated value that has received recent attention as the foundation for a payment for ecosystem services system. Scenario analysis of the implications of agro-forestry management choices on farmer livelihoods and the multiple beneficiaries of farm-provided hydrological services provide a foundation for ongoing discussions in the region between local, national, and international interests.

  15. Dry Matter Production, Nutrient Cycled and Removed, and Soil Fertility Changes in Yam-Based Cropping Systems with Herbaceous Legumes in the Guinea-Sudan Zone of Benin.

    PubMed

    Maliki, Raphiou; Sinsin, Brice; Floquet, Anne; Cornet, Denis; Malezieux, Eric; Vernier, Philippe

    2016-01-01

    Traditional yam-based cropping systems (shifting cultivation, slash-and-burn, and short fallow) often result in deforestation and soil nutrient depletion. The objective of this study was to determine the impact of yam-based systems with herbaceous legumes on dry matter (DM) production (tubers, shoots), nutrients removed and recycled, and the soil fertility changes. We compared smallholders' traditional systems (1-year fallow of Andropogon gayanus-yam rotation, maize-yam rotation) with yam-based systems integrated herbaceous legumes (Aeschynomene histrix/maize intercropping-yam rotation, Mucuna pruriens/maize intercropping-yam rotation). The experiment was conducted during the 2002 and 2004 cropping seasons with 32 farmers, eight in each site. For each of them, a randomized complete block design with four treatments and four replicates was carried out using a partial nested model with five factors: Year, Replicate, Farmer, Site, and Treatment. Analysis of variance (ANOVA) using the general linear model (GLM) procedure was applied to the dry matter (DM) production (tubers, shoots), nutrient contribution to the systems, and soil properties at depths 0-10 and 10-20 cm. DM removed and recycled, total N, P, and K recycled or removed, and soil chemical properties (SOM, N, P, K, and pH water) were significantly improved on yam-based systems with legumes in comparison with traditional systems.

  16. Dry Matter Production, Nutrient Cycled and Removed, and Soil Fertility Changes in Yam-Based Cropping Systems with Herbaceous Legumes in the Guinea-Sudan Zone of Benin

    PubMed Central

    Sinsin, Brice; Floquet, Anne; Cornet, Denis; Malezieux, Eric; Vernier, Philippe

    2016-01-01

    Traditional yam-based cropping systems (shifting cultivation, slash-and-burn, and short fallow) often result in deforestation and soil nutrient depletion. The objective of this study was to determine the impact of yam-based systems with herbaceous legumes on dry matter (DM) production (tubers, shoots), nutrients removed and recycled, and the soil fertility changes. We compared smallholders' traditional systems (1-year fallow of Andropogon gayanus-yam rotation, maize-yam rotation) with yam-based systems integrated herbaceous legumes (Aeschynomene histrix/maize intercropping-yam rotation, Mucuna pruriens/maize intercropping-yam rotation). The experiment was conducted during the 2002 and 2004 cropping seasons with 32 farmers, eight in each site. For each of them, a randomized complete block design with four treatments and four replicates was carried out using a partial nested model with five factors: Year, Replicate, Farmer, Site, and Treatment. Analysis of variance (ANOVA) using the general linear model (GLM) procedure was applied to the dry matter (DM) production (tubers, shoots), nutrient contribution to the systems, and soil properties at depths 0–10 and 10–20 cm. DM removed and recycled, total N, P, and K recycled or removed, and soil chemical properties (SOM, N, P, K, and pH water) were significantly improved on yam-based systems with legumes in comparison with traditional systems. PMID:27446635

  17. Evaluating Evapotranspiration of Pine Forest, Switchgrass, and Pine- Switchgrass Intercroppings using Remote Sensing and Ground-based Methods

    NASA Astrophysics Data System (ADS)

    Amatya, D. M.; Panda, S.; Chescheir, G. M.; Nettles, J. E.; Appelboom, T.; Skaggs, R. W.

    2011-12-01

    Vast areas of the land in the Southeastern United States are under pine forests managed primarily for timber and related byproducts. Evapotranspiration (ET) is the major loss in the water balance of this forest ecosystem. A long-term (1988-2008) study to evaluate hydrologic and nutrient balance during a life cycle of a pine stand was just completed. The study used both monitoring and modeling approaches to evaluate hydrologic and water quality effects of silvicultural and water management treatments on three 25 ha experimental watersheds in eastern North Carolina (NC). The research was extended in 2009 to include a dedicated energy crop, switchgrass (Panicum virgatum), by adding an adjacent 25 ha watershed. These multiple watersheds are being used to evaluate the hydrologic and water quality effects of switchgrass alone, young pine with natural understory, and young pine with switchgrass intercropping compared to the control (pine stand with a natural understory). The biofuels study has been further expanded to two other southern states, Alabama (AL) and Mississippi (MS). Each has five small watersheds (< 25 ha size) consisting of the above treatments and an additional woody biomass removal treatment. In this presentation we provide methods for estimating ET for these treatment watersheds in all three states (NC, AL, and MS) using remote sensing based spatial high resolution multispectral satellite imagery data with ground truthing, where possible, together with sensor technology. This technology is making ET parameter estimation a reality for various crops and vegetation surfaces. Slope-based vegetation indices like Normalized Difference Vegetation Index (NDVI) and Green Vegetation Index (GVI) and distance-based vegetation indices like Soil Adjusted Vegetation Index (SAVI) and Perpendicular Vegetation Index (PVI) will be developed using the R and NIR bands, vegetation density, and background soil reflectance as necessary. Landsat and high resolution aerial imageries of vegetation and soils will be used. IDRISI Taiga software will be used for the indices development. The forested vegetation health will be correlated to the leaf chlorophyll content for determining the vegetation health with a subsequent derivation of available plant water for radiation. Models will be developed to correlate the plant and soil available water to different vegetation indices. Correlation models will also be developed to obtain information on climatic parameters like surface air temperature, net radiation, albedo, soil moisture content, and stomatal water availability from Landsat imageries. On-site weather parameters used for the PET estimates will be combined with other vegetation parameters like leaf area index (LAI) obtained using LIDAR data and NAIP orthophotos of different seasons. That will also help detect the upper and understory vegetation. The LIDAR data will be processed to obtain the volume of vegetation to correctly estimate the total ET for each treatment.

  18. The land use patterns for soil organic carbon conservation at Endanga watershed Southeast Sulawesi Indonesia

    NASA Astrophysics Data System (ADS)

    Leomo, S.; Ginting, S.; Sabaruddin, L.; Tufaila, M.; Muhidin

    2018-02-01

    The Endanga basin is one part of the Konaweeha watershed located in South Konawe, Southeast Sulawesi Province, covering an area of 1,353.67 hectares. The land use patterns in Endanga Watershed contained forests, shrubs, oil palm plantations, pepper fields, and cultivated fields of field rice, corn monoculture and intercropping of peanuts and corn. This watershed needs serious attention because most of its territory is on slope of 15-40%, with erosion hazard levels (EHL) varying from mild erosion to severe erosion. The loss of organic carbon (C-organic) soil is measured from the soil carried along with the surface stream and into the reservoir on various land uses. The result measurement of C-organic soil loss on forest land use is 14.02 kg ha-1, shrubs land 22.71 kg ha-1, oil palm 151.32 kg ha-1, pepper garden 93.69 kg ha-1, field rice 313.80 kg.ha-1, monoculture of maize 142.44 kg ha-1, intercropped maize and corn 51.10 kg ha-1 and open land 1,909.16 kg ha-1. The forest land and shrubs is best in conserving soil C-organic, but economically unfavorable for the community, so land use pattern for intercropping and pepper plantation can be used for soil C-organic conservation

  19. Uptake of di(2-ethylhexyl) phthalate (DEHP) by the plant Benincasa hispida and its use for lowering DEHP content of intercropped vegetables.

    PubMed

    Wu, Zunyi; Zhang, Xiaolei; Wu, Xiaolian; Shen, Guoming; Du, Qizhen; Mo, Cehui

    2013-06-05

    Uptake of di(2-ethylhexyl) phthalate (DEHP) by the plant Benincasa hispida and its use for topical phytoremediation were investigated by cultivation of plants in DEHP-contaminated environments. The results showed that major plant organs of B. hispida , including leaves, stems, and fruits, readily absorbed DEHP from the air. The amount of DEHP that accumulated in leaves, stems, and fruits was mainly dependent upon exposure time, and most DEHP accumulated in their inner tissues. A single plant of B. hispida with a gourd was able to absorb more than 700 mg of DEHP when it was exposed to DEHP-contaminated air for 6 week. B. hispida reduced air DEHP concentration by 65-76% as the air DEHP concentration ranged from 2351 to 3955 μg/m³ (high DEHP level) and 85-92% as the air DEHP concentration ranged from 35.1 to 65.3 μg/m³ (low DEHP level) in greenhouse experiments. When intercropping of B. hispida and Brassica chinensis or Brassica campestris , B. hispida reduced more than 87% of DEHP accumulation in the latter, which indicates that B. hispida has excellent use potential for lowering the DEHP content of intercropped vegetables.

  20. Nutrient cycling and Above- and Below-ground Interactions in a Runoff Agroforestry System Applied with Composted Tree Trimmings

    NASA Astrophysics Data System (ADS)

    Ilani, Talli; Ephrath, Jhonathan; Silberbush, Moshe; Berliner, Pedro

    2014-05-01

    The primary production in arid zones is limited due to shortage of water and nutrients. Conveying flood water and storing it in plots surrounded by embankments allows their cropping. The efficient exploitation of the stored water can be achieved through an agroforestry system, in which two crops are grown simultaneously: annual crops with a shallow root system and trees with a deeper root system. We posit that the long-term productivity of this system can be maintained by intercropping symbiotic N fixing shrubs with annual crops, and applying the pruned and composted shrub leaves to the soil, thus ensuring an adequate nitrogen level (a limiting factor in drylands) in the soil. To test our hypothesis we carried a two year trial in which fast-growing acacia (A. saligna) trees were the woody component and maize (Zea mays L.) the intercrop. Ten treatments were applied over two maize growth seasons to examine the below- and above-ground effects of tree pruning, compost application and interactions. The addition of compost in the first growth season led to an increase of the soil organic matter reservoir, which was the main N source for the maize during the following growth season. In the second growth season the maize yield was significantly higher in the plots to which compost was applied. Pruning the tree's canopies changed the trees spatial and temporal root development, allowing the annual crop to develop between the trees. The roots of pruned trees intercropped with maize penetrated deeper in the soil. The intercropping of maize within pruned trees and implementing compost resulted in a higher water use efficiency of the water stored in the soil when compared to the not composted and monoculture treatments. The results presented suggest that the approach used in this study can be the basis for achieving sustainable agricultural production under arid conditions.

  1. Soil-Atmosphere Greenhouse Gas Fluxes on the Margins of the Congo Forest: Effects of Forest Conversion towards Smallholder Agricultural Lands and Agricultural Intensification

    NASA Astrophysics Data System (ADS)

    kwatcho Kengdo, S.; Sonwa, D. J.; Njine-Bememba, C. B.; Djatsa, L. D.; Rufino, M. C.; Verchot, L. V.; Tejedor, J.; Dannenmann, M.

    2016-12-01

    The forests of the Congo Basin are subject to deforestation and land use change, which may severely influence the soil-atmosphere exchange of greenhouse gases (GHG). However, due to absence of analytical capacities in Central Africa, there is a lack of knowledge on fluxes of CO2, CH4 and N2O at the soil-atmosphere interface for natural and managed ecosystems, which introduces large uncertainties into regional and national GHG reporting. The objectives of this study were to quantify GHG emissions from typical land use on the margins of the Congo forests, to analyze seasonal variability and environmental controls of soil-atmosphere GHG fluxes across a land use gradient and explore options of sustainable intensification of maize cultivation. In Cameroon, we quantified fluxes of CO2, CH4, and N2O at the soil - atmosphere interface in secondary forests, cocoa agroforests, unfertilized mixed crop fields, and three different types of maize cultivation: unfertilized control, maize intercropped with N fixing beans, maize applied with mineral nitrogen fertilizer. We used manual static chamber techniques with approximately weekly temporal resolution over a full year and analyzed gas samples using a gas chromatograph. Soil temperature and moisture data were permanently recorded at main sites and soil sampling provided information on soil mineral N content. We found highest CO2 and N2O emissions, net CH4 uptake and soil mineral N concentrations in the secondary forest with lower values observed in cocoa agroforest and in particular in extensive mixed crop. Soil moisture changes were the dominant driver of seasonal changes of GHG fluxes at all study sites. Intercropping with N fixing beans did not alter soil N2O emissions from maize fields. In contrast, application of mineral N increased soil N2O emissions by more than a factor of five. Our work highlights the importance of soil moisture as the driver of GHG fluxes and in particular for N2O indicates a strong decrease in soil emissions after forest conversion to extensive crop fields. Agricultural intensification based on mineral N fertilizer can increase N2O emissions to levels significantly higher than those observed in secondary forests. Our trial with intercropped N fixing beans show promise towards a sustainable intensification of agriculture in the study region.

  2. From Observation to Information: Data-Driven Understanding of on Farm Yield Variation

    PubMed Central

    Jiménez, Daniel; Dorado, Hugo; Cock, James; Prager, Steven D.; Delerce, Sylvain; Grillon, Alexandre; Andrade Bejarano, Mercedes; Benavides, Hector; Jarvis, Andy

    2016-01-01

    Agriculture research uses “recommendation domains” to develop and transfer crop management practices adapted to specific contexts. The scale of recommendation domains is large when compared to individual production sites and often encompasses less environmental variation than farmers manage. Farmers constantly observe crop response to management practices at a field scale. These observations are of little use for other farms if the site and the weather are not described. The value of information obtained from farmers’ experiences and controlled experiments is enhanced when the circumstances under which it was generated are characterized within the conceptual framework of a recommendation domain, this latter defined by Non-Controllable Factors (NCFs). Controllable Factors (CFs) refer to those which farmers manage. Using a combination of expert guidance and a multi-stage analytic process, we evaluated the interplay of CFs and NCFs on plantain productivity in farmers’ fields. Data were obtained from multiple sources, including farmers. Experts identified candidate variables likely to influence yields. The influence of the candidate variables on yields was tested through conditional forests analysis. Factor analysis then clustered harvests produced under similar NCFs, into Homologous Events (HEs). The relationship between NCFs, CFs and productivity in intercropped plantain were analyzed with mixed models. Inclusion of HEs increased the explanatory power of models. Low median yields in monocropping coupled with the occasional high yields within most HEs indicated that most of these farmers were not using practices that exploited the yield potential of those HEs. Varieties grown by farmers were associated with particular HEs. This indicates that farmers do adapt their management to the particular conditions of their HEs. Our observations confirm that the definition of HEs as recommendation domains at a small-scale is valid, and that the effectiveness of distinct management practices for specific micro-recommendation domains can be identified with the methodologies developed. PMID:26930552

  3. The limit of irrigation adaption due to the inter-crop conflict of water use under changing climate and landuse

    NASA Astrophysics Data System (ADS)

    Okada, M.; Iizumi, T.; Sakamoto, T.; Kotoku, M.; Sakurai, G.; Nishimori, M.

    2017-12-01

    Replacing rainfed cropping system by irrigated one is assumed to be an effective measure for climate change adaptation in agriculture. However, in many agricultural impact assessments, future irrigation scenarios are externally given and do not consider variations in the availability of irrigation water under changing climate and land use. Therefore, we assess the potential effects of adaption measure expanding irrigated area under climate change by using a large-scale crop-river coupled model, CROVER [Okada et al. 2015, JAMES]. The CROVER model simulates the large-scale terrestrial hydrological cycle and crop growth depending on climate, soil properties, landuse, crop cultivation management, socio-economic water demand, and reservoir operation management. The bias-corrected GCMs outputs under the RCP 8.5 scenario were used. The future expansion of irrigation area was estimated by using the extrapolation method based on the historical change in irrigated and rainfed areas. As the results, the irrigation adaptation has only a limited effect on the rice production in East Asia due to the conflict of water use for irrigation with the other crops, whose farmlands require unsustainable water extraction with the excessively expanding irrigated area. In contrast, the irrigation adaptation benefits maize production in Europe due to the little conflict of water use for irrigation. Our findings suggest the importance of simulating the river water availability and crop production in a single model for the more realistic assessment in the irrigation adaptation potential effects of crop production under changing climate and land use.

  4. [Effects of poplar-amaranth intercropping system on the soil nitrogen loss under different nitrogen applying levels].

    PubMed

    Chu, Jun; Xue, Jian-Hui; Wu, Dian-Ming; Jin, Mei-Juan; Wu, Yong-Bo

    2014-09-01

    Characteristics of soil nitrogen loss were investigated based on field experiments in two types of poplar-amaranth intercropping systems (spacing: L1 2 m x 5 m, L2 2 m x 15 m) with four N application rates, i. e., 0 (N1), 91 (N2), 137 (N3) and 183 (N4) kg · hm(-2). The regulation effects on the soil surface runoff, leaching loss and soil erosion were different among the different types of intercropping systems: L1 > L2 > L3 (amaranth monocropping). Compared with the amaranth monocropping, the soil surface runoff rates of L1 and L2 decreased by 65.1% and 55.9%, the soil leaching rates of L1 and L2 with a distance of 0.5 m from the poplar tree row de- creased by 30.0% and 28.9%, the rates with a distance of 1. 5 m decreased by 25. 6% and 21.9%, and the soil erosion rates decreased by 65.0% and 55.1%, respectively. The control effects of two intercropping systems on TN, NO(3-)-N and NH(4+)-N in soil runoff and leaching loss were in the order of L1 > L2 > L3. Compared with the amaranth monocropping, TN, NO(3-)-N and NH(4+)-N loss rates in soil runoff of L1 decreased by 62.9%, 45.1% and 69.2%, while the loss rates of L2 decreased by 23.4%, 6.9% and 46.2% under N1 (91 kg · hm(-2)), respectively. High- er tree-planting density and closer positions to the polar tree row were more effective on controlling the loss rates of NO(3-)-N and NH(4+)-N caused by soil leaching. The loss proportion of NO(3-)-N in soil runoff decreased with the increasing nitrogen rate under the same tree-planting density, while that of NH(4+)-N increased. Leaching loss of NO(3-)-N had a similar trend with that of NH(4+)-N, i. e. , N3 > N2 > N1 > N0.

  5. An approach to mitigating soil CO2 emission by biochemically inhibiting cellulolytic microbial populations through mediation via the medicinal herb Isatis indigotica

    NASA Astrophysics Data System (ADS)

    Wu, Hong-Sheng; Chen, Su-Yun; Li, Ji; Liu, Dong-Yang; Zhou, Ji; Xu, Ya; Shang, Xiao-Xia; Wei, Dong-yang; Yu, Lu-ji; Fang, Xiao-hang; Li, Shun-yi; Wang, Ke-ke

    2017-06-01

    Greenhouse gases (GHGs, particularly carbon dioxide (CO2)) emissions from soil under wheat production are a significant source of agricultural carbon emissions that have not been mitigated effectively. A field experiment and a static incubation study in a lab were conducted to stimulate wheat growth and investigate its potential to reduce CO2 emissions from soil through intercropping with a traditional Chinese medicinal herb called Isatis indigotica. This work was conducted by adding I. indigotica root exudates based on the quantitative real-time PCR (qPCR) analysis of the DNA copy number of the rhizosphere or bulk soil microbial populations. This addition was performed in relation to the CO2 formation by cellulolytic microorganisms (Penicillium oxalicum, fungi and Ruminococcus albus) to elucidate the microbial ecological basis for the molecular mechanism that decreases CO2 emissions from wheat fields using I. indigotica. The results showed that the panicle weight and full grains per panicle measured through intercropping with I. indigotica (NPKWR) increased by 39% and 28.6%, respectively, compared to that of the CK (NPKW). Intercropping with I. indigotica significantly decreased the CO2 emissions from soil under wheat cultivation. Compared with CK, the total CO2 emission flux during the wheat growth period in the I. indigotica (NPKWR) intercropping treatment decreased by 29.26%. The intensity of CO2 emissions per kg of harvested wheat grain declined from 7.53 kg CO2/kg grain in the NPKW (CK) treatment to 5.55 kg CO2/kg grain in the NPKWR treatment. The qPCR analysis showed that the DNA copy number of the microbial populations of cellulolytic microorganisms (P. oxalicum, fungi and R. albus) in the field rhizosphere around I. indigotica or in the bulk soil under laboratory incubation was significantly lower than that of CK. This finding indicated that root exudates from I. indigotica inhibited the activity and number of cellulolytic microbial populations, which led to decreased CO2 emissions, suggesting this plant's potential role in mitigating agricultural GHGs and in supporting agroecology.

  6. Harvest time residues of pendimethalin and oxyfluorfen in vegetables and soil in sugarcane-based intercropping systems.

    PubMed

    Kaur, Navneet; Bhullar, Makhan S

    2015-05-01

    Terminal residues of pendimethalin and oxyfluorfen applied in autumn sugarcane- and vegetables-based intercropping systems were analyzed in peas (Pisum sativum), cabbage (Brassica oleracea), garlic (Allium sativum), gobhi sarson (Brassica napus), and raya (Brassica juncea). The study was conducted in winter season in 2010-2011 and in 2011-2012 at Ludhiana, India. Pendimethalin at 0.56 kg and 0.75 kg ha(-1) was applied immediately after sowing of gobhi sarson, raya, peas, garlic, and 2 days before transplanting of cabbage seedlings. Oxyfluorfen at 0.17 kg and 0.23 kg ha(-1) was applied immediately after sowing of peas and garlic and 2 days before transplanting of cabbage seedlings intercropped in autumn sugarcane. Representative samples of these vegetables were collected at 75, 90, 100, and 165 days after application of herbicides and analyzed by high-performance liquid chromatograph (HPLC) with diode array detector for residues. The residue level of pendimethalin and oxyfluorfen in mature vegetables was found to be below the limit of quantification which is 0.05 mg kg(-1) for both the herbicides. The soil samples were collected at 0, 7, 15, 30, 45, and 60 days after the application of their herbicides. The residues of herbicides in soil samples were found to be below the detectability limit of 0.05 mg kg(-1) after 60 days in case of pendimethalin and after 45 days in case of oxyfluorfen.

  7. Photosynthetic Response of Soybean to Microclimate in 26-Year-Old Tree-Based Intercropping Systems in Southern Ontario, Canada.

    PubMed

    Peng, Xiaobang; Thevathasan, Naresh V; Gordon, Andrew M; Mohammed, Idris; Gao, Pengxiang

    2015-01-01

    In order to study the effect of light competition and microclimatic modifications on the net assimilation (NA), growth and yield of soybean (Glycine max L.) as an understory crop, three 26-year-old soybean-tree (Acer saccharinum Marsh., Populus deltoides X nigra, Juglans nigra L.) intercropping systems were examined. Tree competition reduced photosynthetically active radiation (PAR) incident on soybeans and reduced net assimilation, growth and yield of soybean. Soil moisture of 20 cm depth close (< 3 m) to the tree rows was also reduced. Correlation analysis showed that NA and soil water content were highly correlated with growth and yield of soybean. When compared with the monoculture soybean system, the relative humidity (RH) of the poplar-soybean, silver maple-soybean, and black walnut-soybean intercropped systems was increased by 7.1%, 8.0% and 5.9%, soil water content was reduced by 37.8%, 26.3% and 30.9%, ambient temperature was reduced by 1.3°C, 1.4°C and 1.0°C, PAR was reduced by 53.6%, 57.9% and 39.9%, and air CO2 concentration was reduced by 3.7μmol·mol(-1), 4.2μmol·mol(-1) and 2.8μmol·mol(-1), respectively. Compared to the monoculture, the average NA of soybean in poplar, maple and walnut treatments was also reduced by 53.1%, 67.5% and 46.5%, respectively. Multivariate stepwise regression analysis showed that PAR, ambient temperature and CO2 concentration were the dominant factors influencing net photosynthetic rate.

  8. Photosynthetic Response of Soybean to Microclimate in 26-Year-Old Tree-Based Intercropping Systems in Southern Ontario, Canada

    PubMed Central

    Peng, Xiaobang; Thevathasan, Naresh V.; Gordon, Andrew M.; Mohammed, Idris; Gao, Pengxiang

    2015-01-01

    In order to study the effect of light competition and microclimatic modifications on the net assimilation (NA), growth and yield of soybean (Glycine max L.) as an understory crop, three 26-year-old soybean-tree (Acer saccharinum Marsh., Populus deltoides X nigra, Juglans nigra L.) intercropping systems were examined. Tree competition reduced photosynthetically active radiation (PAR) incident on soybeans and reduced net assimilation, growth and yield of soybean. Soil moisture of 20 cm depth close (< 3 m) to the tree rows was also reduced. Correlation analysis showed that NA and soil water content were highly correlated with growth and yield of soybean. When compared with the monoculture soybean system, the relative humidity (RH) of the poplar-soybean, silver maple-soybean, and black walnut-soybean intercropped systems was increased by 7.1%, 8.0% and 5.9%, soil water content was reduced by 37.8%, 26.3% and 30.9%, ambient temperature was reduced by 1.3°C, 1.4°C and 1.0°C, PAR was reduced by 53.6%, 57.9% and 39.9%, and air CO2 concentration was reduced by 3.7μmol·mol-1, 4.2μmol·mol-1 and 2.8μmol·mol-1, respectively. Compared to the monoculture, the average NA of soybean in poplar, maple and walnut treatments was also reduced by 53.1%, 67.5% and 46.5%, respectively. Multivariate stepwise regression analysis showed that PAR, ambient temperature and CO2 concentration were the dominant factors influencing net photosynthetic rate. PMID:26053375

  9. Impacts of human-related practices on Ommatissus lybicus infestations of date palm in Oman.

    PubMed

    Al-Kindi, Khalifa M; Kwan, Paul; Andrew, Nigel R; Welch, Mitchell

    2017-01-01

    Date palm cultivation is economically important in the Sultanate of Oman, with significant financial investments coming from both the government and private individuals. However, a widespread Dubas bug (DB) (Ommatissus lybicus Bergevin) infestation has impacted regions including the Middle East, North Africa, Southeast Russia, and Spain, resulting in widespread damages to date palms. In this study, techniques in spatial statistics including ordinary least squares (OLS), geographically weighted regression (GRW), and exploratory regression (ER) were applied to (a) model the correlation between DB infestations and human-related practices that include irrigation methods, row spacing, palm tree density, and management of undercover and intercropped vegetation, and (b) predict the locations of future DB infestations in northern Oman. Firstly, we extracted row spacing and palm tree density information from remote sensed satellite images. Secondly, we collected data on irrigation practices and management by using a simple questionnaire, augmented with spatial data. Thirdly, we conducted our statistical analyses using all possible combinations of values over a given set of candidate variables using the chosen predictive modelling and regression techniques. Lastly, we identified the combination of human-related practices that are most conducive to the survival and spread of DB. Our results show that there was a strong correlation between DB infestations and several human-related practices parameters (R2 = 0.70). Variables including palm tree density, spacing between trees (less than 5 x 5 m), insecticide application, date palm and farm service (pruning, dethroning, remove weeds, and thinning), irrigation systems, offshoots removal, fertilisation and labour (non-educated) issues, were all found to significantly influence the degree of DB infestations. This study is expected to help reduce the extent and cost of aerial and ground sprayings, while facilitating the allocation of date palm plantations. An integrated pest management (IPM) system monitoring DB infestations, driven by GIS and remote sensed data collections and spatial statistical models, will allow for an effective DB management program in Oman. This will in turn ensure the competitiveness of Oman in the global date fruits market and help preserve national yields.

  10. Morphological plasticity in watermelon in response to interspecific competition in a low-resource intercropping system

    USDA-ARS?s Scientific Manuscript database

    Interspecies specific interactions are generally regarded as drivers of plant productivity in multispecies agroecosystems. Positive interactions such as facilitation can dominate over competition under high abiotic stress conditions. Furthermore, complementary use of resource in diverse communities ...

  11. No correlation between the diversity and productivity of assemblages: evidence from the phytophage and predator assemblages in various cotton agroecosystems.

    PubMed

    Gao, Feng; Men, XingYuan; Ge, Feng

    2014-09-01

    Biodiversity research has shown that primary productivity increases with plant species number, especially in many experimental grassland systems. Here, we assessed the correlation between productivity and diversity of phytophages and natural enemy assemblages associated with planting date and intercropping in four cotton agroecosystems. Twenty-one pairs of data were used to determine Pearson correlations between species richness, total number of individuals, diversity indices and productivity for each assemblage every five days from 5 June to 15 September 2012. At the same trophic level, the productivity exhibited a significant positive correlation with species richness of the phytophage or predator assemblage. A significant correlation was found between productivity and total number of individuals in most cotton fields. However, no significant correlations were observed between productivity and diversity indices (including indices of energy flow diversity and numerical diversity) in most cotton fields for either the phytophage or the predator assemblages. Species richness of phytophage assemblage and total individual numbers were significantly correlated with primary productivity. Also, species richness of natural enemy assemblage and total number of individuals correlated with phytophage assemblage productivity. A negative but not significant correlation occurred between the indices of numerical diversity and energy flow diversity and lower trophic-level productivity in the cotton-phytophage and phytophage-predator assemblages for most intercropped cotton agroecosystems. Our results clearly showed that there were no correlations between diversity indices and productivity within the same or lower trophic levels within the phytophage and predator assemblages in cotton agroecosystems, and inter-cropped cotton fields had a stronger ability to support the natural enemy assemblage and potentially to reduce phytophages.

  12. Crop root behavior coordinates phosphorus status and neighbors: from field studies to three-dimensional in situ reconstruction of root system architecture.

    PubMed

    Fang, Suqin; Gao, Xiang; Deng, Yan; Chen, Xinping; Liao, Hong

    2011-03-01

    Root is a primary organ to respond to environmental stimuli and percept signals from neighboring plants. In this study, root responses in maize (Zea mays)/soybean (Glycine max) intercropping systems recognized soil phosphorus (P) status and neighboring plants in the field. Compared to self culture, the maize variety GZ1 intercropping with soybean HX3 grew much better on low P, but not in another maize variety, NE1. This genotypic response decreased with increasing distance between plants, suggesting that root interactions were important. We further conducted a detailed and quantitative study of root behavior in situ using a gel system to reconstruct the three-dimensional root architecture. The results showed that plant roots could integrate information on P status and root behavior of neighboring plants. When intercropped with its kin, maize or soybean roots grew close to each other. However, when maize GZ1 was grown with soybean HX3, the roots on each plant tended to avoid each other and became shallower on stratified P supply, but not found with maize NE1. Furthermore, root behavior in gel was highly correlated to shoot biomass and P content for field-grown plants grown in close proximity. This study provides new insights into the dynamics and complexity of root behavior and kin recognition among crop species in response to nutrient status and neighboring plants. These findings also indicate that root behavior not only depends on neighbor recognition but also on a coordinated response to soil P status, which could be the underlying cause for the different growth responses in the field.

  13. A High-Throughput Molecular Pipeline Reveals the Diversity in Prevalence and Abundance of Pratylenchus and Meloidogyne Species in Coffee Plantations.

    PubMed

    Bell, Christopher A; Atkinson, Howard J; Andrade, Alan C; Nguyen, Hoa X; Swibawa, I Gede; Lilley, Catherine J; McCarthy, James; Urwin, P E

    2018-05-01

    Coffee yields are adversely affected by plant-parasitic nematodes and the pathogens are largely underreported because a simple and reliable identification method is not available. We describe a polymerase chain reaction-based approach to rapidly detect and quantify the major Pratylenchus and Meloidogyne nematode species that are capable of parasitizing coffee. The procedure was applied to soil samples obtained from a number of coffee farms in Brazil, Vietnam, and Indonesia to assess the prevalence of these species associated both with coffee (Coffea arabica and C. canephora) and its intercropped species Musa acuminata (banana) and Piper nigrum (black pepper). Pratylenchus coffeae and P. brachyurus were associated with coffee in all three countries but there were distinct profiles of Meloidogyne spp. Meloidogyne incognita, M. exigua, and M. paranaensis were identified in samples from Brazil and M. incognita and M. hapla were detected around the roots of coffee in Vietnam. No Meloidogyne spp. were detected in samples from Indonesia. There was a high abundance of Meloidogyne spp. in soil samples in which Pratylenchus spp. were low or not detected, suggesting that the success of one genus may deter another. Meloidogyne spp. in Vietnam and Pratylenchus spp. in Indonesia were more numerous around intercropped plants than in association with coffee. The data suggest a widespread but differential nematode problem associated with coffee production across the regions studied. The issue is compounded by the current choice of intercrops that support large nematode populations. Wider application of the approach would elucidate the true global scale of the nematode problem and the cost to coffee production. [Formula: see text] Copyright © 2018 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .

  14. Achieving food security for one million sub-Saharan African poor through push-pull innovation by 2020.

    PubMed

    Khan, Zeyaur R; Midega, Charles A O; Pittchar, Jimmy O; Murage, Alice W; Birkett, Michael A; Bruce, Toby J A; Pickett, John A

    2014-04-05

    Food insecurity is a chronic problem in Africa and is likely to worsen with climate change and population growth. It is largely due to poor yields of the cereal crops caused by factors including stemborer pests, striga weeds and degraded soils. A platform technology, 'push-pull', based on locally available companion plants, effectively addresses these constraints resulting in substantial grain yield increases. It involves intercropping cereal crops with a forage legume, desmodium, and planting Napier grass as a border crop. Desmodium repels stemborer moths (push), and attracts their natural enemies, while Napier grass attracts them (pull). Desmodium is very effective in suppressing striga weed while improving soil fertility through nitrogen fixation and improved organic matter content. Both companion plants provide high-value animal fodder, facilitating milk production and diversifying farmers' income sources. To extend these benefits to drier areas and ensure long-term sustainability of the technology in view of climate change, drought-tolerant trap and intercrop plants are being identified. Studies show that the locally commercial brachiaria cv mulato (trap crop) and greenleaf desmodium (intercrop) can tolerate long droughts. New on-farm field trials show that using these two companion crops in adapted push-pull technology provides effective control of stemborers and striga weeds, resulting in significant grain yield increases. Effective multi-level partnerships have been established with national agricultural research and extension systems, non-governmental organizations and other stakeholders to enhance dissemination of the technology with a goal of reaching one million farm households in the region by 2020. These will be supported by an efficient desmodium seed production and distribution system in eastern Africa, relevant policies and stakeholder training and capacity development.

  15. Ecological intensification to mitigate impacts of conventional intensive land use on pollinators and pollination.

    PubMed

    Kovács-Hostyánszki, Anikó; Espíndola, Anahí; Vanbergen, Adam J; Settele, Josef; Kremen, Claire; Dicks, Lynn V

    2017-05-01

    Worldwide, human appropriation of ecosystems is disrupting plant-pollinator communities and pollination function through habitat conversion and landscape homogenisation. Conversion to agriculture is destroying and degrading semi-natural ecosystems while conventional land-use intensification (e.g. industrial management of large-scale monocultures with high chemical inputs) homogenises landscape structure and quality. Together, these anthropogenic processes reduce the connectivity of populations and erode floral and nesting resources to undermine pollinator abundance and diversity, and ultimately pollination services. Ecological intensification of agriculture represents a strategic alternative to ameliorate these drivers of pollinator decline while supporting sustainable food production, by promoting biodiversity beneficial to agricultural production through management practices such as intercropping, crop rotations, farm-level diversification and reduced agrochemical use. We critically evaluate its potential to address and reverse the land use and management trends currently degrading pollinator communities and potentially causing widespread pollination deficits. We find that many of the practices that constitute ecological intensification can contribute to mitigating the drivers of pollinator decline. Our findings support ecological intensification as a solution to pollinator declines, and we discuss ways to promote it in agricultural policy and practice. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  16. Soil management practices under organic farming

    NASA Astrophysics Data System (ADS)

    Aly, Adel; Chami Ziad, Al; Hamdy, Atef

    2015-04-01

    Organic farming methods combine scientific knowledge of ecology and modern technology with traditional farming practices based on naturally occurring biological processes. Soil building practices such as crop rotations, intercropping, symbiotic associations, cover crops, organic fertilizers and minimum tillage are central to organic practices. Those practices encourage soil formation and structure and creating more stable systems. In farm nutrient and energy cycling is increased and the retentive abilities of the soil for nutrients and water are enhanced. Such management techniques also play an important role in soil erosion control. The length of time that the soil is exposed to erosive forces is decreased, soil biodiversity is increased, and nutrient losses are reduced, helping to maintain and enhance soil productivity. Organic farming as systematized and certifiable approach for agriculture, there is no surprise that it faces some challenges among both farmers and public sector. This can be clearly demonstrated particularly in the absence of the essential conditions needed to implement successfully the soil management practices like green manure and composting to improve soil fertility including crop rotation, cover cropping and reduced tillage. Those issues beside others will be fully discussed highlighting their beneficial impact on the environmental soil characteristics. Keywords: soil fertility, organic matter, plant nutrition

  17. [Effects of different multiple cropping systems on paddy field weed community under long term paddy-upland rotation].

    PubMed

    Yang, Bin-Juan; Huang, Guo-Qin; Xu, Ning; Wang, Shu-Bin

    2013-09-01

    Based on a long term field experiment, this paper studied the effects of different multiple cropping systems on the weed community composition and species diversity under paddy-upland rotation. The multiple cropping rotation systems could significantly decrease weed density and inhibited weed growth. Among the rotation systems, the milk vetch-early rice-late maize --> milk vetchearly maize intercropped with early soybean-late rice (CCSR) had the lowest weed species dominance, which inhibited the dominant weeds and decreased their damage. Under different multiple cropping systems, the main weed community was all composed of Monochoia vaginalis, Echinochloa crusgalli, and Sagittaria pygmae, and the similarity of weed community was higher, with the highest similarity appeared in milk vetch-early rice-late maize intercropped with late soybean --> milk vetch-early maize-late rice (CSCR) and in CCSR. In sum, the multiple cropping rotations in paddy field could inhibit weeds to a certain extent, but attentions should be paid to the damage of some less important weeds.

  18. Synergy of agroforestry and bottomland hardwood afforestation

    USGS Publications Warehouse

    Twedt, D.J.; Portwood, J.; Clason, Terry R.

    2003-01-01

    Afforestation of bottomland hardwood forests has historically emphasized planting heavy-seeded tree species such as oak (Quercus spp.) and pecan (Caryaillinoensis) with little or no silvicultural management during stand development. Slow growth of these tree species, herbivory, competing vegetation, and limited seed dispersal, often result in restored sites that are slow to develop vertical vegetation structure and have limited tree diversity. Where soils and hydrology permit, agroforestry can provide transitional management that mitigates these historical limitations on converting cropland to forests. Planting short-rotation woody crops and intercropping using wide alleyways are two agroforestry practices that are well suited for transitional management. Weed control associated with agroforestry systems benefits planted trees by reducing competition. The resultant decrease in herbaceous cover suppresses small mammal populations and associated herbivory of trees and seeds. As a result, rapid vertical growth is possible that can 'train' under-planted, slower-growing, species and provide favorable environmental conditions for naturally invading trees. Finally, annual cropping of alleyways or rotational pulpwood harvest of woody crops provides income more rapidly than reliance on future revenue from traditional silviculture. Because of increased forest diversity, enhanced growth and development, and improved economic returns, we believe that using agroforestry as a transitional management strategy during afforestation provides greater benefits to landowners and to the environment than does traditional bottomland hardwood afforestation.

  19. Soil quality in a pecan – Kura clover alley cropping system in the midwestern USA

    USDA-ARS?s Scientific Manuscript database

    Intercropping alleys in agroforestry provides an income source until the tree crop produces harvestable yields. However, cultivation of annual crops decreases soil organic matter and increases soil erosion potential, especially on sloping landscapes. Perennial crops maintain a continuous soil cover,...

  20. Mainstreaming conservation agriculture in Malawi: Knowledge gaps and institutional barriers.

    PubMed

    Dougill, Andrew J; Whitfield, Stephen; Stringer, Lindsay C; Vincent, Katharine; Wood, Benjamin T; Chinseu, Edna L; Steward, Peter; Mkwambisi, David D

    2017-06-15

    Conservation agriculture (CA) practices of reduced soil tillage, permanent organic soil coverage and intercropping/crop rotation, are being advocated globally, based on perceived benefits for crop yields, soil carbon storage, weed suppression, reduced soil erosion and improved soil water retention. However, some have questioned their efficacy due to uncertainty around the performance and trade-offs associated with CA practices, and their compatibility with the diverse livelihood strategies and varied agro-ecological conditions across African smallholder systems. This paper assesses the role of key institutions in Malawi in shaping pathways towards more sustainable land management based on CA by outlining their impact on national policy-making and the design and implementation of agricultural development projects. It draws on interviews at national, district and project levels and a multi-stakeholder workshop that mapped the institutional landscape of decision-making for agricultural land management practices. Findings identify knowledge gaps and institutional barriers that influence land management decision-making and constrain CA uptake. We use our findings to set out an integrated roadmap of research needs and policy options aimed at supporting CA as a route to enhanced sustainable land management in Malawi. Findings offer lessons that can inform design, planning and implementation of CA projects, and identify the multi-level institutional support structures required for mainstreaming sustainable land management in sub-Saharan Africa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Early competition shapes maize whole-plant development in mixed stands

    PubMed Central

    Evers, Jochem B.

    2014-01-01

    Mixed cropping is practised widely in developing countries and is gaining increasing interest for sustainable agriculture in developed countries. Plants in intercrops grow differently from plants in single crops, due to interspecific plant interactions, but adaptive plant morphological responses to competition in mixed stands have not been studied in detail. Here the maize (Zea mays) response to mixed cultivation with wheat (Triticum aestivum) is described. Evidence is provided that early responses of maize to the modified light environment in mixed stands propagate throughout maize development, resulting in different phenotypes compared with pure stands. Photosynthetically active radiation (PAR), red:far-red ratio (R:FR), leaf development, and final organ sizes of maize grown in three cultivation systems were compared: pure maize, an intercrop with a small distance (25cm) between maize and wheat plants, and an intercop with a large distance (44cm) between the maize and the wheat. Compared with maize in pure stands, maize in the mixed stands had lower leaf and collar appearance rates, increased blade and sheath lengths at low ranks and smaller sizes at high ranks, increased blade elongation duration, and decreased R:FR and PAR at the plant base during early development. Effects were strongest in the treatment with a short distance between wheat and maize strips. The data suggest a feedback between leaf initiation and leaf emergence at the plant level and coordination between blade and sheath growth at the phytomer level. A conceptual model, based on coordination rules, is proposed to explain the development of the maize plant in pure and mixed stands. PMID:24307719

  2. Canopy development of annual legumes and forage sorghum intercrops and its impact on forage yield

    USDA-ARS?s Scientific Manuscript database

    Livestock production is the most important agro-industry in many semiarid regions of the world including the Southern High Plains, USA. Declining water for irrigation requires novel technologies to sustain forage production necessary for livestock production. The objective of this study was to study...

  3. N2 fixation of common and hairy vetches when intercropped into switchgrass

    USDA-ARS?s Scientific Manuscript database

    Interest in alternatives to synthetic nitrogen (N) fertilizer for switchgrass (Panicum virgatum L.) forage and bioenergy production continues to increase, and interseeding legumes into swards may be one such prospect. Common vetch (Vicia sativa L.) occurs naturally throughout the U.S. and has fewer ...

  4. National Food Strategy: Kenya’s Approach to the Problem of Feeding the Nation

    DTIC Science & Technology

    1990-02-01

    intercropping, agroforestry , preven- tion of soil erosion and rural afforestation. The new Arid and Semi Arid Lands Authority (ASAL) will establish irrigation...international organizations such as the International Council for Research in Agroforestry (ICRAF) has been beneficial. 13 To preserve Kenya’s forests, the

  5. Effects of crop rotations and intercropping on soil health

    USDA-ARS?s Scientific Manuscript database

    Interest in evaluating the health of soil resources has been motivated by growing cognizance that soil is a critically important component of the earth’s biosphere, functioning not only in the production of food and fiber, but also in ecosystems services and global environmental quality. There was a...

  6. Switchgrass Compositional Variations Arising from Spatial Distribution and Legume Intercropping

    USDA-ARS?s Scientific Manuscript database

    Switchgrass (Panicum virgatum) is a high–yielding, second-generation feedstock that can be grown on marginal land with minimal inputs. Due to the high genetic diversity within and among cultivars of this species, there may be a great amount of genotype x environment-induced differences among seconda...

  7. Carbon budget over 12 years in a production crop under temperate climate

    NASA Astrophysics Data System (ADS)

    Buysse, Pauline; Bodson, Bernard; Debacq, Alain; De Ligne, Anne; Heinesch, Bernard; Manise, Tanguy; Moureaux, Christine; Aubinet, Marc

    2017-04-01

    Carbon dioxide (CO2) exchanges between crops and the atmosphere are influenced by both climatic and crop management drivers. The investigated crop, situated at the Lonzée Terrestrial Observatory (LTO, candidate ICOS site) in Belgium and managed for more than 70 years using conventional farming practices, was monitored over three complete sugar beet (or maize)/winter wheat/potato/winter wheat rotation cycles from 2004 to 2016. Continuous eddy-covariance measurements and regular biomass samplings were performed in order to obtain the daily and seasonal Net Ecosystem Exchange (NEE), Gross Primary Productivity, Total Ecosystem Respiration, Net Primary Productivity, and Net Biome Production (NBP). Meteorological data and crop management practices were also recorded. The main objectives were to analyze the CO2 flux responses to climatic drivers and to establish the C budget of the cropland. Crop type significantly influenced the measured CO2 fluxes. In addition to crop season duration, which had an obvious impact on cumulated NEE values for each crop type, the CO2 flux response to photosynthetic photon flux density, vapor pressure deficit and temperature differed between crop types, while no significant response to soil water content was observed in any of them. Besides, a significant positive relationship between crop residue amount and ecosystem respiration was observed. Over the 12 years, NEE was negative (-4.34 ± 0.21 kg C m-2) but NBP was positive (1.05 ± 0.30 kg C m-2), i.e. as soon as all lateral carbon fluxes - dominated by carbon exportation - are included in the budget, the site behaves as a carbon source. Intercrops were seen to play a major role in the carbon budget, being mostly due to the long time period it represented (59 % of the 12 year time period). An in-depth analysis of intercrop periods and, more specifically, growing cover crops (mustard in the case of our study), is developed in a companion poster (ref. abstract EGU2017-12216, session SSS9.14/BG9.46/CL3.13). Although in line with preceding studies, the large C loss rate observed at LTO (NBP = + 87 ± 25 kg C m-2 yr-1) raises several questions as it corresponds to 1.8 % of the C stock in the top soil: is it realistic? Wouldn't it be affected by an undetected systematic error? If correct, could soil properties be preserved on the long term? This result at least calls for extensive C stock inventory for (in)validation.

  8. How can we exploit above–belowground interactions to assist in addressing the challenges of food security?

    PubMed Central

    Orrell, Peter; Bennett, Alison E.

    2013-01-01

    Can above–belowground interactions help address issues of food security? We address this question in this manuscript, and review the intersection of above–belowground interactions and food security. We propose that above–belowground interactions could address two strategies identified by Godfray etal. (2010): reducing the Yield Gap, and Increasing Production Limits. In particular, to minimize the difference between potential and realized production (The Yield Gap) above–belowground interactions could be manipulated to reduce losses to pests and increase crop growth (and therefore yields). To Increase Production Limits we propose two mechanisms: utilizing intercropping (which uses multiple aspects of above–belowground interactions) and breeding for traits that promote beneficial above–belowground interactions, as well as breeding mutualistic organisms to improve their provided benefit. As a result, if they are managed correctly, there is great potential for above–belowground interactions to contribute to food security. PMID:24198821

  9. Inhibition of Orobanche crenata seed germination and radicle growth by allelochemicals identified in cereals.

    PubMed

    Fernández-Aparicio, Mónica; Cimmino, Alessio; Evidente, Antonio; Rubiales, Diego

    2013-10-16

    Orobanche crenata is a parasitic weed that causes severe yield losses in important grain and forage legume crops. Cereals have been reported to inhibit O. crenata parasitism when grown intercropped with susceptible legumes, but the responsible metabolites have not been identified. A number of metabolites have been reported in cereals that have allelopathic properties against weeds, pests, and pathogens. We tested the effect of several allelochemicals identified in cereals on O. crenata seed germination and radicle development. We found that 2-benzoxazolinone, its derivative 6-chloroacetyl-2-benzoxazolinone, and scopoletin significantly inhibited O. crenata seed germination. Benzoxazolinones, l-tryptophan, and coumalic acid caused the stronger inhibition of radicle growth. Also, other metabolites reduced radicle length, this inhibition being dose-dependent. Only scopoletin caused cell necrotic-like darkening in the young radicles. Prospects for their application to parasitic weed management are discussed.

  10. Application of CarboSOIL model to predict the effects of climate change on soil organic carbon stocks in agro-silvo-pastoral Mediterranean management systems

    NASA Astrophysics Data System (ADS)

    Muñoz-Rojas, Miriam; Doro, Luca; Ledda, Luigi; Francaviglia, Rosa

    2014-05-01

    CarboSOIL is an empirical model based on regression techniques and developed to predict soil organic carbon contents (SOC) at standard soil depths of 0-25, 25-50 and 50-75 cm (Muñoz-Rojas et al., 2013). The model was applied to a study area of north-eastern Sardinia (Italy) (40° 46'N, 9° 10'E, mean altitude 285 m a.s.l.), characterized by extensive agro-silvo-pastoral systems which are typical of similar areas of the Mediterranean basin (e.g. the Iberian peninsula). The area has the same soil type (Haplic Endoleptic Cambisols, Dystric according to WRB), while cork oak forest (Quercus suber L.) is the potential native vegetation which has been converted to managed land with pastures and vineyards in recent years (Lagomarsino et al., 2011; Francaviglia et al., 2012; Bagella et al, 2013; Francaviglia et al., 2014). Six land uses with different levels of cropping intensification were compared: Tilled vineyards (TV); No-tilled grassed vineyards (GV); Hay crop (HC); Pasture (PA); Cork oak forest (CO) and Semi-natural systems (SN). The HC land use includes oats, Italian ryegrass and annual clovers or vetch for 5 years and intercropped by spontaneous herbaceous vegetation in the sixth year. The PA land use is 5 years of spontaneous herbaceous vegetation, and one year of intercropping with oats, Italian ryegrass and annual clovers or vetch cultivated as a hay crop. The SN land use (scrublands, Mediterranean maquis and Helichrysum meadows) arise from the natural re-vegetation of former vineyards which have been set-aside probably due to the low grape yields and the high cost of modern tillage equipment. Both PA and HC are grazed for some months during the year, and include scattered cork-oak trees, which are key components of the 'Dehesa'-type landscape (grazing system with Quercus L.) typical of this area of Sardinia and other areas of southern Mediterranean Europe. Dehesas are often converted to more profitable land uses such as vineyards (Francaviglia et al., 2012; Muñoz-Rojas et al., 2012) or olive groves (Lozano-García and Parras-Alcántara, 2013). The local climate is warm temperate with dry and hot summers, with a mean annual rainfall of 623 mm (range 367-811 mm) and mean annual temperature of 15.0?C (13.8-16.4?C). Climate change scenarios were generated from the baseline climate with two Global Climate Models: GISS (Goddard Institute of Space Studies, USA), and HadCM3 (Met Office, Hadley Centre, UK), for two of the Intergovernmental Panel on Climate Change (IPCC) emission scenarios (A2 and B2). Three time horizons were chosen for climate change projections: 2020, mean climate change for the period 2010-2039; 2050 for the period 2040-2069; and 2080 for the period 2070-2099, providing respectively a very close, an intermediate, and a fully realized climate change scenario. The agreement of model predictions with the measured values of soil organic carbon stocks was tested using the correlation coefficient R2, the root mean square error RMSE and the modelling efficiency EF. For a good model performance, RMSE should have approximately the same order of magnitude of the standard deviation, while EF should be positive and close to 1. With reference to the three soil depths (0-25, 25-50, 50-75 cm), R2, RMSE and EF are in the range 0.76-0.99, 5.07-8.42, and 0.63-0.98 respectively. CarboSOIL predictions are fully acceptable since the linear regression coefficients are always significant at p

  11. Productivity and carbon footprint of perennial grass-forage legume intercropping strategies with high or low nitrogen fertilizer input.

    PubMed

    Hauggaard-Nielsen, Henrik; Lachouani, Petra; Knudsen, Marie Trydeman; Ambus, Per; Boelt, Birte; Gislum, René

    2016-01-15

    A three-season field experiment was established and repeated twice with spring barley used as cover crop for different perennial grass-legume intercrops followed by a full year pasture cropping and winter wheat after sward incorporation. Two fertilization regimes were applied with plots fertilized with either a high or a low rate of mineral nitrogen (N) fertilizer. Life cycle assessment (LCA) was used to evaluate the carbon footprint (global warming potential) of the grassland management including measured nitrous oxide (N2O) emissions after sward incorporation. Without applying any mineral N fertilizer, the forage legume pure stand, especially red clover, was able to produce about 15 t above ground dry matter ha(-1) year(-1) saving around 325 kg mineral Nfertilizer ha(-1) compared to the cocksfoot and tall fescue grass treatments. The pure stand ryegrass yielded around 3t DM more than red clover in the high fertilizer treatment. Nitrous oxide emissions were highest in the treatments containing legumes. The LCA showed that the low input N systems had markedly lower carbon footprint values than crops from the high N input system with the pure stand legumes without N fertilization having the lowest carbon footprint. Thus, a reduction in N fertilizer application rates in the low input systems offsets increased N2O emissions after forage legume treatments compared to grass plots due to the N fertilizer production-related emissions. When including the subsequent wheat yield in the total aboveground production across the three-season rotation, the pure stand red clover without N application and pure stand ryegrass treatments with the highest N input equalled. The present study illustrate how leguminous biological nitrogen fixation (BNF) represents an important low impact renewable N source without reducing crop yields and thereby farmers earnings. Copyright © 2015. Published by Elsevier B.V.

  12. Agronomic aspects of strip intercropping lettuce with alyssum for biological control of aphids

    USDA-ARS?s Scientific Manuscript database

    Organic growers in California typically devote 5 to 10% of the area in lettuce (Lactuca sativa L.) fields to insectary strips of alyssum (Lobularia maritime (L.) Desv.) to attract syrphid flies (Syrphidae) whose larvae provide biological control of aphids. A 2-year study with organic romaine lettuc...

  13. Nutrient Exchange through Hyphae in Intercropping Systems Affects Yields

    ERIC Educational Resources Information Center

    Thun, Tim Von

    2013-01-01

    Arbuscular mycorrhizae fungi (AMF) play a large role in the current understanding of the soil ecosystem. They increase nutrient and water uptake, improve soil structure, and form complex hyphal networks that transfer nutrients between plants within an ecosystem. Factors such as species present, the physiological balance between the plants in the…

  14. Row width influences wheat yield, but has little effect on wheat quality

    USDA-ARS?s Scientific Manuscript database

    Growers are interested in wide-row wheat production due to reductions in equipment inventory (lack of grain drill) and to allow intercropping of soybean into wheat. A trial was established during the 2012-2013 and 2013-2014 growing seasons in Wayne County and Wood County, Ohio to evaluate the effec...

  15. Intercropping of two Leucaena spp. with sweet potato: yield, growth rate and biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swift, J.F.

    1982-01-01

    Results of trials with Leucaena leucocephala and Leucaena diversifolia at Wau, Papua New Guinea, showed potential benefits of the agroforestry cropping system. The total biomass yield (sweet potato plus firewood and green manure) was considerably greater than the yield per unit area of sweet potato alone. 3 references.

  16. Evaluation of Land Use, Land Management and Soil Conservation Strategies to Reduce Non-Point Source Pollution Loads in the Three Gorges Region, China

    NASA Astrophysics Data System (ADS)

    Strehmel, Alexander; Schmalz, Britta; Fohrer, Nicola

    2016-11-01

    The construction of the Three Gorges Dam in China and the subsequent impoundment of the Yangtze River have induced a major land use change in the Three Gorges Reservoir Region, which fosters increased inputs of sediment and nutrients from diffuse sources into the water bodies. Several government programs have been implemented to mitigate high sediment and nutrient loads to the reservoir. However, institutional weaknesses and a focus on economic development have so far widely counteracted the effectiveness of these programs. In this study, the eco-hydrological model soil and water assessment tool is used to assess the effects of changes in fertilizer amounts and the conditions of bench terraces in the Xiangxi catchment in the Three Gorges Reservoir Region on diffuse matter releases. With this, the study aims at identifying efficient management measures, which should have priority. The results show that a reduction of fertilizer amounts cannot reduce phosphorus loads considerably without inhibiting crop productivity. The condition of terraces in the catchment has a strong impact on soil erosion and phosphorus releases from agricultural areas. Hence, if economically feasible, programmes focusing on the construction and maintenance of terraces in the region should be implemented. Additionally, intercropping on corn fields as well as more efficient fertilization schemes for agricultural land were identified as potential instruments to reduce diffuse matter loads further. While the study was carried out in the Three Gorges Region, its findings may also beneficial for the reduction of water pollution in other mountainous areas with strong agricultural use.

  17. Evaluation of Land Use, Land Management and Soil Conservation Strategies to Reduce Non-Point Source Pollution Loads in the Three Gorges Region, China.

    PubMed

    Strehmel, Alexander; Schmalz, Britta; Fohrer, Nicola

    2016-11-01

    The construction of the Three Gorges Dam in China and the subsequent impoundment of the Yangtze River have induced a major land use change in the Three Gorges Reservoir Region, which fosters increased inputs of sediment and nutrients from diffuse sources into the water bodies. Several government programs have been implemented to mitigate high sediment and nutrient loads to the reservoir. However, institutional weaknesses and a focus on economic development have so far widely counteracted the effectiveness of these programs. In this study, the eco-hydrological model soil and water assessment tool is used to assess the effects of changes in fertilizer amounts and the conditions of bench terraces in the Xiangxi catchment in the Three Gorges Reservoir Region on diffuse matter releases. With this, the study aims at identifying efficient management measures, which should have priority. The results show that a reduction of fertilizer amounts cannot reduce phosphorus loads considerably without inhibiting crop productivity. The condition of terraces in the catchment has a strong impact on soil erosion and phosphorus releases from agricultural areas. Hence, if economically feasible, programmes focusing on the construction and maintenance of terraces in the region should be implemented. Additionally, intercropping on corn fields as well as more efficient fertilization schemes for agricultural land were identified as potential instruments to reduce diffuse matter loads further. While the study was carried out in the Three Gorges Region, its findings may also beneficial for the reduction of water pollution in other mountainous areas with strong agricultural use.

  18. Yield performance and bean quality traits of cacao propagated by grafting and somatic embryo-derived cuttings

    USDA-ARS?s Scientific Manuscript database

    Cacao (Theobroma cacao) has great potential as a component of a small tropical farming system. It adapts to a wide range of soils of climatic conditions, grows well under minimum tillage, adapts to temporary intercropping, has the potential of being sold in local and export markets and the pods are ...

  19. Water quality effects of switchgrass intercropping on pine forest in Coastal North Carolina.

    Treesearch

    Augustine Muwamba; Devendra Amatya; George M Chescheir; Jamie Nettles; Timothy Appelboom; Herbert Ssegane; Ernest Tollner; Mohamed Youssef; Francois Birgand; R. Wayne Skaggs; Shiying Tian

    2017-01-01

    Interplanting a cellulosic bioenergy crop (switchgrass, Panicum virgatum L.) between loblolly pine (Pinus taeda L.) rows could potentially provide a sustainable source of bio-feedstock without competing for land currently in food production. The objectives of this study were to: (1) quantify the concentrations and loads of drainage water nitrogen (N) and phosphorus (...

  20. Microbiological and faunal soil attributes of coffee cultivation under different management systems in Brazil.

    PubMed

    Lammel, D R; Azevedo, L C B; Paula, A M; Armas, R D; Baretta, D; Cardoso, E J B N

    2015-11-01

    Brazil is the biggest coffee producer in the world and different plantation management systems have been applied to improve sustainability and soil quality. Little is known about the environmental effects of these different management systems, therefore, the goal of this study was to use soil biological parameters as indicators of changes. Soils from plantations in Southeastern Brazil with conventional (CC), organic (OC) and integrated management systems containing intercropping of Brachiaria decumbens (IB) or Arachis pintoi (IA) were sampled. Total organic carbon (TOC), microbial biomass carbon (MBC) and nitrogen (MBN), microbial activity (C-CO2), metabolic quotient (qCO2), the enzymes dehydrogenase, urease, acid phosphatase and arylsulphatase, arbuscular mycorrhizal fungi (AMF) colonization and number of spores and soil fauna were evaluated. The greatest difference between the management systems was seen in soil organic matter content. The largest quantity of TOC was found in the OC, and the smallest was found in IA. TOC content influenced soil biological parameters. The use of all combined attributes was necessary to distinguish the four systems. Each management presented distinct faunal structure, and the data obtained with the trap method was more reliable than the TSBF (Tropical Soils) method. A canonic correlation analysis showed that Isopoda was correlated with TOC and the most abundant order with OC. Isoptera was the most abundant faunal order in IA and correlated with MBC. Overall, OC had higher values for most of the biological measurements and higher populations of Oligochaeta and Isopoda, corroborating with the concept that the OC is a more sustainable system.

  1. Environmental implications of jatropha biofuel from a silvi-pastoral production system in central-west Brazil.

    PubMed

    Bailis, Rob; Kavlak, Goksin

    2013-07-16

    We present a life cycle assessment of synthetic paraffinic kerosene produced from Jatropha curcas. The feedstock is grown in an intercropping arrangement with pasture grasses so that Jatropha is coproduced with cattle. Additional innovations are introduced including hybrid seeds, detoxification of jatropha seedcake, and cogeneration. Two fuel pathways are examined including a newly developed catalytic decarboxylation process. Sensitivities are examined including higher planting density at the expense of cattle production as well as 50% lower yields. Intercropping with pasture and detoxifying seedcake yield coproducts that are expected to relieve pressure on Brazil's forests and indirectly reduce environmental impacts of biofuel production. Other innovations also reduce impacts. Results of the baseline assessment indicate that innovations would reduce impacts relative to the fossil fuel reference scenario in most categories including 62-75% reduction in greenhouse gas emissions, 64-82% reduction in release of ozone depleting chemicals, 33-52% reduction in smog-forming pollutants, 6-25% reduction in acidification, and 60-72% reduction in use of nonrenewable energy. System expansion, which explicitly accounts for avoided deforestation, results in larger improvements. Results are robust across allocation methodologies, improve with higher planting density, and persist if yield is reduced by half.

  2. Spider assemblages associated with different crop stages of irrigated rice agroecosystems from eastern Uruguay

    PubMed Central

    Ginella, Juaquín; Cadenazzi, Mónica; Castiglioni, Enrique A.; Martínez, Sebastián; Casales, Luis; Caraballo, María P.; Laborda, Álvaro; Simo, Miguel

    2018-01-01

    Abstract The rice crop and associated ecosystems constitute a rich mosaic of habitats that preserve a rich biological diversity. Spiders are an abundant and successful group of natural predators that are considered efficient in the biocontrol of the major insect pests in agroecosystems. Spider diversity in different stages of the rice crop growth from eastern Uruguay was analysed. Field study was developed on six rice farms with rotation system with pasture, installed during intercropping stage as cover crop. Six rice crops distributed in three locations were sampled with pitfall and entomological vaccum suction machine. Sixteen families, representing six guilds, were collected. Lycosidae, Linyphiidae, Anyphaenidae and Tetragnathidae were the most abundant families (26%, 25%, 20% and 12%, respectively) and comprised more than 80% of total abundance. Other hunters (29%), sheet web weavers (25%) and ground hunters (24%) were the most abundant guilds. Species composition along different crop stages was significantly different according to the ANOSIM test. The results showed higher spider abundance and diversity along the crop and intercrop stages. This study represents the first contribution to the knowledge of spider diversity associated with rice agroecosystem in the country. PMID:29755261

  3. Impacts of transgenic poplar-cotton agro-ecosystems upon target pests and non-target insects under field conditions.

    PubMed

    Zhang, D J; Liu, J X; Lu, Z Y; Li, C L; Comada, E; Yang, M S

    2015-07-27

    Poplar-cotton agro-ecosystems are the main agricultural planting modes of cotton fields in China. With increasing acres devoted to transgenic insect-resistant poplar and transgenic insect-resistant cotton, studies examining the effects of transgenic plants on target and non-target insects become increasingly important. We systematically surveyed populations of both target pests and non-target insects for 4 different combinations of poplar-cotton eco-systems over 3 years. Transgenic Bt cotton strongly resisted the target insects Fall webworm moth [Hyphantria cunea (Drury)], Sylepta derogata Fabrieius, and American bollworm (Heliothis armigera), but no clear impact on non-target insect cotton aphids (Aphis gossypii). Importantly, intercrops containing transgenic Pb29 poplar significantly increased the inhibitory effects of Bt cotton on Fall webworm moth in ecosystem IV. Highly resistant Pb29 poplar reduced populations of the target pests Grnsonoma minutara Hubner and non-target insect poplar leaf aphid (Chaitophorus po-pulialbae), while Fall webworm moth populations were unaffected. We determined the effects of Bt toxin from transgenic poplar and cotton on target and non-target pests in different ecosystems of cotton-poplar intercrops and identified the synergistic effects of such combinations toward both target and non-target insects.

  4. [Analysis on difference of richness of traditional Chinese medicine resources in Chongqing based on grid technology].

    PubMed

    Zhang, Xiao-Bo; Qu, Xian-You; Li, Meng; Wang, Hui; Jing, Zhi-Xian; Liu, Xiang; Zhang, Zhi-Wei; Guo, Lan-Ping; Huang, Lu-Qi

    2017-11-01

    After the end of the national and local medicine resources census work, a large number of Chinese medicine resources and distribution of data will be summarized. The species richness between the regions is a valid indicator for objective reflection of inter-regional resources of Chinese medicine. Due to the large difference in the size of the county area, the assessment of the intercropping of the resources of the traditional Chinese medicine by the county as a statistical unit will lead to the deviation of the regional abundance statistics. Based on the rule grid or grid statistical methods, the size of the statistical unit due to different can be reduced, the differences in the richness of traditional Chinese medicine resources are caused. Taking Chongqing as an example, based on the existing survey data, the difference of richness of traditional Chinese medicine resources under different grid scale were compared and analyzed. The results showed that the 30 km grid could be selected and the richness of Chinese medicine resources in Chongqing could reflect the objective situation of intercropping resources richness in traditional Chinese medicine better. Copyright© by the Chinese Pharmaceutical Association.

  5. Spider assemblages associated with different crop stages of irrigated rice agroecosystems from eastern Uruguay.

    PubMed

    Bao, Leticia; Ginella, Juaquín; Cadenazzi, Mónica; Castiglioni, Enrique A; Martínez, Sebastián; Casales, Luis; Caraballo, María P; Laborda, Álvaro; Simo, Miguel

    2018-01-01

    The rice crop and associated ecosystems constitute a rich mosaic of habitats that preserve a rich biological diversity. Spiders are an abundant and successful group of natural predators that are considered efficient in the biocontrol of the major insect pests in agroecosystems. Spider diversity in different stages of the rice crop growth from eastern Uruguay was analysed. Field study was developed on six rice farms with rotation system with pasture, installed during intercropping stage as cover crop. Six rice crops distributed in three locations were sampled with pitfall and entomological vaccum suction machine. Sixteen families, representing six guilds, were collected. Lycosidae, Linyphiidae, Anyphaenidae and Tetragnathidae were the most abundant families (26%, 25%, 20% and 12%, respectively) and comprised more than 80% of total abundance. Other hunters (29%), sheet web weavers (25%) and ground hunters (24%) were the most abundant guilds. Species composition along different crop stages was significantly different according to the ANOSIM test. The results showed higher spider abundance and diversity along the crop and intercrop stages. This study represents the first contribution to the knowledge of spider diversity associated with rice agroecosystem in the country.

  6. Mobilization of interactions between functional diversity of plant and soil organisms on nitrogen availability and use

    NASA Astrophysics Data System (ADS)

    Drut, Baptiste; Cassagne, Nathalie; Cannavacciuolo, Mario; Brauman, Alain; Le Floch, Gaëtan; Cobo, Jose; Fustec, Joëlle

    2017-04-01

    Keywords: legumes, earthworms, microorganisms, nitrogen, interactions Both aboveground and belowground biodiversity and their interactions can play an important role in crop productivity. Plant functional diversity, such as legume based intercrops have been shown to improve yields through plant complementarity for nitrogen use (Corre-Hellou et al., 2006). Moreover, plant species or plant genotype may influence the structure of soil microorganism communities through the composition of rhizodeposits in the rhizosphere (Dennis et al., 2010). Belowground diversity can also positively influence plant performance especially related to functional dissimilarity between soil organisms (Eisenhauer, 2012). Earthworms through their burrowing activity influence soil microbial decomposers and nutrient availability and have thus been reported to increase plant growth (Brown, 1995; Brown et al., 2004). We hypothesize that i) plant functional (genetic and/or specific) diversity associated to functional earthworms diversity are key drivers of interactions balance to improve crop performances and ii) the improvement of plant performances can be related to change in the structure of soil microorganism communities due to the diversity of rhizodeposits and the burrowing activity of earthworms. In a first mesocosm experiment, we investigated the effect of a gradient of plant diversity - one cultivar of wheat (Triticum aestivum L.), 3 different wheat cultivars, and 3 different cultivars intercropped with clover (Trifolium hybridum L.) - and the presence of one (endogeic) or two (endogeic and anecic) categories of earthworms on biomass and nitrogen accumulation of wheat. In a second mesocosm experiment, we investigated the influence of three species with different rhizodeposition - wheat, rapeseed (Brassica napus L. ) and faba bean (Vicia faba L.) in pure stand or intercropped - and the presence of endogeic earthworms on microbial activity and nitrogen availability. In the first experiment, biomass and nitrogen accumulation of wheat were improved in the presence of earthworms and clover. No effect of a plant genetic diversity was shown on crop performances. Furthermore, the influence of earthworms on bacterial diversity depended on plant diversity. In the second experiment, the specific composition of plant and earthworm presence modified the physiological profiles of rhizospheric microorganism communities (Microresp®) and nitrification potential. In the presence of faba-bean, microorganism activity was consistently increased and earthworms tended to decrease C:N ratio in the rhizospheric soil. These results confirm the interest of legume based intercrops for the complementarity in nitrogen use thanks to biological fixation. This study showed the influence of earthworms on plant nitrogen acquisition by stimulating microorganism activity and nutrient availability around the roots. We also highlighted a synergistic effect between the presence of legume and endogeic earthworms for higher plant performances. We finally hypothesized that the combined effect of rhizodeposit diversity related to plant specific composition and soil chemical properties modified by earthworm activity drives the structure and activity of microorganism communities. Brown, G.G., 1995. How do earthworms affect microfloral and faunal community diversity? Plant and Soil 170, 209-231. Brown, G.G., Edwards, C.A., Brussaard, L., 2004. How earthworms affect plant growth: burrowing into the mechanisms. Earthworm ecology 2, 13-49. Corre-Hellou, G., Fustec, J., Crozat, Y., 2006. Interspecific competition for soil N and its interaction with N2 fixation, leaf expansion and crop growth in pea-barley intercrops. Plant and Soil 282, 195-208. Dennis, P.G., Miller, A.J., Hirsch, P.R., 2010. Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiology Ecology 72, 313-327. Eisenhauer, N., 2012. Aboveground-belowground interactions as a source of complementarity effects in biodiversity experiments. Plant and Soil 351, 1-22.

  7. Impact of Organic Amendments on Global Warming Potential of Diversified Tropical Rice Rotation Systems

    NASA Astrophysics Data System (ADS)

    Janz, B.; Weller, S.; Kraus, D.; Wassmann, R.; Butterbach-Bahl, K.; Ralf, K.

    2017-12-01

    Paddy rice cultivation is increasingly challenged by irrigation water scarcity, which is forcing farmers to change traditional rice cultivation from flooded double-rice systems to the introduction of well-aerated upland crops during dry season. Emissions of methane (CH4) are expected to decrease, while there is a risk of increasing emissions of nitrous oxide (N2O) and decreasing soil organic carbon (SOC) stocks through volatilization in the form of carbon dioxide (CO2). We present a unique dataset of long-term continuous greenhouse gas emission measurements (CH4 and N2O) in the Philippines to assess global warming potentials (GWP) of diversified rice crop rotations including different field management practices such as straw residue application and legume intercropping. Since 2012, more than four years of CH4 and N2O emissions in double-rice cropping (R-R) and paddy rice rotations diversified with either maize (R-M) or aerobic rice (R-A) during dry season have been collected. Introduction of upland crops reduced irrigation water use and CH4 emissions by 66-81% and 95-99%, respectively. Although dry season N2O emissions increased twice- to threefold in the diversified systems, the strong reduction of CH4 led to a significantly lower annual GWP (CH4 + N2O) as compared to the traditional R-R system. Diversified crop management practices were first implemented during land-preparation for dry season 2015 where i) 6 t/ha rice straw was returned to the field and ii) mungbean was grown as a cover-crop between dry and wet season in addition to rice straw application. The input of organic material (straw and mungbean) led to higher substrate availability for methanogens during the following season. Therefore, GWP was 9-39% higher following straw incorporation than the control treatment. This increase was mainly driven by additional CH4 emissions. Even more, mungbean intercropping further increased GWPs, whereby the increment was highest in R-R rotation (88%) and lowest in R-M rotation (55%), with annual emissions of 11.8 and 5.6 t CO2 eq. ha-1, respectively. Nevertheless, regarding a future expansion of lowland-upland rotations due to water scarcity in SE Asia it can be expected that input of crop residues can counteract the SOC loss that is likely associated with the shift to more aerated soil conditions under upland crops.

  8. Agro-Forestry system in West Africa: integrating a green solution to cope with soil depletion towards agricultural sustainability

    NASA Astrophysics Data System (ADS)

    Monteiro, Filipa; Vidigal, Patricia; Romeiras, Maria Manuel; Ribeiro, Ana; Abreu, Maria Manuela; Viegas, Wanda; Catarino, Luís

    2017-04-01

    During the last decades, agriculture in West Africa has been marked by dramatic shifts with the coverage of single crops, increasing pressure over the available arable land. Yet, West African countries are still striving to achieve sustainable production at an increased scale for global market needs. Market-driven rapid intensification is often a major cause for cropland area expansion at the expense of deforestation and soil degradation, especially to export commodities in times of high prices. Cashew (Anacardium occidentale L.) is nowadays an important export-oriented crop, being produced under intensive cultivation regimes in several tropical regions. Particularly, among the main cashew production areas, West Africa is the most recent and dynamic in the world, accounting for 45% of the world cashew nuts production in 2015. Considering its global market values, several developing countries rely on cashew nuts as national economy revenues, namely in Guinea-Bissau. Considering the intensive regime of cashew production in Guinea-Bissau, and as widely recognized, intensive agriculture linked with extensification can negatively impact ecosystems, affecting natural resources availability, soil erosion and arability compromised by excessive salinity. Ultimately this will result in the disruption of carbon - nitrogen cycle, important to the agricultural ecosystem sustainability. As such, tree intercropped with legumes as cover crops, offers a sustainable management of the land area, thus creating substantial benefits both economically and environmentally, as it enhances diversification of products outputs and proving to be more sustainable than forestry and/or agricultural monocultures. Soil fertility improvement is a key entry point for achieving food security, and also increment agriculture commodities of the agro-system. Without using inorganic fertilizers, the green solution for improving soil management is to incorporate adapted multi-purpose legumes as cover crops, reducing soil erosion as well as insect pests and associated diseases, while improves the yield of the main crop. The integration of legume in agroforestry systems offers an alternative and resilient strategy to increase N availability without increasing mineral N additions. As such, we present a case study of a forest-based system under intensive agriculture regime and propose an alternative sustainable system - the agroforestry system - by intercropping legumes, thus ensuring the sustainability of a cash crop sector both in terms of food security and soil resources. Results obtained from this case-study will therefore be important to demonstrate the global importance of agroforestry systems as key strategy for land use planning, sustainability of the agricultural systems as well as the preserving the environment of smallholder farms in the sub-Saharan Africa.

  9. Modelling the structural response of cotton plants to mepiquat chloride and population density

    PubMed Central

    Gu, Shenghao; Evers, Jochem B.; Zhang, Lizhen; Mao, Lili; Zhang, Siping; Zhao, Xinhua; Liu, Shaodong; van der Werf, Wopke; Li, Zhaohu

    2014-01-01

    Background and Aims Cotton (Gossypium hirsutum) has indeterminate growth. The growth regulator mepiquat chloride (MC) is used worldwide to restrict vegetative growth and promote boll formation and yield. The effects of MC are modulated by complex interactions with growing conditions (nutrients, weather) and plant population density, and as a result the effects on plant form are not fully understood and are difficult to predict. The use of MC is thus hard to optimize. Methods To explore crop responses to plant density and MC, a functional–structural plant model (FSPM) for cotton (named CottonXL) was designed. The model was calibrated using 1 year's field data, and validated by using two additional years of detailed experimental data on the effects of MC and plant density in stands of pure cotton and in intercrops of cotton with wheat. CottonXL simulates development of leaf and fruits (square, flower and boll), plant height and branching. Crop development is driven by thermal time, population density, MC application, and topping of the main stem and branches. Key Results Validation of the model showed good correspondence between simulated and observed values for leaf area index with an overall root-mean-square error of 0·50 m2 m−2, and with an overall prediction error of less than 10 % for number of bolls, plant height, number of fruit branches and number of phytomers. Canopy structure became more compact with the decrease of leaf area index and internode length due to the application of MC. Moreover, MC did not have a substantial effect on boll density but increased lint yield at higher densities. Conclusions The model satisfactorily represents the effects of agronomic measures on cotton plant structure. It can be used to identify optimal agronomic management of cotton to achieve optimal plant structure for maximum yield under varying environmental conditions. PMID:24489020

  10. Conservation planning on eroded land based of local wisdom in Kintamani sub-district, province of Bali

    NASA Astrophysics Data System (ADS)

    Sri Sumarniasih, Made; Antara, Made

    2017-01-01

    Location determination is based on the compilation of soil type’s map, land use map and slope map. Uniformity of soil type, slope and land use is classified into one unit of land, so that there are 48 units of land to be use as sample points. The purpose of this research are to identify patterns of land use, determine the amount of erosion, the amount of erosion that is tolerable and erosion control through a conservation plan based on local wisdom. The erosion prediction used USLE method, erosion of tolerated (Edp) using the formula Hammer. Results of laboratory and field observations having analyzed using USLE showed some level of erosion on land use in the Kintamani classified from very mild to very severe: 4.79 to 370.60 t ha-1yr-1, while Edp ranges from 30.00 to 48.00 t ha-1 yr-1. erosion Severe to very severe found on the use of mixed garden/citrus garden, dry land and shrubs/ reeds. The planned of use of land is intercropping annuals with horticultural crops (cabbage), citrus trees intercropped with flower of gumitir and bush land planting with elephant grass on a slope of less than 25% and planted of trees on land with a slope above 25%.

  11. Herbage intake, methane emissions and animal performance of steers grazing dwarf elephant grass v. dwarf elephant grass and peanut pastures.

    PubMed

    Andrade, E A; Almeida, E X; Raupp, G T; Miguel, M F; de Liz, D M; Carvalho, P C F; Bayer, C; Ribeiro-Filho, H M N

    2016-10-01

    Management strategies for increasing ruminant legume consumption and mitigating methane emissions from tropical livestock production systems require further study. The aim of this work was to evaluate the herbage intake, animal performance and enteric methane emissions of cattle grazing dwarf elephant grass (DEG) (Pennisetum purpureum cv. BRS Kurumi) alone or DEG with peanut (Arachis pintoi cv. Amarillo). The experimental treatments were the following: DEG pastures receiving nitrogen fertilization (150 kg N/ha as ammonium nitrate) and DEG intercropped with peanut plus an adjacent area of peanut that was accessible to grazing animals for 5 h/day (from 0700 to 1200 h). The animals grazing legume pastures showed greater average daily gain and herbage intake, and shorter morning and total grazing times. Daily methane emissions were greater from the animals grazing legume pastures, whereas methane emissions per unit of herbage intake did not differ between treatments. Allowing animals access to an exclusive area of legumes in a tropical grass-pasture-based system can improve animal performance without increasing methane production per kg of dry matter intake.

  12. Microbial nitrogen cycling response to forest-based bioenergy production.

    PubMed

    Minick, Kevan J; Strahm, Brian D; Fox, Thomas R; Sucre, Eric B; Leggett, Zakiya H

    2015-12-01

    Concern over rising atmospheric CO2 and other greenhouse gases due to fossil fuel combustion has intensified research into carbon-neutral energy production. Approximately 15.8 million ha of pine plantations exist across the southeastern United States, representing a vast land area advantageous for bioenergy production without significant landuse change or diversion of agricultural resources from food production. Furthermore, intercropping of pine with bioenergy grasses could provide annually harvestable, lignocellulosic biomass feedstocks along with production of traditional wood products. Viability of such a system hinges in part on soil nitrogen (N) availability and effects of N competition between pines and grasses on ecosystem productivity. We investigated effects of intercropping loblolly pine (Pinus taeda) with switchgrass (Panicum virgatum) on microbial N cycling processes in the Lower Coastal Plain of North Carolina, USA. Soil samples were collected from bedded rows of pine and interbed space of two treatments, composed of either volunteer native woody and herbaceous vegetation (pine-native) or pure switchgrass (pine-switchgrass) in interbeds. An in vitro 15N pool-dilution technique was employed to quantify gross N transformations at two soil depths (0-5 and 5-15 cm) on four dates in 2012-2013. At the 0-5 cm depth in beds of the pine-switchgrass treatment, gross N mineralization was two to three times higher in November and February compared to the pine-native treatment, resulting in increased NH4(+) availability. Gross and net nitrification were also significantly higher in February in the same pine beds. In interbeds of the pine-switchgrass treatment, gross N mineralization was lower from April to November, but higher in February, potentially reflecting positive effects of switchgrass root-derived C inputs during dormancy on microbial activity. These findings indicate soil N cycling and availability has increased in pine beds of the pine-switchgrass treatment compared to those of the pine-native treatment, potentially alleviating any negative effects of N competition between pine and switchgrass. We expect that reduced soil C in the pine-switchgrass treatment, effects of pine and switchgrass rooting on soil C availability, and plant N demand are major factors influencing soil N transformations. Future research should examine rooting architecture in-intercropped systems and the effects on soil microbial communities and function.

  13. Multifunctional Dryland Forestry: Accumulating Experience From the East-Mediterranean

    NASA Astrophysics Data System (ADS)

    Osem, Y.; Shachack, M.; Moshe, I.

    2014-12-01

    Although small in size the landscapes of East Mediterranean Israel extend over a wide geo-climatic gradient ranging from dry sub-humid to hyper-arid lands. Thousands of years under intense human exploitation in this region, involving cutting, livestock grazing, agricultural practice and fire have resulted in severe degradation of these water limited ecosystems. The highly degraded state of the native vegetation as found by the new settlers coming to Israel in the beginning of the previous century, has provided the basic motivation for an extensive afforestation enterprise carried out during the last 100 years. This talk will present an overview on the accumulating experience in establishing and managing multifunctional forests in this dryland region. Given their very limited timber value, dryland forests are designed and managed under various goals the important of which are landscape aesthetics, recreation opportunities, grazing land, ecosystem restoration and soil conservation. Being subjected to water scarcity of high temporal and spatial variation, these manmade systems are managed to withstand water deficiency of unpredictable magnitude through the manipulation of both water input and water consumption. In the dry subhumid regions, forest management focuses mainly on controlling water consumption through the manipulation of vegetation structure using thinning and livestock grazing as primary silvicultural tools. Going into the semiarid zone, practices of rainfall redistribution and runoff harvesting become crucial for tree establishment and growth. The implementation of these practices varies depending on topography, rainfall amount and forest goals. The talk will provide a brief description of these unique silvicultural systems, review some of the recent scientific work in them and refer to critical gaps in knowledge. The relevancy to intercrop agroforestry in rainfed ecosystems will be discussed.

  14. Hydrologic calibration of paired watersheds using a MOSUM approach

    DOE PAGES

    Ssegane, H.; Amatya, D. M.; Muwamba, A.; ...

    2015-01-09

    Paired watershed studies have historically been used to quantify hydrologic effects of land use and management practices by concurrently monitoring two neighboring watersheds (a control and a treatment) during the calibration (pre-treatment) and post-treatment periods. This study characterizes seasonal water table and flow response to rainfall during the calibration period and tests a change detection technique of moving sums of recursive residuals (MOSUM) to select calibration periods for each control-treatment watershed pair when the regression coefficients for daily water table elevation (WTE) were most stable to reduce regression model uncertainty. The control and treatment watersheds included 1–3 year intensively managedmore » loblolly pine ( Pinus taeda L.) with natural understory, same age loblolly pine intercropped with switchgrass ( Panicum virgatum), 14–15 year thinned loblolly pine with natural understory (control), and switchgrass only. Although monitoring during the calibration period spanned 2009 to 2012, silvicultural operational practices that occurred during this period such as harvesting of existing stand and site preparation for pine and switchgrass establishment may have acted as external factors, potentially shifting hydrologic calibration relationships between control and treatment watersheds. Results indicated that MOSUM was able to detect significant changes in regression parameters for WTE due to silvicultural operations. This approach also minimized uncertainty of calibration relationships which could otherwise mask marginal treatment effects. All calibration relationships developed using this MOSUM method were quantifiable, strong, and consistent with Nash–Sutcliffe Efficiency (NSE) greater than 0.97 for WTE and NSE greater than 0.92 for daily flow, indicating its applicability for choosing calibration periods of paired watershed studies.« less

  15. Biodiversity can support a greener revolution in Africa

    PubMed Central

    Snapp, Sieglinde S.; Blackie, Malcolm J.; Gilbert, Robert A.; Bezner-Kerr, Rachel; Kanyama-Phiri, George Y.

    2010-01-01

    The Asian green revolution trebled grain yields through agrochemical intensification of monocultures. Associated environmental costs have subsequently emerged. A rapidly changing world necessitates sustainability principles be developed to reinvent these technologies and test them at scale. The need is particularly urgent in Africa, where ecosystems are degrading and crop yields have stagnated. An unprecedented opportunity to reverse this trend is unfolding in Malawi, where a 90% subsidy has ensured access to fertilization and improved maize seed, with substantive gains in productivity for millions of farmers. To test if economic and ecological sustainability could be improved, we preformed manipulative experimentation with crop diversity in a countrywide trial (n = 991) and at adaptive, local scales through a decade of participatory research (n = 146). Spatial and temporal treatments compared monoculture maize with legume-diversified maize that included annual and semiperennial (SP) growth habits in temporal and spatial combinations, including rotation, SP rotation, intercrop, and SP intercrop systems. Modest fertilizer intensification doubled grain yield compared with monoculture maize. Biodiversity improved ecosystem function further: SP rotation systems at half-fertilizer rates produced equivalent quantities of grain, on a more stable basis (yield variability reduced from 22% to 13%) compared with monoculture. Across sites, profitability and farmer preference matched: SP rotations provided twofold superior returns, whereas diversification of maize with annual legumes provided more modest returns. In this study, we provide evidence that in Africa, crop diversification can be effective at a countrywide scale, and that shrubby, grain legumes can enhance environmental and food security. PMID:21098285

  16. Energy budgeting and carbon footprint of transgenic cotton-wheat production system through peanut intercropping and FYM addition.

    PubMed

    Singh, Raman Jeet; Ahlawat, I P S

    2015-05-01

    Two of the most pressing sustainability issues are the depletion of fossil energy resources and the emission of atmospheric green house gases like carbon dioxide to the atmosphere. The aim of this study was to assess energy budgeting and carbon footprint in transgenic cotton-wheat cropping system through peanut intercropping with using 25-50% substitution of recommended dose of nitrogen (RDN) of cotton through farmyard manure (FYM) along with 100% RDN through urea and control (0 N). To quantify the residual effects of previous crops and their fertility levels, a succeeding crop of wheat was grown with varying rates of nitrogen, viz. 0, 50, 100, and 150 kg ha(-1). Cotton + peanut-wheat cropping system recorded 21% higher system productivity which ultimately helped to maintain higher net energy return (22%), energy use efficiency (12%), human energy profitability (3%), energy productivity (7%), carbon outputs (20%), carbon efficiency (17%), and 11% lower carbon footprint over sole cotton-wheat cropping system. Peanut addition in cotton-wheat system increased the share of renewable energy inputs from 18 to 21%. With substitution of 25% RDN of cotton through FYM, share of renewable energy resources increased in the range of 21% which resulted into higher system productivity (4%), net energy return (5%), energy ratio (6%), human energy profitability (74%), energy productivity (6%), energy profitability (5%), and 5% lower carbon footprint over no substitution. The highest carbon footprint (0.201) was recorded under control followed by 50 % substitution of RDN through FYM (0.189). With each successive increase in N dose up to 150 kg N ha(-1) to wheat, energy productivity significantly reduced and share of renewable energy inputs decreased from 25 to 13%. Application of 100 kg N ha(-1) to wheat maintained the highest grain yield (3.71 t ha(-1)), net energy return (105,516 MJ ha(-1)), and human energy profitability (223.4) over other N doses applied to wheat. Application of 50 kg N ha(-1) to wheat maintained the least carbon footprint (0.091) followed by 100 kg N ha(-1) (0.100). Our study indicates that system productivity as well as energy and carbon use efficiencies of transgenic cotton-wheat production system can be enhanced by inclusion of peanut as an intercrop in cotton and substitution of 25% RDN of cotton through FYM, as well as application of 100 kg N ha(-1) to succeeding wheat crop.

  17. Soil biochemical properties and microbial resilience in agroforestry systems: effects on wheat growth under controlled drought and flooding conditions.

    PubMed

    Rivest, David; Lorente, Miren; Olivier, Alain; Messier, Christian

    2013-10-01

    Agroforestry is increasingly viewed as an effective means of maintaining or even increasing crop and tree productivity under climate change while promoting other ecosystem functions and services. This study focused on soil biochemical properties and resilience following disturbance within agroforestry and conventional agricultural systems and aimed to determine whether soil differences in terms of these biochemical properties and resilience would subsequently affect crop productivity under extreme soil water conditions. Two research sites that had been established on agricultural land were selected for this study. The first site included an 18-year-old windbreak, while the second site consisted in an 8-year-old tree-based intercropping system. In each site, soil samples were used for the determination of soil nutrient availability, microbial dynamics and microbial resilience to different wetting-drying perturbations and for a greenhouse pot experiment with wheat. Drying and flooding were selected as water stress treatments and compared to a control. These treatments were initiated at the beginning of the wheat anthesis period and maintained over 10 days. Trees contributed to increase soil nutrient pools, as evidenced by the higher extractable-P (both sites), and the higher total N and mineralizable N (tree-based intercropping site) found in the agroforestry compared to the conventional agricultural system. Metabolic quotient (qCO2) was lower in the agroforestry than in the conventional agricultural system, suggesting higher microbial substrate use efficiency in agroforestry systems. Microbial resilience was higher in the agroforestry soils compared to soils from the conventional agricultural system (windbreak site only). At the windbreak site, wheat growing in soils from agroforestry system exhibited higher aboveground biomass and number of grains per spike than in conventional agricultural system soils in the three water stress treatments. At the tree-based intercropping site, higher wheat biomass, grain yield and number of grains per spike were observed in agroforestry than in conventional agricultural system soils, but in the drought treatment only. Drought (windbreak site) and flooding (both sites) treatments significantly reduced wheat yield and 1000-grain weight in both types of system. Relationships between soil biochemical properties and soil microbial resilience or wheat productivity were strongly dependent on site. This study suggests that agroforestry systems may have a positive effect on soil biochemical properties and microbial resilience, which could operate positively on crop productivity and tolerance to severe water stress. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Comprehensive review on agro technologies of low-calorie natural sweetener stevia (Stevia rebaudiana Bertoni): a boon to diabetic patients.

    PubMed

    Sharma, Saurabh; Walia, Swati; Singh, Bikram; Kumar, Rakesh

    2016-04-01

    Stevia rebaudiana Bertoni is a low-calorie natural sweetener plant native to Paraguay. The leaves of stevia have sweetening compounds called steviol glycosides (SGs), which contain different marker compounds, i.e. stevioside (St), rebaudioside (Rb) A, B, C, D and E, dulcoside A and steviol biosides, which are nearly 300 times sweeter than sugar. Stevia is a better alternative to sugar in formulating food products, reducing the harmful effect of sugar and improving the nutrient properties. We have tried to compile a literature on various agronomic and management aspects which are helpful in increasing the yield and quality of stevia to be grown as a crop that will benefit farmers and industrialists. The stevioside thus obtained can be used to make different food products for sweetening purposes, which could be a boon to diabetic patients. Incorporation of different agronomic techniques like propagation method, transplanting time, intercropping, irrigation, mulching, plant geometry, pinching and harvesting time not only improve the biomass but also increase the quality of stevia. Therefore, agronomic considerations are of high priority to utilize its maximum potential. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  19. Towards a Collaborative Research: A Case Study on Linking Science to Farmers’ Perceptions and Knowledge on Arabica Coffee Pests and Diseases and Its Management

    PubMed Central

    Liebig, Theresa; Läderach, Peter; Poehling, Hans-Michael; Kucel, Patrick; Van Asten, Piet; Avelino, Jacques

    2016-01-01

    The scientific community has recognized the importance of integrating farmer’s perceptions and knowledge (FPK) for the development of sustainable pest and disease management strategies. However, the knowledge gap between indigenous and scientific knowledge still contributes to misidentification of plant health constraints and poor adoption of management solutions. This is particularly the case in the context of smallholder farming in developing countries. In this paper, we present a case study on coffee production in Uganda, a sector depending mostly on smallholder farming facing a simultaneous and increasing number of socio-ecological pressures. The objectives of this study were (i) to examine and relate FPK on Arabica Coffee Pests and Diseases (CPaD) to altitude and the vegetation structure of the production systems; (ii) to contrast results with perceptions from experts and (iii) to compare results with field observations, in order to identify constraints for improving the information flow between scientists and farmers. Data were acquired by means of interviews and workshops. One hundred and fifty farmer households managing coffee either at sun exposure, under shade trees or inter-cropped with bananas and spread across an altitudinal gradient were selected. Field sampling of the two most important CPaD was conducted on a subset of 34 plots. The study revealed the following findings: (i) Perceptions on CPaD with respect to their distribution across altitudes and perceived impact are partially concordant among farmers, experts and field observations (ii) There are discrepancies among farmers and experts regarding management practices and the development of CPaD issues of the previous years. (iii) Field observations comparing CPaD in different altitudes and production systems indicate ambiguity of the role of shade trees. According to the locality-specific variability in CPaD pressure as well as in FPK, the importance of developing spatially variable and relevant CPaD control practices is proposed. PMID:27504826

  20. Towards a Collaborative Research: A Case Study on Linking Science to Farmers' Perceptions and Knowledge on Arabica Coffee Pests and Diseases and Its Management.

    PubMed

    Liebig, Theresa; Jassogne, Laurence; Rahn, Eric; Läderach, Peter; Poehling, Hans-Michael; Kucel, Patrick; Van Asten, Piet; Avelino, Jacques

    2016-01-01

    The scientific community has recognized the importance of integrating farmer's perceptions and knowledge (FPK) for the development of sustainable pest and disease management strategies. However, the knowledge gap between indigenous and scientific knowledge still contributes to misidentification of plant health constraints and poor adoption of management solutions. This is particularly the case in the context of smallholder farming in developing countries. In this paper, we present a case study on coffee production in Uganda, a sector depending mostly on smallholder farming facing a simultaneous and increasing number of socio-ecological pressures. The objectives of this study were (i) to examine and relate FPK on Arabica Coffee Pests and Diseases (CPaD) to altitude and the vegetation structure of the production systems; (ii) to contrast results with perceptions from experts and (iii) to compare results with field observations, in order to identify constraints for improving the information flow between scientists and farmers. Data were acquired by means of interviews and workshops. One hundred and fifty farmer households managing coffee either at sun exposure, under shade trees or inter-cropped with bananas and spread across an altitudinal gradient were selected. Field sampling of the two most important CPaD was conducted on a subset of 34 plots. The study revealed the following findings: (i) Perceptions on CPaD with respect to their distribution across altitudes and perceived impact are partially concordant among farmers, experts and field observations (ii) There are discrepancies among farmers and experts regarding management practices and the development of CPaD issues of the previous years. (iii) Field observations comparing CPaD in different altitudes and production systems indicate ambiguity of the role of shade trees. According to the locality-specific variability in CPaD pressure as well as in FPK, the importance of developing spatially variable and relevant CPaD control practices is proposed.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caldwell, M.M.; Eissenstat, D.M.; Richards, J.H.

    Two species of Agropyron grass differed strikingly in their capacity to compete for phosphate in soil interspaces shared with a common competitor, the sagebrush Artemisia tridentata. Of the total phosphorus-32 and -33 absorbed by Artemisia, 86% was from the interspace shared with Agropyron spicatum and only 14% from that shared with Agropyron desertorum. Actively absorbing mycorrhizal roots of Agropyron and Artemisia were present in both interspaces, where competition for the labeled phosphate occurred. The results have important implications about the way in which plants compete for resources below ground in both natural plant communities and agricultural intercropping systems.

  2. Phenological patterns of Spodoptera Guenée, 1852 (Lepidoptera: Noctuidae) is more affected by ENSO than seasonal factors and host plant availability in a Brazilian Savanna

    NASA Astrophysics Data System (ADS)

    Piovesan, Mônica; Specht, Alexandre; Carneiro, Eduardo; Paula-Moraes, Silvana Vieira; Casagrande, Mirna Martins

    2018-03-01

    The identification of factors responsible for the population dynamics is fundamental for pest management, since losses can reach 18% of annual production. Besides regular seasonal environmental factors and crop managements, additional supra-annual meteorological phenomena can also affect population dynamics, although its relevance has been rarely investigated. Among crop pests, Spodoptera stands out due to its worldwide distribution, high degree of polyphagy, thus causing damages in several crops in the world. Aiming to distinguish the relevance of different factors shaping population dynamics of Spodoptera in an ecosystem constituted of dry and rainy seasons, the current study used circular statistics to identify phenological patterns and test if its population fluctuation is driven by El Niño-Southern Oscillation (ENSO) effect, seasonal meteorological parameters, and/or host plant availability. Samplings were done in an intercropping system, in the Brazilian Savanna, during the new moon cycles between July/2013 and June/2016. Species were recorded all year round, but demonstrated differently non-uniform distribution, being concentrated in different seasons of the year. Population fluctuations were mostly affected by the ENSO intensity, despite the contrasting seasonal meteorological variation or host plant availability in a 400-m radius. Studies involving the observation of supra-annual phenomena, although rare, reach similar conclusions in relation to Neotropical insect fauna. Therefore, it is paramount to have long-term sampling studies to obtain a more precise response of the pest populations towards the agroecosystem conditions.

  3. Oviposition Preference of Pea Weevil, Bruchus pisorum L. Among Host and Non-host Plants and its Implication for Pest Management

    PubMed Central

    Mendesil, Esayas; Rämert, Birgitta; Marttila, Salla; Hillbur, Ylva; Anderson, Peter

    2016-01-01

    The pea weevil, Bruchus pisorum L. is a major insect pest of field pea, Pisum sativum L. worldwide and current control practices mainly depend on the use of chemical insecticides that can cause adverse effects on environment and human health. Insecticides are also unaffordable by many small-scale farmers in developing countries, which highlights the need for investigating plant resistance traits and to develop alternative pest management strategies. The aim of this study was to determine oviposition preference of pea weevil among P. sativum genotypes with different level of resistance (Adet, 32410-1 and 235899-1) and the non-host leguminous plants wild pea (Pisum fulvum Sibth. et Sm.) and grass pea (Lathyrus sativus L.), in no-choice and dual-choice tests. Pod thickness and micromorphological traits of the pods were also examined. In the no-choice tests significantly more eggs were laid on the susceptible genotype Adet than on the other genotypes. Very few eggs were laid on P. fulvum and L. sativus. In the dual-choice experiments Adet was preferred by the females for oviposition. Furthermore, combinations of Adet with either 235899-1 or non-host plants significantly reduced the total number of eggs laid by the weevil in the dual-choice tests. Female pea weevils were also found to discriminate between host and non-host plants during oviposition. The neoplasm (Np) formation on 235899-1 pods was negatively correlated with oviposition by pea weevil. Pod wall thickness and trichomes might have influenced oviposition preference of the weevils. These results on oviposition behavior of the weevils can be used in developing alternative pest management strategies such as trap cropping using highly attractive genotype and intercropping with the non-host plants. PMID:26779220

  4. Durum wheat (Triticum turgidum spp. durum, cultivar Senatore Cappelli) production systems effects on grain and flours functional properties under Mediterranean conditions

    NASA Astrophysics Data System (ADS)

    Cavoski, Ivana; Turk, Jelena; Chami, Ziad Al

    2015-04-01

    The main goal of organic farming is the "production of high quality products". Integrity and vital quality of products should be preserved along the entire production chain. In order to evaluate the effect of organic vs. conventional production systems on durum wheat phenolic acids and antioxidant activity open field experiment has been carried out. During the whole process chain from field to fork, there are various factors influencing the quality of the end product. Organic production should rely on genotypes with high nitrogen use efficiency, disease and pest resistance, weed competitiveness and tolerance especially under Mediterranean conditions. In this study, production systems differed according to the practices and inputs applied to manage the soil fertility and plant protection. In conventional system, synthetic fertilizers and pesticides were used. Whereas, in the two organic systems, cow manure with fertilizers and temporary intercropping with fava bean (Vicia faba) and fertilizers were used to manage soil fertility. Biopesticides were used for plant protection for organic systems. One treatment without inputs was used as a control in order to evaluate environmental site and cultivar effect. Quantity of free, free and conjugated and bounded phenolic acids were evaluated in relation to overall quality and production systems. In addition, antioxidant capacities of each fraction by different assays were assessed. The organic production method assured higher overall quality in paricular functional properties compared to the conventional one. Therefore, understanding the functional links between production systems variables and physiological responses is essential to improve and standardize the quality of organic durum wheat products. Keywords: organic farming, soil fertility management, phenolic acids, antioxidant activity.

  5. [Study of extracting Peucedanum praeruptorum planted area in Ningguo of Anhui province based on multi-source and multi-phase image].

    PubMed

    Shi, Ting-Ting; Zhang, Xiao-Bo; Zhang, Ke; Guo, Lan-Ping; Huang, Lu-Qi

    2017-11-01

    The herbs used as the material for traditional Chinese medicine are always planted in the mountainous area where the natural environment is suitable. As the mountain terrain is complex and the distribution of planting plots is scattered, the traditional survey method is difficult to obtain accurate planting area. It is of great significance to provide decision support for the conservation and utilization of traditional Chinese medicine resources by studying the method of extraction of Chinese herbal medicine planting area based on remote sensing and realizing the dynamic monitoring and reserve estimation of Chinese herbal medicines. In this paper, taking the Peucedanum praeruptorum planted area in Ningguo prefecture of Anhui province as an example, the multispectral remote sensing images that include Landsat-8 with a 30 m resolution and China-made GF-1 with a 16 m resolution were used as data source. Since the spectral characteristics of P. praeruptorum in the two periods are different from those of other crops, the changes of the images at two stages in the same year could be used to extract the P. praeruptorum planted area intercropped in cultivated land. Then the texture and spectral characteristics of young pecan trees were used to extract the P. praeruptorum planted area intercropped in woodland. The results showed that the extracted area of planted P. praeruptorum with the original imagery of 30 m spatial resolution and 16 m spatial resolution was 25 635.43,24 585.43 mu, respectively. Copyright© by the Chinese Pharmaceutical Association.

  6. Proteomic Analysis of the Relationship between Metabolism and Nonhost Resistance in Soybean Exposed to Bipolaris maydis.

    PubMed

    Dong, Yumei; Su, Yuan; Yu, Ping; Yang, Min; Zhu, Shusheng; Mei, Xinyue; He, Xiahong; Pan, Manhua; Zhu, Youyong; Li, Chengyun

    2015-01-01

    Nonhost resistance (NHR) pertains to the most common form of plant resistance against pathogenic microorganisms of other species. Bipolaris maydis is a non-adapted pathogen affecting soybeans, particularly of maize/soybean intercropping systems. However, no experimental evidence has described the immune response of soybeans against B. maydis. To elucidate the molecular mechanism underlying NHR in soybeans, proteomics analysis based on two-dimensional polyacrylamide gel electrophoresis (2-DE) was performed to identify proteins involved in the soybean response to B. maydis. The spread of B. maydis spores across soybean leaves induced NHR throughout the plant, which mobilized almost all organelles and various metabolic processes in response to B. maydis. Some enzymes, including ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), mitochondrial processing peptidase (MPP), oxygen evolving enhancer (OEE), and nucleoside diphosphate kinase (NDKs), were found to be related to NHR in soybeans. These enzymes have been identified in previous studies, and STRING analysis showed that most of the protein functions related to major metabolic processes were induced as a response to B. maydis, which suggested an array of complex interactions between soybeans and B. maydis. These findings suggest a systematic NHR against non-adapted pathogens in soybeans. This response was characterized by an overlap between metabolic processes and response to stimulus. Several metabolic processes provide the soybean with innate immunity to the non-adapted pathogen, B. maydis. This research investigation on NHR in soybeans may foster a better understanding of plant innate immunity, as well as the interactions between plant and non-adapted pathogens in intercropping systems.

  7. Proteomic Analysis of the Relationship between Metabolism and Nonhost Resistance in Soybean Exposed to Bipolaris maydis

    PubMed Central

    Dong, Yumei; Su, Yuan; Yu, Ping; Yang, Min; Zhu, Shusheng; Mei, Xinyue; He, Xiahong; Pan, Manhua; Zhu, Youyong; Li, Chengyun

    2015-01-01

    Nonhost resistance (NHR) pertains to the most common form of plant resistance against pathogenic microorganisms of other species. Bipolaris maydis is a non-adapted pathogen affecting soybeans, particularly of maize/soybean intercropping systems. However, no experimental evidence has described the immune response of soybeans against B. maydis. To elucidate the molecular mechanism underlying NHR in soybeans, proteomics analysis based on two-dimensional polyacrylamide gel electrophoresis (2-DE) was performed to identify proteins involved in the soybean response to B. maydis. The spread of B. maydis spores across soybean leaves induced NHR throughout the plant, which mobilized almost all organelles and various metabolic processes in response to B. maydis. Some enzymes, including ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), mitochondrial processing peptidase (MPP), oxygen evolving enhancer (OEE), and nucleoside diphosphate kinase (NDKs), were found to be related to NHR in soybeans. These enzymes have been identified in previous studies, and STRING analysis showed that most of the protein functions related to major metabolic processes were induced as a response to B. maydis, which suggested an array of complex interactions between soybeans and B. maydis. These findings suggest a systematic NHR against non-adapted pathogens in soybeans. This response was characterized by an overlap between metabolic processes and response to stimulus. Several metabolic processes provide the soybean with innate immunity to the non-adapted pathogen, B. maydis. This research investigation on NHR in soybeans may foster a better understanding of plant innate immunity, as well as the interactions between plant and non-adapted pathogens in intercropping systems. PMID:26513657

  8. Soil Modification by Native Shrubs Boosts Crop Productivity in Sudano-Sahelian Agroforestry System

    NASA Astrophysics Data System (ADS)

    Bogie, N. A.; Bayala, R.; Diedhiou, I.; Ghezzehei, T. A.; Dick, R.

    2014-12-01

    A changing climate along with human and animal population pressure can have a devastating effect on crop yields and food security in the Sudano-Sahel. Agricultural solutions to address soil degradation and crop water stress are needed to combat this increasingly difficult situation. Significant differences in crop success have been observed in peanut and millet grown in association with two native evergreen shrubs Piliostigma reticulatum, and Guiera senegalensis at the sites of Nioro du Rip and Keur Matar, respectively.We investigate how farmers can increase crop productivity by capitalizing on the evolutionary adaptation of native shrubs to the harsh Sudano-Sahelian environment as well as the physical mechanisms at work in the system that can lead to more robust yields. Soil moisture and water potential data were collected during a dry season millet irrigation experiment where stress was imposed in the intercropped system. Despite lower soil moisture content, crops grown in association with shrubs have increased biomass production and a faster development cycle. Hydraulic redistribution is thought to exist in this system and we found diurnal fluctuations in water potential within the intercropped system that increased in magnitude of to 0.4 Mpa per day as the soil dried below 1.0 Mpa during the stress treatment. An isotopic tracer study investigating hydraulic redistribution was carried out by injecting labeled water into shrub roots and sampling shrubs and nearby crops for isotopic analysis of plant water. These findings build on work that was completed in 2004 at the site, but point to lower overall magnitude of diurnal soil water potential fluctuations in dry soils. Using even the limited resources that farmers possess, this agroforestry technique can be expanded over wide swaths of the Sahel.

  9. Designing Agricultural Development Projects for the Small Scale Farmers: Some Lessons from the World Bank Assistance Small Holder Oil Palm Development Scheme in Nigeria

    NASA Astrophysics Data System (ADS)

    Orewa, S. I.

    The study was carried out to investigate farmers reasons for intercropping their oil palm farms with food and other cash crops rather than the sole oil palm planting arrangement specified for participation in the World Bank Assistance Smallholder Oil Palm development project financed during the 1975-83 period. The study was conducted at the Ekuku-Agbor Tree Crop Unit Zone (to the East) and Mosogar Tree Crop Unit Zone (to the Southwest) of the old Bendel State of Nigeria. A total of 35 oil palm farmers were randomly selected from each zone for the study. The study tried to identify the size of oil palm cultivated, types of food and cash crops planted and the proportion consumed and sold and the sufficiency of labour for various farm activities. The study showed that the average oil palm farm size at Ekuku-Agbor zone was smaller (about 1.57 ha) and more fragmented while for Mosogar zone it was 2.28 ha. However a greater percentage (over 65%) of the farms at both locations were within 0.01-2.00 ha farm size range which could be said to be relatively small. The study revealed that among other factors the farmers desire to ensure adequate family food needs which equates to food security and some cash to meet regular family financial needs necessitated their intercropping of the oil palm farms. Others include the need to maximize the returns from the use of labour which they considered a major limiting factor in farm maintenance and to take advantage of the relative high unit price of cassava and its products that prevailed then by cultivating on any available land space including the palm plantations and thereby increasing their farm income.

  10. [Transpiration of Choerospondias axillaris in agro-forestrial system and its affecting factors].

    PubMed

    Zhao, Ying; Zhang, Bin; Zhao, Huachun; Wang, Mingzhu

    2005-11-01

    Measurement of transpiration is essential to assess plant water use efficiency. Applying Grainer method, this paper measured the sap flow of Choerospondias axillaries in an agro-forestrial system, aimed to evaluate the effects of intercropping and pruning on the diurnal variation of transpiration, and to relate the transpiration rate with climatic factors. The results showed that the diurnal variation of Choerospondias arillaries transpiration rate appeared in parabola, low in the morning and evening, and high at noon. The transpiration rate was closely related to leaf stomatal conductivity and soil water potential, especially the water potential in 100 cm soil depth (R = 0.737). The transpiration rate of Choerospondias axillaries was increased by about 40% approximately 160% in agro-forestrial system through the changes in regional environment and in the deep soil water use by tree. Correlation analysis and multi-factor successive regression analysis indicated that the transpiration was controlled by ray radiation intensity, air temperature and ground temperature, followed by the difference between saturated and actual vapor pressure and the wind speed. A statistical model for calculating the sap flow rate by micrometeorological factors was also provided.

  11. Estimation of Carbon Budgets for Croplands by Combining High Resolution Remote Sensing Data with a Crop Model and Validation Ground Data

    NASA Astrophysics Data System (ADS)

    Mangiarotti, S.; Veloso, A.; Ceschia, E.; Tallec, T.; Dejoux, J. F.

    2015-12-01

    Croplands occupy large areas of Earth's land surface playing a key role in the terrestrial carbon cycle. Hence, it is essential to quantify and analyze the carbon fluxes from those agro-ecosystems, since they contribute to climate change and are impacted by the environmental conditions. In this study we propose a regional modeling approach that combines high spatial and temporal resolutions (HSTR) optical remote sensing data with a crop model and a large set of in-situ measurements for model calibration and validation. The study area is located in southwest France and the model that we evaluate, called SAFY-CO2, is a semi-empirical one based on the Monteith's light-use efficiency theory and adapted for simulating the components of the net ecosystem CO2 fluxes (NEE) and of the annual net ecosystem carbon budgets (NECB) at a daily time step. The approach is based on the assimilation of satellite-derived green area index (GAI) maps for calibrating a number of the SAFY-CO2 parameters linked to crop phenology. HSTR data from the Formosat-2 and SPOT satellites were used to produce the GAI maps. The experimental data set includes eddy covariance measurements of net CO2 fluxes from two experimental sites and partitioned into gross primary production (GPP) and ecosystem respiration (Reco). It also includes measurements of GAI, biomass and yield between 2005 and 2011, focusing on the winter wheat crop. The results showed that the SAFY-CO2 model correctly reproduced the biomass production, its dynamic and the yield (relative errors about 24%) in contrasted climatic, environmental and management conditions. The net CO2 flux components estimated with the model were overall in agreement with the ground data, presenting good correlations (R² about 0.93 for GPP, 0.77 for Reco and 0.86 for NEE). The evaluation of the modelled NECB for the different site-years highlighted the importance of having accurate estimates of each component of the NECB. Future works aim at considering systematically post-harvest events (such as re-growths, weeds and intercrops) on NEE assessment and at assimilating radar remote sensing data for estimating GAI and biomass more accurately. This approach is currently being extended to summer crops and it could be applied to larger scales thanks to the recent satellite missions (Landsat-8, Sentinel-1 and 2…).

  12. Growth Performance and Biometric Characteristics of Spodoptera litura (Lepidoptera: Noctuidae) Reared on Different Host Plants.

    PubMed

    Tuan, Shu-Jen; Li, Nian-Jhen; Yeh, Chih-Chun

    2015-10-01

    Spodoptera litura (F.), an important polyphagous insect pest, attacks ca. 300 economic crops in dozens of countries. Investigations into its growth and development performance on different host plants can provide an understanding of the potential for increase of S. litura population in the field. We measured the development time, body weight, and head capsule width of S. litura larvae reared on cabbage, taro, peanut, and sesbania, a green manure. Larvae reared on cabbage ingested a significantly higher amount of protein and completed the immature stages in a shorter period than those reared on the other three plants. The relationship between head capsule width and larval instars on these four crops fitted well with Dyar's rule, and the Dyar's ratios ranged from 1.4554 to 1.6786, although a few supernumerary instar individuals on sesbania, peanut, and taro showed lower ratios (1.0103 to 1.1330). The head capsule width among cohorts fed on different host plants varied significantly and overlapped between late instars, which could lead to a misjudgment of instar stage in the field. The growth index of S. litura on cabbage was significantly higher than on the other host plants. Larvae fed on sesbania showed the highest feeding index and a better growth index than on taro and peanut. We therefore suggest that the area-wide pest management against S. litura should take into consideration its occurrence on sesbania in intercropping seasons. Additionally, the effective management of this pest during cropping windows between all these four plants should not be ignored. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Topography and crop management are key factors for the development of american leaf spot epidemics on coffee in costa rica.

    PubMed

    Avelino, Jacques; Cabut, Sandrine; Barboza, Bernardo; Barquero, Miguel; Alfaro, Ronny; Esquivel, César; Durand, Jean-François; Cilas, Christian

    2007-12-01

    ABSTRACT We monitored the development of American leaf spot of coffee, a disease caused by the gemmiferous fungus Mycena citricolor, in 57 plots in Costa Rica for 1 or 2 years in order to gain a clearer understanding of conditions conducive to the disease and improve its control. During the investigation, characteristics of the coffee trees, crop management, and the environment were recorded. For the analyses, we used partial least-squares regression via the spline functions (PLSS), which is a nonlinear extension to partial least-squares regression (PLS). The fungus developed well in areas located between approximately 1,100 and 1,550 m above sea level. Slopes were conducive to its development, but eastern-facing slopes were less affected than the others, probably because they were more exposed to sunlight, especially in the rainy season. The distance between planting rows, the shade percentage, coffee tree height, the type of shade, and the pruning system explained disease intensity due to their effects on coffee tree shading and, possibly, on the humidity conditions in the plot. Forest trees and fruit trees intercropped with coffee provided particularly propitious conditions. Apparently, fertilization was unfavorable for the disease, probably due to dilution phenomena associated with faster coffee tree growth. Finally, series of wet spells interspersed with dry spells, which were frequent in the middle of the rainy season, were critical for the disease, probably because they affected the production and release of gemmae and their viability. These results could be used to draw up a map of epidemic risks taking topographical factors into account. To reduce those risks and improve chemical control, our results suggested that farmers should space planting rows further apart, maintain light shading in the plantation, and prune their coffee trees.

  14. Response of pest control by generalist predators to local-scale plant diversity: a meta-analysis.

    PubMed

    Dassou, Anicet Gbèblonoudo; Tixier, Philippe

    2016-02-01

    Disentangling the effects of plant diversity on the control of herbivores is important for understanding agricultural sustainability. Recent studies have investigated the relationships between plant diversity and arthropod communities at the landscape scale, but few have done so at the local scale. We conducted a meta-analysis of 32 papers containing 175 independent measures of the relationship between plant diversity and arthropod communities. We found that generalist predators had a strong positive response to plant diversity, that is, their abundance increased as plant diversity increased. Herbivores, in contrast, had an overall weak and negative response to plant diversity. However, specialist and generalist herbivores differed in their response to plant diversity, that is, the response was negative for specialists and not significant for generalists. While the effects of scale remain unclear, the response to plant diversity tended to increase for specialist herbivores, but decrease for generalist herbivores as the scale increased. There was no clear effect of scale on the response of generalist predators to plant diversity. Our results suggest that the response of herbivores to plant diversity at the local scale is a balance between habitat and trophic effects that vary according to arthropod specialization and habitat type. Synthesis and applications. Positive effects of plant diversity on generalist predators confirm that, at the local scale, plant diversification of agroecosystems is a credible and promising option for increasing pest regulation. Results from our meta-analysis suggest that natural control in plant-diversified systems is more likely to occur for specialist than for generalist herbivores. In terms of pest management, our results indicate that small-scale plant diversification (via the planting of cover crops or intercrops and reduced weed management) is likely to increase the control of specialist herbivores by generalist predators.

  15. Role of native shrubs of the Sahel in mitigating water and nutrient stresses of agricultural crops

    NASA Astrophysics Data System (ADS)

    Bayala, R.; Ghezzehei, T. A.; Bogie, N. A.; Diedhiou, I.; Dick, R.

    2015-12-01

    In the semi arid zone of the Sahel native woody shrubs are present in many farmers' fields. The native density of these shrubs is fairly low at around 200 to 300 individuals per hectare. An ongoing study in the Peanut Basin, Senegal has shown a vast improvement in crop yields when annual food crops are planted with the shrub Guiera senegalensis, especially in years of low or irregular precipitation. Shrubs in field plots established in 2003 where a rotation of peanuts and millet are grown are planted at a much higher density of 1500-1830 individuals per hectare. In order to increase the density of shrubs on the landscape, the shrubs must be cultivated. We monitored soil moisture, soil temperature, and growth of recently transplanted individuals at a field station in Thies, Senegal.This study seeks to determine the growth characteristics and water use of young shrubs in order to inform possible future plantations of the shrubs in a more intensely managed agroecosystem. If this technique of intercropping is to be expanded we must not exceed the carrying capacity of the landscape. In vulnerable ecosystems where natural resources are scarce and farming inputs are low, we must work to determine ways of exploiting the adaptation of local agroecosystems to increase the sustainability of agriculture in the region.

  16. Energetics and environmental costs of agriculture in a dry tropical region of India

    NASA Astrophysics Data System (ADS)

    Singh, V. P.; Singh, J. S.

    1992-07-01

    The present article, based on a study of five village ecosystems, assesses the energy efficiency of rain-fed agriculture in a dry tropical environment and the impact of agricultural activity on the surrounding natural ecosystems. Agronomic yield is insufficient to meet the food requirement of the human population, hence 11.5%-49.7% of the required amount of food grains are imported from the market. Energy requirements of five studied agroecosystems are subsidized considerably by the surrounding forest in the form of fodder and firewood. Natural ecosystems supply about 80%-95% of fodder needs and 81%-100% of fuelwood needs. The output-input ratio of agriculture indicated that, on average, 4.1 units of energy are expended to obtain one unit of agronomic energy. Of this, 3.9 units are supplied by the natural ecosystem. In addition, 38% of the extracted firewood is marketed. The illegal felling and lopping of trees result in ever-increasing concentric circles of forest destruction around the villages and together with excessive grazing results in savannization. The forests can be conserved by encouraging fuelwood plantations (0.7 ha/ha cultivated land) and developing village pastures (1.6 ha/ha cultivated land) and reducing the livestock numbers. Agricultural production in the region can be stabilized by introducing improved dry farming techniques such as intercropping, planned rainwater management, and adequate use of fertilizers.

  17. Effect of silage from ryegrass intercropped with winter or common vetch for grazing dairy cows in small-scale dairy systems in Mexico.

    PubMed

    Hernández-Ortega, Martha; Heredia-Nava, Darwin; Espinoza-Ortega, Angelica; Sánchez-Vera, Ernesto; Arriaga-Jordán, Carlos M

    2011-06-01

    The objective was to determine the effect of including silages of annual ryegrass (Lolium multiflorum) intercropped with winter vetch (Vicia villosa) (ARG-VV) or with common vetch (Vicia sativa) (ARG-VS) compared with maize silage (MS) on milk yield and milk composition of dairy cows grazing cultivated perennial ryegrass-white clover pastures with supplemented concentrate during the dry season. Six Holstein dairy cows with a mean yield of 19.0 kg/cow/day at the beginning of the experiment were randomly assigned to a 3 × 3 repeated Latin square. Treatments were: 8 h/day intensive grazing, 3.6 kg of dry matter (DM) per cow per day of concentrate plus MS, and ARG-VV or ARG-VS ad libitum at a stocking rate of 3.0 cows/ha for three experimental periods of 3 weeks each. Milk yield (MY) and milk composition, live weight and body condition score as well as silage and concentrate intakes were recorded during the third week of each experimental period, and pasture intake was estimated indirectly from utilised metabolisable energy. Economic analysis was obtained by preparing partial budgets. There were no statistical differences (P > 0.10) in MY, milk fat or protein content nor for live weight, but there was significant difference (P < 0.10) in body condition score. There were non-statistical differences in silage DM intake (P < 0.11); however, significant differences (P < 0.10) were obtained for estimated grazed herbage intake whilst no differences for total DM intake. Slightly higher economic returns (10%) were obtained with ARG-VS over MS, and this was 7% higher than ARG-VV. It is concluded that ARG-VS could be an option for complementing grazing for small-scale dairy production systems in the dry season as it is comparable to MS in animal performance and slightly better in economic terms.

  18. Phosphorus acquisition and utilisation in crop legumes under global change.

    PubMed

    Pang, Jiayin; Ryan, Megan H; Lambers, Hans; Siddique, Kadambot Hm

    2018-05-28

    Improving phosphorus (P)-use efficiency in legumes is a worldwide challenge in the face of an increasing world population, dwindling global rock phosphate reserves, the relatively high P demand of legumes and global change. This review focuses on P acquisition of crop legumes in response to climate change. We advocate further studies on: firstly, the response of carboxylate exudation, mycorrhizas and root morphology to climate change and their role in P acquisition as dependent on edaphic factors; secondly, developing intercropping systems with a combination of a legume and another crop species to enhance P acquisition; and thirdly, the impact of the interactions of the major climate change factors on P acquisition in the field. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. The components of rice and watermelon root exudates and their effects on pathogenic fungus and watermelon defense.

    PubMed

    Ren, Lixuan; Huo, Hongwei; Zhang, Fang; Hao, Wenya; Xiao, Liang; Dong, Caixia; Xu, Guohua

    2016-06-02

    Watermelon (Citrullus lanatus) is susceptible to wilt disease caused by the fungus Fusarium oxysporum f. sp niveum (FON). Intercropping management of watermelon/aerobic rice (Oryza sativa) alleviates watermelon wilt disease, because some unidentified component(s) in rice root exudates suppress FON sporulation and spore germination. Here, we show that the phenolic acid p-coumaric acid is present in rice root exudates only, and it inhibits FON spore germination and sporulation. We found that exogenously applied p-coumaric acid up-regulated the expression of ClPR3 in roots, as well as increased chitinase activity in leaves. Furthermore, exogenously applied p-coumaric acid increased β-1,3-glucanase activity in watermelon roots. By contrast, we found that ferulic acid was secreted by watermelon roots, but not by rice roots, and that it stimulated spore germination and sporulation of FON. Exogenous application of ferulic acid down-regulated ClPR3 expression and inhibited chitinase activity in watermelon leaves. Salicylic acid was detected in both watermelon and rice root exudates, which stimulated FON spore germination at low concentrations and suppressed spore germination at high concentrations. Exogenously applied salicylic acid did not alter ClPR3 expression, but did increase chitinase and β-1,3-glucanase activities in watermelon leaves. Together, our results show that the root exudates of phenolic acids were different between rice and watermelon, which lead to their special ecological roles on pathogenic fungus and watermelon defense.

  20. The components of rice and watermelon root exudates and their effects on pathogenic fungus and watermelon defense

    PubMed Central

    Ren, Lixuan; Huo, Hongwei; Zhang, Fang; Hao, Wenya; Xiao, Liang; Dong, Caixia; Xu, Guohua

    2016-01-01

    ABSTRACT Watermelon (Citrullus lanatus) is susceptible to wilt disease caused by the fungus Fusarium oxysporum f. sp niveum (FON). Intercropping management of watermelon/aerobic rice (Oryza sativa) alleviates watermelon wilt disease, because some unidentified component(s) in rice root exudates suppress FON sporulation and spore germination. Here, we show that the phenolic acid p-coumaric acid is present in rice root exudates only, and it inhibits FON spore germination and sporulation. We found that exogenously applied p-coumaric acid up-regulated the expression of ClPR3 in roots, as well as increased chitinase activity in leaves. Furthermore, exogenously applied p-coumaric acid increased β-1,3-glucanase activity in watermelon roots. By contrast, we found that ferulic acid was secreted by watermelon roots, but not by rice roots, and that it stimulated spore germination and sporulation of FON. Exogenous application of ferulic acid down-regulated ClPR3 expression and inhibited chitinase activity in watermelon leaves. Salicylic acid was detected in both watermelon and rice root exudates, which stimulated FON spore germination at low concentrations and suppressed spore germination at high concentrations. Exogenously applied salicylic acid did not alter ClPR3 expression, but did increase chitinase and β-1,3-glucanase activities in watermelon leaves. Together, our results show that the root exudates of phenolic acids were different between rice and watermelon, which lead to their special ecological roles on pathogenic fungus and watermelon defense. PMID:27217091

  1. The effect of cultivation on the size, shape, and persistence of disease patches in fields.

    PubMed

    Truscott, J E; Gilligan, C A

    2001-06-19

    Epidemics of soil-borne plant disease are characterized by patchiness because of restricted dispersal of inoculum. The density of inoculum within disease patches depends on a sequence comprising local amplification during the parasitic phase followed by dispersal of inoculum by cultivation during the intercrop period. The mechanisms that control size, shape, and persistence have received very little rigorous attention in epidemiological theory. Here we derive a model for dispersal of inoculum in soil by cultivation that takes account into the discrete stochastic nature of the system in time and space. Two parameters, probability of movement and mean dispersal distance, characterize lateral dispersal of inoculum by cultivation. The dispersal parameters are used in combination with the characteristic area and dimensions of host plants to identify criteria that control the shape and size of disease patches. We derive a critical value for the probability of movement for the formation of cross-shaped patches and show that this is independent of the amount of inoculum. We examine the interaction between local amplification of inoculum by parasitic activity and subsequent dilution by dispersal and identify criteria whereby asymptomatic patches may persist as inoculum falls below a threshold necessary for symptoms to appear in the subsequent crop. The model is motivated by the spread of rhizomania, an economically important soil-borne disease of sugar beet. However, the results have broad applicability to a very wide range of diseases that survive as discrete units of inoculum. The application of the model to patch dynamics of weed seeds and local introductions of genetically modified seeds is also discussed.

  2. Observing Carbon Dioxide Fluxes on a Corn Field and a Native Savanna in the Colombian Orinoco River Region Using Eddy Covariance

    NASA Astrophysics Data System (ADS)

    Morales-Rincon, L. A.; Jimenez-Pizarro, R.; Rodríguez, N.

    2016-12-01

    The Orinoco River basin is expected to become Colombia's largest farming belt in the near future. Agriculture and land use change are the most important greenhouse gas (GHG) source in Colombia and one of the most important globally. At the same time, agriculture is one of the few economic sectors that is also able to act as a sink, e.g. through soil carbon storage. Emissions are largely determined by agricultural practices, thus practice identification and C flux monitoring are of paramount importance for mitigation alternative identification. During second semester of 2015, we measured CO2 fluxes over a commercial corn filed the Colombian Orinoco River Region using enclosed-path eddy covariance. The plot behaved as a CO2 sink during crop development. We found that inter-crop activities played a key role in defining whether the area acted as a net source or sink. Quantifying C fluxes at under local soil and meteorological conditions provides new high quality scientific information, which could be incorporated into a wider evaluation of agroindustry process, e.g. through the C footprint. We will also present ongoing carbon flux measurements in a native savanna and will discuss on the possibility of extrapolating our result to wider areas using process based models.

  3. One plant, two plants, three plants, four: does soil carbon respond to diversifying by one plant more? (Invited)

    NASA Astrophysics Data System (ADS)

    Grandy, S.

    2013-12-01

    Plant diversity is known to strongly influence aboveground ecosystem functions, but our understanding of its effects on belowground carbon (C) cycling has not kept pace. We know in broad terms that the belowground implications of reducing plant diversity include changes in soil nutrient cycling and biological communities, but remain uncertain about the specific links between plant diversity, soil microbial communities, and soil C cycling. Our knowledge gap is especially wide in agricultural systems, which comprise ~50% of the contiguous U.S. and differ from non-managed systems because diversity: (1) occurs primarily over time (i.e. crop rotations) rather than in space (i.e. inter-cropping); (2) exists as one of multiple management factors that potentially regulates soil C dynamics; and (3) is almost always low, with the addition or subtraction of a single plant species often representing a substantial change in diversity. I have been addressing the uncertain relationships between agricultural plant diversity and soil C cycling with a multi-tiered approach that includes a global meta-analysis, site-specific field manipulations, and intensive laboratory analyses. The meta-analysis using 122 studies shows that compared to single-crop monocultures, rotations increased soil microbial biomass C by 20.7% and microbial biomass N by 26.1% as well as total soil C and N. In a complimentary field study at the W.K. Kellogg Biological Station LTER Cropping Biodiversity Gradient Experiment we examined microbial communities, C cycling processes, and trace gas emissions in five rotation sequences varying in complexity from continuous corn monoculture to a five crop three-year rotation. Finding striking differences between monocultures and systems with more complex plant communities, these results confirm our meta-analysis, and highlight the strong effects of diversifying plant communities in agricultural systems. A complimentary lab study examining decomposition processes in monocultures and more diverse rotations shows that rotation soils process chemically complex C more rapidly. My studies point to complex relationships between the chemistry of substrate inputs and their fate in soils, while also emphasizing an important management consideration: maintaining soil biological functions and ecosystem services in managed agricultural systems requires the rotation of different crops, rather than the production of single crop monocultures.

  4. Biocompatibility of sweetpotato and peanut in a hydroponic system

    NASA Technical Reports Server (NTRS)

    Mortley, D. G.; Loretan, P. A.; Hill, W. A.; Bonsi, C. K.; Morris, C. E.; Hall, R.; Sullen, D.

    1998-01-01

    'Georgia Red' peanut (Arachis hypogaea L.) and TU-82-155 sweetpotato [Ipomoea batatas (L.) Lam] were grown in monocultured or intercropped recirculating hydroponic systems in a greenhouse using the nutrient film technique (NFT). The objective was to determine whether growth and subsequent yield would be affected by intercropping. Treatments were sweetpotato monoculture (SP), peanut monoculture (PN), and sweetpotato and peanut grown in separate NFT channels but sharing a common nutrient solution (SP-PN). Greenhouse conditions ranged from 24 to 33 degrees C, 60% to 90% relative humidity (RH), and photosynthetic photon flux (PPF) of 200 to 1700 micromoles m-2 s-1. Sweetpotato cuttings (15 cm long) and 14-day-old seedlings of peanuts were planted into growth channels (0.15 x 0.15 x 1.2 m). Plants were spaced 25 cm apart within and 25 cm apart between growing channels. A modified half-Hoagland solution with a 1 N: 2.4 K ratio was used. Solution pH was maintained between 5.5 and 6.0 for treatments involving SP and 6.4 and 6.7 for PN. Electrical conductivity (EC) ranged between 1100 and 1200 microS cm-1. The number of storage roots per sweetpotato plant was similar for both SP and SP-PN. Storage root fresh and dry mass were 29% and 36% greater, respectively, for plants in the SP-PN treatment than for plants in the SP treatment. The percent dry mass of the storage roots, dry mass of fibrous and pencil roots, and the length-to-diameter ratio of storage roots were similar for SP and SP-PN sweetpotato plants. Likewise, foliage fresh and dry mass and harvest index were not significantly influenced by treatment. Total dry mass was 37% greater for PN than for SP-PN peanut plants, and pod dry mass was 82% higher. Mature and total seed dry mass and fibrous root dry mass were significantly greater for PN than for SP-PN plants. Harvest index (HI) was similar for both treatments. Root length tended to be lower for seedlings grown in the nutrient solution from the SP-PN treatment.

  5. Accumulation of N and P in the Legume Lespedeza davurica in Controlled Mixtures with the Grass Bothriochloa ischaemum under Varying Water and Fertilization Conditions.

    PubMed

    Xu, Bingcheng; Xu, Weizhou; Wang, Zhi; Chen, Zhifei; Palta, Jairo A; Chen, Yinglong

    2018-01-01

    Water and fertilizers affect the nitrogen (N) and phosphorus (P) acquisition and allocation among organs in dominant species in natural vegetation on the semiarid Loess Plateau. This study aimed to clarify the N and P accumulation and N:P ratio at organ and plant level of a local legume species mixed with a grass species under varying water and fertilizer supplies, and thus to fully understand the requirements and balance of nutrient elements in response to growth conditions change of native species. The N and P concentration in the organ (leaf, stem, and root) and plant level of Lespedeza davurica (C 3 legume), were examined when intercropped with Bothriochloa ischaemum (C 4 grass). The two species were grown outdoors in pots under 80, 60, and 40% of soil water field capacity (FC), -NP, +N, +P, and +NP supply and the grass:legume mixture ratios of 2:10, 4:8, 6:6, 8:4, 10:2, and 12:0. The three set of treatments were under a randomized complete block design. Intercropping with B. ischaemum did not affect N concentrations in leaf, stem and root of L. davurica , but reduced P concentration in each organ under P fertilization. Only leaf N concentration in L. davurica showed decreasing trend as soil water content decreased under all fertilization and mixture proportion treatments. Stems had the lowest, while roots had the highest N and P concentration. As the mixture proportion of L. davurica decreased under P fertilization, P concentration in leaf and root also decreased. The N concentration in L. davurica at the whole plant level was 11.1-17.2%. P fertilization improved P concentration, while decreased N:P ratio in L. davurica . The N:P ratios were less than 14.0 under +P and +NP treatments. Our results implied that exogenous N and P fertilizer application may change the N:P stoichiometry and influence the balance between nutrients and organs of native dominant species in natural grassland, and P element should be paid more attention when considering rehabilitating degraded grassland via fertilization application in semiarid Loess Plateau region.

  6. The Perceptions of Dayak Society of Losarang Indramayu to The Conservation of Natural Resources as Subsistence

    NASA Astrophysics Data System (ADS)

    Permana Putri, Dian

    2017-02-01

    This study aims to investigate the perception of local society, especially in the Dayak society in Losarang Indramayu to the importance of the natural resources conservation as subsistence. The research method of this study is qualitative approach to investigate the perception of Dayak society. The result of the research shows that the majority of Dayak local society in Losarang Indramayu is farming rice and vegetables through intercropping. Dayak society of Losarang Indramayu really appreciates to the preservation of natural resources. They believe that if they keep nature, then nature will also be friendly with them. One of the way to save the nature is by doing Pepe ritual, becoming vegetarian, and do not destroy animals around them. Dayak society of Losarang believes that each animal would also like to have the desire to live, taste, and imagination just like humans. Furthermore, they also build a special building that is used to respect all kinds of animal. The building uses bamboo as walls and fibers as roof. In that building, they raise many kinds of farm animal such as chickens, cows, goats, and pigs. By preserving the fauna, they believe that the crops will be abundant every year. By making the society to be aware about the importance of the natural resource and express their aspiration to the policymakers is a step to establish the sustainability of natural resources. Furthermore, in the management of natural resources by the stakeholders, the local society perception needs to be appreciated, understood, and considered.

  7. [Effects of agricultural practices on community structure of arbuscular mycorrhizal fungi in agricultural ecosystem: a review].

    PubMed

    Sheng, Ping-Ping; Li, Min; Liu, Run-Jin

    2011-06-01

    Arbuscular mycorrhizal (AM) fungi are rich in diversity in agricultural ecosystem, playing a vital role based on their unique community structure. Host plants and environmental factors have important effects on AM fungal community structure, so do the agricultural practices which deserve to pay attention to. This paper summarized the research advances in the effects of agricultural practices such as irrigation, fertilization, crop rotation, intercropping, tillage, and pesticide application on AM fungal community structure, analyzed the related possible mechanisms, discussed the possible ways in improving AM fungal community structure in agricultural ecosystem, and put forward a set of countermeasures, i.e., improving fertilization system and related integrated techniques, increasing plant diversity in agricultural ecosystem, and inoculating AM fungi, to enhance the AM fungal diversity in agricultural ecosystem. The existing problems in current agricultural practices and further research directions were also proposed.

  8. Banana production systems: identification of alternative systems for more sustainable production.

    PubMed

    Bellamy, Angelina Sanderson

    2013-04-01

    Large-scale, monoculture production systems dependent on synthetic fertilizers and pesticides, increase yields, but are costly and have deleterious impacts on human health and the environment. This research investigates variations in banana production practices in Costa Rica, to identify alternative systems that combine high productivity and profitability, with reduced reliance on agrochemicals. Farm workers were observed during daily production activities; 39 banana producers and 8 extension workers/researchers were interviewed; and a review of field experiments conducted by the National Banana Corporation between 1997 and 2002 was made. Correspondence analysis showed that there is no structured variation in large-scale banana producers' practices, but two other banana production systems were identified: a small-scale organic system and a small-scale conventional coffee-banana intercropped system. Field-scale research may reveal ways that these practices can be scaled up to achieve a productive and profitable system producing high-quality export bananas with fewer or no pesticides.

  9. Diversified Native Species Restoration for Recovery of Multiple Ecosystem Services in a Highly Disturbed Tropical Dry Forest Landscape of Southwestern Nicaragua

    NASA Astrophysics Data System (ADS)

    Williams-Guillen, K.; Otterstrom, S.; Perla, C.

    2015-12-01

    Tropical dry forests have been reduced to a fraction of their original extent in the Neotropics due to conversion to agriculture and cattle pasture. While TDF can recover via natural regeneration, resulting forests are dominated by wind-dispersed pioneer species of limited value for frugivorous wildlife. Additionally, passive restoration can be perceived as "abandonment" resulting in neighbors casually invading property to rear livestock and extract timber. In 2007, the NGO Paso Pacífico initiated restoration in a highly degraded tropical dry forest landscape of southwestern Nicaragua; funded by an ex-ante carbon purchase, the project was designed to integrate multiple native tree species known to provide resources used by local wildlife. We restored roughly 400 hectares spanning a rainfall gradient from dry to transitional moist forest, using reforestation (planting 70 species of tree seedlings in degraded pastures on a 4x4 m grid, leaving occurring saplings) and assisted regeneration (clearing vines and competing vegetation from saplings in natural regeneration and strategically managing canopy cover). In just over seven years, mean carbon increased nearly threefold, from to 21.5±5.0 to 57.9±9.6 SE tonnes/ha. Current carbon stocks match those of 20-year-old forests in the area, accumulated in less than a decade. Stem density per 15-m radius plot decreased from 16.3±2.3 to 12.5±0.9 SE, while species richness increased from 3.9±0.4 to 18.4±1.4 SE. Alpha richness of woody stems across plots increased from 36 to 94 species, and over 20 tree species established as a result of natural dispersal and recruitment. We have observed sensitive species such as spider monkeys and parrots foraging in restoration areas. Managed reforestation is a highly effective method for rapidly restoring the functionality of multiple ecosystem services in degraded TDF, particularly when social and political realities force restoration to coexist with human productive activities. Project techniques were developed in collaboration with local community members and incorporated indigenous practices regarding lunar cycles, intercropping, and other management aspects. We suggest that this integration was a critical aspect to project success, and that these approaches could be widely adapted throughout Central America.

  10. Bacterial Communities in the Rhizosphere of Amilaceous Maize (Zea mays L.) as Assessed by Pyrosequencing.

    PubMed

    Correa-Galeote, David; Bedmar, Eulogio J; Fernández-González, Antonio J; Fernández-López, Manuel; Arone, Gregorio J

    2016-01-01

    Maize (Zea mays L.) is the staple diet of the native peasants in the Quechua region of the Peruvian Andes who continue growing it in small plots called chacras following ancestral traditions. The abundance and structure of bacterial communities associated with the roots of amilaceous maize has not been studied in Andean chacras. Accordingly, the main objective of this study was to describe the rhizospheric bacterial diversity of amilaceous maize grown either in the presence or the absence of bur clover cultivated in soils from the Quechua maize belt. Three 16S rRNA gene libraries, one corresponding to sequences of bacteria from bulk soil of a chacra maintained under fallow conditions, the second from the rhizosphere of maize-cultivated soils, and the third prepared from rhizospheric soil of maize cultivated in intercropping with bur clover were examined using pyrosequencing tags spanning the V4 and V5 hypervariable regions of the gene. A total of 26031 sequences were found that grouped into 5955 distinct operational taxonomic units which distributed in 309 genera. The numbers of OTUs in the libraries from the maize-cultivated soils were significantly higher than those found in the libraries from bulk soil. One hundred ninety seven genera were found in the bulk soil library and 234 and 203 were in those from the maize and maize/bur clover-cultivated soils. Sixteen out of the 309 genera had a relative abundance higher than 0.5% and the were (in decreasing order of abundance) Gp4, Gp6, Flavobacterium, Subdivision3 genera incertae sedis of the Verrucomicrobia phylum, Gemmatimonas, Dechloromonas, Ohtaekwangia, Rhodoferax, Gaiella, Opitutus, Gp7, Spartobacteria genera incertae sedis, Terrimonas, Gp5, Steroidobacter and Parcubacteria genera incertae sedis. Genera Gp4 and Gp6 of the Acidobacteria, Gemmatimonas and Rhodoferax were the most abundant in bulk soil, whereas Flavobacterium, Dechloromonas and Ohtaekwangia were the main genera in the rhizosphere of maize intercropped with bur clover, and Gp4, Subdivision3 genera incertae sedis of phylum Verrucomicrobia, Gp6 and Rhodoferax were the main genera in the rhizosphere of maize plants. Taken together, our results suggest that bur clover produces specific changes in rhizospheric bacterial diversity of amilaceous maize plants.

  11. Bacterial Communities in the Rhizosphere of Amilaceous Maize (Zea mays L.) as Assessed by Pyrosequencing

    PubMed Central

    Correa-Galeote, David; Bedmar, Eulogio J.; Fernández-González, Antonio J.; Fernández-López, Manuel; Arone, Gregorio J.

    2016-01-01

    Maize (Zea mays L.) is the staple diet of the native peasants in the Quechua region of the Peruvian Andes who continue growing it in small plots called chacras following ancestral traditions. The abundance and structure of bacterial communities associated with the roots of amilaceous maize has not been studied in Andean chacras. Accordingly, the main objective of this study was to describe the rhizospheric bacterial diversity of amilaceous maize grown either in the presence or the absence of bur clover cultivated in soils from the Quechua maize belt. Three 16S rRNA gene libraries, one corresponding to sequences of bacteria from bulk soil of a chacra maintained under fallow conditions, the second from the rhizosphere of maize-cultivated soils, and the third prepared from rhizospheric soil of maize cultivated in intercropping with bur clover were examined using pyrosequencing tags spanning the V4 and V5 hypervariable regions of the gene. A total of 26031 sequences were found that grouped into 5955 distinct operational taxonomic units which distributed in 309 genera. The numbers of OTUs in the libraries from the maize-cultivated soils were significantly higher than those found in the libraries from bulk soil. One hundred ninety seven genera were found in the bulk soil library and 234 and 203 were in those from the maize and maize/bur clover-cultivated soils. Sixteen out of the 309 genera had a relative abundance higher than 0.5% and the were (in decreasing order of abundance) Gp4, Gp6, Flavobacterium, Subdivision3 genera incertae sedis of the Verrucomicrobia phylum, Gemmatimonas, Dechloromonas, Ohtaekwangia, Rhodoferax, Gaiella, Opitutus, Gp7, Spartobacteria genera incertae sedis, Terrimonas, Gp5, Steroidobacter and Parcubacteria genera incertae sedis. Genera Gp4 and Gp6 of the Acidobacteria, Gemmatimonas and Rhodoferax were the most abundant in bulk soil, whereas Flavobacterium, Dechloromonas and Ohtaekwangia were the main genera in the rhizosphere of maize intercropped with bur clover, and Gp4, Subdivision3 genera incertae sedis of phylum Verrucomicrobia, Gp6 and Rhodoferax were the main genera in the rhizosphere of maize plants. Taken together, our results suggest that bur clover produces specific changes in rhizospheric bacterial diversity of amilaceous maize plants. PMID:27524985

  12. Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations.

    PubMed

    Bennett, Amanda J; Bending, Gary D; Chandler, David; Hilton, Sally; Mills, Peter

    2012-02-01

    There is a trend world-wide to grow crops in short rotation or in monoculture, particularly in conventional agriculture. This practice is becoming more prevalent due to a range of factors including economic market trends, technological advances, government incentives, and retailer and consumer demands. Land-use intensity will have to increase further in future in order to meet the demands of growing crops for both bioenergy and food production, and long rotations may not be considered viable or practical. However, evidence indicates that crops grown in short rotations or monoculture often suffer from yield decline compared to those grown in longer rotations or for the first time. Numerous factors have been hypothesised as contributing to yield decline, including biotic factors such as plant pathogens, deleterious rhizosphere microorganisms, mycorrhizas acting as pathogens, and allelopathy or autotoxicity of the crop, as well as abiotic factors such as land management practices and nutrient availability. In many cases, soil microorganisms have been implicated either directly or indirectly in yield decline. Although individual factors may be responsible for yield decline in some cases, it is more likely that combinations of factors interact to cause the problem. However, evidence confirming the precise role of these various factors is often lacking in field studies due to the complex nature of cropping systems and the numerous interactions that take place within them. Despite long-term knowledge of the yield-decline phenomenon, there are few tools to counteract it apart from reverting to longer crop rotations or break crops. Alternative cropping and management practices such as double-cropping or inter-cropping, tillage and organic amendments may prove valuable for combating some of the negative effects seen when crops are grown in short rotation. Plant breeding continues to be important, although this does require a specific breeding target to be identified. This review identifies gaps in our understanding of yield decline, particularly with respect to the complex interactions occurring between the different components of agro-ecosystems, which may well influence food security in the 21(st) Century. © 2011 The Authors. Biological Reviews © 2011 Cambridge Philosophical Society.

  13. Increased soil organic carbon stocks under agroforestry: A survey of six different sites in France

    NASA Astrophysics Data System (ADS)

    Cardinael, Rémi; Chevallier, Tiphaine; Cambou, Aurélie; Beral, Camille; Barthes, Bernard; Dupraz, Christian; Kouakoua, Ernest; Chenu, Claire

    2017-04-01

    Introduction: Agroforestry systems are land use management systems in which trees are grown in combination with crops or pasture in the same field. In silvoarable systems, trees are intercropped with arable crops, and in silvopastoral systems trees are combined with pasture for livestock. These systems may produce forage and timber as well as providing ecosystem services such as climate change mitigation. Carbon (C) is stored in the aboveground and belowground biomass of the trees, and the transfer of organic matter from the trees to the soil can increase soil organic carbon (SOC) stocks. Few studies have assessed the impact of agroforestry systems on carbon storage in soils in temperate climates, as most have been undertaken in tropical regions. Methods: This study assessed five silvoarable systems and one silvopastoral system in France. All sites had an agroforestry system with an adjacent, purely agricultural control plot. The land use management in the inter-rows in the agroforestry systems and in the control plots were identical. The age of the study sites ranged from 6 to 41 years after tree planting. Depending on the type of soil, the sampling depth ranged from 20 to 100 cm and SOC stocks were assessed using equivalent soil masses. The aboveground biomass of the trees was also measured at all sites. Results: In the silvoarable systems, the mean organic carbon stock accumulation rate in the soil was 0.24 (0.09-0.46) Mg C ha-1 yr-1 at a depth of 30 cm and 0.65 (0.004-1.85) Mg C ha-1 yr-1 in the tree biomass. Increased SOC stocks were also found in deeper soil layers at two silvoarable sites. Young plantations stored additional SOC but mainly in the soil under the rows of trees, possibly as a result of the herbaceous vegetation growing in the rows. At the silvopastoral site, the SOC stock was significantly greater at a depth of 30-50 cm than in the control. Overall, this study showed the potential of agroforestry systems to store C in both soil and biomass in temperate regions.

  14. Salt and N leaching and soil accumulation due to cover cropping practices

    NASA Astrophysics Data System (ADS)

    Gabriel, J. L.; Quemada, M.

    2012-04-01

    Nitrate leaching beyond the root zone can increase water contamination hazards and decrease crop available N. Cover crops used in spite of fallow are an alternative to reduce nitrate contamination in the vadose zone, because reducing drainage and soil mineral N accumulation. Cover crops can improve important characteristics in irrigated land as water retention capacity or soil aggregate stability. However, increasing evapotranspiration and consequent drainage below the root system reduction, could lead to soil salt accumulation. Salinity affects more than 80 million ha of arable land in many areas of the world, and one of the principal causes for yield reduction and even land degradation in the Mediterranean region. Few studies dealt with both problems at the same time. Therefore, it is necessary a long-term evaluation of the potential effect on soil salinity and nitrate leaching, in order to ensure that potential disadvantages that could originate from soil salt accumulation are compensated with all advantages of cover cropping. A study of the soil salinity and nitrate leaching was conducted during 4 years in a semiarid irrigated agricultural area of Central Spain. Three treatments were studied during the intercropping period of maize (Zea mays L.): barley (Hordeum vulgare L.), vetch (Vicia villosa L.) and fallow. Cover crops were killed in March allowing seeding of maize of the entire trial in April, and all treatments were irrigated and fertilised following the same procedure. Before sowing, and after harvesting maize and cover crops, soil salt and nitrate accumulation was determined along the soil profile. Soil analysis was conducted at six depths every 0.20 m in each plot in samples from four 0 to 1.2-m depth holes dug. The electrical conductivity of the saturated paste extract and soil mineral nitrogen was measured in each soil sample. A numerical model based on the Richards water balance equation was applied in order to calculate drainage at 1.2 m depth, using daily soil water content measurements, based on calibrated capacitance probes. Our results showed that drainage during the irrigated period was minimized, because irrigation water was adjusted to crop needs, leading to soil salt and nitrate accumulation on the upper layers after maize harvest. Then, during the intercrop period, most of salt and nitrate leaching occurred. Cover crops use led to shorter drainage period, lower drainage water amount and lower nitrate and salt leaching than treatment with fallow. These effects were related with a larger nitrate accumulation in the upper layers of the soil after cover crop treatments. But there was not soil salt accumulation increase in treatments with cover crops, and even decreased after years with a large cover crop biomass production. Then, adoption of cover crops in this kind of irrigated cropping system reduced water drainage beyond the root zone, salt and nitrate leaching diminished as a consequence but did not lead to salt accumulation in the upper soil layers. Acknowledgements: Financial support by CICYT, Spain (ref. AGL2005-00163 and AGL 2011-24732) and Comunidad de Madrid (project AGRISOST, S2009/AGR-1630).

  15. [Landscape planning approaches for biodiversity conservation in agriculture].

    PubMed

    Liu, Yun-hui; Li, Liang-tao; Yu, Zhen-rong

    2008-11-01

    Biodiversity conservation in agriculture not only relates to the sustainable development of agriculture, but also is an essential part of species conservation. In recent years, the landscape planning approach for biodiversity was highlighted instead of species-focused approach. In this paper, the landscape factors affecting the biodiversity in agriculture were reviewed, and the possible landscape approaches at three different scales for more efficient conservation of biodiversity in agro-landscape were suggested, including: (1) the increase of the proportion of natural or semi-natural habitats in agriculture, diversification of land use or crop pattern, and protection or construction of corridor at landscape level; (2) the establishment of non-cropping elements such as field margin at between-field level; and (3) the application of reasonable crop density, crop distribution pattern and rotation, and intercrop etc. at within-field level. It was suggested that the relevant policies for natural conservation, land use planning, and ecological compensation should be made to apply the landscape approaches for biodiversity conservation at larger scale.

  16. Copper accumulation in vineyard soils: Rhizosphere processes and agronomic practices to limit its toxicity.

    PubMed

    Brunetto, Gustavo; Bastos de Melo, George Wellington; Terzano, Roberto; Del Buono, Daniele; Astolfi, Stefania; Tomasi, Nicola; Pii, Youry; Mimmo, Tanja; Cesco, Stefano

    2016-11-01

    Viticulture represents an important agricultural practice in many countries worldwide. Yet, the continuous use of fungicides has caused copper (Cu) accumulation in soils, which represent a major environmental and toxicological concern. Despite being an important micronutrient, Cu can be a potential toxicant at high concentrations since it may cause morphological, anatomical and physiological changes in plants, decreasing both food productivity and quality. Rhizosphere processes can, however, actively control the uptake and translocation of Cu in plants. In particular, root exudates affecting the chemical, physical and biological characteristics of the rhizosphere, might reduce the availability of Cu in the soil and hence its absorption. In addition, this review will aim at discussing the advantages and disadvantages of agronomic practices, such as liming, the use of pesticides, the application of organic matter, biochar and coal fly ashes, the inoculation with bacteria and/or mycorrhizal fungi and the intercropping, in alleviating Cu toxicity symptoms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Biochemical and Physiological Studies on the Effects of Senescence Leaves of Populus deltoides on Triticum vulgare

    PubMed Central

    Khaket, Tejinder Pal; Kumar, Viney; Singh, Jasbir; Dhanda, Suman

    2014-01-01

    Triticum vulgare (Wheat) based products are the major dietary source of food in developing countries. In India, it grows in association with boundary plantations of Populus deltoids (poplar). During winter, poplar enters in dormancy which cause a heavy leaf fall at the time of wheat seed germination. Large number of poplar senescence leaves may adversely affect the wheat. Therefore, the present study was performed to examine the effect of senescence poplar leaves on wheat germ and some other biochemical parameters. Seed's germination rate was determined by measuring root and shoot lengths, percent germination, germination index, and inhibition percentage. Biochemical parameters, namely, pigment, carbohydrate, protein, and phenol content, were estimated. Activities of catalase and polyphenol oxidase which are stress marker enzymes were also measured. Results revealed that germination and other biochemical parameters of wheat were severely affected by senescence poplar leaves even at very low concentration. So, intercropping of poplar along with wheat may be chosen carefully as wheat is the major dietary staple. PMID:25610892

  18. Allelopathic activity and chemical constituents of walnut (Juglans regia) leaf litter in walnut-winter vegetable agroforestry system.

    PubMed

    Wang, Qian; Xu, Zheng; Hu, Tingxing; Rehman, Hafeez Ur; Chen, Hong; Li, Zhongbin; Ding, Bo; Hu, Hongling

    2014-01-01

    Walnut agroforestry systems have many ecological and economic benefits when intercropped with cool-season species. However, decomposing leaf litter is one of the main sources of allelochemicals in such systems. In this study, lettuce (Lactuca sativa var. angustata) was grown in the soil incorporated with walnut leaf litter to assess its allelopathic activity. Lettuce growth and physiological processes were inhibited by walnut leaf litter, especially during early growth stage (1-2 euphylla period) or with large amount of litter addition. The plants treated by small amount of leaf litter recovered their growth afterwards, while the inhibition for 180 g leaf litter persisted until harvest. Twenty-eight compounds were identified in the leaf litter, and several of them were reported to be phytotoxic, which may be responsible for the stress induced by walnut leaf litter. Thus, for highest economic value of vegetables such as lettuce, excessive incorporation of leaf litter should be discouraged.

  19. [Studies on the shade-endurance capacity of Glycyrrhiza uralensis].

    PubMed

    Wei, Sheng-li; Wang, Wen-quan; Chen, Xiu-hua; Qin, Shu-ying; Chen, Xiu-tian

    2005-01-01

    To study the shade-endurance property of Glycyrrhiza uralensis and provide rationale for the practice of inter-cropping G. uralensis with trees. Black shading nets were used to provide five different environments of light intensities (light penetration rates of 100%, 75%, 65%, 50% and 25%, respectively). To assess the shade-endurance capacity of G. uralensis, several aspects were evaluated, including growth characters, physiological and ecological characters, biomass, and chemical contents. G. uralensis is a light-favored plant. The growth indices such as plant height, stem diameter, leaves number, root diameter, biomass, and daily average photosynthetic rate (Pn) are highest when light permeation rate is 100%. All these indices decrease when light intensity decreases. However, G. uralensis possesses shade-endurance capacity to some degree; it adapts to the shading environment by increasing the leaf area and chlorophyll contents. Shading has no obvious effect on the absolute light energy utilization rate (Eu) or Fv/Fm ratio. The influence of shading on the chemical contents of G. uralensis is obvious.

  20. Effect of green manure in soil quality and nitrogen transfer to cherry tomato in the no tillage system on corn straw

    NASA Astrophysics Data System (ADS)

    Ambrosano, Edmilson; Rossi, Fabricio; Dias, Fabio; Trivelin, Paulo; Muraoka, Takashi; Tavares, Silvio; Ambrosano, Glaucia

    2015-04-01

    The objective of this study was to quantify the contribution of green manure in on soil quality and nitrogen transfer to cherry tomatoes using the N-15 abundance method. The experiment was carried out in Piracicaba, APTA/SAA, SP, Brazil. The IAC collection accesses 21 of cherry tomatoes were used. Each Plot consisted of six plants spaced 0.5 m and 0.9 m between rows, conducted in a randomized block with eight treatments and five repetitions. The treatments were as green manures intercropping or not on cherry tomato, namely: jack bean (Canavalia ensiformis), sunn hemp (Crotalaria juncea L.), dwarf mucuna (Mucuna deeringiana), mung bean (Vigna radiata (L.) Wilczek ), white lupine (Lupinus albus L.) and cowpea (Vigna unguiculata (L.) Walp). Besides two witnesses, one without corn straw and another with corn straw. Five leaves with petiole of each plant part during the first ripe fruit and a bunch of fruits per plant are harvested. Samples of leaf and fruit were weighed and dried in an oven of forced air and its dry weight measured. A subsample was ground in a knife mill type Willy and brought to the mass spectrometer (ANCA GSL) on the Stable Isotopes Laboratory of CENA/USP for the analysis of δN-15. It measured the percentage of transfer of N green manure for tomato, the tomato plants grown as monocropped were considered a control and came to the result that 27 % N found in the fruit came from the green manure and the aerial part this figure was 23%. These results show that dur¬ing the fruit set of tomato can occur greater translocation and consequent higher utilization of N from green manure than in the aerial part. This production system can reduce the use of nitrogen fertilizers. The presence of a green manure in treatments not intercropped caused some soil alterations that could be detected in samples collected in the harvesting season. There was an increase in organic matter, Ca, Mg and Zn availability, and consequently in base saturation and pH. The presence of green manure caused a significant sum of bases increase, due to increases in calcium and magnesium; consequently, treatments involving jack bean, sunn hemp and mung bean showed higher CEC values and low acidity potential. The presence of organic acids in the plant mass could be the reason for this change. The use of green manure also works on carbon sequestration, helping in the reduction of the greenhouse gas effect.

  1. The influence of trees on the thermal environment and behaviour of grazing heifers in Brazilian Midwest.

    PubMed

    Lopes, Luciano Bastos; Eckstein, Camila; Pina, Douglas Santos; Carnevalli, Roberta Aparecida

    2016-04-01

    The intensification of the livestock production system has gained prominence over the last decades. In addition to the reduction of grazing areas and increased productivity per hectare, the intercropping involving forest tree species and ruminants has been established as a sustainable production model, generating income and valuation of natural capital. Besides the social, economic, and environmental aspects, the animal welfare is a noteworthy factor. The objective of this study was to evaluate the microclimatic conditions in an open-pasture and in silvopastoral systems, considering the Temperature Humidity Index (THI) and alterations in animal behavior. Three different pasture arrangements were analyzed in this study: total absence of trees in an open-pasture (ArrA), presence of peripheral trees (Eucalyptus spp.) along the border fences (ArrB), and an intensive wooded area aggregated with pasture (ArrC). A herd of 24 crossbreed heifers (3/4 and 7/8 Holstein-Girolando breed) was evaluated. Behavior data were collected every 15 min starting at 08 h00 with readings ending at 16 h00. THI was used to evaluate the environmental comfort. The THI found in the system with open-pasture and in the two systems with silvopastoral arrangement reached critical levels. The two arrangements with eucalyptus rows were not capable of eliminating heat stress in the conditions found in the north region of Mato Grosso State although better conditions were obtained under the tree canopy. The differences between the microclimatic variables for the three arrangements modified the behavior of the animals regarding their location and activity, except for water consumption.

  2. Identification of Key Root Volatiles Signaling Preference of Tomato Over Spinach by the Root Knot Nematode Meloidogyne incognita.

    PubMed

    Murungi, Lucy K; Kirwa, Hillary; Coyne, Danny; Teal, Peter E A; Beck, John J; Torto, Baldwyn

    2018-06-25

    The root knot nematode, Meloidogyne incognita (Kofoid and White) Chitwood, is a serious pest of tomato (Solanum lycopersicum) and spinach (Spinacea oleracea) in sub-Saharan Africa. In East Africa these two crops are economically important and are commonly intercropped by smallholder farmers. The role of host plant volatiles in M. incognita interactions with these two commodities is currently unknown. Here, we investigate the olfactory basis of attraction of tomato and spinach roots by the infective second stage juveniles (J2s) of M. incognita. In olfactometer assays, J2s were attracted to root volatiles from both crops over moist sand (control), but in choice tests using the two host plants, volatiles of tomato roots were more attractive than those released by spinach. Root volatiles sampled by solid phase micro-extraction (SPME) fiber and analysed by gas chromatography/mass spectrometry (GC/MS) identified a total of eight components, of which five (2-isopropyl-3-methoxypyrazine, 2-(methoxy)-3-(1-methylpropyl)pyrazine, tridecane, and α- and β-cedrene) occurred in the root-emitted volatiles of both plants, with three (δ-3-carene, sabinene and methyl salicylate) being specific to tomato root volatiles. In a series of bioassays, methyl salicylate contributed strongly to the attractiveness of tomato, whereas 2-isopropyl-3-methoxypyrazine and tridecane contributed to the attractiveness of spinach. M. incognita J2s were also more attracted to natural spinach root volatiles when methyl salicylate was combined, than to spinach volatiles alone, indicating that the presence of methyl salicylate in tomato volatiles strongly contributes to its preference over spinach. Our results indicate that since both tomato and spinach roots are attractive to M. incognita, identifying cultivars of these two plant species that are chemically less attractive can be helpful in the management of root knot nematodes.

  3. Knowledge needs, available practices, and future challenges in agricultural soils

    NASA Astrophysics Data System (ADS)

    Key, Georgina; Whitfield, Mike G.; Cooper, Julia; De Vries, Franciska T.; Collison, Martin; Dedousis, Thanasis; Heathcote, Richard; Roth, Brendan; Mohammed, Shamal; Molyneux, Andrew; Van der Putten, Wim H.; Dicks, Lynn V.; Sutherland, William J.; Bardgett, Richard D.

    2016-10-01

    The goal of this study is to clarify research needs and identify effective practices for enhancing soil health. This was done by a synopsis of soil literature that specifically tests practices designed to maintain or enhance elements of soil health. Using an expert panel of soil scientists and practitioners, we then assessed the evidence in the soil synopsis to highlight practices beneficial to soil health, practices considered detrimental, and practices that need further investigation. A partial Spearman's correlation was used to analyse the panel's responses. We found that increased certainty in scientific evidence led to practices being considered to be more effective due to them being empirically justified. This suggests that for practices to be considered effective and put into practice, a substantial body of research is needed to support the effectiveness of the practice. This is further supported by the high proportion of practices (33 %), such as changing the timing of ploughing or amending the soil with crops grown as green manures, that experts felt had unknown effectiveness, usually due to insufficiently robust evidence. Only 7 of the 27 reviewed practices were considered to be beneficial, or likely to be beneficial in enhancing soil health. These included the use of (1) integrated nutrient management (organic and inorganic amendments); (2) cover crops; (3) crop rotations; (4) intercropping between crop rows or underneath the main crop; (5) formulated chemical compounds (such as nitrification inhibitors); (6) control of traffic and traffic timing; and (7) reducing grazing intensity. Our assessment, which uses the Delphi technique, is increasingly used to improve decision-making in conservation and agricultural policy, identified practices that can be put into practice to benefit soil health. Moreover, it has enabled us to identify practices that need further research and a need for increased communication between researchers, policy-makers, and practitioners, in order to find effective means of enhancing soil health.

  4. Agricultural Incentives: Implications for Small-Scale and Subsistence Farming in the US Caribbean Islands

    NASA Astrophysics Data System (ADS)

    Alvarez-Berrios, N.; Parés-Ramos, I.; Gould, W. A.

    2017-12-01

    The effects of climate change threaten the world's most sensitive agroecosystems and our potential to reach agricultural productivity levels needed to feed a projected global population of 9.7 billion people by 2050. The US Caribbean agriculture is especially vulnerable to the effects of climate change, due to the region's frequent exposure to extreme weather events, its geographic and economic scale, shortage of labor force, and rapid urban expansion. Currently, agriculture contributes less than 1% of the island's GDP, and over 80% of the food consumed in the region is imported. Despite low production levels, there is widespread interest in reinvigorating the agricultural sector's contribution to the economy. Local and federal institutions play a major role strengthening the agricultural sector by providing access to incentives, loans, and education for best management practices. However, many of these efforts conform to agricultural systems of larger scale of production and temperate environments. In this study, we explore agricultural incentives programs and their implication for highly diverse, small-scale, and subsistence operations that characterize agricultural systems in Puerto Rico and the US Virgin Islands. We analyze records and maps from the USDA Farm Service Agency, to typify participating farms, and to track changes in land cover, farm size, crop diversity, practices, and production levels resulting from their enrollment in such programs. Preliminary results indicate that many incentives programs are not tailored to agricultural tropical systems and prescribe alternatives that exclude traditional farming methods employed in small-scale and subsistence farms (e.g. crop insurance that benefit monoculture over intercropped systems). Moreover, many of the incentives are contradictory in their recommendations (e.g., crop insurance benefit sun-grown coffee production, while best agricultural practices recommend agroforestry with shade-grown coffee). Understanding the characteristics that underlie the resilience of traditional agriculture is an urgent matter, as they can serve as the basis for the design of agricultural systems that mitigate projected climate changes.

  5. Risk of wine-distillery waste compost application in vulnerable zones: nitrogen balance

    NASA Astrophysics Data System (ADS)

    Requejo, M. I.; Villena, R.; Ventas, L.; Ribas, F.; Castellanos, M. T.; Cabello, M. J.; Arce, A.; Cartagena, M. C.

    2012-04-01

    Nitrogen (N) is the nutrient with the greatest impact on yield of horticultural crops. It is extremely dynamic in soil and undergoes changes that include processes of gains, losses and transformations. The melon crop area at Ciudad Real adds the 29% of the national production in Spain. The common agronomic management is representative of semiarid cropped zones of Spain where environmental degradation of water supplies with high N loads is observed. The site of this work is located near of Mancha Occidental aquifer (U.H.04.04, 6.953 km2) and Campo de Montiel aquifer (U.H. 04.06, 3.192 km2) with high contamination problems. The efficient use of fertilizers and irrigation is especially important in these areas designated vulnerables to nitrate pollution from agricultural sources. The aim of this study was to assess N losses when applying exhausted grape marc compost to a melon crop as source of nutrients in a vulnerable area. The doses are often excessive because are normally based on the input of organic matter rather than on the potentially mineralizable nitrogen. This N is not only released during the growing season but also in the intercropping period. In this experiment a nitrogen balance was carried out with three different doses of compost: 0 (D0), 6.7 (D1), 13.3 (D2) and 20 T compost ha-1 (D3). The soil was a shallow sandy-loam (Alfisol Xeralf Petrocalcic Palexeralfs), with a depth of 0.6 m and a discontinuous petrocalcic horizon between 0.6 and 0.7 m. Nitrogen plant absorption and nitrate losses were measured weekly, controlling at the same time N mineralized in soil. Simultaneously, a mineralization experiment was carried out without crop (either in laboratory and field conditions) to compare it with the results obtained with melon crop. Acknowledgements This project has been supported by INIA-RTA2010-00110-C03-01.

  6. [Light competition and productivity of agroforestry system in loess area of Weibei in Shaanxi].

    PubMed

    Peng, Xiao-bang; Cai, Jing; Jiang, Zai-min; Zhang, Yuan-ying; Zhang, Shuo-xin

    2008-11-01

    Agroforestry is the most effective way for the restoration of disturbed land on Loess Plateau and the development of poorly local economy. Taking the tree-based intercropping systems of walnut or plum with soybean or pepper in the loess area of Weibei as test objects, the photosynthesis, growth, and yield of soybean (Qindou 8) and pepper (Shanjiao 981) in the systems were studied. The results showed that the photosynthetic active radiation (PAR), net photosynthetic rate (Pn), growth, and yield of individual soybean or pepper plants were significantly decreased, with the effects increased with decreasing distance from tree rows. Leaf water potential was not significantly or poorly correlated with the Pn, growth, and yield of the two crops. However, there were significant positive correlations between the soil moisture content in 10-20 cm layer and the biomass and yield of soybean, and the above-ground biomass of pepper. PAR was highly correlated with the yield of both crops, which indicated that light competition was one of the key factors leading to the decrease of crop yield.

  7. Repellent Effects of Different Celery Varieties in Bemisia tabaci (Hemiptera: Aleyrodidae) Biotype Q.

    PubMed

    Tu, Hongtao; Qin, Yuchuan

    2017-06-01

    Y-tube olfactometer and net cages experiments were used to investigate the repellent effects of different celery varieties in biotype Q of sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), on cucumber, Cucumis sativus L. (Cucurbitaceae). Y-tube olfactometer tests showed that whiteflies have strong repellent behavior to different celery varieties. Intercropping different celery varieties with cucumbers had significant repellent effects and oviposition deterrent effects in whiteflies. Results obtained demonstrated that the Western Europe celery varieties, Juventus and Ventura, and the Chinese celery variety, Jinnan, had good repellent efficacy against the whitefly. D-Limonene, β-myrcene, and (E)-β-ocimene might be the main active components in celery that affected the selection behavior of B. tabaci. In Western Europe celery varieties, D-limonene was the main volatile component for the repellent effects in B. tabaci; however, the two Chinese celery varieties that showed repellent effects had relatively higher volatilization quantities of β-myrcene than of D-limonene. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. [Functions of different cultivation modes in oasis agriculture on soil wind erosion control and soil moisture conservation].

    PubMed

    Su, Peixi; Zhao, Aifen; Du, Mingwu

    2004-09-01

    During 2001-2002, the effects of different cultivation modes including winter irrigation and zero tillage, crop-grass intercropping, and early spring film mulching on sand entrainment, wind velocity gradient and soil moisture conservation were studied in the middle reaches of the Heihe River in the Hexi Corridor region. The results showed that all these modes could reduce soil wind erosion and halt sand entrainment to different degrees. Compared with the bare fields exposed by spring plowing, early spring film mulching could increase soil moisture storage by 35.6%. At present, spring plowing and sowing was a main factor responsible to the occurrence of sand storms and the increase in suspended dust content. Farmlands in the upper and middle reaches of the Heihe River generally produced a dust transport up to 4.8-6.0 million tons per year, which was higher than that of sandy desert in the same region. In the Hexi Corridor region, the suspended dust amount produced from 1 hm2 farmland was equivalent to that of 1.5 hm2 desert.

  9. Effect of some biorational insecticides on Spodoptera eridania in organic cabbage.

    PubMed

    Michereff-Filho, Miguel; Torres, Jorge B; Andrade, Luzia Nt; Nunes, Maria Urbana C

    2008-07-01

    To reduce pest attack, several biorational products are allowed for use on organic vegetables in Brazil. This study investigated eight biorational products applied singly or in combination against Spodoptera eridania Cramer in field plots of cabbage intercropped with coriander. The treatments were applied once a week over a 5 week period, beginning 34 days after transplanting. The evaluations consisted of counting the larvae of S. eridania on the day before and 7 and 21 days after spraying. The damage to leaves and cabbage head, the commercial weight of head and the percentage of head losses were evaluated. Leaf injury in plots treated with Beauveria bassiana and neem oil (Dalneem) yielded scores of 1.3 and 2.5 (scale ranging from 0 to 4) respectively, in comparison with a score of 3.6 from untreated plots. Head weight losses were 6.1, 5.3 and 4.9% with an aqueous extract of neem leaves, neem oil and B. bassiana respectively, compared with 24.6% lost from untreated plots. Dalneem, B. bassiana and the extract of neem leaves at 20% exhibited the best performance for control of S. eridania.

  10. Phytochemical relationship of Euphorbia helioscopia and Euphorbia pulcherrima with Lactuca sativa.

    PubMed

    Rehman, Hafiza Ayesha; Yousaf, Zubaida; Rashid, Madiha; Younas, Afifa; Arif, Ayesha; Afzal, Ismah; Akram, Waheed

    2014-01-01

    Allelopathy is an important phenomenon that modifies the ecosystem. A plant can enhance or reduce the growth of other plant due to the presence of a number of allelochemicals in its different parts. Euphorbia helioscopia and Euphorbia pulcherrima are medicinal plant species. Both these species are collected from wild resources for various purposes. To reduce the pressure on wild population, it is important to bring them into cultivation. Therefore, the allelopathic effects of E. helioscopia and E. pulcherrima on the growth of lettuce seeds were studied. Three different concentrations (2%, 4% and 6%) of five different solvents (methanol, acetone, ethyl acetate, n-hexane and distilled water) were used to estimate the allelopathic potential of the above-mentioned Euphorbia species. Results indicated a non-significant growth inhibitory effect of both plants on lettuce seeds. Different extracts reduced the growth of test plant to some extent but this inhibition was not significant. From the observed results, it was concluded that the studied Euphorbia species, being medicinally important crops, can be introduced as intercrop with other cash crops.

  11. Exudation of organic acids by Lupinus albus and Lupinus angustifolius as affected by phosphorus supply

    NASA Astrophysics Data System (ADS)

    Hentschel, Werner; Wiche, Oliver

    2016-04-01

    In phytomining and phytoremediation research mixed cultures of bioenergy crops with legumes hold promise to enhance availability of trace metals and metalloids in the soil plant system. This is due to the ability of certain legumes to mobilize trace elements during acquisition of nutrients making these elements available for co-cultured species. The legumes achieve this element mobilization by exudating carboxylates and enzymes as well as by lowering the pH value in the rhizosphere. The aim of our research was to determine characteristics and differences in the exudation of Lupinus albus and Lupinus angustifolius regarding to quantitative as to qualitative aspects. Especially the affection by phosphorus (P) supply was a point of interest. Thus we conducted laboratory batch experiments, wherein the plants were grown over four weeks under controlled light, moisture and nutritional conditions on sand as substrate. Half of the plants were supplied with 12 mg P per kg substrate, the other half were cultivated under a total lack of P. After cultivation the plants were transferred from the cultivation substrate into a 0,05 mmolṡL-1 CaCl2 solution. After two hours the plants were removed, moist and dry mass off shoots and roots were measured together with the root length (Tennants' method). Concentrations of exudated carboxylates in the CaCl2 solution were determined via IC (column: Metrosept OrganicAcids, eluent 0.5 molṡL-1 H2SO4 + 15% acetone, pH=3; 0.5 mLṡmin-1). As a result four different organic acids were identified (citric acid, fumaric acid, tartaric acid, malic acid) in concentration ranges of 0.15 mgṡL-1 (fumaric acid) to 9.21 mgṡL-1 (citric acid). Lupinus angustifolius showed a higher exudation rate (in nmol per cm root length per hour) than Lupinus albus in the presence of phosphorus (e.g. regarding citric acid: 1.99 vs 0.64 nmolṡ(gṡh)-1). However, as the root complexity and length of L. albus were far higher than of L. angustifolius, the total amount of exudated organic acids per plant of L. albus was higher than of L.angustifolius. Thus L.albus should be addressed as the more exudation effective plant in comparison to L.angustifolius (could be addressed as the more efficient one). Since organic acids in the rhizosphere of intermingling root systems of intercropped species play a key role during mobilization of trace metals our result clearly show that L.albus is most suitable for intercropping in a sense of phytoremediation and phytomining. These studies have been carried out in the framework of the PhytoGerm project financed by the Federal Ministry of Education and Research, Germany.

  12. Effect of green manure in soil quality and nitrogen transfer to cherry tomato in the no tillage system

    NASA Astrophysics Data System (ADS)

    Ambrosano, Edmilson; Rossi, Fabricio; Dias, Fabio; Trivelin, Paulo; Tavares, Silvio; Muraoka, Takashi; Ambrosano, Glaucia; Salgado, Gabriela; Otsuk, Ivani

    2016-04-01

    The use of alternative fertilizers may reduce costs and promote sustainability to the family-based agro ecological production system. The objective of this study was to quantify the contribution of the green manure to the quality of the soil and the transference of the nitrogen to cherry tomatoes using the N-15 abundance method (FAPESP 11/05648-3). The experiment was carried out in Piracicaba, APTA/SAA, SP, Brazil. The IAC collection accesses 21 of cherry tomatoes were used. Each Plot consisted of six plants spaced 0.5 m and 0.9 m between rows, using a randomized-blocks design with eight treatments and five repetitions. The treatments consisted of green manure crops intercropped or not with cherry tomato, namely: jack bean (Canavalia ensiformis), sunn hemp (Crotalaria juncea L.), velvet bean (Mucuna deeringiana), mung bean (Vigna radiata (L.) Wilczek), white lupine (Lupinus albus L.) and cowpea (Vigna unguiculata (L.) Walp). Besides two witnesses, one with and another without corn straw. Five leaves with petiole of each plant part from the first ripe fruit and a bunch of fruits per plant are harvested. Samples of leaf and fruit were weighed and dried in a forced air oven and its dry weight measured. A subsample was ground in a Wiley mill and brought to the mass spectrometer (ANCA GSL) on the Stable Isotopes Laboratory of CENA/USP for δN-15 analysis. It measured the percentage of the transference of N from the green manure to the tomato; the tomato plants grown in monocropping were considered a control. It was found that 27 % of the N present in the fruit and 23% of the N present in the leaves came from the green manure. These results show that dur¬ing the development of the fruit of the tomato there is a greater translocation and consequently, a higher use of the N from the green manure in the fruits than in the leaves. This production system can reduce the use of nitrogen fertilizers. The presence of a green manure in non-intercropped treatments caused some soil alterations that could be detected in samples collected in the harvesting season. There was an increase in organic matter, Ca, Mg and Zn availability and consequently, in the base saturation and in the pH. The presence of green manure caused a significant increase in the sum of bases, due to increases in calcium and magnesium; consequently, treatments involving jack bean, sunn hemp and mung bean showed higher CEC values and low acidity potential. The presence of organic acids in the plant mass could be the reason for this change. The use of green manure also increases the carbon sequestration, contributing to the reduction of the greenhouse effect.

  13. Short-term effects of different organic amendments on soil chemical, biochemical and biological indicators

    NASA Astrophysics Data System (ADS)

    Mondelli, Donato; Aly, Adel; Yirga Dagnachew, Ababu; Piscitelli, Lea; Dumontet, Stefano; Miano, Teodoro

    2014-05-01

    The limited availability of animal manure and the high cost of good quality compost lead to difficult soil quality management under organic agriculture. Therefore, it is important to find out alternative organic soil amendments and more flexible strategies that are able to sustain crop productivity and maintain and enhance soil quality. A three years study was carried out in the experimental fields of the Mediterranean Agronomic Institute of Bari located in Valenzano, Italy. The main objective of this research is to investigate the effects of different fertility management strategies on soil quality in order to estimate the role of innovative matrices for their use in organic farming. The experiment consists of seven treatments applied to a common crop rotation. The treatments include alternative organic amendments (1- olive mill wastewater OMW, 2- residues of mushroom cultivation MUS, 3- coffee chaff COF), common soil amendments (4- compost COM, 5- faba bean intercropping LEG, 6- cow manure - MAN) and as a reference treatment (7- mineral fertilizer COV). The soil quality was assessed before and after the application of the treatments, through biological (microbial biomass carbon and nitrogen, soil respiration and metabolic quotient), biochemical (soil enzymatic activities: β-glucosidase, alkaline phospatase, urease, fluorescein diacetate (FDA) hydrolysis), and chemical (pH, soil organic carbon, soil organic matter, total nitrogen, available phosphorous, exchangeable potassium, dissolved organic carbon and total dissolved nitrogen) indicators. Based on the results obtained after the second year, all treatments were able to improve various soil chemical parameters as compared to mineral fertilizer. The incorporation of COF and OMW seemed to be more effective in improving soil total N and exchangeable K, while MAN significantly increased available P. All the amendments enhance dissolved organic C, soil respiration, microbial biomass and metabolic quotient as compared to control soil. Results concerning biochemical indicators revealed that phosphatase and β-glycosidase were significantly reduced, while activities of urease and FDA were improved in all amended plots in comparison to the control, regardless of amendment type. Data demonstrated the efficiency, the high sensitivity and a quick response of the biochemical indicators in assessing soil quality changes. As a conclusion, it is possible to emphasize that alternative and common soil organic amendments behave similarly in enhancing the chemical, biochemical and biological properties. The alternative soil organic amendments could, then, be candidates for substituting some commonly used one which are currently showing shortage in their supply and a lowering in their quality. Keywords: Organic agriculture, Soil quality, Enzymatic activities, Olive mill wastewater, Residues of mushroom cultivation, Coffee chaff.

  14. Homestead tree planting in two rural Swazi communities

    USGS Publications Warehouse

    Allen, James A.

    1990-01-01

    Tree planting practices were investigated on a total of 95 homesteads in two communities in rural Swaziland. Information was also collected on socioeconomic characteristics of the homesteads. In both the study areas, Sigombeni and Bhekinkosi, there was considerable variation amongst individual homesteads in size, relative wealth (as indicated by cattle and motor vehicle ownership), and amount and types of trees planted. Eighty-five percent of all homesteads in Sigombeni and 73% in Bhekinkosi had planted at least one tree. Common forms of planting included small woodlots, fruit trees, and ornamentals. Virtually all the woodlots consisted of two introduced wattle species (Acacia mearnsii and A. decurrens). The most commonly planted fruit trees were avocados, bananas, and peaches. No complex or labor-intensive agroforestry practices (such as maize/leucaena intercropping) were observed. There was some evidence that the poorest and newest homesteads were the least likely to have planted any trees and that the richest homesteads were the most likely to have planted woodlots. The results indicate that forestry research and extension efforts should take into account homestead characteristics, and strive to offer a range of tree planting options that vary in input requirements, labor needs, and complexity.

  15. Should Exotic Eucalyptus be Planted in Subtropical China: Insights from Understory Plant Diversity in Two Contrasting Eucalyptus Chronosequences.

    PubMed

    Wu, Jianping; Fan, Houbao; Liu, Wenfei; Huang, Guomin; Tang, Jianfu; Zeng, Ruijin; Huang, Jing; Liu, Zhanfeng

    2015-11-01

    Although Eucalyptus is widely planted in South China, whose effects on native biodiversity are unclear. The objective of this study was to quantify the richness and composition of understory plants in two contrasting Eucalyptus chronosequences in South China. One was in Zhangzhou City with plantation age of 2, 4, and 6 years after clear-cutting Chinese fir forests, while the other was in Heshan City with plantation age of 2, 3, and 24 years that reforested on barren lands. Results showed that the richness of understory plants and functional groups was not significantly altered in the Zhangzhou chronosequence, while increased in the 24-year-old plantations, with a significantly larger proportion of woody plants than the younger plantations for the Heshan chronosequence. Moreover, a higher richness of woody plants accompanied by a lower richness of herbaceous species was detected in the Zhangzhou chronosequence compared with the Heshan one. To balance the need for pulp production and plant diversity conservation, we suggest that intercropping approaches between exotic Eucalyptus plantations and native forests should be considered in the fast rotation Eucalyptus plantations. However, Eucalyptus plantations may be used as pioneer species to sustain ecosystem functioning for the degraded lands.

  16. Modelling the impact of climatic conditions and plant species on the nitrogen release from mulch of legumes at the soil surface

    NASA Astrophysics Data System (ADS)

    Gaudinat, Germain; Lorin, Mathieu; Valantin-morison, Muriel; Garnier, Patricia

    2015-04-01

    Cover crops provide multiple services to the agro ecosystem. Among them, the use of legumes as cover crop is one of the solutions for limiting the use of herbicides, mineral fertilizers, and insecticides. However, the dynamic of mineralization is difficult to understand because of the difficulty of measuring nitrogen release from mulch in field. Indeed, residues are degraded at the soil surface as mulch, while the nitrogen uptake by the main crop occurred simultaneously in the soil. This work aims to study the dynamics of nitrogen mineralization from legume residues through i) the use of a model able to describe the physical and biological dynamic of mulch and ii) a data set from a field experiment of intercropping systems "oilseed rape-legumes" from different species (grass pea, lentil, Berseem clover, field pea, vetch). The objective of the simulations is to identify the variations of expected quantities of nitrogen from different legumes. The soil-plant model of mulch decomposition PASTIS-Mulch was used to determine the nitrogen supply from mulch available for rapeseed. These simulation results were compared to the data collected in the experimental field of Grignon (France). We performed analyzes of biochemical and physical characteristics of legume residues and monitored the evolution of mulches (moisture, density, cover surface, biomass) in fields. PASTIS simulations of soil temperature, soil moisture, mulch humidity and mulch decomposition were close to the experimental results. The PASTIS model was suitable to simulate the dynamic of legume mulches in the case of "rape - legume" associations. The model simulated nitrogen restitution of aerial and root parts. We found a more rapid nitrogen release by grass pea than other species. Vetch released less nitrogen than the other species. The scenarios for climate conditions were : i) a freezing in December that causes the destruction of plants, or a destruction by herbicide in March, ii) a strong or a weak rainy spring. Climatic conditions had a strong impact on the simulated release of nitrogen. Nitrogen supply was higher when degradation begun early with a rainy spring. Conversely, the degradation was lower when the degradation started late with a dry spring. Root release was less sensitive to climate and most of the nitrogen in the roots returned to the soil in a few weeks. The impact of "species" on the decomposition was explained not only by their chemical properties but also by their physical properties. The climatic conditions had different effects according to the species.

  17. Soil redistribution and nutrient delivery in a Mediterranean rain-fed agro-ecosystem with different crops and management: environmental and economic aspects

    NASA Astrophysics Data System (ADS)

    López-Vicente, Manuel; Álvarez, Sara

    2017-04-01

    Mediterranean agro-ecosystems are characterised by fragmented fields and patched vegetation. This shape governs the spatial patterns of water, soil and nutrient redistribution. Rainfall parameters, human infrastructures, crop management, support practices, and land use changes (set aside crops, land abandonment) control the magnitude of these processes. Under rain-fed water supply conditions, runoff generation and soil water content are two important factors in determining crop yield. Soil erosion and nutrient delivery are two of the factors which limit crop yield and thus, the gross earning of the landowner. In hilly landscapes, farmers usually supply extra soil to fill in the ephemeral gullies, and nutrient replenishment with fertilizers is a common practice. The aim of this study is to evaluate the environmental (runoff yield, soil erosion and nutrient delivery) and economic (replenishment of soil and nutrient losses with new soil and fertilizers) consequences of different conventional and conservative practices (fallow/crop rotation, cover crops, land abandonment, buffer strips) in a Mediterranean rain-fed agro-ecosystem (27 ha) with vineyards, cereal crops, cultivated and abandoned olive orchards, several trails and patches of natural vegetation. The five winter cereal fields (wheat and barley) follow fallow/crop rotation. The four vineyards are devoted to the Garnacha variety: one planted in 2007 with white wine grapes, and three planted in 2008 with red wine grapes. The inter-crop strips are managed with a mixture of plant species as cover crop (CC), including: i) spontaneous vegetation, and ii) plantation of common sainfoin (Onobrychis viciifolia). The maintenance of the CC includes one mowing pass at the end of spring, between May and June. The appearance and development of ephemeral gullies and the deposition of soil at the bottom of the hillslope are two of the main concerns of the landowners. In some places, the accumulation of soil complicates grape harvest operations with machinery, forcing manual labour. A total of 222 soil samples were collected in 74 points, and some physical (coarse fragments, effective volume, bulk density, texture, infiltration, etc.) and chemical (soil organic carbon - SOC, total nitrogen, phosphorous and potassium) parameters analysed. The highest values of SOC and TN were found in the forestry (4.64% and 0.198%) and abandoned soils (2.96% and 0.132%), whereas the highest values of TP appeared in the cereal, olive and vineyards (458.4, 458.0 and 440.3 mg / kg P). The highest content of TK appeared in the vineyards (1979.1 mg / kg K), especially in the grapevine strips (2188.3 mg / kg K), due to the fertilizer supply. In order to assess the water, soil and nutrient budgets, four buried sediment traps were installed near the bottom and before reaching the depositional-prone area. The upslope contributing areas of the traps are not nested. Monitoring the magnitude of runoff and sediment yield and the chemical composition of the collected samples allowed calculating the economic cost of water, soil and nutrient losses. The results of this study have implications for other rain-fed productive agro-ecosystems as well as where conservative practices may reduce the economic cost of farmland management.

  18. Organic wastes from bioenergy and ecological sanitation as a soil fertility improver: a field experiment in a tropical Andosol

    NASA Astrophysics Data System (ADS)

    Krause, Ariane; Nehls, Thomas; George, Eckhard; Kaupenjohann, Martin

    2016-04-01

    Andosols require the regular application of phosphorus (P) to sustain crop productivity. On an Andosol in NW Tanzania, we studied the short-term effects of amending standard compost, biogas slurry and CaSa compost (containing biochar and sanitized human excreta) on (i) the soil's physico-chemical properties, on (ii) biomass growth and crop productivity, and on (iii) the plants' nutrient status. The practice-oriented experiment design included the intercropping of seven locally grown crop species planted on 9 m2 plots with five repetitions arranged as a Latin rectangle. Differences in plant growth (biomass production and crop yield, e.g., of Zea mays) and crop nutrition (total C, N, P, K, Ca, Mg, Zn, etc.) were related to pH, CEC (cation exchange capacity), total C and the availability of nutrients (N, P, K, etc.) and water (water retention characteristics, bulk density, etc.) in the soil. None of the amendments had any significant effect on soil water availability, so the observed variations in crop yield and plant nutrition are attributed to nutrient availability. Applying CaSa compost increased the soil pH from 5.3 to 5.9 and the level of available P from 0.5 to 4.4 mg per kg. Compared to the control, adding biogas slurry, standard compost and CaSa compost increased the aboveground biomass of Zea mays by, respectively, 140, 154 and 211 %. The grain yields of maize on soil treated with biogas slurry, standard compost and CaSa compost were, respectively, 2.63, 3.18 and 4.40 t ha-1, compared to only 1.10 t ha-1 on unamended plots. All treatments enhanced crop productivity and increased the uptake of nutrients into the maize grains. The CaSa compost was most effective in mitigating P deficiency and soil acidification. We conclude that all treatments are viable as a substitute for synthetic fertilizers. Nevertheless, further steps are required to integrate the tested soil amendments into farm-scale nutrient management and to balance the additions and removals of nutrients, so that the cycle can be closed.

  19. Calibration of the APEX Model to Simulate Management Practice Effects on Runoff, Sediment, and Phosphorus Loss.

    PubMed

    Bhandari, Ammar B; Nelson, Nathan O; Sweeney, Daniel W; Baffaut, Claire; Lory, John A; Senaviratne, Anomaa; Pierzynski, Gary M; Janssen, Keith A; Barnes, Philip L

    2017-11-01

    Process-based computer models have been proposed as a tool to generate data for Phosphorus (P) Index assessment and development. Although models are commonly used to simulate P loss from agriculture using managements that are different from the calibration data, this use of models has not been fully tested. The objective of this study is to determine if the Agricultural Policy Environmental eXtender (APEX) model can accurately simulate runoff, sediment, total P, and dissolved P loss from 0.4 to 1.5 ha of agricultural fields with managements that are different from the calibration data. The APEX model was calibrated with field-scale data from eight different managements at two locations (management-specific models). The calibrated models were then validated, either with the same management used for calibration or with different managements. Location models were also developed by calibrating APEX with data from all managements. The management-specific models resulted in satisfactory performance when used to simulate runoff, total P, and dissolved P within their respective systems, with > 0.50, Nash-Sutcliffe efficiency > 0.30, and percent bias within ±35% for runoff and ±70% for total and dissolved P. When applied outside the calibration management, the management-specific models only met the minimum performance criteria in one-third of the tests. The location models had better model performance when applied across all managements compared with management-specific models. Our results suggest that models only be applied within the managements used for calibration and that data be included from multiple management systems for calibration when using models to assess management effects on P loss or evaluate P Indices. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Modeling discourse management compared to other classroom management styles in university physics

    NASA Astrophysics Data System (ADS)

    Desbien, Dwain Michael

    2002-01-01

    A classroom management technique called modeling discourse management was developed to enhance the modeling theory of physics. Modeling discourse management is a student-centered management that focuses on the epistemology of science. Modeling discourse is social constructivist in nature and was designed to encourage students to present classroom material to each other. In modeling discourse management, the instructor's primary role is of questioner rather than provider of knowledge. Literature is presented that helps validate the components of modeling discourse. Modeling discourse management was compared to other classroom management styles using multiple measures. Both regular and honors university physics classes were investigated. This style of management was found to enhance student understanding of forces, problem-solving skills, and student views of science compared to traditional classroom management styles for both honors and regular students. Compared to other reformed physics classrooms, modeling discourse classes performed as well or better on student understanding of forces. Outside evaluators viewed modeling discourse classes to be reformed, and it was determined that modeling discourse could be effectively disseminated.

  1. Response-based selection of barley cultivars and legume species for complementarity: Root morphology and exudation in relation to nutrient source.

    PubMed

    Giles, Courtney D; Brown, Lawrie K; Adu, Michael O; Mezeli, Malika M; Sandral, Graeme A; Simpson, Richard J; Wendler, Renate; Shand, Charles A; Menezes-Blackburn, Daniel; Darch, Tegan; Stutter, Marc I; Lumsdon, David G; Zhang, Hao; Blackwell, Martin S A; Wearing, Catherine; Cooper, Patricia; Haygarth, Philip M; George, Timothy S

    2017-02-01

    Phosphorus (P) and nitrogen (N) use efficiency may be improved through increased biodiversity in agroecosystems. Phenotypic variation in plants' response to nutrient deficiency may influence positive complementarity in intercropping systems. A multicomponent screening approach was used to assess the influence of P supply and N source on the phenotypic plasticity of nutrient foraging traits in barley (H. vulgare L.) and legume species. Root morphology and exudation were determined in six plant nutrient treatments. A clear divergence in the response of barley and legumes to the nutrient treatments was observed. Root morphology varied most among legumes, whereas exudate citrate and phytase activity were most variable in barley. Changes in root morphology were minimized in plants provided with ammonium in comparison to nitrate but increased under P deficiency. Exudate phytase activity and pH varied with legume species, whereas citrate efflux, specific root length, and root diameter lengths were more variable among barley cultivars. Three legume species and four barley cultivars were identified as the most responsive to P deficiency and the most contrasting of the cultivars and species tested. Phenotypic response to nutrient availability may be a promising approach for the selection of plant combinations for minimal input cropping systems. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Enhancement of faba bean competitive ability by arbuscular mycorrhizal fungi is highly correlated with dynamic nutrient acquisition by competing wheat

    PubMed Central

    Qiao, Xu; Bei, Shuikuan; Li, Chunjie; Dong, Yan; Li, Haigang; Christie, Peter; Zhang, Fusuo; Zhang, Junling

    2015-01-01

    The mechanistic understanding of the dynamic processes linking nutrient acquisition and biomass production of competing individuals can be instructive in optimizing intercropping systems. Here, we examine the effect of inoculation with Funneliformis mosseae on competitive dynamics between wheat and faba bean. Wheat is less responsive to mycorrhizal inoculation. Both inoculated and uninoculated wheat attained the maximum instantaneous N and P capture approximately five days before it attained the maximum instantaneous biomass production, indicating that wheat detected the competitor and responded physiologically to resource limitation prior to the biomass response. By contrast, the instantaneous N and P capture by uninoculated faba bean remained low throughout the growth period, and plant growth was not significantly affected by competing wheat. However, inoculation substantially enhanced biomass production and N and P acquisition of faba bean. The exudation of citrate and malate acids and acid phosphatase activity were greater in mycorrhizal than in uninoculated faba bean, and rhizosphere pH tended to decrease. We conclude that under N and P limiting conditions, temporal separation of N and P acquisition by competing plant species and enhancement of complementary resource use in the presence of AMF might be attributable to the competitive co-existence of faba bean and wheat. PMID:25631933

  3. Impact of living mulches on the physical properties of Planosol in monocropped maize cultivation

    NASA Astrophysics Data System (ADS)

    Romaneckas, Kęstutis; Adamavičienė, Aida; Šarauskis, Egidijus; Kriaučiūnienė, Zita; Marks, Marek; Vaitauskienė, Kristina

    2018-04-01

    The complex mutual interactions between soil properties and plants in high-biodiversity mono-cropping agro ecosystems have not been widely investigated. For this purpose, during 2009-2011, a stationary field experiment was conducted at the Experimental Station of the Aleksandras Stulginskis University to establish the effect of a multi-component agrocenose (maize, living mulch, weeds) on the physical properties of the soil. Spring oilseed rape, white mustard, spring barley, Italian ryegrass, black medic, Persian clover and red clover were sown as living mulch into maize inter-rows. The stability of >1.0 mm aggregates increased between the beginning and end of the maize vegetative period in almost all of the crops containing living mulch. The greatest competition for moisture content between the inter-crops and maize was observed at the beginning of the vegetative period because of living mulches of long growing seasons using the most moisture. In many cases, the shear strength of the soil was significantly reduced by the living mulch in the middle of summer, when it covered the maize inter-rows. These findings show that the monocropping of maize with living mulch stabilises or improves the physical characteristics of the soil, highlighting its potential for sustainable maize growing.

  4. Below-ground interspecific competition for water in a rubber agroforestry system may enhance water utilization in plants

    PubMed Central

    Wu, Junen; Liu, Wenjie; Chen, Chunfeng

    2016-01-01

    Rubber-based (Hevea brasiliensis) agroforestry systems are regarded as the best way to improve the sustainability of rubber monocultures, but few reports have examined water use in such systems. Accordingly, we tested whether interplanting facilitates water utilization of rubber trees using stable isotope (δD, δ18O, and δ13C) methods and by measuring soil water content (SWC), shoot potential, and leaf C and N concentrations in a Hevea-Flemingia agroforestry system in Xishuangbanna, southwestern China. We detected a big difference in the utilization of different soil layer water between both species in this agroforestry system, as evidenced by the opposite seasonal fluctuations in both δD and δ18O in stem water. However, similar predawn shoot potential of rubber trees at both sites demonstrating that the interplanted species did not affect the water requirements of rubber trees greatly. Rubber trees with higher δ13C and more stable physiological indexes in this agroforestry system showed higher water use efficiency (WUE) and tolerance ability, and the SWC results suggested this agroforestry is conductive to water conservation. Our results clearly indicated that intercropping legume plants with rubber trees can benefit rubber trees own higher N supply, increase their WUE and better utilize soil water of each soil layer. PMID:26781071

  5. Below-ground interspecific competition for water in a rubber agroforestry system may enhance water utilization in plants.

    PubMed

    Wu, Junen; Liu, Wenjie; Chen, Chunfeng

    2016-01-19

    Rubber-based (Hevea brasiliensis) agroforestry systems are regarded as the best way to improve the sustainability of rubber monocultures, but few reports have examined water use in such systems. Accordingly, we tested whether interplanting facilitates water utilization of rubber trees using stable isotope (δD, δ(18)O, and δ(13)C) methods and by measuring soil water content (SWC), shoot potential, and leaf C and N concentrations in a Hevea-Flemingia agroforestry system in Xishuangbanna, southwestern China. We detected a big difference in the utilization of different soil layer water between both species in this agroforestry system, as evidenced by the opposite seasonal fluctuations in both δD and δ(18)O in stem water. However, similar predawn shoot potential of rubber trees at both sites demonstrating that the interplanted species did not affect the water requirements of rubber trees greatly. Rubber trees with higher δ(13)C and more stable physiological indexes in this agroforestry system showed higher water use efficiency (WUE) and tolerance ability, and the SWC results suggested this agroforestry is conductive to water conservation. Our results clearly indicated that intercropping legume plants with rubber trees can benefit rubber trees own higher N supply, increase their WUE and better utilize soil water of each soil layer.

  6. Effects of Long-term Conservation Tillage on Soil Nutrients in Sloping Fields in Regions Characterized by Water and Wind Erosion

    NASA Astrophysics Data System (ADS)

    Tan, Chunjian; Cao, Xue; Yuan, Shuai; Wang, Weiyu; Feng, Yongzhong; Qiao, Bo

    2015-12-01

    Conservation tillage is commonly used in regions affected by water and wind erosion. To understand the effects of conservation tillage on soil nutrients and yield, a long-term experiment was set up in a region affected by water and wind erosion on the Loess Plateau. The treatments used were traditional tillage (CK), no tillage (NT), straw mulching (SM), plastic-film mulching (PM), ridging and plastic-film mulching (RPM) and intercropping (In). Our results demonstrate that the available nutrients in soils subjected to non-traditional tillage treatments decreased during the first several years and then remained stable over the last several years of the experiment. The soil organic matter and total nitrogen content increased gradually over 6 years in all treatments except CK. The nutrient content of soils subjected to conservative tillage methods, such as NT and SM, were significantly higher than those in soils under the CK treatment. Straw mulching and film mulching effectively reduced an observed decrease in soybean yield. Over the final 6 years of the experiment, soybean yields followed the trend RPM > PM > SM > NT > CK > In. This trend has implications for controlling soil erosion and preventing non-point source pollution in sloping fields by sacrificing some food production.

  7. Enhancement of faba bean competitive ability by arbuscular mycorrhizal fungi is highly correlated with dynamic nutrient acquisition by competing wheat.

    PubMed

    Qiao, Xu; Bei, Shuikuan; Li, Chunjie; Dong, Yan; Li, Haigang; Christie, Peter; Zhang, Fusuo; Zhang, Junling

    2015-01-29

    The mechanistic understanding of the dynamic processes linking nutrient acquisition and biomass production of competing individuals can be instructive in optimizing intercropping systems. Here, we examine the effect of inoculation with Funneliformis mosseae on competitive dynamics between wheat and faba bean. Wheat is less responsive to mycorrhizal inoculation. Both inoculated and uninoculated wheat attained the maximum instantaneous N and P capture approximately five days before it attained the maximum instantaneous biomass production, indicating that wheat detected the competitor and responded physiologically to resource limitation prior to the biomass response. By contrast, the instantaneous N and P capture by uninoculated faba bean remained low throughout the growth period, and plant growth was not significantly affected by competing wheat. However, inoculation substantially enhanced biomass production and N and P acquisition of faba bean. The exudation of citrate and malate acids and acid phosphatase activity were greater in mycorrhizal than in uninoculated faba bean, and rhizosphere pH tended to decrease. We conclude that under N and P limiting conditions, temporal separation of N and P acquisition by competing plant species and enhancement of complementary resource use in the presence of AMF might be attributable to the competitive co-existence of faba bean and wheat.

  8. How does pea architecture influence light sharing in virtual wheat–pea mixtures? A simulation study based on pea genotypes with contrasting architectures

    PubMed Central

    Barillot, Romain; Combes, Didier; Chevalier, Valérie; Fournier, Christian; Escobar-Gutiérrez, Abraham J.

    2012-01-01

    Background and aims Light interception is a key factor driving the functioning of wheat–pea intercrops. The sharing of light is related to the canopy structure, which results from the architectural parameters of the mixed species. In the present study, we characterized six contrasting pea genotypes and identified architectural parameters whose range of variability leads to various levels of light sharing within virtual wheat–pea mixtures. Methodology Virtual plants were derived from magnetic digitizations performed during the growing cycle in a greenhouse experiment. Plant mock-ups were used as inputs of a radiative transfer model in order to estimate light interception in virtual wheat–pea mixtures. The turbid medium approach, extended to well-mixed canopies, was used as a framework for assessing the effects of leaf area index (LAI) and mean leaf inclination on light sharing. Principal results Three groups of pea genotypes were distinguished: (i) early and leafy cultivars, (ii) late semi-leafless cultivars and (iii) low-development semi-leafless cultivars. Within open canopies, light sharing was well described by the turbid medium approach and was therefore determined by the architectural parameters that composed LAI and foliage inclination. When canopy closure started, the turbid medium approach was unable to properly infer light partitioning because of the vertical structure of the canopy. This was related to the architectural parameters that determine the height of pea genotypes. Light capture was therefore affected by the development of leaflets, number of branches and phytomers, as well as internode length. Conclusions This study provides information on pea architecture and identifies parameters whose variability can be used to drive light sharing within wheat–pea mixtures. These results could be used to build up the architecture of pea ideotypes adapted to multi-specific stands towards light competition. PMID:23240074

  9. An evidence-based approach to case management model selection for an acute care facility: is there really a preferred model?

    PubMed

    Terra, Sandra M

    2007-01-01

    This research seeks to determine whether there is adequate evidence-based justification for selection of one acute care case management model over another. Acute Inpatient Hospital. This article presents a systematic review of published case management literature, resulting in classification specific to terms of level of evidence. This review examines the best available evidence in an effort to select an acute care case management model. Although no single case management model can be identified as preferred, it is clear that adequate evidence-based literature exists to acknowledge key factors driving the acute care model and to form a foundation for the efficacy of hospital case management practice. Although no single case management model can be identified as preferred, this systematic review demonstrates that adequate evidence-based literature exists to acknowledge key factors driving the acute care model and forming a foundation for the efficacy of hospital case management practice. Distinctive aspects of case management frameworks can be used to guide the development of an acute care case management model. The study illustrates: * The effectiveness of case management when there is direct patient contact by the case manager regardless of disease condition: not only does the quality of care increase but also length of stay (LOS) decreases, care is defragmented, and both patient and physician satisfaction can increase. * The preferred case management models result in measurable outcomes that can directly relate to, and demonstrate alignment with, organizational strategy. * Acute care management programs reduce cost and LOS, and improve outcomes. * An integrated case management program that includes social workers, as well as nursing, is the most effective acute care management model. * The successful case management model will recognize physicians, as well as patients, as valued customers with whom partnership can positively affect financial outcomes in terms of reduction in LOS, improvement in quality, and delivery of care.

  10. Competency Modeling in Extension Education: Integrating an Academic Extension Education Model with an Extension Human Resource Management Model

    ERIC Educational Resources Information Center

    Scheer, Scott D.; Cochran, Graham R.; Harder, Amy; Place, Nick T.

    2011-01-01

    The purpose of this study was to compare and contrast an academic extension education model with an Extension human resource management model. The academic model of 19 competencies was similar across the 22 competencies of the Extension human resource management model. There were seven unique competencies for the human resource management model.…

  11. Verification of a quality management theory: using a delphi study.

    PubMed

    Mosadeghrad, Ali Mohammad

    2013-11-01

    A model of quality management called Strategic Collaborative Quality Management (SCQM) model was developed based on the quality management literature review, the findings of a survey on quality management assessment in healthcare organisations, semi-structured interviews with healthcare stakeholders, and a Delphi study on healthcare quality management experts. The purpose of this study was to verify the SCQM model. The proposed model was further developed using feedback from thirty quality management experts using a Delphi method. Further, a guidebook for its implementation was prepared including a road map and performance measurement. The research led to the development of a context-specific model of quality management for healthcare organisations and a series of guidelines for its implementation. A proper model of quality management should be developed and implemented properly in healthcare organisations to achieve business excellence.

  12. Verification of a Quality Management Theory: Using a Delphi Study

    PubMed Central

    Mosadeghrad, Ali Mohammad

    2013-01-01

    Background: A model of quality management called Strategic Collaborative Quality Management (SCQM) model was developed based on the quality management literature review, the findings of a survey on quality management assessment in healthcare organisations, semi-structured interviews with healthcare stakeholders, and a Delphi study on healthcare quality management experts. The purpose of this study was to verify the SCQM model. Methods: The proposed model was further developed using feedback from thirty quality management experts using a Delphi method. Further, a guidebook for its implementation was prepared including a road map and performance measurement. Results: The research led to the development of a context-specific model of quality management for healthcare organisations and a series of guidelines for its implementation. Conclusion: A proper model of quality management should be developed and implemented properly in healthcare organisations to achieve business excellence. PMID:24596883

  13. Evaluating data worth for ground-water management under uncertainty

    USGS Publications Warehouse

    Wagner, B.J.

    1999-01-01

    A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models-a chance-constrained ground-water management model and an integer-programing sampling network design model-to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring network design model identifies, prior to data collection, the sampling strategy that will minimize model uncertainty; (3) the optimal ground-water management strategy is recalculated on the basis of the projected model uncertainty after sampling; and (4) the worth of the monitoring strategy is assessed by comparing the value of the sample information-i.e., the projected reduction in management costs-with the cost of data collection. Steps 2-4 are repeated for a series of data collection budgets, producing a suite of management/monitoring alternatives, from which the best alternative can be selected. A hypothetical example demonstrates the methodology's ability to identify the ground-water sampling strategy with greatest net economic benefit for ground-water management.A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models - a chance-constrained ground-water management model and an integer-programming sampling network design model - to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring network design model identifies, prior to data collection, the sampling strategy that will minimize model uncertainty; (3) the optimal ground-water management strategy is recalculated on the basis of the projected model uncertainty after sampling; and (4) the worth of the monitoring strategy is assessed by comparing the value of the sample information - i.e., the projected reduction in management costs - with the cost of data collection. Steps 2-4 are repeated for a series of data collection budgets, producing a suite of management/monitoring alternatives, from which the best alternative can be selected. A hypothetical example demonstrates the methodology's ability to identify the ground-water sampling strategy with greatest net economic benefit for ground-water management.

  14. Integrating fire management analysis into land management planning

    Treesearch

    Thomas J. Mills

    1983-01-01

    The analysis of alternative fire management programs should be integrated into the land and resource management planning process, but a single fire management analysis model cannot meet all planning needs. Therefore, a set of simulation models that are analytically separate from integrated land management planning models are required. The design of four levels of fire...

  15. Does the organisational model of dementia case management make a difference in satisfaction with case management and caregiver burden? An evaluation study.

    PubMed

    Peeters, José M; Pot, Anne Margriet; de Lange, Jacomine; Spreeuwenberg, Peter M; Francke, Anneke L

    2016-03-09

    In the Netherlands, various organisational models of dementia case management exist. In this study the following four models are distinguished, based on differences in the availability of the service and in the case management function: Model 1: the case management service is available from first dementia symptoms + is always a separate specialist function; Model 2: the case management service is only available after a formal dementia diagnosis + is always a separate specialist function; Model 3: the case management service is available from first dementia symptoms + is often a combined function; Model 4: the case management service is only available after a formal dementia diagnosis + is often a combined function. The objectives of this study are to give insight into whether satisfaction with dementia case management and the development of caregiver burden depend on the organisational model. A survey was carried out in regional dementia care networks in the Netherlands among 554 informal carers for people with dementia at the start of case management (response of 85 %), and one year later. Descriptive statistics and multilevel models were used to analyse the data. The satisfaction with the case manager was high in general (an average of 8.0 within a possible range of 1 to 10), although the caregiver burden did not decrease in the first year after starting with case management. No differences were found between the four organisational models regarding the development of caregiver burden. However, statistically significant differences (p < 0.05) were found regarding satisfaction: informal carers in the organisational model where case management is only available after formal diagnosis of dementia and is often a combined function had on average the lowest satisfaction scores. Nevertheless, the satisfaction of informal carers within all organisational models was high (ranging from 7.51 to 8.40 within a range of 1 to 10). Organisational features of case management seem to make little or no difference to the development in caregiver burden and the satisfaction of informal carers. Future research is needed to explore whether the individual characteristics of the case managers themselves are associated with case management outcomes.

  16. A review of distributed parameter groundwater management modeling methods

    USGS Publications Warehouse

    Gorelick, Steven M.

    1983-01-01

    Models which solve the governing groundwater flow or solute transport equations in conjunction with optimization techniques, such as linear and quadratic programing, are powerful aquifer management tools. Groundwater management models fall in two general categories: hydraulics or policy evaluation and water allocation. Groundwater hydraulic management models enable the determination of optimal locations and pumping rates of numerous wells under a variety of restrictions placed upon local drawdown, hydraulic gradients, and water production targets. Groundwater policy evaluation and allocation models can be used to study the influence upon regional groundwater use of institutional policies such as taxes and quotas. Furthermore, fairly complex groundwater-surface water allocation problems can be handled using system decomposition and multilevel optimization. Experience from the few real world applications of groundwater optimization-management techniques is summarized. Classified separately are methods for groundwater quality management aimed at optimal waste disposal in the subsurface. This classification is composed of steady state and transient management models that determine disposal patterns in such a way that water quality is protected at supply locations. Classes of research missing from the literature are groundwater quality management models involving nonlinear constraints, models which join groundwater hydraulic and quality simulations with political-economic management considerations, and management models that include parameter uncertainty.

  17. A Review of Distributed Parameter Groundwater Management Modeling Methods

    NASA Astrophysics Data System (ADS)

    Gorelick, Steven M.

    1983-04-01

    Models which solve the governing groundwater flow or solute transport equations in conjunction with optimization techniques, such as linear and quadratic programing, are powerful aquifer management tools. Groundwater management models fall in two general categories: hydraulics or policy evaluation and water allocation. Groundwater hydraulic management models enable the determination of optimal locations and pumping rates of numerous wells under a variety of restrictions placed upon local drawdown, hydraulic gradients, and water production targets. Groundwater policy evaluation and allocation models can be used to study the influence upon regional groundwater use of institutional policies such as taxes and quotas. Furthermore, fairly complex groundwater-surface water allocation problems can be handled using system decomposition and multilevel optimization. Experience from the few real world applications of groundwater optimization-management techniques is summarized. Classified separately are methods for groundwater quality management aimed at optimal waste disposal in the subsurface. This classification is composed of steady state and transient management models that determine disposal patterns in such a way that water quality is protected at supply locations. Classes of research missing from the literature are groundwater quality management models involving nonlinear constraints, models which join groundwater hydraulic and quality simulations with political-economic management considerations, and management models that include parameter uncertainty.

  18. Integrating School-Based and Therapeutic Conflict Management Models at School.

    ERIC Educational Resources Information Center

    D'Oosterlinck, Franky; Broekaert, Eric

    2003-01-01

    Explores the possibility of integrating school-based and therapeutic conflict management models, comparing two management models: a school-based conflict management program, "Teaching Students To Be Peacemakers"; and a therapeutic conflict management program, "Life Space Crisis Intervention." The paper concludes that integration might be possible…

  19. Aircraft/Air Traffic Management Functional Analysis Model. Version 2.0; User's Guide

    NASA Technical Reports Server (NTRS)

    Etheridge, Melvin; Plugge, Joana; Retina, Nusrat

    1998-01-01

    The Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 (FAM 2.0), is a discrete event simulation model designed to support analysis of alternative concepts in air traffic management and control. FAM 2.0 was developed by the Logistics Management Institute (LMI) a National Aeronautics and Space Administration (NASA) contract. This document provides a guide for using the model in analysis. Those interested in making enhancements or modification to the model should consult the companion document, Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 Technical Description.

  20. The Development Effectiveness Management Model for Sub-District Secondary School

    ERIC Educational Resources Information Center

    Butsankom, Akachai; Sirishuthi, Chaiyuth; Lammana, Preeda

    2016-01-01

    The purposes of this research were to study the factors of effectiveness management model for subdistrict secondary school, to investigate current situations and desirable situations of effectiveness management model for sub-district secondary school, to develop the effectiveness management model for sub-district secondary school and to study the…

  1. Knowledge management in Portuguese healthcare institutions.

    PubMed

    Cruz, Sofia Gaspar; Ferreira, Maria Manuela Frederico

    2016-06-01

    Knowledge management imposes itself as a pressing need for the organizations of several sectors of the economy, including healthcare. to evaluate the perception of healthcare institution collaborators in relation to knowledge management in the institution where they operate and analyze the existence of differences in this perception, based on the institution's management model. a study conducted in a sample consisting of 671 collaborators from 10 Portuguese healthcare institutions with different models of management. In order to assess the knowledge management perception, we used a score designed from and based on items from the scores available in the literature. the perception of moderate knowledge management on the healthcare institutions and the statistically significant differences in knowledge management perception were evidenced in each management model. management knowledge takes place in healthcare institutions, and the current management model determines the way staff at these institutions manage their knowledge.

  2. Phytoremediation of sewage sludge contaminated by trace elements and organic compounds.

    PubMed

    Guidi Nissim, Werther; Cincinelli, Alessandra; Martellini, Tania; Alvisi, Laura; Palm, Emily; Mancuso, Stefano; Azzarello, Elisa

    2018-07-01

    Phytoremediation is a green technique being increasingly used worldwide for various purposes including the treatment of municipal sewage sludge (MSS). Most plants proposed for this technique have high nutrient demands, and fertilization is often required to maintain soil fertility and nutrient balance while remediating the substrate. In this context, MSS could be a valuable source of nutrients (especially N and P) and water for plant growth. The aim of this study was to determine the capacity willow (Salix matsudana, cv Levante), poplar (Populus deltoides × Populus nigra, cv Orion), eucalyptus (Eucalyptus camaldulensis) and sunflower (Helianthus annuus) to clean MSS, which is slightly contaminated by trace elements (TEs) and organic pollutants, and to assess their physiological response to this medium. In particular, we aimed to evaluate the TE accumulation by different species as well as the decrease of TEs and organic pollutants in the sludge after one cropping cycle and the effect of MSS on plant growth and physiology. Since MSS did not show any detrimental effect on the biomass yield of any of the species tested, it was found to be a suitable growing medium for these species. TE phytoextraction rates depended on the species, with eucalyptus showing the highest accumulation for Cr, whereas sunflower exhibited the best performance for As, Cu and Zn. At the end of the trial, some TEs (i.e. Cr, Pb and Zn), n-alkanes and PCBs showed a significant concentration decrease in the sludge for all tested species. The highest Cr decrease was observed in pots with eucalyptus (57.4%) and sunflower (53.4%), whereas sunflower showed the highest Cu decrease (44.2%), followed by eucalyptus (41.2%), poplar (16.2%) and willow (14%). A significant decrease (41.1%) of Pb in the eucalyptus was observed. Zn showed a high decrease rate with sunflower (59.5%) and poplar (52%) and to a lesser degree with willow (35.3%) and eucalyptus (25.4%). The highest decrease in n-alkanes concentration in the sludge was found in willow (98.3%) and sunflower (97.3%), whereas eucalyptus has the lowest PCBs concentration (91.8%) in the sludge compared to the beginning of the trial. These results suggest new strategies (e.g. crop rotation and intercropping) to be adopted for a better management of this phytotechnology. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Nitrogen dynamics in organic and conventional cotton production systems in India

    NASA Astrophysics Data System (ADS)

    Duboc, O.; Adamtey, N.; Forster, D.; Cadisch, G.

    2012-04-01

    Ongoing population growth still represents a challenge to agricultural production (food, fiber and fuel material supply). In spite of the undeniable achievements reached with the "green revolution" technologies, there is a growing awareness among scientists and policy makers that diverse and integrated approaches which are both productive and sustainable are now necessary to meet the agricultural challenges. Integrated and organic agriculture are such alternatives which need to be better investigated and implemented. While long-term experiments in temperate regions have assessed the effect of organic agriculture on different crops and soil quality, there is currently a lack of reliable data from tropical regions, such as findings arising from long-term systems comparison trials. This has necessitated a long-term system comparison trials in Kenya, Bolivia and India by the Research Institute of Organic Agriculture (FiBL) and its partners (icipe, BioRe, Ecotop and Institute of Ecology) (www.systems-comparison.fibl.org). In India the project is based in Madhya Pradesh, in which organic and conventional production systems are being compared in a 2-yr crop rotation - cotton (yr 1) and soybean-wheat (yr 2). The field trial is planned for a time span of 10-20 years, in order to investigate long-term effects of those production systems on yields, soil characteristics, or economic return. A PhD study is incorporated into this project to investigate the effect of the production systems on soil characteristics. The main focus will be on nitrogen cycling under the different production systems. Particular attention will be given to nitrogen use efficiencies and the synchrony of nitrogen availability (e.g. nitrogen mineralization with the polyethylene bag technique, monitoring of soil mineral N) with plant nitrogen uptake, for which allometric equations will be calibrated in order to circumvent destructive sampling on the plots of the long-term experiment. Nitrogen losses - leaching and gaseous emissions - will also be investigated with methods such as buried ion exchange resin cores and gas sampling in the field. Furthermore, the project will test management solutions to improve nitrogen use efficiencies in both, organic and conventional systems, such as the introduction of leguminous intercrops in cotton, which is the main cash crop in the system and which also has the highest requirements for fertilization. This poster thus mainly discusses methodic issues relating to the planned study.

  4. Farm-scale costs and returns for second generation bioenergy cropping systems in the US Corn Belt

    NASA Astrophysics Data System (ADS)

    Manatt, Robert K.; Hallam, Arne; Schulte, Lisa A.; Heaton, Emily A.; Gunther, Theo; Hall, Richard B.; Moore, Ken J.

    2013-09-01

    While grain crops are meeting much of the initial need for biofuels in the US, cellulosic or second generation (2G) materials are mandated to provide a growing portion of biofuel feedstocks. We sought to inform development of a 2G crop portfolio by assessing the profitability of novel cropping systems that potentially mitigate the negative effects of grain-based biofuel crops on food supply and environmental quality. We analyzed farm-gate costs and returns of five systems from an ongoing experiment in central Iowa, USA. The continuous corn cropping system was most profitable under current market conditions, followed by a corn-soybean rotation that incorporated triticale as a 2G cover crop every third year, and a corn-switchgrass system. A novel triticale-hybrid aspen intercropping system had the highest yields over the long term, but could only surpass the profitability of the continuous corn system when biomass prices exceeded foreseeable market values. A triticale/sorghum double cropping system was deemed unviable. We perceive three ways 2G crops could become more cost competitive with grain crops: by (1) boosting yields through substantially greater investment in research and development, (2) increasing demand through substantially greater and sustained investment in new markets, and (3) developing new schemes to compensate farmers for environmental benefits associated with 2G crops.

  5. Biodiversity and biogeography of rhizobia associated with common bean (Phaseolus vulgaris L.) in Shaanxi Province.

    PubMed

    Wang, Li; Cao, Ying; Wang, En Tao; Qiao, Ya Juan; Jiao, Shuo; Liu, Zhen Shan; Zhao, Liang; Wei, Ge Hong

    2016-05-01

    The biodiversity and biogeography of rhizobia associated with bean in Shaanxi Province were investigated. A total of 194 bacterial isolates from bean nodules collected from 13 sampling sites were characterized based on phylogenetic analyses of the 16S rRNA gene, the housekeeping genes recA, glnII and atpD, and the symbiotic genes nodC and nifH. Fifteen genospecies belonging to the genera Rhizobium, Agrobacterium, Ensifer, Bradyrhizobium and Ochrobactrum were defined among the isolates, with Rhizobium sp. II, Agrobacterium sp. II, E. fredii and R. phaseoli being the dominant groups. Four symbiotic gene lineages corresponding to Rhizobium sp. I, Rhizobium sp. II, R. phaseoli and B. liaoningense were detected in the nodC and nifH sequence analyses, indicating different origins for the symbiotic genes and their co-evolution with the chromosome of the bacteria. Moreover, the Ensifer isolates harbored symbiotic genes closely related to bean-nodulating Pararhizobium giardinii, indicating possible lateral gene transfer from Rhizobium to Ensifer. Correlation of rhizobial community composition with moisture, temperature, intercropping, soil features and nutrients were detected. All the results demonstrated a great diversity of bean rhizobia in Shaanxi that might be due to the adaptable evolution of the bean-nodulating rhizobia subjected to the diverse ecological conditions in the area. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Nematicidal activity of furanocoumarins from parsley against Meloidogyne spp.

    PubMed

    Caboni, Pierluigi; Saba, Marco; Oplos, Chrisostomos; Aissani, Nadhem; Maxia, Andrea; Menkissoglu-Spiroudi, Urania; Casu, Laura; Ntalli, Nikoletta

    2015-08-01

    This report describes activity against Meloidogyne spp. and chemical characterisation of the essential oil and methanol extract of Petroselinum crispum aerial parts. The study was based on the hypothesis that P. crispum could be used as an intercrop and soil amendment in tomato culture for nematode control. The methanol extract and the essential oil exhibited significant nematicidal activity against M. incognita, M. hapla and M. arenaria, the first being the most sensitive species, with EC50 /72 h values of 140 ± 15 and 795 ± 125 mg L(-1) for the extract and oil respectively. The most abundant furanocoumarin compounds in the methanolic extract were xanthotoxin, psoralen, bergapten and oxypeucedanin; levels ranged from 1.77 to 46.04 mg kg(-1) wet weight. The EC50 /24 h values of xanthotoxol, psoralen and xanthotoxin against M. incognita were 68 ± 33, 147 ± 88 and 200 ± 21 mg L(-1) respectively. The addition of fresh parsley paste to soil reduced the number of M. incognita females and plant galls on tomato roots; EC50 values were 24.79 and 28.07 mg g(-1) respectively. Moreover, parsley paste enhanced tomato growth in a dose-response manner. Parsley exhibits promising nematicidal activity as an organic amendment and as a source of nematotoxic furanocoumarins. © 2014 Society of Chemical Industry.

  7. Identification of soil P fractions that are associated with P loss from surface runoff under various cropping systems and fertilizer rates on sloped farmland

    PubMed Central

    Li, Xinghua; Wang, Baona; Yang, Tewu; Zhu, Duanwei; Nie, Zhongnan; Xu, Junchi

    2017-01-01

    Soil phosphorus (P) fractions and runoff P concentration were measured to understand the fate of soil P entering surface runoff water during summer cropping season of different double cropping systems under two fertilizer regimes. The dominant form of runoff P was particulate P (PP). Runoff total P (TP) was higher at the vegetative growth stage and lower at the crop reproductive stage. TP and PP were derived mainly from soil Olsen-P, Al-P and Fe-P and amounts increased with sediment content in runoff water. Runoff P discharge was closely related to the changes in soil P forms. Soil Olsen-P, mainly consisting of some Ca2-P and Al-P, was increased by elevating fertilizer rate. Along with crop growth, there were active interconversions among Olsen-P, Org-P, Fe-P and O-Al-P in the soil, and some available P converted into Ca10-P, with O-Fe-P possibly being a transitional form for this conversion. The oilseed rape/corn system had less runoff TP at the early stage, and wheat/sweet potato system had a lower runoff P at the late stage. Intercropping corn with sweet potato in the field with oilseed rape as a previous crop may be helpful for alleviating runoff P load during the summer in this region. PMID:28650990

  8. Patterns and Drivers of Soil Respiration under Long-Term Citrus reticulate in Southern China

    PubMed Central

    Zhang, Yan-Jie; Zhang, Su-Yan; Yang, Jie; Yan, Yue; Fu, Xiang-ping; Lu, Shun-Bao

    2015-01-01

    Soil respiration (Rs) is a major source of carbon emission in terrestrial ecosystems. Despite the fact that the influence of land use practice on Rs has been widely studied, the patterns and drivers on Rs of Citrus reticulata cultivation, a worldwide land use practice are unclear. In this current study, we investigated the influence of long-term cultivation of Citrus reticulata (CO) and of CO intercropped with soybean (CB) on soil nutrients, water availability, and Rs in southern China. Results indicated that after 21 years of cultivation, CO and CB significantly increased total soil carbon (TC), total soil nitrogen (TN), and soil organic matter (OM) at 0–20 cm and 20–40 cm, both at upslope and downslope compared with bare soil (CK). However, soil moisture (SM), dissolved organic carbon (DOC), and microbial biomass carbon (MBC) decreased under CB. In addition, no significant variation was found in soil pH between CK, CO, and CB. Across incubation time (56 days), Rs decreased exponentially with incubation time and CB showed the highest Rs rate irrespective of soil depth or topography. Linear regression further showed TC and TN as the two major factors influencing Rs upslope, while DOC was the dominant factor in regulating Rs downslope. These findings demonstrated that long-term cultivation of citrus significantly changed soil nutrients, water availability, and Rs rate. PMID:26368561

  9. Identification of soil P fractions that are associated with P loss from surface runoff under various cropping systems and fertilizer rates on sloped farmland.

    PubMed

    Li, Xinghua; Wang, Baona; Yang, Tewu; Zhu, Duanwei; Nie, Zhongnan; Xu, Junchi

    2017-01-01

    Soil phosphorus (P) fractions and runoff P concentration were measured to understand the fate of soil P entering surface runoff water during summer cropping season of different double cropping systems under two fertilizer regimes. The dominant form of runoff P was particulate P (PP). Runoff total P (TP) was higher at the vegetative growth stage and lower at the crop reproductive stage. TP and PP were derived mainly from soil Olsen-P, Al-P and Fe-P and amounts increased with sediment content in runoff water. Runoff P discharge was closely related to the changes in soil P forms. Soil Olsen-P, mainly consisting of some Ca2-P and Al-P, was increased by elevating fertilizer rate. Along with crop growth, there were active interconversions among Olsen-P, Org-P, Fe-P and O-Al-P in the soil, and some available P converted into Ca10-P, with O-Fe-P possibly being a transitional form for this conversion. The oilseed rape/corn system had less runoff TP at the early stage, and wheat/sweet potato system had a lower runoff P at the late stage. Intercropping corn with sweet potato in the field with oilseed rape as a previous crop may be helpful for alleviating runoff P load during the summer in this region.

  10. Research, Training, and Practice: The Normative Model and Beyond.

    ERIC Educational Resources Information Center

    Evertson, Carolyn M.

    Four specific purposes were addressed in this study: (1) to identify models of classroom management and instructional management used by effective and less effective teachers; (2) to compare and contrast these models; (3) to compare and contrast a normative model of classroom management used in management training workshops with the models…

  11. Economic analysis of centralized vs. decentralized electronic data capture in multi-center clinical studies.

    PubMed

    Walden, Anita; Nahm, Meredith; Barnett, M Edwina; Conde, Jose G; Dent, Andrew; Fadiel, Ahmed; Perry, Theresa; Tolk, Chris; Tcheng, James E; Eisenstein, Eric L

    2011-01-01

    New data management models are emerging in multi-center clinical studies. We evaluated the incremental costs associated with decentralized vs. centralized models. We developed clinical research network economic models to evaluate three data management models: centralized, decentralized with local software, and decentralized with shared database. Descriptive information from three clinical research studies served as inputs for these models. The primary outcome was total data management costs. Secondary outcomes included: data management costs for sites, local data centers, and central coordinating centers. Both decentralized models were more costly than the centralized model for each clinical research study: the decentralized with local software model was the most expensive. Decreasing the number of local data centers and case book pages reduced cost differentials between models. Decentralized vs. centralized data management in multi-center clinical research studies is associated with increases in data management costs.

  12. Economic Analysis of Centralized vs. Decentralized Electronic Data Capture in Multi-Center Clinical Studies

    PubMed Central

    Walden, Anita; Nahm, Meredith; Barnett, M. Edwina; Conde, Jose G.; Dent, Andrew; Fadiel, Ahmed; Perry, Theresa; Tolk, Chris; Tcheng, James E.; Eisenstein, Eric L.

    2012-01-01

    Background New data management models are emerging in multi-center clinical studies. We evaluated the incremental costs associated with decentralized vs. centralized models. Methods We developed clinical research network economic models to evaluate three data management models: centralized, decentralized with local software, and decentralized with shared database. Descriptive information from three clinical research studies served as inputs for these models. Main Outcome Measures The primary outcome was total data management costs. Secondary outcomes included: data management costs for sites, local data centers, and central coordinating centers. Results Both decentralized models were more costly than the centralized model for each clinical research study: the decentralized with local software model was the most expensive. Decreasing the number of local data centers and case book pages reduced cost differentials between models. Conclusion Decentralized vs. centralized data management in multi-center clinical research studies is associated with increases in data management costs. PMID:21335692

  13. Applying business management models in health care.

    PubMed

    Trisolini, Michael G

    2002-01-01

    Most health care management training programmes and textbooks focus on only one or two models or conceptual frameworks, but the increasing complexity of health care organizations and their environments worldwide means that a broader perspective is needed. This paper reviews five management models developed for business organizations and analyses issues related to their application in health care. Three older, more 'traditional' models are first presented. These include the functional areas model, the tasks model and the roles model. Each is shown to provide a valuable perspective, but to have limitations if used in isolation. Two newer, more 'innovative' models are next discussed. These include total quality management (TQM) and reengineering. They have shown potential for enabling dramatic improvements in quality and cost, but have also been found to be more difficult to implement. A series of 'lessons learned' are presented to illustrate key success factors for applying them in health care organizations. In sum, each of the five models is shown to provide a useful perspective for health care management. Health care managers should gain experience and training with a broader set of business management models.

  14. Forest management under uncertainty for multiple bird population objectives

    USGS Publications Warehouse

    Moore, C.T.; Plummer, W.T.; Conroy, M.J.; Ralph, C. John; Rich, Terrell D.

    2005-01-01

    We advocate adaptive programs of decision making and monitoring for the management of forest birds when responses by populations to management, and particularly management trade-offs among populations, are uncertain. Models are necessary components of adaptive management. Under this approach, uncertainty about the behavior of a managed system is explicitly captured in a set of alternative models. The models generate testable predictions about the response of populations to management, and monitoring data provide the basis for assessing these predictions and informing future management decisions. To illustrate these principles, we examine forest management at the Piedmont National Wildlife Refuge, where management attention is focused on the recovery of the Red-cockaded Woodpecker (Picoides borealis) population. However, managers are also sensitive to the habitat needs of many non-target organisms, including Wood Thrushes (Hylocichla mustelina) and other forest interior Neotropical migratory birds. By simulating several management policies on a set of-alternative forest and bird models, we found a decision policy that maximized a composite response by woodpeckers and Wood Thrushes despite our complete uncertainty regarding system behavior. Furthermore, we used monitoring data to update our measure of belief in each alternative model following one cycle of forest management. This reduction of uncertainty translates into a reallocation of model influence on the choice of optimal decision action at the next decision opportunity.

  15. Application fields for the new Object Management Group (OMG) Standards Case Management Model and Notation (CMMN) and Decision Management Notation (DMN) in the perioperative field.

    PubMed

    Wiemuth, M; Junger, D; Leitritz, M A; Neumann, J; Neumuth, T; Burgert, O

    2017-08-01

    Medical processes can be modeled using different methods and notations. Currently used modeling systems like Business Process Model and Notation (BPMN) are not capable of describing the highly flexible and variable medical processes in sufficient detail. We combined two modeling systems, Business Process Management (BPM) and Adaptive Case Management (ACM), to be able to model non-deterministic medical processes. We used the new Standards Case Management Model and Notation (CMMN) and Decision Management Notation (DMN). First, we explain how CMMN, DMN and BPMN could be used to model non-deterministic medical processes. We applied this methodology to model 79 cataract operations provided by University Hospital Leipzig, Germany, and four cataract operations provided by University Eye Hospital Tuebingen, Germany. Our model consists of 85 tasks and about 20 decisions in BPMN. We were able to expand the system with more complex situations that might appear during an intervention. An effective modeling of the cataract intervention is possible using the combination of BPM and ACM. The combination gives the possibility to depict complex processes with complex decisions. This combination allows a significant advantage for modeling perioperative processes.

  16. A toolkit modeling approach for sustainable forest management planning: achieving balance between science and local needs

    Treesearch

    Brian R. Sturtevant; Andrew Fall; Daniel D. Kneeshaw; Neal P. P. Simon; Michael J. Papaik; Kati Berninger; Frederik Doyon; Don G. Morgan; Christian Messier

    2007-01-01

    To assist forest managers in balancing an increasing diversity of resource objectives, we developed a toolkit modeling approach for sustainable forest management (SFM). The approach inserts a meta-modeling strategy into a collaborative modeling framework grounded in adaptive management philosophy that facilitates participation among stakeholders, decision makers, and...

  17. Modelling in forest management

    Treesearch

    Mark J. Twery

    2004-01-01

    Forest management has traditionally been considered management of trees for timber. It really includes vegetation management and land management and people management as multiple objectives. As such, forest management is intimately linked with other topics in this volume, most especially those chapters on ecological modelling and human dimensions. The key to...

  18. A combined disease management and process modeling approach for assessing and improving care processes: a fall management case-study.

    PubMed

    Askari, Marjan; Westerhof, Richard; Eslami, Saied; Medlock, Stephanie; de Rooij, Sophia E; Abu-Hanna, Ameen

    2013-10-01

    To propose a combined disease management and process modeling approach for evaluating and improving care processes, and demonstrate its usability and usefulness in a real-world fall management case study. We identified essential disease management related concepts and mapped them into explicit questions meant to expose areas for improvement in the respective care processes. We applied the disease management oriented questions to a process model of a comprehensive real world fall prevention and treatment program covering primary and secondary care. We relied on interviews and observations to complete the process models, which were captured in UML activity diagrams. A preliminary evaluation of the usability of our approach by gauging the experience of the modeler and an external validator was conducted, and the usefulness of the method was evaluated by gathering feedback from stakeholders at an invitational conference of 75 attendees. The process model of the fall management program was organized around the clinical tasks of case finding, risk profiling, decision making, coordination and interventions. Applying the disease management questions to the process models exposed weaknesses in the process including: absence of program ownership, under-detection of falls in primary care, and lack of efficient communication among stakeholders due to missing awareness about other stakeholders' workflow. The modelers experienced the approach as usable and the attendees of the invitational conference found the analysis results to be valid. The proposed disease management view of process modeling was usable and useful for systematically identifying areas of improvement in a fall management program. Although specifically applied to fall management, we believe our case study is characteristic of various disease management settings, suggesting the wider applicability of the approach. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Aircraft/Air Traffic Management Functional Analysis Model: Technical Description. 2.0

    NASA Technical Reports Server (NTRS)

    Etheridge, Melvin; Plugge, Joana; Retina, Nusrat

    1998-01-01

    The Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 (FAM 2.0), is a discrete event simulation model designed to support analysis of alternative concepts in air traffic management and control. FAM 2.0 was developed by the Logistics Management Institute (LMI) under a National Aeronautics and Space Administration (NASA) contract. This document provides a technical description of FAM 2.0 and its computer files to enable the modeler and programmer to make enhancements or modifications to the model. Those interested in a guide for using the model in analysis should consult the companion document, Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 Users Manual.

  20. Analysis and Management of Animal Populations: Modeling, Estimation and Decision Making

    USGS Publications Warehouse

    Williams, B.K.; Nichols, J.D.; Conroy, M.J.

    2002-01-01

    This book deals with the processes involved in making informed decisions about the management of animal populations. It covers the modeling of population responses to management actions, the estimation of quantities needed in the modeling effort, and the application of these estimates and models to the development of sound management decisions. The book synthesizes and integrates in a single volume the methods associated with these themes, as they apply to ecological assessment and conservation of animal populations. KEY FEATURES * Integrates population modeling, parameter estimation and * decision-theoretic approaches to management in a single, cohesive framework * Provides authoritative, state-of-the-art descriptions of quantitative * approaches to modeling, estimation and decision-making * Emphasizes the role of mathematical modeling in the conduct of science * and management * Utilizes a unifying biological context, consistent mathematical notation, * and numerous biological examples

  1. An inexact reverse logistics model for municipal solid waste management systems.

    PubMed

    Zhang, Yi Mei; Huang, Guo He; He, Li

    2011-03-01

    This paper proposed an inexact reverse logistics model for municipal solid waste management systems (IRWM). Waste managers, suppliers, industries and distributors were involved in strategic planning and operational execution through reverse logistics management. All the parameters were assumed to be intervals to quantify the uncertainties in the optimization process and solutions in IRWM. To solve this model, a piecewise interval programming was developed to deal with Min-Min functions in both objectives and constraints. The application of the model was illustrated through a classical municipal solid waste management case. With different cost parameters for landfill and the WTE, two scenarios were analyzed. The IRWM could reflect the dynamic and uncertain characteristics of MSW management systems, and could facilitate the generation of desired management plans. The model could be further advanced through incorporating methods of stochastic or fuzzy parameters into its framework. Design of multi-waste, multi-echelon, multi-uncertainty reverse logistics model for waste management network would also be preferred. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Modeling effectiveness of management practices for flood mitigation using GIS spatial analysis functions in Upper Cilliwung watershed

    NASA Astrophysics Data System (ADS)

    Darma Tarigan, Suria

    2016-01-01

    Flooding is caused by excessive rainfall flowing downstream as cumulative surface runoff. Flooding event is a result of complex interaction of natural system components such as rainfall events, land use, soil, topography and channel characteristics. Modeling flooding event as a result of interaction of those components is a central theme in watershed management. The model is usually used to test performance of various management practices in flood mitigation. There are various types of management practices for flood mitigation including vegetative and structural management practices. Existing hydrological model such as SWAT and HEC-HMS models have limitation to accommodate discrete management practices such as infiltration well, small farm reservoir, silt pits in its analysis due to the lumped structure of these models. Aim of this research is to use raster spatial analysis functions of Geo-Information System (RGIS-HM) to model flooding event in Ciliwung watershed and to simulate impact of discrete management practices on surface runoff reduction. The model was validated using flooding data event of Ciliwung watershed on 29 January 2004. The hourly hydrograph data and rainfall data were available during period of model validation. The model validation provided good result with Nash-Suthcliff efficiency of 0.8. We also compared the RGIS-HM with Netlogo Hydrological Model (NL-HM). The RGIS-HM has similar capability with NL-HM in simulating discrete management practices in watershed scale.

  3. An Environmental Management Maturity Model of Construction Programs Using the AHP-Entropy Approach.

    PubMed

    Bai, Libiao; Wang, Hailing; Huang, Ning; Du, Qiang; Huang, Youdan

    2018-06-23

    The accelerating process of urbanization in China has led to considerable opportunities for the development of construction projects, however, environmental issues have become an important constraint on the implementation of these projects. To quantitatively describe the environmental management capabilities of such projects, this paper proposes a 2-dimensional Environmental Management Maturity Model of Construction Program (EMMMCP) based on an analysis of existing projects, group management theory and a management maturity model. In this model, a synergetic process was included to compensate for the lack of consideration of synergies in previous studies, and it was involved in the construction of the first dimension, i.e., the environmental management index system. The second dimension, i.e., the maturity level of environment management, was then constructed by redefining the hierarchical characteristics of construction program (CP) environmental management maturity. Additionally, a mathematical solution to this proposed model was derived via the Analytic Hierarchy Process (AHP)-entropy approach. To verify the effectiveness and feasibility of this proposed model, a computational experiment was conducted, and the results show that this approach could not only measure the individual levels of different processes, but also achieve the most important objective of providing a reference for stakeholders when making decisions on the environmental management of construction program, which reflects this model is reasonable for evaluating the level of environmental management maturity in CP. To our knowledge, this paper is the first study to evaluate the environmental management maturity levels of CP, which would fill the gap between project program management and environmental management and provide a reference for relevant management personnel to enhance their environmental management capabilities.

  4. The eHealth Behavior Management Model: a stage-based approach to behavior change and management.

    PubMed

    Bensley, Robert J; Mercer, Nelda; Brusk, John J; Underhile, Ric; Rivas, Jason; Anderson, Judith; Kelleher, Deanne; Lupella, Melissa; de Jager, André C

    2004-10-01

    Although the Internet has become an important avenue for disseminating health information, theory-driven strategies for aiding individuals in changing or managing health behaviors are lacking. The eHealth Behavior Management Model combines the Transtheoretical Model, the behavioral intent aspect of the Theory of Planned Behavior, and persuasive communication to assist individuals in negotiating the Web toward stage-specific information. It is here - at the point of stage-specific information - that behavioral intent in moving toward more active stages of change occurs. The eHealth Behavior Management Model is applied in three demonstration projects that focus on behavior management issues: parent-child nutrition education among participants in the U.S. Department of Agriculture Special Supplemental Nutrition Program for Women, Infants and Children; asthma management among university staff and students; and human immunodeficiency virus prevention among South African women. Preliminary results have found the eHealth Behavior Management Model to be promising as a model for Internet-based behavior change programming. Further application and evaluation among other behavior and disease management issues are needed.

  5. Model Meets Data: Challenges and Opportunities to Implement Land Management in Earth System Models

    NASA Astrophysics Data System (ADS)

    Pongratz, J.; Dolman, A. J.; Don, A.; Erb, K. H.; Fuchs, R.; Herold, M.; Jones, C.; Luyssaert, S.; Kuemmerle, T.; Meyfroidt, P.

    2016-12-01

    Land-based demand for food and fibre is projected to increase in the future. In light of global sustainability challenges only part of this increase will be met by expansion of land use into relatively untouched regions. Additional demand will have to be fulfilled by intensification and other adjustments in management of land that already is under agricultural and forestry use. Such land management today occurs on about half of the ice-free land surface, as compared to only about one quarter that has undergone a change in land cover. As the number of studies revealing substantial biogeophysical and biogeochemical effects of land management is increasing, moving beyond land cover change towards including land management has become a key focus for Earth system modeling. However, a basis for prioritizing land management activities for implementation in models is lacking. We lay this basis for prioritization in a collaborative project across the disciplines of Earth system modeling, land system science, and Earth observation. We first assess the status and plans of implementing land management in Earth system and dynamic global vegetation models. A clear trend towards higher complexity of land use representation is visible. We then assess five criteria for prioritizing the implementation of land management activities: (1) spatial extent, (2) evidence for substantial effects on the Earth system, (3) process understanding, (4) possibility to link the management activity to existing concepts and structures of models, (5) availability of data required as model input. While the first three criteria have been assessed by an earlier study for ten common management activities, we review strategies for implementation in models and the availability of required datasets. We can thus evaluate the management activities for their performance in terms of importance for the Earth system, possibility of technical implementation in models, and data availability. This synthesis reveals some "low-hanging" fruits for model implementation, but also challenges for the assessment of land management effects by modeling. The identified gaps can guide prioritization within the data community from the Earth system and Earth system modeling perspective.

  6. Model meets data: Challenges and opportunities to implement land management in Earth System Models

    NASA Astrophysics Data System (ADS)

    Pongratz, Julia; Dolman, Han; Don, Axel; Erb, Karl-Heinz; Fuchs, Richard; Herold, Martin; Jones, Chris; Luyssaert, Sebastiaan; Kuemmerle, Tobias; Meyfroidt, Patrick; Naudts, Kim

    2017-04-01

    Land-based demand for food and fibre is projected to increase in the future. In light of global sustainability challenges only part of this increase will be met by expansion of land use into relatively untouched regions. Additional demand will have to be fulfilled by intensification and other adjustments in management of land that already is under agricultural and forestry use. Such land management today occurs on about half of the ice-free land surface, as compared to only about one quarter that has undergone a change in land cover. As the number of studies revealing substantial biogeophysical and biogeochemical effects of land management is increasing, moving beyond land cover change towards including land management has become a key focus for Earth system modeling. However, a basis for prioritizing land management activities for implementation in models is lacking. We lay this basis for prioritization in a collaborative project across the disciplines of Earth system modeling, land system science, and Earth observation. We first assess the status and plans of implementing land management in Earth system and dynamic global vegetation models. A clear trend towards higher complexity of land use representation is visible. We then assess five criteria for prioritizing the implementation of land management activities: (1) spatial extent, (2) evidence for substantial effects on the Earth system, (3) process understanding, (4) possibility to link the management activity to existing concepts and structures of models, (5) availability of data required as model input. While the first three criteria have been assessed by an earlier study for ten common management activities, we review strategies for implementation in models and the availability of required datasets. We can thus evaluate the management activities for their performance in terms of importance for the Earth system, possibility of technical implementation in models, and data availability. This synthesis reveals some "low-hanging" fruits for model implementation, but also challenges for the assessment of land management effects by modeling. The identified gaps can guide prioritization within the data community from the Earth system and Earth system modeling perspective.

  7. Work injury management model and implication in Hong Kong: a literature review.

    PubMed

    Chong, Cecilia Suk-Mei; Cheng, Andy Shu-Kei

    2010-01-01

    The objective of this review is to explore the work injury management models in literatures and the essential components in different models. The resulting information could be used to develop an integrated holistic model that could be applied in the work injury management system in Hong Kong. A keyword search of MEDLINE and CINAHL databases was conducted. A total of 68 studies related to the management of an injury were found within the above mentioned electronic database. Together with the citation tracking, there were 13 studies left for selection after the exclusion screening. Only 7 out of those 13 studies met the inclusion criteria for review. It is noticeable that the most important component in the injury management model in the reviewed literatures is early intervention. Because of limitations in Employees' Compensation Ordinance in Hong Kong, there is an impetus to have a model and practice guideline for work injury management in Hong Kong to ensure the quality of injury management services. At the end of this paper, the authors propose a work injury management model based on the employees' compensation system in Hong Kong. This model can be used as a reference for those countries adopting similar legislation as in Hong Kong.

  8. A Study and Model of Operating Level Financial Management Philosophy Under RMS.

    DTIC Science & Technology

    The lack of financial management education has prevented base level managers from using PRIME data as intended. This study examines the Air Force...operating level financial management philosophy before and after PRIME and the environment of PRIME adoption. A model in the form of two case problems...with solutions is created to portray the financial management concepts under PRIME to help educate base level Air Force logistic managers. The model

  9. An empirical model of water quality for use in rapid management strategy evaluation in Southeast Queensland, Australia.

    PubMed

    de la Mare, William; Ellis, Nick; Pascual, Ricardo; Tickell, Sharon

    2012-04-01

    Simulation models have been widely adopted in fisheries for management strategy evaluation (MSE). However, in catchment management of water quality, MSE is hampered by the complexity of both decision space and the hydrological process models. Empirical models based on monitoring data provide a feasible alternative to process models; they run much faster and, by conditioning on data, they can simulate realistic responses to management actions. Using 10 years of water quality indicators from Queensland, Australia, we built an empirical model suitable for rapid MSE that reproduces the water quality variables' mean and covariance structure, adjusts the expected indicators through local management effects, and propagates effects downstream by capturing inter-site regression relationships. Empirical models enable managers to search the space of possible strategies using rapid assessment. They provide not only realistic responses in water quality indicators but also variability in those indicators, allowing managers to assess strategies in an uncertain world. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Toolkit of Available EPA Green Infrastructure Modeling ...

    EPA Pesticide Factsheets

    This webinar will present a toolkit consisting of five EPA green infrastructure models and tools, along with communication material. This toolkit can be used as a teaching and quick reference resource for use by planners and developers when making green infrastructure implementation decisions. It can also be used for low impact development design competitions. Models and tools included: Green Infrastructure Wizard (GIWiz), Watershed Management Optimization Support Tool (WMOST), Visualizing Ecosystem Land Management Assessments (VELMA) Model, Storm Water Management Model (SWMM), and the National Stormwater Calculator (SWC). This webinar will present a toolkit consisting of five EPA green infrastructure models and tools, along with communication material. This toolkit can be used as a teaching and quick reference resource for use by planners and developers when making green infrastructure implementation decisions. It can also be used for low impact development design competitions. Models and tools included: Green Infrastructure Wizard (GIWiz), Watershed Management Optimization Support Tool (WMOST), Visualizing Ecosystem Land Management Assessments (VELMA) Model, Storm Water Management Model (SWMM), and the National Stormwater Calculator (SWC).

  11. Human judgment vs. quantitative models for the management of ecological resources.

    PubMed

    Holden, Matthew H; Ellner, Stephen P

    2016-07-01

    Despite major advances in quantitative approaches to natural resource management, there has been resistance to using these tools in the actual practice of managing ecological populations. Given a managed system and a set of assumptions, translated into a model, optimization methods can be used to solve for the most cost-effective management actions. However, when the underlying assumptions are not met, such methods can potentially lead to decisions that harm the environment and economy. Managers who develop decisions based on past experience and judgment, without the aid of mathematical models, can potentially learn about the system and develop flexible management strategies. However, these strategies are often based on subjective criteria and equally invalid and often unstated assumptions. Given the drawbacks of both methods, it is unclear whether simple quantitative models improve environmental decision making over expert opinion. In this study, we explore how well students, using their experience and judgment, manage simulated fishery populations in an online computer game and compare their management outcomes to the performance of model-based decisions. We consider harvest decisions generated using four different quantitative models: (1) the model used to produce the simulated population dynamics observed in the game, with the values of all parameters known (as a control), (2) the same model, but with unknown parameter values that must be estimated during the game from observed data, (3) models that are structurally different from those used to simulate the population dynamics, and (4) a model that ignores age structure. Humans on average performed much worse than the models in cases 1-3, but in a small minority of scenarios, models produced worse outcomes than those resulting from students making decisions based on experience and judgment. When the models ignored age structure, they generated poorly performing management decisions, but still outperformed students using experience and judgment 66% of the time. © 2016 by the Ecological Society of America.

  12. Overview of the CERT Resilience Management Model (CERT-RMM)

    DTIC Science & Technology

    2014-01-23

    Management Model (CERT®-RMM) Jim Cebula Technical Manager - Cyber Risk Management , CERT® Division Jim Cebula is the Technical Manager of the...Cyber Risk Management team in the Cyber Security Solutions Directorate of the CERT Division at the Software Engineering Institute (SEI), a unit of...Carnegie Mellon University. Cebula’s current activities include risk management methods along with assessment and management of operational

  13. Relative importance of fuel management, ignition management and weather for area burned: Evidence from five landscape-fire-succession models

    Treesearch

    Geoffrey J. Cary; Mike D. Flannigan; Robert E. Keane; Ross A. Bradstock; Ian D. Davies; James M. Lenihan; Chao Li; Kimberley A. Logan; Russell A. Parsons

    2009-01-01

    The behaviour of five landscape fire models (CAFE, FIRESCAPE, LAMOS(HS), LANDSUM and SEMLAND) was compared in a standardised modelling experiment. The importance of fuel management approach, fuel management effort, ignition management effort and weather in determining variation in area burned and number of edge pixels burned (a measure of potential impact on assets...

  14. Who to Blame: Irrational Decision-Makers or Stupid Modelers? (Arne Richter Award for Outstanding Young Scientists Lecture)

    NASA Astrophysics Data System (ADS)

    Madani, Kaveh

    2016-04-01

    Water management benefits from a suite of modelling tools and techniques that help simplifying and understanding the complexities involved in managing water resource systems. Early water management models were mainly concerned with optimizing a single objective, related to the design, operations or management of water resource systems (e.g. economic cost, hydroelectricity production, reliability of water deliveries). Significant improvements in methodologies, computational capacity, and data availability over the last decades have resulted in developing more complex water management models that can now incorporate multiple objectives, various uncertainties, and big data. These models provide an improved understanding of complex water resource systems and provide opportunities for making positive impacts. Nevertheless, there remains an alarming mismatch between the optimal solutions developed by these models and the decisions made by managers and stakeholders of water resource systems. Modelers continue to consider decision makers as irrational agents who fail to implement the optimal solutions developed by sophisticated and mathematically rigours water management models. On the other hand, decision makers and stakeholders accuse modelers of being idealist, lacking a perfect understanding of reality, and developing 'smart' solutions that are not practical (stable). In this talk I will have a closer look at the mismatch between the optimality and stability of solutions and argue that conventional water resources management models suffer inherently from a full-cooperation assumption. According to this assumption, water resources management decisions are based on group rationality where in practice decisions are often based on individual rationality, making the group's optimal solution unstable for individually rational decision makers. I discuss how game theory can be used as an appropriate framework for addressing the irrational "rationality assumption" of water resources management models and for better capturing the social aspects of decision making in water management systems with multiple stakeholders.

  15. Building a competent health manager at district level: a grounded theory study from Eastern Uganda.

    PubMed

    Tetui, Moses; Hurtig, Anna-Karin; Ekirpa-Kiracho, Elizabeth; Kiwanuka, Suzanne N; Coe, Anna-Britt

    2016-11-21

    Health systems in low-income countries are often characterized by poor health outcomes. While many reasons have been advanced to explain the persistently poor outcomes, management of the system has been found to play a key role. According to a WHO framework, the management of health systems is central to its ability to deliver needed health services. In this study, we examined how district managers in a rural setting in Uganda perceived existing approaches to strengthening management so as to provide a pragmatic and synergistic model for improving management capacity building. Twenty-two interviews were conducted with district level administrative and political managers, district level health managers and health facility managers to understand their perceptions and definitions of management and capacity building. Kathy Charmaz's constructive approach to grounded theory informed the data analysis process. An interative, dynamic and complex model with three sub-process of building a competent health manager was developed. A competent manager was understood as one who knew his/her roles, was well informed and was empowered to execute management functions. Professionalizing health managers which was viewed as the foundation, the use of engaging learning approaches as the inside contents and having a supportive work environment the frame of the model were the sub-processes involved in the model. The sub-processes were interconnected although the respondents agreed that having a supportive work environment was more time and effort intensive relative to the other two sub-processes. The model developed in our study makes four central contributions to enhance the WHO framework and the existing literature. First, it emphasizes management capacity building as an iterative, dynamic and complex process rather than a set of characteristics of competent managers. Second, our model suggests the need for professionalization of health managers at different levels of the health system. Third, our model underscores the benefits that could be accrued from the use of engaging learning approaches through prolonged and sustained processes that act in synergy. Lastly, our model postulates that different resource investments and a varied range of stakeholders could be required at each of the sub-processes.

  16. Management of organisational changes in a case of de-institutionalisation.

    PubMed

    Parlalis, Stavros K

    2011-01-01

    This paper seeks to explore the development of a discharge programme in one learning disability hospital in Scotland. The study aims to concentrate on organisational developmental changes in that institution. The model of the management during the discharge programme was investigated. The aim of the study is to explore how the discharge programme developed, as seen under the lens of organisational change, in order to find out what kind of model of management is more suitable in similar programmes. A case study was employed. Data were collected by means of interviews. The interviews followed a structured format. The sample of the study had to be a purposive sample and the method of snowball sampling was used; finally, 28 interviews were conducted. A grounded approach was adopted for the data analysis. The software program QSR "NUD*IST" (version "N6") was used as a technical tool, in order to facilitate the data analysis. The findings of this study show that various management models were adopted in the four phases of the discharge programme. These different models represent a "quest" by the institution's management regarding the most appropriate model for managing the discharge programme. This study shows that this goes on continuously in organisations under transition until they settle down to a more permanent state. It was concluded that management models, which are composed of characteristics from the organic theory of organisational management, could apply in discharge programmes. The data gathered enabled the researcher to arrive at a model of management which is suitable for managing organisational changes in discharge programmes, the named "stakeholder management model".

  17. A New Model for the Organizational Structure of Medical Record Departments in Hospitals in Iran

    PubMed Central

    Moghaddasi, Hamid; Hosseini, Azamossadat; Sheikhtaheri, Abbas

    2006-01-01

    The organizational structure of medical record departments in Iran is not appropriate for the efficient management of healthcare information. In addition, there is no strong information management division to provide comprehensive information management services in hospitals in Iran. Therefore, a suggested model was designed based on four main axes: 1) specifications of a Health Information Management Division, 2) specifications of a Healthcare Information Management Department, 3) the functions of the Healthcare Information Management Department, and 4) the units of the Healthcare Information Management Department. The validity of the model was determined through use of the Delphi technique. The results of the validation process show that the majority of experts agree with the model and consider it to be appropriate and applicable for hospitals in Iran. The model is therefore recommended for hospitals in Iran. PMID:18066362

  18. Vehicle Thermal Management Models and Tools | Transportation Research |

    Science.gov Websites

    NREL Models and Tools Vehicle Thermal Management Models and Tools The National Renewable Energy Laboratory's (NREL's) vehicle thermal management modeling tools allow researchers to assess the trade-offs and calculate the potential benefits of thermal design options. image of three models of semi truck cabs. Truck

  19. Population modeling for furbearer management

    USGS Publications Warehouse

    Johnson, D.H.; Sanderson, G.C.

    1982-01-01

    The management of furbearers has become increasingly complex as greater demands are placed on their populations. Correspondingly, needs for information to use in management have increased. Inadequate information leads the manager to err on the conservative side; unless the size of the 'harvestable surplus' is known, the population cannot be fully exploited. Conversely, information beyond what is needed becomes an unaffordable luxury. Population modeling has proven useful for organizing information on numerous game animals. Modeling serves to determine if information of the right kind and proper amount is being gathered; systematizes data collection, data interpretation, and decision making; and permits more effective management and better utilization of game populations. This report briefly reviews the principles of population modeling, describes what has been learned from previous modeling efforts on furbearers, and outlines the potential role of population modeling in furbearer management.

  20. Project Management Life Cycle Models to Improve Management in High-rise Construction

    NASA Astrophysics Data System (ADS)

    Burmistrov, Andrey; Siniavina, Maria; Iliashenko, Oksana

    2018-03-01

    The paper describes a possibility to improve project management in high-rise buildings construction through the use of various Project Management Life Cycle Models (PMLC models) based on traditional and agile project management approaches. Moreover, the paper describes, how the split the whole large-scale project to the "project chain" will create the factor for better manageability of the large-scale buildings project and increase the efficiency of the activities of all participants in such projects.

  1. State-and-transition models: Conceptual versus simulation perspectives, usefulness and breadth of use, and land management applications

    USGS Publications Warehouse

    Provencher, Louis; Frid, Leonardo; Czembor, Christina; Morisette, Jeffrey T.

    2016-01-01

    State-and-Transition Simulation Modeling (STSM) is a quantitative analysis method that can consolidate a wide array of resource management issues under a “what-if” scenario exercise. STSM can be seen as an ensemble of models, such as climate models, ecological models, and economic models that incorporate human dimensions and management options. This chapter presents STSM as a tool to help synthesize information on social–ecological systems and to investigate some of the management issues associated with exotic annual Bromus species, which have been described elsewhere in this book. Definitions, terminology, and perspectives on conceptual and computer-simulated stochastic state-and-transition models are given first, followed by a brief review of past STSM studies relevant to the management of Bromus species. A detailed case study illustrates the usefulness of STSM for land management. As a whole, this chapter is intended to demonstrate how STSM can help both managers and scientists: (a) determine efficient resource allocation for monitoring nonnative grasses; (b) evaluate sources of uncertainty in model simulation results involving expert opinion, and their consequences for management decisions; and (c) provide insight into the consequences of predicted local climate change effects on ecological systems invaded by exotic annual Bromus species.

  2. Development of a Leadership/Management Seminar Model for Bakersfield College.

    ERIC Educational Resources Information Center

    Nusz, Phyllis Jane

    A leadership/management seminar model was developed for use at Bakersfield College (BC), California, as a pilot program to provide training for professionals and management-level employees in business and industry. The seminar model was based on work with noted professors and theorists in the field of leadership and management; a literature…

  3. SPD-based Logistics Management Model of Medical Consumables in Hospitals.

    PubMed

    Liu, Tongzhu; Shen, Aizong; Hu, Xiaojian; Tong, Guixian; Gu, Wei; Yang, Shanlin

    2016-10-01

    With the rapid development of health services, the progress of medical science and technology, and the improvement of materials research, the consumption of medical consumables (MCs) in medical activities has increased in recent years. However, owing to the lack of effective management methods and the complexity of MCs, there are several management problems including MC waste, low management efficiency, high management difficulty, and frequent medical accidents. Therefore, there is urgent need for an effective logistics management model to handle these problems and challenges in hospitals. We reviewed books and scientific literature (by searching the articles published from 2010 to 2015 in Engineering Village database) to understand supply chain related theories and methods and performed field investigations in hospitals across many cities to determine the actual state of MC logistics management of hospitals in China. We describe the definition, physical model, construction, and logistics operation processes of the supply, processing, and distribution (SPD) of MC logistics because of the traditional SPD model. With the establishment of a supply-procurement platform and a logistics lean management system, we applied the model to the MC logistics management of Anhui Provincial Hospital with good effects. The SPD model plays a critical role in optimizing the logistics procedures of MCs, improving the management efficiency of logistics, and reducing the costs of logistics of hospitals in China.

  4. Opportunities for increasing utility of models for rangeland management

    USDA-ARS?s Scientific Manuscript database

    A tremendous need exists for ecosystem models to assist in rangeland management, but the utility of models developed to date has been minimal for enterprise-level decision making. Three areas in which models have had limited effectiveness for land managers are 1) addressing contemporary needs associ...

  5. A model for managing sources of groundwater pollution

    USGS Publications Warehouse

    Gorelick, Steven M.

    1982-01-01

    The waste disposal capacity of a groundwater system can be maximized while maintaining water quality at specified locations by using a groundwater pollutant source management model that is based upon linear programing and numerical simulation. The decision variables of the management model are solute waste disposal rates at various facilities distributed over space. A concentration response matrix is used in the management model to describe transient solute transport and is developed using the U.S. Geological Survey solute transport simulation model. The management model was applied to a complex hypothetical groundwater system. Large-scale management models were formulated as dual linear programing problems to reduce numerical difficulties and computation time. Linear programing problems were solved using a numerically stable, available code. Optimal solutions to problems with successively longer management time horizons indicated that disposal schedules at some sites are relatively independent of the number of disposal periods. Optimal waste disposal schedules exhibited pulsing rather than constant disposal rates. Sensitivity analysis using parametric linear programing showed that a sharp reduction in total waste disposal potential occurs if disposal rates at any site are increased beyond their optimal values.

  6. Environmental Management Model for Road Maintenance Operation Involving Community Participation

    NASA Astrophysics Data System (ADS)

    Triyono, A. R. H.; Setyawan, A.; Sobriyah; Setiono, P.

    2017-07-01

    Public expectations of Central Java, which is very high on demand fulfillment, especially road infrastructure as outlined in the number of complaints and community expectations tweeter, Short Mail Massage (SMS), e-mail and public reports from various media, Highways Department of Central Java province requires development model of environmental management in the implementation of a routine way by involving the community in order to fulfill the conditions of a representative, may serve road users safely and comfortably. This study used survey method with SEM analysis and SWOT with Latent Independent Variable (X), namely; Public Participation in the regulation, development, construction and supervision of road (PSM); Public behavior in the utilization of the road (PMJ) Provincial Road Service (PJP); Safety in the Provincial Road (KJP); Integrated Management System (SMT) and latent dependent variable (Y) routine maintenance of the provincial road that is integrated with the environmental management system and involve the participation of the community (MML). The result showed the implementation of routine maintenance of road conditions in Central Java province has yet to implement an environmental management by involving the community; Therefore developed environmental management model with the results of H1: Community Participation (PSM) has positive influence on the Model of Environmental Management (MML); H2: Behavior Society in Jalan Utilization (PMJ) positive effect on Model Environmental Management (MML); H3: Provincial Road Service (PJP) positive effect on Model Environmental Management (MML); H4: Safety in the Provincial Road (KJP) positive effect on Model Environmental Management (MML); H5: Integrated Management System (SMT) has positive influence on the Model of Environmental Management (MML). From the analysis obtained formulation model describing the relationship / influence of the independent variables PSM, PMJ, PJP, KJP, and SMT on the dependent variable MML as follows: MML = 0.13 + 0.07 PSM PJP PMJ + 0.09 + 0.19 + 0.48 KJP SMT + e

  7. Secure and Resilient Functional Modeling for Navy Cyber-Physical Systems

    DTIC Science & Technology

    2017-05-24

    Functional Modeling Compiler (SCCT) FM Compiler and Key Performance Indicators (KPI) May 2018 Pending. Model Management Backbone (SCCT) MMB Demonstration...implement the agent- based distributed runtime. - KPIs for single/multicore controllers and temporal/spatial domains. - Integration of the model management ...Distributed Runtime (UCI) Not started. Model Management Backbone (SCCT) Not started. Siemens Corporation Corporate Technology Unrestricted

  8. Intelligent Model Management in a Forest Ecosystem Management Decision Support System

    Treesearch

    Donald Nute; Walter D. Potter; Frederick Maier; Jin Wang; Mark Twery; H. Michael Rauscher; Peter Knopp; Scott Thomasma; Mayukh Dass; Hajime Uchiyama

    2002-01-01

    Decision making for forest ecosystem management can include the use of a wide variety of modeling tools. These tools include vegetation growth models, wildlife models, silvicultural models, GIS, and visualization tools. NED-2 is a robust, intelligent, goal-driven decision support system that integrates tools in each of these categories. NED-2 uses a blackboard...

  9. Modeling fuels and fire effects in 3D: Model description and applications

    Treesearch

    Francois Pimont; Russell Parsons; Eric Rigolot; Francois de Coligny; Jean-Luc Dupuy; Philippe Dreyfus; Rodman R. Linn

    2016-01-01

    Scientists and managers critically need ways to assess how fuel treatments alter fire behavior, yet few tools currently exist for this purpose.We present a spatially-explicit-fuel-modeling system, FuelManager, which models fuels, vegetation growth, fire behavior (using a physics-based model, FIRETEC), and fire effects. FuelManager's flexible approach facilitates...

  10. Challenges in managing freshwater fishery resource through Lebak Lebung Auction approach: a case study in Pangkalan Lampam District Ogan Komering Ilir Regency

    NASA Astrophysics Data System (ADS)

    Muslimin, B.; Suadi

    2018-03-01

    Responsible management of fishery resources has been a tradition of Ogan Komering Ilir (OKI) of South Sumatera for generations. It was recorded that since 1630 the Dutch Government had made auction policy for managing water territory in OKI Regency as an effort to preserve nature and to avoid the conflict of inland water ownership. Currently, the community-based management model has been adopted by local governments into formal regulations, known as Regional Regulation on Auction of Flood Water Swamp and Rivers (Lelang Lebak Lebung dan Sungai or L3S). This paper describes the success factors and the threats for the failure of the L3S management model in OKI Regency, based on a case study in Pangkalan Lampam District. The study showed that the management mechanism through the L3S system had been well instituted and become a well-established management practice. The management model is in line with the principle of co-management and the approach has become critical success factor in L3S management. However, ecological, economic and social aspects influence the sustainability of such fishery management model. Besides, L3S management model faces limited data and information related to fish stocks, which result in difficulties in determining the total allowable catch.

  11. Establishment of Textbook Information Management System Based on Active Server Page

    ERIC Educational Resources Information Center

    Geng, Lihua

    2011-01-01

    In the process of textbook management of universities, the flow of storage, collection and check of textbook is quite complicated and daily management flow and system also seriously constrains the efficiency of the management process. Thus, in order to combine the information management model and the traditional management model, it is necessary…

  12. Crop modeling applications in agricultural water management

    USGS Publications Warehouse

    Kisekka, Isaya; DeJonge, Kendall C.; Ma, Liwang; Paz, Joel; Douglas-Mankin, Kyle R.

    2017-01-01

    This article introduces the fourteen articles that comprise the “Crop Modeling and Decision Support for Optimizing Use of Limited Water” collection. This collection was developed from a special session on crop modeling applications in agricultural water management held at the 2016 ASABE Annual International Meeting (AIM) in Orlando, Florida. In addition, other authors who were not able to attend the 2016 ASABE AIM were also invited to submit papers. The articles summarized in this introductory article demonstrate a wide array of applications in which crop models can be used to optimize agricultural water management. The following section titles indicate the topics covered in this collection: (1) evapotranspiration modeling (one article), (2) model development and parameterization (two articles), (3) application of crop models for irrigation scheduling (five articles), (4) coordinated water and nutrient management (one article), (5) soil water management (two articles), (6) risk assessment of water-limited irrigation management (one article), and (7) regional assessments of climate impact (two articles). Changing weather and climate, increasing population, and groundwater depletion will continue to stimulate innovations in agricultural water management, and crop models will play an important role in helping to optimize water use in agriculture.

  13. Computer models for economic and silvicultural decisions

    Treesearch

    Rosalie J. Ingram

    1989-01-01

    Computer systems can help simplify decisionmaking to manage forest ecosystems. We now have computer models to help make forest management decisions by predicting changes associated with a particular management action. Models also help you evaluate alternatives. To be effective, the computer models must be reliable and appropriate for your situation.

  14. A Management Information System Model for Program Management. Ph.D. Thesis - Oklahoma State Univ.; [Computerized Systems Analysis

    NASA Technical Reports Server (NTRS)

    Shipman, D. L.

    1972-01-01

    The development of a model to simulate the information system of a program management type of organization is reported. The model statistically determines the following parameters: type of messages, destinations, delivery durations, type processing, processing durations, communication channels, outgoing messages, and priorites. The total management information system of the program management organization is considered, including formal and informal information flows and both facilities and equipment. The model is written in General Purpose System Simulation 2 computer programming language for use on the Univac 1108, Executive 8 computer. The model is simulated on a daily basis and collects queue and resource utilization statistics for each decision point. The statistics are then used by management to evaluate proposed resource allocations, to evaluate proposed changes to the system, and to identify potential problem areas. The model employs both empirical and theoretical distributions which are adjusted to simulate the information flow being studied.

  15. Coupling System Dynamics and Physically-based Models for Participatory Water Management - A Methodological Framework, with Two Case Studies: Water Quality in Quebec, and Soil Salinity in Pakistan

    NASA Astrophysics Data System (ADS)

    Boisvert-Chouinard, J.; Halbe, J.; Baig, A. I.; Adamowski, J. F.

    2014-12-01

    The principles of Integrated Water Resource Management outline the importance of stakeholder participation in water management processes, but in practice, there is a lack of meaningful engagement in water planning and implementation, and participation is often limited to public consultation and education. When models are used to support water planning, stakeholders are usually not involved in their development and use, and the models commonly fail to represent important feedbacks between socio-economic and physical processes. This paper presents the development of holistic models of the Du Chêne basin in Quebec, and the Rechna Doab basin in Pakistan, that simulate socio-economic and physical processes related to, respectively, water quality management, and soil salinity management. The models each consists of two sub-components: a System Dynamics (SD) model, and a physically based model. The SD component was developed in collaboration with key stakeholders in the basins. The Du Chêne SD model was coupled with a Soil and Water Assessment Tool (SWAT) model, while the Rechna Doab SD model was coupled with SahysMod, a soil salinity model. The coupled models were used to assess the environmental and socio-economic impacts of different management scenarios proposed by stakeholders. Results indicate that coupled SD - physically-based models can be used as effective tools for participatory water planning and implementation. The participatory modeling process provides a structure for meaningful stakeholder engagement, and the models themselves can be used to transparently and coherently assess and compare different management options.

  16. Restructuring Medical Schools to Better Manage Their Three Missions in the Face of Financial Scarcity.

    ERIC Educational Resources Information Center

    Allcorn, Seth; Winship, Daniel H.

    1996-01-01

    A discussion of changes in medical school organization to meet new financial challenges looks at the traditional medical school management model and proposes an alternative, the service line management matrix model. In this model, each institutional mission (teaching, research, patient care) must be managed for its cost-effectiveness. Roles of…

  17. Model for multi-stand management based on structural attributes of individual stands

    Treesearch

    G.W. Miller; J. Sullivan

    1997-01-01

    A growing interest in managing forest ecosystems calls for decision models that take into account attribute goals for large forest areas while continuing to recognize the individual stand as a basic unit of forest management. A dynamic, nonlinear forest management model is described that schedules silvicultural treatments for individual stands that are linked by multi-...

  18. A model to evaluate quality and effectiveness of disease management.

    PubMed

    Lemmens, K M M; Nieboer, A P; van Schayck, C P; Asin, J D; Huijsman, R

    2008-12-01

    Disease management has emerged as a new strategy to enhance quality of care for patients suffering from chronic conditions, and to control healthcare costs. So far, however, the effects of this strategy remain unclear. Although current models define the concept of disease management, they do not provide a systematic development or an explanatory theory of how disease management affects the outcomes of care. The objective of this paper is to present a framework for valid evaluation of disease-management initiatives. The evaluation model is built on two pillars of disease management: patient-related and professional-directed interventions. The effectiveness of these interventions is thought to be affected by the organisational design of the healthcare system. Disease management requires a multifaceted approach; hence disease-management programme evaluations should focus on the effects of multiple interventions, namely patient-related, professional-directed and organisational interventions. The framework has been built upon the conceptualisation of these disease-management interventions. Analysis of the underlying mechanisms of these interventions revealed that learning and behavioural theories support the core assumptions of disease management. The evaluation model can be used to identify the components of disease-management programmes and the mechanisms behind them, making valid comparison feasible. In addition, this model links the programme interventions to indicators that can be used to evaluate the disease-management programme. Consistent use of this framework will enable comparisons among disease-management programmes and outcomes in evaluation research.

  19. A Multivariate Model of Stakeholder Preference for Lethal Cat Management

    PubMed Central

    Wald, Dara M.; Jacobson, Susan K.

    2014-01-01

    Identifying stakeholder beliefs and attitudes is critical for resolving management conflicts. Debate over outdoor cat management is often described as a conflict between two groups, environmental advocates and animal welfare advocates, but little is known about the variables predicting differences among these critical stakeholder groups. We administered a mail survey to randomly selected stakeholders representing both of these groups (n = 1,596) in Florida, where contention over the management of outdoor cats has been widespread. We used a structural equation model to evaluate stakeholder intention to support non-lethal management. The cognitive hierarchy model predicted that values influenced beliefs, which predicted general and specific attitudes, which in turn, influenced behavioral intentions. We posited that specific attitudes would mediate the effect of general attitudes, beliefs, and values on management support. Model fit statistics suggested that the final model fit the data well (CFI = 0.94, RMSEA = 0.062). The final model explained 74% of the variance in management support, and positive attitudes toward lethal management (humaneness) had the largest direct effect on management support. Specific attitudes toward lethal management and general attitudes toward outdoor cats mediated the relationship between positive (p<0.05) and negative cat-related impact beliefs (p<0.05) and support for management. These results supported the specificity hypothesis and the use of the cognitive hierarchy to assess stakeholder intention to support non-lethal cat management. Our findings suggest that stakeholders can simultaneously perceive both positive and negative beliefs about outdoor cats, which influence attitudes toward and support for non-lethal management. PMID:24736744

  20. A multivariate model of stakeholder preference for lethal cat management.

    PubMed

    Wald, Dara M; Jacobson, Susan K

    2014-01-01

    Identifying stakeholder beliefs and attitudes is critical for resolving management conflicts. Debate over outdoor cat management is often described as a conflict between two groups, environmental advocates and animal welfare advocates, but little is known about the variables predicting differences among these critical stakeholder groups. We administered a mail survey to randomly selected stakeholders representing both of these groups (n=1,596) in Florida, where contention over the management of outdoor cats has been widespread. We used a structural equation model to evaluate stakeholder intention to support non-lethal management. The cognitive hierarchy model predicted that values influenced beliefs, which predicted general and specific attitudes, which in turn, influenced behavioral intentions. We posited that specific attitudes would mediate the effect of general attitudes, beliefs, and values on management support. Model fit statistics suggested that the final model fit the data well (CFI=0.94, RMSEA=0.062). The final model explained 74% of the variance in management support, and positive attitudes toward lethal management (humaneness) had the largest direct effect on management support. Specific attitudes toward lethal management and general attitudes toward outdoor cats mediated the relationship between positive (p<0.05) and negative cat-related impact beliefs (p<0.05) and support for management. These results supported the specificity hypothesis and the use of the cognitive hierarchy to assess stakeholder intention to support non-lethal cat management. Our findings suggest that stakeholders can simultaneously perceive both positive and negative beliefs about outdoor cats, which influence attitudes toward and support for non-lethal management.

  1. A residency clinic chronic condition management quality improvement project.

    PubMed

    Halverson, Larry W; Sontheimer, Dan; Duvall, Sharon

    2007-02-01

    Quality improvement in chronic disease management is a major agenda for improving health and reducing health care costs. A six-component chronic disease management model can help guide this effort. Several characteristics of the "new model" of family medicine described by the Future of Family Medicine (FFM) Project Leadership Committee are promulgated to foster practice changes that improve quality. Our objective was to implement and assess a quality improvement project guided by the components of a chronic disease management model and FFM new model characteristics. Diabetes was selected as a model chronic disease focus. Multiple practice changes were implemented. A mature electronic medical record facilitated data collection and measurement of quality improvement progress. Data from the diabetes registry demonstrates that our efforts have been effective. Significant improvement occurred in five out of six quality indicators. Multidisciplinary teamwork in a model residency practice guided by chronic disease management principles and the FFM new model characteristics can produce significant management improvements in one important chronic disease.

  2. Interval-parameter chance-constraint programming model for end-of-life vehicles management under rigorous environmental regulations.

    PubMed

    Simic, Vladimir

    2016-06-01

    As the number of end-of-life vehicles (ELVs) is estimated to increase to 79.3 million units per year by 2020 (e.g., 40 million units were generated in 2010), there is strong motivation to effectively manage this fast-growing waste flow. Intensive work on management of ELVs is necessary in order to more successfully tackle this important environmental challenge. This paper proposes an interval-parameter chance-constraint programming model for end-of-life vehicles management under rigorous environmental regulations. The proposed model can incorporate various uncertainty information in the modeling process. The complex relationships between different ELV management sub-systems are successfully addressed. Particularly, the formulated model can help identify optimal patterns of procurement from multiple sources of ELV supply, production and inventory planning in multiple vehicle recycling factories, and allocation of sorted material flows to multiple final destinations under rigorous environmental regulations. A case study is conducted in order to demonstrate the potentials and applicability of the proposed model. Various constraint-violation probability levels are examined in detail. Influences of parameter uncertainty on model solutions are thoroughly investigated. Useful solutions for the management of ELVs are obtained under different probabilities of violating system constraints. The formulated model is able to tackle a hard, uncertainty existing ELV management problem. The presented model has advantages in providing bases for determining long-term ELV management plans with desired compromises between economic efficiency of vehicle recycling system and system-reliability considerations. The results are helpful for supporting generation and improvement of ELV management plans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Multi-scale measurements show limited soil greenhouse gas emissions in Kenyan smallholder coffee-dairy systems.

    PubMed

    Ortiz-Gonzalo, Daniel; de Neergaard, Andreas; Vaast, Philippe; Suárez-Villanueva, Víctor; Oelofse, Myles; Rosenstock, Todd S

    2018-06-01

    Efforts have been made in recent years to improve knowledge about soil greenhouse gas (GHG) fluxes from sub-Saharan Africa. However, data on soil GHG emissions from smallholder coffee-dairy systems have not hitherto been measured experimentally. This study aimed to quantify soil GHG emissions at different spatial and temporal scales in smallholder coffee-dairy farms in Murang'a County, Central Kenya. GHG measurements were carried out for one year, comprising two cropping seasons, using vented static chambers and gas chromatography. Sixty rectangular frames were installed on two farms comprising the three main cropping systems found in the area: 1) coffee (Coffea arabica L.); 2) Napier grass (Pennisetum purpureum); and 3) maize intercropped with beans (Zea mays and Phaseolus vulgaris). Within these fields, chambers were allocated on fertilised and unfertilised locations to capture spatial variability. Cumulative annual fluxes in coffee plots ranged from 1 to 1.9kgN 2 O-Nha -1 , 6.5 to 7.6MgCO 2 -Cha -1 and - 3.4 to -2.2kgCH 4 -Cha -1 , with 66% to 94% of annual GHG fluxes occurring during rainy seasons. Across the farm plots, coffee received most of the N inputs and had 56% to 89% higher emissions of N 2 O than Napier grass, maize and beans. Within farm plots, two to six times higher emissions were found in fertilised hotspots - around the perimeter of coffee trees or within planted maize rows - than in unfertilised locations between trees, rows and planting holes. Background and induced soil N 2 O emissions from fertiliser and manure applications in the three cropping systems were lower than hypothesized from previous studies and empirical models. This study supplements methods and underlying data for the quantification of GHG emissions at multiple spatial and temporal scales in tropical, smallholder farming systems. Advances towards overcoming the dearth of data will facilitate the understanding of synergies and tradeoffs of climate-smart approaches for low emissions development. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Incorporating grassland management in a global vegetation model: model description and evaluation at 11 eddy-covariance sites in Europe

    NASA Astrophysics Data System (ADS)

    Chang, J.; Viovy, N.; Vuichard, N.; Ciais, P.; Wang, T.; Cozic, A.; Lardy, R.; Graux, A.-I.; Klumpp, K.; Martin, R.; Soussana, J.-F.

    2013-05-01

    This study describes how management of grasslands is included in the ORCHIDEE process-based ecosystem model designed for large-scale applications, and how management affects modeled grassland-atmosphere CO2 fluxes. The new model, ORCHIDEE-GM (Grassland Management) is enabled with a management module inspired from a grassland model (PaSim, version 5.0), with two grassland management practices being considered, cutting and grazing, respectively. The evaluation of the results from ORCHIDEE compared with those of ORCHIDEE-GM at 11 European sites equipped with eddy covariance and biometric measurements, shows that ORCHIDEE-GM can capture realistically the cut-induced seasonal variation in biometric variables (LAI: Leaf Area Index; AGB: Aboveground Biomass) and in CO2 fluxes (GPP: Gross Primary Productivity; TER: Total Ecosystem Respiration; and NEE: Net Ecosystem Exchange). But improvements at grazing sites are only marginal in ORCHIDEE-GM, which relates to the difficulty in accounting for continuous grazing disturbance and its induced complex animal-vegetation interactions. Both NEE and GPP on monthly to annual timescales can be better simulated in ORCHIDEE-GM than in ORCHIDEE without management. ORCHIDEE-GM is capable to model the net carbon balance (NBP) of managed grasslands better than ORCHIDEE, because the management module allows to simulate the carbon fluxes of forage yield, herbage consumption, animal respiration and methane emissions.

  5. [On the ultimate goal of management in Spanish hospitals].

    PubMed

    Pastor Tejedor, Jesús

    2009-01-01

    The European Foundation for Quality Management (EFQM) is the most introduced model in Spanish hospitals. The main target of this model is the internal and external client's satisfaction. The model of strategic management Balanced Scorecard (BSC) facilitates the alignment between management and the mission and vision of hospitals. For this reason, we propose a model of integrated management: EFQM-BSC. In order to obtain the items of this research, a survey was conducted among managers of Spanish hospitals on a battery of 46 indicators, selected from the EFQM model, and prioritised and included in the four perspectives of the BSC model. The research shows two possible models of hypothesis: the client model, where the final effect would be the client perspective (patient, staff and society's satisfaction), or the financial model, where the final effect would be the economic and financial results. After a reliability, dimension analysis and a discriminant analysis, it was obtained more consistent indicators which better explain each perspective. The relationship among these perspectives are determined by structural equations based on methods of partial least squares. The research confirms that the client model reflects a better consistency in its hypothesis.

  6. The disruption management model.

    PubMed

    McAlister, James

    2011-10-01

    Within all organisations, business continuity disruptions present a set of dilemmas that managers may not have dealt with before in their normal daily duties. The disruption management model provides a simple but effective management tool to enable crisis management teams to stay focused on recovery in the midst of a business continuity incident. The model has four chronological primary headlines, which steer the team through a quick-time crisis decision-making process. The procedure facilitates timely, systematic, rationalised and justified decisions, which can withstand post-event scrutiny. The disruption management model has been thoroughly tested within an emergency services environment and is proven to significantly support clear and concise decision making in a business continuity context.

  7. [The future of clinical laboratory database management system].

    PubMed

    Kambe, M; Imidy, D; Matsubara, A; Sugimoto, Y

    1999-09-01

    To assess the present status of the clinical laboratory database management system, the difference between the Clinical Laboratory Information System and Clinical Laboratory System was explained in this study. Although three kinds of database management systems (DBMS) were shown including the relational model, tree model and network model, the relational model was found to be the best DBMS for the clinical laboratory database based on our experience and developments of some clinical laboratory expert systems. As a future clinical laboratory database management system, the IC card system connected to an automatic chemical analyzer was proposed for personal health data management and a microscope/video system was proposed for dynamic data management of leukocytes or bacteria.

  8. A Hierarchy of Management Training Requirements: The Competency Domain Model.

    ERIC Educational Resources Information Center

    Sandwith, Paul

    1993-01-01

    The Competency Domain Model has five domains of management competencies: conceptual/creative, leadership, interpersonal, administrative, and technical. Specific competencies and training plans can be identified in each domain for different levels--first line supervisor, field office manager, assistant manager, area manager, director of operations.…

  9. Model forest landscape change in the Missouri Ozarks under alternative management practices

    Treesearch

    Stephen R. Shifley; Frank R. Thompson; David R. Larsen; William D. Dijak

    2000-01-01

    We used a spatially explicit landscape model, LANDIS, to simulate the effects of five management alternatives on a 3216 ha forest landscape in southeast Missouri, USA. We compared management alternatives among two intensities of even-aged management with clearcutting, uneven-aged management with group selection harvest, a mixture of even- and uneven-aged management,...

  10. First-Order Model Management With Variable-Fidelity Physics Applied to Multi-Element Airfoil Optimization

    NASA Technical Reports Server (NTRS)

    Alexandrov, N. M.; Nielsen, E. J.; Lewis, R. M.; Anderson, W. K.

    2000-01-01

    First-order approximation and model management is a methodology for a systematic use of variable-fidelity models or approximations in optimization. The intent of model management is to attain convergence to high-fidelity solutions with minimal expense in high-fidelity computations. The savings in terms of computationally intensive evaluations depends on the ability of the available lower-fidelity model or a suite of models to predict the improvement trends for the high-fidelity problem, Variable-fidelity models can be represented by data-fitting approximations, variable-resolution models. variable-convergence models. or variable physical fidelity models. The present work considers the use of variable-fidelity physics models. We demonstrate the performance of model management on an aerodynamic optimization of a multi-element airfoil designed to operate in the transonic regime. Reynolds-averaged Navier-Stokes equations represent the high-fidelity model, while the Euler equations represent the low-fidelity model. An unstructured mesh-based analysis code FUN2D evaluates functions and sensitivity derivatives for both models. Model management for the present demonstration problem yields fivefold savings in terms of high-fidelity evaluations compared to optimization done with high-fidelity computations alone.

  11. An Overview of the Object Protocol Model (OPM) and the OPM Data Management Tools.

    ERIC Educational Resources Information Center

    Chen, I-Min A.; Markowitz, Victor M.

    1995-01-01

    Discussion of database management tools for scientific information focuses on the Object Protocol Model (OPM) and data management tools based on OPM. Topics include the need for new constructs for modeling scientific experiments, modeling object structures and experiments in OPM, queries and updates, and developing scientific database applications…

  12. Application of Harmony Search algorithm to the solution of groundwater management models

    NASA Astrophysics Data System (ADS)

    Tamer Ayvaz, M.

    2009-06-01

    This study proposes a groundwater resources management model in which the solution is performed through a combined simulation-optimization model. A modular three-dimensional finite difference groundwater flow model, MODFLOW is used as the simulation model. This model is then combined with a Harmony Search (HS) optimization algorithm which is based on the musical process of searching for a perfect state of harmony. The performance of the proposed HS based management model is tested on three separate groundwater management problems: (i) maximization of total pumping from an aquifer (steady-state); (ii) minimization of the total pumping cost to satisfy the given demand (steady-state); and (iii) minimization of the pumping cost to satisfy the given demand for multiple management periods (transient). The sensitivity of HS algorithm is evaluated by performing a sensitivity analysis which aims to determine the impact of related solution parameters on convergence behavior. The results show that HS yields nearly same or better solutions than the previous solution methods and may be used to solve management problems in groundwater modeling.

  13. SPD-based Logistics Management Model of Medical Consumables in Hospitals

    PubMed Central

    LIU, Tongzhu; SHEN, Aizong; HU, Xiaojian; TONG, Guixian; GU, Wei; YANG, Shanlin

    2016-01-01

    Background: With the rapid development of health services, the progress of medical science and technology, and the improvement of materials research, the consumption of medical consumables (MCs) in medical activities has increased in recent years. However, owing to the lack of effective management methods and the complexity of MCs, there are several management problems including MC waste, low management efficiency, high management difficulty, and frequent medical accidents. Therefore, there is urgent need for an effective logistics management model to handle these problems and challenges in hospitals. Methods: We reviewed books and scientific literature (by searching the articles published from 2010 to 2015 in Engineering Village database) to understand supply chain related theories and methods and performed field investigations in hospitals across many cities to determine the actual state of MC logistics management of hospitals in China. Results: We describe the definition, physical model, construction, and logistics operation processes of the supply, processing, and distribution (SPD) of MC logistics because of the traditional SPD model. With the establishment of a supply-procurement platform and a logistics lean management system, we applied the model to the MC logistics management of Anhui Provincial Hospital with good effects. Conclusion: The SPD model plays a critical role in optimizing the logistics procedures of MCs, improving the management efficiency of logistics, and reducing the costs of logistics of hospitals in China. PMID:27957435

  14. E-waste Management and Refurbishment Prediction (EMARP) Model for Refurbishment Industries.

    PubMed

    Resmi, N G; Fasila, K A

    2017-10-01

    This paper proposes a novel algorithm for establishing a standard methodology to manage and refurbish e-waste called E-waste Management And Refurbishment Prediction (EMARP), which can be adapted by refurbishing industries in order to improve their performance. Waste management, particularly, e-waste management is a serious issue nowadays. Computerization has been into waste management in different ways. Much of the computerization has happened in planning the waste collection, recycling and disposal process and also managing documents and reports related to waste management. This paper proposes a computerized model to make predictions for e-waste refurbishment. All possibilities for reusing the common components among the collected e-waste samples are predicted, thus minimizing the wastage. Simulation of the model has been done to analyse the accuracy in the predictions made by the system. The model can be scaled to accommodate the real-world scenario. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. [Closed-loop management model of clinical investigational product for new drug of traditional Chinese medicine].

    PubMed

    Wu, Ping; Zhang, Jian-Wu

    2013-09-01

    This paper discussed the management regulations and technical requirements of clinical investigational product for new drug of traditional Chinese medicine, analyzed some common problems on the management of them, and proposed the establishment of closed-loop management model and management requirements in various aspects.

  16. Supplier Relationship Management: Models, Considerations and Implications for DOD

    DTIC Science & Technology

    2003-01-01

    AY 2002-2003 SUPPLIER RELATIONSHIP MANAGEMENT : MODELS, CONSIDERATIONS AND IMPLICATIONS FOR DOD STRATEGIC SUPPLY INDUSTRY STUDY COURSE COLONEL TOM...REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Supplier Relationship Management : Models, Considerations and Implications for DOD...nature of the market or industry drive differences in supplier relationships ? This paper begins by defining supplier relationship management (SRM) and why

  17. Co-producing simulation models to inform resource management: a case study from southwest South Dakota

    USGS Publications Warehouse

    Miller, Brian W.; Symstad, Amy J.; Frid, Leonardo; Fisichelli, Nicholas A.; Schuurman, Gregor W.

    2017-01-01

    Simulation models can represent complexities of the real world and serve as virtual laboratories for asking “what if…?” questions about how systems might respond to different scenarios. However, simulation models have limited relevance to real-world applications when designed without input from people who could use the simulated scenarios to inform their decisions. Here, we report on a state-and-transition simulation model of vegetation dynamics that was coupled to a scenario planning process and co-produced by researchers, resource managers, local subject-matter experts, and climate change adaptation specialists to explore potential effects of climate scenarios and management alternatives on key resources in southwest South Dakota. Input from management partners and local experts was critical for representing key vegetation types, bison and cattle grazing, exotic plants, fire, and the effects of climate change and management on rangeland productivity and composition given the paucity of published data on many of these topics. By simulating multiple land management jurisdictions, climate scenarios, and management alternatives, the model highlighted important tradeoffs between grazer density and vegetation composition, as well as between the short- and long-term costs of invasive species management. It also pointed to impactful uncertainties related to the effects of fire and grazing on vegetation. More broadly, a scenario-based approach to model co-production bracketed the uncertainty associated with climate change and ensured that the most important (and impactful) uncertainties related to resource management were addressed. This cooperative study demonstrates six opportunities for scientists to engage users throughout the modeling process to improve model utility and relevance: (1) identifying focal dynamics and variables, (2) developing conceptual model(s), (3) parameterizing the simulation, (4) identifying relevant climate scenarios and management alternatives, (5) evaluating and refining the simulation, and (6) interpreting the results. We also reflect on lessons learned and offer several recommendations for future co-production efforts, with the aim of advancing the pursuit of usable science.

  18. How should we build a generic open-source water management simulator?

    NASA Astrophysics Data System (ADS)

    Khadem, M.; Meier, P.; Rheinheimer, D. E.; Padula, S.; Matrosov, E.; Selby, P. D.; Knox, S.; Harou, J. J.

    2014-12-01

    Increasing water needs for agriculture, industry and cities mean effective and flexible water resource system management tools will remain in high demand. Currently many regions or countries use simulators that have been adapted over time to their unique system properties and water management rules and realities. Most regions operate with a preferred short-list of water management and planning decision support systems. Is there scope for a simulator, shared within the water management community, that could be adapted to different contexts, integrate community contributions, and connect to generic data and model management software? What role could open-source play in such a project? How could a genericuser-interface and data/model management software sustainably be attached to this model or suite of models? Finally, how could such a system effectively leverage existing model formulations, modeling technologies and software? These questions are addressed by the initial work presented here. We introduce a generic water resource simulation formulation that enables and integrates both rule-based and optimization driven technologies. We suggest how it could be linked to other sub-models allowing for detailed agent-based simulation of water management behaviours. An early formulation is applied as an example to the Thames water resource system in the UK. The model uses centralised optimisation to calculate allocations but allows for rule-based operations as well in an effort to represent observed behaviours and rules with fidelity. The model is linked through import/export commands to a generic network model platform named Hydra. Benefits and limitations of the approach are discussed and planned work and potential use cases are outlined.

  19. Improved hydrological modeling using AGWA; incorporation of different management practices in hydrological modeling.

    NASA Astrophysics Data System (ADS)

    Vithanage, J.; Miller, S. N.; Paige, G. B.; Liu, T.

    2017-12-01

    We present a novel way to simulate the effects of rangeland management decisions in a GIS-based hydrologic modeling toolkit. We have implemented updates to the Automated Geospatial Watershed Assessment tool (AGWA) in which a landscape can be broken into management units (e.g., high intensity grazing, low intensity grazing, fire management, and unmanaged), each of which is assigned a different hydraulic conductivity (Ks) parameter in KINEmatic Runoff and EROSion model (KINEROS2). These updates are designed to provide modeling support to land managers tasked with rangeland watershed management planning and/or monitoring, and evaluation of water resources management. Changes to hydrologic processes and resulting hydrographs and sedigraphs are simulated within the AGWA framework. Case studies are presented in which a user selects various management scenarios and design storms, and the model identifies areas that become susceptible to change as a consequence of management decisions. The baseline (unmanaged) scenario is built using commonly available GIS data, after which the watershed is subdivided into management units. We used an array of design storms with various return periods and frequencies to evaluate the impact of management practices while changing the scale of watershed. Watershed parameters governing interception, infiltration, and surface runoff were determined with the aid of literature published on research studies carried out in the Walnut Gulch Experimental Watershed in southeast Arizona. We observed varied, but significant changes in hydrological responses (runoff) with different management practices as well with varied scales of watersheds. Results show that the toolkit can be used to quantify potential hydrologic change as a result of unitized land use decision-making.

  20. Demographics of reintroduced populations: estimation, modeling, and decision analysis

    USGS Publications Warehouse

    Converse, Sarah J.; Moore, Clinton T.; Armstrong, Doug P.

    2013-01-01

    Reintroduction can be necessary for recovering populations of threatened species. However, the success of reintroduction efforts has been poorer than many biologists and managers would hope. To increase the benefits gained from reintroduction, management decision making should be couched within formal decision-analytic frameworks. Decision analysis is a structured process for informing decision making that recognizes that all decisions have a set of components—objectives, alternative management actions, predictive models, and optimization methods—that can be decomposed, analyzed, and recomposed to facilitate optimal, transparent decisions. Because the outcome of interest in reintroduction efforts is typically population viability or related metrics, models used in decision analysis efforts for reintroductions will need to include population models. In this special section of the Journal of Wildlife Management, we highlight examples of the construction and use of models for informing management decisions in reintroduced populations. In this introductory contribution, we review concepts in decision analysis, population modeling for analysis of decisions in reintroduction settings, and future directions. Increased use of formal decision analysis, including adaptive management, has great potential to inform reintroduction efforts. Adopting these practices will require close collaboration among managers, decision analysts, population modelers, and field biologists.

  1. The EBM-DPSER Conceptual Model: Integrating Ecosystem Services into the DPSIR Framework

    PubMed Central

    Kelble, Christopher R.; Loomis, Dave K.; Lovelace, Susan; Nuttle, William K.; Ortner, Peter B.; Fletcher, Pamela; Cook, Geoffrey S.; Lorenz, Jerry J.; Boyer, Joseph N.

    2013-01-01

    There is a pressing need to integrate biophysical and human dimensions science to better inform holistic ecosystem management supporting the transition from single species or single-sector management to multi-sector ecosystem-based management. Ecosystem-based management should focus upon ecosystem services, since they reflect societal goals, values, desires, and benefits. The inclusion of ecosystem services into holistic management strategies improves management by better capturing the diversity of positive and negative human-natural interactions and making explicit the benefits to society. To facilitate this inclusion, we propose a conceptual model that merges the broadly applied Driver, Pressure, State, Impact, and Response (DPSIR) conceptual model with ecosystem services yielding a Driver, Pressure, State, Ecosystem service, and Response (EBM-DPSER) conceptual model. The impact module in traditional DPSIR models focuses attention upon negative anthropomorphic impacts on the ecosystem; by replacing impacts with ecosystem services the EBM-DPSER model incorporates not only negative, but also positive changes in the ecosystem. Responses occur as a result of changes in ecosystem services and include inter alia management actions directed at proactively altering human population or individual behavior and infrastructure to meet societal goals. The EBM-DPSER conceptual model was applied to the Florida Keys and Dry Tortugas marine ecosystem as a case study to illustrate how it can inform management decisions. This case study captures our system-level understanding and results in a more holistic representation of ecosystem and human society interactions, thus improving our ability to identify trade-offs. The EBM-DPSER model should be a useful operational tool for implementing EBM, in that it fully integrates our knowledge of all ecosystem components while focusing management attention upon those aspects of the ecosystem most important to human society and does so within a framework already familiar to resource managers. PMID:23951002

  2. The EBM-DPSER conceptual model: integrating ecosystem services into the DPSIR framework.

    PubMed

    Kelble, Christopher R; Loomis, Dave K; Lovelace, Susan; Nuttle, William K; Ortner, Peter B; Fletcher, Pamela; Cook, Geoffrey S; Lorenz, Jerry J; Boyer, Joseph N

    2013-01-01

    There is a pressing need to integrate biophysical and human dimensions science to better inform holistic ecosystem management supporting the transition from single species or single-sector management to multi-sector ecosystem-based management. Ecosystem-based management should focus upon ecosystem services, since they reflect societal goals, values, desires, and benefits. The inclusion of ecosystem services into holistic management strategies improves management by better capturing the diversity of positive and negative human-natural interactions and making explicit the benefits to society. To facilitate this inclusion, we propose a conceptual model that merges the broadly applied Driver, Pressure, State, Impact, and Response (DPSIR) conceptual model with ecosystem services yielding a Driver, Pressure, State, Ecosystem service, and Response (EBM-DPSER) conceptual model. The impact module in traditional DPSIR models focuses attention upon negative anthropomorphic impacts on the ecosystem; by replacing impacts with ecosystem services the EBM-DPSER model incorporates not only negative, but also positive changes in the ecosystem. Responses occur as a result of changes in ecosystem services and include inter alia management actions directed at proactively altering human population or individual behavior and infrastructure to meet societal goals. The EBM-DPSER conceptual model was applied to the Florida Keys and Dry Tortugas marine ecosystem as a case study to illustrate how it can inform management decisions. This case study captures our system-level understanding and results in a more holistic representation of ecosystem and human society interactions, thus improving our ability to identify trade-offs. The EBM-DPSER model should be a useful operational tool for implementing EBM, in that it fully integrates our knowledge of all ecosystem components while focusing management attention upon those aspects of the ecosystem most important to human society and does so within a framework already familiar to resource managers.

  3. A Study on the Self-Adaption Incentive Performance Salary

    NASA Astrophysics Data System (ADS)

    Zhang, Chuanming; Wang, Yang

    In project managing, the performance salary management mode is often used to motivate project managers and other similar staff to improve performance or reduce the cost. But the engineering activities who own a lot of internal and external uncertain factors can not be known by the principle. It is difficult for to develop a suitable incentive target to project managers etch. This paper thinks that the manager self master the maximum of information on engineering activities. So this paper sets up an incentive model: the project managers themselves report performance objectives; owner gives the managers reward or punishment combined with their reported performance and actual performance. The model to ensure that the project manager is only accurate self reported its results to get the maximum profit. At the same time, it cans incentive managers to improve performance or reduce the cost. This paper focuses on setting up the model, analyzing the model parameters. And cite an example analyze them.

  4. Cool Heads: Crisis Management for Administrators.

    ERIC Educational Resources Information Center

    Smiar, Nicholas P.

    1992-01-01

    Applies risk management models to child care administration. These models have been used by corporations to plan for crisis management. The formation of a crisis management policy and procedure is described, and features of effective communication during crises are outlined. (GLR)

  5. Using a Functional Simulation of Crisis Management to Test the C2 Agility Model Parameters on Key Performance Variables

    DTIC Science & Technology

    2013-06-01

    1 18th ICCRTS Using a Functional Simulation of Crisis Management to Test the C2 Agility Model Parameters on Key Performance Variables...AND SUBTITLE Using a Functional Simulation of Crisis Management to Test the C2 Agility Model Parameters on Key Performance Variables 5a. CONTRACT...command in crisis management. C2 Agility Model Agility can be conceptualized at a number of different levels; for instance at the team

  6. Heterogeneous Concurrent Modeling and Design in Java (Volume 1: Introduction to Ptolemy II)

    DTIC Science & Technology

    2008-04-01

    Code 79 2.8.4. Lifecycle Management Actors 79 2.9. Domains 80 2.9.1. SDF and Multirate Systems 81 2.9.2. Data-Dependent Rates 82 2.9.3. Discrete-Event...and we added modeling capabilities for wireless systems. We also introduced lifecycle management actors and dynamically evaluated higher-order...top.setName( "DiningPhilosophers"); Manager manager = new Manager (" Manager "); top.setManager( manager ); new CSPDirector(top

  7. Integrating school-based and therapeutic conflict management models at schools.

    PubMed

    D'Oosterlinck, Franky; Broekaert, Eric

    2003-08-01

    Including children with emotional and behavioral needs in mainstream school systems leads to growing concern about the increasing number of violent and nonviolent conflicts. Schools must adapt to this evolution and adopt a more therapeutic dimension. This paper explores the possibility of integrating school-based and therapeutic conflict management models and compares two management models: a school-based conflict management program. Teaching Students To Be Peacemakers; and a therapeutic conflict management program, Life Space Crisis Intervention. The authors conclude that integration might be possible, but depends on establishing a positive school atmosphere, the central position of the teacher, and collaborative and social learning for pupils. Further implementation of integrated conflict management models can be considered but must be underpinned by appropriate scientific research.

  8. Pain management: a review of organisation models with integrated processes for the management of pain in adult cancer patients.

    PubMed

    Brink-Huis, Anita; van Achterberg, Theo; Schoonhoven, Lisette

    2008-08-01

    This paper reports a review of the literature conducted to identify organisation models in cancer pain management that contain integrated care processes and describe their effectiveness. Pain is experienced by 30-50% of cancer patients receiving treatment and by 70-90% of those with advanced disease. Efforts to improve pain management have been made through the development and dissemination of clinical guidelines. Early improvements in pain management were focussed on just one or two single processes such as pain assessment and patient education. Little is known about organisational models with multiple integrated processes throughout the course of the disease trajectory and concerning all stages of the care process. Systematic review. The review involved a systematic search of the literature, published between 1986-2006. Subject-specific keywords used to describe patients, disease, pain management interventions and integrated care processes, relevant for this review were selected using the thesaurus of the databases. Institutional models, clinical pathways and consultation services are three alternative models for the integration of care processes in cancer pain management. A clinical pathway is a comprehensive institutionalisation model, whereas a pain consultation service is a 'stand-alone' model that can be integrated in a clinical pathway. Positive patient and process outcomes have been described for all three models, although the level of evidence is generally low. Evaluation of the quality of pain management must involve standardised measurements of both patient and process outcomes. We recommend the development of policies for referrals to a pain consultation service. These policies can be integrated within a clinical pathway. To evaluate the effectiveness of pain management models standardised outcome measures are needed.

  9. A Decision-Making Model For Managing or Regenerating Southern Upland Hardwoods

    Treesearch

    K. Kyle Cunningham; Andrew W. Ezell; Keith L. Belli; John D. Hodges

    2004-01-01

    A decision-making model for managing or regenerating southern upland hardwoods is being created for three physiographic provinces including the Cumberland Plateau, Western Highland Rim, and Upper Coastal Plain. The model performs a stand evaluation, from a silvicultural standpoint, and declares a stand as being either manageable or in need of regeneration. Model...

  10. A practical approach for comparing management strategies in complex forest ecosystems using meta-modelling toolkits

    Treesearch

    Andrew Fall; B. Sturtevant; M.-J. Fortin; M. Papaik; F. Doyon; D. Morgan; K. Berninger; C. Messier

    2010-01-01

    The complexity and multi-scaled nature of forests poses significant challenges to understanding and management. Models can provide useful insights into process and their interactions, and implications of alternative management options. Most models, particularly scientific models, focus on a relatively small set of processes and are designed to operate within a...

  11. Presenting of Indifference Management Model of Education System in Ardabil Province Using Structural Equation Modeling

    ERIC Educational Resources Information Center

    Abolfazli, Elham; Saidabadi, Reza Yousefi; Fallah, Vahid

    2016-01-01

    The purpose of the present study is to investigate indifference management structural model in education system of Ardabil Province. The research method was integration study using Alli modeling. Statistical society of research was 420 assistant professors of educational science, managers, and deputies of Ardabil's second period of high schools…

  12. Evaluating the habitat capability model for Merriam's turkeys

    Treesearch

    Mark A. Rumble; Stanley H. Anderson

    1995-01-01

    Habitat capability (HABCAP) models for wildlife assist land managers in predicting the consequences of their management decisions. Models must be tested and refined prior to using them in management planning. We tested the predicted patterns of habitat selection of the R2 HABCAP model using observed patterns of habitats selected by radio-marked Merriam’s turkey (

  13. The role and management implications of modeling owl populations and the habitats they occupy

    Treesearch

    Amy E. Kearns

    1997-01-01

    Modeling ecosystems is an evolving science that is both practical and theoretical. The integration of modeling, landscape ecology, management, and rapidly changing technology offers an array of possible solutions to modern environmental quandaries. In order to address these concerns, a workshop was developed to discuss the role and management implications of modeling...

  14. Nonlinear programming models to optimize uneven-aged loblolly pine management

    Treesearch

    Benedict J. Schulte; Joseph. Buongiorno; Kenneth Skog

    1999-01-01

    Nonlinear programming models of uneven-aged loblolly pine (Pinus taeda L.) management were developed to identify sustainable management regimes which optimize: 1) soil expectation value (SEV), 2) tree diversity, or 3) annual sawtimber yields. The models use the equations of SouthPro, a site- and density-dependent, multi-species matrix growth and yield model that...

  15. Knowledge Management in Preserving Ecosystems: The Case of Seoul

    ERIC Educational Resources Information Center

    Lee, Jeongseok

    2009-01-01

    This study explores the utility of employing knowledge management as a framework for understanding how public managers perform ecosystem management. It applies the grounded theory method to build a model. The model is generated by applying the concept of knowledge process to an investigation of how the urban ecosystem is publicly managed by civil…

  16. Review: Regional groundwater flow modeling in heavily irrigated basins of selected states in the western United States

    NASA Astrophysics Data System (ADS)

    Rossman, Nathan R.; Zlotnik, Vitaly A.

    2013-09-01

    Water resources in agriculture-dominated basins of the arid western United States are stressed due to long-term impacts from pumping. A review of 88 regional groundwater-flow modeling applications from seven intensively irrigated western states (Arizona, California, Colorado, Idaho, Kansas, Nebraska and Texas) was conducted to provide hydrogeologists, modelers, water managers, and decision makers insight about past modeling studies that will aid future model development. Groundwater models were classified into three types: resource evaluation models (39 %), which quantify water budgets and act as preliminary models intended to be updated later, or constitute re-calibrations of older models; management/planning models (55 %), used to explore and identify management plans based on the response of the groundwater system to water-development or climate scenarios, sometimes under water-use constraints; and water rights models (7 %), used to make water administration decisions based on model output and to quantify water shortages incurred by water users or climate changes. Results for 27 model characteristics are summarized by state and model type, and important comparisons and contrasts are highlighted. Consideration of modeling uncertainty and the management focus toward sustainability, adaptive management and resilience are discussed, and future modeling recommendations, in light of the reviewed models and other published works, are presented.

  17. Diversity in case management modalities: the Summit model.

    PubMed

    Peterson, G A; Drone, I D; Munetz, M R

    1997-06-01

    Though ubiquitous in community mental health agencies, case management suffers from a lack of consensus regarding its definition, essential components, and appropriate application. Meaningful comparisons of various case management models await such a consensus. Global assessments of case management must be replaced by empirical studies of specific interventions with respect to the needs of specific populations. The authors describe a highly differentiated and prescriptive system of case management involving the application of more than one model of service delivery. Such a diversified and targeted system offers an opportunity to study the technology of case management in a more meaningful manner.

  18. Landuse and agricultural management practice web-service (LAMPS) for agroecosystem modeling and conservation planning

    USDA-ARS?s Scientific Manuscript database

    Agroecosystem models and conservation planning tools require spatially and temporally explicit input data about agricultural management operations. The USDA Natural Resources Conservation Service is developing a Land Management and Operation Database (LMOD) which contains potential model input, howe...

  19. Pigeon Pea and Cowpea-Based Cropping Systems Improve Vesicular Arbuscular Mycorrhizal Fungal Colonisation of Subsequent Maize on the Alfisols in Central Malawi

    PubMed Central

    Semu, Ernest; Mrema, Jerome P.; Nalivata, Patson C.

    2017-01-01

    Mycorrhizal associations contribute to the sustainability of crop production systems through their roles in nutrient cycling and other benefits in the soil-plant ecosystems. A two-year study was conducted on the Alfisols of Lilongwe and Dowa districts, Central Malawi, to assess the vesicular-arbuscular mycorrhizal (VAM) fungal colonisation levels in pigeon pea, cowpea, and maize grown in sole cropping, legume-cereal, and legume-legume intercropping systems and in the maize grown in short rotation (year 2) as influenced by the previous cropping systems and N fertilizer application. The gridline intersect method was used to assess the VAM fungal colonisation levels. Results showed that all treatments that included legumes whether grown as sole crop, in legume-cereal or in legume-legume cropping systems in the previous year, had significantly higher (P < 0.05) VAM fungal colonisation of the rotational maize crop roots by a range 39% to 50% and 19% to 47% than those in maize supplied and not supplied with N fertilizer, respectively, in a maize-maize short rotation, at the Lilongwe site. A similar trend was reported for the Dowa site. Furthermore, there were positive correlations between VAM fungal colonisation and the plant P content, dry matter yield, and nodule numbers. Further studies may help to assess the diversity of VAM fungal species in Malawi soils and identify more adaptive ones for inoculation studies. PMID:28584528

  20. Pigeon Pea and Cowpea-Based Cropping Systems Improve Vesicular Arbuscular Mycorrhizal Fungal Colonisation of Subsequent Maize on the Alfisols in Central Malawi.

    PubMed

    Njira, Keston O W; Semu, Ernest; Mrema, Jerome P; Nalivata, Patson C

    2017-01-01

    Mycorrhizal associations contribute to the sustainability of crop production systems through their roles in nutrient cycling and other benefits in the soil-plant ecosystems. A two-year study was conducted on the Alfisols of Lilongwe and Dowa districts, Central Malawi, to assess the vesicular-arbuscular mycorrhizal (VAM) fungal colonisation levels in pigeon pea, cowpea, and maize grown in sole cropping, legume-cereal, and legume-legume intercropping systems and in the maize grown in short rotation (year 2) as influenced by the previous cropping systems and N fertilizer application. The gridline intersect method was used to assess the VAM fungal colonisation levels. Results showed that all treatments that included legumes whether grown as sole crop, in legume-cereal or in legume-legume cropping systems in the previous year, had significantly higher ( P < 0.05) VAM fungal colonisation of the rotational maize crop roots by a range 39% to 50% and 19% to 47% than those in maize supplied and not supplied with N fertilizer, respectively, in a maize-maize short rotation, at the Lilongwe site. A similar trend was reported for the Dowa site. Furthermore, there were positive correlations between VAM fungal colonisation and the plant P content, dry matter yield, and nodule numbers. Further studies may help to assess the diversity of VAM fungal species in Malawi soils and identify more adaptive ones for inoculation studies.

  1. Complementary crops and landscape features sustain wild bee communities.

    PubMed

    Martins, Kyle T; Albert, Cécile H; Lechowicz, Martin J; Gonzalez, Andrew

    2018-06-01

    Wild bees, which are important for commercial pollination, depend on floral and nesting resources both at farms and in the surrounding landscape. Mass-flowering crops are only in bloom for a few weeks and unable to support bee populations that persist throughout the year. Farm fields and orchards that flower in succession potentially can extend the availability of floral resources for pollinators. However, it is unclear whether the same bee species or genera will forage from one crop to the next, which bees specialize on particular crops, and to what degree inter-crop visitation patterns will be mediated by landscape context. We therefore studied local- and landscape-level drivers of bee diversity and species turnover in apple orchards, blueberry fields, and raspberry fields that bloom sequentially in southern Quebec, Canada. Despite the presence of high bee species turnover, orchards and small fruit fields complemented each other phenologically by supporting two bee genera essential to their pollination: mining bees (Andrena spp.) and bumble bees (Bombus spp.). A number of bee species specialized on apple, blueberry, or raspberry blossoms, suggesting that all three crops could be used to promote regional bee diversity. Bee diversity (rarefied richness, wild bee abundance) was highest across crops in landscapes containing hedgerows, meadows, and suburban areas that provide ancillary nesting and floral resources throughout the spring and summer. Promoting phenological complementarity in floral resources at the farmstead and landscape scales is essential to sustaining diverse wild bee populations. © 2018 by the Ecological Society of America.

  2. Agroforestry leads to shifts within the gammaproteobacterial microbiome of banana plants cultivated in Central America

    PubMed Central

    Köberl, Martina; Dita, Miguel; Martinuz, Alfonso; Staver, Charles; Berg, Gabriele

    2015-01-01

    Bananas (Musa spp.) belong to the most important global food commodities, and their cultivation represents the world's largest monoculture. Although the plant-associated microbiome has substantial influence on plant growth and health, there is a lack of knowledge of the banana microbiome and its influencing factors. We studied the impact of (i) biogeography, and (ii) agroforestry on the banana-associated gammaproteobacterial microbiome analyzing plants grown in smallholder farms in Nicaragua and Costa Rica. Profiles of 16S rRNA genes revealed high abundances of Pseudomonadales, Enterobacteriales, Xanthomonadales, and Legionellales. An extraordinary high diversity of the gammaproteobacterial microbiota was observed within the endophytic microenvironments (endorhiza and pseudostem), which was similar in both countries. Enterobacteria were identified as dominant group of above-ground plant parts (pseudostem and leaves). Neither biogeography nor agroforestry showed a statistically significant impact on the gammaproteobacterial banana microbiome in general. However, indicator species for each microenvironment and country, as well as for plants grown in Coffea intercropping systems with and without agri-silvicultural production of different Fabaceae trees (Inga spp. in Nicaragua and Erythrina poeppigiana in Costa Rica) could be identified. For example, banana plants grown in agroforestry systems were characterized by an increase of potential plant-beneficial bacteria, like Pseudomonas and Stenotrophomonas, and on the other side by a decrease of Erwinia. Hence, this study could show that as a result of legume-based agroforestry the indigenous banana-associated gammaproteobacterial community noticeably shifted. PMID:25717322

  3. Agroforestry leads to shifts within the gammaproteobacterial microbiome of banana plants cultivated in Central America.

    PubMed

    Köberl, Martina; Dita, Miguel; Martinuz, Alfonso; Staver, Charles; Berg, Gabriele

    2015-01-01

    Bananas (Musa spp.) belong to the most important global food commodities, and their cultivation represents the world's largest monoculture. Although the plant-associated microbiome has substantial influence on plant growth and health, there is a lack of knowledge of the banana microbiome and its influencing factors. We studied the impact of (i) biogeography, and (ii) agroforestry on the banana-associated gammaproteobacterial microbiome analyzing plants grown in smallholder farms in Nicaragua and Costa Rica. Profiles of 16S rRNA genes revealed high abundances of Pseudomonadales, Enterobacteriales, Xanthomonadales, and Legionellales. An extraordinary high diversity of the gammaproteobacterial microbiota was observed within the endophytic microenvironments (endorhiza and pseudostem), which was similar in both countries. Enterobacteria were identified as dominant group of above-ground plant parts (pseudostem and leaves). Neither biogeography nor agroforestry showed a statistically significant impact on the gammaproteobacterial banana microbiome in general. However, indicator species for each microenvironment and country, as well as for plants grown in Coffea intercropping systems with and without agri-silvicultural production of different Fabaceae trees (Inga spp. in Nicaragua and Erythrina poeppigiana in Costa Rica) could be identified. For example, banana plants grown in agroforestry systems were characterized by an increase of potential plant-beneficial bacteria, like Pseudomonas and Stenotrophomonas, and on the other side by a decrease of Erwinia. Hence, this study could show that as a result of legume-based agroforestry the indigenous banana-associated gammaproteobacterial community noticeably shifted.

  4. An event-version-based spatio-temporal modeling approach and its application in the cadastral management

    NASA Astrophysics Data System (ADS)

    Li, Yangdong; Han, Zhen; Liao, Zhongping

    2009-10-01

    Spatiality, temporality, legality, accuracy and continuality are characteristic of cadastral information, and the cadastral management demands that the cadastral data should be accurate, integrated and updated timely. It's a good idea to build an effective GIS management system to manage the cadastral data which are characterized by spatiality and temporality. Because no sound spatio-temporal data models have been adopted, however, the spatio-temporal characteristics of cadastral data are not well expressed in the existing cadastral management systems. An event-version-based spatio-temporal modeling approach is first proposed from the angle of event and version. Then with the help of it, an event-version-based spatio-temporal cadastral data model is built to represent spatio-temporal cadastral data. At last, the previous model is used in the design and implementation of a spatio-temporal cadastral management system. The result of the application of the system shows that the event-version-based spatio-temporal data model is very suitable for the representation and organization of cadastral data.

  5. Integrated urban water cycle management: the UrbanCycle model.

    PubMed

    Hardy, M J; Kuczera, G; Coombes, P J

    2005-01-01

    Integrated urban water cycle management presents a new framework in which solutions to the provision of urban water services can be sought. It enables new and innovative solutions currently constrained by the existing urban water paradigm to be implemented. This paper introduces the UrbanCycle model. The model is being developed in response to the growing and changing needs of the water management sector and in light of the need for tools to evaluate integrated watercycle management approaches. The key concepts underpinning the UrbanCycle model are the adoption of continuous simulation, hierarchical network modelling, and the careful management of computational complexity. The paper reports on the integration of modelling capabilities across the allotment, and subdivision scales, enabling the interactions between these scales to be explored. A case study illustrates the impacts of various mitigation measures possible under an integrated water management framework. The temporal distribution of runoff into ephemeral streams from a residential allotment in Western Sydney is evaluated and linked to the geomorphic and ecological regimes in receiving waters.

  6. Clinical engineering and risk management in healthcare technological process using architecture framework.

    PubMed

    Signori, Marcos R; Garcia, Renato

    2010-01-01

    This paper presents a model that aids the Clinical Engineering to deal with Risk Management in the Healthcare Technological Process. The healthcare technological setting is complex and supported by three basics entities: infrastructure (IS), healthcare technology (HT), and human resource (HR). Was used an Enterprise Architecture - MODAF (Ministry of Defence Architecture Framework) - to model this process for risk management. Thus, was created a new model to contribute to the risk management in the HT process, through the Clinical Engineering viewpoint. This architecture model can support and improve the decision making process of the Clinical Engineering to the Risk Management in the Healthcare Technological process.

  7. International System and Foreign Policy Approaches: Implications for Conflict Modelling and Management

    DTIC Science & Technology

    tool for conflict management , preliminary version of which is the Computer Aided Conflict Information System. Using expert judgments to describe...1961. The combined model is more relevant during the crisis phase. The results have implications for conflict modelling. With respect to conflict ... management , there is an important implication. Since the organizational processes model may be more valid than an event interaction model, then conflict

  8. An ambient agent model for analyzing managers' performance during stress

    NASA Astrophysics Data System (ADS)

    ChePa, Noraziah; Aziz, Azizi Ab; Gratim, Haned

    2016-08-01

    Stress at work have been reported everywhere. Work related performance during stress is a pattern of reactions that occurs when managers are presented with work demands that are not matched with their knowledge, skills, or abilities, and which challenge their ability to cope. Although there are many prior findings pertaining to explain the development of manager performance during stress, less attention has been given to explain the same concept through computational models. In such, a descriptive nature in psychological theories about managers' performance during stress can be transformed into a causal-mechanistic stage that explains the relationship between a series of observed phenomena. This paper proposed an ambient agent model for analyzing managers' performance during stress. Set of properties and variables are identified through past literatures to construct the model. Differential equations have been used in formalizing the model. Set of equations reflecting relations involved in the proposed model are presented. The proposed model is essential and can be encapsulated within an intelligent agent or robots that can be used to support managers during stress.

  9. Primary immunodeficiency disease: a model for case management of chronic diseases.

    PubMed

    Burton, Janet; Murphy, Elyse; Riley, Patty

    2010-01-01

    Patient-centered chronic care management is a new model for the management of rare chronic diseases such as primary immunodeficiency disease (PIDD). This approach emphasizes helping patients become experts on the management of their disease as informed, involved, and interactive partners in healthcare decisions with providers. Because only a few patients are affected by rare illnesses, these patients are forced to become knowledgeable about their disease and therapies and to seek treatment from a healthcare team, which includes physicians and nurse specialists who are equipped to manage the complexity of the disease and its comorbidities. Importantly, therapy for PIDD can be self-administered at home, which has encouraged the transition toward a proactive stance that is at the heart of patient-centered chronic care management. We discuss the evolution of therapy, the issues with the disease, and challenges with its management within the framework of other chronic disease management programs. Suggestions and rationale to move case management of PIDD forward are presented with the intent that sharing our experiences will improve process and better manage outcomes in this patient population. The patient-centered model for the management of PIDD is applicable to the primary care settings, where nurse case managers assist patients through education, support them and their families, and facilitate access to community resources in an approach, which has been described as "guided care." The model also applies specifically to immunology centers where patients receive treatment or instruction on its self-administration at home. Patient-centered management of PIDD, with its emphasis on full involvement of patients in their treatment, has the potential to improve compliance with treatment, and thus patient outcomes, as well as patients' quality of life. The patient-centered model expands the traditional model of chronic disease management, which relies on evidence-based medicine, provider expertise, clinical information systems, and patient education. This approach supports patient self-management with strategies that empower and prepare them for their role as expert patients.

  10. Health care managers' views on and approaches to implementing models for improving care processes.

    PubMed

    Andreasson, Jörgen; Eriksson, Andrea; Dellve, Lotta

    2016-03-01

    To develop a deeper understanding of health-care managers' views on and approaches to the implementation of models for improving care processes. In health care, there are difficulties in implementing models for improving care processes that have been decided on by upper management. Leadership approaches to this implementation can affect the outcome. In-depth interviews with first- and second-line managers in Swedish hospitals were conducted and analysed using grounded theory. 'Coaching for participation' emerged as a central theme for managers in handling top-down initiated process development. The vertical approach in this coaching addresses how managers attempt to sustain unit integrity through adapting and translating orders from top management. The horizontal approach in the coaching refers to managers' strategies for motivating and engaging their employees in implementation work. Implementation models for improving care processes require a coaching leadership built on close manager-employee interaction, mindfulness regarding the pace of change at the unit level, managers with the competence to share responsibility with their teams and engaged employees with the competence to share responsibility for improving the care processes, and organisational structures that support process-oriented work. Implications for nursing management are the importance of giving nurse managers knowledge of change management. © 2015 John Wiley & Sons Ltd.

  11. Development of a comprehensive model for stakeholder management in mental healthcare.

    PubMed

    Bierbooms, Joyce; Van Oers, Hans; Rijkers, Jeroen; Bongers, Inge

    2016-06-20

    Purpose - Stakeholder management is not yet incorporated into the standard practice of most healthcare providers. The purpose of this paper is to assess the applicability of a comprehensive model for stakeholder management in mental healthcare organization for more evidence-based (stakeholder) management. Design/methodology/approach - The assessment was performed in two research parts: the steps described in the model were executed in a single case study at a mental healthcare organization in the Netherlands; and a process and effect evaluation was done to find the supporting and impeding factors with regard to the applicability of the model. Interviews were held with managers and directors to evaluate the effectiveness of the model with a view to stakeholder management. Findings - The stakeholder analysis resulted in the identification of eight stakeholder groups. Different expectations were identified for each of these groups. The analysis on performance gaps revealed that stakeholders generally find the collaboration with a mental healthcare provider "sufficient." Finally a prioritization showed that five stakeholder groups were seen as "definite" stakeholders by the organization. Practical implications - The assessment of the model showed that it generated useful knowledge for more evidence-based (stakeholder) management. Adaptation of the model is needed to increase its feasibility in practice. Originality/value - Provided that the model is properly adapted for the specific field, the analysis can provide more knowledge on stakeholders and can help integrate stakeholder management as a comprehensive process in policy planning.

  12. The water-energy nexus at water supply and its implications on the integrated water and energy management.

    PubMed

    Khalkhali, Masoumeh; Westphal, Kirk; Mo, Weiwei

    2018-09-15

    Water and energy are highly interdependent in the modern world, and hence, it is important to understand their constantly changing and nonlinear interconnections to inform the integrated management of water and energy. In this study, a hydrologic model, a water systems model, and an energy model were developed and integrated into a system dynamics modeling framework. This framework was then applied to a water supply system in the northeast US to capture its water-energy interactions under a set of future population, climate, and system operation scenarios. A hydrologic model was first used to simulate the system's hydrologic inflows and outflows under temperature and precipitation changes on a weekly-basis. A water systems model that combines the hydrologic model and management rules (e.g., water release and transfer) was then developed to dynamically simulate the system's water storage and water head. Outputs from the water systems model were used in the energy model to estimate hydropower generation. It was found that critical water-energy synergies and tradeoffs exist, and there is a possibility for integrated water and energy management to achieve better outcomes. This analysis also shows the importance of a holistic understanding of the systems as a whole, which would allow utility managers to make proactive long-term management decisions. The modeling framework is generalizable to other water supply systems with hydropower generation capacities to inform the integrated management of water and energy resources. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Decision support models for solid waste management: Review and game-theoretic approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karmperis, Athanasios C., E-mail: athkarmp@mail.ntua.gr; Army Corps of Engineers, Hellenic Army General Staff, Ministry of Defence; Aravossis, Konstantinos

    Highlights: ► The mainly used decision support frameworks for solid waste management are reviewed. ► The LCA, CBA and MCDM models are presented and their strengths, weaknesses, similarities and possible combinations are analyzed. ► The game-theoretic approach in a solid waste management context is presented. ► The waste management bargaining game is introduced as a specific decision support framework. ► Cooperative and non-cooperative game-theoretic approaches to decision support for solid waste management are discussed. - Abstract: This paper surveys decision support models that are commonly used in the solid waste management area. Most models are mainly developed within three decisionmore » support frameworks, which are the life-cycle assessment, the cost–benefit analysis and the multi-criteria decision-making. These frameworks are reviewed and their strengths and weaknesses as well as their critical issues are analyzed, while their possible combinations and extensions are also discussed. Furthermore, the paper presents how cooperative and non-cooperative game-theoretic approaches can be used for the purpose of modeling and analyzing decision-making in situations with multiple stakeholders. Specifically, since a waste management model is sustainable when considering not only environmental and economic but also social aspects, the waste management bargaining game is introduced as a specific decision support framework in which future models can be developed.« less

  14. Nursing resources and responsibilities according to hospital organizational model for management of inflammatory bowel disease in Spain.

    PubMed

    Marín, Laura; Torrejón, Antonio; Oltra, Lorena; Seoane, Montserrat; Hernández-Sampelayo, Paloma; Vera, María Isabel; Casellas, Francesc; Alfaro, Noelia; Lázaro, Pablo; García-Sánchez, Valle

    2011-06-01

    Nurses play an important role in the multidisciplinary management of inflammatory bowel disease (IBD), but little is known about this role and the associated resources. To improve knowledge of resource availability for health care activities and the different organizational models in managing IBD in Spain. Cross-sectional study with data obtained by questionnaire directed at Spanish Gastroenterology Services (GS). Five GS models were identified according to whether they have: no specific service for IBD management (Model A); IBD outpatient office for physician consultations (Model B); general outpatient office for nurse consultations (Model C); both, Model B and Model C (Model D); and IBD Unit (Model E) when the hospital has a Comprehensive Care Unit for IBD with telephone helpline, computer, including a Model B. Available resources and activities performed were compared according to GS model (chi-square test and test for linear trend). Responses were received from 107 GS: 33 Model A (31%), 38 Model B (36%), 4 Model C (4%), 16 Model D (15%) and 16 Model E (15%). The model in which nurses have the most resources and responsibilities is the Model E. The more complete the organizational model, the more frequent the availability of nursing resources (educational material, databases, office, and specialized software) and responsibilities (management of walk-in appointments, provision of emotional support, health education, follow-up of drug treatment and treatment adherence) (p<0.05). Nurses have more resources and responsibilities the more complete is the organizational model for IBD management. Development of these areas may improve patient outcomes. Copyright © 2011 European Crohn's and Colitis Organisation. Published by Elsevier B.V. All rights reserved.

  15. Information technology and public health management of disasters--a model for South Asian countries.

    PubMed

    Mathew, Dolly

    2005-01-01

    This paper highlights the use of information technology (IT) in disaster management and public health management of disasters. Effective health response to disasters will depend on three important lines of action: (1) disaster preparedness; (2) emergency relief; and (3) management of disasters. This is facilitated by the presence of modern communication and space technology, especially the Internet and remote sensing satellites. This has made the use of databases, knowledge bases, geographic information systems (GIS), management information systems (MIS), information transfer, and online connectivity possible in the area of disaster management and medicine. This paper suggests a conceptual model called, "The Model for Public Health Management of Disasters for South Asia". This Model visualizes the use of IT in the public health management of disasters by setting up the Health and Disaster Information Network and Internet Community Centers, which will facilitate cooperation among all those in the areas of disaster management and emergency medicine. The suggested infrastructure would benefit the governments, non-government organizations, and institutions working in the areas of disaster and emergency medicine, professionals, the community, and all others associated with disaster management and emergency medicine. The creation of such an infrastructure will enable the rapid transfer of information, data, knowledge, and online connectivity from top officials to the grassroots organizations, and also among these countries regionally. This Model may be debated, modified, and tested further in the field to suit the national and local conditions. It is hoped that this exercise will result in a viable and practical model for use in public health management of disasters by South Asian countries.

  16. From Decent Work to Decent Lives: Positive Self and Relational Management (PS&RM) in the Twenty-First Century

    PubMed Central

    Di Fabio, Annamaria; Kenny, Maureen E.

    2016-01-01

    The aim of the present study is to empirically test the theoretical model, Positive Self and Relational Management (PS&RM), for a sample of 184 Italian university students. The PS&RM model specifies the development of individuals' strengths, potentials, and talents across the lifespan and with regard to the dialect of self in relationship. PS&RM is defined theoretically by three constructs: Positive Lifelong Life Management, Positive Lifelong Self-Management, Positive Lifelong Relational Management. The three constructs are operationalized as follows: Positive Lifelong Life Management is measured by the Positive and Negative Affect Schedule (PANAS), the Satisfaction With Life Scale (SWLS), the Meaningful Life Measure (MLM), and the Authenticity Scale (AS); Positive Lifelong Self-Management is measured by the Intrapreneurial Self-Capital Scale (ISC), the Career Adapt-Abilities Scale (CAAS), and the Life Project Reflexivity Scale (LPRS); and Positive Lifelong Relational Management is measured by the Trait Emotional Intelligence Questionnaire (TEIQue), the Multidimensional Scale for Perceived Social Support (MSPSS), and the Positive Relational Management Scale (PRMS). Confirmatory factor analysis of the PS&RM model was completed using structural equation modeling. The theoretical PS&RM model was empirically tested as defined by the three hypothesized constructs. Empirical support for this model offers a framework for further research and the design of preventive interventions to promote decent work and decent lives in the twenty-first century. PMID:27047406

  17. Watershed Management Optimization Support Tool (WMOST) v1: Theoretical Documentation

    EPA Science Inventory

    The Watershed Management Optimization Support Tool (WMOST) is a screening model that is spatially lumped with options for a daily or monthly time step. It is specifically focused on modeling the effect of management decisions on the watershed. The model considers water flows and ...

  18. Models meet data: Challenges and opportunities in implementing land management in Earth system models.

    PubMed

    Pongratz, Julia; Dolman, Han; Don, Axel; Erb, Karl-Heinz; Fuchs, Richard; Herold, Martin; Jones, Chris; Kuemmerle, Tobias; Luyssaert, Sebastiaan; Meyfroidt, Patrick; Naudts, Kim

    2018-04-01

    As the applications of Earth system models (ESMs) move from general climate projections toward questions of mitigation and adaptation, the inclusion of land management practices in these models becomes crucial. We carried out a survey among modeling groups to show an evolution from models able only to deal with land-cover change to more sophisticated approaches that allow also for the partial integration of land management changes. For the longer term a comprehensive land management representation can be anticipated for all major models. To guide the prioritization of implementation, we evaluate ten land management practices-forestry harvest, tree species selection, grazing and mowing harvest, crop harvest, crop species selection, irrigation, wetland drainage, fertilization, tillage, and fire-for (1) their importance on the Earth system, (2) the possibility of implementing them in state-of-the-art ESMs, and (3) availability of required input data. Matching these criteria, we identify "low-hanging fruits" for the inclusion in ESMs, such as basic implementations of crop and forestry harvest and fertilization. We also identify research requirements for specific communities to address the remaining land management practices. Data availability severely hampers modeling the most extensive land management practice, grazing and mowing harvest, and is a limiting factor for a comprehensive implementation of most other practices. Inadequate process understanding hampers even a basic assessment of crop species selection and tillage effects. The need for multiple advanced model structures will be the challenge for a comprehensive implementation of most practices but considerable synergy can be gained using the same structures for different practices. A continuous and closer collaboration of the modeling, Earth observation, and land system science communities is thus required to achieve the inclusion of land management in ESMs. © 2017 John Wiley & Sons Ltd.

  19. Multiple system modelling of waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eriksson, Ola, E-mail: ola.eriksson@hig.se; Department of Building, Energy and Environmental Engineering, University of Gaevle, SE 801 76 Gaevle; Bisaillon, Mattias, E-mail: mattias.bisaillon@profu.se

    2011-12-15

    Highlights: > Linking of models will provide a more complete, correct and credible picture of the systems. > The linking procedure is easy to perform and also leads to activation of project partners. > The simulation procedure is a bit more complicated and calls for the ability to run both models. - Abstract: Due to increased environmental awareness, planning and performance of waste management has become more and more complex. Therefore waste management has early been subject to different types of modelling. Another field with long experience of modelling and systems perspective is energy systems. The two modelling traditions havemore » developed side by side, but so far there are very few attempts to combine them. Waste management systems can be linked together with energy systems through incineration plants. The models for waste management can be modelled on a quite detailed level whereas surrounding systems are modelled in a more simplistic way. This is a problem, as previous studies have shown that assumptions on the surrounding system often tend to be important for the conclusions. In this paper it is shown how two models, one for the district heating system (MARTES) and another one for the waste management system (ORWARE), can be linked together. The strengths and weaknesses with model linking are discussed when compared to simplistic assumptions on effects in the energy and waste management systems. It is concluded that the linking of models will provide a more complete, correct and credible picture of the consequences of different simultaneous changes in the systems. The linking procedure is easy to perform and also leads to activation of project partners. However, the simulation procedure is a bit more complicated and calls for the ability to run both models.« less

  20. A model for international border management systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duggan, Ruth Ann

    2008-09-01

    To effectively manage the security or control of its borders, a country must understand its border management activities as a system. Using its systems engineering and security foundations as a Department of Energy National Security Laboratory, Sandia National Laboratories has developed such an approach to modeling and analyzing border management systems. This paper describes the basic model and its elements developed under Laboratory Directed Research and Development project 08-684.

  1. Tinnitus: a management model.

    PubMed

    Stephens, S D; Hallam, R S; Jakes, S C

    1986-08-01

    A comprehensive model of tinnitus management is proposed. As it is rarely possible to abolish the symptom, management of the tinnitus patient must aim at precipitating the habituation process. The model is split into 'evaluation' and 'remediation' sections. In each section the various aspects of management are discussed. Together with traditional factors, the importance of psychological processes is stressed. The role of the expectations of the patient in limiting remedial possibilities is also discussed.

  2. Initial development of the Systems Approach to Home Medication Management (SAHMM) model.

    PubMed

    Doucette, William R; Vinel, Shanrae'l; Pennathur, Priyadarshini

    Adverse drug events and medication nonadherence are two problems associated with prescription medication use for chronic conditions. These issues often develop because patients have difficulty managing their medications at home. To guide patients and providers for achieving safe and effective medication use at home, the Systems Approach to Home Medication Management (SAHMM) model was derived from a systems engineering model for health care workplace safety. To explore how well concepts from the SAHMM model can represent home medication management by using patient descriptions of how they take prescription medications at home. Twelve patients were interviewed about home medication management using an interview guide based on the factors of the SAHMM model. Each interview was audio-taped and then transcribed verbatim. Interviews were coded to identify themes for home medication management using MAXQDA for Windows. SAHMM concepts extracted from the coded interview transcripts included work system components of person, tasks, tools & technology, internal environment, external environment, and household. Concepts also addressed work processes and work outcomes for home medication management. Using the SAHMM model for studying patients' home medication management is a promising approach to improving our understanding of the factors that influence patient adherence to medication and the development of adverse drug events. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The healthy learner model for student chronic condition management--part I.

    PubMed

    Erickson, Cecelia DuPlessis; Splett, Patricia L; Mullett, Sara Stoltzfus; Heiman, Mary Bielski

    2006-12-01

    A significant number of children have chronic health conditions that interfere with normal activities, including school attendance and active participation in the learning process. Management of students' chronic conditions is complex and requires an integrated system. Models to improve chronic disease management have been developed for the medical system and public health. Programs that address specific chronic disease management or coordinate school health services have been implemented in schools. Lacking is a comprehensive, integrated model that links schools, students, parents, health care, and other community providers. The Healthy Learner Model for chronic condition management identifies seven elements for creating, implementing, and sustaining an efficient and effective, comprehensive community-based system for improving the management of chronic conditions for school children. It has provided the framework for successful chronic condition management in an urban school district and is proposed for replication in other districts and communities.

  4. Mathematics and mallard management

    USGS Publications Warehouse

    Cowardin, L.M.; Johnson, D.H.

    1979-01-01

    Waterfowl managers can effectively use simple population models to aid in making management decisions. We present a basic model of the change in population size as related to survival and recruitment. A management technique designed to increase survival of mallards (Anas platyrhynchos) by limiting harvest on the Chippewa National Forest, Minnesota, is used to illustrate the application of models in decision making. The analysis suggests that the management technique would be of limited effectiveness. In a 2nd example, the change in mallard population in central North Dakota is related to implementing programs to create dense nesting cover with or without supplementary predator control. The analysis suggests that large tracts of land would be required to achieve a hypothetical management objective of increasing harvest by 50% while maintaining a stable population. Less land would be required if predator reduction were used in combination with cover management, but questions about effectiveness and ecological implications of large scale predator reduction remain unresolved. The use of models as a guide to planning research responsive to the needs of management is illustrated.

  5. A Model-Driven Approach to e-Course Management

    ERIC Educational Resources Information Center

    Savic, Goran; Segedinac, Milan; Milenkovic, Dušica; Hrin, Tamara; Segedinac, Mirjana

    2018-01-01

    This paper presents research on using a model-driven approach to the development and management of electronic courses. We propose a course management system which stores a course model represented as distinct machine-readable components containing domain knowledge of different course aspects. Based on this formally defined platform-independent…

  6. The EFQM Excellence Model for Deploying Quality Management: A British-Russian Journey

    ERIC Educational Resources Information Center

    Steed, Carol; Maslow, Dmitry; Mazaletskaya, Anna

    2005-01-01

    This paper describes how the Excellence Model[R] developed by the European Foundation for Quality Management (EFQM) can be used and applied within higher education, with practical examples accompanying the Model in a Russian University to raise management quality. (Contains 5 figures, 2 tables, and 1 footnote.)

  7. Nonlinear Programming Models to Optimize Uneven-Aged Shortleaf Pine Management

    Treesearch

    Benedict J. Schulte; Joseph Buongiorno

    2002-01-01

    Nonlinear programming models of uneven-aged shortleaf pine (Pinus echinata Mill.) management were developed to identify sustainable management regimes that optimize soil expectation value (SEV) or annual sawtimber yields. The models recognize three species groups (shortleaf pine and other softwoods, soft hardwoods and hard hardwoods) and 13 2-inch...

  8. Maturity of hospital information systems: Most important influencing factors.

    PubMed

    Vidal Carvalho, João; Rocha, Álvaro; Abreu, António

    2017-07-01

    Maturity models facilitate organizational management, including information systems management, with hospital organizations no exception. This article puts forth a study carried out with a group of experts in the field of hospital information systems management with a view to identifying the main influencing factors to be included in an encompassing maturity model for hospital information systems management. This study is based on the results of a literature review, which identified maturity models in the health field and relevant influencing factors. The development of this model is justified to the extent that the available maturity models for the hospital information systems management field reveal multiple limitations, including lack of detail, absence of tools to determine their maturity and lack of characterization for stages of maturity structured by different influencing factors.

  9. Linking ecosystem services with state-and-transition models to evaluate rangeland management decisions

    NASA Astrophysics Data System (ADS)

    Lohani, S.; Heilman, P.; deSteiguer, J. E.; Guertin, D. P.; Wissler, C.; McClaran, M. P.

    2014-12-01

    Quantifying ecosystem services is a crucial topic for land management decision making. However, market prices are usually not able to capture all the ecosystem services and disservices. Ecosystem services from rangelands, that cover 70% of the world's land area, are even less well-understood since knowledge of rangelands is limited. This study generated a management framework for rangelands that uses remote sensing to generate state and transition models (STMs) for a large area and a linear programming (LP) model that uses ecosystem services to evaluate natural and/or management induced transitions as described in the STM. The LP optimization model determines the best management plan for a plot of semi-arid land in the Empire Ranch in southeastern Arizona. The model allocated land among management activities (do nothing, grazing, fire, and brush removal) to optimize net benefits and determined the impact of monetizing environmental services and disservices on net benefits, acreage allocation and production output. The ecosystem services under study were forage production (AUM/ac/yr), sediment (lbs/ac/yr), water runoff (inches/yr), soil loss (lbs/ac/yr) and recreation (thousands of number of visitors/ac/yr). The optimization model was run for three different scenarios - private rancher, public rancher including environmental services and excluding disservices, and public rancher including both services and disservices. The net benefit was the highest for the public rancher excluding the disservices. A result from the study is a constrained optimization model that incorporates ecosystem services to analyze investments on conservation and management activities. Rangeland managers can use this model to understand and explain, not prescribe, the tradeoffs of management investments.

  10. Real-time GIS data model and sensor web service platform for environmental data management.

    PubMed

    Gong, Jianya; Geng, Jing; Chen, Zeqiang

    2015-01-09

    Effective environmental data management is meaningful for human health. In the past, environmental data management involved developing a specific environmental data management system, but this method often lacks real-time data retrieving and sharing/interoperating capability. With the development of information technology, a Geospatial Service Web method is proposed that can be employed for environmental data management. The purpose of this study is to determine a method to realize environmental data management under the Geospatial Service Web framework. A real-time GIS (Geographic Information System) data model and a Sensor Web service platform to realize environmental data management under the Geospatial Service Web framework are proposed in this study. The real-time GIS data model manages real-time data. The Sensor Web service platform is applied to support the realization of the real-time GIS data model based on the Sensor Web technologies. To support the realization of the proposed real-time GIS data model, a Sensor Web service platform is implemented. Real-time environmental data, such as meteorological data, air quality data, soil moisture data, soil temperature data, and landslide data, are managed in the Sensor Web service platform. In addition, two use cases of real-time air quality monitoring and real-time soil moisture monitoring based on the real-time GIS data model in the Sensor Web service platform are realized and demonstrated. The total time efficiency of the two experiments is 3.7 s and 9.2 s. The experimental results show that the method integrating real-time GIS data model and Sensor Web Service Platform is an effective way to manage environmental data under the Geospatial Service Web framework.

  11. The evolution, approval and implementation of the U.S. Geological Survey Science Data Lifecycle Model

    USGS Publications Warehouse

    Faundeen, John L.; Hutchison, Vivian

    2017-01-01

    This paper details how the United States Geological Survey (USGS) Community for Data Integration (CDI) Data Management Working Group developed a Science Data Lifecycle Model, and the role the Model plays in shaping agency-wide policies. Starting with an extensive literature review of existing data Lifecycle models, representatives from various backgrounds in USGS attended a two-day meeting where the basic elements for the Science Data Lifecycle Model were determined. Refinements and reviews spanned two years, leading to finalization of the model and documentation in a formal agency publication . The Model serves as a critical framework for data management policy, instructional resources, and tools. The Model helps the USGS address both the Office of Science and Technology Policy (OSTP) for increased public access to federally funded research, and the Office of Management and Budget (OMB) 2013 Open Data directives, as the foundation for a series of agency policies related to data management planning, metadata development, data release procedures, and the long-term preservation of data. Additionally, the agency website devoted to data management instruction and best practices (www2.usgs.gov/datamanagement) is designed around the Model’s structure and concepts. This paper also illustrates how the Model is being used to develop tools for supporting USGS research and data management processes.

  12. Cognitive mapping tools: review and risk management needs.

    PubMed

    Wood, Matthew D; Bostrom, Ann; Bridges, Todd; Linkov, Igor

    2012-08-01

    Risk managers are increasingly interested in incorporating stakeholder beliefs and other human factors into the planning process. Effective risk assessment and management requires understanding perceptions and beliefs of involved stakeholders, and how these beliefs give rise to actions that influence risk management decisions. Formal analyses of risk manager and stakeholder cognitions represent an important first step. Techniques for diagramming stakeholder mental models provide one tool for risk managers to better understand stakeholder beliefs and perceptions concerning risk, and to leverage this new understanding in developing risk management strategies. This article reviews three methodologies for assessing and diagramming stakeholder mental models--decision-analysis-based mental modeling, concept mapping, and semantic web analysis--and assesses them with regard to their ability to address risk manager needs. © 2012 Society for Risk Analysis.

  13. A model to minimize joint total costs for industrial waste producers and waste management companies.

    PubMed

    Tietze-Stöckinger, Ingela; Fichtner, Wolf; Rentz, Otto

    2004-12-01

    The model LINKopt is a mixed-integer, linear programming model for mid- and long-term planning of waste management options on an inter-company level. There has been a large increase in the transportation of waste material in Germany, which has been attributed to the implementation of the European Directive 75/442/EEC on waste. Similar situations are expected to emerge in other European countries. The model LINKopt has been developed to determine a waste management system with minimal decision-relevant costs considering transportation, handling, storage and treatment of waste materials. The model can serve as a tool to evaluate various waste management strategies and to obtain the optimal combination of investment options. In addition to costs, ecological aspects are considered by determining the total mileage associated with the waste management system. The model has been applied to a German case study evaluating different investment options for a co-operation between Daimler-Chrysler AG at Rastatt, its suppliers, and the waste management company SITA P+R GmbH. The results show that the installation of waste management facilities at the premises of the waste producer would lead to significant reductions in costs and transportation.

  14. A novel medical information management and decision model for uncertain demand optimization.

    PubMed

    Bi, Ya

    2015-01-01

    Accurately planning the procurement volume is an effective measure for controlling the medicine inventory cost. Due to uncertain demand it is difficult to make accurate decision on procurement volume. As to the biomedicine sensitive to time and season demand, the uncertain demand fitted by the fuzzy mathematics method is obviously better than general random distribution functions. To establish a novel medical information management and decision model for uncertain demand optimization. A novel optimal management and decision model under uncertain demand has been presented based on fuzzy mathematics and a new comprehensive improved particle swarm algorithm. The optimal management and decision model can effectively reduce the medicine inventory cost. The proposed improved particle swarm optimization is a simple and effective algorithm to improve the Fuzzy interference and hence effectively reduce the calculation complexity of the optimal management and decision model. Therefore the new model can be used for accurate decision on procurement volume under uncertain demand.

  15. Preschool Teachers' Views about Classroom Management Models

    ERIC Educational Resources Information Center

    Sahin-Sak, Ikbal Tuba; Sak, Ramazan; Tezel-Sahin, Fatma

    2018-01-01

    This survey-based quantitative study investigates 310 Turkish preschool teachers' views about classroom management, using the following six models of disciplinary strategy: behavioral change theory, Dreikurs' social discipline model, Canter's assertive discipline model, the Glasser model of discipline, Kounin's model, and Gordon's teacher…

  16. Manager personality, manager service quality orientation, and service climate: test of a model.

    PubMed

    Salvaggio, Amy Nicole; Schneider, Benjamin; Nishii, Lisa H; Mayer, David M; Ramesh, Anuradha; Lyon, Julie S

    2007-11-01

    This article conceptually and empirically explores the relationships among manager personality, manager service quality orientation, and climate for customer service. Data were collected from 1,486 employees and 145 managers in grocery store departments (N = 145) to test the authors' theoretical model. Largely consistent with hypotheses, results revealed that core self-evaluations were positively related to managers' service quality orientation, even after dimensions of the Big Five model of personality were controlled, and that service quality orientation fully mediated the relationship between personality and global service climate. Implications for personality and organizational climate research are discussed. (c) 2007 APA

  17. Data Envelopment Analysis (DEA) Model in Operation Management

    NASA Astrophysics Data System (ADS)

    Malik, Meilisa; Efendi, Syahril; Zarlis, Muhammad

    2018-01-01

    Quality management is an effective system in operation management to develops, maintains, and improves quality from groups of companies that allow marketing, production, and service at the most economycal level as well as ensuring customer satisfication. Many companies are practicing quality management to improve their bussiness performance. One of performance measurement is through measurement of efficiency. One of the tools can be used to assess efficiency of companies performance is Data Envelopment Analysis (DEA). The aim of this paper is using Data Envelopment Analysis (DEA) model to assess efficiency of quality management. In this paper will be explained CCR, BCC, and SBM models to assess efficiency of quality management.

  18. Investigation on the governance model and effect of medical schools merged with comprehensive universities in China.

    PubMed

    Bai, Ge; Luo, Li

    2013-08-01

    This investigation analyzes the management of medical schools merged with comprehensive universities through internet search and research review to reveal management model and effect of the merger. The conclusion is safely reached that governance models are divided into two different patterns: centralized management and decentralized management. Eight universities, representing the two models, were selected and evaluated comprehensively. Among them, the universities that carried out decentralized management have greater development after the merger based on a quality comparison concerning freshmen, faculty, teaching, and research between the two patterns. © 2013 Wiley Publishing Asia Pty Ltd and Chinese Cochrane Center, West China Hospital of Sichuan University.

  19. Can agent based models effectively reduce fisheries management implementation uncertainty?

    NASA Astrophysics Data System (ADS)

    Drexler, M.

    2016-02-01

    Uncertainty is an inherent feature of fisheries management. Implementation uncertainty remains a challenge to quantify often due to unintended responses of users to management interventions. This problem will continue to plague both single species and ecosystem based fisheries management advice unless the mechanisms driving these behaviors are properly understood. Equilibrium models, where each actor in the system is treated as uniform and predictable, are not well suited to forecast the unintended behaviors of individual fishers. Alternatively, agent based models (AMBs) can simulate the behaviors of each individual actor driven by differing incentives and constraints. This study evaluated the feasibility of using AMBs to capture macro scale behaviors of the US West Coast Groundfish fleet. Agent behavior was specified at the vessel level. Agents made daily fishing decisions using knowledge of their own cost structure, catch history, and the histories of catch and quota markets. By adding only a relatively small number of incentives, the model was able to reproduce highly realistic macro patterns of expected outcomes in response to management policies (catch restrictions, MPAs, ITQs) while preserving vessel heterogeneity. These simulations indicate that agent based modeling approaches hold much promise for simulating fisher behaviors and reducing implementation uncertainty. Additional processes affecting behavior, informed by surveys, are continually being added to the fisher behavior model. Further coupling of the fisher behavior model to a spatial ecosystem model will provide a fully integrated social, ecological, and economic model capable of performing management strategy evaluations to properly consider implementation uncertainty in fisheries management.

  20. End-to-end modeling as part of an integrated research program in the Bering Sea

    NASA Astrophysics Data System (ADS)

    Punt, André E.; Ortiz, Ivonne; Aydin, Kerim Y.; Hunt, George L.; Wiese, Francis K.

    2016-12-01

    Traditionally, the advice provided to fishery managers has focused on the trade-offs between short- and long-term yields, and between future resource size and expected future catches. The harvest control rules that are used to provide management advice consequently relate catches to stock biomass levels expressed relative to reference biomass levels. There are, however, additional trade-offs. Ecosystem-based fisheries management (EBFM) aims to consider fish and fisheries in their ecological context, taking into account physical, biological, economic, and social factors. However, making EBFM operational remains challenging. It is generally recognized that end-to-end modeling should be a key part of implementing EBFM, along with harvest control rules that use information in addition to estimates of stock biomass to provide recommendations for management actions. Here we outline the process for selecting among alternative management strategies in an ecosystem context and summarize a Field-integrated End-To-End modeling program, or FETE, intended to implement this process as part of the Bering Sea Project. A key aspect of this project was that, from the start, the FETE included a management strategy evaluation component to compare management strategies. Effective use of end-to-end modeling requires that the models developed for a system are indeed integrated across climate drivers, lower trophic levels, fish population dynamics, and fisheries and their management. We summarize the steps taken by the program managers to promote integration of modeling efforts by multiple investigators and highlight the lessons learned during the project that can be used to guide future use and design of end-to-end models.

  1. Model of urban water management towards water sensitive city: a literature review

    NASA Astrophysics Data System (ADS)

    Maftuhah, D. I.; Anityasari, M.; Sholihah, M.

    2018-04-01

    Nowadays, many cities are facing with complex issues such as climate change, social, economic, culture, and environmental problems, especially urban water. In other words, the city has to struggle with the challenge to make sure its sustainability in all aspects. This research focuses on how to ensure the city sustainability and resilience on urban water management. Many research were not only conducted in urban water management, but also in sustainability itself. Moreover, water sustainability shifts from urban water management into water sensitive city. This transition needs comprehensive aspects such as social, institutional dynamics, technical innovation, and local contents. Some literatures about model of urban water management and the transition towards water sensitivity had been reviewed in this study. This study proposed discussion about model of urban water management and the transition towards water sensitive city. Research findings suggest that there are many different models developed in urban water management, but they are not comprehensive yet and only few studies discuss about the transition towards water sensitive and resilience city. The drawbacks of previous research can identify and fulfill the gap of this study. Therefore, the paper contributes a general framework for the urban water management modelling studies.

  2. Conceptual Processes for Linking Eutrophication and Network Models

    DTIC Science & Technology

    2006-08-01

    recommends a general procedure for future endeavors in this area. BACKGROUND: In recent years new ideas for nutrient management to control...network model. Coupling these two models will provide managers a new perspective on how to improve management strategies and help answer questions such...Dorothy H. Tillman, Dr. Carl F. Cerco, and Mr. Mark R. Noel of the Water Quality and Contaminant Modeling Branch, Enviromental Laboratory (EL

  3. A Model-Driven Architecture Approach for Modeling, Specifying and Deploying Policies in Autonomous and Autonomic Systems

    NASA Technical Reports Server (NTRS)

    Pena, Joaquin; Hinchey, Michael G.; Sterritt, Roy; Ruiz-Cortes, Antonio; Resinas, Manuel

    2006-01-01

    Autonomic Computing (AC), self-management based on high level guidance from humans, is increasingly gaining momentum as the way forward in designing reliable systems that hide complexity and conquer IT management costs. Effectively, AC may be viewed as Policy-Based Self-Management. The Model Driven Architecture (MDA) approach focuses on building models that can be transformed into code in an automatic manner. In this paper, we look at ways to implement Policy-Based Self-Management by means of models that can be converted to code using transformations that follow the MDA philosophy. We propose a set of UML-based models to specify autonomic and autonomous features along with the necessary procedures, based on modification and composition of models, to deploy a policy as an executing system.

  4. CERT Resilience Management Model: A Maturity Model Approach to Managing Operational Resilience

    DTIC Science & Technology

    2010-07-28

    manufacturing, and energy 8 years @ SEI concentrating in information security risk management BS-Accounting; MBA Frequent lecturer in Carnegie...impact Move all operational risk management activities in the same direction Optimize cost/effectiveness Meet mission no-matter-what How do you...processes Effective operational risk management requires harmonization: convergence of these activities working toward the same goals Operational

  5. Outcomes-Balanced Framework for Emergency Management: A Predictive Model for Preparedness

    DTIC Science & Technology

    2013-09-01

    Management Total Quality Management (TQM) was developed by W. Edwards Deming in the post-World War II reconstruction period in Japan. It ushered in a...FIGURES Figure 1. From Total Quality Management Principles ....................................................30 Figure 2. Outcomes Logic Model (After...THIRA Threat and Hazard Identification and Risk Assessment TQM Total Quality Management UTL Universal Task List xiv ACKNOWLEDGMENTS German

  6. Adaptive harvest management of North American waterfowl populations - recent successes and future prospects

    USGS Publications Warehouse

    Nichols, J.D.; Runge, M.C.; Johnson, F.A.; Williams, B.K.; Schodde, Richard; Hannon, Susan; Scheiffarth, Gregor; Bairlein, Franz

    2006-01-01

    The history of North American waterfowl harvest management has been characterized by attempts to use population monitoring data to make informed harvest management decisions. Early attempts can be characterized as intuitive decision processes, and later efforts were guided increasingly by population models and associated predictions. In 1995, a formal adaptive management process was implemented, and annual decisions about duck harvest regulations in the United States are still based on this process. This formal decision process is designed to deal appropriately with the various forms of uncertainty that characterize management decisions, environmental uncertainty, structural uncertainty, partial controllability and partial observability. The key components of the process are (1) objectives, (2) potential management actions, (3) model(s) of population response to management actions, (4) credibility measures for these models, and (5) a monitoring program. The operation of this iterative process is described, and a brief history of a decade of its use is presented. Future challenges range from social and political issues such as appropriate objectives and management actions, to technical issues such as multispecies management, geographic allocation of harvest, and incorporation of actions that include habitat acquisition and management.

  7. A farm-level precision land management framework based on integer programming

    PubMed Central

    Li, Qi; Hu, Guiping; Jubery, Talukder Zaki; Ganapathysubramanian, Baskar

    2017-01-01

    Farmland management involves several planning and decision making tasks including seed selection and irrigation management. A farm-level precision farmland management model based on mixed integer linear programming is proposed in this study. Optimal decisions are designed for pre-season planning of crops and irrigation water allocation. The model captures the effect of size and shape of decision scale as well as special irrigation patterns. The authors illustrate the model with a case study on a farm in the state of California in the U.S. and show the model can capture the impact of precision farm management on profitability. The results show that threefold increase of annual net profit for farmers could be achieved by carefully choosing irrigation and seed selection. Although farmers could increase profits by applying precision management to seed or irrigation alone, profit increase is more significant if farmers apply precision management on seed and irrigation simultaneously. The proposed model can also serve as a risk analysis tool for farmers facing seasonal irrigation water limits as well as a quantitative tool to explore the impact of precision agriculture. PMID:28346499

  8. Adaptive invasive species distribution models: A framework for modeling incipient invasions

    USGS Publications Warehouse

    Uden, Daniel R.; Allen, Craig R.; Angeler, David G.; Corral, Lucia; Fricke, Kent A.

    2015-01-01

    The utilization of species distribution model(s) (SDM) for approximating, explaining, and predicting changes in species’ geographic locations is increasingly promoted for proactive ecological management. Although frameworks for modeling non-invasive species distributions are relatively well developed, their counterparts for invasive species—which may not be at equilibrium within recipient environments and often exhibit rapid transformations—are lacking. Additionally, adaptive ecological management strategies address the causes and effects of biological invasions and other complex issues in social-ecological systems. We conducted a review of biological invasions, species distribution models, and adaptive practices in ecological management, and developed a framework for adaptive, niche-based, invasive species distribution model (iSDM) development and utilization. This iterative, 10-step framework promotes consistency and transparency in iSDM development, allows for changes in invasive drivers and filters, integrates mechanistic and correlative modeling techniques, balances the avoidance of type 1 and type 2 errors in predictions, encourages the linking of monitoring and management actions, and facilitates incremental improvements in models and management across space, time, and institutional boundaries. These improvements are useful for advancing coordinated invasive species modeling, management and monitoring from local scales to the regional, continental and global scales at which biological invasions occur and harm native ecosystems and economies, as well as for anticipating and responding to biological invasions under continuing global change.

  9. An Open Software Platform for Sharing Water Resource Models, Code and Data

    NASA Astrophysics Data System (ADS)

    Knox, Stephen; Meier, Philipp; Mohamed, Khaled; Korteling, Brett; Matrosov, Evgenii; Huskova, Ivana; Harou, Julien; Rosenberg, David; Tilmant, Amaury; Medellin-Azuara, Josue; Wicks, Jon

    2016-04-01

    The modelling of managed water resource systems requires new approaches in the face of increasing future uncertainty. Water resources management models, even if applied to diverse problem areas, use common approaches such as representing the problem as a network of nodes and links. We propose a data management software platform, called Hydra, that uses this commonality to allow multiple models using a node-link structure to be managed and run using a single software system. Hydra's user interface allows users to manage network topology and associated data. Hydra feeds this data directly into a model, importing from and exporting to different file formats using Apps. An App connects Hydra to a custom model, a modelling system such as GAMS or MATLAB or to different file formats such as MS Excel, CSV and ESRI Shapefiles. Hydra allows users to manage their data in a single, consistent place. Apps can be used to run domain-specific models and allow users to work with their own required file formats. The Hydra App Store offers a collaborative space where model developers can publish, review and comment on Apps, models and data. Example Apps and open-source libraries are available in a variety of languages (Python, Java and .NET). The App Store can act as a hub for water resource modellers to view and share Apps, models and data easily. This encourages an ecosystem of development using a shared platform, resulting in more model integration and potentially greater unity within resource modelling communities. www.hydraplatform.org www.hydraappstore.com

  10. Managing Diversity within South African Technikons: A Strategic Management Approach.

    ERIC Educational Resources Information Center

    Norris, Brian

    1996-01-01

    Based on experiences with affirmative action and subsequent management of diversity at five research universities in the United States, a model for strategic management of diversity in South African technical institutes is outlined. The model has six components: organizational culture; organizational/environmental change; Total Quality Management…

  11. Simulation of Management Effect on Runoff and Sediment Transport in Riparian Forest Buffers by APEX Model

    USDA-ARS?s Scientific Manuscript database

    Hydrologic/water quality models are increasingly used to explore management and policy alternatives for managing water quality and quantity from intensive silvicultural practices with Best Management Practices (BMPs) in forested watersheds due to the limited number of studies and the cost of conduct...

  12. Multi-criteria decision models for forestry and natural resources management: an annotated bibliography

    Treesearch

    Joseph E. de Steiguer; Leslie Liberti; Albert Schuler; Bruce Hansen

    2003-01-01

    Foresters and natural resource managers must balance conflicting objectives when developing land-management plans. Conflicts may encompass economic, environmental, social, cultural, technical, and aesthetic objectives. Selecting the best combination of management uses from numerous objectives is difficult and challenging. Multi-Criteria Decision Models (MCDM) provide a...

  13. Practical Teaching & Learning Model: A Modern Dimension for Business Management Schools

    ERIC Educational Resources Information Center

    Kolachi, Nadir Ali

    2013-01-01

    Purpose: The purpose of this research is to evaluate and investigate the most suitable model required for teaching business Management curriculum. The paper will report a new dimension of Business Management Teaching. For this purpose, a Practical teaching & Learning Model has been prepared and will be discussed through qualitative research…

  14. Local Politics and Portfolio Management Models: National Reform Ideas and Local Control

    ERIC Educational Resources Information Center

    Bulkley, Katrina E.; Henig, Jeffrey R.

    2015-01-01

    Amid the growth of charter schools, autonomous schools, and private management organizations, an increasing number of urban districts are moving toward a portfolio management model (PMM). In a PMM, the district central office oversees schools that operate under a variety of governance models. The expansion of PMMs raises questions about local…

  15. Role Modelling in Manager Development: Learning that Which Cannot Be Taught

    ERIC Educational Resources Information Center

    Warhurst, Russell

    2011-01-01

    Purpose: This is an empirical article which aims to examine the extent and nature of management role modelling and the learning achieved from role modelling. The article argues that the spread of taught management development and formal mentoring programmes has resulted in the neglect of practice-knowledge and facets of managerial character…

  16. Integrated modeling of long-term vegetation and hydrologic dynamics in Rocky Mountain watersheds

    Treesearch

    Robert Steven Ahl

    2007-01-01

    Changes in forest structure resulting from natural disturbances, or managed treatments, can have negative and long lasting impacts on water resources. To facilitate integrated management of forest and water resources, a System for Long-Term Integrated Management Modeling (SLIMM) was developed. By combining two spatially explicit, continuous time models, vegetation...

  17. The Samurai or the Cowboy? Toward an American Model of Quality Management.

    ERIC Educational Resources Information Center

    Beck, Mark W.

    1994-01-01

    The Japanese model of business management and Total Quality Management principles being applied to higher education as well as businesses are often ineffective because of the application of packaged ideas without consideration of the subtleties of individual organizations. The cowboy model of teamwork stresses the individual's role and better fits…

  18. Developmental Visual Dysfunction: Models for Assessment and Management.

    ERIC Educational Resources Information Center

    Erhardt, Rhoda Priest

    This book describes transdisciplinary management of multiply disabled children with vision problems and presents four theoretical models of visual assessment and three illustrative case studies in a sequence appropriate to the learning process. The first three models are intended to lead to assessment and management of the child and the last to…

  19. A methodological framework to support the initiation, design and institutionalization of participatory modeling processes in water resources management

    NASA Astrophysics Data System (ADS)

    Halbe, Johannes; Pahl-Wostl, Claudia; Adamowski, Jan

    2018-01-01

    Multiple barriers constrain the widespread application of participatory methods in water management, including the more technical focus of most water agencies, additional cost and time requirements for stakeholder involvement, as well as institutional structures that impede collaborative management. This paper presents a stepwise methodological framework that addresses the challenges of context-sensitive initiation, design and institutionalization of participatory modeling processes. The methodological framework consists of five successive stages: (1) problem framing and stakeholder analysis, (2) process design, (3) individual modeling, (4) group model building, and (5) institutionalized participatory modeling. The Management and Transition Framework is used for problem diagnosis (Stage One), context-sensitive process design (Stage Two) and analysis of requirements for the institutionalization of participatory water management (Stage Five). Conceptual modeling is used to initiate participatory modeling processes (Stage Three) and ensure a high compatibility with quantitative modeling approaches (Stage Four). This paper describes the proposed participatory model building (PMB) framework and provides a case study of its application in Québec, Canada. The results of the Québec study demonstrate the applicability of the PMB framework for initiating and designing participatory model building processes and analyzing barriers towards institutionalization.

  20. Toward Big Data Analytics: Review of Predictive Models in Management of Diabetes and Its Complications.

    PubMed

    Cichosz, Simon Lebech; Johansen, Mette Dencker; Hejlesen, Ole

    2015-10-14

    Diabetes is one of the top priorities in medical science and health care management, and an abundance of data and information is available on these patients. Whether data stem from statistical models or complex pattern recognition models, they may be fused into predictive models that combine patient information and prognostic outcome results. Such knowledge could be used in clinical decision support, disease surveillance, and public health management to improve patient care. Our aim was to review the literature and give an introduction to predictive models in screening for and the management of prevalent short- and long-term complications in diabetes. Predictive models have been developed for management of diabetes and its complications, and the number of publications on such models has been growing over the past decade. Often multiple logistic or a similar linear regression is used for prediction model development, possibly owing to its transparent functionality. Ultimately, for prediction models to prove useful, they must demonstrate impact, namely, their use must generate better patient outcomes. Although extensive effort has been put in to building these predictive models, there is a remarkable scarcity of impact studies. © 2015 Diabetes Technology Society.

  1. Modelling Coral Reef Futures to Inform Management: Can Reducing Local-Scale Stressors Conserve Reefs under Climate Change?

    PubMed Central

    Gurney, Georgina G.; Melbourne-Thomas, Jessica; Geronimo, Rollan C.; Aliño, Perry M.; Johnson, Craig R.

    2013-01-01

    Climate change has emerged as a principal threat to coral reefs, and is expected to exacerbate coral reef degradation caused by more localised stressors. Management of local stressors is widely advocated to bolster coral reef resilience, but the extent to which management of local stressors might affect future trajectories of reef state remains unclear. This is in part because of limited understanding of the cumulative impact of multiple stressors. Models are ideal tools to aid understanding of future reef state under alternative management and climatic scenarios, but to date few have been sufficiently developed to be useful as decision support tools for local management of coral reefs subject to multiple stressors. We used a simulation model of coral reefs to investigate the extent to which the management of local stressors (namely poor water quality and fishing) might influence future reef state under varying climatic scenarios relating to coral bleaching. We parameterised the model for Bolinao, the Philippines, and explored how simulation modelling can be used to provide decision support for local management. We found that management of water quality, and to a lesser extent fishing, can have a significant impact on future reef state, including coral recovery following bleaching-induced mortality. The stressors we examined interacted antagonistically to affect reef state, highlighting the importance of considering the combined impact of multiple stressors rather than considering them individually. Further, by providing explicit guidance for management of Bolinao's reef system, such as which course of management action will most likely to be effective over what time scales and at which sites, we demonstrated the utility of simulation models for supporting management. Aside from providing explicit guidance for management of Bolinao's reef system, our study offers insights which could inform reef management more broadly, as well as general understanding of reef systems. PMID:24260347

  2. Modelling coral reef futures to inform management: can reducing local-scale stressors conserve reefs under climate change?

    PubMed

    Gurney, Georgina G; Melbourne-Thomas, Jessica; Geronimo, Rollan C; Aliño, Perry M; Johnson, Craig R

    2013-01-01

    Climate change has emerged as a principal threat to coral reefs, and is expected to exacerbate coral reef degradation caused by more localised stressors. Management of local stressors is widely advocated to bolster coral reef resilience, but the extent to which management of local stressors might affect future trajectories of reef state remains unclear. This is in part because of limited understanding of the cumulative impact of multiple stressors. Models are ideal tools to aid understanding of future reef state under alternative management and climatic scenarios, but to date few have been sufficiently developed to be useful as decision support tools for local management of coral reefs subject to multiple stressors. We used a simulation model of coral reefs to investigate the extent to which the management of local stressors (namely poor water quality and fishing) might influence future reef state under varying climatic scenarios relating to coral bleaching. We parameterised the model for Bolinao, the Philippines, and explored how simulation modelling can be used to provide decision support for local management. We found that management of water quality, and to a lesser extent fishing, can have a significant impact on future reef state, including coral recovery following bleaching-induced mortality. The stressors we examined interacted antagonistically to affect reef state, highlighting the importance of considering the combined impact of multiple stressors rather than considering them individually. Further, by providing explicit guidance for management of Bolinao's reef system, such as which course of management action will most likely to be effective over what time scales and at which sites, we demonstrated the utility of simulation models for supporting management. Aside from providing explicit guidance for management of Bolinao's reef system, our study offers insights which could inform reef management more broadly, as well as general understanding of reef systems.

  3. Aspects of choosing appropriate concepts for modelling groundwater resources in regional integrated water resources management Examples from the Neckar (Germany) and Ouémé catchment (Benin)

    NASA Astrophysics Data System (ADS)

    Barthel, R.; Jagelke, J.; Götzinger, J.; Gaiser, T.; Printz, Andreas

    Two regional groundwater flow models (Neckar catchment, Germany, 14,000 km 2, and Southern Ouémé Basin, Benin, 11,000 km 2) were developed within the framework of the integrated management project ‘RIVERTWIN’ ( www.rivertwin.org). Both models were evaluated with respect to the question if the chosen modelling approaches (multi-layered finite difference numerical flow modelling, steady state and transient) are appropriate in view of the existing management problems in the catchments, the data availability and the hydrogeological and hydrological conditions in the basins. It is shown that neither the model in the well-investigated, data-rich basin in Western Europe with its highly developed water related infrastructure, nor the model in the hydrogeologically less well-known and less developed basin in Western Africa provide results that are fully applicable to the main regional management tasks. In the case of the Ouémé, the groundwater related problems are foremost of local character and therefore cannot be addressed by regional models in a meaningful way. Data scarcity and complex, unfavourable geological conditions (crystalline rocks, discontinuous aquifers) support the conclusion that numerical 3D groundwater flow models are currently not helpful to manage groundwater related management problems in the Ouémé basin. A better understanding of regional hydrological surface and subsurface processes is required first. Methods for a reliable estimation of groundwater recharge and subsequently groundwater availability were identified as the most urgently needed tool for meaningful groundwater management in view of climatic, demographic and land use change. In the Neckar catchment the results of the analysis are less pronounced; here regional groundwater problems could clearly benefit from a physically based 3D model since the hydrogeological system is strictly stratified with several important aquifers in the vertical sequence. As a general conclusion it can be stated that regional scale groundwater flow modelling concepts seem to be difficult to integrate in management systems and difficult to transfer from one basin to another. This means the question of how to represent the groundwater resources appropriately has to be discussed very thoroughly for any new integrated water resources management problem. It is not possible to give a final recommendation on which modelling concept is the most appropriate one in regional integrated modelling and management. Hence, this article is only intended to provide an in depth discussion of the aspects that need to be considered in the process of choosing appropriate modelling concepts.

  4. The dynamic model of enterprise revenue management

    NASA Astrophysics Data System (ADS)

    Mitsel, A. A.; Kataev, M. Yu; Kozlov, S. V.; Korepanov, K. V.

    2017-01-01

    The article presents the dynamic model of enterprise revenue management. This model is based on the quadratic criterion and linear control law. The model is founded on multiple regression that links revenues with the financial performance of the enterprise. As a result, optimal management is obtained so as to provide the given enterprise revenue, namely, the values of financial indicators that ensure the planned profit of the organization are acquired.

  5. A multistage decision support framework to guide tree species management under climate change via habitat suitability and colonization models, and a knowledge-based scoring system

    Treesearch

    Anantha M. Prasad; Louis R. Iverson; Stephen N. Matthews; Matthew P. Peters

    2016-01-01

    Context. No single model can capture the complex species range dynamics under changing climates--hence the need for a combination approach that addresses management concerns. Objective. A multistage approach is illustrated to manage forested landscapes under climate change. We combine a tree species habitat model--DISTRIB II, a species colonization model--SHIFT, and...

  6. Team Risk Management: A New Model for Customer-Supplier Relationships

    DTIC Science & Technology

    1994-07-01

    Management : A New Model for Customer - Supplier Relationships Ronald P. Higuera "Audrey J. Dorofee Julie A. Walker Ray C. Williams July 1994 ""•// 94...N/A N/A N/A 11. TITLE (Include Secuity Claaaificatioa) Team Risk Management : A New Model for Customer -Supplier Relationships 12. PERSONAL AUTHOR(S...by block number) FIELD GROUP SUB. GR. Customer - Supplier Relationships Risk Team Risk Management 19. ABSTRACT (cominus on = if necesaryd id’y by block

  7. Setting conservation management thresholds using a novel participatory modeling approach.

    PubMed

    Addison, P F E; de Bie, K; Rumpff, L

    2015-10-01

    We devised a participatory modeling approach for setting management thresholds that show when management intervention is required to address undesirable ecosystem changes. This approach was designed to be used when management thresholds: must be set for environmental indicators in the face of multiple competing objectives; need to incorporate scientific understanding and value judgments; and will be set by participants with limited modeling experience. We applied our approach to a case study where management thresholds were set for a mat-forming brown alga, Hormosira banksii, in a protected area management context. Participants, including management staff and scientists, were involved in a workshop to test the approach, and set management thresholds to address the threat of trampling by visitors to an intertidal rocky reef. The approach involved trading off the environmental objective, to maintain the condition of intertidal reef communities, with social and economic objectives to ensure management intervention was cost-effective. Ecological scenarios, developed using scenario planning, were a key feature that provided the foundation for where to set management thresholds. The scenarios developed represented declines in percent cover of H. banksii that may occur under increased threatening processes. Participants defined 4 discrete management alternatives to address the threat of trampling and estimated the effect of these alternatives on the objectives under each ecological scenario. A weighted additive model was used to aggregate participants' consequence estimates. Model outputs (decision scores) clearly expressed uncertainty, which can be considered by decision makers and used to inform where to set management thresholds. This approach encourages a proactive form of conservation, where management thresholds and associated actions are defined a priori for ecological indicators, rather than reacting to unexpected ecosystem changes in the future. © 2015 The Authors Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  8. The relationship between quality management practices and organisational performance: A structural equation modelling approach

    NASA Astrophysics Data System (ADS)

    Jamaluddin, Z.; Razali, A. M.; Mustafa, Z.

    2015-02-01

    The purpose of this paper is to examine the relationship between the quality management practices (QMPs) and organisational performance for the manufacturing industry in Malaysia. In this study, a QMPs and organisational performance framework is developed according to a comprehensive literature review which cover aspects of hard and soft quality factors in manufacturing process environment. A total of 11 hypotheses have been put forward to test the relationship amongst the six constructs, which are management commitment, training, process management, quality tools, continuous improvement and organisational performance. The model is analysed using Structural Equation Modeling (SEM) with AMOS software version 18.0 using Maximum Likelihood (ML) estimation. A total of 480 questionnaires were distributed, and 210 questionnaires were valid for analysis. The results of the modeling analysis using ML estimation indicate that the fits statistics of QMPs and organisational performance model for manufacturing industry is admissible. From the results, it found that the management commitment have significant impact on the training and process management. Similarly, the training had significant effect to the quality tools, process management and continuous improvement. Furthermore, the quality tools have significant influence on the process management and continuous improvement. Likewise, the process management also has a significant impact to the continuous improvement. In addition the continuous improvement has significant influence the organisational performance. However, the results of the study also found that there is no significant relationship between management commitment and quality tools, and between the management commitment and continuous improvement. The results of the study can be used by managers to prioritize the implementation of QMPs. For instances, those practices that are found to have positive impact on organisational performance can be recommended to managers so that they can allocate resources to improve these practices to get better performance.

  9. How Participatory Should Environmental Governance Be? Testing the Applicability of the Vroom-Yetton-Jago Model in Public Environmental Decision-Making

    NASA Astrophysics Data System (ADS)

    Lührs, Nikolas; Jager, Nicolas W.; Challies, Edward; Newig, Jens

    2018-02-01

    Public participation is potentially useful to improve public environmental decision-making and management processes. In corporate management, the Vroom-Yetton-Jago normative decision-making model has served as a tool to help managers choose appropriate degrees of subordinate participation for effective decision-making given varying decision-making contexts. But does the model recommend participatory mechanisms that would actually benefit environmental management? This study empirically tests the improved Vroom-Jago version of the model in the public environmental decision-making context. To this end, the key variables of the Vroom-Jago model are operationalized and adapted to a public environmental governance context. The model is tested using data from a meta-analysis of 241 published cases of public environmental decision-making, yielding three main sets of findings: (1) The Vroom-Jago model proves limited in its applicability to public environmental governance due to limited variance in its recommendations. We show that adjustments to key model equations make it more likely to produce meaningful recommendations. (2) We find that in most of the studied cases, public environmental managers (implicitly) employ levels of participation close to those that would have been recommended by the model. (3) An ANOVA revealed that such cases, which conform to model recommendations, generally perform better on stakeholder acceptance and environmental standards of outputs than those that diverge from the model. Public environmental management thus benefits from carefully selected and context-sensitive modes of participation.

  10. How Participatory Should Environmental Governance Be? Testing the Applicability of the Vroom-Yetton-Jago Model in Public Environmental Decision-Making.

    PubMed

    Lührs, Nikolas; Jager, Nicolas W; Challies, Edward; Newig, Jens

    2018-02-01

    Public participation is potentially useful to improve public environmental decision-making and management processes. In corporate management, the Vroom-Yetton-Jago normative decision-making model has served as a tool to help managers choose appropriate degrees of subordinate participation for effective decision-making given varying decision-making contexts. But does the model recommend participatory mechanisms that would actually benefit environmental management? This study empirically tests the improved Vroom-Jago version of the model in the public environmental decision-making context. To this end, the key variables of the Vroom-Jago model are operationalized and adapted to a public environmental governance context. The model is tested using data from a meta-analysis of 241 published cases of public environmental decision-making, yielding three main sets of findings: (1) The Vroom-Jago model proves limited in its applicability to public environmental governance due to limited variance in its recommendations. We show that adjustments to key model equations make it more likely to produce meaningful recommendations. (2) We find that in most of the studied cases, public environmental managers (implicitly) employ levels of participation close to those that would have been recommended by the model. (3) An ANOVA revealed that such cases, which conform to model recommendations, generally perform better on stakeholder acceptance and environmental standards of outputs than those that diverge from the model. Public environmental management thus benefits from carefully selected and context-sensitive modes of participation.

  11. Vehicle System Management Modeling in UML for Ares I

    NASA Technical Reports Server (NTRS)

    Pearson, Newton W.; Biehn, Bradley A.; Curry, Tristan D.; Martinez, Mario R.

    2011-01-01

    The Spacecraft & Vehicle Systems Department of Marshall Space Flight Center is responsible for modeling the Vehicle System Management for the Ares I vehicle which was a part of the now canceled Constellation Program. An approach to generating the requirements for the Vehicle System Management was to use the Unified Modeling Language technique to build and test a model that would fulfill the Vehicle System Management requirements. UML has been used on past projects (flight software) in the design phase of the effort but this was the first attempt to use the UML technique from a top down requirements perspective.

  12. The interactive impact of forest site and stand attributes and logging technology on stand management

    Treesearch

    C.B. LeDoux; J.E. Baumgras

    1991-01-01

    The impact of selected site and stand attributes on stand management is demonstrated using actual forest model plot data and a complete systems simulation model called MANAGE. The influence of terrain on the type of logging technology required to log a stand and the resulting impact on stand management is also illustrated. The results can be used by managers and...

  13. A New Activity-Based Financial Cost Management Method

    NASA Astrophysics Data System (ADS)

    Qingge, Zhang

    The standard activity-based financial cost management model is a new model of financial cost management, which is on the basis of the standard cost system and the activity-based cost and integrates the advantages of the two. It is a new model of financial cost management with more accurate and more adequate cost information by taking the R&D expenses as the accounting starting point and after-sale service expenses as the terminal point and covering the whole producing and operating process and the whole activities chain and value chain aiming at serving the internal management and decision.

  14. [Definition and stabilization of processes I. Management processes and support in a Urology Department].

    PubMed

    Pascual, Carlos; Luján, Marcos; Mora, José Ramón; Chiva, Vicente; Gamarra, Manuela

    2015-01-01

    The implantation of total quality management models in clinical departments can better adapt to the 2009 ISO 9004 model. An essential part of implantation of these models is the establishment of processes and their stabilization. There are four types of processes: key, management, support and operative (clinical). Management processes have four parts: process stabilization form, process procedures form, medical activities cost estimation form and, process flow chart. In this paper we will detail the creation of an essential process in a surgical department, such as the process of management of the surgery waiting list.

  15. Modeling Relationships Between Flight Crew Demographics and Perceptions of Interval Management

    NASA Technical Reports Server (NTRS)

    Remy, Benjamin; Wilson, Sara R.

    2016-01-01

    The Interval Management Alternative Clearances (IMAC) human-in-the-loop simulation experiment was conducted to assess interval management system performance and participants' acceptability and workload while performing three interval management clearance types. Twenty-four subject pilots and eight subject controllers flew ten high-density arrival scenarios into Denver International Airport during two weeks of data collection. This analysis examined the possible relationships between subject pilot demographics on reported perceptions of interval management in IMAC. Multiple linear regression models were created with a new software tool to predict subject pilot questionnaire item responses from demographic information. General patterns were noted across models that may indicate flight crew demographics influence perceptions of interval management.

  16. Earth-Mars Telecommunications and Information Management System (TIMS): Antenna Visibility Determination, Network Simulation, and Management Models

    NASA Technical Reports Server (NTRS)

    Odubiyi, Jide; Kocur, David; Pino, Nino; Chu, Don

    1996-01-01

    This report presents the results of our research on Earth-Mars Telecommunications and Information Management System (TIMS) network modeling and unattended network operations. The primary focus of our research is to investigate the feasibility of the TIMS architecture, which links the Earth-based Mars Operations Control Center, Science Data Processing Facility, Mars Network Management Center, and the Deep Space Network of antennae to the relay satellites and other communication network elements based in the Mars region. The investigation was enhanced by developing Build 3 of the TIMS network modeling and simulation model. The results of several 'what-if' scenarios are reported along with reports on upgraded antenna visibility determination software and unattended network management prototype.

  17. Use of simulation tools to illustrate the effect of data management practices for low and negative plate counts on the estimated parameters of microbial reduction models.

    PubMed

    Garcés-Vega, Francisco; Marks, Bradley P

    2014-08-01

    In the last 20 years, the use of microbial reduction models has expanded significantly, including inactivation (linear and nonlinear), survival, and transfer models. However, a major constraint for model development is the impossibility to directly quantify the number of viable microorganisms below the limit of detection (LOD) for a given study. Different approaches have been used to manage this challenge, including ignoring negative plate counts, using statistical estimations, or applying data transformations. Our objective was to illustrate and quantify the effect of negative plate count data management approaches on parameter estimation for microbial reduction models. Because it is impossible to obtain accurate plate counts below the LOD, we performed simulated experiments to generate synthetic data for both log-linear and Weibull-type microbial reductions. We then applied five different, previously reported data management practices and fit log-linear and Weibull models to the resulting data. The results indicated a significant effect (α = 0.05) of the data management practices on the estimated model parameters and performance indicators. For example, when the negative plate counts were replaced by the LOD for log-linear data sets, the slope of the subsequent log-linear model was, on average, 22% smaller than for the original data, the resulting model underpredicted lethality by up to 2.0 log, and the Weibull model was erroneously selected as the most likely correct model for those data. The results demonstrate that it is important to explicitly report LODs and related data management protocols, which can significantly affect model results, interpretation, and utility. Ultimately, we recommend using only the positive plate counts to estimate model parameters for microbial reduction curves and avoiding any data value substitutions or transformations when managing negative plate counts to yield the most accurate model parameters.

  18. Survival models for harvest management of mourning dove populations

    USGS Publications Warehouse

    Otis, D.L.

    2002-01-01

    Quantitative models of the relationship between annual survival and harvest rate of migratory game-bird populations are essential to science-based harvest management strategies. I used the best available band-recovery and harvest data for mourning doves (Zenaida macroura) to build a set of models based on different assumptions about compensatory harvest mortality. Although these models suffer from lack of contemporary data, they can be used in development of an initial set of population models that synthesize existing demographic data on a management-unit scale, and serve as a tool for prioritization of population demographic information needs. Credible harvest management plans for mourning dove populations will require a long-term commitment to population monitoring and iterative population analysis.

  19. Developing a stochastic conflict resolution model for urban runoff quality management: Application of info-gap and bargaining theories

    NASA Astrophysics Data System (ADS)

    Ghodsi, Seyed Hamed; Kerachian, Reza; Estalaki, Siamak Malakpour; Nikoo, Mohammad Reza; Zahmatkesh, Zahra

    2016-02-01

    In this paper, two deterministic and stochastic multilateral, multi-issue, non-cooperative bargaining methodologies are proposed for urban runoff quality management. In the proposed methodologies, a calibrated Storm Water Management Model (SWMM) is used to simulate stormwater runoff quantity and quality for different urban stormwater runoff management scenarios, which have been defined considering several Low Impact Development (LID) techniques. In the deterministic methodology, the best management scenario, representing location and area of LID controls, is identified using the bargaining model. In the stochastic methodology, uncertainties of some key parameters of SWMM are analyzed using the info-gap theory. For each water quality management scenario, robustness and opportuneness criteria are determined based on utility functions of different stakeholders. Then, to find the best solution, the bargaining model is performed considering a combination of robustness and opportuneness criteria for each scenario based on utility function of each stakeholder. The results of applying the proposed methodology in the Velenjak urban watershed located in the northeastern part of Tehran, the capital city of Iran, illustrate its practical utility for conflict resolution in urban water quantity and quality management. It is shown that the solution obtained using the deterministic model cannot outperform the result of the stochastic model considering the robustness and opportuneness criteria. Therefore, it can be concluded that the stochastic model, which incorporates the main uncertainties, could provide more reliable results.

  20. [Implementation and (cost-)effectiveness of case management for people with dementia and their informal caregivers: results of the COMPAS study].

    PubMed

    van Mierlo, Lisa D; MacNeil-Vroomen, Janet; Meiland, Franka J M; Joling, Karlijn J; Bosmans, Judith E; Dröes, Rose Marie; Moll van Charante, Eric P; de Rooij, Sophia E J A; van Hout, Hein P J

    2016-12-01

    Different forms of case management for dementia have emerged over the past few years. In the COMPAS study (Collaborative dementia care for patients and caregivers study), two prominent Dutch case management forms were studied: the linkage and the integrated care form. Evaluation of the (cost)effectiveness of two dementia case management forms compared to usual care as well as factors that facilitated or impeded their implementation. A mixed methods design with a) a prospective, observational controlled cohort study with 2 years follow-up among 521 dyads of people with dementia and their primary informal caregiver with and without case management; b) interviews with 22 stakeholders on facilitating and impeding factors of the implementation and continuity of the two case management models. Outcome measures were severity and frequency of behavioural problems (NPI) for the person with dementia and mental health complaints (GHQ-12) for the informal caregiver, total met and unmet care needs (CANE) and quality adjusted life years (QALYs). Outcomes showed a better quality of life of informal caregivers in the integrated model compared to the linkage model. Caregivers in the control group reported more care needs than those in both case management groups. The independence of the case management provider in the integrated model facilitated the implementation, while the rivalry between multiple providers in the linkage model impeded the implementation. The costs of care were lower in the linkage model (minus 22 %) and integrated care model (minus 33 %) compared to the control group. The integrated care form was (very) cost-effective in comparison with the linkage form or no case management. The integrated care form is easy to implement.

Top