Science.gov

Sample records for modelling interior salt

  1. Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico

    SciTech Connect

    Ernest A. Mancini; Paul Aharon; Donald A. Goddard; Roger Barnaby

    2006-05-26

    The principal research effort for Phase 1 (Concept Development) of the project has been data compilation; determination of the tectonic, depositional, burial, and thermal maturation histories of the North Louisiana Salt Basin; basin modeling (geohistory, thermal maturation, hydrocarbon expulsion); petroleum system identification; comparative basin evaluation; and resource assessment. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, and regional cross sections have been prepared. Structure, isopach and formation lithology maps have been constructed, and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface maps and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs include Upper Jurassic and Cretaceous fluvial-deltaic sandstone facies; shoreline, marine bar and shallow shelf sandstone facies; and carbonate shoal, shelf and reef facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary. Hydrocarbon

  2. BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO

    SciTech Connect

    Ernest A. Mancini

    2004-02-05

    The principal research effort for Year 1 of the project is data compilation and the determination of the tectonic and depositional histories of the North Louisiana Salt Basin. In the first three (3) to six (6) months of Year 1, the research focus is on data compilation and the remainder of the year the emphasis is on the tectonic and depositional histories of the basin. No major problems have been encountered to date, and the project is on schedule. The principal objectives of the project are to develop through basin analysis and modeling the concept that petroleum systems acting in a basin can be identified through basin modeling and to demonstrate that the information and analysis resulting from characterizing and modeling of these petroleum systems in the North Louisiana Salt Basin and the Mississippi Interior Salt Basin can be used in providing a more reliable and advanced approach for targeting stratigraphic traps and specific reservoir facies within a geologic system and in providing a refined assessment of undiscovered and underdeveloped reservoirs and associated oil and gas resources.

  3. Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico

    SciTech Connect

    Ernest A. Mancini; Paul Aharon; Donald A. Goddard; Roger Barnaby

    2006-02-28

    The principal research effort for Year 3 of the project is basin modeling and petroleum system identification, comparative basin evaluation and resource assessment. In the first six (6) months of Year 3, the research focus is on basin modeling and petroleum system identification and the remainder of the year the emphasis is on the comparative basin evaluation and resource assessment. No major problems have been encountered to date, and the project is on schedule. The principal objectives of the project are to develop through basin analysis and modeling the concept that petroleum systems acting in a basin can be identified through basin modeling and to demonstrate that the information and analysis resulting from characterizing and modeling of these petroleum systems in the North Louisiana Salt Basin and the Mississippi Interior Salt Basin can be used in providing a more reliable and advanced approach for targeting stratigraphic traps and specific reservoir facies within a geologic system and in providing a refined assessment of undiscovered and underdeveloped reservoirs and associated oil and gas resources.

  4. Interior cavern conditions and salt fall potential

    SciTech Connect

    Munson, D.E.; Molecke, M.A.; Myers, R.E.

    1998-03-01

    A relatively large number of salt caverns are used for fluid hydrocarbon storage, including an extensive set of facilities in the Gulf Coast salt domes for the Strategic Petroleum Reserve (SPR) Program. Attention is focused on the SPR caverns because of available histories that detail events involving loss and damage of the hanging string casing. The total number of events is limited, making the database statistically sparse. The occurrence of the events is not evenly distributed, with some facilities, and some caverns, more susceptible than others. While not all of these events could be attributed to impacts from salt falls, many did show the evidence of such impacts. As a result, a study has been completed to analyze the potential for salt falls in the SPR storage caverns. In this process, it was also possible to deduce some of the cavern interior conditions. Storage caverns are very large systems in which many factors could possibly play a part in casing damage. In this study, all of the potentially important factors such as salt dome geology, operational details, and material characteristics were considered, with all being logically evaluated and most being determined as secondary in nature. As a result of the study, it appears that a principal factor in determining a propensity for casing damage from salt falls is the creep and fracture characteristics of salt in individual caverns. In addition the fracture depends strongly upon the concentration of impurity particles in the salt. Although direct observation of cavern conditions is not possible, the average impurity concentration and the accumulation of salt fall material can be determined. When this is done, there is a reasonable correlation between the propensity for a cavern to show casing damage events and accumulation of salt fall material. The accumulation volumes of salt fall material can be extremely large, indicating that only a few of the salt falls are large enough to cause impact damage.

  5. Basin Analysis of the Mississippi Interior Salt Basin and Petroleum System Modeling of the Jurassic Smackover Formation, Eastern Gulf Coastal Plain

    SciTech Connect

    Mancini, Ernest A.

    2003-02-06

    The project objectives are improving access to information for the Mississippi Interior Salt Basin by inventorying data files and records of the major information repositories in the region, making these inventories easily accessible in electronic format, increasing the amount of information available on domestic sedimentary basins through a comprehensive analysis of the Mississippi Interior Salt Basin, and enhancing the understanding of the petroleum systems operating in the Mississippi Interior Salt Basin.

  6. BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO

    SciTech Connect

    Ernest A. Mancini; Donald A. Goddard; Ronald K. Zimmerman

    2005-05-10

    The principal research effort for Year 2 of the project has been data compilation and the determination of the burial and thermal maturation histories of the North Louisiana Salt Basin and basin modeling and petroleum system identification. In the first nine (9) months of Year 2, the research focus was on the determination of the burial and thermal maturation histories, and during the remainder of the year the emphasis has basin modeling and petroleum system identification. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, regional cross sections have been prepared, structure and isopach maps have been constructed, and burial history, thermal maturation history and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface maps and related profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs are mainly Upper Jurassic and Lower Cretaceous fluvial-deltaic sandstone facies and Lower Cretaceous and Upper Cretaceous shoreline, marine bar and shallow shelf sandstone facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary

  7. BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO

    SciTech Connect

    Ernest A. Mancini

    2004-11-05

    The principal research effort for Year 2 of the project is the determination of the burial and thermal maturation histories and basin modeling and petroleum system identification of the North Louisiana Salt Basin. In the first six (6) to nine (9) months of Year 2, the research focus is on the determination of the burial and thermal maturation histories and the remainder of the year the emphasis is on basin modeling and petroleum system identification. No major problems have been encountered to date, and the project is on schedule.

  8. Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico

    SciTech Connect

    Ernest A. Mancini

    2005-03-31

    The principal research effort for Year 2 of the project is the determination of the burial and thermal maturation histories and basin modeling and petroleum system identification of the North Louisiana Salt Basin. In the first six (6) to nine (9) months of Year 2, the research focus is on the determination of the burial and thermal maturation histories and the remainder of the year the emphasis is on basin modeling and petroleum system identification. No major problems have been encountered to date, and the project is on schedule.

  9. BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO

    SciTech Connect

    Ernest A. Mancini

    2003-11-11

    The principal research effort for Year 1 of the project is data compilation and the determination of the tectonic and depositional histories of the North Louisiana Salt Basin. In the first three (3) to six (6) months of Year 1, the research focus is on data compilation and the remainder of the year the emphasis is on the tectonic and depositional histories of the basin. No major problems have been encountered to date, and the project is on schedule.

  10. BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO

    SciTech Connect

    Ernest A. Mancini

    2003-09-11

    The principal research effort for Year 1 of the project is data compilation and the determination of the tectonic and depositional histories of the North Louisiana Salt Basin. In the first three (3) to six (6) months of Year 1, the research focus is on data compilation and the remainder of the year the emphasis is on the tectonic and depositional histories of the basin. No major problems have been encountered to date, and the project is on schedule.

  11. BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO

    SciTech Connect

    Ernest A. Mancini; Donald A. Goddard

    2005-08-01

    The principal research effort for Year 3 of the project is basin modeling and petroleum system identification, comparative basin evaluation and resource assessment. In the first six (6) months of Year 3, the research focus is on basin modeling and petroleum system identification and the remainder of the year the emphasis is on the comparative basin evaluation and resource assessment. No major problems have been encountered to date, and the project is on schedule.

  12. Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico

    SciTech Connect

    Ernest A. Mancini

    2006-07-31

    The principal research effort for Year 1 of Phase 2 (Concept Demonstration) of the project is Smackover petroleum system characterization and modeling. The necessary software applications are in the process of being acquired to accomplish this work. No major problems have been encountered to date, and the project is on schedule.

  13. Basin Analysis and Petroleum System Characterization and Modelling, Interior Salt Basins, Central and Eastern Gulf of Mexico

    SciTech Connect

    Ernest A. Mancini

    2006-09-30

    The principal research effort for Year 1 of Phase 2 (Concept Demonstration) of the project is Smackover petroleum system characterization and modeling. The necessary software applications have been acquired to accomplish this work. No major problems have been encountered to date, and the project is on schedule.

  14. Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico

    SciTech Connect

    Ernest A. Mancini

    2006-12-31

    The principal research effort for Year 1 of Phase 2 (Concept Demonstration) of the project is Smackover petroleum system characterization and modeling. The necessary software applications have been acquired to accomplish this work. No major problems have been encountered to date, and the project is on schedule.

  15. Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico

    SciTech Connect

    Ernest A. Mancini

    2007-06-30

    The principal research effort for Year 2 of Phase 2 (Concept Demonstration) of the project is Mesozoic (Bossier) petroleum system characterization and modeling and refined resource assessment. The necessary software applications have been acquired to accomplish this work. No major problems have been encountered to date, and the project is on schedule.

  16. Basin Analysis of Mississippi Interior Salt Basin and Petroleum System Modeling of the Jurassic Smackover Formation, Eastern Gulf Coastal Plain

    SciTech Connect

    Ernest Mancini

    2001-03-01

    Part 3 (Petroleum System Modeling of the Jurassic Smackover Formation) objectives are to provide an analysis of the Smackover petroleum system in Years 4 and 5 of the project and to transfer effectively the research results to producers through workshops and topical reports. Work Accomplished (Year 5): Task 1 - Basin Flow - Basin flow modeling has been completed and the topical report has been submitted to the U.S. DOE for review. Task 2 - Petroleum Source Rocks - Work on the characterization of Smackover petroleum source rocks has been integrated into the basin flow model. The information on the source rocks is being prepared for inclusion in the final report. Task 3 - Petroleum Reservoirs - Work on the characterization of Smackover petroleum reservoirs continues. The cores to be described have been identified and many of the cores for the eastern and western parts of the basin have been described. Task 4 - Reservoir Diagenesis - Work on reservoir diagenesis continues. Samples from the cores selected for the reservoir characterization are being used for this task. Task 5 - Underdeveloped Reservoirs - Two underdeveloped Smackover reservoirs have been identified. They are the microbial reef and shoal reservoirs. Work Planned (Year 5): Task 1 - Basin Flow - This task has been completed and the topical report has been submitted to the U.S. DOE. Task 2 - Petroleum Source Rocks - Petroleum source rock information will continue to be prepared for the final report. Task 3 - Petroleum Reservoirs - Characterization of petroleum reservoirs will continue through core studies. Task 4 - Reservoir Diagenesis - Characterization of reservoir diagenesis will continue through petrographic analysis. Task 5 - Underdeveloped Reservoirs - Study of Smackover underdeveloped reservoirs will continue with focus on the microbial reef and shoal reservoirs.

  17. Modeling of interior explosions

    NASA Astrophysics Data System (ADS)

    Zakharova, Y. V.; Fedorova, N. N.; Fedorov, A. V.

    2016-10-01

    The results of numerical simulation of an interior explosion are presented. The main purpose of the work is an investigation of shock-wave structure caused by explosion and estimation of pressure level on building walls. The numerical simulation was carried out by means of ANSYS AUTODYN software at normal atmospheric conditions with different mass of charge and internal geometry of room. The effect of mass charge and presence of vent area were shown. The calculation results are compared with published experimental data.

  18. Maximum potential erosion and inundation of seven interior salt domes

    SciTech Connect

    Aronow, S.

    1982-08-01

    Seven interior salt domes have been evaluated in regard to erosion or inundation due to natural events. The most likely possibility of either event occurring would be associated with continental glaciation. The domes were evaluated based on maximum previous sea level changes due to glaciation and effects caused by melting of existing ice sheets. Results are listed for each of the seven domes. Past history indicates a likelihood of returning to a glacial period. The subsequent fall of sea level may cause regrading of streams in the area. A conservative evaluation of this phenomenon was performed and the results are reported.

  19. Atmospheres and Interior Models

    NASA Astrophysics Data System (ADS)

    De Greve, J. P.

    Why? Recipe and Ingredients Equations Ingredients Shooting (a Solution) Evolution: From Wherefrom to Whereto, but Most of All: Why? Masses Make All the Difference Timescales Convection and Other Mixings Dredge-Up Phases in the Life of a Star Anchored Shell Sources (the Node Theorem for Active Shell Sources) Mass Motions of Different Shells Thermal Pulses or Secular Stabilities of Shell Sources Density Changes of a Nuclear Burning Zone Shell Perturbation and Pressure Change Cepheids (as an Answer to the Request of T. Le Bertre) The Period-Density Relation The Valve Mechanism The Kappa Mechanism (Baker and Kippenhahn 1962) Massive Stars (M > 9 Msun) Mass Loss by Stellar Wind Effects on the Position in the HRD The Effect of Overshooting Internal Mixing Radius Correction for Hydrostatic Stars New Models for Massive Stars

  20. Propeller aircraft interior noise model

    NASA Technical Reports Server (NTRS)

    Pope, L. D.; Wilby, E. G.; Wilby, J. F.

    1984-01-01

    An analytical model was developed to predict the interior noise of propeller-driven aircraft. The fuselage model is that of a cylinder with a structurally-integral floor. The cabin sidewall is stiffened by stringers and ring frames, and the floor by longitudinal beams. The cabin interior is covered with a sidewall treatments consisting of layers of porous material and an impervious trim septum. Representation of the propeller pressure field is utilized as input data in the form of the propeller noise signature at a series of locations on a grid over the fuselage structure. Results obtained from the analytical model are compared with test data measured by NASA in a scale model cylindrical fuselage excited by a model propeller.

  1. Crushed Salt Constitutive Model

    SciTech Connect

    Callahan, G.D.

    1999-02-01

    The constitutive model used to describe the deformation of crushed salt is presented in this report. Two mechanisms -- dislocation creep and grain boundary diffusional pressure solution -- are combined to form the basis for the constitutive model governing the deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. Upon complete consolidation, the crushed-salt model reproduces the Multimechanism Deformation (M-D) model typically used for the Waste Isolation Pilot Plant (WIPP) host geological formation salt. New shear consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on WIPP and southeastern New Mexico salt. Nonlinear least-squares model fitting to the database produced two sets of material parameter values for the model -- one for the shear consolidation tests and one for a combination of the shear and hydrostatic consolidation tests. Using the parameter values determined from the fitted database, the constitutive model is validated against constant strain-rate tests. Shaft seal problems are analyzed to demonstrate model-predicted consolidation of the shaft seal crushed-salt component. Based on the fitting statistics, the ability of the model to predict the test data, and the ability of the model to predict load paths and test data outside of the fitted database, the model appears to capture the creep consolidation behavior of crushed salt reasonably well.

  2. Interior Design Research: A Human Ecosystem Model.

    ERIC Educational Resources Information Center

    Guerin, Denise A.

    1992-01-01

    The interior ecosystems model illustrates effects on the human organism of the interaction of the natural, behavioral, and built environment. Examples of interior lighting and household energy consumption show the model's flexibility for organizing study variables in interior design research. (SK)

  3. Bibliography, geophysical data locations, and well core listings for the Mississippi Interior Salt Basin

    SciTech Connect

    1998-05-01

    To date, comprehensive basin analysis and petroleum system modeling studies have not been performed on any of the basins in the northeastern Gulf of Mexico. Of these basins, the Mississippi Interior Salt Basin has been selected for study because it is the most petroliferous basin in the northeastern Gulf of Mexico, small- and medium-size companies are drilling the majority of the exploration wells. These companies do not have the resources to perform basin analysis or petroleum system modeling research studies nor do they have the resources to undertake elaborate information searches through the volumes of publicly available data at the universities, geological surveys, and regulatory agencies in the region. The Advanced Geologic Basin Analysis Program of the US Department of Energy provides an avenue for studying and evaluating sedimentary basins. This program is designed to improve the efficiency of the discovery of the nation`s remaining undiscovered oil resources by providing improved access to information available in the public domain and by increasing the amount of public information on domestic basins. This report provides the information obtained from Year 1 of this study of the Mississippi Interior Salt Basin. The work during Year 1 focused on inventorying the data files and records of the major information repositories in the northeastern Gulf of Mexico and making these inventories easily accessible in an electronic format.

  4. Basin Analysis of the Mississippi Interior Salt Basin and Petroleum System Modeling of the Jurassic Smackover Formation, Eastern Gulf Coastal Plain, Final Report and Topical Reports 5-8 on Smackover Petroleum system and Underdevelopment Reservoirs

    SciTech Connect

    Mancini, Ernest A.; Puckett, T. Markham; Parcell, William C.; Llinas, Juan Carlos; Kopaska-Merkel, David C.; Townsend, Roger N.

    2002-03-05

    The Smackover Formation, a major hydrocarbon-producing horizon in the Mississippi Interior Salt Basin (MISB), conformably overlies the Norphlet Formation and is conformably overlain by the Buckner Anhydrite Member of the Haynesville Formation. The Norphlet-Smackover contact can be either gradational or abrupt. The thickness and lithofacies distribution of the Smackover Formation were controlled by the configuration of incipient paleotopography. The Smackover Formation has been subdivided into three informal members, referred to as the lower, middle and upper members.

  5. Basin Analysis of the Mississippi Interior Salt Basin and Petroleum System Modeling of the Jurassic Smackover Formation, Eastern Gulf Coastal Plain

    SciTech Connect

    Ernest Mancini

    2000-12-31

    Part 3 (Petroleum System Modeling of the Jurassic Smackover Formation) objectives are to provide an analysis of the Smackover petroleum system in Years 4 and 5 of the project and to transfer effectively the research results to producers through workshops and topical reports. Work Accomplished (Year 5): Task 1 - Basin Flow - Basin flow modeling has been completed and the modeling results are being interpreted for report writing (Table 1). Task 2 - Petroleum Source Rocks - Work on the characterization of Smackover petroleum source rocks has been integrated into the basin flow model. Task 3 - Petroleum Reservoirs - Work on the characterization of Smackover petroleum reservoirs continues. The cores to be described have been identified and many of the cores for the eastern part of the basin have been described. Task 4 - Reservoir Diagenesis - Work on reservoir diagenesis has been initiated. Samples from the cores selected for the reservoir characterization are being used for this task. Work Planned (Year 5): Task 1 - Basin Flow - The report on basin flow will be completed. Task 2 - Petroleum Source Rocks - Petroleum source rock data will be reviewed in light of the basin flow model results. Task 3 - Petroleum Reservoirs - Characterization of petroleum reservoirs will continue through core studies. Task 4 - Reservoir Diagenesis - Characterization of reservoir diagenesis will continue through petrographic analysis.

  6. Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico

    SciTech Connect

    Ernest A. Mancini; Paul Aharon; Donald A. Goddard; Roger Barnaby

    2005-10-28

    The principal research effort for Year 2 of the project has been petroleum system characterization and modeling. Understanding the burial, thermal maturation, and hydrocarbon expulsion histories of the strata in the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas is important in hydrocarbon resource assessment. The underburden and overburden rocks in these basins and subbasins are a product of their rift-related geohistory. Petroleum source rock analysis and initial thermal maturation and hydrocarbon expulsion modeling indicated that an effective regional petroleum source rock in the onshore interior salt basins and subbasins, the North Louisiana Salt Basin, Mississippi Interior Salt Basin, Manila Subbasin and Conecuh Subbasin, was Upper Jurassic Smackover lime mudstone. The initial modeling also indicated that hydrocarbon generation and expulsion were initiated in the Early Cretaceous and continued into the Tertiary in the North Louisiana Salt Basin and the Mississippi Interior Salt Basin and that hydrocarbon generation and expulsion were initiated in the Late Cretaceous and continued into the Tertiary in the Manila Subbasin and Conecuh Subbasin. Refined thermal maturation and hydrocarbon expulsion modeling and additional petroleum source rock analysis have confirmed that the major source rock in the onshore interior salt basins and subbasins is Upper Jurassic Smackover lime mudstone. Hydrocarbon generation and expulsion were initiated in the Early to Late Cretaceous and continued into the Tertiary.

  7. Enceladus' Interior: A Liquid Circulation Model

    NASA Astrophysics Data System (ADS)

    Matson, Dennis L.; Johnson, Torrence; Lunine, Jonathan; Castillo-Rogez, Julie

    We are studying a model for Enceladus' interior in which the water, gas, dust and heat are supplied to the plumes by a relatively deeply circulating brine solution. Data indicates such a source for the erupting material. On the basis of ammonia in the plume gas Waite et al. [1] suggested that the jets might originate from a liquid water region under Enceladus' icy surface. Postberg et al. [2] noted that the presence of ". . . grains that are rich in sodium salts (0.5-2 percent by mass). . . can arise only if the plumes originate from liquid water." Waite et al. [1] also regard the some of the plume chemicals as evidence for interactions with an ice layer presumably overlying the liquid water reservoir. They suggest that this could be in the form of dissociation of clathrate hydrates [3]. Additionally, there is a large heat flow of more than 15 GW [4, 5] coming out of Enceladus' south polar region. We consider a model that brings heat and chemical species up to the surface from a reservoir or "ocean" located below the ice crust that may be many tens of kilometers thick. Water transits to the surface via vertical conduits. The Cassini INMS data suggest that the water has a relatively large gas content of order a few percent. As the water travels upward and the pressure is released, exolving gases form bubbles. Since the bubbly liquid is less dense than the ice, it moves upward. (This part of the model is a variant of the "Perrier Ocean" Europa model of Crawford and Stevenson [6]. A similar model was studied for Ganymede by Murchie and Head [7].) Postberg et al. [2] model the plume eruptions that result from the water, gases, salts, and other chemicals that our circulation model provides. In the near-surface reservoir feeding the plumes, bubbles reaching the surface of the water pop and throw a very fine spray. Some of these very small droplets of brine exit with the plume gas and provide the observed salt-rich dust particles [2]. Much of the water-borne heat is

  8. Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico

    SciTech Connect

    Ernest A. Mancini; Donald A. Goddard

    2005-04-15

    The principal research effort for the first six months of Year 2 of the project has been petroleum system characterization. Understanding the burial and thermal maturation histories of the strata in the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas is important in petroleum system characterization. The underburden and overburden rocks in these basins and subbasins are a product of their rift-related geohistory. Petroleum source rock analysis and thermal maturation and hydrocarbon expulsion modeling indicate that an effective regional petroleum source rock in the onshore interior salt basins, the North Louisiana Salt Basin, Mississippi Interior Salt Basin, Manila Subbasin and Conecuh Subbasin, was the Upper Jurassic Smackover lime mudstone. The Upper Cretaceous Tuscaloosa shale was an effective local petroleum source rock in the Mississippi Interior Salt Basin and a possible local source bed in the North Louisiana Salt Basin. Hydrocarbon generation and expulsion was initiated in the Early Cretaceous and continued into the Tertiary in the North Louisiana Salt Basin and the Mississippi Interior Salt Basin. Hydrocarbon generation and expulsion was initiated in the Late Cretaceous and continued into the Tertiary in the Manila Subbasin and Conecuh Subbasin. Reservoir rocks include Jurassic, Cretaceous and Tertiary siliciclastic and carbonate strata. Seal rocks include Jurassic, Cretaceous and Tertiary anhydrite and shale beds. Petroleum traps include structural and combination traps.

  9. Sensor-based interior modeling

    SciTech Connect

    Herbert, M.; Hoffman, R.; Johnson, A.; Osborn, J.

    1995-02-01

    Robots and remote systems will play crucial roles in future decontamination and decommissioning (D&D) of nuclear facilities. Many of these facilities, such as uranium enrichment plants, weapons assembly plants, research and production reactors, and fuel recycling facilities, are dormant; there is also an increasing number of commercial reactors whose useful lifetime is nearly over. To reduce worker exposure to radiation, occupational and other hazards associated with D&D tasks, robots will execute much of the work agenda. Traditional teleoperated systems rely on human understanding (based on information gathered by remote viewing cameras) of the work environment to safely control the remote equipment. However, removing the operator from the work site substantially reduces his efficiency and effectiveness. To approach the productivity of a human worker, tasks will be performed telerobotically, in which many aspects of task execution are delegated to robot controllers and other software. This paper describes a system that semi-automatically builds a virtual world for remote D&D operations by constructing 3-D models of a robot`s work environment. Planar and quadric surface representations of objects typically found in nuclear facilities are generated from laser rangefinder data with a minimum of human interaction. The surface representations are then incorporated into a task space model that can be viewed and analyzed by the operator, accessed by motion planning and robot safeguarding algorithms, and ultimately used by the operator to instruct the robot at a level much higher than teleoperation.

  10. Modeling the Interior of Haumea

    NASA Astrophysics Data System (ADS)

    Probst, Luke

    The Kuiper Belt Object Haumea is one of the most fascinating objects in the solar system. Spectral reflectance observations reveal a surface of almost pure water ice, yet it has a mass of 4.006 x 1021 kg, measured from orbits of its moons, along with an inferred mean radius of 715 km, and these imply a mean density of around 2600 kg m--3 . Thus the surface ice must be a veneer over a rocky core. This model is supported by observations of Haumea's light curve, which shows large photometric variations over an anomalously rapid 3.9154-hour rotational period. Haumea's surface composition is uniform, therefore the light curve must be due to a varying area presented to the observer, implying that Haumea has an oblong, ellipsoidal shape. If Haumea's rotation axis is normal to our line of sight, and Haumea reflects with a lunar-like scattering function, then its axis ratios are p = b/a = 0.80 (in the equatorial cross section) and q = c/a = 0.52 (in the polar cross section). In this work, I assume that Haumea is in hydrostatic equilibrium, and I model it as a two-phase ellipsoid with an ice mantle and a rocky core. I model the core assuming it has a given density in the range between 2700--3300 kg m--3 with axis ratios that are free to vary. The metric which my code uses calculates the angle between the gravity vector and the surface normal, then averages this over both the outer surface and the core-mantle boundary. When this fit angle is minimized, it allows an interpretation of the size and shape of the core, as well as the thickness of the ice mantle. Results of my calculations show that Haumea's most likely core density is 2700--2800 kg m--3, with ice thicknesses anywhere from 12--32 km over the poles and as thin as 4--18 km over the equator.

  11. Recent advances in modeling stellar interiors (u)

    SciTech Connect

    Guzik, Joyce Ann

    2010-01-01

    Advances in stellar interior modeling are being driven by new data from large-scale surveys and high-precision photometric and spectroscopic observations. Here we focus on single stars in normal evolutionary phases; we will not discuss the many advances in modeling star formation, interacting binaries, supernovae, or neutron stars. We review briefly: (1) updates to input physics of stellar models; (2) progress in two and three-dimensional evolution and hydrodynamic models; (3) insights from oscillation data used to infer stellar interior structure and validate model predictions (asteroseismology). We close by highlighting a few outstanding problems, e.g., the driving mechanisms for hybrid {gamma} Dor/{delta} Sct star pulsations, the cause of giant eruptions seen in luminous blue variables such as {eta} Car and P Cyg, and the solar abundance problem.

  12. INTERIOR MODELS OF URANUS AND NEPTUNE

    SciTech Connect

    Helled, Ravit; Schubert, Gerald; Anderson, John D.; Podolak, Morris E-mail: schubert@ucla.edu E-mail: morris@tau.ac.il

    2011-01-01

    'Empirical' models (pressure versus density) of Uranus and Neptune interiors constrained by the gravitational coefficients J{sub 2}, J{sub 4}, the planetary radii and masses, and Voyager solid-body rotation periods are presented. The empirical pressure-density profiles are then interpreted in terms of physical equations of state of hydrogen, helium, ice (H{sub 2}O), and rock (SiO{sub 2}) to test the physical plausibility of the models. The compositions of Uranus and Neptune are found to be similar with somewhat different distributions of the high-Z material. The big difference between the two planets is that Neptune requires a non-solar envelope, while Uranus is best matched with a solar composition envelope. Our analysis suggests that the heavier elements in both Uranus' and Neptune's interior might increase gradually toward the planetary centers. Indeed it is possible to fit the gravitational moments without sharp compositional transitions.

  13. Mars interior structure models from tidal measurements

    NASA Astrophysics Data System (ADS)

    Rivoldini, A.; Verhoeven, O.; van Hoolst, T.; Mocquet, A.; Dehant, V.

    2005-12-01

    Besides the mean planetary density, obtained from the planet's mass and size, the polar moment of inertia (MOI) gives important constraints on the interior structure of a planet. Nevertheless, these constraints are not sufficient for precisely determining the state and size of the planet's core, nor do they provide strong constraints on mantle composition and temperature. On the other hand, the additional use of the latest estimates of mean crustal density and thickness and an assumed bulk Fe/Si ratio for Mars (e.g. chondritic with Fe/Si=1.7) can strongly reduce the set of interior models, which are parameterized in terms of core composition and size, and of mantle composition and temperature. Unfortunately, the origin of Mars and the value of the Martian Fe/Si bulk ratio are not well known. We therefore propose to complement the MOI and the mean density with the latest estimate of the tidal Love number k2 in order to better constrain the interior structure and composition. We consider spherically symmetric models of Mars, consisting of a crust parameterized by mean density and thickness, a mantle with different mineralogical compositions and temperature profiles, and a core parameterized by size, composition (Fe, Ni and FeS), and state (liquid, solid or both). For the presently known values, with their associated uncertainties, of the mean density, the MOI and the Love umber k2, we calculate sets of possible interior models in terms of the above arameterization and compute the bulk Fe/Si ratios.

  14. A Polytropic Model of the Solar Interior

    NASA Astrophysics Data System (ADS)

    Calvo-Mozo, B.; Buitrago Casas, J. C.; Martinez Oliveros, J. C.

    2015-12-01

    In this work we considered different processes in the solar interior that can be described using polytropes. This assumption implies a radially variable continuous polytropic exponent, that is, our model is a multi-polytropic model of the Sun. We derived the equations for this type of multi-polytropic structure and solved them using numerical integration methods. Both, the exponent and proportionality factor in the polytropic model equation of state were taken as input functions, for each spherical layer in the solar interior. Using the spatial distribution of the density and pressure terms from a solar standard model (SSM) we obtained the variable with depth polytropic exponents. We found that the radial distribution of these exponents show four different zones. These can be interpreted as a first region where the energy transport is controlled by radiation. The second region is defined by a sudden change in the polytropic index, which can be associated to the tachocline, followed by a region with a nearly constant polytropic index which suits well a convective zone. Finally, the exponent decreases radially at the photosphere.

  15. Basin Analysis of the Mississippi Interior Salt Baisn and Petroleum System Modeling of the Jurassic smackover Formation, Eastern Gulf Costal Plain: Quarterly progress report, January 1, 1997-March 31, 1997

    SciTech Connect

    Mancini, E.A.

    1997-03-27

    Part I (Inventory of Existing Data and Information Sources) objectives are to provide improved access to information available in the public domain by inventorying data files and records of the major information repositories in the Eastern Gulf Coastal Plain and making these inventories easily accessible in electronic format. The producers in the region maintain that the accessibility of oil and gas information is the single-most important factor to assist them in finding new hydrocarbon discoveries and in improving production from established fields. The principal investigator continues to discuss the project with geologists for Alabama, Mississippi, and Florida. A subcontract has been executed between the University of Alabama and the Geological Survey of Alabama. A subcontract agreement is under review by the Mississippi Office of Geology. The principal investigator continues to discuss the project with a number of faculty members from departments of geology in the region. A listing of theses and dissertations from the University of Alabama, Auburn University, Mississippi State University, University of Mississippi, University of Southern Mississippi, University of Southwestern Louisiana, and Louisiana State University related to the petroleum geology of the Mississippi Interior Salt Basin has been compiled. This list is accessible electronically through the Home Page of the Eastern Gulf Region of the Pertroleum Technology Transfer Council (EGRPTTC) (http://egrpttc.geo.ua.edu).

  16. Mobile Modelling for Crowdsourcing Building Interior Data

    NASA Astrophysics Data System (ADS)

    Rosser, J.; Morley, J.; Jackson, M.

    2012-06-01

    Indoor spatial data forms an important foundation to many ubiquitous computing applications. It gives context to users operating location-based applications, provides an important source of documentation of buildings and can be of value to computer systems where an understanding of environment is required. Unlike external geographic spaces, no centralised body or agency is charged with collecting or maintaining such information. Widespread deployment of mobile devices provides a potential tool that would allow rapid model capture and update by a building's users. Here we introduce some of the issues involved in volunteering building interior data and outline a simple mobile tool for capture of indoor models. The nature of indoor data is inherently private; however in-depth analysis of this issue and legal considerations are not discussed in detail here.

  17. Jurassic sequence stratigraphy in the Mississippi interior salt basin of Alabama

    SciTech Connect

    Mancini, E.A. Univ. of Alabama, Tuscaloosa ); Tew, B.H.; Mink, R.M. )

    1990-09-01

    Three depositional sequences associated with cycles of eustatic sea-level change and coastal onlap can be identified in the Mississippi Interior Salt basin of Alabama. In the Mississippi Interior Salt basin, the lower depositional sequence is bounded by a basal unconformity and an upper Type 2 unconformity in the Callovian. This sequence includes Louann evaporites, Pine Hill anhydrites and shales, and Norphlet eolian sandstones. The middle depositional sequence reflects relative sea-level rise in the late Callovian. This sequence includes Norphlet marine sandstones and lower Smackover packstones and mudstones, middle Smackover mudstones and upper Smackover grainstones and anhydrites. The sequence has an upper Type 2 unconformity indicating relative sea-level fall in the Oxfordian. The upper depositional sequence reflects relative sea-level rise in the late Oxfordian. This sequence includes lower Haynesville evaporites and clastics (transgressive deposits), middle Haynesville carbonate mudstones and shales (condensed section), and upper Haynesville updip continental sandstones and downdip shales, limestones, and anhydrites (progradational highstand regressive deposits). The sequence has an upper Type 1 unconformity indicating abrupt sea-level fall in the late Kimmeridgian. In these depositional sequences, progradational highstand regressive deposits are the principal petroleum reservoirs. Condensed section deposits have the potential to be source rocks if subjected to proper burial conditions; however, only the lower and middle Smackover mudstones were deposited and buried under conditions favorable for hydrocarbon generation and preservation. An understanding of sequence stratigraphy can serve as an aid to identifying potential hydrocarbon exploration targets.

  18. Dissolution of the Upper Seven Rivers and Salado salt in the interior Palo Duro Basin, Texas: Revision: Topical report

    SciTech Connect

    DeConto, R.T.; Murphy, P.J.

    1987-09-01

    The Upper Seven Rivers and Salado Formations contain the uppermost salts within the interior Palo Duro Basin, Stratigraphic and structural evidence based on geophysical well logs indicate that both dissolution and facies change have influenced the thickness of these uppermost salts. The magnitude of vertical salt loss due to dissolution is interminable at this time because original salt thickness is unknown. Gradual thinning of the Upper Seven Rivers Formation is recognized from south to north across the Palo Duro Basin. Anhydrites within the formation pinch out toward the basin margins, indicating that section loss is in part depositionally controlled. Additionally, informal subdivision of the Upper Seven Rivers Formation suggests that salt dissolution has occurred in the uppermost salt. A northeast-trending zone of thin Upper Seven Rivers Formation in portions of Deaf Smith, Randall, Castro, and Parmer Counties is possibly related to Tertiary dissolution. In New Mexico, local thinning of the Upper Seven Rivers Formation may be associated with faulting. Triassic erosion on uplifted fault blocks has affected the Upper Permian section. The Salado salt margin is located within the interior Palo Duro Basin. Geophysical well logs and core evidence indicate that the salt margin has migrated basinward as a result of dissolution. Permian dissolution probably contributed to some salt loss. 106 refs., 31 figs., 2 tabs.

  19. A Stochastic Model of the Earth's Interior.

    NASA Astrophysics Data System (ADS)

    Reid, J.

    2014-12-01

    Spectral analysis of observational data by Pelletier (2002) indicates that the geomagnetic field has a variance spectrum which follows a 1/f power law and that a return period of geomagnetic reversals similar to that observed is a direct consequence of such a power law spectrum. A stochastic model of the earth's interior is proposed in which the number of assumptions is kept to a minimum, i.e. specific heat, thermal conductivity, radiogenic heating and density are constant. Despite this simplicity, complex behaviour occurs as a consequence of further assumptions: that Rayleigh-Bernard convection cells form spontanously and at random in the outer liquid core as heat builds up from radioactive sources, that each of these cells spontaneously generates its own magnetic field by a MHD dynamo effect, that each cell melts the solid mantle immediately above it because of the extra heat being convected outward from the hot core and that in this way each convection cell propagates upwards through the otherwise solid mantle at a speed determined by the solution of the Stefan problem for a liquid-solid boundary. The upward-moving, liquid-in-solid convection cells formed in this way are proposed as the primary mechanism by which the core is cooled. The totality of convection cell MHD dynamo fields is proposed as the origin of the geomagnetic field which will have a 1/f spectrum and experience reversals similar to those observed. Because cooling is a stochastic process, there will be times when the earth is heating faster than it is cooling and vice versa. Hence there will be times when the volume and surface of the earth are expanding and new crust is formed and there will be other times when the surface is contracting and the crust, being too large for the smaller surface, is forced to ramp up, wrinkle and subduct in order to be accomodated by the smaller area. Ref: Pelletier, J.D. (2002) PNAS, 99, supp. 1, pp2546-2553.

  20. Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico

    SciTech Connect

    Ernest A. Mancini; Donald A. Goddard

    2004-10-28

    The objectives of the study are: to perform resource assessment of the in-place deep (>15,000 ft) natural gas resource of the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas through petroleum system identification, characterization and modeling and to use the petroleum system based resource assessment to estimate the volume of the in-place deep gas resource that is potentially recoverable and to identify those areas in the interior salt basins with high potential to recover commercial quantities of the deep gas resource. The principal research effort for Year 1 of the project is data compilation and petroleum system identification. The research focus for the first nine (9) months of Year 1 is on data compilation and for the remainder of the year the emphasis is on petroleum system identification.

  1. Effects of lowering interior canal stages on salt-water intrusion into the shallow aquifer in Southeast Palm Beach County, Florida

    USGS Publications Warehouse

    Land, Larry F.

    1975-01-01

    Land in southeast Palm Beach County is undergoing a large-scale change in use, from agricultural to residential. To accommodate residential use, a proposal has been made by developers to the Board of the Lake Worth Drainage District to lower the canal stages in the interior part of the area undergoing change. This report documents one of the possible effects of such lowering. Of particular interest to the Board was whether the lower canal stages would cause an increase in salt-water intrusion into the shallow aquifer along the coast. The two main tools used in the investigation were a digital model for aquifer evaluation and an analytical technique for predicting the movement of the salt-water front in response to a change of ground-water flow into the ocean. The method of investigation consisted of developing a digital ground-water flow model for three east-west test strips. They pass through the northern half of municipal well fields in Lake Worth, Delray Beach, and Boca Raton. The strips were first modeled with no change in interior canal stages. Then they were modeled with a change in canal stages of 2 to 4 feet (0.6 to 1.6 metres). Also, two land development schemes were tested. One was for a continuation of the present level of land development, simulated by continuing the present pumpage rates. The second scheme was for land development to continue until the maximum allowable densities were reached, simulated by increasing the pumping rates. The results of the test runs for an east-west strip through Lake Worth show that lowering part of the interior canal water levels 3 feet (1.0 metre), as done in 1961, does not affect the aquifer head or salt-water intrusion along the coastal area of Lake Worth. As a result, no effect in the coastal area would be expected as a result of canal stage lowering in other, interior parts of the study area. Results from the other test runs show that lowering interior canal water levels by as much as 4 feet (1.2 metres) would

  2. 48. MISSISSIPPI BASIN MODEL AT CLINTON SUBSTATION. INTERIOR OF CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. MISSISSIPPI BASIN MODEL AT CLINTON SUBSTATION. INTERIOR OF CONTROL BUILDING, SHOWING TWO ROWS OF STEVENS STAGE RECORDERS AND INFLOW PROGRAMMERS. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  3. 21. INTERIOR, DOUBLE STAIRWAY LEADING TO MODEL HALL, DETAIL OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. INTERIOR, DOUBLE STAIRWAY LEADING TO MODEL HALL, DETAIL OF ONE FLIGHT (5 x 7 negative; 8 x 10 print) - Patent Office Building, Bounded by Seventh, Ninth, F & G Streets, Northwest, Washington, District of Columbia, DC

  4. Evaluation of constitutive models for crushed salt

    SciTech Connect

    Callahan, G.D.; Loken, M.C. [RE Hurtado, L.D.; Hansen, F.D.

    1996-05-01

    Three constitutive models are recommended as candidates for describing the deformation of crushed salt. These models are generalized to three-dimensional states of stress to include the effects of mean and deviatoric stress and modified to include effects of temperature, grain size, and moisture content. A database including hydrostatic consolidation and shear consolidation tests conducted on Waste Isolation Pilot Plant (WIPP) and southeastern New Mexico salt is used to determine material parameters for the models. To evaluate the capability of the models, parameter values obtained from fitting the complete database are used to predict the individual tests. Finite element calculations of a WIPP shaft with emplaced crushed salt demonstrate the model predictions.

  5. Interior models of Mercury with equatorial ellipticity

    NASA Astrophysics Data System (ADS)

    Dumberry, M.

    2012-09-01

    The combination of planetary rotation observations and gravity field measurements by the MESSENGER spacecraft can be used to constrain the internal structure of Mercury. A recently published model suggests a mean mantle density of ρm = 3650 ± 225 kg m-3, substantially larger than that expected of a silicate mantle (3300 kg m-3) and possibly hinting at the presence of an FeS-rich layer at the base of the mantle. Here, we show that a large ρm is only required if the core-mantle boundary (CMB) of the planet is assumed axially-symmetric. An equatorial ellipticity of CMB of the order of 2 · 10-5 allows to satisfy gravity and rotation constraints with a mean mantle density typical of silicate material. Possible origin of such topography include past mantle convection, aspherical planetary shrinking, remnant tidal deformation, or a combination thereof.

  6. CIDGA - Coupling of Interior Dynamic models with Global Atmosphere models

    NASA Astrophysics Data System (ADS)

    Noack, Lena; Plesa, Ana-Catalina; Breuer, Doris

    2010-05-01

    Atmosphere temperatures and in particular the surface temperatures mostly depend on the solar heat flux and the atmospheric composition. The latter can be influenced by interior processes of the planet, i.e. volcanism that releases greenhouse gases such as H2O, CO2 and methane into the atmosphere and plate tectonics through which atmospheric CO2 is recycled via carbonates into the mantle. An increasing concentration of greenhouse gases in the atmosphere results in an increase of the surface temperature. Changes in the surface temperature on the other hand may influence the cooling behaviour of the planet and hence influence its volcanic activity [Phillips et al., 2001]. This feedback relation between mantle convection and atmosphere is not very well understood, since until now mostly either the interior dynamic of a planet or its atmosphere was investigated separately. 2D or 3D mantle convection models to the authors' knowledge haven't been coupled to the atmosphere so far. We have used the 3D spherical simulation code GAIA [Hüttig et al., 2008] including partial melt production and coupled it with the atmosphere module CIDGA using a gray greenhouse model for varying H2O concentrations. This way, not only the influence of mantle dynamics on the atmosphere can be investigated, but also the recoupling effect, that the surface temperature has on the mantle dynamics. So far, we consider one-plate planets without crustal and thus volatile recycling. Phillips et al. [2001] already investigated the coupling effect of the surface temperature on mantle dynamics by using simple parameterized convection models for Venus. In their model a positive feedback mechanism has been observed, i.e., an increase of the surface temperature leads to an increase of partial melt and hence an increase of atmosphere density and surface temperature. Applying our model to Venus, we show that an increase of surface temperature leads not only to an increase of partial melt in the mantle; it also

  7. RESOURCE ASSESSMENT OF THE IN-PLACE AND POTENTIALLY RECOVERABLE DEEP NATURAL GAS RESOURCE OF THE ONSHORE INTERIOR SALT BASINS, NORTH CENTRAL AND NORTHEASTERN GULF OF MEXICO

    SciTech Connect

    Ernest A. Mancini

    2004-04-16

    The University of Alabama and Louisiana State University have undertaken a cooperative 3-year, advanced subsurface methodology resource assessment project, involving petroleum system identification, characterization and modeling, to facilitate exploration for a potential major source of natural gas that is deeply buried (below 15,000 feet) in the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas. The project is designed to assist in the formulation of advanced exploration strategies for funding and maximizing the recovery from deep natural gas domestic resources at reduced costs and risks and with minimum impact. The results of the project should serve to enhance exploration efforts by domestic companies in their search for new petroleum resources, especially those deeply buried (below 15,000 feet) natural gas resources, and should support the domestic industry's endeavor to provide an increase in reliable and affordable supplies of fossil fuels. The principal research effort for Year 1 of the project is data compilation and petroleum system identification. The research focus for the first nine (9) months of Year 1 is on data compilation and for the remainder of the year the emphasis is on petroleum system identification. The objectives of the study are: to perform resource assessment of the in-place deep (>15,000 ft) natural gas resource of the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas through petroleum system identification, characterization and modeling and to use the petroleum system based resource assessment to estimate the volume of the in-place deep gas resource that is potentially recoverable and to identify those areas in the interior salt basins with high potential to recover commercial quantities of the deep gas resource. The project objectives will be achieved through a 3-year effort. First, emphasis is on petroleum system identification and characterization in the North

  8. Aptian ‘Shale Gas’ Prospectivity in the Downdip Mississippi Interior Salt Basin, Gulf Coast, USA

    USGS Publications Warehouse

    Hackley, Paul C.; Valentine, Brett J.; Enomoto, Catherine B.; Lohr, Celeste D.; Scott, Krystina R.; Dulong, Frank T.; Bove, Alana M.

    2016-01-01

    (41 aqueous measurements from calcite cements in one argillaceous James Limestone sample) indicates homogenization temperatures (Th) of 120-135°C, consistent with present-day bottom-hole conditions and measured bitumen Ro values towards the western end of the MSB. Downdip in the central MSB, microthermometry (26 aqueous measurements from quartz dust rims in one Paluxy sandstone sample) and measured bitumen Ro values indicate maximum temperatures may have been significantly higher (~25°C) than present-day conditions. High inclusion salinities (15-25 wt.% salt) at both locations suggest interaction of pore fluids with evaporites. Mercury injection capillary pressure (MICP) analyses (n=3) indicate porosity ranges 1.3-2.1% and permeability 0.006-0.02 µD for Pine Island and Rodessa shales. Overall, results from this work indicate generally poor ‘shale gas’ prospectivity compared to other shale reservoirs based primarily on depth, low organic content, low porosity, and high clay content. However, thickness and thermal maturity are appropriate, moderate reservoir pressures are present, and petroleum systems modelling by others has indicated high undiscovered gas potential for the basin as a whole.

  9. Incorporation of Helium Demixing in Interior Structure Models of Saturn

    NASA Astrophysics Data System (ADS)

    Tian, Bob; Stanley, Sabine; Valencia, Diana

    2015-04-01

    Experiments and ab initio calculations of hydrogen-helium mixtures predict a phase separation at pressure-temperature conditions relevant to Saturn's interior. At depths where this occurs, droplets of helium form out of the mixture and sink towards the deep interiors where it re-mixes again, thereby depleting the helium above the layer over time while enriching the concentration below the layer. In dynamo modelling, the axisymmetric nature of Saturn's magnetic field is so far best explained by the inclusion of a stably stratified layer just below the depth at which hydrogen metallizes (approximately 0.65RS). Stable stratification at that depth could occur if the compositional gradients produced by the helium rain process described above is great enough to suppress convection in the de-mixing layers. Thus, we first developed a range of interior structure models consistent with available constraints of the gravity field and atmospheric composition. The hydrogen-helium de-mixing curve was then incorporated in calculations of some of these models to assess its feasibility in compositionally stratifying the top of the dynamo source region. We found that when helium rain is taken into account, a stably stratified layer approximately 0.1 - 0.15RS in thickness can exist atop the dynamo source region, consistent with thicknesses needed in dynamo models to axisymmetrize the observable magnetic field. Furthermore, inertial gravity waves could be excited in such thick stably stratified regions. These may be detectable by asteroseismology techniques, or by analysis of wave modes' gravitational interaction with Saturn's ring particles. Thus, profiles of sound speed and Brunt-Vaisala frequencies were also calculated for all of the interior structures models studied to be used for comparison with possible seismic studies in the future.

  10. Geological evaluation of Gulf Coast salt domes: overall assessment of the Gulf Interior Region

    SciTech Connect

    1981-10-01

    The three major phases in site characterization and selection are regional studies, area studies, and location studies. This report characterizes regional geologic aspects of the Gulf Coast salt dome basins. It includes general information from published sources on the regional geology; the tectonic, domal, and hydrologic stability; and a brief description the salt domes to be investigated. After a screening exercise, eight domes were chosen for further characterization: Keechi, Oakwood, and Palestine Domes in Texas; Vacherie and Rayburn's domes in North Louisiana; and Cypress Creek and Richton domes in Mississippi. A general description of each, maps of the location, property ownership, and surface geology, and a geologic cross section were presented for each dome.

  11. Crushed-salt constitutive model update

    SciTech Connect

    Callahan, G.D.; Loken, M.C.; Mellegard, K.D.

    1998-01-01

    Modifications to the constitutive model used to describe the deformation of crushed salt are presented in this report. Two mechanisms--dislocation creep and grain boundary diffusional pressure solutioning--defined previously but used separately are combined to form the basis for the constitutive model governing the deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. New creep consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on Waste Isolation Pilot Plant and southeastern New Mexico salt to determine material parameters for the constitutive model. Nonlinear least-squares model fitting to data from the shear consolidation tests and a combination of the shear and hydrostatic consolidation tests produced two sets of material parameter values for the model. The change in material parameter values from test group to test group indicates the empirical nature of the model but demonstrates improvement over earlier work with the previous models. Key improvements are the ability to capture lateral strain reversal and better resolve parameter values. To demonstrate the predictive capability of the model, each parameter value set was used to predict each of the tests in the database. Based on the fitting statistics and the ability of the model to predict the test data, the model appears to capture the creep consolidation behavior of crushed salt quite well.

  12. Modelling of the inhomogeneous interior of polymer gels

    NASA Astrophysics Data System (ADS)

    Shew, Chwen-Yang; Iwaki, Takafumi

    2006-04-01

    A simple model has been investigated to elucidate the mean squared displacement (MSD) of probe molecules in cross-linked polymer gels. In the model, we assume that numerous cavities distribute in the inhomogeneous interior of a gel, and probe molecules are confined within these cavities. The individual probe molecules trapped in a gel are treated as Brownian particles confined to a spherical harmonic potential. The harmonic potential is chosen to model the effective potential experienced by the probe particle in the cavity of a gel. Each field strength is corresponding to the characteristic of one type of effective cavity. Since the statistical distribution of different effective cavity sizes is unknown, several distribution functions are examined. Meanwhile, the calculated averaged MSDs are compared to the experimental data by Nisato et al (2000 Phys. Rev. E 61 2879). We find that the theoretical results of the MSD are sensitive to the shape of the distribution function. For low cross-linked gels, the best fit is obtained when the interior cavities of a gel follow a bimodal distribution. Such a result may be attributed to the presence of at least two distinct classes of cavity in gels. For high cross-linked gels, the cavities in the gel can be depicted by a single-modal uniform distribution function, suggesting that the range of cavity sizes becomes smaller. These results manifest the voids inside a gel, and the shape of distribution functions may provide the insight into the inhomogeneous interior of a gel.

  13. Chapter 5. Assessment of undiscovered conventional oil and gas resources-Lower Cretaceous Travis Peak and Hosston formations, Jurassic Smackover interior salt basins total petroleum system, in the East Texas basin and Louisiana-Mississippi salt basins provinces.

    USGS Publications Warehouse

    Dyman, T.S.; Condon, S.M.

    2006-01-01

    The petroleum assessment of the Travis Peak and Hosston Formations was conducted by using a total petroleum system model. A total petroleum system includes all of the important elements of a hydrocarbon fluid system needed to develop oil and gas accumulations, including source and reservoir rocks, hydrocarbon generation, migration, traps and seals, and undiscovered accumulations. A total petroleum system is mappable and may include one or more assessment units. For each assessment unit, reservoir rocks contain similar geology, exploration characteristics, and risk. The Jurassic Smackover Interior Salt Basins Total Petroleum System is defined for this assessment to include (1) Upper Jurassic Smackover carbonates and calcareous shales and organic-rich shales of the Upper Jurassic Bossier Shale of the Cotton Valley Group and (2) Lower Cretaceous Travis Peak and Hosston Formations. The Jurassic Smackover Interior Salt Basins Total Petroleum System includes three conventional Travis Peak-Hosston assessment units: Travis Peak-Hosston Gas and Oil (AU 50490205), Travis Peak-Hosston Updip Oil (AU 50490206), and Travis Peak-Hosston Hypothetical Updip Oil (AU 50490207). A fourth assessment unit, the Hosston Hypothetical Slope-Basin Gas Assessment Unit, was named and numbered (AU 50490208) but not geologically defined or quantitatively assessed owing to a lack of data. Together, assessment units 50490205 to 50490207 are estimated to contain a mean undiscovered conventional resource of 29 million barrels of oil, 1,136 billion cubic feet of gas, and 22 million barrels of natural gas liquids.

  14. Propeller aircraft interior noise model: User's manual for computer program

    NASA Technical Reports Server (NTRS)

    Wilby, E. G.; Pope, L. D.

    1985-01-01

    A computer program entitled PAIN (Propeller Aircraft Interior Noise) has been developed to permit calculation of the sound levels in the cabin of a propeller-driven airplane. The fuselage is modeled as a cylinder with a structurally integral floor, the cabin sidewall and floor being stiffened by ring frames, stringers and floor beams of arbitrary configurations. The cabin interior is covered with acoustic treatment and trim. The propeller noise consists of a series of tones at harmonics of the blade passage frequency. Input data required by the program include the mechanical and acoustical properties of the fuselage structure and sidewall trim. Also, the precise propeller noise signature must be defined on a grid that lies in the fuselage skin. The propeller data are generated with a propeller noise prediction program such as the NASA Langley ANOPP program. The program PAIN permits the calculation of the space-average interior sound levels for the first ten harmonics of a propeller rotating alongside the fuselage. User instructions for PAIN are given in the report. Development of the analytical model is presented in NASA CR 3813.

  15. Propeller aircraft interior noise model utilization study and validation

    NASA Astrophysics Data System (ADS)

    Pope, L. D.

    1984-09-01

    Utilization and validation of a computer program designed for aircraft interior noise prediction is considered. The program, entitled PAIN (an acronym for Propeller Aircraft Interior Noise), permits (in theory) predictions of sound levels inside propeller driven aircraft arising from sidewall transmission. The objective of the work reported was to determine the practicality of making predictions for various airplanes and the extent of the program's capabilities. The ultimate purpose was to discern the quality of predictions for tonal levels inside an aircraft occurring at the propeller blade passage frequency and its harmonics. The effort involved three tasks: (1) program validation through comparisons of predictions with scale-model test results; (2) development of utilization schemes for large (full scale) fuselages; and (3) validation through comparisons of predictions with measurements taken in flight tests on a turboprop aircraft. Findings should enable future users of the program to efficiently undertake and correctly interpret predictions.

  16. Propeller aircraft interior noise model utilization study and validation

    NASA Technical Reports Server (NTRS)

    Pope, L. D.

    1984-01-01

    Utilization and validation of a computer program designed for aircraft interior noise prediction is considered. The program, entitled PAIN (an acronym for Propeller Aircraft Interior Noise), permits (in theory) predictions of sound levels inside propeller driven aircraft arising from sidewall transmission. The objective of the work reported was to determine the practicality of making predictions for various airplanes and the extent of the program's capabilities. The ultimate purpose was to discern the quality of predictions for tonal levels inside an aircraft occurring at the propeller blade passage frequency and its harmonics. The effort involved three tasks: (1) program validation through comparisons of predictions with scale-model test results; (2) development of utilization schemes for large (full scale) fuselages; and (3) validation through comparisons of predictions with measurements taken in flight tests on a turboprop aircraft. Findings should enable future users of the program to efficiently undertake and correctly interpret predictions.

  17. Final report on decommissioning boreholes and wellsite restoration, Gulf Coast Interior Salt Domes of Mississippi

    SciTech Connect

    Not Available

    1989-04-01

    In 1978, eight salt domes in Texas, Louisiana, and Mississippi were identified for study as potential locations for a nuclear waste repository as part of the National Waste Terminal Storage (NWTS) program. Three domes were selected in Mississippi for ``area characterization`` phase study as follows: Lampton Dome near Columbia, Cypress Creek Dome near New Augusta, and Richton Dome near Richton. The purpose of the studies was to acquire geologic and geohydrologic information from shallow and deep drilling investigations to enable selection of sites suitable for more intensive study. Eleven deep well sites were selected for multiple-well installations to acquire information on the lithologic and hydraulic properties of regional aquifers. In 1986, the Gulf Coast salt domes were eliminated from further consideration for repository development by the selection of three candidate sites in other regions of the country. In 1987, well plugging and restoration of these deferred sites became a closeout activity. The primary objectives of this activity are to plug and abandon all wells and boreholes in accordance with state regulations, restore all drilling sites to as near original condition as feasible, and convey to landowners any wells on their property that they choose to maintain. This report describes the activities undertaken to accomplish these objectives, as outlines in Activity Plan 1--2, ``Activity Plan for Well Plugging and Site Restoration of Test Hole Sites in Mississippi.``

  18. Interior reconstruction method based on rotation-translation scanning model.

    PubMed

    Wang, Xianchao; Tang, Ziyue; Yan, Bin; Li, Lei; Bao, Shanglian

    2014-01-01

    In various applications of computed tomography (CT), it is common that the reconstructed object is over the field of view (FOV) or we may intend to sue a FOV which only covers the region of interest (ROI) for the sake of reducing radiation dose. These kinds of imaging situations often lead to interior reconstruction problems which are difficult cases in the reconstruction field of CT, due to the truncated projection data at every view angle. In this paper, an interior reconstruction method is developed based on a rotation-translation (RT) scanning model. The method is implemented by first scanning the reconstructed region, and then scanning a small region outside the support of the reconstructed object after translating the rotation centre. The differentiated backprojection (DBP) images of the reconstruction region and the small region outside the object can be respectively obtained from the two-time scanning data without data rebinning process. At last, the projection onto convex sets (POCS) algorithm is applied to reconstruct the interior region. Numerical simulations are conducted to validate the proposed reconstruction method.

  19. Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico

    SciTech Connect

    Ernest A. Mancini

    2006-09-30

    The objectives of the study were: (1) to perform resource assessment of the thermogenic gas resources in deeply buried (>15,000 ft) natural gas reservoirs of the onshore interior salt basins of the north central and northeastern Gulf of Mexico areas through petroleum system identification, characterization and modeling; and (2) to use the petroleum system based resource assessment to estimate the volume of the deep thermogenic gas resource that is available for potential recovery and to identify those areas in the interior salt basins with high potential for this thermogenic gas resource. Petroleum source rock analysis and petroleum system characterization and modeling, including thermal maturation and hydrocarbon expulsion modeling, have shown that the Upper Jurassic Smackover Formation served as the regional petroleum source rock in the North Louisiana Salt Basin, Mississippi Interior Salt Basin, Manila Subbasin and Conecuh Subbasin. Thus, the estimates of the total hydrocarbons, oil, and gas generated and expelled are based on the assumption that the Smackover Formation is the main petroleum source rock in these basins and subbasins. The estimate of the total hydrocarbons generated for the North Louisiana Salt Basin in this study using a petroleum system approach compares favorably with the total volume of hydrocarbons generated published by Zimmermann (1999). In this study, the estimate is 2,870 billion barrels of total hydrocarbons generated using the method of Schmoker (1994), and the estimate is 2,640 billion barrels of total hydrocarbons generated using the Platte River software application. The estimate of Zimmermann (1999) is 2,000 to 2,500 billion barrels of total hydrocarbons generated. The estimate of gas generated for this basin is 6,400 TCF using the Platte River software application, and 12,800 TCF using the method of Schmoker (1994). Barnaby (2006) estimated that the total gas volume generated for this basin ranges from 4,000 to 8,000 TCF. Seventy

  20. Modelling salt finger formation using the Imperial College Ocean Model

    NASA Astrophysics Data System (ADS)

    MacTavish, F. P.; Cotter, C. J.; Piggott, M. D.

    2009-04-01

    We present numerical simulations of salt finger formation produced using the Imperial College Ocean Model (ICOM) which is a finite element model using adaptive meshing. Our aim is to validate the model against published data and to develop the capability to simulate salt finger formation using adaptive meshes. Salt fingering is a form of double-diffusion which occurs because heat diffuses more quickly than salt. When an area of warm, salty water overlies an area of colder, fresher water, an initial perturbation can lead to some of the water from the lower layer moving into the top layer. Its temperature then increases more quickly than its salinity, so that the water is less dense than its surroundings and it will rise up more. This process repeats to form salt fingers, with salt fingers also forming in the downward direction. Salt fingers play a role in oceanic mixing, in particular they are responsible for maintaining thermohaline staircases such as the C-SALT staircase which have been observed extensively, particularly in the tropics. The study of salt fingers could therefore improve our understanding of processes in the ocean, and inform the design of subgrid parameterisations in general circulation models. We used the salt finger formation test case of Oezgoekmen et al (1998) in order to validate ICOM. The formation of salt fingers is modelled by solving the Navier-Stokes equations for a two-dimensional rectangular area of Boussinesq fluid, beginning with two layers of water, the top warm and salty and the bottom cold and fresh, with parameters chosen to match the test case of Oezgoekmen et al (1998). The positions of the interfaces between the fingering layer and the mixed layers as well as the finger growth rate and the kinetic energy are plotted against time. The results are compared with those of Oezgoekmen et al (1998). We present results from structured meshes and preliminary results using adaptive meshing.

  1. Complete Stellar Models: Spectral and Interior Evolution of Massive Stars

    NASA Astrophysics Data System (ADS)

    Schaerer, Daniel

    1995-08-01

    This thesis work presents the first "complete stellar models" for massive stars, which consistently treat the stellar interior, the atmosphere, and the stellar winds. This approach allows to simultaneously predict basic stellar parameters (luminosity, radii, temperatures), nucleosynthesis (abundances), as well as the detailed emergent spectrum through the relevant evolutionary phases (corresponding to OB, LBV and Wolf--Rayet stars). On the other hand, our modelling including the stellar winds also allows to study the influence of the outer layers on the stellar structure and evolution. Conceptually the thesis is divided in two main parts. In the first part we construct the first non-LTE line blanketed hydrodynamic models of spherically expanding atmospheres of hot stars. The entire domain from the optically thick photosphere out to the terminal velocity of the wind is treated. We discuss in detail the effects of line blanketing on the atmospheric structure and on the predicted spectrum. We study the influence of the hydrodynamic structure on the profiles of both photospheric and wind lines. Our results also show that for precise determinations of stellar parameters and abundances of hot luminous stars, the use of plane parallel models may lead to systematic errors. In the second part we develop the "complete stellar models" (CoStar). As a first application we study the main sequence (MS) interior and spectral evolution of massive stars at solar metallicity. The evolutionary tracks and the interior evolution are found to be basically unchanged by the realistic treatment of the outer layers. The main CoStar predictions presented and discussed for the MS are the following: 1. Ejected mass of the most important elements. Deposition of wind momentum and mechanical energy 2. Estimates of mass loss rates due to radiation pressure including multiple scattering and line overlap 3. Continuous spectral energy distribution (EUV to IR) and ionising fluxes 4. UBVRIJHKLMN

  2. Interior Models and Gravity Field of Jupiter's Moon Amalthea

    NASA Astrophysics Data System (ADS)

    Weinwurm, G.; Weber, R.

    2003-12-01

    Before its final plunge into Jupiter in September 2003, GALILEO made a last visit to Jupiters moon Amalthea. This final flyby of the spacecrafts successful mission occurred on November 5, 2002. In order to analyse the spacecraft data with respect to Amaltheas gravity field, interior models of the moon had to be provided. The method used for this approach is based on the numerical integration of infinitesimal volume elements, which are calculated by the scale factors of a three-axial ellipsoid (elliptic coordinates). To derive the gravity field coefficients of the body, the second method of Neumann was applied. Based on the spacecraft trajectory data provided by the Jet Propulsion Laboratory, GALILEOs velocity perturbations at closest approach could be calculated. We have derived the harmonic coefficients of Amaltheas gravity field up to degree and order six, for both homogeneous and reasonable heterogeneous cases. Based on these numbers we calculated the impact on the trajectory of GALILEO and compared it to existing Doppler data. Although no two-way Doppler-data was available during the flyby and the harmonic coefficients of the gravity field are buried in the one-way Doppler-noise, the calculated gravity field models of Amalthea can be a basis for further exploration of the Jupiter system. Furthermore, the model approach can be used for any planetary body.

  3. INVESTIGATING SUPERCONDUCTIVITY IN NEUTRON STAR INTERIORS WITH GLITCH MODELS

    SciTech Connect

    Haskell, B.; Pizzochero, P. M.; Seveso, S.

    2013-02-20

    The high-density interior of a neutron star is expected to contain superconducting protons and superfluid neutrons. Theoretical estimates suggest that the protons will form a type II superconductor in which the stellar magnetic field is carried by flux tubes. The strong interaction between the flux tubes and the neutron rotational vortices could lead to strong ''pinning'', i.e., vortex motion could be impeded. This has important implications especially for pulsar glitch models as it would lead to a large part of the vorticity of the star being decoupled from the ''normal'' component to which the electromagnetic emission is locked. In this Letter, we explore the consequences of strong pinning in the core on the ''snowplow'' model for pulsar glitches, making use of realistic equations of state and relativistic background models for the neutron star. We find that, in general, a large fraction of the pinned vorticity in the core is not compatible with observations of giant glitches in the Vela pulsar. Thus, the conclusion is that either most of the core is in a type I superconducting state or the interaction between vortices and flux tubes is weaker than previously assumed.

  4. Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico

    SciTech Connect

    Ernest A. Mancini; Paul Aharon; Donald A. Goddard; Roger Barnaby

    2006-04-26

    The principal research effort for the first half of Year 3 of the project has been resource assessment. Emphasis has been on estimating the total volume of hydrocarbons generated and the potential amount of this resource that is classified as deep (>15,000 ft) gas in the North Louisiana Salt Basin, the Mississippi Interior Salt Basin, the Manila Subbasin and the Conecuh Subbasin. The amount of this resource that has been expelled, migrated and entrapped is also the focus of the first half of Year 3 of this study.

  5. Phytotoxicity of salt and plant salt uptake: Modeling ecohydrological feedback mechanisms

    NASA Astrophysics Data System (ADS)

    Bauer-Gottwein, Peter; Rasmussen, Nikolaj F.; Feificova, Dagmar; Trapp, Stefan

    2008-04-01

    A new model of phytotoxicity of salt and plant salt uptake is presented and is coupled to an existing three-dimensional groundwater simulation model. The implementation of phytotoxicity and salt uptake relationships is based on experimental findings from willow trees grown in hydroponic solution. The data confirm an s-shaped phytotoxicity relationship as found in previous studies. Uptake data were explained assuming steady state salt concentration in plant roots, passive salt transport into the roots, and active enzymatic removal of salt from plant roots. On the one hand, transpiration strongly depends on groundwater salinity (phytotoxicity); on the other hand, transpiration significantly changes the groundwater salinity (uptake). This feedback loop generates interesting dynamic phenomena in hydrological systems that are dominated by transpiration and are influenced by significant salinity gradients. Generic simulations are performed for the Okavango island system and are shown to reproduce essential phenomena observed in nature.

  6. Salt glacier and composite sediment-salt glacier models for the emplacement and early burial of allochthonous salt sheets

    SciTech Connect

    Fletcher, R.C.; Hudec, M.R.; Watson, I.A.

    1996-12-31

    Allochthonous salt sheets in the northern Gulf of Mexico were emplaced as extrusive {open_quotes}salt glaciers{close_quotes} at the sediment-water interface. Massive dissolution was suppressed by a thin carapace of pelagic sediments. During emplacement, several hundred meters of bathymetric relief restricted rapid sedimentation to outside the glacial margins. The glaciers acted as sediment dams, influencing the transport and deposition of sediment from an upslope source. Because of contemporaneous sedimentation, the base of the glaciers climbed upward in all directions away from their feeder stocks, and successive sedimentary horizons were truncated against it. The local slope at the base of the sheets is equal to the local rate of sedimentation divided by the local rate of salt advance. Alternating episodes of slow and rapid sedimentation gave rise to a basal salt surface of alternating flats and ramps, which are preserved. Many salt sheets have nearly circular map patterns but are strongly asymmetric. Feeder stocks occur near upslope edges, and base-of-salt slopes are greater updip of the feeder. The asymmetry is due to more rapid sedimentation at the upslope edge and to slower advance induced by the smaller hydraulic head between the salt fountain and the upslope edge compared to the downslope edge. Rapid emplacement of the Mickey salt sheet (Mitchell dome) from a preexisting salt stock took {approximately}4 m.y, as {approximately}1 km of sediment was deposited. A three-dimensional geomechanical model for the rapid salt emplacement yields the following relationship for the diapir`s downdip radius versus time: R(t) {approx} Mt{sup q} {approx} B[({rho} - {rho}{sub w})gK{sup 3} / {eta}]{sup 1/8}t{sup q}, where M, q, b, and K are constants related to salt supply into the sheet, {rho} and {rho}{sub w} are the densities of salt water, g is the acceleration of gravity, {eta} is salt viscosity, and t is a model time extrapolated back to zero sheet volume at t = 0.

  7. Two planets: Earth and Mars - One salt model: The Hydrothermal SCRIW-Model

    NASA Astrophysics Data System (ADS)

    Hovland, M. T.; Rueslaatten, H.; Johnsen, H. K.; Indreiten, T.

    2011-12-01

    Red Sea indicates that a shallow magma-chamber causes a sufficiently high heat-flow to drive a convection cell of seawater. The model shows that salt precipitates along the flow lines within the SCRIW-region (Hovland et al., 2006). During the various stages of planet Mars' development, it must be inferred that zones with very high heat-flow also existed there. This meant that water (brine) confined in the crust of Mars was mobilized in a convective manner and would pass into the SCRIW-zone during the down-going leg (the recharge leg) of the convective cell. The zones with SCRIW out-salting would require accommodation space for large masses of solid salt, as modeled in the Red Sea analogy. However, as the accommodation space for the solid salt fills up, it will pile up and force its way upwards to form large, perhaps layered anticlines, as seen in the Hebes Mensa area of Mars and at numerous locations on Earth, including the Red Sea. Thus, we offer a universal 'hydrothermal salt model', which would be viable on all planets with free water in their interiors or on their surfaces, including Mars and Earth.

  8. In-Drift Precipitates/Salts Model

    SciTech Connect

    P. Mariner

    2003-10-21

    As directed by ''Technical Work Plan For: Engineered Barrier System Department Modeling and Testing FY03 Work Activities'' (BSC 2003 [165601]), the In-Drift Precipitates/Salts (IDPS) model is developed and refined to predict the aqueous geochemical effects of evaporation in the proposed repository. The purpose of this work is to provide a model for describing and predicting the postclosure effects of evaporation and deliquescence on the chemical composition of water within the proposed Engineered Barrier System (EBS). Application of this model is to be documented elsewhere for the Total System Performance Assessment License Application (TSPA-LA). The principal application of this model is to be documented in REV 02 of ''Engineered Barrier System: Physical and Chemical Environment Model'' (BSC 2003 [165601]). The scope of this document is to develop, describe, and validate the IDPS model. This model is a quasi-equilibrium model. All reactions proceed to equilibrium except for several suppressed minerals in the thermodynamic database not expected to form under the proposed repository conditions within the modeling timeframe. In this revision, upgrades to the EQ3/6 code (Version 8.0) and Pitzer thermodynamic database improve the applicable range of the model. These new additions allow equilibrium and reaction-path modeling of evaporation to highly concentrated brines for potential water compositions of the system Na-K-H-Mg-Ca-Al-Cl-F-NO{sub 3}-SO{sub 4}-Br-CO{sub 3}-SiO{sub 2}-CO{sub 2}-O{sub 2}-H{sub 2}O at temperatures in the range of 0 C to 125 C, pressures in the atmospheric range, and relative humidity in the range of 0 to 100 percent. This system applies to oxidizing conditions only, and therefore limits the model to applications involving oxidizing conditions. A number of thermodynamic parameters in the Pitzer database have values that have not been determined or verified for the entire temperature range. In these cases, the known values are used to approximate

  9. Study of materials performance model for aircraft interiors

    NASA Technical Reports Server (NTRS)

    Leary, K.; Skratt, J.

    1980-01-01

    A demonstration version of an aircraft interior materials computer data library was developed and contains information on selected materials applicable to aircraft seats and wall panels, including materials for the following: panel face sheets, bond plies, honeycomb, foam, decorative film systems, seat cushions, adhesives, cushion reinforcements, fire blocking layers, slipcovers, decorative fabrics and thermoplastic parts. The information obtained for each material pertains to the material's performance in a fire scenario, selected material properties and several measures of processability.

  10. How to Observe (Rather Than Model) The Interiors of Stars

    NASA Astrophysics Data System (ADS)

    Elsworth, Yvonne

    2012-05-01

    Seismology - the study of the propagation of sound waves - allows us to make real observations of the interior of stars and provides a vital counterpoint to the inferences of theory. Helioseismology pioneered this activity and an autonomous small network (BiSON) run from the University of Birmingham (UK) has been making seismic observations of the Sun for more than three solar cycles. Its continuing observations have included the just past rather strange minimum. I will use some of the recent data to illustrate the curious behaviour of our home star. For other stars there have been several recent breakthrough missions. Foremost in these is the NASA Kepler mission which has opened up to view a very large number of stars. The prime aim of the Kepler mission is the hunt for earth-like planets and the role of the seismic analysis is to inform about the host stars. However, the observations of the stars are very important in their own right. My particular interest is in the solar-like main sequence stars and red giants. I will discuss some of the recent exciting results. Given that we can now observe the interior of stars like the Sun and also stars like the Sun will - in time - become, there is every hope that we will see major in our knowledge of stellar populations, structure and evolution.

  11. Salt matters: How salt affects the rheological and physical properties of gelatine for analogue modelling

    NASA Astrophysics Data System (ADS)

    Brizzi, S.; Funiciello, F.; Corbi, F.; Di Giuseppe, E.; Mojoli, G.

    2016-06-01

    Gelatine is extensively used as analogue material for the easiness to tune its physical and rheological properties. The addition of salt to gelatine is generally adopted to increase the density of the material, improving the scaling of the models. However, the way the addition of salt changes the rheological properties of gelatine is generally underestimated. Here, we investigate both rheological and physical properties (i.e., density and transparency) of type A pig-skin 2.5 wt.% gelatine at T = 10 °C as a function of salt concentration, cNaCl, and ageing time. We established a standard preparation recipe and measuring protocol, yielding to uniform samples with reproducible behaviour. Rheometric measurements show that the presence of salt weakens the gelatine structure, with a decrease of both material rigidity and viscosity as cNaCl increases. Salted gelatine behaviour moves from viscoelastic to dominantly elastic as the ageing time increases. Density and cloudiness also increase with cNaCl. Finally, we present results from subduction interplate seismicity models performed with pure and salted gelatines, showing that the modified material may improve the modelling performance and open new perspectives in experimental tectonics.

  12. Final report on decommissioning of wells, boreholes, and tiltmeter sites, Gulf Coast Interior Salt Domes of Louisiana

    SciTech Connect

    Not Available

    1989-07-01

    In the late 1970s, test holes were drilled in northern Louisiana in the vicinity of Vacherie and Rayburn`s Salt Domes as part of the Department of Energy`s (DOE) National Waste Terminal Storage (NWTS) (rename the Civilian Radioactive Waste Management (CRWM)) program. The purpose of the program was to evaluate the suitability of salt domes for long term storage or disposal of high-level nuclear waste. The Institute for Environmental Studies at Louisiana State University (IES/LSU) and Law Engineering Testing Company (LETCo) of Marietta, Georgia performed the initial field studies. In 1982, DOE awarded a contract to the Earth Technology Corporation (TETC) of Long Beach, California to continue the Gulf Coast Salt Dome studies. In 1986, DOE deferred salt domes from further consideration as repository sites. This report describes test well plugging and site abandonment activities performed by SWEC in accordance with Activity Plan (AP) 1--3, Well Plugging and Site Restoration of Work Sites in Louisiana. The objective of the work outlined in this AP was to return test sites to as near original condition as possible by plugging boreholes, removing equipment, regrading, and seeding. Appendices to this report contain forms required by State of Louisiana, used by SWEC to document decommissioning activities, and pertinent documentation related to lease/access agreements.

  13. In-Drift Precipitates/Salts Model

    SciTech Connect

    P. Mariner

    2004-11-09

    This report documents the development and validation of the in-drift precipitates/salts (IDPS) model. The IDPS model is a geochemical model designed to predict the postclosure effects of evaporation and deliquescence on the chemical composition of water within the Engineered Barrier System (EBS) in support of the Total System Performance Assessment for the License Application (TSPA-LA). Application of the model in support of TSPA-LA is documented in ''Engineered Barrier System: Physical and Chemical Environment Model'' (BSC 2004 [DIRS 169860]). Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration (BSC 2004 [DIRS 171156]) is the technical work plan (TWP) for this report. It called for a revision of the previous version of the report (BSC 2004 [DIRS 167734]) to achieve greater transparency, readability, data traceability, and report integration. The intended use of the IDPS model is to estimate and tabulate, within an appropriate level of confidence, the effects of evaporation, deliquescence, and potential environmental conditions on the pH, ionic strength, and chemical compositions of water and minerals on the drip shield or other location within the drift during the postclosure period. Specifically, the intended use is as follows: (1) To estimate, within an appropriate level of confidence, the effects of evaporation and deliquescence on the presence and composition of water occurring within the repository during the postclosure period (i.e., effects on pH, ionic strength, deliquescence relative humidity, total concentrations of dissolved components in the system Na-K-H-Mg-Ca-Al-Cl-F-NO{sub 3}-SO{sub 4}-Br-CO{sub 3}-SiO{sub 2}-CO{sub 2}-O{sub 2}-H{sub 2}O, and concentrations of the following aqueous species that potentially affect acid neutralizing capacity: HCO{sub 3}{sup -}, CO{sub 3}{sup 2-}, OH{sup -}, H{sup +}, HSO{sub 4}{sup -}, Ca{sup 2+}, Mg{sup 2+}, CaHCO{sub 3}{sup +}, MgHCO{sub 3}{sup +}, HSiO{sub 3

  14. Examining Interior Grid Nudging Techniques Using Two-Way Nesting in the WRF Model for Regional Climate Modeling

    EPA Science Inventory

    This study evaluates interior nudging techniques using the Weather Research and Forecasting (WRF) model for regional climate modeling over the conterminous United States (CONUS) using a two-way nested configuration. NCEP–Department of Energy Atmospheric Model Intercomparison Pro...

  15. The Receptacle Model of Salting-In by Tetramethylammonium Ions

    PubMed Central

    Hribar–Lee, Barbara; Dill, Ken A.; Vlachy, Vojko

    2010-01-01

    Water is a poor solvent for nonpolar solutes. Water containing ions is an even poorer solvent. According to standard terminology, the tendency of salts to precipitate oils from water is called salting-out. However, interestingly, some salt ions, such as tetramethylammonium (TMA), cause instead the salting-in of hydrophobic solutes. Even more puzzling, there is a systematic dependence on solute size. TMA causes the salting-out of small hydrophobes and the salting-in of larger nonpolar solutes. We study these effects using NPT Monte Carlo simulations of the MB + dipole model of water, which was previously shown to account for hydrophobic effects and ion solubilities in water. The present model gives a structural interpretation for the thermodynamics of salting-in. The TMA structure allows deep penetration by a first shell of waters, the dipoles of which interact electrostatically with the ion. This first water shell sets up a second water shell that is shaped to act as a receptacle that binds the nonpolar solute. In this way, a nonpolar solute can actually bind more tightly to the TMA ion than to another hydrophobe, leading to the increased solubility and salting-in. Such structuring may also explain why molecular ions do not follow the same charge density series’ as atomic ions do. PMID:21028768

  16. Receptacle model of salting-in by tetramethylammonium ions.

    PubMed

    Hribar-Lee, Barbara; Dill, Ken A; Vlachy, Vojko

    2010-11-25

    Water is a poor solvent for nonpolar solutes. Water containing ions is an even poorer solvent. According to standard terminology, the tendency of salts to precipitate oils from water is called salting-out. However, interestingly, some salt ions, such as tetramethylammonium (TMA), cause instead the salting-in of hydrophobic solutes. Even more puzzling, there is a systematic dependence on solute size. TMA causes the salting-out of small hydrophobes and the salting-in of larger nonpolar solutes. We study these effects using NPT Monte Carlo simulations of the Mercedes-Benz (MB) + dipole model of water, which was previously shown to account for hydrophobic effects and ion solubilities in water. The present model gives a structural interpretation for the thermodynamics of salting-in. The TMA structure allows deep penetration by a first shell of waters, the dipoles of which interact electrostatically with the ion. This first water shell sets up a second water shell that is shaped to act as a receptacle that binds the nonpolar solute. In this way, a nonpolar solute can actually bind more tightly to the TMA ion than to another hydrophobe, leading to the increased solubility and salting-in. Such structuring may also explain why molecular ions do not follow the same charge density series as atomic ions do.

  17. Receptacle model of salting-in by tetramethylammonium ions.

    PubMed

    Hribar-Lee, Barbara; Dill, Ken A; Vlachy, Vojko

    2010-11-25

    Water is a poor solvent for nonpolar solutes. Water containing ions is an even poorer solvent. According to standard terminology, the tendency of salts to precipitate oils from water is called salting-out. However, interestingly, some salt ions, such as tetramethylammonium (TMA), cause instead the salting-in of hydrophobic solutes. Even more puzzling, there is a systematic dependence on solute size. TMA causes the salting-out of small hydrophobes and the salting-in of larger nonpolar solutes. We study these effects using NPT Monte Carlo simulations of the Mercedes-Benz (MB) + dipole model of water, which was previously shown to account for hydrophobic effects and ion solubilities in water. The present model gives a structural interpretation for the thermodynamics of salting-in. The TMA structure allows deep penetration by a first shell of waters, the dipoles of which interact electrostatically with the ion. This first water shell sets up a second water shell that is shaped to act as a receptacle that binds the nonpolar solute. In this way, a nonpolar solute can actually bind more tightly to the TMA ion than to another hydrophobe, leading to the increased solubility and salting-in. Such structuring may also explain why molecular ions do not follow the same charge density series as atomic ions do. PMID:21028768

  18. Health gain by salt reduction in europe: a modelling study.

    PubMed

    Hendriksen, Marieke A H; van Raaij, Joop M A; Geleijnse, Johanna M; Breda, Joao; Boshuizen, Hendriek C

    2015-01-01

    Excessive salt intake is associated with hypertension and cardiovascular diseases. Salt intake exceeds the World Health Organization population nutrition goal of 5 grams per day in the European region. We assessed the health impact of salt reduction in nine European countries (Finland, France, Ireland, Italy, Netherlands, Poland, Spain, Sweden and United Kingdom). Through literature research we obtained current salt intake and systolic blood pressure levels of the nine countries. The population health modeling tool DYNAMO-HIA including country-specific disease data was used to predict the changes in prevalence of ischemic heart disease and stroke for each country estimating the effect of salt reduction through its effect on blood pressure levels. A 30% salt reduction would reduce the prevalence of stroke by 6.4% in Finland to 13.5% in Poland. Ischemic heart disease would be decreased by 4.1% in Finland to 8.9% in Poland. When salt intake is reduced to the WHO population nutrient goal, it would reduce the prevalence of stroke from 10.1% in Finland to 23.1% in Poland. Ischemic heart disease would decrease by 6.6% in Finland to 15.5% in Poland. The number of postponed deaths would be 102,100 (0.9%) in France, and 191,300 (2.3%) in Poland. A reduction of salt intake to 5 grams per day is expected to substantially reduce the burden of cardiovascular disease and mortality in several European countries.

  19. CONVECTIVE OVERSHOOT MIXING IN MODELS OF THE STELLAR INTERIOR

    SciTech Connect

    Zhang, Q. S.

    2013-04-01

    Convective overshoot mixing plays an important role in stellar structure and evolution. However, overshoot mixing is also a long-standing problem; it is one of the most uncertain factors in stellar physics. As is well known, convective overshoot mixing is determined by the radial turbulent flux of the chemical component. In this paper, a local model of the radial turbulent flux of the chemical component is established based on hydrodynamic equations and some model assumptions and is tested in stellar models. The main conclusions are as follows. (1) The local model shows that convective overshoot mixing could be regarded as a diffusion process and the diffusion coefficient for different chemical elements is the same. However, if the non-local terms i.e., the gradient of the third-order moments, are taken into account, the diffusion coefficient for each chemical element should in general be different. (2) The diffusion coefficient of convective/overshoot mixing shows different behaviors in the convection zone and in the overshoot region because the characteristic length scale of the mixing is large in the convection zone and small in the overshoot region. Overshoot mixing should be regarded as a weak mixing process. (3) The diffusion coefficient of mixing is tested in stellar models, and it is found that a single choice of our central mixing parameter leads to consistent results for a solar convective envelope model as well as for core convection models of stars with masses from 2 M to 10 M.

  20. Salt tectonics and shallow subseafloor fluid convection: models of coupled fluid-heat-salt transport

    USGS Publications Warehouse

    Wilson, A.; Ruppel, C.

    2007-01-01

    Thermohaline convection associated with salt domes has the potential to drive significant fluid flow and mass and heat transport in continental margins, but previous studies of fluid flow associated with salt structures have focused on continental settings or deep flow systems of importance to petroleum exploration. Motivated by recent geophysical and geochemical observations that suggest a convective pattern to near-seafloor pore fluid flow in the northern Gulf of Mexico (GoMex), we devise numerical models that fully couple thermal and chemical processes to quantify the effects of salt geometry and seafloor relief on fluid flow beneath the seafloor. Steady-state models that ignore halite dissolution demonstrate that seafloor relief plays an important role in the evolution of shallow geothermal convection cells and that salt at depth can contribute a thermal component to this convection. The inclusion of faults causes significant, but highly localized, increases in flow rates at seafloor discharge zones. Transient models that include halite dissolution show the evolution of flow during brine formation from early salt-driven convection to later geothermal convection, characteristics of which are controlled by the interplay of seafloor relief and salt geometry. Predicted flow rates are on the order of a few millimeters per year or less for homogeneous sediments with a permeability of 10−15 m2, comparable to compaction-driven flow rates. Sediment permeabilities likely fall below 10−15 m2 at depth in the GoMex basin, but such thermohaline convection can drive pervasive mass transport across the seafloor, affecting sediment diagenesis in shallow sediments. In more permeable settings, such flow could affect methane hydrate stability, seafloor chemosynthetic communities, and the longevity of fluid seeps.

  1. Apply 3D model on the customized product color combination for the interior decoration

    NASA Astrophysics Data System (ADS)

    Chen, Cheih-Ying

    2013-03-01

    The customized product color interface for the interior decoration is designed to simulate the display of various color combination sofas in the interior of the room. There are 144 color combinations of the spatial image resulted from four the interior rooms and 36 popular color sofas. The image compositing technique is adopted to appear the 144 color combinations of the spatial image on computer screen. This study tests the experience of using the interface by the questionnaire for User Interface Satisfaction (QUIS). The results show that the high grade of evaluation items including wonderful, easy, satisfying, stimulating and flexible for the experience of users. Therefore, the entrepreneur who wants to display the color primarily commodity could using the customized color combination interface with 3D models for consumers to take opportunity to find the appropriate products to meet with the interior room, so as to shorten communication time between entrepreneurs and consumers.

  2. The Necessity of Salt Precipitation for the Dead Sea Modeling

    NASA Astrophysics Data System (ADS)

    Dvorkin, Y.; Lensky, N.; Lyahovsky, V.; Gertman, I.; Gavrieli, I.

    2006-12-01

    The Dead Sea is a hypersaline terminal lake with a composition that differs significantly from regular seawater. During the winter the DS is well mixed but in the spring a thermocline develops and the lake becomes stratified. Evaporation, mainly during summer leads to the development of a destabilizing halocline together with a stabilizing thermocline. Thus, the upper mixed layer is warmer due to heating and more saline due to evaporation than the lower layer. In the autumn, when the upper layer cools sufficiently, the lake overturns and becomes mixed again. To model this behavior one has to take into account the unique features of the Dead Sea. These features include the need for a special equation of state, determination of water activity and its impact on the evaporation rate, water inflow, including rejected brine (end brine) from the Dead Sea works and salt precipitation from the DS water body. The modeling of the water activity and salt precipitation requires a multicomponent (rather than usual salinity-based) model which enables determination of the degrees of saturation for specific salts and the calculation of the corresponding amount of precipitated salt required to maintain saturation. This precipitated salt accumulates on the bottom of the lake thus making the water deficit greater than surmised from observed water level drop. In the present study we modified the 1-D Princeton Oceanographic Model (POM) incorporating a new equation of state. The model correctly reproduces the measured temperature and salinity profiles, sea level drop and seasonal stratification and overturn of the DS. Our results show that the timing of the overturn is determined by the interplay between the temperature and the salinity of the mixed upper layer. The greater amount of salt in the water in the case of no salt precipitation results in premature overturn. Thus, salt precipitation and its impact on the mixed layer salinity were found to be of utmost importance.

  3. Modeling of Pilot-Scale Salt-cake Dissolution

    SciTech Connect

    Toghiani, R.K.; Smith, L.T.; Lindner, J.S.; Tachiev, G.I.; Yaari, G.

    2006-07-01

    Large portions of the high-level waste present at the Hanford Site and Savannah River Site are comprised of porous salts with associated interstitial liquors. Various processes have been proposed wherein the aqueous phase is removed followed by dissolution of the salt with further mixing or blending of the resulting stream in a receiver tank. This leads to a large reduction in the radioactivity for the dissolved salt-cake; however, the interstitial retrieval process is hindered by capillary forces within the salt-cake pores and large aqueous phase fractions may remain. Thus, the interim stabilized or low-curie salt processes may have less separation effectiveness than desired. In addition, based on the initial extent of pretreatment of the waste, the salt-cake may be either unsaturated or hydraulically saturated. Different interactions are expected based on the contact of the diluent with the salt and/or on mixing the diluent with the salt and some fraction of interstitial liquid. The initial approximation is that the dissolution is governed by the associated thermodynamics of the system. This may be correct assuming sufficient time for contact between the salt and diluent has occurred. Pilot-scale simulant salt-cake dissolution experiments have been conducted by the Applied Research Center (ARC) at Florida International University. As part of a companion program, these experiments have been modeled at the Diagnostic Instrumentation and Analysis Laboratory (DIAL, Mississippi State University) using the Environmental Simulation Program (ESP, OLI Systems, Inc.). Hanford simulant compositions were examined under unsaturated and saturated conditions. To account for channeling that occurred during the unsaturated experiment, additional operations were required for the process flowsheet. Direct modeling of the saturated bed was possible without this consideration. The results have impacts on the salt-cake retrieval process. First, depending on the extent of interstitial

  4. Rhea gravity field and interior modeling from Cassini data analysis

    NASA Astrophysics Data System (ADS)

    Tortora, Paolo; Zannoni, Marco; Hemingway, Doug; Nimmo, Francis; Jacobson, Robert A.; Iess, Luciano; Parisi, Marzia

    2016-01-01

    During its tour of the Saturn system, Cassini performed two close flybys of Rhea dedicated to gravity investigations, the first in November 2005 and the second in March 2013. This paper presents an estimation of Rhea's fully unconstrained quadrupole gravity field obtained from a joint multi-arc analysis of the two Cassini flybys. Our best estimates of the main gravity quadrupole unnormalized coefficients are J2 × 106 = 946.0 ± 13.9, C22 × 106 = 242.1 ± 4.0 (uncertainties are 1-σ). Their resulting ratio is J2/C22 = 3.91 ± 0.10, statistically not compatible (at a 5-σ level) with the theoretical value of 10/3, predicted for a hydrostatic satellite in slow, synchronous rotation around a planet. Therefore, it is not possible to infer the moment of inertia factor directly using the Radau-Darwin approximation. The observed excess J2 (gravity oblateness) was investigated using a combined analysis of gravity and topography, under different plausible geophysical assumptions. The observed gravity is consistent with that generated by the observed shape for an undifferentiated (uniform density) body. However, because the surface is more likely to be water ice, a two-layer model may be a better approximation. In this case, and assuming a mantle density of 920 kg/m3, some 1-3 km of excess core oblateness is consistent with the observed gravity. A wide range of moments of inertia is allowed, but models with low moments of inertia (i.e., more differentiation) require greater magnitudes of excess core topography to satisfy the observations.

  5. Modeling salt precipitation from brines on Mars: Evaporation versus freezing origin for soil salts

    NASA Astrophysics Data System (ADS)

    Toner, Jonathan D.; Catling, David C.; Light, Bonnie

    2015-04-01

    Perchlorates, in mixture with sulfates, chlorides, and carbonates, have been found in relatively high concentrations in martian soils. To determine probable soil salt assemblages from aqueous chemical data, equilibrium models have been developed to predict salt precipitation sequences during either freezing or evaporation of brines. However, these models have not been validated for multicomponent systems and some model predictions are clearly in error. In this study, we built a Pitzer model in the Na-K-Ca-Mg-Cl-SO4-ClO4-H2O system at 298.15 K using compilations of solubility data in ternary and quaternary perchlorate systems. The model is a significant improvement over FREZCHEM, particularly for Na-Mg-Cl-ClO4, Ca-Cl-ClO4, and Na-SO4-ClO4 mixtures. We applied our model to the evaporation of a nominal Phoenix Lander Wet Chemistry Laboratory (WCL) solution at 298.15 K and compare our results to FREZCHEM. Both models predict the early precipitation of KClO4, hydromagnesite (3MgCO3·Mg(OH)2·3H2O), gypsum (CaSO4·2H2O), and epsomite (MgSO4·7H2O), followed by dehydration of epsomite and gypsum to kieserite (MgSO4·H2O) and anhydrite (CaSO4) respectively. At low residual water contents, our model predicts the precipitation of halite (NaCl), NaClO4·H2O, and Mg(ClO4)2·6H2O, whereas halite and NaClO4·H2O never precipitate in FREZCHEM. Our model predicts that calcite does not precipitate from evaporating WCL solutions at 298.15 K, which conflicts with other evidence for calcite in Phoenix soils. Previous studies that modeled freezing of WCL solutions found that calcite does form. Furthermore, our model predicts that ∼0.3 wt.% H2O is held in hydrated salts after the WCL solution has completely evaporated at 298.15 K, whereas previous studies have found that ∼1.3 wt.% H2O is held in hydrated salts if WCL solutions freeze. Given minimum water contents in Mars soils of 1.5-2 wt.% H2O measured from orbital spectra and in situ measurements, our modeling results suggest that

  6. Thermal State of the Greenland Ice Sheet Interior: Thermo-mechanical Modeling and Sensitivity Analyses

    NASA Astrophysics Data System (ADS)

    Sommers, A. N.; Rajaram, H.; Colgan, W. T.; Csatho, B. M.

    2015-12-01

    Temperature and velocity conditions in the Greenland ice sheet interior, particularly at the bed, remain fairly uncertain, with the exception of sparse borehole measurements and radar inferences. As surface melt progresses inland, these basal conditions may play an important role in future ice sheet dynamics. Using a two-dimensional flow line thermo-mechanically coupled model, we generate steady state velocity and temperature fields for 75 flow lines in the Greenland ice sheet interior, whose accuracy is assessed using robust surface velocity field measurements at stations measured by the Program for Arctic Regional Climate Assessment (PARCA) around the approximate 2,000 m elevation contour of the ice sheet. It is generally useful to perform forward modeling exercises and associated sensitivity analyses as a prelude to detailed inverse modeling, as a means to reveal relations between various uncertain parameters and the observations. We explore the influence of geothermal flux, enhancement factor for Wisconsin ice, and bed topography on temperature and velocity fields in the Greenland interior. A notable finding is a negative feedback between increasing geothermal flux and ice surface velocity in regions with temperate bed. We present simulated temperature and velocity profiles from the main divide to the PARCA stakes, as well as maps of inferred regions of temperate bed and temperate ice thickness. The suggested extent of temperate bed from our simulations is consistent with all available borehole and radar observations in the Greenland interior, and reproduces general features evident from other modeling studies. The velocity and temperature conditions produced in this work for widespread regions of the interior of the Greenland ice sheet may be used to inform and constrain models of future ice sheet response, particularly involving subglacial hydrology and basal refreezing in the interior.

  7. Micro-Macro Analysis and Phenomenological Modelling of Salt Viscous Damage and Application to Salt Caverns

    NASA Astrophysics Data System (ADS)

    Zhu, Cheng; Pouya, Ahmad; Arson, Chloé

    2015-11-01

    This paper aims to gain fundamental understanding of the microscopic mechanisms that control the transition between secondary and tertiary creep around salt caverns in typical geological storage conditions. We use a self-consistent inclusion-matrix model to homogenize the viscoplastic deformation of halite polycrystals and predict the number of broken grains in a Representative Elementary Volume of salt. We use this micro-macro modeling framework to simulate creep tests under various axial stresses, which gives us the critical viscoplastic strain at which grain breakage (i.e., tertiary creep) is expected to occur. The comparison of simulation results for short-term and long-term creep indicates that the initiation of tertiary creep depends on the stress and the viscoplastic strain. We use the critical viscoplastic deformation as a yield criterion to control the transition between secondary and tertiary creep in a phenomenological viscoplastic model, which we implement into the Finite Element Method program POROFIS. We model a 850-m-deep salt cavern of irregular shape, in axis-symmetric conditions. Simulations of cavern depressurization indicate that a strain-dependent damage evolution law is more suitable than a stress-dependent damage evolution law, because it avoids high damage concentrations and allows capturing the formation of a damaged zone around the cavity. The modeling framework explained in this paper is expected to provide new insights to link grain breakage to phenomenological damage variables used in Continuum Damage Mechanics.

  8. Chapter 2. Assessment of undiscovered conventional oil and gas resources--Upper Jurassic-Lower Cretaceous Cotton Valley group, Jurassic Smackover interior salt basins total petroleum system, in the East Texas basin and Louisiana-Mississippi salt basins provinces.

    USGS Publications Warehouse

    Dyman, T.S.; Condon, S.M.

    2006-01-01

    The Jurassic Smackover Interior Salt Basins Total Petroleum System is defined for this assessment to include (1) Upper Jurassic Smackover Formation carbonates and calcareous shales and (2) Upper Jurassic and Lower Cretaceous Cotton Valley Group organic-rich shales. The Jurassic Smackover Interior Salt Basins Total Petroleum System includes four conventional Cotton Valley assessment units: Cotton Valley Blanket Sandstone Gas (AU 50490201), Cotton Valley Massive Sandstone Gas (AU 50490202), Cotton Valley Updip Oil and Gas (AU 50490203), and Cotton Valley Hypothetical Updip Oil (AU 50490204). Together, these four assessment units are estimated to contain a mean undiscovered conventional resource of 29.81 million barrels of oil, 605.03 billion cubic feet of gas, and 19.00 million barrels of natural gas liquids. The Cotton Valley Group represents the first major influx of clastic sediment into the ancestral Gulf of Mexico. Major depocenters were located in south-central Mississippi, along the Louisiana-Mississippi border, and in northeast Texas. Reservoir properties and production characteristics were used to identify two Cotton Valley Group sandstone trends across northern Louisiana and east Texas: a high-permeability blanket-sandstone trend and a downdip, low-permeability massive-sandstone trend. Pressure gradients throughout most of both trends are normal, which is characteristic of conventional rather than continuous basin-center gas accumulations. Indications that accumulations in this trend are conventional rather than continuous include (1) gas-water contacts in at least seven fields across the blanket-sandstone trend, (2) relatively high reservoir permeabilities, and (3) high gas-production rates without fracture stimulation. Permeability is sufficiently low in the massive-sandstone trend that gas-water transition zones are vertically extensive and gas-water contacts are poorly defined. The interpreted presence of gas-water contacts within the Cotton Valley

  9. Mechanical modeling of the growth of salt structures

    SciTech Connect

    Alfaro, R.A.M.

    1993-05-01

    A 2D numerical model for studying the morphology and history of salt structures by way of computer simulations is presented. The model is based on conservation laws for physical systems, a fluid marker equation to keep track of the salt/sediments interface, and two constitutive laws for rocksalt. When buoyancy alone is considered, the fluid-assisted diffusion model predicts evolution of salt structures 2.5 times faster than the power-law creep model. Both rheological laws predict strain rates of the order of 4.0 {times} 10{sup {minus}15}s{sup {minus}1} for similar structural maturity level of salt structures. Equivalent stresses and viscosities predicted by the fluid-assisted diffusion law are 10{sup 2} times smaller than those predicted by the power-law creep rheology. Use of East Texas Basin sedimentation rates and power-law creep rheology indicate that differential loading is an effective mechanism to induce perturbations that amplify and evolve to mature salt structures, similar to those observed under natural geological conditions.

  10. Interior-point methods for estimating seasonal parameters in discrete-time infectious disease models.

    PubMed

    Word, Daniel P; Young, James K; Cummings, Derek A T; Iamsirithaworn, Sopon; Laird, Carl D

    2013-01-01

    Infectious diseases remain a significant health concern around the world. Mathematical modeling of these diseases can help us understand their dynamics and develop more effective control strategies. In this work, we show the capabilities of interior-point methods and nonlinear programming (NLP) formulations to efficiently estimate parameters in multiple discrete-time disease models using measles case count data from three cities. These models include multiplicative measurement noise and incorporate seasonality into multiple model parameters. Our results show that nearly identical patterns are estimated even when assuming seasonality in different model parameters, and that these patterns show strong correlation to school term holidays across very different social settings and holiday schedules. We show that interior-point methods provide a fast and flexible approach to parameterizing models that can be an alternative to more computationally intensive methods. PMID:24167542

  11. Interior-point methods for estimating seasonal parameters in discrete-time infectious disease models.

    PubMed

    Word, Daniel P; Young, James K; Cummings, Derek A T; Iamsirithaworn, Sopon; Laird, Carl D

    2013-01-01

    Infectious diseases remain a significant health concern around the world. Mathematical modeling of these diseases can help us understand their dynamics and develop more effective control strategies. In this work, we show the capabilities of interior-point methods and nonlinear programming (NLP) formulations to efficiently estimate parameters in multiple discrete-time disease models using measles case count data from three cities. These models include multiplicative measurement noise and incorporate seasonality into multiple model parameters. Our results show that nearly identical patterns are estimated even when assuming seasonality in different model parameters, and that these patterns show strong correlation to school term holidays across very different social settings and holiday schedules. We show that interior-point methods provide a fast and flexible approach to parameterizing models that can be an alternative to more computationally intensive methods.

  12. Salting our landscape: an integrated catchment model using readily accessible data to assess emerging road salt contamination to streams.

    PubMed

    Jin, Li; Whitehead, Paul; Siegel, Donald I; Findlay, Stuart

    2011-05-01

    A new integrated catchment model for salinity has been developed to assess the transport of road salt from upland areas in watersheds to streams using readily accessible landscape, hydrologic, and meteorological data together with reported salt applications. We used Fishkill Creek (NY) as a representative watershed to test the model. Results showed good agreement between modeled and measured stream water chloride concentrations. These results suggest that a dominant mode of catchment simulation that does not entail complex deterministic modeling is an appropriate method to model salinization and to assess effects of future applications of road salt to streams. We heuristically increased and decreased salt applications by 100% and results showed that stream chloride concentrations increased by 13% and decreased by 7%, respectively. The model suggests that future management of salt application can reduce environmental concentrations, albeit over some time.

  13. MODELING THE DYNAMICAL COUPLING OF SOLAR CONVECTION WITH THE RADIATIVE INTERIOR

    SciTech Connect

    Brun, Allan Sacha; Toomre, Juri

    2011-12-01

    The global dynamics of a rotating star like the Sun involves the coupling of a highly turbulent convective envelope overlying a seemingly benign radiative interior. We use the anelastic spherical harmonic code to develop a new class of three-dimensional models that nonlinearly couple the convective envelope to a deep stable radiative interior. The numerical simulation assumes a realistic solar stratification from r = 0.07 up to 0.97R (with R the solar radius), thus encompassing part of the nuclear core up through most of the convection zone. We find that a tachocline naturally establishes itself between the differentially rotating convective envelope and the solid body rotation of the interior, with a slow spreading that is here diffusively controlled. The rapid angular momentum redistribution in the convective envelope leads to a fast equator and slow poles, with a conical differential rotation achieved at mid-latitudes, much as has been deduced by helioseismology. The convective motions are able to overshoot downward about 0.04R into the radiative interior. However, the convective meridional circulation there is confined to a smaller penetration depth and is directed mostly equatorward at the base of the convection zone. Thermal wind balance is established in the lower convection zone and tachocline but departures are evident in the upper convection zone. Internal gravity waves are excited by the convective overshooting, yielding a complex wave field throughout the radiative interior.

  14. Modeling the Dynamical Coupling of Solar Convection with the Radiative Interior

    NASA Astrophysics Data System (ADS)

    Brun, Allan Sacha; Miesch, Mark S.; Toomre, Juri

    2011-12-01

    The global dynamics of a rotating star like the Sun involves the coupling of a highly turbulent convective envelope overlying a seemingly benign radiative interior. We use the anelastic spherical harmonic code to develop a new class of three-dimensional models that nonlinearly couple the convective envelope to a deep stable radiative interior. The numerical simulation assumes a realistic solar stratification from r = 0.07 up to 0.97R (with R the solar radius), thus encompassing part of the nuclear core up through most of the convection zone. We find that a tachocline naturally establishes itself between the differentially rotating convective envelope and the solid body rotation of the interior, with a slow spreading that is here diffusively controlled. The rapid angular momentum redistribution in the convective envelope leads to a fast equator and slow poles, with a conical differential rotation achieved at mid-latitudes, much as has been deduced by helioseismology. The convective motions are able to overshoot downward about 0.04R into the radiative interior. However, the convective meridional circulation there is confined to a smaller penetration depth and is directed mostly equatorward at the base of the convection zone. Thermal wind balance is established in the lower convection zone and tachocline but departures are evident in the upper convection zone. Internal gravity waves are excited by the convective overshooting, yielding a complex wave field throughout the radiative interior.

  15. Salt marsh stability modelled in relation to sea level rise

    NASA Astrophysics Data System (ADS)

    Bartholdy, Jesper; Bartholdy, Anders T.; Kroon, Aart

    2010-05-01

    Accretion on a natural backbarrier salt marsh was modeled as a function of high tide level, initial salt marsh level and distance to the source. Calibration of the model was based on up to ca 80 year old marker horizons, supplemented by 210Pb/137Cs datings and subsequent measurements of clay thickness. Autocompaction was incorporated in the model, and shown to play a major role for the translation of accretion rates measured as length per unit time to accumulation rates measured as mass per area per unit time. This is important, even for shallow salt marsh deposits for which it is demonstrated that mass depth down core can be directly related to the bulk dry density of the surface layer by means of a logarithmic function. The results allow for an evaluation of the use of marker horizons in the topmost layers and show that it is important to know the level of the marker in relation to the salt marsh base. In general, deeper located markers will indicate successively smaller accretion rates with the same sediment input. Thus, stability analysis made on the basis of newly established marker horizons will be biased and indicate salt marsh stabilities far above the correct level. Running the model with a constant sea level revealed that balance between the inner and the outer salt marsh deposition can not be achieved within a reasonable time scale. Likewise it is shown that only one specific sea level rise provides equilibrium for a given location on the salt marsh. With a higher sea level rise, the marsh at the specific location will eventually drown, whereas - with a sea level rise below this level - it will grow towards the top of the rising tidal frame. The short term variation of salt marsh accretion was found to correlate well with variations in the North Atlantic Oscillation - the NAO winter index. Comparisons between the geomorphological development of wind tide affected salt marshes, like those present on the Danish North Sea coasts, and primary astronomically

  16. Evaluation of potential crushed-salt constitutive models

    SciTech Connect

    Callahan, G.D.; Loken, M.C.; Sambeek, L.L. Van; Chen, R.; Pfeifle, T.W.; Nieland, J.D.

    1995-12-01

    Constitutive models describing the deformation of crushed salt are presented in this report. Ten constitutive models with potential to describe the phenomenological and micromechanical processes for crushed salt were selected from a literature search. Three of these ten constitutive models, termed Sjaardema-Krieg, Zeuch, and Spiers models, were adopted as candidate constitutive models. The candidate constitutive models were generalized in a consistent manner to three-dimensional states of stress and modified to include the effects of temperature, grain size, and moisture content. A database including hydrostatic consolidation and shear consolidation tests conducted on Waste Isolation Pilot Plant and southeastern New Mexico salt was used to determine material parameters for the candidate constitutive models. Nonlinear least-squares model fitting to data from the hydrostatic consolidation tests, the shear consolidation tests, and a combination of the shear and hydrostatic tests produces three sets of material parameter values for the candidate models. The change in material parameter values from test group to test group indicates the empirical nature of the models. To evaluate the predictive capability of the candidate models, each parameter value set was used to predict each of the tests in the database. Based on the fitting statistics and the ability of the models to predict the test data, the Spiers model appeared to perform slightly better than the other two candidate models. The work reported here is a first-of-its kind evaluation of constitutive models for reconsolidation of crushed salt. Questions remain to be answered. Deficiencies in models and databases are identified and recommendations for future work are made. 85 refs.

  17. Imaging Mars: Seeking Characteristic Signals in Models of the Martian Interior

    NASA Astrophysics Data System (ADS)

    Irving, J. C. E.; Wicks, J. K.

    2015-12-01

    We expect that the interiors of terrestrial planets look somewhat like our own - with a crust, a mantle hosting a range of mineralogical transformations and an iron alloy core. Data from existing geophysical observations of Mars, including its moment of inertia and mass, together with mineralogical, cosmochemical, geodynamical and meteorite information and modeling have lead to the creation of a variety of models of the density profile of the martian interior. A number of these density models are accompanied by seismic profiles in the planet. The presence of liquid layer in the outer core is supported by geodetic information; the presence of a solid inner core has not been conclusively ruled out by previous studies though it is unlikely. Some models predict jumps in seismic velocity in the mantle as steadily increasing pressure changes the stable phase assemblage, while other models instead show smooth increases in velocity. Attenuation in the martian mantle has been estimated by considering the tidal dissipation observed as Phobos orbits Mars. We investigate a range of models of Mars' density and velocity structure, using both simulations of Mars' normal mode oscillations and calculations of body wave travel times, ray paths and synthetic waveforms. For several features of the martian interior, from the presence of sharp boundaries in the mantle, to probable core sizes, we seek seismically observable signatures. Probing Mars' interior using seismic techniques is a key aim of the upcoming InSight mission to Mars; if seismic sources are sufficiently numerous and energetic then the presence of known seismic signatures for characteristics of the martian interior will help us to understand what lies beneath the surface of Mars.

  18. Levermore-Pomraning Model Results for an Interior Source Binary Stochastic Medium Benchmark Problem

    SciTech Connect

    Brantley, P S; Palmer, T S

    2009-02-24

    The accuracy of the Levermore-Pomraning model for particle transport through a binary stochastic medium is investigated using an interior source benchmark problem. As in previous comparisons of the model for incident angular flux benchmark problems, the model accurately computes the leakage and the scalar flux distributions for optically thin slabs. The model is less accurate for more optically thick slabs but has a maximum relative error in the leakage of approximately 10% for the problems examined. The maximum root-mean-squared relative errors for the total and material scalar flux distributions approach 65% for the more optically thick slabs. Consistent with previous benchmark comparisons, the results of these interior source benchmark comparisons demonstrate that the Levermore-Pomraning model produces qualitatively correct and semi-quantitatively correct results for both leakage values and scalar flux distributions.

  19. Citronelle Dome: A giant opportunity for multizone carbon storage and enhanced oil recovery in the Mississippi Interior Salt Basin of Alabama

    USGS Publications Warehouse

    Esposito, R.A.; Pashin, J.C.; Walsh, P.M.

    2008-01-01

    The Citronelle Dome is a giant, salt-cored anticline in the eastern Mississippi Interior Salt Basin of southern Alabama that is located near several large-scale, stationary, carbon-emitting sources in the greater Mobile area. The dome forms an elliptical, four-way structural closure containing opportunities for CO2-enhanced oil recovery (CO2-EOR) and large-capacity saline reservoir CO2 sequestration. The Citronelle oil field, located on the crest of the dome, has produced more than 169 million bbl of 42-46?? API gravity oil from sandstone bodies in the Lower Cretaceous Rodessa Formation. The top seal for the oil accumulation is a thick succession of shale and anhydrite, and the reservoir is underfilled such that oil-water contacts are typically elevated 30-60 m (100-200 ft) above the structural spill point. Approximately 31-34% of the original oil in place has been recovered by primary and secondary methods, and CO2-EOR has the potential to increase reserves by up to 20%. Structural contour maps of the dome demonstrate that the area of structural closure increases upward in section. Sandstone units providing prospective carbon sinks include the Massive and Pilot sands of the lower Tuscaloosa Group, as well as several sandstone units in the upper Tuscaloosa Group and the Eutaw Formation. Many of these sandstone units are characterized by high porosity and permeability with low heterogeneity. The Tuscaloosa-Eutaw interval is capped by up to 610 m (2000 ft) of chalk and marine shale that are proven reservoir seals in nearby oil fields. Therefore, the Citronelle Dome can be considered a major geologic sink where CO2 can be safely stored while realizing the economic benefits associated with CO2-EOR. Copyright ?? 2008. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  20. Analytical model of the structureborne interior noise induced by a propeller wake

    NASA Technical Reports Server (NTRS)

    Junger, M. C.; Garrelick, J. M.; Martinez, R.; Cole, J. E., III

    1984-01-01

    The structure-borne contribution to the interior noise that is induced by the propeller wake acting on the wing was studied. Analytical models were developed to describe each aspect of this path including the excitation loads, the wing and fuselage structures, and the interior acoustic space. The emphasis is on examining a variety of parameters, and as a result different models were developed to examine specific parameters. The excitation loading on the wing by the propeller wake is modeled by a distribution of rotating potential vortices whose strength is related to the thrust per blade. The response of the wing to this loading is examined using beam models. A model of a beam structurally connected to a cylindrical shell with an internal acoustic fluid was developed to examine the coupling of energy from the wing to the interior space. The model of the acoustic space allows for arbitrary end conditions (e.g., rigid or vibrating end caps). Calculations are presented using these models to compare with a laboratory test configuration as well as for parameters of a prop-fan aircraft.

  1. New model describes toppling of salt marsh banks

    NASA Astrophysics Data System (ADS)

    Wendel, JoAnna

    2014-05-01

    Salt marshes are coastal habitats that store important nutrients and serve as shelter for many estuarial species. These habitats are threatened by rising seas and human expansion, so it has become increasingly important to improve models of how these habitats degrade.

  2. Conceptual Model for Selenium Cycling in the Great Salt Lake

    NASA Astrophysics Data System (ADS)

    Johnson, W. P.; Conover, M. R.; Wurtsbaugh, W. A.; Adams, J.

    2006-12-01

    The conceptual model for Selenium cycling in the Great Salt Lake was developed to guide investigations in support of determining an open water selenium standard for the Great Salt Lake. The motivation to determine this particular selenium standard derives from public concern for a plan to allow disposal of reverse osmosis (RO) concentrate in the GSL, which would contain elevated concentrations of major and trace elements, including selenium. The development of an open water standard for selenium requires a working knowledge of the biological significance of existing selenium concentrations in the Great Salt Lake, as well as a working understanding of the likely changes of these concentrations over time given existing and proposed loads to the system. This working knowledge" is being represented in a conceptual model that accounts for selenium in various stocks" in the system (e.g. water, sediment, biota) and the flow" of selenium between stocks (e.g., precipitation and settling, volatilization, bioconcentration). It illustrates the critical pathway of selenium in the Great Salt Lake from water, to microorganisms, to brine shrimp and brine flies, to birds, and to their eggs. It also addresses the complexity of the GSL system: a) Spatially diverse, being comprised by four distinct bays and two layers, with major differences in salinity among their waters. b) Temporally dynamic, due to seasonal and inter-annual variations in runoff. The conceptual model is presently descriptive, but will serve as the basis for a semi-quantitative model that will be fed by data accumulated during subsequent investigations.

  3. MIXING MODELING ANALYSIS FOR SRS SALT WASTE DISPOSITION

    SciTech Connect

    Lee, S.

    2011-01-18

    Nuclear waste at Savannah River Site (SRS) waste tanks consists of three different types of waste forms. They are the lighter salt solutions referred to as supernate, the precipitated salts as salt cake, and heavier fine solids as sludge. The sludge is settled on the tank floor. About half of the residual waste radioactivity is contained in the sludge, which is only about 8 percentage of the total waste volume. Mixing study to be evaluated here for the Salt Disposition Integration (SDI) project focuses on supernate preparations in waste tanks prior to transfer to the Salt Waste Processing Facility (SWPF) feed tank. The methods to mix and blend the contents of the SRS blend tanks were evalutaed to ensure that the contents are properly blended before they are transferred from the blend tank such as Tank 50H to the SWPF feed tank. The work consists of two principal objectives to investigate two different pumps. One objective is to identify a suitable pumping arrangement that will adequately blend/mix two miscible liquids to obtain a uniform composition in the tank with a minimum level of sludge solid particulate in suspension. The other is to estimate the elevation in the tank at which the transfer pump inlet should be located where the solid concentration of the entrained fluid remains below the acceptance criterion (0.09 wt% or 1200 mg/liter) during transfer operation to the SWPF. Tank 50H is a Waste Tank that will be used to prepare batches of salt feed for SWPF. The salt feed must be a homogeneous solution satisfying the acceptance criterion of the solids entrainment during transfer operation. The work described here consists of two modeling areas. They are the mixing modeling analysis during miscible liquid blending operation, and the flow pattern analysis during transfer operation of the blended liquid. The modeling results will provide quantitative design and operation information during the mixing/blending process and the transfer operation of the blended

  4. A trade-off analysis design tool. Aircraft interior noise-motion/passenger satisfaction model

    NASA Technical Reports Server (NTRS)

    Jacobson, I. D.

    1977-01-01

    A design tool was developed to enhance aircraft passenger satisfaction. The effect of aircraft interior motion and noise on passenger comfort and satisfaction was modelled. Effects of individual aircraft noise sources were accounted for, and the impact of noise on passenger activities and noise levels to safeguard passenger hearing were investigated. The motion noise effect models provide a means for tradeoff analyses between noise and motion variables, and also provide a framework for optimizing noise reduction among noise sources. Data for the models were collected onboard commercial aircraft flights and specially scheduled tests.

  5. 3-D Numerical Modeling of a Complex Salt Structure

    SciTech Connect

    House, L.; Larsen, S.; Bednar, J.B.

    2000-02-17

    Reliably processing, imaging, and interpreting seismic data from areas with complicated structures, such as sub-salt, requires a thorough understanding of elastic as well as acoustic wave propagation. Elastic numerical modeling is an essential tool to develop that understanding. While 2-D elastic modeling is in common use, 3-D elastic modeling has been too computationally intensive to be used routinely. Recent advances in computing hardware, including commodity-based hardware, have substantially reduced computing costs. These advances are making 3-D elastic numerical modeling more feasible. A series of example 3-D elastic calculations were performed using a complicated structure, the SEG/EAGE salt structure. The synthetic traces show that the effects of shear wave propagation can be important for imaging and interpretation of images, and also for AVO and other applications that rely on trace amplitudes. Additional calculations are needed to better identify and understand the complex wave propagation effects produced in complicated structures, such as the SEG/EAGE salt structure.

  6. Modeling of Mercury tides for recovery of gravity field and interior properties

    NASA Astrophysics Data System (ADS)

    Padovan, S.; Margot, J.; Hauck, S. A.; Lemoine, F. G.; Mazarico, E.; Peale, S. J.; Solomon, S. C.

    2011-12-01

    The radio science experiment on the MESSENGER mission allows the determination of the gravitational field of Mercury. In order to secure the best possible gravity-field recovery, it is important to model all the forces acting on the spacecraft. Here we study the perturbations induced on the spacecraft by the tides raised on Mercury by the Sun. The manner by which the tides affect the orbit of MESSENGER depends on the response of the planet to the tide-raising potential. This response is directly connected to the interior properties of Mercury, and its study can help improve our understanding of the physical and chemical properties of the planet. The standard approach of modeling the strongest tidal effect on the gravitational field is by introducing a time-varying component in the degree-two harmonic coefficients of the gravity field. The amplitude of these variations depends on known quantities (mass of the Sun and Mercury, radius of Mercury and its position and relative orientation with respect to the Sun) and on the Love number k2. The value of this parameter is sensitive (among other things) to the state of the core and to the rigidity of the mantle (which in turn depends on its chemical composition). An accurate value of k2 determined from orbit perturbations can be compared to values obtained with forward modeling of the interior of Mercury. The orbital geometry and physical environment of MESSENGER make the identification of the tidal perturbation difficult. Nevertheless, recent work has shown that in the case of Mars, careful study of the effect of tides on the spacecraft trajectory can help identify which orbital and observational geometries exhibit stronger tidal signatures and are apt to provide the best possible determination of k2. Our long-term goal is to evaluate k2 for a suite of interior models and to evaluate the sensitivity of k2 to key interior properties. We will describe the orbital geometry and the tidal perturbations acting on the spacecraft

  7. Validation of an interior noise prediction model for a composite cylinder

    NASA Technical Reports Server (NTRS)

    Beyer, Todd B.; Grosveld, Ferdinand W.

    1987-01-01

    An acoustic modal analysis has been performed in the cavity of a composite cylinder model of an aircraft fuselage. The filament wound, composite shell is 12 feet long and 5.5 feet in diameter. A one-half-in. thick plywood floor is attached to the shell 69 deg from the vertical centerline through the bottom of the shell. The acoustic modal frequencies were obtained from a sound pressure level and phase survey conducted throughout the interior volume bounded by the floor, endcaps and stiffened shell, while being excited by white noise from a loudspeaker source. The measured acoustic resonance frequencies and mode shapes compare well with analytical predictions from the Propeller Aircraft Interior Noise (PAIN) model. Details of the theory and derivation of the acoustic characteristics have been included. Reverberation time measurements, using the integrated impulse technique, have been performed to determine acoustic loss factors. These measured loss factors have been input to the PAIN program in order to more accurately predict the space-averaged interior noise of the composite cylinder.

  8. Some interior models of compact stars in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Zubair, M.; Abbas, G.

    2016-10-01

    This paper deals with the interior models of compact stars in the framework of modified f(R) theory of gravity, which is the generalization of the Einstein's gravity. In order to complete the study, we have involved solution of Krori and Barua to the static spacetime with fluid source in modified f(R) theory of gravity. Further, we have matched the interior solution with the exterior solution to determine the constants of Krori and Barua solution. Finally, the constants have been formulated by using the observational data of various compact stars like 4U1820-30, Her X-1, SAX J1808-3658. Using the evaluated form of the solutions, we have discussed the regularity of matter components at the center as well as on the boundary, energy conditions, anisotropy, stability analysis and mass-radius relation of the compact stars 4U1820-30, Her X-1, SAX J1808-3658.

  9. A Kronig-Penney model of salts of DNA.

    PubMed

    Rosen, P

    1968-04-01

    A one dimensional Kronig-Penney model for a salt like Na DNA is given. The helical periodicity is treated in a manner suggested by Tinoco and Woody. Using data on the semiconductor band gap, we estimate the strength of the potential barrier. The energy limits of the ten bands filled by 20pi electrons per unit cell are calculated and exhibited in Table I.

  10. Road salt emissions: A comparison of measurements and modelling using the NORTRIP road dust emission model

    NASA Astrophysics Data System (ADS)

    Denby, B. R.; Ketzel, M.; Ellermann, T.; Stojiljkovic, A.; Kupiainen, K.; Niemi, J. V.; Norman, M.; Johansson, C.; Gustafsson, M.; Blomqvist, G.; Janhäll, S.; Sundvor, I.

    2016-09-01

    De-icing of road surfaces is necessary in many countries during winter to improve vehicle traction. Large amounts of salt, most often sodium chloride, are applied every year. Most of this salt is removed through drainage or traffic spray processes but a certain amount may be suspended, after drying of the road surface, into the air and will contribute to the concentration of particulate matter. Though some measurements of salt concentrations are available near roads, the link between road maintenance salting activities and observed concentrations of salt in ambient air is yet to be quantified. In this study the NORTRIP road dust emission model, which estimates the emissions of both dust and salt from the road surface, is applied at five sites in four Nordic countries for ten separate winter periods where daily mean ambient air measurements of salt concentrations are available. The model is capable of reproducing many of the salt emission episodes, both in time and intensity, but also fails on other occasions. The observed mean concentration of salt in PM10, over all ten datasets, is 4.2 μg/m3 and the modelled mean is 2.8 μg/m3, giving a fractional bias of -0.38. The RMSE of the mean concentrations, over all 10 datasets, is 2.9 μg/m3 with an average R2 of 0.28. The mean concentration of salt is similar to the mean exhaust contribution during the winter periods of 2.6 μg/m3. The contribution of salt to the kerbside winter mean PM10 concentration is estimated to increase by 4.1 ± 3.4 μg/m3 for every kg/m2 of salt applied on the road surface during the winter season. Additional sensitivity studies showed that the accurate logging of salt applications is a prerequisite for predicting salt emissions, as well as good quality data on precipitation. It also highlights the need for more simultaneous measurements of salt loading together with ambient air concentrations to help improve model parameterisations of salt and moisture removal processes.

  11. A coarse-grained model with implicit salt for RNAs: Predicting 3D structure, stability and salt effect

    SciTech Connect

    Shi, Ya-Zhou; Wang, Feng-Hua; Wu, Yuan-Yan; Tan, Zhi-Jie

    2014-09-14

    To bridge the gap between the sequences and 3-dimensional (3D) structures of RNAs, some computational models have been proposed for predicting RNA 3D structures. However, the existed models seldom consider the conditions departing from the room/body temperature and high salt (1M NaCl), and thus generally hardly predict the thermodynamics and salt effect. In this study, we propose a coarse-grained model with implicit salt for RNAs to predict 3D structures, stability, and salt effect. Combined with Monte Carlo simulated annealing algorithm and a coarse-grained force field, the model folds 46 tested RNAs (≤45 nt) including pseudoknots into their native-like structures from their sequences, with an overall mean RMSD of 3.5 Å and an overall minimum RMSD of 1.9 Å from the experimental structures. For 30 RNA hairpins, the present model also gives the reliable predictions for the stability and salt effect with the mean deviation ∼ 1.0 °C of melting temperatures, as compared with the extensive experimental data. In addition, the model could provide the ensemble of possible 3D structures for a short RNA at a given temperature/salt condition.

  12. Development of a Mantle Convection Physical Model to Assist with Teaching about Earth's Interior Processes

    NASA Astrophysics Data System (ADS)

    Glesener, G. B.; Aurnou, J. M.

    2010-12-01

    The Modeling and Educational Demonstrations Laboratory (MEDL) at UCLA is developing a mantle convection physical model to assist educators with the pedagogy of Earth’s interior processes. Our design goal consists of two components to help the learner gain conceptual understanding by means of visual interactions without the burden of distracters, which may promote alternative conceptions. Distracters may be any feature of the conceptual model that causes the learner to use inadequate mental artifact to help him or her understand what the conceptual model is intended to convey. The first component, and most important, is a psychological component that links properties of “everyday things” (Norman, 1988) to the natural phenomenon, mantle convection. Some examples of everyday things may be heat rising out from a freshly popped bag of popcorn, or cold humid air falling from an open freezer. The second component is the scientific accuracy of the conceptual model. We would like to simplify the concepts for the learner without sacrificing key information that is linked to other natural phenomena the learner will come across in future science lessons. By taking into account the learner’s mental artifacts in combination with a simplified, but accurate, representation of what scientists know of the Earth’s interior, we expect the learner to have the ability to create an adequate qualitative mental simulation of mantle convection. We will be presenting some of our prototypes of this mantle convection physical model at this year’s poster session and invite constructive input from our colleagues.

  13. Salt-Pond Box Model (SPOOM) and Its Application to the Napa-Sonoma Salt Ponds, San Francisco Bay, California

    USGS Publications Warehouse

    Lionberger, Megan L.; Schoellhamer, David H.; Buchanan, Paul A.; Meyer, Scott

    2004-01-01

    A box model to simulate water volume and salinity of a salt pond has been developed by the U.S. Geological Survey to obtain water and salinity budgets. The model, SPOOM, uses the principle of conservation of mass to calculate daily pond volume and salinity and includes a salt crystallization and dissolution algorithm. Model inputs include precipitation, evaporation, infiltration, and water transfers. Salinity and water-surface-elevation data were collected monthly in the Napa-Sonoma Salt-Pond Complex from February 1999 through September 2001 and were used to calibrate and validate the model. The months when water transfers occurred were known but the magnitudes were unknown, so the magnitudes of water transfers were adjusted in the model to calibrate simulated pond volumes to measured pond volumes for three ponds. Modeled salinity was then compared with measured salinity, which remained a free parameter, in order to validate the model. Comparison showed good correlation between modeled and measured salinity. Deviations can be attributed to lack of water-transfer information. Water and salinity budgets obtained through modeling will be used to help interpret ecological data from the ponds. This model has been formulated to be applicable to the Napa-Sonoma salt ponds, but can be applied to other salt ponds.

  14. 3D Modelling of Interior Spaces: Learning the Language of Indoor Architecture

    NASA Astrophysics Data System (ADS)

    Khoshelham, K.; Díaz-Vilariño, L.

    2014-06-01

    3D models of indoor environments are important in many applications, but they usually exist only for newly constructed buildings. Automated approaches to modelling indoor environments from imagery and/or point clouds can make the process easier, faster and cheaper. We present an approach to 3D indoor modelling based on a shape grammar. We demonstrate that interior spaces can be modelled by iteratively placing, connecting and merging cuboid shapes. We also show that the parameters and sequence of grammar rules can be learned automatically from a point cloud. Experiments with simulated and real point clouds show promising results, and indicate the potential of the method in 3D modelling of large indoor environments.

  15. Two-oscillator Kantowski-Sachs model of the Schwarzschild black hole interior

    NASA Astrophysics Data System (ADS)

    Djordjevic, Goran S.; Nesic, Ljubisa; Radovancevic, Darko

    2016-08-01

    In this paper the interior of the Schwarzschild black hole, which is presented as a vacuum, homogeneous and anisotropic Kantowski-Sachs minisuperspace cosmological model, is considered. Lagrangian of the model is reduced by a suitable coordinate transformation to Lagrangian of two decoupled oscillators with the same frequencies and with zero energy in total (an oscillator-ghost-oscillator system). The model is presented in a classical, a p-adic and a noncommutative case. Then, within the standard quantum approach Wheeler-DeWitt equation and its general solutions, i.e. a wave function of the model is written, and then an adelic wave function is constructed. Finally, thermodynamics of the model is studied by using the Feynman-Hibbs procedure.

  16. Modeling the VOC emissions from interior latex paint applied to gypsum board

    SciTech Connect

    Guo, Z.; Fortmann, R.; Marfiak, S.; Tichenor, B.; Sparks, L.

    1997-09-01

    The paper discusses modeling volatile organic compound (VOC) emissions from indoor latex paint applied to gypsum board. An empirical source model for a porous substrate was developed that takes both the wet- and dry-stage emission into consideration. Tests in the U.S. EPA`s Source Characterization Laboratory showed that common interior surfaces such as gypsum board and carpet could absorb significant amounts of latex paint VOCS from the air, and that they were re-emitted very slowly. An indoor air quality model incorporating the source model, an irreversible sink model, and the air movement data obtained from tracer gas tests made satisfactory predictions for the VOC levels in a test house.

  17. Models of Titan's Interior And The Origin Of Its Atmospheric Methane

    NASA Astrophysics Data System (ADS)

    Tobie, G.; Grasset, O.; Lunine, J. I.; Mocquet, A.; Sotin, C.

    2004-11-01

    Through coupled thermal and orbital calculations including a full description of tidal dissipation, heat transfer, the H2O-NH3 phase diagram and methane clathrate stability, we propose models for the internal structure and composition of Titan ahead of Cassini-Huygens measurements. The high value of Titan's orbital eccentricity provides a strong constraint on the amount of the tidal energy dissipation on its surface and within its interior since its formation. We show that only models with a few percent of ammonia in the primordial liquid water shell and a significant fraction of methane clathrate within the interior can limit the damping of the eccentricity over the age of the solar system and explain the origin of the atmospheric methane. The present models predict that a liquid ammonia-rich water layer should still be present within Titan under a convective outer layer made of ice I and methane clathrate. Dissociation of methane clathrate near the surface induced by hot thermal upwelling would be able to explain the replenishement of methane in Titan's atmosphere. Forthcoming data from the NASA/ESA Cassini-Huygens mission will allow us to test the present models.

  18. Recording and Modelling of MONUMENTS' Interior Space Using Range and Optical Sensors

    NASA Astrophysics Data System (ADS)

    Georgiadis, Charalampos; Patias, Petros; Tsioukas, Vasilios

    2016-06-01

    Three dimensional modelling of artefacts and building interiors is a highly active research field in our days. Several techniques are being utilized to perform such a task, spanning from traditional surveying techniques and photogrammetry to structured light scanners, laser scanners and so on. New technological advancements in both hardware and software create new recording techniques, tools and approaches. In this paper we present a new recording and modelling approach based on the SwissRanger SR4000 range camera coupled with a Canon 400D dSLR camera. The hardware component of our approach consists of a fixed base, which encloses the range and SLR cameras. The two sensors are fully calibrated and registered to each other thus we were able to produce colorized point clouds acquired from the range camera. In this paper we present the initial design and calibration of the system along with experimental data regarding the accuracy of the proposed approach. We are also providing results regarding the modelling of interior spaces and artefacts accompanied with accuracy tests from other modelling approaches based on photogrammetry and laser scanning.

  19. Evaluation of landscape models for wolverines in the interior northwest, USA

    USGS Publications Warehouse

    Rowland, M.M.; Wisdom, M.J.; Johnson, D.H.; Wales, B.C.; Copeland, J.P.; Edelmann, F.B.

    2003-01-01

    The wolverine (Gulo gulo) is an uncommon, wide-ranging carnivore of conservation concern. We evaluated performance of landscape models for wolverines within their historical range at 2 scales in the interior Northwest based on recent observations (n = 421) from Washington, Oregon, Idaho, and Montana. At the subbasin scale, simple overlays of habitat and road-density classes were effective in predicting observations of wolverines. At the watershed scale, we used a Bayesian belief network model to provide spatially explicit estimates of relative habitat capability. The model has 3 inputs: amount of habitat, human population density, and road density. At both scales, the best models revealed strong correspondence between means of predicted counts of wolverines and means of observed counts (P < 0.001). Our results can be used to guide regional conservation planning for this elusive animal.

  20. Evaluation of landscape models for wolverines in the interior Northwest, United States of America

    USGS Publications Warehouse

    Rowland, M.M.; Wisdom, M.J.; Johnson, D.H.; Wales, B.C.; Copeland, J.P.; Edelmann, F.B.

    2003-01-01

    The wolverine (Gulo gulo) is an uncommon, wide-ranging carnivore of conservation concern. We evaluated performance of landscape models for wolverines within their historical range at 2 scales in the interior Northwest based on recent observations (n = 421) from Washington, Oregon, Idaho, and Montana. At the subbasin scale, simple overlays of habitat and road-density classes were effective in predicting observations of wolverines. At the watershed scale, we used a Bayesian belief network model to provide spatially explicit estimates of relative habitat capability. The model has 3 inputs: amount of habitat, human population density, and road density. At both scales, the best models revealed strong correspondence between means of predicted counts of wolverines and means of observed counts (P < 0.001). Our results can be used to guide regional conservation planning for this elusive animal.

  1. Experimental investigation of opacity models for stellar interior, inertial fusion, and high energy density plasmas

    SciTech Connect

    Bailey, J. E.; Rochau, G. A.; Mancini, R. C.; Iglesias, C. A.; MacFarlane, J. J.; Golovkin, I. E.; Blancard, C.; Cosse, Ph.; Faussurier, G.

    2009-05-15

    Theoretical opacities are required for calculating energy transport in plasmas. In particular, understanding stellar interiors, inertial fusion, and Z pinches depends on the opacities of mid-atomic-number elements over a wide range of temperatures. The 150-300 eV temperature range is particularly interesting. The opacity models are complex and experimental validation is crucial. For example, solar models presently disagree with helioseismology and one possible explanation is inadequate theoretical opacities. Testing these opacities requires well-characterized plasmas at temperatures high enough to produce the ion charge states that exist in the sun. Typical opacity experiments heat a sample using x rays and measure the spectrally resolved transmission with a backlight. The difficulty grows as the temperature increases because the heating x-ray source must supply more energy and the backlight must be bright enough to overwhelm the plasma self-emission. These problems can be overcome with the new generation of high energy density (HED) facilities. For example, recent experiments at Sandia's Z facility [M. K. Matzen et al., Phys. Plasmas 12, 055503 (2005)] measured the transmission of a mixed Mg and Fe plasma heated to 156{+-}6 eV. This capability will also advance opacity science for other HED plasmas. This tutorial reviews experimental methods for testing opacity models, including experiment design, transmission measurement methods, accuracy evaluation, and plasma diagnostics. The solar interior serves as a focal problem and Z facility experiments illustrate the techniques.

  2. An Induced Venusian Magnetosphere Model for Investigating Venus’s Interior

    NASA Astrophysics Data System (ADS)

    Chi, Peter J.; Russell, Christopher T.; Villarreal, Michaela N.; Luhmann, Janet G.; Zhang, T. L.

    2015-11-01

    The deep layers of Venus are usually considered to be similar to those of the Earth, but the parameters of these layers, including the size of the Venusian core, remain unknown. If Venus has a metallic core, the magnetic field that enters the planet cannot diffuse into the core within the time scales when the external magnetic field can remain steady. The bending of magnetic field lines by the core could be measured at low altitudes, providing information to infer the core size. This method of magnetic sounding has successfully estimated the size of the lunar core, helped by the fact that the Earth’s magnetotail can provide a uniform background magnetic field for the Moon. At Venus, the magnetic field is much more complicated, as the solar wind interaction with the planet develops an induced magnetosphere. Estimating the magnetic induction by the core in this non-uniform, non-axisymmetric magnetic field environment also requires numerical computation.This study develops an induced Venusian magnetosphere model that is suitable for understanding Venus’s interior. Different from the global plasma models, this model includes the planetary interior in the model domain. A tradeoff is the use of magnetostatic equations, which enables faster computation in return. This approach is similar to that adopted by popular empirical models for the terrestrial magnetosphere. Improved from our previous 2-D model, the new 3-D model consists of a conducting core, the Venus counterpart of the Chapman-Ferraro current, and the tail current sheet. In a separate scenario, a global dipole moment is also considered. The finite element method is used to compute the magnetic field vectors within the induced Venusian magnetopause. We will present model results as well as their comparisons with the magnetic field measurements by PVO and by the more recent VEX mission.

  3. Important observations and parameters for a salt water intrusion model

    USGS Publications Warehouse

    Shoemaker, W.B.

    2004-01-01

    Sensitivity analysis with a density-dependent ground water flow simulator can provide insight and understanding of salt water intrusion calibration problems far beyond what is possible through intuitive analysis alone. Five simple experimental simulations presented here demonstrate this point. Results show that dispersivity is a very important parameter for reproducing a steady-state distribution of hydraulic head, salinity, and flow in the transition zone between fresh water and salt water in a coastal aquifer system. When estimating dispersivity, the following conclusions can be drawn about the data types and locations considered. (1) The "toe" of the transition zone is the most effective location for hydraulic head and salinity observations. (2) Areas near the coastline where submarine ground water discharge occurs are the most effective locations for flow observations. (3) Salinity observations are more effective than hydraulic head observations. (4) The importance of flow observations aligned perpendicular to the shoreline varies dramatically depending on distance seaward from the shoreline. Extreme parameter correlation can prohibit unique estimation of permeability parameters such as hydraulic conductivity and flow parameters such as recharge in a density-dependent ground water flow model when using hydraulic head and salinity observations. Adding flow observations perpendicular to the shoreline in areas where ground water is exchanged with the ocean body can reduce the correlation, potentially resulting in unique estimates of these parameter values. Results are expected to be directly applicable to many complex situations, and have implications for model development whether or not formal optimization methods are used in model calibration.

  4. Important observations and parameters for a salt water intrusion model.

    PubMed

    Shoemaker, W Barclay

    2004-01-01

    Sensitivity analysis with a density-dependent ground water flow simulator can provide insight and understanding of salt water intrusion calibration problems far beyond what is possible through intuitive analysis alone. Five simple experimental simulations presented here demonstrate this point. Results show that dispersivity is a very important parameter for reproducing a steady-state distribution of hydraulic head, salinity, and flow in the transition zone between fresh water and salt water in a coastal aquifer system. When estimating dispersivity, the following conclusions can be drawn about the data types and locations considered. (1) The "toe" of the transition zone is the most effective location for hydraulic head and salinity observations. (2) Areas near the coastline where submarine ground water discharge occurs are the most effective locations for flow observations. (3) Salinity observations are more effective than hydraulic head observations. (4) The importance of flow observations aligned perpendicular to the shoreline varies dramatically depending on distance seaward from the shoreline. Extreme parameter correlation can prohibit unique estimation of permeability parameters such as hydraulic conductivity and flow parameters such as recharge in a density-dependent ground water flow model when using hydraulic head and salinity observations. Adding flow observations perpendicular to the shoreline in areas where ground water is exchanged with the ocean body can reduce the correlation, potentially resulting in unique estimates of these parameter values. Results are expected to be directly applicable to many complex situations, and have implications for model development whether or not formal optimization methods are used in model calibration.

  5. Volatile-rich Crater Interior Deposits on Mars: An Energy Balance Model of Modification

    NASA Technical Reports Server (NTRS)

    Russell, Patrick S.; Head, James W.; Hecht, Michael H.

    2003-01-01

    Several craters on Mars are partially filled by material emplaced by post-impact processes. Populations of such craters include those in the circumsouth polar cap region, in Arabia Terra, associated with the Medusae Fossae Formation, and in the northern lowlands proximal to the north polar cap. In this study, crater fill material refers to an interior mound, generally separated from the interior walls of the crater by a trough that may be continuous along the crater s circumference (i.e. a ring-shaped trough), or may only partially contact the crater walls (i.e. a crescent-shaped trough). The fill deposit is frequently off-center from the crater center and may be asymmetric, (i.e. not circular) in plan view shape. Here we test the hypothesis that asymmetries in volatile fill shape, profile, and center-location within a crater result from asymmetries in local energy balance within the crater due mainly to variation of solar insolation and radiative effects of the crater walls over the crater interior. We first focus on Korolev crater in the northern lowlands. We can then apply this model to other craters in different regions. If asymmetry in morphology and location of crater fill are consistent with radiative-dominated asymmetries in energy budget within the crater, then 1) the volatile-rich composition of the fill is supported (this process should not be effective at shaping volcanic or sedimentary deposits), and 2) the dominant factor determining the observed shape of volatile-rich crater fill is the local radiative energy budget within the crater (and erosive processes such as eolian deflation are not necessary).

  6. Modeling of Sulfate Double-salts in Nuclear Wastes

    SciTech Connect

    Toghiani, B.

    2000-10-30

    Due to limited tank space at Hanford and Savannah River, the liquid nuclear wastes or supernatants have been concentrated in evaporators to remove excess water prior to the hot solutions being transferred to underground storage tanks. As the waste solutions cooled, the salts in the waste exceeded the associated solubility limits and precipitated in the form of saltcakes. The initial step in the remediation of these saltcakes is a rehydration process called saltcake dissolution. At Hanford, dissolution experiments have been conducted on small saltcake samples from five tanks. Modeling of these experimental results, using the Environmental Simulation Program (ESP), are being performed at the Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University. The River Protection Project (RPP) at Hanford will use these experimental and theoretical results to determine the amount of water that will be needed for its dissolution and retrieval operations. A comprehensive effort by the RPP and the Tank Focus Area continues to validate and improve the ESP and its databases for this application. The initial effort focused on the sodium, fluoride, and phosphate system due to its role in the formation of pipeline plugs. In FY 1999, an evaluation of the ESP predictions for sodium fluoride, trisodium phosphate dodecahydrate, and natrophosphate clearly indicated that improvements to the Public database of the ESP were needed. One of the improvements identified was double salts. The inability of any equilibrium thermodynamic model to properly account for double salts in the system can result in errors in the predicted solid-liquid equilibria (SLE) of species in the system. The ESP code is evaluated by comparison with experimental data where possible. However, data does not cover the range of component concentrations and temperatures found in many tank wastes. Therefore, comparison of ESP with another code is desirable, and may illuminate problems with both

  7. The role of interior watershed processes in improving parameter estimation and performance of watershed models.

    PubMed

    Yen, Haw; Bailey, Ryan T; Arabi, Mazdak; Ahmadi, Mehdi; White, Michael J; Arnold, Jeffrey G

    2014-09-01

    Watershed models typically are evaluated solely through comparison of in-stream water and nutrient fluxes with measured data using established performance criteria, whereas processes and responses within the interior of the watershed that govern these global fluxes often are neglected. Due to the large number of parameters at the disposal of these models, circumstances may arise in which excellent global results are achieved using inaccurate magnitudes of these "intra-watershed" responses. When used for scenario analysis, a given model hence may inaccurately predict the global, in-stream effect of implementing land-use practices at the interior of the watershed. In this study, data regarding internal watershed behavior are used to constrain parameter estimation to maintain realistic intra-watershed responses while also matching available in-stream monitoring data. The methodology is demonstrated for the Eagle Creek Watershed in central Indiana. Streamflow and nitrate (NO) loading are used as global in-stream comparisons, with two process responses, the annual mass of denitrification and the ratio of NO losses from subsurface and surface flow, used to constrain parameter estimation. Results show that imposing these constraints not only yields realistic internal watershed behavior but also provides good in-stream comparisons. Results further demonstrate that in the absence of incorporating intra-watershed constraints, evaluation of nutrient abatement strategies could be misleading, even though typical performance criteria are satisfied. Incorporating intra-watershed responses yields a watershed model that more accurately represents the observed behavior of the system and hence a tool that can be used with confidence in scenario evaluation.

  8. Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures

    SciTech Connect

    Rutqvist, Jonny; Blanco-Martin, Laura; Molins, Sergi; Trebotich, David; Birkholzer, Jens

    2015-09-01

    In this report, we present FY2015 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This is a combined milestone report related to milestone Salt R&D Milestone “Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures” (M3FT-15LB0818012) and the Salt Field Testing Milestone (M3FT-15LB0819022) to support the overall objectives of the salt field test planning.

  9. Deformation mechanisms of deeply buried and surface-piercing Late Pre-Cambrian to Early Cambrian Ara Salt from interior Oman

    NASA Astrophysics Data System (ADS)

    Schoenherr, Johannes; Schléder, Zsolt; Urai, Janos L.; Littke, Ralf; Kukla, Peter A.

    2010-07-01

    We compared microstructures of Late Pre-Cambrian to Early Cambrian Ara Salt diapirs from the deep subsurface (3.5-5 km) of the South Oman Salt Basin and from surface-piercing salt domes of the Ghaba Salt Basin. Laterally, these basins are approximately 500 km apart but belong to the same tectono-sedimentary system. The excellent data situation from both wells and outcrops allows a unique quantification of formation and deformation mechanisms, spanning from sedimentation to deep burial, and via re-activated diapir rise to surface piercement. Microstructures of gamma-irradiated and etched thin sections indicate dislocation creep and fluid-assisted grain boundary migration as the main deformation mechanisms operating in the deep subsurface. Microstructures from the surface are characterised by large ‘old’ subgrain-rich crystals. These ‘old’ grains are partly replaced by ‘new’ subgrain-free and subgrain-poor crystals, which show gamma irradiation-decorated growth bands and fibrous microstructures, indicative of pressure solution creep and static recrystallisation, most likely due to surface piercement and exposure. Using subgrain size piezometry, the maximum differential stresses for the subsurface salt is 1.7 MPa and those for the surface-piercing salt is 3.4 MPa, the latter value displaying the high stress conditions in the diapir ‘stem’ as the salt rises on its way to the surface.

  10. INTERIOR MODELS OF SATURN: INCLUDING THE UNCERTAINTIES IN SHAPE AND ROTATION

    SciTech Connect

    Helled, Ravit; Guillot, Tristan

    2013-04-20

    The accurate determination of Saturn's gravitational coefficients by Cassini could provide tighter constraints on Saturn's internal structure. Also, occultation measurements provide important information on the planetary shape which is often not considered in structure models. In this paper we explore how wind velocities and internal rotation affect the planetary shape and the constraints on Saturn's interior. We show that within the geodetic approach the derived physical shape is insensitive to the assumed deep rotation. Saturn's re-derived equatorial and polar radii at 100 mbar are found to be 54,445 {+-} 10 km and 60,365 {+-} 10 km, respectively. To determine Saturn's interior, we use one-dimensional three-layer hydrostatic structure models and present two approaches to include the constraints on the shape. These approaches, however, result in only small differences in Saturn's derived composition. The uncertainty in Saturn's rotation period is more significant: with Voyager's 10{sup h}39{sup m} period, the derived mass of heavy elements in the envelope is 0-7 M{sub Circled-Plus }. With a rotation period of 10{sup h}32{sup m}, this value becomes <4 M{sub Circled-Plus }, below the minimum mass inferred from spectroscopic measurements. Saturn's core mass is found to depend strongly on the pressure at which helium phase separation occurs, and is estimated to be 5-20 M{sub Circled-Plus }. Lower core masses are possible if the separation occurs deeper than 4 Mbar. We suggest that the analysis of Cassini's radio occultation measurements is crucial to test shape models and could lead to constraints on Saturn's rotation profile and departures from hydrostatic equilibrium.

  11. Experimental investigation of opacity models for stellar interiors, inertial fusion, and high energy density plasmas

    NASA Astrophysics Data System (ADS)

    Bailey, James

    2008-11-01

    Theoretical opacities are required for calculating energy transport in plasmas. In particular, understanding stellar interiors, inertial fusion, and Z-pinches depends on the opacities of mid-atomic-number elements in the 150-300 eV temperature range. These models are complex and experimental validation is crucial. For example, solar models presently disagree with helioseismology and one possible explanation is inadequate opacities. Testing these opacities requires a uniform plasma at temperatures high enough to produce the ion charge states that exist in the sun. Typical opacity experiments heat a sample using x-rays and measure the spectrally resolved transmission with a backlight. The difficulty grows as the temperature increases because the heating x-ray source must supply more energy and the backlighter source must be bright enough to overwhelm the plasma self emission. These problems were overcome using the dynamic hohlraum x-ray source at Sandia's Z facility to measure the transmission of a mixed Mg-Fe plasma heated above 150 eV. This capability will also advance opacity science for other high energy density plasmas. This tutorial describes opacity experiment challenges including accurate transmission measurements, plasma diagnostics, and quantitative model comparisons. The solar interior serves as a focal problem and Z facility experiments are used to illustrate the techniques. **In collaboration with C. Iglesias (LLNL), R. Mancini (U. Nevada), J.MacFarlane, I. Golovkin and P. Wang (Prism), C. Blancard, Ph. Cosse, G. Faussurier, F. Gilleron, and J.C. Pain (CEA), J. Abdallah Jr. (LANL), and G.A. Rochau and P.W. Lake (Sandia). ++Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

  12. Applications of Panoramic Images: from 720° Panorama to Interior 3d Models of Augmented Reality

    NASA Astrophysics Data System (ADS)

    Lee, I.-C.; Tsai, F.

    2015-05-01

    A series of panoramic images are usually used to generate a 720° panorama image. Although panoramic images are typically used for establishing tour guiding systems, in this research, we demonstrate the potential of using panoramic images acquired from multiple sites to create not only 720° panorama, but also three-dimensional (3D) point clouds and 3D indoor models. Since 3D modeling is one of the goals of this research, the location of the panoramic sites needed to be carefully planned in order to maintain a robust result for close-range photogrammetry. After the images are acquired, panoramic images are processed into 720° panoramas, and these panoramas which can be used directly as panorama guiding systems or other applications. In addition to these straightforward applications, interior orientation parameters can also be estimated while generating 720° panorama. These parameters are focal length, principle point, and lens radial distortion. The panoramic images can then be processed with closerange photogrammetry procedures to extract the exterior orientation parameters and generate 3D point clouds. In this research, VisaulSFM, a structure from motion software is used to estimate the exterior orientation, and CMVS toolkit is used to generate 3D point clouds. Next, the 3D point clouds are used as references to create building interior models. In this research, Trimble Sketchup was used to build the model, and the 3D point cloud was added to the determining of locations of building objects using plane finding procedure. In the texturing process, the panorama images are used as the data source for creating model textures. This 3D indoor model was used as an Augmented Reality model replacing a guide map or a floor plan commonly used in an on-line touring guide system. The 3D indoor model generating procedure has been utilized in two research projects: a cultural heritage site at Kinmen, and Taipei Main Station pedestrian zone guidance and navigation system. The

  13. Using Interior Point Method Optimization Techniques to Improve 2- and 3-Dimensional Models of Earth Structures

    NASA Astrophysics Data System (ADS)

    Zamora, A.; Gutierrez, A. E.; Velasco, A. A.

    2014-12-01

    2- and 3-Dimensional models obtained from the inversion of geophysical data are widely used to represent the structural composition of the Earth and to constrain independent models obtained from other geological data (e.g. core samples, seismic surveys, etc.). However, inverse modeling of gravity data presents a very unstable and ill-posed mathematical problem, given that solutions are non-unique and small changes in parameters (position and density contrast of an anomalous body) can highly impact the resulting model. Through the implementation of an interior-point method constrained optimization technique, we improve the 2-D and 3-D models of Earth structures representing known density contrasts mapping anomalous bodies in uniform regions and boundaries between layers in layered environments. The proposed techniques are applied to synthetic data and gravitational data obtained from the Rio Grande Rift and the Cooper Flat Mine region located in Sierra County, New Mexico. Specifically, we improve the 2- and 3-D Earth models by getting rid of unacceptable solutions (those that do not satisfy the required constraints or are geologically unfeasible) given the reduction of the solution space.

  14. Heat flow and gravity responses over salt bodies: A comparative model analysis

    SciTech Connect

    Corrigan, J.; Sweat, M.

    1995-07-01

    Two-dimensional numerical modeling of sea-floor heat flow and water-bottom gravity responses to systematic variations in simple subsurface salt body geometries provides insight on the relative usefulness of these two data types for extracting salt geometry information. For a given salt body geometry, diffusion of heat through overlying sediments results in a dramatic decrease in the amplitude of heat flow anomalies as the depth to the top of the salt body increases. For top-of-salt depths greater than about 1 km, the heat flow response is insensitive to the length of salt feeder stocks and to the thickness of salt tongues/sheets. This shallow depth-to-top-of-salt sensitivity range, in addition to a number of environmental factors that can adversely affect interpretation of heat flow anomalies in terms of heat refraction towards and through salt bodies, severely limits the usefulness of sea-floor heat flow data for constraining aspects of salt body geometry. For gravity data, the critical factor for addressing salt body geometry is the distribution of salt relative to the sediment-salt density crossover depth (above and below which salt is more and less dense, respectively, than the surrounding sediment). Except when ht relevant geometry information being sought (presence and/or length of feeder stock, thickness of salt tongue or sheet) is near the density crossover depth, the geometry-related information content of the gravity field is greater than that of the heat flow field. Based on these model results, measurement uncertainty considerations, and data limitations, the authors conclude that gravity data generally offer an order of magnitude greater resolution capability than sea-floor heat flow data for addressing salt body geometry issues of exploration interest.

  15. Modeling sea-salt aerosols in the atmosphere: 1. Model development

    NASA Astrophysics Data System (ADS)

    Gong, S. L.; Barrie, L. A.; Blanchet, J.-P.

    1997-02-01

    A simulation of the processes of sea-salt aerosol generation, diffusive transport, transformation, and removal as a function of particle size is incorporated into a one-dimensional version of the Canadian general climate model (GCMII). This model was then run in the North Atlantic between Iceland and Ireland during the period of January-March. Model predictions are compared to observations of sea-salt aerosols selected from a review of available studies that were subjected to strict screening criteria to ensure their representativeness. The number and mass size distribution and the wind dependency of total sea-salt aerosol mass concentrations predicted by the model compare well with observations. The modeled dependence of sea-salt aerosol concentration in the surface layer (χ, μg m-3) on 10-m wind speed (U10, m s-1) is given by?. Simulations show that both a and b change with location. The value a and b range from 0.20 and 3.1 for Mace Head, Ireland to 0.26, and 1.4 for Heimaey, Iceland. The dependence of χ on surface wind speed is weaker for smaller particles and for particles at higher altitudes. The residence time of sea-salt aerosols in the first atmospheric layer (0-166 m) ranges from 30 min for large particles (r=4-8 μm) to ˜60 hours for small particles (r=0.13-0.25 μm). Although some refinements are required for the model, it forms the basis for comparing the simulations with long-term atmospheric sea-salt measurements made at marine baseline observatories around the world and for a more comprehensive three-dimensional modeling of atmospheric sea-salt aerosols.

  16. Modeled Climate and Disturbance Impacts to Carbon Sequestration of Recent Interior Boreal Alaska Ecosystem Productivity Declines

    NASA Astrophysics Data System (ADS)

    Neigh, C. S.; Carvalhais, N.; Collatz, G. J.; Tucker, C. J.

    2010-12-01

    Terrestrial Higher Northern Latitude Boreal ecosystems over the past half century have and are expected to incur substantial future climate warming altering long-term biophysical processes that mediate carbon sink status. Boreal ecosystems are one of the primary terrestrial pools with high organic and mineral soil carbon concentrations due to reduced decomposition from extended periods below freezing. Direct impacts of changing local to regional climate have altered Interior Alaska disturbance regimes shifting patterns of net primary production (NPP), soil heterotrophic respiration (Rh), net ecosystem production (NEP = NPP - Rh) and net biome production (NBP = NEP - De) which includes disturbance events (De). We investigated ecosystem dynamics with a satellite remote sensing driven model accounting for fine-scale heterogeneous events observed from multi temporal-spectral index vectors derived from Landsat. Our intent was to elucidate local to regional processes which have resulted in negative trends observed from the NOAA series of Advanced Very High Resolution Radiometers (AVHRR) over the past decade. The Carnegie-Ames-Stanford approach (CASA) model was run with changing fractional burned area to simulate bi-monthly patterns of net plant carbon fixation, biomass and nutrient allocation, litterfall, soil nitrogen mineralization, combustion emissions, and microbial CO2 production. Carbon reallocation was based on fire disturbances identified with remote sensing data (Landsat, IKONOS, and aerial photography) and disturbance perimeter maps from land management agencies. Warming coupled with insect and fire disturbance emissions reduced interior Boreal forest recalcitrant carbon pools for which losses greatly exceed the North Slope Tundra sink. Our multi spatial-temporal approach confirms substantial forested NPP declines in Landsat and AVHRR while distinguishing abiotic and biophysical disturbance frequency impacts upon NBP.

  17. Modeling and numerical simulation of interior ballistic processes in a 120mm mortar system

    NASA Astrophysics Data System (ADS)

    Acharya, Ragini

    Numerical Simulation of interior ballistic processes in gun and mortar systems is a very difficult and interesting problem. The mathematical model for the physical processes in the mortar systems consists of a system of non-linear coupled partial differential equations, which also contain non-homogeneity in form of the source terms. This work includes the development of a three-dimensional mortar interior ballistic (3D-MIB) code for a 120mm mortar system and its stage-wise validation with multiple sets of experimental data. The 120mm mortar system consists of a flash tube contained within an ignition cartridge, tail-boom, fin region, charge increments containing granular propellants, and a projectile payload. The ignition cartridge discharges hot gas-phase products and unburned granular propellants into the mortar tube through vent-holes on its surface. In view of the complexity of interior ballistic processes in the mortar propulsion system, the overall problem was solved in a modular fashion, i.e., simulating each physical component of the mortar propulsion system separately. These modules were coupled together with appropriate initial and boundary conditions. The ignition cartridge and mortar tube contain nitrocellulose-based ball propellants. Therefore, the gas dynamical processes in the 120mm mortar system are two-phase, which were simulated by considering both phases as an interpenetrating continuum. Mass and energy fluxes from the flash tube into the granular bed of ignition cartridge were determined from a semi-empirical technique. For the tail-boom section, a transient one-dimensional two-phase compressible flow solver based on method of characteristics was developed. The mathematical model for the interior ballistic processes in the mortar tube posed an initial value problem with discontinuous initial conditions with the characteristics of the Riemann problem due to the discontinuity of the initial conditions. Therefore, the mortar tube model was solved

  18. Important observations and parameters for a salt water intrusion model.

    PubMed

    Shoemaker, W Barclay

    2004-01-01

    Sensitivity analysis with a density-dependent ground water flow simulator can provide insight and understanding of salt water intrusion calibration problems far beyond what is possible through intuitive analysis alone. Five simple experimental simulations presented here demonstrate this point. Results show that dispersivity is a very important parameter for reproducing a steady-state distribution of hydraulic head, salinity, and flow in the transition zone between fresh water and salt water in a coastal aquifer system. When estimating dispersivity, the following conclusions can be drawn about the data types and locations considered. (1) The "toe" of the transition zone is the most effective location for hydraulic head and salinity observations. (2) Areas near the coastline where submarine ground water discharge occurs are the most effective locations for flow observations. (3) Salinity observations are more effective than hydraulic head observations. (4) The importance of flow observations aligned perpendicular to the shoreline varies dramatically depending on distance seaward from the shoreline. Extreme parameter correlation can prohibit unique estimation of permeability parameters such as hydraulic conductivity and flow parameters such as recharge in a density-dependent ground water flow model when using hydraulic head and salinity observations. Adding flow observations perpendicular to the shoreline in areas where ground water is exchanged with the ocean body can reduce the correlation, potentially resulting in unique estimates of these parameter values. Results are expected to be directly applicable to many complex situations, and have implications for model development whether or not formal optimization methods are used in model calibration. PMID:15584297

  19. Fire frequency in the Interior Columbia River Basin: Building regional models from fire history data

    USGS Publications Warehouse

    McKenzie, D.; Peterson, D.L.; Agee, James K.

    2000-01-01

    Fire frequency affects vegetation composition and successional pathways; thus it is essential to understand fire regimes in order to manage natural resources at broad spatial scales. Fire history data are lacking for many regions for which fire management decisions are being made, so models are needed to estimate past fire frequency where local data are not yet available. We developed multiple regression models and tree-based (classification and regression tree, or CART) models to predict fire return intervals across the interior Columbia River basin at 1-km resolution, using georeferenced fire history, potential vegetation, cover type, and precipitation databases. The models combined semiqualitative methods and rigorous statistics. The fire history data are of uneven quality; some estimates are based on only one tree, and many are not cross-dated. Therefore, we weighted the models based on data quality and performed a sensitivity analysis of the effects on the models of estimation errors that are due to lack of cross-dating. The regression models predict fire return intervals from 1 to 375 yr for forested areas, whereas the tree-based models predict a range of 8 to 150 yr. Both types of models predict latitudinal and elevational gradients of increasing fire return intervals. Examination of regional-scale output suggests that, although the tree-based models explain more of the variation in the original data, the regression models are less likely to produce extrapolation errors. Thus, the models serve complementary purposes in elucidating the relationships among fire frequency, the predictor variables, and spatial scale. The models can provide local managers with quantitative information and provide data to initialize coarse-scale fire-effects models, although predictions for individual sites should be treated with caution because of the varying quality and uneven spatial coverage of the fire history database. The models also demonstrate the integration of

  20. Model for transient creep of southeastern New Mexico rock salt

    SciTech Connect

    Herrmann, W; Wawersik, W R; Lauson, H S

    1980-11-01

    In a previous analysis, existing experimental data pertaining to creep tests on rock salt from the Salado formation of S.E. New Mexico were fitted to an exponential transient creep law. While very early time portions of creep strain histories were not fitted very well for tests at low temperatures and stresses, initial creep rates in particular generally being underestimated, the exponential creep law has the property that the transient creep strain approaches a finite limit with time, and is therefore desirable from a creep modelling point of view. In this report, an analysis of transient creep is made. It is found that exponential transient creep can be related to steady-state creep through a universal creep curve. The resultant description is convenient for creep analyses where very early time behavior is not important.

  1. A mathematical model of salt-sensitive hypertension: the neurogenic hypothesis.

    PubMed

    Averina, Viktoria A; Othmer, Hans G; Fink, Gregory D; Osborn, John W

    2014-09-12

    Salt sensitivity of arterial pressure (salt-sensitive hypertension) is a serious global health issue. The causes of salt-sensitive hypertension are extremely complex and mathematical models can elucidate potential mechanisms that are experimentally inaccessible. Until recently, the only mathematical model for long-term control of arterial pressure was the model of Guyton and Coleman; referred to as the G-C model. The core of this model is the assumption that sodium excretion is driven by renal perfusion pressure, the so-called 'renal function curve'. Thus, the G-C model dictates that all forms of hypertension are due to a primary shift of the renal function curve to a higher operating pressure. However, several recent experimental studies in a model of hypertension produced by the combination of a high salt intake and administration of angiotensin II, the AngII-salt model, are inconsistent with the G-C model. We developed a new mathematical model that does not limit the cause of salt-sensitive hypertension solely to primary renal dysfunction. The model is the first known mathematical counterexample to the assumption that all salt-sensitive forms of hypertension require a primary shift of renal function: we show that in at least one salt-sensitive form of hypertension the requirement is not necessary. We will refer to this computational model as the 'neurogenic model'. In this Symposium Review we discuss how, despite fundamental differences between the G-C model and the neurogenic model regarding mechanisms regulating sodium excretion and vascular resistance, they generate similar haemodynamic profiles of AngII-salt hypertension. In addition, the steady-state relationships between arterial pressure and sodium excretion, a correlation that is often erroneously presented as the 'renal function curve', are also similar in both models. Our findings suggest that salt-sensitive hypertension is not due solely to renal dysfunction, as predicted by the G-C model, but may

  2. A mathematical model of salt-sensitive hypertension: the neurogenic hypothesis.

    PubMed

    Averina, Viktoria A; Othmer, Hans G; Fink, Gregory D; Osborn, John W

    2015-07-15

    Salt sensitivity of arterial pressure (salt-sensitive hypertension) is a serious global health issue. The causes of salt-sensitive hypertension are extremely complex and mathematical models can elucidate potential mechanisms that are experimentally inaccessible. Until recently, the only mathematical model for long-term control of arterial pressure was the model of Guyton and Coleman; referred to as the G-C model. The core of this model is the assumption that sodium excretion is driven by renal perfusion pressure, the so-called 'renal function curve'. Thus, the G-C model dictates that all forms of hypertension are due to a primary shift of the renal function curve to a higher operating pressure. However, several recent experimental studies in a model of hypertension produced by the combination of a high salt intake and administration of angiotensin II, the AngII-salt model, are inconsistent with the G-C model. We developed a new mathematical model that does not limit the cause of salt-sensitive hypertension solely to primary renal dysfunction. The model is the first known mathematical counterexample to the assumption that all salt-sensitive forms of hypertension require a primary shift of renal function: we show that in at least one salt-sensitive form of hypertension the requirement is not necessary. We will refer to this computational model as the 'neurogenic model'. In this Symposium Review we discuss how, despite fundamental differences between the G-C model and the neurogenic model regarding mechanisms regulating sodium excretion and vascular resistance, they generate similar haemodynamic profiles of AngII-salt hypertension. In addition, the steady-state relationships between arterial pressure and sodium excretion, a correlation that is often erroneously presented as the 'renal function curve', are also similar in both models. Our findings suggest that salt-sensitive hypertension is not due solely to renal dysfunction, as predicted by the G-C model, but may

  3. Sediment and vegetation spatial dynamics facing sea-level rise in microtidal salt marshes: Insights from an ecogeomorphic model

    NASA Astrophysics Data System (ADS)

    Belliard, J.-P.; Di Marco, N.; Carniello, L.; Toffolon, M.

    2016-07-01

    Modeling efforts have considerably improved our understanding on the chief processes that govern the evolution of salt marshes under climate change. Yet the spatial dynamic response of salt marshes to sea-level rise that results from the interactions between the tidal landforms of interest and the presence of bio-geomorphic features has not been addressed explicitly. Accordingly, we use a modeling framework that integrates the co-evolution of the marsh platform and the embedded tidal networks to study sea-level rise effects on spatial sediment and vegetation dynamics in microtidal salt marshes considering different ecological scenarios. The analysis unveils mechanisms that drive spatial variations in sedimentation rates in ways that increase marsh resilience to rising sea-levels. In particular, marsh survival is related to the effectiveness of transport of sediments toward the interior marshland. This study hints at additional dynamics related to the modulation of channel cross-sections affecting sediment advection in the channels and subsequent delivery in the inner marsh, which should be definitely considered in the study of marsh adaptability to sea-level rise and posterior management.

  4. Scaling the Earth: A Sensitivity Analysis of Terrestrial Exoplanetary Interior Models

    NASA Astrophysics Data System (ADS)

    Unterborn, C. T.; Dismukes, E. E.; Panero, W. R.

    2016-03-01

    An exoplanet’s structure and composition are first-order controls of the planet’s habitability. We explore which aspects of bulk terrestrial planet composition and interior structure affect the chief observables of an exoplanet: its mass and radius. We apply these perturbations to the Earth, the planet we know best. Using the mineral physics toolkit BurnMan to self-consistently calculate mass-radius models, we find that the core radius, the presence of light elements in the core, and an upper mantle consisting of low-pressure silicates have the largest effects on the final calculated mass at a given radius, none of which are included in current mass-radius models. We expand these results to provide a self-consistent grid of compositionally as well as structurally constrained terrestrial mass-radius models for quantifying the likelihood of exoplanets being “Earth-like.” We further apply this grid to Kepler-36b, finding that it is only ˜20% likely to be structurally similar to the Earth with Si/Fe = 0.9 compared with the Earth’s Si/Fe = 1 and the Sun’s Si/Fe = 1.19.

  5. Revised predictive equations for salt intrusion modelling in estuaries

    NASA Astrophysics Data System (ADS)

    Gisen, J. I. A.; Savenije, H. H. G.; Nijzink, R. C.

    2015-01-01

    For one-dimensional salt intrusion models to be predictive, we need predictive equations to link model parameters to observable hydraulic and geometric variables. The one-dimensional model of Savenije (1993b) made use of predictive equation for the Van der Burgh coefficient K and the dispersion at the seaward boundary D0. Here we have improved these equations by using an expanded database, including new previously un-surveyed estuaries. Furthermore, we derived a revised predictive equation for the dispersion at tidal average (TA) condition and with the boundary situated at the well identifiable inflection point where the estuary changes from wave-dominated to tide-dominated geometry. We used 89 salinity profiles in 30 estuaries (including 7 recently studied estuaries in Malaysia), and empirically derived a range of equations using various combinations of dimensionless parameters. We split our data in two separated datasets: (1) with more reliable data for calibration, and (2) with less reliable data for validation. The dimensionless parameters that gave the best performance depended on the geometry, tidal strength, friction and the Richardson Number. The limitation of the equations is that the friction is generally unknown. In order to overcome this problem, a coupling has been made with the analytical hydraulic model of Cai et al. (2012), which makes use of observed tidal damping and by which the friction can be determined.

  6. Revised predictive equations for salt intrusion modelling in estuaries

    NASA Astrophysics Data System (ADS)

    Gisen, J. I. A.; Savenije, H. H. G.; Nijzink, R. C.

    2015-06-01

    For one-dimensional salt intrusion models to be predictive, we need predictive equations to link model parameters to observable hydraulic and geometric variables. The one-dimensional model of Savenije (1993b) made use of predictive equations for the Van der Burgh coefficient K and the dispersion at the seaward boundary D0. Here we have improved these equations by using an expanded database, including new previously un-surveyed estuaries. Furthermore, we derived a revised predictive equation for the dispersion at tidal average condition and with the boundary situated at the well identifiable inflection point where the estuary changes from wave-dominated to tide-dominated geometry. We used 89 salinity profiles in 30 estuaries (including seven recently studied estuaries in Malaysia), and empirically derived a range of equations using various combinations of dimensionless parameters. We split our data in two separated data sets: (1) with more reliable data for calibration, and (2) with less reliable data for validation. The dimensionless parameters that gave the best performance depended on the geometry, tidal strength, friction and the Richardson number. The limitation of the equations is that the friction is generally unknown. In order to overcome this problem, a coupling has been made with the analytical hydraulic model of Cai et al. (2012), which makes use of observed tidal damping and by which the friction can be determined.

  7. Modelling Salt Intrusion and Nitrate Concentrations in the Ythan Estuary

    NASA Astrophysics Data System (ADS)

    Gillibrand, P. A.; Balls, P. W.

    1998-12-01

    A one-dimensional salt intrusion model is used to investigate the hydrography of the Ythan estuary, a small shallow macrotidal estuary in the north-east of Scotland. The model simulates the longitudinal distributions of water level, salinity and total oxidized nitrogen (TON) in the estuary. The model employs upstream differencing and the Smolarkiewicz anti-diffusion scheme to avoid the numerical difficulties typically encountered when modelling strong tidal flows using centred differences. The physical mechanisms driving the simulations are the tide at the entrance to the estuary and freshwater discharge at the head. The model was calibrated against measurements of water level made at three locations in the estuary, salinity observations made at a central platform and axial salinity distributions. At both spring and neap tides, the full range of salinity observed at the central platform was simulated. However, at the midway stage between springs and neaps, the simulated peak salinity was less than that observed. This was probably due to the sensitivity of the model to the digitisation of the estuarine bathymetry. The model successfully simulated salinity distributions for periods of high and low river flow, and was used to illustrate how TON concentrations fluctuated in response to variations in river flow. The potential implications of variations in the bathymetry of the estuary on salinity and nutrient distributions were predicted to be slight. However, the four fold increase in riverine TON concentrations that has occurred over the past 30 years was shown to increase TON distributions along the entire length of the estuary. The calculated estuary flushing time was strongly dependent on river flow and varied between 11-60 h.

  8. The response of Dahl salt-sensitive and salt-resistant female rats to a space flight model

    NASA Technical Reports Server (NTRS)

    Thierry-Palmer, Myrtle; Cephas, Stacy; Cleek, Tammy; Sayavongsa, Phouyong; Arnaud, Sara B.

    2003-01-01

    Vitamin D metabolism in the Dahl salt-sensitive (S) rat, a model of salt-induced hypertension, differs from that in the Dahl salt-resistant (R) rat. We have tested the hypothesis that differences in vitamin D metabolism would render the Dahl S rat more susceptible than the Dahl R rat to the effects of a space flight model. Dahl female rats were tail suspended (hind limb unloaded) for 28 days, while fed a low salt (3 g/kg sodium chloride) diet. Plasma 25-OHD concentrations of S rats were significantly lower than that of R rats. Plasma 1,25-(OH)2D concentration was 50% lower in unloaded than in loaded S rats, but was unaffected in unloaded R rats. The left soleus muscle weight and breaking strength of the left femur (torsion test) were 50% and 25% lower in unloaded than in loaded S and R rats. The mineral content of the left femur, however, was significantly lower (by 11%) only in unloaded S rats. We conclude that female S rats are more vulnerable than female R rats to decreases in plasma 1,25-(OH)2D concentration and femur mineral content during hind limb unloading, but equally vulnerable to muscle atrophy and reduced breaking strength of the femur.

  9. New thermal evolution models suggesting a hot, partially molten Mercurian interior

    NASA Astrophysics Data System (ADS)

    Conzelmann, V.; Spohn, T.

    1999-09-01

    New thermal evolution models of Mercury have been calculated using an axisymmetric convection code for the silicate mantle and an energy balance equation for the iron core. The model allows to estimate the strength of the magnetic field produced within the core. Various Newtonian rheologies of mantle rock, including pressure dependent viscosities, have been tested as well as different initial conditions and core sulfur contents. It is assumed that the planet is refractory in composition, in particular with respect to core sulfur and mantle heat producing elements (cf. Cameron et al. in Mercury, pp. 692--708, 1988). For activation energies characteristic of mantle rock (430 to 460 kJ mole(-1) K(-1) ) Mercury's sublithosphere mantle remains at supersolidus temperatures up to the present day. This suggests a partially molten mantle with early partial melt abundant enough to explain early volcanic activity. A partially molten mantle can only be avoided if the assumed activation energy for creep and/or the heat source density are significantly reduced from the values used here. A thick rheological lithosphere grows quickly and retards cooling of the interior aswell as it frustrates continued volcanic activity. A solid inner core grows quickly early in the evolution; its growth rate decreases significantly over the first Ga. Nevertheless, growth of the inner core releases enough energy to drive an intrinsic dynamo by chemical convection until present. Earlier models based on simple parameterized convection codes show much faster cooling and therefore require Mercury to have a chondritic composition to keep part of the core liquid and produce a present magnetic field. Mercury's present state with a magnetic field and a radius decrease of 2 km since the period of heavy bombardment about 3.9 Ga ago due to thermal contraction can be explained by the dynamical models presented here even if a rather refractory composition with little sulfur in the core and with a silicate

  10. Modeled Salt Density for Nuclear Material Estimation in the Treatment of Spent Nuclear Fuel

    SciTech Connect

    DeeEarl Vaden; Robert. D. Mariani

    2010-09-01

    Spent metallic nuclear fuel is being treated in a pyrometallurgical process that includes electrorefining the uranium metal in molten eutectic LiCl-KCl as the supporting electrolyte. We report a model for determining the density of the molten salt. Inventory operations account for the net mass of salt and for the mass of actinides present. It was necessary to know the molten salt density but difficult to measure, and it was decided to model the salt density for the initial treatment operations. The model assumes that volumes are additive for the ideal molten salt solution as a starting point; subsequently a correction factor for the lanthanides and actinides was developed. After applying the correction factor, the percent difference between the net salt mass in the electrorefiner and the resulting modeled salt mass decreased from more than 4.0% to approximately 0.1%. As a result, there is no need to measure the salt density at 500 C for inventory operations; the model for the salt density is found to be accurate.

  11. Modelling artificial sea salt emission in large eddy simulations

    PubMed Central

    Maalick, Z.; Korhonen, H.; Kokkola, H.; Kühn, T.; Romakkaniemi, S.

    2014-01-01

    We study the dispersion of sea salt particles from artificially injected sea spray at a cloud-resolving scale. Understanding of how different aerosol processes affect particle dispersion is crucial when designing emission sources for marine cloud brightening. Compared with previous studies, we include for the first time an explicit treatment of aerosol water, which takes into account condensation, evaporation and their effect on ambient temperature. This enables us to capture the negative buoyancy caused by water evaporation from aerosols. Additionally, we use a higher model resolution to capture aerosol loss through coagulation near the source point. We find that, with a seawater flux of 15 kg s−1, the cooling due to evaporation can be as much as 1.4 K, causing a delay in particle dispersion of 10–20 min. This delay enhances particle scavenging by a factor of 1.14 compared with simulations without aerosol water. We further show that both cooling and particle dispersion depend on the model resolution, with a maximum particle scavenging efficiency of 20% within 5 h after emission at maximum resolution of 50 m. Based on these results, we suggest further regional high-resolution studies which model several injection periods over several weeks. PMID:25404679

  12. Modelling artificial sea salt emission in large eddy simulations.

    PubMed

    Maalick, Z; Korhonen, H; Kokkola, H; Kühn, T; Romakkaniemi, S

    2014-12-28

    We study the dispersion of sea salt particles from artificially injected sea spray at a cloud-resolving scale. Understanding of how different aerosol processes affect particle dispersion is crucial when designing emission sources for marine cloud brightening. Compared with previous studies, we include for the first time an explicit treatment of aerosol water, which takes into account condensation, evaporation and their effect on ambient temperature. This enables us to capture the negative buoyancy caused by water evaporation from aerosols. Additionally, we use a higher model resolution to capture aerosol loss through coagulation near the source point. We find that, with a seawater flux of 15 kg s(-1), the cooling due to evaporation can be as much as 1.4 K, causing a delay in particle dispersion of 10-20 min. This delay enhances particle scavenging by a factor of 1.14 compared with simulations without aerosol water. We further show that both cooling and particle dispersion depend on the model resolution, with a maximum particle scavenging efficiency of 20% within 5 h after emission at maximum resolution of 50 m. Based on these results, we suggest further regional high-resolution studies which model several injection periods over several weeks.

  13. Modelling artificial sea salt emission in large eddy simulations.

    PubMed

    Maalick, Z; Korhonen, H; Kokkola, H; Kühn, T; Romakkaniemi, S

    2014-12-28

    We study the dispersion of sea salt particles from artificially injected sea spray at a cloud-resolving scale. Understanding of how different aerosol processes affect particle dispersion is crucial when designing emission sources for marine cloud brightening. Compared with previous studies, we include for the first time an explicit treatment of aerosol water, which takes into account condensation, evaporation and their effect on ambient temperature. This enables us to capture the negative buoyancy caused by water evaporation from aerosols. Additionally, we use a higher model resolution to capture aerosol loss through coagulation near the source point. We find that, with a seawater flux of 15 kg s(-1), the cooling due to evaporation can be as much as 1.4 K, causing a delay in particle dispersion of 10-20 min. This delay enhances particle scavenging by a factor of 1.14 compared with simulations without aerosol water. We further show that both cooling and particle dispersion depend on the model resolution, with a maximum particle scavenging efficiency of 20% within 5 h after emission at maximum resolution of 50 m. Based on these results, we suggest further regional high-resolution studies which model several injection periods over several weeks. PMID:25404679

  14. Assessing the Wildlife Habitat Value of New England Salt Marshes: I. Model and Application

    EPA Science Inventory

    We developed an assessment model to quantify the wildlife habitat value of New England salt marshes based on marsh characteristics and the presence of habitat types that influence habitat use by terrestrial wildlife. Applying the model to12 salt marshes located in Narragansett B...

  15. Assessing Wildlife Habitat Value of New England Salt Marshes: II. Model Testing and Validation

    EPA Science Inventory

    We test a previously described model to assess the wildlife habitat value of New England salt marshes by comparing modeled habitat values and scores with bird abundance and species richness at sixteen salt marshes in Narragansett Bay, Rhode Island USA. Assessment scores ranged f...

  16. Interior Design.

    ERIC Educational Resources Information Center

    Texas Tech Univ., Lubbock. Home Economics Curriculum Center.

    This document contains teacher's materials for an eight-unit secondary education vocational home economics course on interior design. The units cover period styles of interiors, furniture and accessories, surface treatments and lighting, appliances and equipment, design and space planning in home and business settings, occupant needs, acquisition…

  17. Making and Measuring a Model of a Salt Marsh

    ERIC Educational Resources Information Center

    Fogleman, Tara; Curran, Mary Carla

    2007-01-01

    Students are often confused by the difference between the terms "accuracy" and "precision." In the following activities, students explore the definitions of accuracy and precision while learning about salt march ecology and the methods used by scientists to assess salt marsh health. The activities also address the concept that the ocean supports a…

  18. A sound quality model for objective synthesis evaluation of vehicle interior noise based on artificial neural network

    NASA Astrophysics Data System (ADS)

    Wang, Y. S.; Shen, G. Q.; Xing, Y. F.

    2014-03-01

    Based on the artificial neural network (ANN) technique, an objective sound quality evaluation (SQE) model for synthesis annoyance of vehicle interior noises is presented in this paper. According to the standard named GB/T18697, firstly, the interior noises under different working conditions of a sample vehicle are measured and saved in a noise database. Some mathematical models for loudness, sharpness and roughness of the measured vehicle noises are established and performed by Matlab programming. Sound qualities of the vehicle interior noises are also estimated by jury tests following the anchored semantic differential (ASD) procedure. Using the objective and subjective evaluation results, furthermore, an ANN-based model for synthetical annoyance evaluation of vehicle noises, so-called ANN-SAE, is developed. Finally, the ANN-SAE model is proved by some verification tests with the leave-one-out algorithm. The results suggest that the proposed ANN-SAE model is accurate and effective and can be directly used to estimate sound quality of the vehicle interior noises, which is very helpful for vehicle acoustical designs and improvements. The ANN-SAE approach may be extended to deal with other sound-related fields for product quality evaluations in SQE engineering.

  19. Using local knowledge, hydrological, and climate data to develop a driftwood harvest model in interior Alaska

    NASA Astrophysics Data System (ADS)

    Jones, C.; Hinzman, L. D.; Kielland, K.

    2011-12-01

    Residents of rural Alaska usually harvest driftwood from the Yukon River during two distinct periods in the summer. Typically, driftwood accompanies high flows on the Yukon River associated with spring break-up. A few weeks later, a second pulse of driftwood associated with the "2nd Rise" typically flows during early June. This study examines the nature of the differential timing of high flow events in the Yukon River to develop a model of the driftwood harvest. Many communities in interior Alaska have grown to rely upon driftwood as an important source of wood, which is used in construction and as a source of fuel. Increasingly, villages in rural Alaska are trying to lessen their dependence upon high-cost fossil fuels and other non-renewable energy sources. A number of Alaskan villages have recently installed wood chip-fired boilers to generate heat and/or electricity and additional boilers are slated to be installed in rural Alaska in the near future. These boilers are largely fed by driftwood which can be harvested cheaply and processed easily. But if the driftwood harvest is dependent upon high flows in the Yukon, how will fluctuations in river hydrology affect the efficacy and reliability of driftwood harvest? We examined this question using information from local knowledge in conjunction with U.S. census, hydrological, and climate reanalysis data sets to model the magnitude of Yukon River driftwood harvest during summer. It appears that since 1995, high flow events have decreased magnitude, but increased in frequency, compared to the period between 1977 and 1994. Based upon this observation, the annual potential driftwood harvest in Tanana since 1995 was modeled to be greater compared to the average prior to 1994. This pattern was largely driven by a change in the frequency and duration of high flow events. Thus, the availability of driftwood as an energy resource is expected to be commensurate to the recurrence of high flow events on the Yukon River.

  20. Modeling soil thermal and carbon dynamics of a fire chronosequence in interior Alaska

    USGS Publications Warehouse

    Zhuang, Q.; McGuire, A.D.; O'Neill, K. P.; Harden, J.W.; Romanovsky, V.E.; Yarie, J.

    2003-01-01

    In this study, the dynamics of soil thermal, hydrologic, and ecosystem processes were coupled to project how the carbon budgets of boreal forests will respond to changes in atmospheric CO2, climate, and fire disturbance. The ability of the model to simulate gross primary production and ecosystem respiration was verified for a mature black spruce ecosystem in Canada, the age-dependent pattern of the simulated vegetation carbon was verified with inventory data on aboveground growth of Alaskan black spruce forests, and the model was applied to a postfire chronosequence in interior Alaska. The comparison between the simulated soil temperature and field-based estimates during the growing season (May to September) of 1997 revealed that the model was able to accurately simulate monthly temperatures at 10 cm (R > 0.93) for control and burned stands of the fire chronosequence. Similarly, the simulated and field-based estimates of soil respiration for control and burned stands were correlated (R = 0.84 and 0.74 for control and burned stands, respectively). The simulated and observed decadal to century-scale dynamics of soil temperature and carbon dynamics, which are represented by mean monthly values of these variables during the growing season, were correlated among stands (R = 0.93 and 0.71 for soil temperature at 20- and 10-cm depths, R = 0.95 and 0.91 for soil respiration and soil carbon, respectively). Sensitivity analyses indicate that along with differences in fire and climate history a number of other factors influence the response of carbon dynamics to fire disturbance. These factors include nitrogen fixation, the growth of moss, changes in the depth of the organic layer, soil drainage, and fire severity.

  1. Modeling the hot-dense plasma of the solar interior in and out of thermal equilibrium

    NASA Astrophysics Data System (ADS)

    Lin, Hsiao-Hsuan

    The developments in helioseismology ensure a wealth of studies in solar physics. In particular, with the high precision of the observations of helioseismology, a high-quality solar model is mandated, since even the tiny deviations between a model and the real Sun can be detected. One crucial ingredient of any solar model is the thermodynamics of hot-dense plasmas, in particular the equation of state. This has motivated efforts to develop sophisticated theoretical equations of state (EOS). It is important to realize that for the conditions of solar-interior plasmas, there are no terrestrial laboratory experiments; the only observational constraints come from helioseismology. Among the most successful EOS is so called OPAL EOS, which is part of the Opacity Project at Livermore. It is based on an activity expansion of the quantum plasma, and realized in the so-called "physical picture". One of its main competitor is the so called MHD EOS, which is part of the international Opacity Project (OP), a non-classified multi-country consortium. The approach of MHD is via the so-called "chemical picture". Since OPAL is the most accurate equation of state so far, there has been a call for a public-domain version of it. However, the OPAL code remains proprietary, and its "emulation" makes sense. An additional reason for such a project is that the results form OPAL can only be accessed via tables generated by the OPAL team. Their users do not have the flexibility to change the chemical composition from their end. The earlier MHD-based OPAL emulator worked well with its modifications of the MHD equation of state, which is the Planck-Larkin partition function and its corresponding scattering terms. With this modification, MHD can serve as a OPAL emulator with all the flexibility and accessibility. However, to build a really user-friendly OPAL emulator one should consider CEFF-based OPAL emulator. CEFF itself is already widely used practical EOS which can be easily implemented

  2. Modeling Ice Giant Interiors Using Constraints on the H2-H2O Critical Curve

    NASA Astrophysics Data System (ADS)

    Bailey, E.; Stevenson, D. J.

    2015-12-01

    We present a range of models of Uranus and Neptune, taking into account recent experimental data (Bali, 2013) implying the location of the critical curve of the H2-H2O system at pressures up to 2.6 GPa. The models presented satisfy the observed total mass of each planet and the radius at the observed 1-bar pressure level. We assume the existence of three regions at different depths: an outer adiabatic envelope composed predominately of H2 and He, with a helium mass fraction 0.26, a water-rich layer including varied amounts of rock and hydrogen, and a chemically homogeneous rock core. Using measured rotation rates of Uranus and Neptune, and a density profile obtained for each model using constituent equations of state and the assumption of hydrostatic equilibrium, we calculate the gravitational harmonics J2 and J4 for comparison with observed values as an additional constraint. The H2-H2O critical curve provides information about the nature of the boundary between the outer, hydrogen-rich envelope and underlying water-rich layer. The extrapolated critical curve for hydrogen-water mixtures crosses the adiabat of the outer atmospheric shell in these models at two depths, implying a shallow outer region of limited miscibility, an intermediate region between ~90 and 98 percent of the total planet radius within which hydrogen and water can mix in all proportions, and another, deeper region of limited miscibility at less than ~90 percent of the total planet radius. The pressure and temperature of the gaseous adiabatic shell at the depth of the shallowest extent of the water-rich layer determines whether a gradual compositional transition or an ocean surface boundary may exist at depth in these planets. To satisfy the observed J2, the outer extent of the water-rich layer in these models must be located between approximately 80 and 85 percent of the total planet radius, within the deep region of limited H2-H2O miscibility, implying an ocean surface is possible within the

  3. Interior Noise

    NASA Technical Reports Server (NTRS)

    Mixson, John S.; Wilby, John F.

    1991-01-01

    The generation and control of flight vehicle interior noise is discussed. Emphasis is placed on the mechanisms of transmission through airborne and structure-borne paths and the control of cabin noise by path modification. Techniques for identifying the relative contributions of the various source-path combinations are also discussed along with methods for the prediction of aircraft interior noise such as those based on the general modal theory and statistical energy analysis.

  4. Molecular modelling: An analytical tool with a predictive character for investigating reactivity in molten salt media.

    NASA Astrophysics Data System (ADS)

    Picard, Gérard S.; Bouyer, Frédéric C.

    1995-04-01

    Possibilities offered by Molecular Modelling for studying homogeneous and interfacial processes and reactions in melts are discussed. A few typical illustrative examples covering some of the main research fields of molten salt chemistry and electrochemistry are given. Quantum chemistry calculations, Molecular Dynamics and Monte Carlo methods appear to be fantastic tools for analyzing and predicting reactivity in molten salts.

  5. Modeling of Vesta's interior structure using gravity and shape models from the Dawn mission and hydrodynamic impact simulations

    NASA Astrophysics Data System (ADS)

    Ermakov, A.; Zuber, M. T.; Smith, D. E.; Raymond, C. A.; Balmino, G.; Ivanov, B.; Asphaug, E. I.; Jutzi, M.

    2012-12-01

    Observations from the Dawn spacecraft are used to determine the shape and gravity field of Vesta. Radio tracking data allowed an estimation of the gravity field of Vesta to spherical harmonic degree and order 20 (Asmar et al., 2011; Konolpiv et al., 2012). Images obtained by Dawn's Framing Camera (FC) have been used to produce shape models of Vesta using stereophotogrammetry and stereophotoclinometry methods (Preusker et al., 2011; Raymond et al., 2012). The data from the second High Altitude Mapping Orbit (HAMO 2) will be used to reconstruct the shape in the north pole region. In our study we represent the shape model as a spherical harmonic expansion. The topography power spectrum shows that the spectral slope of Vesta's topography is distinct from that of the terrestrial planets (Turcotte, 1987). The fractal dimension D of Vesta's topography on scales 10 - 1000 km is approximately equal to 1.28 (D=1.5 for Brownian noise topography). The spherical harmonic expansion of topography is used to compute gravity potential anomalies (Balmino, 1994); a three-layer interior structure model is computed by minimizing the power of the residual Bouguer gravity anomaly (Wieczorek and Philips, 1998). The densities of the core, mantle and crust are based on the constraints derived from the HED-meteorites (McSween el al., 2012; Zuber et al., 2012; Ruzicka et al., 1997). The center of mass - center of figure offset is compensated by offsetting the core center from the center of mass by 7-10 km, depending on assumed interior densities. We observe a significant contribution of non-zonal second-degree terms in the Bouguer gravity anomaly, which indicates spatial variability of the internal interfaces. The major positive gravity anomaly is observed in Vestalia Terra region. Results of hydrodynamic impact simulations of the Rheasilvia basin formation show a redistribution of crustal and mantle material within the basin (e.g. Ivanov el al., 2012; Jutzi and Asphaug, 2011). The regional

  6. The universal response of fluid interiors to end-member models of mechanical forcing

    NASA Astrophysics Data System (ADS)

    Grannan, A. M.; Favier, B.; Ribeiro, A.; Le Bars, M.; Aurnou, J. M.

    2015-12-01

    Turbulence generated in electrically conductive liquid interiors of planetary bodies may be due, in part, to mechanical forcing through geophysically relevant mechanisms of precession/nutation, librations, tidal forcing, and collisions. Using experimental particle image velocimetry techniques accompanied by selected high-resolution numerical simulations, we show, for the first time, the generation of bulk-filling turbulence driven by high frequency tidal forcing. The transition to sustained turbulence is characterized by a succession of resonances first between the tidally forced ellipsoidal base flow with two primary inertial modes and subsequently between secondary inertial modes and the primary inertial modes. Furthermore, deviations in the amplitude of the time-averaged retrograde zonal flow suggest an as yet unseen secondary flow transition that may promote additional turbulence. The turbulence generated by high frequency, low amplitude tidal forcing is similar to the libration-driven turbulent flows studied by Grannan et al. [2014] and Favier et al. [2015]. These works reveal the universal fluid response to elliptical instability driven by separate models that correspond, in geophysical terms, to two end member types of mechanical forcing. In the first, non-synchronous satellites possess elastically deformable boundaries such that shape of the distortion has a non-zero mean motion. In the second, the core-mantle boundary of a body possesses an inherently rigid or tidally frozen-in ellipsoidal shape in a synchronous orbit such that the mean motion of the elliptically deformed boundary is zero. Although the strength of the mechanical forcing is much weaker at planetary settings, the corresponding viscous dissipation is also weaker and thus may still permit the generation of the same turbulent flow found in both experiments and numerical simulations. The efficacy of such turbulent flows in magnetic field generation and dissipation is currently being pursued

  7. Numerical and measured data from the 3D salt canopy physical modeling project

    SciTech Connect

    Bradley, C.; House, L.; Fehler, M.; Pearson, J.; TenCate, J.; Wiley, R.

    1997-11-01

    The evolution of salt structures in the Gulf of Mexico have been shown to provide a mechanism for the trapping of significant hydrocarbon reserves. Most of these structures have complex geometries relative to the surrounding sedimentary layers. This aspect in addition to high velocities within the salt tend to scatter and defocus seismic energy and make imaging of subsalt lithology extremely difficult. An ongoing program the SEG/EAEG modeling project (Aminzadeh et al. 1994a: Aminzadeh et al. 1994b: Aminzadeh et al. 1995), and a follow-up project funded as part of the Advanced Computational Technology Initiative (ACTI) (House et al. 1996) have sought to investigate problems with imaging beneath complex salt structures using numerical modeling and more recently, construction of a physical model patterned after the numerical subsalt model (Wiley and McKnight. 1996). To date, no direct comparison of the numerical and physical aspects of these models has been attempted. We present the results of forward modeling a numerical realization of the 3D salt canopy physical model with the French Petroleum Institute (IFP) acoustic finite difference algorithm used in the numerical subsalt tests. We compare the results from the physical salt canopy model, the acoustic modeling of the physical/numerical model and the original numerical SEG/EAEG Salt Model. We will be testing the sensitivity of migration to the presence of converted shear waves and acquisition geometry.

  8. First-principles molecular dynamics modeling of the molten fluoride salt with Cr solute

    NASA Astrophysics Data System (ADS)

    Nam, H. O.; Bengtson, A.; Vörtler, K.; Saha, S.; Sakidja, R.; Morgan, D.

    2014-06-01

    Fluoride salts and their interactions with metals are of wide interest for the nuclear community. In this work, first-principles molecular dynamics (FPMD) was employed to study both pure molten fluoride salt and fluoride salt with dissolved solute Cr ions (a common corrosion product) at high temperature (823-1423 K). Two types of molten fluoride salts, namely flibe (LiF-BeF2) and flinak (LiF-NaF-KF), with the Cr0, Cr2+ and Cr3+ ions were chosen as a target system for the FPMD modeling. The prediction of thermo-kinetic properties of pure fluoride salt, such as the equilibrium volume, density, bulk modulus, coefficient of thermal expansion, and self-diffusion coefficient, provide useful extensions of existing data and verify the accuracy of the FPMD simulation in modeling of fluoride salts. The FPMD modeling of solute Cr in fluoride salt shows the effect of Cr valence on diffusivity and local structure in the salt.

  9. Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors

    USGS Publications Warehouse

    Fagherazzi, S.; Kirwan, M.L.; Mudd, S.M.; Guntenspergen, G.R.; Temmerman, S.; D'Alpaos, A.; Van De Koppel, J.; Rybczyk, J.M.; Reyes, E.; Craft, C.; Clough, J.

    2012-01-01

    Salt marshes are delicate landforms at the boundary between the sea and land. These ecosystems support a diverse biota that modifies the erosive characteristics of the substrate and mediates sediment transport processes. Here we present a broad overview of recent numerical models that quantify the formation and evolution of salt marshes under different physical and ecological drivers. In particular, we focus on the coupling between geomorphological and ecological processes and on how these feedbacks are included in predictive models of landform evolution. We describe in detail models that simulate fluxes of water, organic matter, and sediments in salt marshes. The interplay between biological and morphological processes often produces a distinct scarp between salt marshes and tidal flats. Numerical models can capture the dynamics of this boundary and the progradation or regression of the marsh in time. Tidal channels are also key features of the marsh landscape, flooding and draining the marsh platform and providing a source of sediments and nutrients to the marsh ecosystem. In recent years, several numerical models have been developed to describe the morphogenesis and long-term dynamics of salt marsh channels. Finally, salt marshes are highly sensitive to the effects of long-term climatic change. We therefore discuss in detail how numerical models have been used to determine salt marsh survival under different scenarios of sea level rise. Copyright 2012 by the American Geophysical Union.

  10. Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors

    USGS Publications Warehouse

    Fagherazzi, Sergio; Kirwan, Matthew L.; Mudd, Simon M.; Guntenspergen, Glenn R.; Temmerman, Stijn; D'Alpaos, Andrea; van de Koppel, Johan; Rybczyk, John; Reyes, Enrique; Craft, Chris; Clough, Jonathan

    2012-01-01

    Salt marshes are delicate landforms at the boundary between the sea and land. These ecosystems support a diverse biota that modifies the erosive characteristics of the substrate and mediates sediment transport processes. Here we present a broad overview of recent numerical models that quantify the formation and evolution of salt marshes under different physical and ecological drivers. In particular, we focus on the coupling between geomorphological and ecological processes and on how these feedbacks are included in predictive models of landform evolution. We describe in detail models that simulate fluxes of water, organic matter, and sediments in salt marshes. The interplay between biological and morphological processes often produces a distinct scarp between salt marshes and tidal flats. Numerical models can capture the dynamics of this boundary and the progradation or regression of the marsh in time. Tidal channels are also key features of the marsh landscape, flooding and draining the marsh platform and providing a source of sediments and nutrients to the marsh ecosystem. In recent years, several numerical models have been developed to describe the morphogenesis and long-term dynamics of salt marsh channels. Finally, salt marshes are highly sensitive to the effects of long-term climatic change. We therefore discuss in detail how numerical models have been used to determine salt marsh survival under different scenarios of sea level rise.

  11. Building a Probabilistic Denitrification Model for an Oregon Salt Marsh

    NASA Astrophysics Data System (ADS)

    Moon, J. B.; Stecher, H. A.; DeWitt, T.; Nahlik, A.; Regutti, R.; Michael, L.; Fennessy, M. S.; Brown, L.; Mckane, R.; Naithani, K. J.

    2015-12-01

    Despite abundant work starting in the 1950s on the drivers of denitrification (DeN), mechanistic complexity and methodological challenges of direct DeN measurements have resulted in a lack of reliable rate estimates across landscapes, and a lack of operationally valid, robust models. Measuring and modeling DeN are particularly challenging in tidal systems, which play a vital role in buffering adjacent coastal waters from nitrogen inputs. These systems are hydrologically and biogeochemically complex, varying on fine temporal and spatial scales. We assessed the spatial and temporal variability of soil nitrate (NO3-) levels and O2 availability, two primary drivers of DeN, in surface soils of Winant salt marsh located in Yaquina estuary, OR during the summers of 2013 and 2014. We found low temporal variability in soil NO3- concentrations across years, tide series, and tide cycles, but high spatial variability linked to elevation gradients (i.e., habitat types); spatial variability within the high marsh habitat (0 - 68 μg N g-1 dry soil) was correlated with distance to major tide creek channels and connectivity to upslope N-fixing red alder. Soil O2 measurements collected at 5 cm below ground across three locations on two spring tide series showed that O2 drawdown rates were also spatially variable. Depending on the marsh location, O2 draw down ranged from sub-optimal for DeN (> 80 % O2 saturation) across an entire tide series (i.e., across days) to optimum (i.e., ~ 0 % O2 saturation) within one overtopping tide event (i.e., within hours). We are using these results, along with empirical relationships created between DeN and soil NO3- concentrations for Winant to improve on a pre-existing tidal DeN model. We will develop the first version of a fully probabilistic hierarchical Bayesian tidal DeN model to quantify parameter and prediction uncertainties, which are as important as determining mean predictions in order to distinguish measurable differences across the marsh.

  12. Molten Salt Power Tower Cost Model for the System Advisor Model (SAM)

    SciTech Connect

    Turchi, C. S.; Heath, G. A.

    2013-02-01

    This report describes a component-based cost model developed for molten-salt power tower solar power plants. The cost model was developed by the National Renewable Energy Laboratory (NREL), using data from several prior studies, including a contracted analysis from WorleyParsons Group, which is included herein as an Appendix. The WorleyParsons' analysis also estimated material composition and mass for the plant to facilitate a life cycle analysis of the molten salt power tower technology. Details of the life cycle assessment have been published elsewhere. The cost model provides a reference plant that interfaces with NREL's System Advisor Model or SAM. The reference plant assumes a nominal 100-MWe (net) power tower running with a nitrate salt heat transfer fluid (HTF). Thermal energy storage is provided by direct storage of the HTF in a two-tank system. The design assumes dry-cooling. The model includes a spreadsheet that interfaces with SAM via the Excel Exchange option in SAM. The spreadsheet allows users to estimate the costs of different-size plants and to take into account changes in commodity prices. This report and the accompanying Excel spreadsheet can be downloaded at https://sam.nrel.gov/cost.

  13. Piecewise-Constant-Model-Based Interior Tomography Applied to Dentin Tubules

    DOE PAGES

    He, Peng; Wei, Biao; Wang, Steve; Stock, Stuart R.; Yu, Hengyong; Wang, Ge

    2013-01-01

    Dentin is a hierarchically structured biomineralized composite material, and dentin’s tubules are difficult to study in situ. Nano-CT provides the requisite resolution, but the field of view typically contains only a few tubules. Using a plate-like specimen allows reconstruction of a volume containing specific tubules from a number of truncated projections typically collected over an angular range of about 140°, which is practically accessible. Classical computed tomography (CT) theory cannot exactly reconstruct an object only from truncated projections, needless to say a limited angular range. Recently, interior tomography was developed to reconstruct a region-of-interest (ROI) from truncated data in amore » theoretically exact fashion via the total variation (TV) minimization under the condition that the ROI is piecewise constant. In this paper, we employ a TV minimization interior tomography algorithm to reconstruct interior microstructures in dentin from truncated projections over a limited angular range. Compared to the filtered backprojection (FBP) reconstruction, our reconstruction method reduces noise and suppresses artifacts. Volume rendering confirms the merits of our method in terms of preserving the interior microstructure of the dentin specimen.« less

  14. Internationalizing an Interior Design Course: A Model for Global FCS Curricula

    ERIC Educational Resources Information Center

    Charlson, Julie; Vouchilas, Gus

    2010-01-01

    Accreditation for Family and Consumer Sciences and for Interior Design programs includes standards to globalize education of undergraduate students. An integrative approach to planning curriculum relates the concept of global interdependence to the development of critical thinking skills for student decision-making. This was addressed in modifying…

  15. A mathematical model of salt-sensitive hypertension: the neurogenic hypothesis

    PubMed Central

    Averina, Viktoria A; Othmer, Hans G; Fink, Gregory D; Osborn, John W

    2015-01-01

    Salt sensitivity of arterial pressure (salt-sensitive hypertension) is a serious global health issue. The causes of salt-sensitive hypertension are extremely complex and mathematical models can elucidate potential mechanisms that are experimentally inaccessible. Until recently, the only mathematical model for long-term control of arterial pressure was the model of Guyton and Coleman; referred to as the G-C model. The core of this model is the assumption that sodium excretion is driven by renal perfusion pressure, the so-called ‘renal function curve’. Thus, the G-C model dictates that all forms of hypertension are due to a primary shift of the renal function curve to a higher operating pressure. However, several recent experimental studies in a model of hypertension produced by the combination of a high salt intake and administration of angiotensin II, the AngII–salt model, are inconsistent with the G-C model. We developed a new mathematical model that does not limit the cause of salt-sensitive hypertension solely to primary renal dysfunction. The model is the first known mathematical counterexample to the assumption that all salt-sensitive forms of hypertension require a primary shift of renal function: we show that in at least one salt-sensitive form of hypertension the requirement is not necessary. We will refer to this computational model as the ‘neurogenic model’. In this Symposium Review we discuss how, despite fundamental differences between the G-C model and the neurogenic model regarding mechanisms regulating sodium excretion and vascular resistance, they generate similar haemodynamic profiles of AngII–salt hypertension. In addition, the steady-state relationships between arterial pressure and sodium excretion, a correlation that is often erroneously presented as the ‘renal function curve’, are also similar in both models. Our findings suggest that salt-sensitive hypertension is not due solely to renal dysfunction, as predicted by the G

  16. Testing a 1-D Analytical Salt Intrusion Model and the Predictive Equation in Malaysian Estuaries

    NASA Astrophysics Data System (ADS)

    Gisen, Jacqueline Isabella; Savenije, Hubert H. G.

    2013-04-01

    Little is known about the salt intrusion behaviour in Malaysian estuaries. Study on this topic sometimes requires large amounts of data especially if a 2-D or 3-D numerical models are used for analysis. In poor data environments, 1-D analytical models are more appropriate. For this reason, a fully analytical 1-D salt intrusion model, based on the theory of Savenije in 2005, was tested in three Malaysian estuaries (Bernam, Selangor and Muar) because it is simple and requires minimal data. In order to achieve that, site surveys were conducted in these estuaries during the dry season (June-August) at spring tide by moving boat technique. Data of cross-sections, water levels and salinity were collected, and then analysed with the salt intrusion model. This paper demonstrates a good fit between the simulated and observed salinity distribution for all three estuaries. Additionally, the calibrated Van der Burgh's coefficient K, Dispersion coefficient D0, and salt intrusion length L, for the estuaries also displayed a reasonable correlations with those calculated from the predictive equations. This indicates that not only is the salt intrusion model valid for the case studies in Malaysia but also the predictive model. Furthermore, the results from this study describe the current state of the estuaries with which the Malaysian water authority in Malaysia can make decisions on limiting water abstraction or dredging. Keywords: salt intrusion, Malaysian estuaries, discharge, predictive model, dispersion

  17. Salt as a 3D element in structural modelling - example from the Central European Basin System

    NASA Astrophysics Data System (ADS)

    Maystrenko, Y. P.; Scheck-Wenderoth, M.; Bayer, U.

    2010-12-01

    The Central European Basin System (CEBS) covers the northern part of Central and Western Europe and contains up to 12 km of Permian to Cenozoic deposits. Initiated in the Early Permian, the Central European Basin System accumulated Lower Permian clastics overlain by significant amount of Upper Permian (Zechstein) salt. Post-Permian differentiation of the basin system was controlled by several phases of tectonic activity. These tectonic phases not only provoked regional shifts in subsidence and erosion but also triggered movements of the Upper Permian (Zechstein) salt. Salt rise strongly influenced the Meso-Cenozoic structural evolution in terms of mechanical decoupling of the sedimentary cover from its basement. As a result of several phases of salt tectonics, the CEBS displays a wide variety of salt structures (walls, diapirs and pillows). In order to investigate the interaction of salt movements, deposition and tectonics, the 3D structural model of the CEBS has been constructed covering the entire salt basin (Northern and Southern Permian basins). Seismic interpretation and 3D backstripping have been used to investigate both the present-day structure and the evolution of the CEBS. 3D backstripping includes 3D salt redistribution in response to the changing load conditions in the salt cover. The results of 3D modelling of salt movements and seismic data indicate that the primary initiation of salt movements occurred during the Triassic. The Triassic regional extensional event initiated a phase of salt movements within the coeval depocenters of the CEBS, such as the Glueckstadt Graben, the Horn Graben, the Fjerritslev Trough and the adjacent Himmerland Graben in Denmark, as well as the Polish Basin. The Early Triassic (Buntsandstein) and the Late Triassic (Middle-Late Keuper) extensional events triggered strongest salt movements within the central part of the Glueckstadt Graben. During the Late Jurassic-Early Cretaceous, major erosion regionally truncated the study

  18. Understanding the Interiors of Saturn and Mercury through Magnetic Field Observation and Dynamo Modeling

    NASA Astrophysics Data System (ADS)

    Cao, Hao

    Understanding the interior structure and dynamics of a planet is a key step towards understanding the formation and evolution of a planet. In this thesis, I combine field observation and dynamo modeling to understand planetary interiors. Focus has been put on planets Saturn and Mercury. The Cassini spacecraft has been taking continuous measurements in the Saturnian system since the Saturn orbital insertion in June 2004. Since the Mercury orbital insertion in March 2011, the MESSENGER spacecraft has been examining planet Mercury. After analyzing the close-in portion of the in-situ Cassini magnetometer measurements around Saturn, I find that Saturn's magnetic field features several surprising characteristics. First, Saturn's magnetic field is extremely axisymmetric. We cannot find any consistent departure from axisymmetry, and have put an extremely tight upper bound on the dipole tilt of Saturn: the dipole tilt of Saturn has to be smaller than 0.06 degrees. Second, we find that Saturn's magnetic field is extremely stable with time. Third, we estimated the magnetic moments of Saturn up to degree 5. This is the first magnetic field model for Saturn which goes beyond degree 3. We find that not only Saturn's intrinsic magnetic field is dominated by the axial moments; among these axial moments the odd degree ones dominate. In addition, the first three odd degree axial moments all take the same sign. This sign pattern of Saturn's magnetic moments is in contrast to that of the Earth's magnetic moments which takes alternative signs for the past century. The contrast between the geometries of Saturn's magnetic field and the Earth's magnetic field lead us to propose a dynamo hypothesis which speculates that such differences are caused by structural and dynamical differences inside these two planets. Our dynamo hypothesis for Saturn has two essential ingredients. The first concerns about the existence and size of a central core inside Saturn and its influence on Saturn's dynamo

  19. High Salt Intake Promotes Urinary Loss of Vitamin D Metabolites by Dahl Salt-Sensitive Rats in a Space Flight Model

    NASA Technical Reports Server (NTRS)

    Thierry-Palmer, M.; Cephas, S.; Sayavongsa, P.; Clark, T.; Arnaud, S. B.

    2004-01-01

    Vitamin D metabolism in the Dahl salt-sensitive (S) rat, a model of salt-induced hypertension, differs from that in the Dahl salt-resistant (R) rat. We have demonstrated that female S rats are more vulnerable than female R rats to decreases in plasma 25-hydroxyvitamin D (25-OHD) and 1,25-dihydroxyvitamin D (1,25-(OH)2D) concentrations during hind limb unloading (a space flight model). We report here on the response of the vitamin D endocrine system of S and R rats to hind limb unloading during high salt intake. Dahl female rats (9.7-week-old) were tail-suspended (hind limb unloaded) for 28 days, while fed a diet containing twice the salt in standard rat chow (2 % sodium chloride). Control rats were fed the same diet, but were not hind limb unloaded. Vitamin D metabolites were analyzed by HPLC and radioimmunoassay kits from Diasorin.

  20. CHIC - Coupling Habitability, Interior and Crust: A new Code for Modeling the Thermal Evolution of Planets and Moons

    NASA Astrophysics Data System (ADS)

    Noack, Lena; Rivoldini, Attilio; Van Hoolst, Tim

    2015-04-01

    We present a new numerical code (CHIC) for the simulation of the thermal evolution of terrestrial planets. The code consists of both a 1d parameterised model to evaluate the temperature profile in the planet's interior and a 2d/3d convection model for the silicate mantle - the latter uses either a Cartesian box, a 2d cylindrical sphere or a 2d spherical annulus. The code is modular and can be easily extended (for example to include an atmosphere module). In the convection model next to the energy equation the conservation equations of mass and momentum are solved, as well. We apply either a Boussinesq approximation or an extended Boussinesq approximation for mantle convection; compressible treatment is planned for the future. The code provides information on the temperature field in the mantle, convective velocities and convective stresses. Simulations can be run under steady-state or thermal evolution conditions. The CHIC code handles surface volcanism, crustal development, and different regimes of surface mobilization like plate tectonics. It is therefore well suited for studying scenarios related to the habitability of terrestrial planets. The code provides a user updatable library of thermodynamic properties of iron and common mantle silicates as well as associated equations of state that allow to compute material properties at high pressure and temperature. Furthermore, the interior structure of a planet for given composition and mass can be determined, yielding the core and planet radius that can then be automatically used for the thermal evolution simulation. CHIC does also accommodate a module for computing a simple parameterised thermal evolution model of a planet's core that includes the formation of an inner core. This module can be combined with either the 1d parameterised thermal evolution model or the 2d/3d mantle convection model. The code has been benchmarked with different convection codes, and compared to published interior-structure models and 1d

  1. Impact of boundary regions on the interior circulation of the California Current System in a regional modeling framework

    NASA Astrophysics Data System (ADS)

    Veneziani, M.; Edwards, C.; Moore, A.

    2008-12-01

    We use the Regional Ocean Modeling System (ROMS) to model the circulation of the California Current System (CCS) using ECCO-GODAE products to force the model at the open boundaries of the domain. We investigate the impact that lateral boundary forcing (and the boundary region in general) has on particular metrics of the interior circulation by adopting both an adjoint model and a traditional sensitivity approach. Adjoint methods are naturally suited to sensitivity studies as they provide the direct dependencies of circulation metrics on uncertainties of the model initial conditions, surface and lateral external forcing, and model parameters, but their results are only valid within the time scale during which the linearity assumption underlying adjoint models can be considered to hold. More traditional sensitivity studies must be conducted to investigate longer time scales. We describe the adjoint model results for two metrics that represent the upwelling processes of the Central California region and the mean sea level field of the coastal circulation, respectively. The spatial distribution of the adjoint sensitivity fields allows us to quantify the contribution of the boundary regions over a biweekly time scale. We investigate longer time scales by adopting two methods: 1) apply different ECCO products at the open boundaries and evaluate mean stratification changes in the CalCOFI coastal region; 2) release passive tracers at the boundaries and calculate ventilation time scales and pathways from the boundary areas to the CCS interior.

  2. 138. INTERIOR, SEVENTH FLOOR, MAIN CORRIDOR, NORTH OF ELEVATOR NUMBER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    138. INTERIOR, SEVENTH FLOOR, MAIN CORRIDOR, NORTH OF ELEVATOR NUMBER 1, WEST WALL, SALT RIVER IRRIGATION PROJECT, ARIZONA PAINTING - U.S. Department of the Interior, Eighteenth & C Streets Northwest, Washington, District of Columbia, DC

  3. Bone Density and High Salt Diets in a Space Flight Model

    NASA Technical Reports Server (NTRS)

    Arnaud, S. B.; Navidi, M.; Liang, M. T. C.; Wolinsky, I.

    1999-01-01

    High salt diets accelerate bone loss with aging in patients with postmenopausal osteoporosis except when calcium supplementation is provided. We have observed that the decrease in mineral content of growing femurs in juvenile rats, exposed to a space flight model which unloads the hind limbs , is substantially less in animals fed excess salt. To determine whether excess dietary salt has the same effect on the skeleton of the mature animal whose response to unloading is increased resorption and bone loss rather than impaired growth, we carried out a metabolic study in mature rats with hindlimbs unloaded by tailsuspension.

  4. Modeling a Possible Volcanic Origin for Interior Layered Deposits on Mars

    NASA Astrophysics Data System (ADS)

    Chapman, M. G.; Kneissl, T.

    2011-12-01

    This study was undertaken to examine the valid range of temperatures required for sub-ice volcanic origin of interior layered deposits (ILDs) in Valles Marineris. To this end, using GIS the volume estimates of Ophir Chasma and its 4 ILDs were mapped and measured. The GIS volumes in this study are based on high-res HRSC topography overlain on MOLA. We determined the void space of Ophir Chasma sans ILDs to be 92,319 km3. Volumes for each ILD mound were determined to be 6,185 km3, 4,833 km3, 2,628 km3, and 0.2 km3 (negligible); totaling 13,642 km3. A sub-ice volcano requires eruption beneath an existing ice sheet or ponded ice. If during the formation of a sub-ice volcano the associated unstable englacial meltwater lake is drained by jökulhlaups or if the volcano rises above the meltwater, effused subaerial lava will cap the tuff cone forming resistant sheet lavas. Hence, the lava cap horizon can be used to estimate the minimum height of ice. Three resistant ILD caprock locales (found only on the 2 largest ILDs) were mapped and the hypothetical ice volumes measured beneath their elevations are 77,391 km3, 79,899 km3, and 51,695 km3. Following the equation from Chapman et al. (2003), if the known ILDs in Ophir are assumed to be basaltic subice volcanoes, calorimetry can be used to estimate the volumes of meltwater generated by their eruption [Allen, 1980; Björnsson, 1988; Gudmundsson and Björnsson, 1991; Gudmundsson et al., 1997; Höskuldsson and Sparks, 1997]. These estimates are based on (1) the volume and likely mound density, (2) the heat content of basaltic magmas, and (3) the specific heat capacity and the latent heat of fusion for ice. The ice that can be melted by a mass of magma as it solidifies and cools can be calculated by equating the heat content of the magma with the heat used for melting. Two possible end member cases were used. In the first case it is assumed that the chasma contained ice at its melting point of 273 K and in the other case the

  5. A constitutive model for representing coupled creep, fracture, and healing in rock salt

    SciTech Connect

    Chan, K.S.; Bodner, S.R.; Munson, D.E.; Fossum, A.F.

    1996-03-01

    The development of a constitutive model for representing inelastic flow due to coupled creep, damage, and healing in rock salt is present in this paper. This model, referred to as Multimechanism Deformation Coupled Fracture model, has been formulated by considering individual mechanisms that include dislocation creep, shear damage, tensile damage, and damage healing. Applications of the model to representing the inelastic flow and fracture behavior of WIPP salt subjected to creep, quasi-static loading, and damage healing conditions are illustrated with comparisons of model calculations against experimental creep curves, stress-strain curves, strain recovery curves, time-to-rupture data, and fracture mechanism maps.

  6. Efficacy of zosteric acid sodium salt on the yeast biofilm model Candida albicans.

    PubMed

    Villa, Federica; Pitts, Betsey; Stewart, Philip S; Giussani, Barbara; Roncoroni, Simone; Albanese, Domenico; Giordano, Carmen; Tunesi, Marta; Cappitelli, Francesca

    2011-10-01

    Candida albicans is the most notorious and the most widely studied yeast biofilm former. Design of experiments (DoE) showed that 10 mg/L zosteric acid sodium salt reduced C. albicans adhesion and the subsequent biofilm formation by at least 70%, on both hydrophilic and hydrophobic surfaces of 96-well plates. Indeed, biofilm imaging revealed the dramatic impact of zosteric acid sodium salt on biofilm thickness and morphology, due to the inability of the cells to form filamentous structures while remaining metabolically active. In the same way, 10 mg/L zosteric acid sodium salt inhibited C. albicans biofilm formation when added after the adhesion phase. Contrary to zosteric acid sodium salt, methyl zosterate did not affect yeast biofilm. In addition, zosteric acid sodium salt enhanced sensitivity to chlorhexidine, chlorine, hydrogen peroxide, and cis-2-decenoic acid, with a reduction of 0.5 to 8 log units. Preliminary in vitro studies using suitable primary cell based models revealed that zosteric acid sodium salt did not compromise the cellular activity, adhesion, proliferation or morphology of either the murine fibroblast line L929 or the human osteosarcoma line MG-63. Thus the use of zosteric acid sodium salt could provide a suitable, innovative, preventive, and integrative approach to preventing yeast biofilm formation. PMID:21614460

  7. Equilibrium Model for Ion Exchange Between Multivalent Cations and Zeolite-A in a Molten Salt

    SciTech Connect

    Supathorn Phongikaroon; Michael Simpson

    2005-10-01

    A two-site equilibrium model that previously only accommodated monovalent cations has been extended to include divalent and trivalent cations for ion exchange between zeolite-A and molten chloride salts, a process being considered for concentrating nuclear fission products into high level waste forms. Equilibrium constants were determined by fitting the model to equilibrium data sets for ion exchange between zeolite-A and Cs ternary salt (CsCl-LiCl-KCl), Rb ternary salt (RbCl-LiCl-KCl), Na ternary salt (NaCl-LiCl-KCl), Sr ternary salt (SrCl2-LiCl-KCl), and U ternary salt (UCl3-LiCl-KCl). The results reveal a good fit between the experimental data sets and the model. The two ion exchange sites, framework sites and occluded sites, demonstrate different relative selectivities for the cations. It was found that Sr2_ is the preferred cation in the ion exchange site, and Cs_ is the preferred cation in the occlusion site. Meanwhile, Li_ has the highest combined selectivity when both ion exchange and occlusion sites are considered. Interestingly, divalent and trivalent species are more preferred in the ion exchange site than the monovalent species with the exception of Li_.

  8. Finite Element Modeling of In-Situ Stresses near Salt Bodies

    NASA Astrophysics Data System (ADS)

    Sanz, P.; Gray, G.; Albertz, M.

    2011-12-01

    The in-situ stress field is modified around salt bodies because salt rock has no ability to sustain shear stresses. A reliable prediction of stresses near salt is important for planning safe and economic drilling programs. A better understanding of in-situ stresses before drilling can be achieved using finite element models that account for the creeping salt behavior and the elastoplastic response of the surrounding sediments. Two different geomechanical modeling techniques can be distinguished: "dynamic" modeling and "static" modeling. "Dynamic" models, also known as forward models, simulate the development of structural processes in geologic time. This technique provides the evolution of stresses and so it is used to simulate the initiation and development of structural features, such as, faults, folds, fractures, and salt diapers. The original or initial configuration and the unknown final configuration of forward models are usually significantly different therefore geometric non-linearities need to be considered. These models may be difficult to constrain when different tectonic, deposition, and erosion events, and the timing among them, needs to be accounted for. While dynamic models provide insight into the stress evolution, in many cases is very challenging, if not impossible, to forward model a configuration to its known present-day geometry; particularly in the case of salt layers that evolve into highly irregular and complex geometries. Alternatively, "static" models use the present-day geometry and present-day far-field stresses to estimate the present-day in-situ stress field inside a domain. In this case, it is appropriate to use a small deformation approach because initial and final configurations should be very similar, and more important, because the equilibrium of stresses should be stated in the present-day initial configuration. The initial stresses and the applied boundary conditions are constrained by the geologic setting and available data

  9. 3D modelling in salt tectonic context: the Crocodile minibasin in Sivas (Turkey)

    NASA Astrophysics Data System (ADS)

    Collon, Pauline; Pichat, Alexandre; Kergaravat, Charlie; Botella, Arnaud; Caumon, Guillaume; Favreau, Océane; Fuss, Gaétan; Godefroy, Gabriel; Lerat, Marine; Mazuyer, Antoine; Parquer, Marion; Charreau, Julien; Callot, Jean-Paul; Ringenbach, Jean-Claude

    2015-04-01

    Impermeable, with a low density and acting as a viscous fluid at the geological time scale, salt plays a unique tectonic role favouring hydrocarbon trap formations. Halokinetic structures are various and difficult to image with classic seismic techniques. Thus, outcrop analogues are precious and sought after. Since the re-interpretation in September 2011 of its evaporite deposits, the Oligo-Miocene basin of Sivas (Turkey) is a new choice analogue for the study of salt tectonic with outstanding outcrops reflecting the variety of salt related structures: minibasins, diapirs, welds... While studying these structures requires an important field work, building 3D models becomes an interesting way to better help understanding the three-dimensional organisation and to further perform numerical simulations (e.g., restoration, potential field measurement campaign simulation). The complex geometries observed in salt tectonic context make these 3D geological models particularly challenging to build, especially when only outcrops data are available. We focus on the Crocodile minibasin (Sivas) and present a modelling strategy using a subtle combination of recently developed techniques. Available data are: a Digital Elevation Model, satellite images and associated interpreted bedding traces on topography, orientation measurements of the strata and a conceptual interpretation. Located on an ancient salt extrusion, this minibasin is filled with lacustrine and sabkha sediments. It is interpreted with a closed synclinal structure on North. On its southern part, a central diapir has risen up, separating two tightened synclinals. The salt surface is modelled first as a triangulated surface using a classical explicit surface patch construction method and a manual post-process mesh improvement. Then, the minibasin sediments are modelled with an implicit approach that considers interfaces as equipotentials of a 3D scalar field. This requires to build a volumetric mesh conformable to the

  10. How do salt withdrawal minibasins form? Insights from forward modelling, and implications for hydrocarbon migration

    NASA Astrophysics Data System (ADS)

    Peel, Frank J.

    2014-09-01

    Existing models for the initiation of salt withdrawal minibasins focus on the role of triggers that exist within the minibasin, either stratigraphic (e.g. differential deposition) or tectonic (extension, translation or contraction). Existing studies tend to focus on complex settings, such as continental margins, which contain many different potential triggering mechanisms. It can be difficult in these settings to identify which process is responsible for minibasin initiation, or the influence of individual factors on their subsequent development. Salt withdrawal minibasins also exist in simpler settings, without any obvious intrinsic trigger; the region of the North German Basin used by Trusheim (1960) in the classic definition of salt withdrawal geometries was of this nature. There is no overall basal or surface slope, no major lateral movement, and there is no depositional heterogeneity. Previously recognized trigger processes for minibasin initiation do not apply in this benign setting, suggesting that other, potentially more fundamental, influences may be at work. A simple forward-modelling approach shows how, in the absence of any other mechanism, a new minibasin can develop as the consequence of salt movement driven by its neighbour, and families of withdrawal minibasins can propagate across a region from a single seed point. This new mechanism may explain how some minibasins appear to initiate before the sediment density has exceeded that of the underlying salt. The forward modelling also indicates that some minibasins begin to invert to form turtle anticlines before the underlying salt has been evacuated, so that the timing of turtle formation may not be diagnostic of weld formation. This mechanism may also give rise to salt-cored turtles that have a lens of salt trapped beneath their cores. These new findings have implications for hydrocarbon migration and trapping.

  11. Modeling of Interior Ballistic Gas-Solid Flow Using a Coupled Computational Fluid Dynamics-Discrete Element Method.

    PubMed

    Cheng, Cheng; Zhang, Xiaobing

    2013-05-01

    In conventional models for two-phase reactive flow of interior ballistic, the dynamic collision phenomenon of particles is neglected or empirically simplified. However, the particle collision between particles may play an important role in dilute two-phase flow because the distribution of particles is extremely nonuniform. The collision force may be one of the key factors to influence the particle movement. This paper presents the CFD-DEM approach for simulation of interior ballistic two-phase flow considering the dynamic collision process. The gas phase is treated as a Eulerian continuum and described by a computational fluid dynamic method (CFD). The solid phase is modeled by discrete element method (DEM) using a soft sphere approach for the particle collision dynamic. The model takes into account grain combustion, particle-particle collisions, particle-wall collisions, interphase drag and heat transfer between gas and solid phases. The continuous gas phase equations are discretized in finite volume form and solved by the AUSM+-up scheme with the higher order accurate reconstruction method. Translational and rotational motions of discrete particles are solved by explicit time integrations. The direct mapping contact detection algorithm is used. The multigrid method is applied in the void fraction calculation, the contact detection procedure, and CFD solving procedure. Several verification tests demonstrate the accuracy and reliability of this approach. The simulation of an experimental igniter device in open air shows good agreement between the model and experimental measurements. This paper has implications for improving the ability to capture the complex physics phenomena of two-phase flow during the interior ballistic cycle and to predict dynamic collision phenomena at the individual particle scale.

  12. Artificial neural network modeling using clinical and knowledge independent variables predicts salt intake reduction behavior

    PubMed Central

    Isma’eel, Hussain A.; Sakr, George E.; Almedawar, Mohamad M.; Fathallah, Jihan; Garabedian, Torkom; Eddine, Savo Bou Zein

    2015-01-01

    Background High dietary salt intake is directly linked to hypertension and cardiovascular diseases (CVDs). Predicting behaviors regarding salt intake habits is vital to guide interventions and increase their effectiveness. We aim to compare the accuracy of an artificial neural network (ANN) based tool that predicts behavior from key knowledge questions along with clinical data in a high cardiovascular risk cohort relative to the least square models (LSM) method. Methods We collected knowledge, attitude and behavior data on 115 patients. A behavior score was calculated to classify patients’ behavior towards reducing salt intake. Accuracy comparison between ANN and regression analysis was calculated using the bootstrap technique with 200 iterations. Results Starting from a 69-item questionnaire, a reduced model was developed and included eight knowledge items found to result in the highest accuracy of 62% CI (58-67%). The best prediction accuracy in the full and reduced models was attained by ANN at 66% and 62%, respectively, compared to full and reduced LSM at 40% and 34%, respectively. The average relative increase in accuracy over all in the full and reduced models is 82% and 102%, respectively. Conclusions Using ANN modeling, we can predict salt reduction behaviors with 66% accuracy. The statistical model has been implemented in an online calculator and can be used in clinics to estimate the patient’s behavior. This will help implementation in future research to further prove clinical utility of this tool to guide therapeutic salt reduction interventions in high cardiovascular risk individuals. PMID:26090333

  13. 2-D Modeling of the Variability of the Solar Interior for Climate Studies

    NASA Astrophysics Data System (ADS)

    Sofia, S.; Li, L. H.; Spada, F.; Ventura, P.

    2012-07-01

    To establish the possible influence of solar variability on climate, it is necessary to understand the luminosity changes induced by a variable dynamo magnetic field. To accomplish this, we have developed a 2D code of the structure and evolution of the solar interior (based on the 1D YREC code), that includes rotation, magnetic fields of arbitrary configuration, and turbulence, that can be run on very short time scales (down to 1 year), and that represents all global parameters (R, L, Teff) with a relative accuracy of 1 part per million, or better. This paper discusses the motivation for this work, the structure and the physical components of the code, and its application to interpret the results of the SODISM experiment on the PICARD satellite, and of the balloon-borne Solar Disk Sextant (SDS) experiment.

  14. Computational modeling of latent-heat-storage in PCM modified interior plaster

    NASA Astrophysics Data System (ADS)

    Fořt, Jan; Maděra, Jiří; Trník, Anton; Pavlíková, Milena; Pavlík, Zbyšek

    2016-06-01

    The latent heat storage systems represent a promising way for decrease of buildings energy consumption with respect to the sustainable development principles of building industry. The presented paper is focused on the evaluation of the effect of PCM incorporation on thermal performance of cement-lime plasters. For basic characterization of the developed materials, matrix density, bulk density, and total open porosity are measured. Thermal conductivity is accessed by transient impulse method. DSC analysis is used for the identification of phase change temperature during the heating and cooling process. Using DSC data, the temperature dependent specific heat capacity is calculated. On the basis of the experiments performed, the supposed improvement of the energy efficiency of characteristic building envelope system where the designed plasters are likely to be used is evaluated by a computational analysis. Obtained experimental and computational results show a potential of PCM modified plasters for improvement of thermal stability of buildings and moderation of interior climate.

  15. Heat Transfer Salts for Nuclear Reactor Systems - Chemistry Control, Corrosion Mitigation, and Modeling

    SciTech Connect

    Anderson, Mark; Sridharan, Kumar; Morgan, Dane; Peterson, Per; Calderoni, Pattrick; Scheele, Randall; Casekka, Andrew; McNamara, Bruce

    2015-01-22

    The concept of a molten salt reactor has existed for nearly sixty years. Previously all work was done during a large collaborative effort at Oak Ridge National Laboratory, culminating in a research reactor which operated for 15,000 hours without major error. This technical success has garnished interest in modern, high temperature, reactor schemes. Research using molten fluoride salts for nuclear applications requires a steady supply of high grade molten salts. There is no bulk supplier of research grade fluoride salts in the world, so a facility which could provide all the salt needed for testing at the University of Wisconsin had to be produced. Two salt purification devices were made for this purpose, a large scale purifier, and a small scale purifier, each designed to clean the salts from impurities and reduce their corrosion potential. As of now, the small scale has performed with flibe salt, hydrogen, and hydrogen fluoride, yielding clean salt. This salt is currently being used in corrosion testing facilities at the Massachusetts Institute of Technology and the University of Wisconsin. Working with the beryllium based salts requires extensive safety measures and health monitoring to prevent the development of acute or chronic beryllium disease, two pulmonary diseases created by an allergic reaction to beryllium in the lungs. Extensive health monitoring, engineering controls, and environment monitoring had to be set up with the University of Wisconsin department of Environment, Health and Safety. The hydrogen fluoride required for purification was also an extreme health hazard requiring thoughtful planning and execution. These dangers have made research a slow and tedious process. Simple processes, such as chemical handling and clean-up, can take large amounts of ingenuity and time. Other work has complemented the experimental research at Wisconsin to advance high temperature reactor goals. Modeling work has been performed in house to re

  16. Modeling of Dense Water Production and Salt Transport from Alaskan Coastal Polynyas

    NASA Technical Reports Server (NTRS)

    Signorini, Sergio R.; Cavalieri, Donald J.

    2000-01-01

    The main significance of this paper is that a realistic, three-dimensional, high-resolution primitive equation model has been developed to study the effects of dense water formation in Arctic coastal polynyas. The model includes realistic ambient stratification, realistic bottom topography, and is forced by time-variant surface heat flux, surface salt flux, and time-dependent coastal flow. The salt and heat fluxes, and the surface ice drift, are derived from satellite observations (SSM/I and NSCAT sensors). The model is used to study the stratification, salt transport, and circulation in the vicinity of Barrow Canyon during the 1996/97 winter season. The coastal flow (Alaska coastal current), which is an extension of the Bering Sea throughflow, is formulated in the model using the wind-transport regression. The results show that for the 1996/97 winter the northeastward coastal current exports 13% to 26% of the salt produced by coastal polynyas upstream of Barrow Canyon in 20 to 30 days. The salt export occurs more rapidly during less persistent polynyas. The inclusion of ice-water stress in the model makes the coastal current slightly weaker and much wider due to the combined effects of surface drag and offshore Ekman transport.

  17. Controlling reactivity of nanoporous catalyst materials by tuning reaction product-pore interior interactions: Statistical mechanical modeling

    SciTech Connect

    Wang, Jing; Ackerman, David M.; Lin, Victor S.-Y.; Pruski, Marek; Evans, James W.

    2013-04-02

    Statistical mechanical modeling is performed of a catalytic conversion reaction within a functionalized nanoporous material to assess the effect of varying the reaction product-pore interior interaction from attractive to repulsive. A strong enhancement in reactivity is observed not just due to the shift in reaction equilibrium towards completion but also due to enhanced transport within the pore resulting from reduced loading. The latter effect is strongest for highly restricted transport (single-file diffusion), and applies even for irreversible reactions. The analysis is performed utilizing a generalized hydrodynamic formulation of the reaction-diffusion equations which can reliably capture the complex interplay between reaction and restricted transport.

  18. Modeling Solute Thermokinetics in LiCI-KCI Molten Salt for Nuclear Waste Separation

    SciTech Connect

    Morgan, Dane; Eapen, Jacob

    2013-10-01

    Recovery of actinides is an integral part of a closed nuclear fuel cycle. Pyrometallurgical nuclear fuel recycling processes have been developed in the past for recovering actinides from spent metallic and nitride fuels. The process is essentially to dissolve the spent fuel in a molten salt and then extract just the actinides for reuse in a reactor. Extraction is typically done through electrorefining, which involves electrochemical reduction of the dissolved actinides and plating onto a cathode. Knowledge of a number of basic thermokinetic properties of salts and salt-fuel mixtures is necessary for optimizing present and developing new approaches for pyrometallurgical waste processing. The properties of salt-fuel mixtures are presently being studied, but there are so many solutes and varying concentrations that direct experimental investigation is prohibitively time consuming and expensive (particularly for radioactive elements like Pu). Therefore, there is a need to reduce the number of required experiments through modeling of salt and salt-fuel mixture properties. This project will develop first-principles-based molecular modeling and simulation approaches to predict fundamental thermokinetic properties of dissolved actinides and fission products in molten salts. The focus of the proposed work is on property changes with higher concentrations (up to 5 mol%) of dissolved fuel components, where there is still very limited experimental data. The properties predicted with the modeling will be density, which is used to assess the amount of dissolved material in the salt; diffusion coefficients, which can control rates of material transport during separation; and solute activity, which determines total solubility and reduction potentials used during electrorefining. The work will focus on La, Sr, and U, which are chosen to include the important distinct categories of lanthanides, alkali earths, and actinides, respectively. Studies will be performed using LiCl-KCl salt

  19. Heat and salt redistribution within the Mediterranean Sea in the Med-CORDEX model ensemble

    NASA Astrophysics Data System (ADS)

    Llasses, J.; Jordà, G.; Gomis, D.; Adloff, F.; Macías, D.; Harzallah, A.; Arsouze, T.; Akthar, N.; Li, L.; Elizalde, A.; Sannino, G.

    2016-06-01

    Characterizing and understanding the basic functioning of the Mediterranean Sea in terms of heat and salt redistribution within the basin is a crucial issue to predict its evolution. Here we quantify and analyze the heat and salt transfers using a simple box model consisting of four layers in the vertical for each of the two (western and eastern) basins. Namely, we box-average 14 regional simulations of the Med-CORDEX ensemble plus a regional and a global reanalysis, computing for each of them the heat and salt exchanges between layers. First, we analyze in detail the mechanisms behind heat and salt redistribution at different time scales from the outputs of a single simulation (NEMOMED8). We show that in the western basin the transfer between layer 1 (0-150 m) and layer 2 (150-600 m) is upwards for most models both for heat and salt, while in the eastern basin both transfers are downwards. A feature common to both basins is that the transports are smaller in summer than in winter due to the enhanced stratification, which dampen the mixing between layers. From the comparison of the 16 simulations we observe that the spread between models is much larger than the ensemble average for the salt transfer and for the heat transfer between layer 1 and layer 2. At lower layers (below 600 m) there is a set of models showing a good agreement between them, while others are not correlated with any other. The mechanisms behind the ensemble spread are not straightforward. First, to have a coarse resolution prevents the model to correctly represent the heat and salt redistribution in the basin. Second, those models with a very different initial stratification also show a very different redistribution, especially at intermediate and deep layers. Finally, the assimilation of data seems to perturb the heat and salt redistribution. Besides this, the differences among regional models that share similar spatial resolution and initial conditions are induced by more subtle mechanisms

  20. Hydrologic modeling as a predictive basis for ecological restoration of salt marshes

    USGS Publications Warehouse

    Roman, C.T.; Garvine, R.W.; Portnoy, J.W.

    1995-01-01

    Roads, bridges, causeways, impoundments, and dikes in the coastal zone often restrict tidal flow to salt marsh ecosystems. A dike with tide control structures, located at the mouth of the Herring River salt marsh estuarine system (Wellfleet, Massachusetts) since 1908, has effectively restricted tidal exchange, causing changes in marsh vegetation composition, degraded water quality, and reduced abundance of fish and macroinvertebrate communities. Restoration of this estuary by reintroduction of tidal exchange is a feasible management alternative. However, restoration efforts must proceed with caution as residential dwellings and a golf course are located immediately adjacent to and in places within the tidal wetland. A numerical model was developed to predict tide height levels for numerous alternative openings through the Herring River dike. Given these model predictions and knowledge of elevations of flood-prone areas, it becomes possible to make responsible decisions regarding restoration. Moreover, tidal flooding elevations relative to the wetland surface must be known to predict optimum conditions for ecological recovery. The tide height model has a universal role, as demonstrated by successful application at a nearby salt marsh restoration site in Provincetown, Massachusetts. Salt marsh restoration is a valuable management tool toward maintaining and enhancing coastal zone habitat diversity. The tide height model presented in this paper will enable both scientists and resource professionals to assign a degree of predictability when designing salt marsh restoration programs.

  1. Thermo-mechanical modelling of cyclic gas storage applications in salt caverns

    NASA Astrophysics Data System (ADS)

    Böttcher, Norbert; Watanabe, Norihiro; Görke, Uwe-Jens; Kolditz, Olaf; Nagel, Thomas

    2016-04-01

    Due to the growing importance of renewable energy sources it becomes more and more necessary to investigate energy storage potentials. One major way to store energy is the power-to-gas concept. Excessive electrical energy can be used either to produce hydrogen or methane by electrolysis or methanation or to compress air, respectively. Those produced gases can then be stored in artificial salt caverns, which are constructed in large salt formations by solution mining. In combination with renewable energy sources, the power-to-gas concept is subjected to fluctuations. Compression and expansion of the storage gases lead to temperature differences within the salt rock. The variations can advance several metres into the host rock, influencing its material behaviour, inducing thermal stresses and altering the creep response. To investigate the temperature influence on the cavern capacity, we have developed a numerical model to simulate the thermo-mechanical behaviour of salt caverns during cyclic gas storage. The model considers the thermodynamic behaviour of the stored gases as well as the heat transport and the temperature dependent material properties of the host rock. Therefore, we utilized well-known constitutive thermo-visco-plastic material models, implemented into the open source-scientific software OpenGeoSys. Both thermal and mechanical processes are solved using a finite element approach, connected via a staggered coupling scheme. The model allows the assessment of the structural safety as well as the convergence of the salt caverns.

  2. Reverse modeling of 2D and 3D diapiric salt structures

    NASA Astrophysics Data System (ADS)

    Fernandez, N.; Kaus, B.

    2013-12-01

    Mechanical forward modeling of salt diapirs formed by two different processes (differential loading and buoyancy driven) has been widely performed with numerical codes in many studies, whereas works focusing on the dynamic retro-deformation of such structures remain scarce. Buoyancy driven diapirs, in which the density difference between salt and overburden induces upward motion of salt, have been successfully retro-deformed in two and three dimensions using simple rheologies for the salt and overburden (e.g., Kaus & Podladchikov 2001). However, retro-deformation of down-building diapirs (syndepositional process in which salt structures grow while sediments are being deposited) using mechanical codes has only been done in two dimensions (e.g., Ismael-Zadeh et al. 2001), even though the importance of three-dimensionality in salt diapirism is accepted. We have used the two-dimensional visco-elasto-plastic finite element code MILAMIN_VEP to perform both forward and backward simulations and to check the validity of a reversed time step method (Kaus & Podladchikov 2001 and Ismael-Zadeh et al. 2001) for a wide range of parameters, variable sedimentation rates, and for non-linear rheologies. Forward simulations are run until the salt layer is exhausted and then a reverse time step is applied in order to retro-deform the model. Down-building process was mimicked using a fast-erosion condition at the surface, which keeps it flat and redistributes material at every time step. Initially, we have tested our method by retro-deforming salt structures that develop from an interface that is sinusoidally perturbed. More realistic simulations were performed by starting with randomly perturbed salt interface and using different rheological parameters for the salt and the overburden as well as variable sedimentation rates. Once the method has been proved successful for different parameters in two dimensions, the finite differences parallel code LaMEM has also been used to dynamically

  3. Heat and salt redistribution within the Mediterranean basin in the Med-CORDEX model ensemble

    NASA Astrophysics Data System (ADS)

    Llasses, Josep; Jordà, Gabriel; Gomis, Damià; Adloff, Fanny; Macías, Diego; Harzallah, Ali; Arsouze, Thomas; Akthar, Naveed; Li, Laurent; Elizalde, Alberto; Sannino, Gianmaria

    2016-04-01

    Characterizing and understanding the basic functioning of the Mediterranean Sea in terms of heat and salt redistribution within the basin is a crucial issue to predict its evolution. Here we quantify and analyze the heat and salt transfers using a simple box model consisting of 4 layers in the vertical for each of the two (western and eastern) sub-basins. Namely, we box-average 14 regional simulations of the MedCORDEX ensemble plus a regional and a global reanalysis, computing for each of them the heat and salt exchanges between layers. First, we analyze in detail the heat and salt redistribution at different time scales from the outputs of a single simulation (NEMOMED8). We show that in the western basin the transfer between the surface (0-150m) and intermediate (150-600 m) layers is upwards for both heat and salt, while in the eastern basin both transfers are downwards. A feature common to both sub-basins is that the transports are smaller in summer than in winter due to the enhanced stratification, which dampen the mixing between layers. From the comparison of the 16 simulations we observe that the spread between models is much larger than the ensemble average for the salt transfer and for the heat transfer between the surface and intermediate layers. At lower layers there is a set of models showing a good agreement between them, while others are not correlated with any other. The mechanisms behind the ensemble spread are not straightforward. First, to have a coarse resolution prevents the model to correctly represent the heat and salt redistribution in the basin. Second, those models with a very different initial stratification also show a very different redistribution, especially at intermediate and deep layers. Finally, the assimilation of data seems to perturb the heat and salt redistribution. Besides this, the differences among regional models that share similar spatial resolution and initial conditions are induced by more subtle mechanisms which depend on

  4. Modeling Coupled THMC Processes and Brine Migration in Salt at High Temperatures

    SciTech Connect

    Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit; Houseworth, Jim; Birkholzer, Jens

    2014-08-14

    In this report, we present FY2014 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. LBNL’s work on the modeling of coupled THMC processes in salt was initiated in FY2012, focusing on exploring and demonstrating the capabilities of an existing LBNL modeling tool (TOUGH-FLAC) for simulating temperature-driven coupled flow and geomechanical processes in salt. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. we provide more details on the FY2014 work, first presenting updated tools and improvements made to the TOUGH-FLAC simulator, and the use of this updated tool in a new model simulation of long-term THM behavior within a generic repository in a salt formation. This is followed by the description of current benchmarking and validations efforts, including the TSDE experiment. We then present the current status in the development of constitutive relationships and the dual-continuum model for brine migration. We conclude with an outlook for FY2015, which will be much focused on model validation against field experiments and on the use of the model for the design studies related to a proposed heater experiment.

  5. Extension of the M-D model for treating stress drops in salt

    SciTech Connect

    Munson, D.E.; DeVries, K.L.; Fossum, A.F.; Callahan, G.D.

    1993-07-01

    Development of the multimechanism deformation (M-D) constitutive model for steady state creep, which incorporates irreversible workhardening and recovery transient strains, was motivated by the need to predict very long term closures in underground rooms for radioactive waste repositories in salt. The multimechanism deformation model for the creep deformation of salt is extended to treat the response of salt to imposed stress drops. Stress drop tests produce a very distinctive behavior where both reversible elastic strain and reversible time dependent strain occur. These transient strains are negative compared to the positive transient strains produced by the normal creep workhardening and recovery processes. A simple micromechanical evolutionary process is defined to account for the accumulation of these reversible strains, and their subsequent release with decreases in stress. A number of experimental stress drop tests for various stress drop magnitudes and temperatures are adequately simulated with the model.

  6. Planetary Interiors

    NASA Technical Reports Server (NTRS)

    Banerdt, W. Bruce; Abercrombie, Rachel; Keddie, Susan; Mizutani, Hitoshi; Nagihara, Seiichi; Nakamura, Yosio; Pike, W. Thomas

    1996-01-01

    This report identifies two main themes to guide planetary science in the next two decades: understanding planetary origins, and understanding the constitution and fundamental processes of the planets themselves. Within the latter theme, four specific goals related to interior measurements addressing the theme. These are: (1) Understanding the internal structure and dynamics of at least one solid body, other than the Earth or Moon, that is actively convecting, (2) Determine the characteristics of the magnetic fields of Mercury and the outer planets to provide insight into the generation of planetary magnetic fields, (3) Specify the nature and sources of stress that are responsible for the global tectonics of Mars, Venus, and several icy satellites of the outer planets, and (4) Advance significantly our understanding of crust-mantle structure for all the solid planets. These goals can be addressed almost exclusively by measurements made on the surfaces of planetary bodies.

  7. Forward and reverse modelling of salt diapirs formed by down-building

    NASA Astrophysics Data System (ADS)

    Fernandez, Naiara; Kaus, Boris J. P.

    2013-04-01

    Two end member processes are usually described to explain how salt diapirs form: (1) buoyancy instability (i.e. Rayleigh-Taylor instability) in which the density difference between salt and overburden induces upward motion of salt and (2) a down-building or syndepositional process in which salt structures grow while sediments are being deposited. Both processes have been extensively studied using forward numerical models, but few numerical models focus on the mechanical retrodeformation (reverse modelling) of salt diapirs, regardless their origin. Kaus and Podladchikov (2001) successfully performed mechanical retrodeformation of diapirs that developed as a result of buoyancy instability. Here, we focus on a time-reversal approach to retrodeform diapirs that are formed by down-building. We have used the two-dimensional visco-elasto-plastic finite element code MILAMIN_VEP to perform both forward and synthetic backward simulations. Down-building process was mimicked using a fast-erosion condition at the surface, which keeps it flat and redistributes material at every time step. Initially, the interface between the salt and the overburden is perturbed using a sinusoidal geometry: a thin layer of sediments is present over a sinusoidal shaped salt layer so that the salt is closest to the surface at the domain centre. Several forward simulations are performed, using different initial parameters (rheological parameters, sedimentation rate and the geometry of the initial perturbation). Simulations are run until the salt layer is exhausted, which results in realistic salt dome structures. Using the reversed time step method we have shown that the modelled salt structures formed by down-building can be retrodeformed to a geometry close to the initial one if the correct rheological parameters and sedimentation history through time are used. Once the method has been tested for a wider range of initial geometries and parameters, it will be used to retrodeform geometric

  8. Convection without eddy viscosity: An attempt to model the interiors of giant planets

    NASA Technical Reports Server (NTRS)

    Ingersoll, A. P.

    1986-01-01

    In the theory of hydrostatic quasi-geostrophic flow in the Earth's atmosphere the principal results do not depend on the eddy viscosity. This contrasts with published theories of convection in deep rotating fluid spheres, where the wavelength of the fastest growing disturbance varies as E sup 1/3, where E, the Ekman number, is proportional to the eddy viscosity. A new theory of quasi-columnar motions in stably stratified fluid spheres attempts to capture the luck of the meteorologists. The theory allows one to investigate the stability of barotropic and baroclinic zonal flows that extend into the planetary interior. It is hypothesized that the internal heat Jupiter and Saturn comes out not radially but on sloping surfaces defined by the internal entropy distribution. To test the hypothesis one searches for basic states in which the wavelength of the fastest-growing disturbance remains finite as E tends to zero, and is which the heat flux vector is radially outward and poleward.

  9. Automatic Construction of 3D Basic-Semantic Models of Inhabited Interiors Using Laser Scanners and RFID Sensors

    PubMed Central

    Valero, Enrique; Adan, Antonio; Cerrada, Carlos

    2012-01-01

    This paper is focused on the automatic construction of 3D basic-semantic models of inhabited interiors using laser scanners with the help of RFID technologies. This is an innovative approach, in whose field scarce publications exist. The general strategy consists of carrying out a selective and sequential segmentation from the cloud of points by means of different algorithms which depend on the information that the RFID tags provide. The identification of basic elements of the scene, such as walls, floor, ceiling, windows, doors, tables, chairs and cabinets, and the positioning of their corresponding models can then be calculated. The fusion of both technologies thus allows a simplified 3D semantic indoor model to be obtained. This method has been tested in real scenes under difficult clutter and occlusion conditions, and has yielded promising results. PMID:22778609

  10. Building phenomenological models that relate proteolysis in pork muscles to temperature, water and salt content.

    PubMed

    Harkouss, Rami; Safa, Hassan; Gatellier, Philippe; Lebert, André; Mirade, Pierre-Sylvain

    2014-05-15

    Throughout dry-cured ham production, salt and water content, pH and temperature are key factors affecting proteolysis, one of the main biochemical processes influencing sensory properties and final quality of the product. The aim of this study was to quantify the effect of these variables (except pH) on the time course of proteolysis in laboratory-prepared pork meat samples. Based on a Doehlert design, samples of five different types of pork muscle were prepared, salted, dried and placed at different temperatures, and sampled at different times for quantification of proteolysis. Statistical analysis of the experimental results showed that the proteolysis index (PI) was correlated positively with temperature and water content, but negatively with salt content. Applying response surface methodology and multiple linear regressions enabled us to build phenomenological models relating PI to water and salt content, and to temperature. These models could then be integrated into a 3D numerical ham model, coupling salt and water transfers to proteolysis. PMID:24423495

  11. Drug salts and solubilization: modeling the influence of cyclodextrins on oral absorption.

    PubMed

    Gamsiz, Ece Dilber; Thombre, Avinash G; Ahmed, Imran; Carrier, Rebecca Lyn

    2011-01-01

    Substantial effort and resources are spent for the oral delivery of low solubility compounds using drug delivery technologies. Complexation using cyclodextrins (CDs) is one popular strategy used to enhance drug dissolution kinetics and solubility. In addition to delivery technologies, another common method of improving dissolution kinetics of a low solubility compound is to dose it as a salt. It is not often possible to anticipate how effective a technology such as CD will be in a certain formulation in improving drug absorption, leading to a trial-and-error based formulation process; simultaneous use of salt and complexation technologies increases the complexity of the system. A simple dynamic, systems-based model was developed for predicting the influence of CDs on oral absorption of a salt form of low solubility drug administered as a physical mixture with CD, and validated by in vitro experiments. Model predictions indicate that while CD is generally considered a solubilization technology, CD can enhance overall absorption of salt form drug mainly by decreasing the driving force for precipitation through binding free drug in solution. Modeling enabled examination of which physical and chemical properties result in oral absorption enhancement or decrement for drug salt administered as a physical mixture with CD.

  12. Modeling interaction of fluid and salt in an aquifer/lagoon system.

    PubMed

    Fujinawa, Katsuyuki; Iba, Takahiro; Fujihara, Yohichi; Watanabe, Tsugihiro

    2009-01-01

    To simulate the dynamic interaction between a saline lagoon and a ground water system, a numerical model for two-dimensional, variable-density, saturated-unsaturated, and coupled flow and solute transport (saltwater intrusion by finite elements and characteristics [SIFEC]) was modified to allow the volume of water and mass of salt in the lagoon to vary with each time step. The modified SIFEC allows the stage of a lagoon to vary in accordance with a functional relation between the stage and water volume of the lagoon, and also allows the salt concentration of the lagoon to vary in accordance with the salt budget of the lagoon including chemical precipitation and dissolution of salt. The updated stage and salt concentration of the lagoon are in turn used as transient boundary conditions for the coupled flow and solute transport model. The utility of the modified model was demonstrated by applying it to the eastern Mediterranean coastal region of Turkey for assessing impacts of climate change on the subsurface environment under scenarios of sea level rise, increased evaporation, and decreased precipitation.

  13. Modeling dense water production and salt transport from Alaskan coastal polynyas

    NASA Astrophysics Data System (ADS)

    Signorini, Sergio R.; Cavalieri, Donald J.

    2002-09-01

    A three-dimensional primitive equation model was used to assess the effects of dense water formation from winter (1996/1997) polynyas on the ambient stratification, salt transport, and circulation in the vicinity of Barrow Canyon. The model, which includes ambient stratification and bottom topography, is forced by time-varying surface heat flux, surface salt flux, and coastal flow. The influence of sea ice drift on the circulation and salt transport is also analyzed by prescribing ice water stress at the sea surface. The surface fluxes and ice drift are derived from satellite observations (Special Sensor Microwave Imager (SSM/I) and NASA scatterometer (NSCAT) sensors). The coastal flow (Alaska coastal current), which is an extension of the Bering Sea throughflow, is formulated in the model by using a wind-transport regression. One set of experiments was forced by strong and persistent polynyas, simulated by 20-day averaged heat and salt fluxes originating from the largest events. In this set of experiments both strong and weak steady coastal currents were imposed. The amount of salt exported from the generation area depended on the strength of the current. Another set of experiments was forced by weaker and less persistent polynyas using time-varying forcing. The experiments with time-varying polynya forcing were conducted with two ambient vertical stratifications, one representing fall conditions and one representing winter conditions. The amount of salt retained on the shelf was found to be quite sensitive to the initial stratification. Weaker vertical stratification promotes a deeper mixed layer, which develops 20 times faster than the horizontal advective timescale of the coastal current, thus increasing the residence time of the salt generated by the polynya on the shelf. The time-varying northeastward coastal current, combined with the offshore Ekman transport, can export 29-73% of the salt produced by polynyas upstream of Barrow Canyon, depending upon the

  14. Modeling of Unsaturated Salt-cake Dissolution for S-109 Simulant

    SciTech Connect

    Toghiani, R.K.; Lindner, J.S.; Toghiani, R.K.

    2008-07-01

    The Environmental Simulation Program (V7.0, OLI Systems, Inc.) with V7DBLSLT, the latest version of the double salt database developed by the Institute of Clean Energy Technology (ICET), was used to predict effluent stream compositions and densities, residual salt-cake composition, and salt-cake heights for an unsaturated salt-cake dissolution test with a simulant representative of waste contained in Hanford tank 241-S-109. Predictions for major cation and anion concentrations were in excellent agreement with the experimental data obtained at the Applied Research Center (ARC) at Florida International University (FIU). The utility of ESP as a means to predict effluent stream compositions and effluent stream properties, such as density and column salt-cake height, is demonstrated through the agreement between experimental and predicted values. These, and previous calculations, validate the use of thermodynamic models (with proper chemistry representations) for HLW pretreatment and retrievals. A powerful and useful tool is the result. Cost reductions are possible as the amount of sampling and subsequent laboratory analysis can be reduced. Additionally, overall processing risk is reduced through the ability to rapidly evaluate different processing and retrieval scenarios. The application of appropriate models can thus lead to more efficient operations and campaign cost savings while also evaluating parameters pertinent to safety. (authors)

  15. Developing a coupled analytical model for analyzing salt intrusion in alluvial estuaries

    NASA Astrophysics Data System (ADS)

    Savenije, H.; CAI, H.; Gisen, J.

    2013-12-01

    A predictive assessment technique to estimate the salt intrusion length and longitudinal salinity distribution in estuaries is important for policy makers and managers to maintain a healthy estuarine environment. In this study, the salt intrusion model of Savenije (2005, 2012) is applied and coupled to an explicit solution for tidal dynamics developed by Cai and Savenije (2013). The objective of the coupling is to reduce the number of calibration parameters, which subsequently strengthens the reliability of the salt intrusion model. Moreover, the fully analytical treatment allows assessing the effect of model forcing (i.e., tide and river discharge) and geometry adjustments (e.g., by dredging) on system performance. The coupled model has been applied to a wide range of estuaries, and the result shows that the correspondence between analytical estimations and observations is very good. As a result, the coupled model is a useful tool for decision makers to obtain first order estimates of salt intrusion in estuaries based on a minimum of information required. References Savenije, H.H.G. (2005), Salinity and Tides in Alluvial Estuaries, Elsevier. Savenije, H.H.G. (2012), Salinity and Tides in Alluvial Estuaries, completely revised 2nd edition, www.salinityandtides.com. Cai, H., and H. H. G. Savenije (2013), Asymptotic behavior of tidal damping in alluvial estuaries, Journal of Geophysical Research, submitted.

  16. Understanding Jupiter's interior

    NASA Astrophysics Data System (ADS)

    Militzer, Burkhard; Soubiran, François; Wahl, Sean M.; Hubbard, William

    2016-09-01

    This article provides an overview of how models of giant planet interiors are constructed. We review measurements from past space missions that provided constraints for the interior structure of Jupiter. We discuss typical three-layer interior models that consist of a dense central core and an inner metallic and an outer molecular hydrogen-helium layer. These models rely heavily on experiments, analytical theory, and first-principles computer simulations of hydrogen and helium to understand their behavior up to the extreme pressures ˜10 Mbar and temperatures ˜10,000 K. We review the various equations of state used in Jupiter models and compare them with shock wave experiments. We discuss the possibility that helium rain, core erosion, and double diffusive convection have affected the structure and evolution of giant planets. In July 2016 the Juno spacecraft entered orbit around Jupiter, promising high-precision measurements of the gravitational field that will allow us to test our understanding of gas giant interiors better than ever before.

  17. Thermodynamic modelling of hydrophobic interaction chromatography of biomolecules in the presence of salt.

    PubMed

    Mirani, Mohammad Reza; Rahimpour, Farshad

    2015-11-27

    Hydrophobic interaction chromatography (HIC) is a useful method for isolation and purification of macromolecules. HIC separates proteins on the basis of surface hydrophobicity while generally retaining the activity of proteins. Aqueous mobile phases with high salt concentrations are often used to adsorb the proteins on a mildly hydrophobic support. In this research, the thermodynamic model of Chen and Sun, which predicts the adsorption isotherms of protein in presence of different type of salts, was modified by substitution the protein and salt activities in the mobile phase instead of their concentrations. In addition, model was examined for studying the adsorption of BSA, HSA, α-lactalbumin and Trypsinogen on different sepharose gels. The model parameters of Chen and Sun are adsorption equilibrium constant (KP), protein dehydration equilibrium constant (Ks), salt coefficient (α) and number of ligand binding (n). By substitution activity instead of salt and protein concentration, two other parameters (c1 and As), which related to the activity coefficients, are added to the model. The parameters of this nonlinear model are calculated by genetic algorithm (GA). The maximum average absolute percentage deviation (AAD) for the data which are obtained from the adsorption isotherm of BSA on phenyl sepharose gel, in the presence of different concentration of NaCl was 4.8%, while for Chen and Sun model, was 22.0%. Also maximum ADD for HSA, α-lactalbumin, and Trypsinogen adsorption was 7.8, 6.9, and 8.4, respectively. The results indicate that the modified model has adequate accuracy to predict protein HIC behaviour.

  18. A simple advection-dispersion model for the salt distribution in linearly tapered estuaries

    NASA Astrophysics Data System (ADS)

    Gay, Peter S.; O'Donnell, James

    2007-07-01

    We present a simple advection-dispersion model for the subtidal salt distribution in estuaries with linearly varying cross-sectional area and a nonzero net salt flux. A novel analytic solution allows investigation of the dependence of the curvature and gradient of the longitudinal salinity distribution on runoff, dispersion coefficient, and channel contraction or expansion. The model predicts that in estuarine segments that contract toward the fresher boundary, the salinity gradient is stronger than in a prismatic channel. When the dispersion coefficient is large compared to the salinity intrusion lengthscale, ? (the product of segment length and net volume flux divided by cross-sectional area at the ocean boundary), the curvature of the salt concentration may be negative, a characteristic not possible in uniform channel models. The main effect of up-estuary salt flux is to strengthen the salinity gradient. The model can be extended to multiple segments in order to simulate geometrically complicated estuaries. The model is employed to estimate an effective dispersion coefficient and to describe the salinity variation in the western 53 km of Long Island Sound where the cross section of the basin varies linearly. Using 8 years of monthly observations at seven stations we find that, since the curvature of the vertically averaged salinity is negative, the model and data are consistent only if the net volume flux and salt flux are toward the fresher boundary, the East River. Combining prior estimates of the magnitudes of the fluxes and their uncertainties with the model and salinity observations using a least squares approach, we estimate the dispersion coefficient for the Western Sound as 580 m2/s.

  19. A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf.

    PubMed

    Kim, Dea-Wook; Rakwal, Randeep; Agrawal, Ganesh Kumar; Jung, Young-Ho; Shibato, Junko; Jwa, Nam-Soo; Iwahashi, Yumiko; Iwahashi, Hitoshi; Kim, Du Hyun; Shim, Ie-Sung; Usui, Kenji

    2005-12-01

    By using an in vivo hydroponic rice seedling culture system, we investigated the physiological and biochemical responses of a model rice japonica cultivar Nipponbare to salt stress using proteomics and classical biochemical methods. Yoshida's nutrient solution (YS) was used to grow rice seedlings. YS-grown 18-day-old seedlings manifested highly stable and reproducible symptoms, prominently the wilting and browning of the 3rd leaf, reduced photosynthetic activity, inhibition in overall seedling growth, and failure to develop new (5th) leaf, when subjected to salt stress by transferring them to YS containing 130 mM NaCl for 4 days. As leaf response to salt stress is least investigated in rice by proteomics, we used the 3rd leaf as source material. A comparison of 2-DE protein profiles between the untreated control and salt-stressed 3rd leaves revealed 55 differentially expressed CBB-stained spots, where 47 spots were increased over the control. Of these changed spots, the identity of 33 protein spots (27 increased and 5 decreased) was determined by nESI-LC-MS/MS. Most of these identified proteins belonged to major metabolic processes like photosynthetic carbon dioxide assimilation and photorespiration, suggesting a good correlation between salt stress-responsive proteins and leaf morphology. Moreover, 2-DE immunoblot and enzymatic activity analyses of 3rd leaves revealed remarkable changes in the key marker enzymes associated with oxidative damage to salt stress: ascorbate peroxidase and lipid peroxidation were induced, and catalase was suppressed. These results demonstrate that hydroponic culture system is best suited for proteomics of salt stress in rice seedling.

  20. Induced seismicity in a salt mine environment evaluated by a coupled continuum-discrete modelling.

    NASA Astrophysics Data System (ADS)

    Mercerat, E.; Souley, M.; Driad, L.; Bernard, P.

    2005-12-01

    Within the framework of a research project launched to assess the feasibility of seismic monitoring of underground growing cavities, this specific work focus on two main complementary axis: the validation of seismic monitoring techniques in salt mine environments, and the numerical modelling of deformation and failure mechanisms with their associated acoustic emissions, the induced microseismicity. The underground cavity under monitoring is located at Cerville (Lorraine, France) within a salt layer 180 m deep and it presents a rather regular cylindrical shape of 100 m diameter. Typically, the overburden is characterized by the presence of two competent layers with elasto-brittle behaviour and located 50 m above the salt layer. When the salt exploitation restarts, the cavity will progressively grow causing irreversible damage of the upper layers until its final collapse at a time scale of the order of one year. Numerical modelling of such a complex process requires a large scale model which takes into account both the growing cavity within the salt layer and the mechanical behaviour of the overburden where high deformation and fracturing is expected. To keep the elasto-brittle behaviour of the competent layers where most seismic damage is expected, we use the PFC code (Itasca Cons). To approach the other layers (mainly composed of marls and salt) which present more ductile and/or viscoplastic behaviour, a continuum approach based on the FLAC code (Itasca Cons) is employed. Numerous calibration process were needed to estimate the microproperties used in PFC to reproduce the macroscopic behaviour from laboratory tests performed on samples extracted from the competent layers. As long as the size of the PFC inclusion representing the brittle material is much higher than the core sample sizes, the scale effect of microproperties is examined. The next stage is to perform calculations on the basis of previous macroscopic and microproperties calibration results, and compare

  1. AQUIFEM-SALT; a finite-element model for aquifers containing a seawater interface

    USGS Publications Warehouse

    Voss, C.I.

    1984-01-01

    Described are modifications to AQUIFEM, a finite element areal ground-water flow model for aquifer evaluation. The modified model, AQUIFEM-SALT, simulates an aquifer containing a freshwater body that freely floats on seawater. Parts of the freshwater lens may be confined above and below by less permeable units. Theory, code modifications, and model verification are discussed. A modified input data list is included. This report is intended as a companion to the original AQUIFEM documentation. (USGS)

  2. Salt transport properties of model reverse osmosis membranes using electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Feldman, Kathleen; Chan, Edwin; Stafford, Gery; Stafford, Christopher

    With the increasing shortage of clean water, efficient purification technologies including membrane separations are becoming critical. The main requirement of reverse osmosis in particular is to maximize water permeability while minimizing salt permeability. Such performance optimization has typically taken place through trial and error approaches. In this work, key salt transport metrics are instead measured in model reverse osmosis membranes using electrochemical impedance spectroscopy (EIS). As shown previously, EIS can provide both the membrane resistance Rm and membrane capacitance Cm, with Rm directly related to salt permeability. The membranes are fabricated in a molecular layer by layer approach, which allows for control over such parameters as thickness, surface and bulk chemistry, and network geometry/connectivity. Rm, and therefore salt permeability, follows the expected trends with thickness and membrane area but shows unusual behavior when the network geometry is systematically varied. By connecting intrinsic material properties such as the salt permeability with macroscopic performance measures we can begin to establish design rules for improving membrane efficiency and facilitate the creation of next-generation separation membranes.

  3. A comparison of sea salt emission parameterizations in northwestern Europe using a chemistry transport model setup

    NASA Astrophysics Data System (ADS)

    Neumann, Daniel; Matthias, Volker; Bieser, Johannes; Aulinger, Armin; Quante, Markus

    2016-08-01

    Atmospheric sea salt particles affect chemical and physical processes in the atmosphere. These particles provide surface area for condensation and reaction of nitrogen, sulfur, and organic species and are a vehicle for the transport of these species. Additionally, HCl is released from sea salt. Hence, sea salt has a relevant impact on air quality, particularly in coastal regions with high anthropogenic emissions, such as the North Sea region. Therefore, the integration of sea salt emissions in modeling studies in these regions is necessary. However, it was found that sea salt concentrations are not represented with the necessary accuracy in some situations.In this study, three sea salt emission parameterizations depending on different combinations of wind speed, salinity, sea surface temperature, and wave data were implemented and compared: GO03 (Gong, 2003), SP13 (Spada et al., 2013), and OV14 (Ovadnevaite et al., 2014). The aim was to identify the parameterization that most accurately predicts the sea salt mass concentrations at different distances to the source regions. For this purpose, modeled particle sodium concentrations, sodium wet deposition, and aerosol optical depth were evaluated against measurements of these parameters. Each 2-month period in winter and summer 2008 were considered for this purpose. The shortness of these periods limits generalizability of the conclusions on other years.While the GO03 emissions yielded overestimations in the PM10 concentrations at coastal stations and underestimations of those at inland stations, OV14 emissions conversely led to underestimations at coastal stations and overestimations at inland stations. Because of the differently shaped particle size distributions of the GO03 and OV14 emission cases, the deposition velocity of the coarse particles differed between both cases which yielded this distinct behavior at inland and coastal stations. The PM10 concentrations produced by the SP13 emissions generally

  4. Calibrating a salt water intrusion model with time-domain electromagnetic data.

    PubMed

    Herckenrath, Daan; Odlum, Nick; Nenna, Vanessa; Knight, Rosemary; Auken, Esben; Bauer-Gottwein, Peter

    2013-01-01

    Salt water intrusion models are commonly used to support groundwater resource management in coastal aquifers. Concentration data used for model calibration are often sparse and limited in spatial extent. With airborne and ground-based electromagnetic surveys, electrical resistivity models can be obtained to provide high-resolution three-dimensional models of subsurface resistivity variations that can be related to geology and salt concentrations on a regional scale. Several previous studies have calibrated salt water intrusion models with geophysical data, but are typically limited to the use of the inverted electrical resistivity models without considering the measured geophysical data directly. This induces a number of errors related to inconsistent scales between the geophysical and hydrologic models and the applied regularization constraints in the geophysical inversion. To overcome these errors, we perform a coupled hydrogeophysical inversion (CHI) in which we use a salt water intrusion model to interpret the geophysical data and guide the geophysical inversion. We refer to this methodology as a Coupled Hydrogeophysical Inversion-State (CHI-S), in which simulated salt concentrations are transformed to an electrical resistivity model, after which a geophysical forward response is calculated and compared with the measured geophysical data. This approach was applied for a field site in Santa Cruz County, California, where a time-domain electromagnetic (TDEM) dataset was collected. For this location, a simple two-dimensional cross-sectional salt water intrusion model was developed, for which we estimated five uniform aquifer properties, incorporating the porosity that was also part of the employed petrophysical relationship. In addition, one geophysical parameter was estimated. The six parameters could be resolved well by fitting more than 300 apparent resistivities that were comprised by the TDEM dataset. Except for three sounding locations, all the TDEM data

  5. Determining salt concentrations for equivalent water activity in reduced-sodium cheese by use of a model system.

    PubMed

    Grummer, J; Schoenfuss, T C

    2011-09-01

    The range of sodium chloride (salt)-to-moisture ratio is critical in producing high-quality cheese products. The salt-to-moisture ratio has numerous effects on cheese quality, including controlling water activity (a(w)). Therefore, when attempting to decrease the sodium content of natural cheese it is important to calculate the amount of replacement salts necessary to create the same a(w) as the full-sodium target (when using the same cheese making procedure). Most attempts to decrease sodium using replacement salts have used concentrations too low to create the equivalent a(w) due to the differences in the molecular weight of the replacers compared with salt. This could be because of the desire to minimize off-flavors inherent in the replacement salts, but it complicates the ability to conclude that the replacement salts are the cause of off-flavors such as bitter. The objective of this study was to develop a model system that could be used to measure a(w) directly, without manufacturing cheese, to allow cheese makers to determine the salt and salt replacer concentrations needed to achieve the equivalent a(w) for their existing full-sodium control formulas. All-purpose flour, salt, and salt replacers (potassium chloride, modified potassium chloride, magnesium chloride, and calcium chloride) were blended with butter and water at concentrations that approximated the solids, fat, and moisture contents of typical Cheddar cheese. Salt and salt replacers were applied to the model systems at concentrations predicted by Raoult's law. The a(w) of the model samples was measured on a water activity meter, and concentrations were adjusted using Raoult's law if they differed from those of the full-sodium model. Based on the results determined using the model system, stirred-curd pilot-scale batches of reduced- and full-sodium Cheddar cheese were manufactured in duplicate. Water activity, pH, and gross composition were measured and evaluated statistically by linear mixed model

  6. Modelling the Interior Structure of Enceladus Based on the 2014's Cassini Gravity Data

    NASA Astrophysics Data System (ADS)

    Taubner, R.-S.; Leitner, J. J.; Firneis, M. G.; Hitzenberger, R.

    2016-06-01

    We present a model for the internal structure of Saturn's moon Enceladus. This model allows us to estimate the physical conditions at the bottom of the satellite's potential subsurface water reservoir and to determine the radial distribution of pressure and gravity. This leads to a better understanding of the physical and chemical conditions at the water/rock boundary. This boundary is the most promising area on icy moons for astrobiological studies as it could serve as a potential habitat for extraterrestrial life similar to terrestrial microbes that inhabit rocky mounds on Earth's sea floors.

  7. Analytical and numerical modeling of an axisymmetrical electrostatic transducer with interior geometrical discontinuity.

    PubMed

    Honzík, Petr; Podkovskiy, Alexey; Durand, Stéphane; Joly, Nicolas; Bruneau, Michel

    2013-11-01

    The main purpose of the paper is to contribute at presenting an analytical and a numerical modeling which would be relevant for interpreting the couplings between a circular membrane, a peripheral cavity having the same external radius as the membrane, and a thin air gap (with a geometrical discontinuity between them), and then to characterize small scale electrostatic receivers and to propose procedures that could be suitable for fitting adjustable parameters to achieve optimal behavior in terms of sensitivity and bandwidth expected. Therefore, comparison between these theoretical methods and characterization of several shapes is dealt with, which show that the models would be appropriate to address the design of such transducers.

  8. Modelling the Interior Structure of Enceladus Based on the 2014's Cassini Gravity Data.

    PubMed

    Taubner, R-S; Leitner, J J; Firneis, M G; Hitzenberger, R

    2016-06-01

    We present a model for the internal structure of Saturn's moon Enceladus. This model allows us to estimate the physical conditions at the bottom of the satellite's potential subsurface water reservoir and to determine the radial distribution of pressure and gravity. This leads to a better understanding of the physical and chemical conditions at the water/rock boundary. This boundary is the most promising area on icy moons for astrobiological studies as it could serve as a potential habitat for extraterrestrial life similar to terrestrial microbes that inhabit rocky mounds on Earth's sea floors. PMID:26559966

  9. 3D Modeling of Lacus Mortis Pit Crater with Presumed Interior Tube Structure

    NASA Astrophysics Data System (ADS)

    Hong, Ik-Seon; Yi, Yu; Yu, Jaehyung; Haruyama, Junichi

    2015-06-01

    When humans explore the Moon, lunar caves will be an ideal base to provide a shelter from the hazards of radiation, meteorite impact, and extreme diurnal temperature differences. In order to ascertain the existence of caves on the Moon, it is best to visit the Moon in person. The Google Lunar X Prize(GLXP) competition started recently to attempt lunar exploration missions. Ones of those groups competing, plan to land on a pit of Lacus Mortis and determine the existence of a cave inside this pit. In this pit, there is a ramp from the entrance down to the inside of the pit, which enables a rover to approach the inner region of the pit. In this study, under the assumption of the existence of a cave in this pit, a 3D model was developed based on the optical image data. Since this model simulates the actual terrain, the rendering of the model agrees well with the image data. Furthermore, the 3D printing of this model will enable more rigorous investigations and also could be used to publicize lunar exploration missions with ease.

  10. Interior structure of Uranus

    SciTech Connect

    Hubbard, W.B.

    1984-10-01

    Key measurements are discussed which are diagnostic of Uranus interior structure and evolutionary history, and reviews their present status. Typical interior models have chondritic cores, but have the bulk of their mass in an envelope consisting of ice component, principally H2O. The total amount of free H2 in the planet cannot exceed approximately 1 to 2 earth masses. Measurements of the gravitational moments of Uranus are beginning to be accurate enough to constrain models, but are limited in utility by uncertainty in the rotation period. Discussed is evidence that the outermost planetary layers have a gravitationally significant quantity of denser material (ice component) in addition to H2 and He. The He/H ratio and the deuterium abundance in the atmosphere may be diagnostic of the planet's previous evolutionary history. It is argued that the planet's interior is likely to now be at a temperature approximately 10(3) deg K. Uranus interior with Neptune's in a number of ways, considering heat flow, degree of internal differentiation, and possible magnetic field.

  11. MULTISCALE MODELING OF AIR FLOW IN SALT LAKE CITY AND THE SURROUNDING REGION

    SciTech Connect

    M. BROWN; ET AL

    2001-01-01

    A general overview is given of a modeling effort to simulate the fate and transport of a tracer within the downtown core of Salt Lake City and beyond into the Salt Lake Basin. The problem crosses three significant scales where different physics are predominant: atmospheric mesoscale, city scale, and building scale. Three different computational fluid dynamics models were used, each with strengths at particular spatial and temporal scales. We show preliminary results and discuss what we believe to be the relevant phenomenon one must model as one crosses from atmospheric scale to engineering scale flow problems. We also describe our model validation efforts, including wind-tunnel and tow-tank experiments and a recently completed urban field experiment.

  12. Interior design for passive solar homes

    NASA Astrophysics Data System (ADS)

    Breen, J. C.

    1981-07-01

    The increasing emphasis on refinement of passive solar systems brought recognition to interior design as an integral part of passive solar architecture. Interior design can be used as a finetuning tool minimizing many of the problems associated with passive solar energy use in residential buildings. In addition, treatment of interior space in solar model homes may be a prime factor in determining sales success. A new style of interior design is evolving in response to changes in building from incorporating passive solar design features. The psychology behind passive solar architecture is reflected in interiors, and selection of interior components increasingly depends on the functional suitably of various interior elements.

  13. Interior design for passive solar homes

    SciTech Connect

    Breen, J. C.

    1981-07-01

    The increasing emphasis on refinement of passive solar systems has brought recognition to interior design as an integral part of passive solar architecture. Interior design can be used as a finetuning tool minimizing many of the problems associated with passive solar energy use in residential buildings. In addition, treatment of interior space in solar model homes may be a prime factor in determining sales success. A new style of interior design is evolving in response to changes in building form incorporating passive solar design features. The psychology behind passive solar architecture is reflected in interiors, and selection of interior components increasingly depends on the functional suitability of various interior elements.

  14. Infrared near-Earth-object survey modeling for observatories interior to the Earth's orbit

    NASA Astrophysics Data System (ADS)

    Buie, M.

    2014-07-01

    The search for and dynamical characterization of the near-Earth population of objects (NEOs) has been a busy topic for surveys for many years. Most of the work thus far has been from ground-based optical surveys such as the Catalina Sky Survey and LINEAR. These surveys have essentially reached a complete inventory of objects down to 1 km diameter and have shown that the known objects do not pose any significant impact threat. Smaller objects are correspondingly smaller threats but there are more of them and fewer of them have so far been discovered. The next generation of surveys is looking to extend their reach down to much smaller sizes. From an impact risk perspective, those objects as small as 30--40 m are still of interest (similar in size to the Tunguska bolide). Smaller objects than this are largely of interest from a space resource or in-situ analysis efforts. A recent mission concept promoted by the B612 Foundation and Ball Aerospace calls for an infrared survey telescope in a Venus-like orbit, known as the Sentinel Mission. This wide-field facility has been designed to complete the inventory down to a 140 m diameter while also providing substantial constraints on the NEO population down to a Tunguska-sized object. I have been working to develop a suite of tools to provide survey modeling for this class of survey telescope. The purpose of the tool is to uncover hidden complexities that govern mission design and operation while also working to quantitatively understand the orbit quality provided on its catalog of objects without additional followup assets. The baseline mission design calls for a 6.5 year survey lifetime. This survey model is a statistically based tool for establishing completeness as a function of object size and survey duration. Effects modeled include the ability to adjust the field-of-regard (includes all pointing restrictions), field-of-view, focal plane array fill factor, and the observatory orbit. Consequences tracked include time

  15. Modeling the surface and interior structure of comet nuclei using a multidisciplinary approach

    NASA Technical Reports Server (NTRS)

    Odell, C. R.; Dakoulas, Panos C.; Pharr, George M.

    1991-01-01

    The goal was to investigate the structural properties of the surface of comet nucleus and how the surface should change with time under effect of solar radiation. The basic model that was adopted was that the nucleus is an aggregate of frosty particles loosely bound together, so that it is essentially a soil. The nucleus must mostly be composed of dust particles. The observed mass ratios of dust to gas in the coma is never much greater than unity, but this ratio is probably a much lower limit than that of the nucleus because it is vastly easier to remove the gaseous component by sublimation than by carrying off the dust. Therefore the described models assumed that the particles in the soil were frost covered grains of submicron basic size, closely resembling the interstellar grains. The surface properties of such a nucleus under the effects of heating and cooling as the nucleus approaches and recedes from the Sun generally characterized.

  16. Modeling of asteroid surfaces and interiors using ray optics with diffuse scattering

    NASA Astrophysics Data System (ADS)

    Virkki, A.; Muinonen, K.; Penttilä, A.

    2014-07-01

    We simulate electromagnetic scattering from a realistic model of an asteroid using an algorithm of ray optics with Fresnel reflection and refraction as well as diffuse scattering [1]. The application of the study is to simulate radar scattering, that is, scattering from centimeter-sized structures, and as a result, study the radar properties of realistic media in terms of structure and material. The results show the circular-polarization ratios and radar albedos of the asteroid models for scatterers from a sub-wavelength scale to a scale of few times the wavelength. We use two kinds of structures: the first is a uniform, internal diffuse medium inside a host body, and the second is an external layer on the surface of a host body. The host body is spherical and it has a diameter of 30 times the wavelength, and the external layer has thickness from a few wavelengths up to about 10 wavelengths. We study both spheres and aggregates of spheres of different sizes as constituents of the diffuse medium, and thus, connect our previous results (e.g., [2]) to a more realistic model for asteroids. As for materials, we mimic rocks and vacuum inclusions in powdered silicate or basaltic materials and a layer of rocks on a rocky host body.

  17. Modeling Fecal Indicator Bacteria Like Salt in Newport Bay

    NASA Astrophysics Data System (ADS)

    Ciglar, A. M.; Rippy, M.; Grant, S. B.

    2015-12-01

    Newport Bay is a harbor and estuary located in Orange County, CA that provides many water sports and recreational activities for millions of southern California residents and tourists. The aim of this study is to quickly assess exceedances of FIB in the Newport Bay which pose a health risk to recreational users. The ability to quickly assess water quality is made possible with an advection-diffusion mass transport model that uses easily measurable parameters such as volumetric flow rate from tributaries. Current FIB assessment methods for Newport Bay take a minimum of 24 hours to evaluate health risk by either culturing for FIB or running a more complex fluid dynamics model. By this time the FIB may have already reached the ocean outlet thus no longer posing a risk in the bay or recreationists may have already come in close contact with contaminated waters. The advection-diffusion model can process and disseminate health risk information within a few hours of flow rate measurements, minimizing time between an FIB exceedance and public awareness about the event. Data used to calibrate and validate the model was collected from January 2006 through February 2007. Salinity data was used for calibration and FIB data was used for validation. Both steady-state and transient conditions were assessed to determine if dry weather patterns can be simplified to the steady-state condition.

  18. An electrochemical model for hot-salt stress-corrosion of titanium alloys

    NASA Technical Reports Server (NTRS)

    Garfinkle, M.

    1972-01-01

    An electrochemical model of hot-salt stress-corrosion cracking of titanium alloys is proposed based on an oxygen-concentration cell. Hydrogen embrittlement is proposed as the direct cause of cracking, the hydrogen being generated as the results of the hydrolysis of complex halides formed at the shielded anode of the electrochemical cell. The model found to be consistent with the diverse observations made both in this study and by many investigators in this field.

  19. A multiprocessor coupled ice-ocean model for the Baltic Sea: Application to salt inflow

    NASA Astrophysics Data System (ADS)

    Meier, H. E. Markus; DöScher, Ralf; FaxéN, Torgny

    2003-08-01

    Within the Swedish Regional Climate Modeling Program, SWECLIM, a three-dimensional (3-D) coupled ice-ocean model for the Baltic Sea has been developed to simulate physical processes on timescales of hours to decades. The code has been developed based on the massively parallel version of the Ocean Circulation Climate Advanced Modeling (OCCAM) project of the Bryan-Cox-Semtner model. An elastic-viscous-plastic ice rheology is employed, resulting in a fully explicit numerical scheme that improves computational efficiency. An improved two-equation turbulence model has been embedded to simulate the seasonal cycle of surface mixed layer depths as well as deepwater mixing on decadal timescale. The model has open boundaries in the northern Kattegat and is forced with realistic atmospheric fields and river runoff. Optimized computational performance and advanced algorithms to calculate processor maps make the code fast and suitable for multi-year, high-resolution simulations. As test cases, the major salt water inflow event in January 1993 and the stagnation period 1980-1992, have been selected. The agreement between model results and observations is regarded as good. Especially, the time evolution of the halocline in the Baltic proper is realistically simulated also for the longer period without flux correction, data assimilation, or reinitialization. However, in particular, smaller salt water inflows into the Bornholm Basin are underestimated, independent of the horizontal model resolution used. It is suggested that the mixing parameterization still needs improvements. In addition, a series of process studies of the inflow period 1992/1993 have been performed to show the impact of river runoff, wind speed, and sea level in Kattegat. Natural interannual runoff variations control salt water inflows into the Bornholm Basin effectively. The effect of wind speed variation on the salt water flux from the Arkona Basin to the Bornholm Basin is minor.

  20. On the evaluation of global sea-salt aerosol models at coastal/orographic sites

    NASA Astrophysics Data System (ADS)

    Spada, M.; Jorba, O.; Pérez García-Pando, C.; Janjic, Z.; Baldasano, J. M.

    2015-01-01

    Sea-salt aerosol global models are typically evaluated against concentration observations at coastal stations that are unaffected by local surf conditions and thus considered representative of open ocean conditions. Despite recent improvements in sea-salt source functions, studies still show significant model errors in specific regions. Using a multiscale model, we investigated the effect of high model resolution (0.1° × 0.1° vs. 1° × 1.4°) upon sea-salt patterns in four stations from the University of Miami Network: Baring Head, Chatam Island, and Invercargill in New Zealand, and Marion Island in the sub-antarctic Indian Ocean. Normalized biases improved from +63.7% to +3.3% and correlation increased from 0.52 to 0.84. The representation of sea/land interfaces, mesoscale circulations, and precipitation with the higher resolution model played a major role in the simulation of annual concentration trends. Our results recommend caution when comparing or constraining global models using surface concentration observations from coastal stations.

  1. Cosmological Parameter Uncertainties from SALT-II Type Ia Supernova Light Curve Models

    SciTech Connect

    Mosher, J.; Guy, J.; Kessler, R.; Astier, P.; Marriner, J.; Betoule, M.; Sako, M.; El-Hage, P.; Biswas, R.; Pain, R.; Kuhlmann, S.; Regnault, N.; Frieman, J. A.; Schneider, D. P.

    2014-08-29

    We use simulated type Ia supernova (SN Ia) samples, including both photometry and spectra, to perform the first direct validation of cosmology analysis using the SALT-II light curve model. This validation includes residuals from the light curve training process, systematic biases in SN Ia distance measurements, and a bias on the dark energy equation of state parameter w. Using the SN-analysis package SNANA, we simulate and analyze realistic samples corresponding to the data samples used in the SNLS3 analysis: ~120 low-redshift (z < 0.1) SNe Ia, ~255 Sloan Digital Sky Survey SNe Ia (z < 0.4), and ~290 SNLS SNe Ia (z ≤ 1). To probe systematic uncertainties in detail, we vary the input spectral model, the model of intrinsic scatter, and the smoothing (i.e., regularization) parameters used during the SALT-II model training. Using realistic intrinsic scatter models results in a slight bias in the ultraviolet portion of the trained SALT-II model, and w biases (w (input) – w (recovered)) ranging from –0.005 ± 0.012 to –0.024 ± 0.010. These biases are indistinguishable from each other within the uncertainty, the average bias on w is –0.014 ± 0.007.

  2. Cosmological parameter uncertainties from SALT-II type Ia supernova light curve models

    SciTech Connect

    Mosher, J.; Sako, M.; Guy, J.; Astier, P.; Betoule, M.; El-Hage, P.; Pain, R.; Regnault, N.; Marriner, J.; Biswas, R.; Kuhlmann, S.; Schneider, D. P.

    2014-09-20

    We use simulated type Ia supernova (SN Ia) samples, including both photometry and spectra, to perform the first direct validation of cosmology analysis using the SALT-II light curve model. This validation includes residuals from the light curve training process, systematic biases in SN Ia distance measurements, and a bias on the dark energy equation of state parameter w. Using the SN-analysis package SNANA, we simulate and analyze realistic samples corresponding to the data samples used in the SNLS3 analysis: ∼120 low-redshift (z < 0.1) SNe Ia, ∼255 Sloan Digital Sky Survey SNe Ia (z < 0.4), and ∼290 SNLS SNe Ia (z ≤ 1). To probe systematic uncertainties in detail, we vary the input spectral model, the model of intrinsic scatter, and the smoothing (i.e., regularization) parameters used during the SALT-II model training. Using realistic intrinsic scatter models results in a slight bias in the ultraviolet portion of the trained SALT-II model, and w biases (w {sub input} – w {sub recovered}) ranging from –0.005 ± 0.012 to –0.024 ± 0.010. These biases are indistinguishable from each other within the uncertainty; the average bias on w is –0.014 ± 0.007.

  3. A new conceptual paradigm for the haemodynamics of salt-sensitive hypertension: a mathematical modelling approach

    PubMed Central

    Averina, Viktoria A; Othmer, Hans G; Fink, Gregory D; Osborn, John W

    2012-01-01

    A conceptually novel mathematical model of neurogenic angiotensin II-salt hypertension is developed and analysed. The model consists of a lumped parameter circulatory model with two parallel vascular beds; two distinct control mechanisms for both natriuresis and arterial resistances can be implemented, resulting in four versions of the model. In contrast with the classical Guyton–Coleman model (GC model) of hypertension, in the standard version of our new model natriuresis is assumed to be independent of arterial pressure and instead driven solely by sodium intake; arterial resistances are driven by increased sympathetic nervous system activity in response to the elevated plasma angiotensin II and increased salt intake (AngII-salt). We compare the standard version of our new model against a simplified Guyton–Coleman model in which natriuresis is a function of arterial pressure via the pressure–natriuresis mechanism, and arterial resistances are controlled via the whole-body autoregulation mechanism. We show that the simplified GC model and the new model correctly predict haemodynamic and renal excretory responses to induced changes in angiotensin II and sodium inputs. Importantly, the new model reproduces the pressure–natriuresis relationship – the correlation between arterial pressure and sodium excretion – despite the assumption of pressure-independent natriuresis. These results show that our model provides a conceptually new alternative to Guyton's theory without contradicting observed haemodynamic changes or pressure–natriuresis relationships. Furthermore, the new model supports the view that hypertension need not necessarily have a renal aetiology and that long-term arterial pressure could be determined by sympathetic nervous system activity without involving the renal sympathetic nerves. PMID:22890716

  4. Constraints on Mars sampling based on models of basaltic flow surfaces and interiors

    NASA Technical Reports Server (NTRS)

    Aubele, J. C.; Crumpler, L. S.

    1988-01-01

    Recent field observation and numerical modelling of the pattern and origin of vesicle zones and joints in terrestrial basaltic flows has resulted in increased understanding of the processes which affect flow surface morphology. This work has documented the ubiquitous occurrence of three vertical zones in basalt flows: (1) an upper vesicular zone; (2) a middle vesicle-free zone; and (3) a lower vesicular zone. The upper vesicular zone is generally about one-half of the total flow thickness. Computer modeling of the development of these zones confirms that vesicle zonation is a result of the nucleation, growth and rise of bubbles in solidifying lava and can be expected to occur in all basaltic flows. Degradation of basaltic flows, therefore, will produce vesicular blocks until the erosional level reaches the central vesicle-free zone. In addition, observation of terrestrial basaltic flows has shown that most thin (less than 10 m thick) flows have a regular pattern of orthogonal joints in vertical section in which the spacing of joints increases with depth beneath the flow surface. Using these studies we have performed a preliminary analysis of the Viking lander sites.

  5. Experimental study of planetary gases with applications to planetary interior models

    NASA Technical Reports Server (NTRS)

    Bell, Peter M.; Mao, Ho-Kwang

    1988-01-01

    High-pressure experimental data on planetary materials are critical in developing planetary models and in addressing otherwise insoluble problems of the internal structure of the major planets. Progress in the last five years has been particularly marked. Maximum static pressure of 550 GPa was achieved. For the first time, X-ray diffraction of solidified gases (Ne, Xe) and ices (H2O) were obtained at pressures above one megabar, single-crystal diffraction of ultralight elements (H2, He) were detected up to 25 GPa, pressures over 200 GPa at 77 K were reached in solid hydrogen, including the discovery of a phase transformation in the molecular solid. Advances in instrumentation and new measurements performed during 1983 to 1988 are summarized.

  6. Conceptual model for regional radionuclide transport from a salt dome repository: a technical memorandum

    SciTech Connect

    Kier, R.S.; Showalter, P.A.; Dettinger, M.D.

    1980-05-30

    Disposal of high-level radioactive wastes is a major environmental problem influencing further development of nuclear energy in this country. Salt domes in the Gulf Coast Basin are being investigated as repository sites. A major concern is geologic and hydrologic stability of candidate domes and potential transport of radionuclides by groundwater to the biosphere prior to their degradation to harmless levels of activity. This report conceptualizes a regional geohydrologic model for transport of radionuclides from a salt dome repository. The model considers transport pathways and the physical and chemical changes that would occur through time prior to the radionuclides reaching the biosphere. Necessary, but unknown inputs to the regional model involve entry and movement of fluids through the repository dome and across the dome-country rock interface and the effect on the dome and surrounding strata of heat generated by the radioactive wastes.

  7. Modeling and analysis of a molten salt electrowinning system with liquid cadmium cathode

    SciTech Connect

    Kim, K.R.; Ahn, D.H.; Paek, S.; Kwon, S.W.; Kim, S.H.; Shim, J.B.; Chung, H.; Kim, E.H.

    2007-07-01

    In the present work, an electrowinning process in the LiCl-KCl/Cd system is considered to model and analyze the equilibrium behavior and electro-transport of the actinide and rare-earth elements. Equilibrium distributions of the actinide and rare-earth elements in a molten salt and liquid cadmium system have been estimated for an infinite potentiostatic electrolysis from the thermodynamic data and material balance. A simple dynamic modeling of this process was performed by taking into account the material balances and diffusion-controlled electrochemical reactions in a diffusion layer at an electrode interface between the molten salt and liquid cadmium cathode. This model demonstrated a prediction of the concentration behaviors, a faradic current of each element and an electrochemical potential as function of the time up to the corresponding electro-transport satisfying a given applied current based on a galvano-static electrolysis. (authors)

  8. Modelling the thermo-chemical evolution of the interiors of Venus, Mars and Mercury

    NASA Astrophysics Data System (ADS)

    Tackley, P. J.; Keller, T.; Armann, M.; Aurnou, J. M.

    2009-04-01

    The latest generation of the global 3-D spherical convection model StagYY [Tackley, PEPI 2008] allows the direct computation of a planet's thermo-chemical evolution, including self-consistent lithospheric behavior (e.g., rigid lid, plate tectonics, or episodic plate tectonics [van Heck and Tackley, GRL 2008]), chemical differentiation induced by melting, large viscosity variations, a parameterized core heat balance, and a realistic treatment of phase diagrams and material properties. The latter has recently been added using free energy minimization to compute stable phases as a function of temperature, pressure, and composition as expressed by ratios of the five main oxides, and thus avoids the need for increasingly complicated and ad hoc parameterizations of phase transitions. Global models allow the computation of planetary secular cooling including prediction of how the core heat flux varies with time hence the evolution of the geodynamo, and possible transitions in plate tectonic mode. Modern supercomputers and clusters allow increasingly higher resolution, with up to 1.2 billion unknowns possible on only 32 dual-processor nodes of an opteron cluster. In ongoing research, this tool is being applied to understand the evolution of Earth, Mars, Venus, and Mercury. Our Mars models [T. Keller and P.J. Tackley, submitted] show that with an appropriate viscosity profile, convection rapidly develops a 'one ridge' planform consisting of a single ridge-like upwelling and small-scale downwellings below a stagnant lid, and that this produces a dichotomous crustal distribution that bears a striking first-order resemblance to the crustal distribution on Mars. The actual boundary of the crustal dichotomy on Mars is not hemispherical but rather like the seam on a tennis ball, and this is reproduced by our models, with the highland region being located above the upwelling. Furthermore, the elevation difference between the highland and lowland regions is very similar to that on

  9. Sedimentary characteristics and depositional model of a Paleocene-Eocene salt lake in the Jiangling Depression, China

    NASA Astrophysics Data System (ADS)

    Yu, Xiaocan; Wang, Chunlian; Liu, Chenglin; Zhang, Zhaochong; Xu, Haiming; Huang, Hua; Xie, Tengxiao; Li, Haonan; Liu, Jinlei

    2015-11-01

    We studied the sedimentary characteristics of a Paleocene-Eocene salt lake in the Jiangling Depression through field core observation, thin section identification, scanning electron microscopy, and X-ray diffraction analysis. On the basis of sedimentary characteristics we have summarized the petrological and mineralogical characteristics of the salt lake and proposed 9 types of grade IV salt rhythms. The deposition shows a desalting to salting order of halite-argillaceous-mudstone-mud dolostonemud anhydrock-glauberite-halite. The relationship among grade IV rhythms, water salinity and climate fluctuations was analyzed. Based on the analysis of the relationship between boron content and mudstone color and by combining the mineralogy and sedimentary environment characteristics, we propose that the early and late Paleocene Shashi Formation in the Jiangling Depression was a paleolacustrine depositional environment with a high salt content, which is a representation of the shallow water salt lake depositional model. The middle Paleocene Shashi Formation and the early Eocene Xingouzui Formation were salt and brackish sedimentary environments with low salt content in a deep paleolake, which represents a deep salt lake depositional model.

  10. Sea salt aerosol from blowing snow on sea ice - modeling vs observation

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Frey, Markus; Norris, Sarah; Brooks, Ian; Anderson, Philip; Jones, Anna; wolff, Eric; Legrand, Michel

    2016-04-01

    Blowing snow over sea ice, through a subsequent sublimation process of salt-containing blown snow particles, has been hypothesized as a significant sea salt aerosol (SSA) source in high latitudes. This mechanism has been strongly supported by a winter cruise in the Weddell Sea (during June-August 2013). The newly collected data, including both physical and chemical components, provide a unique way to test and validate the parameterisation used for describing the SSA production from blowing snow events. With updates to some key parameters such as snow salinity in a global Chemistry-transport model pTOMCAT, simulated SSA concentrations can be well compared with measured SSA data. In this presentation, I will report modeled SSA number density against collected data on board of Polarstern ship during the Weddell Sea cruise, as well as modeled SSA massive concentrations against those measured at both coastal sites such as Alert in the North and Dumont d'Urville (DDU) in the South and central Antarctic sites such as Concordia and Kohnen stations. Model experiments indicated that open ocean-sourced SSA could not explain the observed winter SSA peaks seen in most polar sites, while with sea ice-sourced SSA in the model, the winter peaks can be well improved indicating the importance of sea ice-sourced SSA as a significant contributor to the salts (Na+, Cl-) recorded in the ice core.

  11. Introducing improved structural properties and salt dependence into a coarse-grained model of DNA

    SciTech Connect

    Snodin, Benedict E. K. Mosayebi, Majid; Schreck, John S.; Romano, Flavio; Doye, Jonathan P. K.; Randisi, Ferdinando; Šulc, Petr; Ouldridge, Thomas E.; Tsukanov, Roman; Nir, Eyal; Louis, Ard A.

    2015-06-21

    We introduce an extended version of oxDNA, a coarse-grained model of deoxyribonucleic acid (DNA) designed to capture the thermodynamic, structural, and mechanical properties of single- and double-stranded DNA. By including explicit major and minor grooves and by slightly modifying the coaxial stacking and backbone-backbone interactions, we improve the ability of the model to treat large (kilobase-pair) structures, such as DNA origami, which are sensitive to these geometric features. Further, we extend the model, which was previously parameterised to just one salt concentration ([Na{sup +}] = 0.5M), so that it can be used for a range of salt concentrations including those corresponding to physiological conditions. Finally, we use new experimental data to parameterise the oxDNA potential so that consecutive adenine bases stack with a different strength to consecutive thymine bases, a feature which allows a more accurate treatment of systems where the flexibility of single-stranded regions is important. We illustrate the new possibilities opened up by the updated model, oxDNA2, by presenting results from simulations of the structure of large DNA objects and by using the model to investigate some salt-dependent properties of DNA.

  12. Thermo-mechanical modelling of salt caverns due to fluctuating loading conditions.

    NASA Astrophysics Data System (ADS)

    Böttcher, N.

    2015-12-01

    This work summarizes the development and application of a numerical model for the thermo-mechanical behaviour of salt caverns during cyclic gas storage. Artificial salt caverns are used for short term energy storage, such as power-to-gas or compressed air energy storage. Those applications are characterized by highly fluctuating operation pressures due to the unsteady power levels of power plants based on renewable energy. Compression and expansion of the storage gases during loading and unloading stages lead to rapidly changing temperatures in the host rock of the caverns. This affects the material behaviour of the host rock within a zone that extends several meters into the rock mass adjacent to the cavern wall, and induces thermo-mechanical stresses and alters the creep response.The proposed model features the thermodynamic behaviour of the storage medium, conductive heat transport in the host rock, as well as temperature dependent material properties of rock salt using different thermo-viscoplastic material models. The utilized constitutive models are well known and state-of-the-art in various salt mechanics applications. The model has been implemented into the open-source software platform OpenGeoSys. Thermal and mechanical processes are solved using a finite element approach, coupled via a staggered coupling scheme. The simulation results allow the conclusion, that the cavern convergence rate (and thus the efficiency of the cavern) is highly influenced by the loading cycle frequency and the resulting gas temperatures. The model therefore allows to analyse the influence of operation modes on the cavern host rock or on neighbouring facilities.

  13. Dietary Salt Restriction Improves Cardiac and Adipose Tissue Pathology Independently of Obesity in a Rat Model of Metabolic Syndrome

    PubMed Central

    Hattori, Takuya; Murase, Tamayo; Takatsu, Miwa; Nagasawa, Kai; Matsuura, Natsumi; Watanabe, Shogo; Murohara, Toyoaki; Nagata, Kohzo

    2014-01-01

    Background Metabolic syndrome (MetS) enhances salt sensitivity of blood pressure and is an important risk factor for cardiovascular disease. The effects of dietary salt restriction on cardiac pathology associated with metabolic syndrome remain unclear. Methods and Results We investigated whether dietary salt restriction might ameliorate cardiac injury in DahlS.Z‐Leprfa/Leprfa (DS/obese) rats, which are derived from a cross between Dahl salt‐sensitive and Zucker rats and represent a model of metabolic syndrome. DS/obese rats were fed a normal‐salt (0.36% NaCl in chow) or low‐salt (0.0466% NaCl in chow) diet from 9 weeks of age and were compared with similarly treated homozygous lean littermates (DahlS.Z‐Lepr+/Lepr+, or DS/lean rats). DS/obese rats fed the normal‐salt diet progressively developed hypertension and showed left ventricular hypertrophy, fibrosis, and diastolic dysfunction at 15 weeks. Dietary salt restriction attenuated all of these changes in DS/obese rats. The levels of cardiac oxidative stress and inflammation and the expression of cardiac renin–angiotensin–aldosterone system genes were increased in DS/obese rats fed the normal‐salt diet, and dietary salt restriction downregulated these parameters in both DS/obese and DS/lean rats. In addition, dietary salt restriction attenuated the increase in visceral adipose tissue inflammation and the decrease in insulin signaling apparent in DS/obese rats without reducing body weight or visceral adipocyte size. Dietary salt restriction did not alter fasting serum glucose levels but it markedly decreased the fasting serum insulin concentration in DS/obese rats. Conclusions Dietary salt restriction not only prevents hypertension and cardiac injury but also ameliorates insulin resistance, without reducing obesity, in this model of metabolic syndrome. PMID:25468654

  14. Modeling the structure of magnetic fields in Neutron Stars: from the interior to the magnetosphere

    NASA Astrophysics Data System (ADS)

    Bucciantini, Niccolò; Pili, Antonio G.; Del Zanna, Luca

    2016-05-01

    The phenomenology of the emission of pulsars and magnetars depends dramatically on the structure and properties of their magnetic field. In particular it is believed that the outbursting and flaring activity observed in AXPs and SRGs is strongly related to their internal magnetic field. Recent observations have moreover shown that charges are present in their magnetospheres supporting the idea that their magnetic field is tightly twisted in the vicinity of the star. In principle these objects offer a unique opportunity to investigate physics in a regime beyond what can be obtained in the laboratory. We will discuss the properties of equilibrium models of magnetized neutron stars, and we will show how internal and external currents can be related. These magnetic field configurations will be discussed considering also their stability, relevant for their origin and possibly connected to events like SNe and GRBs. We will also show what kind of deformations they induce in the star, that could lead to emission of gravitational waves. In the case of a twisted magnetosphere we will show how the amount of twist regulates their general topology. A general formalism based on the simultaneous numerical solution of the general relativistic Grad-Shafranov equation and Einstein equations will be presented.

  15. 26Al in the Saturnian System - New Interior Models for the Saturnian satellites

    NASA Astrophysics Data System (ADS)

    Castillo, J. C.; Matson, D. L.; Johnson, T. V.; Lunine, J. I.; McCord, T. B.; Sotin, C.; Thomas, P. C.; Turtle, E. B.

    2005-12-01

    Recent study of Iapetus' spin rate evolution highlights the need to form this satellite between between 1.0+/- 0.2 to 1.6+/- 0.4 My after the production of Calcium-Aluminum Inclusions (CAIs). We study the implications of this time constraint on the thermal evolution of other "icy" Saturnian satellites, assuming that they formed at the same time as Iapetus and from the same rocky material in proportion to their densities. Heat provided by 26Al decay contributes to partial to full melting and thus differentiation of all Saturn's medium-sized satellites, except Tethys. We also consider the effect of silicate hydration on the internal and geological evolution of these satellites. These results are compared with classical models (that do not include short-lived radiogenic species), in the light of the observational constraints available for these satellites. Including 26Al decay in the heat budget of the satellites allows to explain the observation of geological activity in silicate-poor satellites such as Tethys. We note that in Enceladus and Titan conditions might have been such that the boiling point of water was reached and water might have been lost very early in the history of these satellites. This opens the door to some explanation for the variations in density within the Saturnian system. Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA.

  16. Box Model of a Series of Salt Ponds, as Applied to the Alviso Salt Pond Complex, South San Francisco Bay, California

    USGS Publications Warehouse

    Lionberger, Megan A.; Schoellhamer, David H.; Shellenbarger, Gregory; Orlando, James L.; Ganju, Neil K.

    2007-01-01

    This report documents the development and application of a box model to simulate water level, salinity, and temperature of the Alviso Salt Pond Complex in South San Francisco Bay. These ponds were purchased for restoration in 2003 and currently are managed by the U.S. Fish and Wildlife Service to maintain existing wildlife habitat and prevent a build up of salt during the development of a long-term restoration plan. The model was developed for the purpose of aiding pond managers during the current interim management period to achieve these goals. A previously developed box model of a salt pond, SPOOM, which calculates daily pond volume and salinity, was reconfigured to simulate multiple connected ponds and a temperature subroutine was added. The updated model simulates rainfall, evaporation, water flowing between the ponds and the adjacent tidal slough network, and water flowing from one pond to the next by gravity and pumps. Theoretical and measured relations between discharge and corresponding differences in water level are used to simulate most flows between ponds and between ponds and sloughs. The principle of conservation of mass is used to calculate daily pond volume and salinity. The model configuration includes management actions specified in the Interim Stewardship Plan for the ponds. The temperature subroutine calculates hourly net heat transfer to or from a pond resulting in a rise or drop in pond temperature and daily average, minimum, and maximum pond temperatures are recorded. Simulated temperature was compared with hourly measured data from pond 3 of the Napa?Sonoma Salt Pond Complex and monthly measured data from pond A14 of the Alviso Salt-Pond Complex. Comparison showed good agreement of measured and simulated pond temperature on the daily and monthly time scales.

  17. Structure and dynamics of a salt-bridge model system in water and DMSO.

    PubMed

    Lotze, S; Bakker, H J

    2015-06-01

    We study the interaction between the ions methylguanidinium and trifluoroacetate dissolved in D2O and dimethylsulfoxide with linear infrared spectroscopy and femtosecond two-dimensional infrared spectroscopy. These ions constitute model systems for the side chains of arginine and glutamic and aspartic acid that are known to form salt bridges in proteins. We find that the salt-bridge formation of methylguanidinium and trifluoroacetate leads to a significant acceleration of the vibrational relaxation dynamics of the antisymmetric COO stretching vibration of the carboxyl moiety of trifluoroacetate. Salt-bridge formation has little effect on the rate of the spectral fluctuations of the CN stretching vibrations of methylguanidinium. The anisotropy of the cross peaks between the antisymmetric COO stretching vibration of trifluoroacetate and the CN stretching vibrations of methylguanidinium reveals that the salt-bridge is preferentially formed in a bidentate end-on configuration in which the two C=O groups of the carboxylate moiety form strong hydrogen bonds with the two -NH2 groups of methylguanidinium.

  18. Structure and dynamics of a salt-bridge model system in water and DMSO.

    PubMed

    Lotze, S; Bakker, H J

    2015-06-01

    We study the interaction between the ions methylguanidinium and trifluoroacetate dissolved in D2O and dimethylsulfoxide with linear infrared spectroscopy and femtosecond two-dimensional infrared spectroscopy. These ions constitute model systems for the side chains of arginine and glutamic and aspartic acid that are known to form salt bridges in proteins. We find that the salt-bridge formation of methylguanidinium and trifluoroacetate leads to a significant acceleration of the vibrational relaxation dynamics of the antisymmetric COO stretching vibration of the carboxyl moiety of trifluoroacetate. Salt-bridge formation has little effect on the rate of the spectral fluctuations of the CN stretching vibrations of methylguanidinium. The anisotropy of the cross peaks between the antisymmetric COO stretching vibration of trifluoroacetate and the CN stretching vibrations of methylguanidinium reveals that the salt-bridge is preferentially formed in a bidentate end-on configuration in which the two C=O groups of the carboxylate moiety form strong hydrogen bonds with the two -NH2 groups of methylguanidinium. PMID:26049456

  19. DFT models of molecular species in carbonate molten salts.

    PubMed

    Carper, W Robert; Wahlbeck, Phillip G; Griffiths, Trevor R

    2012-05-10

    Raman spectra of high temperature carbonate melts are correlated with carbonate species modeled at 923 K using B3LYP/(6-311+G(2d,p)) density functional calculations. Species that are theoretically stable at 923 K include O(2-), O(2)(-), O(2)(2-), CO(3)(2-), C(2)O(6)(2-), CO(4)(-), CO(4)(2-), CO(4)(4-), CO(5)(2-), KCO(4)(-), LiCO(4)(-), KO(2)(-), LiO(2)(-), NaO(2)(-), KO(2), LiO(2), NaO(2), KCO(3)(-), LiCO(3)(-), and NaCO(3)(-). Triangular, linear, and bent forms are theoretically possible for KO(2)(-) and NaO(2)(-). Triangular and linear forms may exist for LiO(2)(-). Linear and triangular versions are theoretically possible for LiO(2)(-) and KO(2). A triangular version of NaO(2) may exist. The correlation between measured and theoretical Raman spectra indicate that monovalent cations are to be included in several of the species that produce Raman spectra.

  20. Ranking contributing areas of salt and selenium in the Lower Gunnison River Basin, Colorado, using multiple linear regression models

    USGS Publications Warehouse

    Linard, Joshua I.

    2013-01-01

    Mitigating the effects of salt and selenium on water quality in the Grand Valley and lower Gunnison River Basin in western Colorado is a major concern for land managers. Previous modeling indicated means to improve the models by including more detailed geospatial data and a more rigorous method for developing the models. After evaluating all possible combinations of geospatial variables, four multiple linear regression models resulted that could estimate irrigation-season salt yield, nonirrigation-season salt yield, irrigation-season selenium yield, and nonirrigation-season selenium yield. The adjusted r-squared and the residual standard error (in units of log-transformed yield) of the models were, respectively, 0.87 and 2.03 for the irrigation-season salt model, 0.90 and 1.25 for the nonirrigation-season salt model, 0.85 and 2.94 for the irrigation-season selenium model, and 0.93 and 1.75 for the nonirrigation-season selenium model. The four models were used to estimate yields and loads from contributing areas corresponding to 12-digit hydrologic unit codes in the lower Gunnison River Basin study area. Each of the 175 contributing areas was ranked according to its estimated mean seasonal yield of salt and selenium.

  1. Salt-induced changes in cardiac phosphoproteome in a rat model of chronic renal failure.

    PubMed

    Su, Zhengxiu; Zhu, Hongguo; Zhang, Menghuan; Wang, Liangliang; He, Hanchang; Jiang, Shaoling; Hou, Fan Fan; Li, Aiqing

    2014-01-01

    Heart damage is widely present in patients with chronic kidney disease. Salt diet is the most important environmental factor affecting development of chronic renal failure and cardiovascular diseases. The proteins involved in chronic kidney disease -induced heart damage, especially their posttranslational modifications, remain largely unknown to date. Sprague-Dawley rats underwent 5/6 nephrectomy (chronic renal failure model) or sham operation were treated for 2 weeks with a normal-(0.4% NaCl), or high-salt (4% NaCl) diet. We employed TiO2 enrichment, iTRAQ labeling and liquid-chromatography tandem mass spectrometry strategy for phosphoproteomic profiling of left ventricular free walls in these animals. A total of 1724 unique phosphopeptides representing 2551 non-redundant phosphorylation sites corresponding to 763 phosphoproteins were identified. During normal salt feeding, 89 (54%) phosphopeptides upregulated and 76 (46%) phosphopeptides downregulated in chronic renal failure rats relative to sham rats. In chronic renal failure rats, high salt intake induced upregulation of 84 (49%) phosphopeptides and downregulation of 88 (51%) phosphopeptides. Database searches revealed that most of the identified phospholproteins were important signaling molecules such as protein kinases, receptors and phosphatases. These phospholproteins were involved in energy metabolism, cell communication, cell differentiation, cell death and other biological processes. The Search Tool for the Retrieval of Interacting Genes analysis revealed functional links among 15 significantly regulated phosphoproteins in chronic renal failure rats compared to sham group, and 23 altered phosphoproteins induced by high salt intake. The altered phosphorylation levels of two proteins involved in heart damage, lamin A and phospholamban were validated. Expression of the downstream genes of these two proteins, desmin and SERCA2a, were also analyzed.

  2. Salt effects on functional traits in model and in economically important Lotus species.

    PubMed

    Uchiya, P; Escaray, F J; Bilenca, D; Pieckenstain, F; Ruiz, O A; Menéndez, A B

    2016-07-01

    A common stress on plants is NaCl-derived soil salinity. Genus Lotus comprises model and economically important species, which have been studied regarding physiological responses to salinity. Leaf area ratio (LAR), root length ratio (RLR) and their components, specific leaf area (SLA) and leaf mass fraction (LMF) and specific root length (SRL) and root mass fraction (RMF) might be affected by high soil salinity. We characterised L. tenuis, L. corniculatus, L. filicaulis, L. creticus, L. burtii and L. japonicus grown under different salt concentrations (0, 50, 100 and 150 mm NaCl) on the basis of SLA, LMF, SRL and RMF using PCA. We also assessed effects of different salt concentrations on LAR and RLR in each species, and explored whether changes in these traits provide fitness benefit. Salinity (150 mm NaCl) increased LAR in L. burtii and L. corniculatus, but not in the remaining species. The highest salt concentration caused a decrease of RLR in L. japonicus Gifu, but not in the remaining species. Changes in LAR and RLR would not be adaptive, according to adaptiveness analysis, with the exception of SLA changes in L. corniculatus. PCA revealed that under favourable conditions plants optimise surfaces for light and nutrient acquisition (SLA and SRL), whereas at higher salt concentrations they favour carbon allocation to leaves and roots (LMF and RMF) in detriment to their surfaces. PCA also showed that L. creticus subjected to saline treatment was distinguished from the remaining Lotus species. We suggest that augmented carbon partitioning to leaves and roots could constitute a salt-alleviating mechanism through toxic ion dilution. PMID:27007305

  3. A dynamic model of the Aral Sea water and salt balance

    NASA Astrophysics Data System (ADS)

    Benduhn, François; Renard, Philippe

    2004-06-01

    The Aral Sea is shrinking rapidly since the 1960s mainly because of the diversion of the Amu Darya and Syr Darya rivers for irrigation purposes. Since then, the evaporation became the most important component of the water balance of the Sea and led to a concentration of the remaining salts. In this article, we investigate through a coupled mathematical model of water and salt balance of the Aral Sea, the dynamic evolution of the sea. The water balance considers river inflow, groundwater inflow, atmospheric precipitation and evaporation. The salt balance considers the dominant ions and the chemical precipitation of gypsum, epsomite and mirabilite. The evaporation rates are calculated with a modified Penman equation accounting for the salinity of the lake and using statistical climatic data. With this model, we obtain an estimate of the evaporation flux (between 1100 and more than 1200 mm/year depending on the salinity) larger than earlier estimates. The estimated groundwater discharge into the sea is also larger than earlier estimates and is highly variable from year to year. The last point is that the model is able to simulate rather well the evolution of the salinity until the 1980s, but it does not reproduce accurately the chemical evolution of the lake during the most recent period and needs further improvements.

  4. Salt Repository Project: Waste Package Program (WPP) modeling activiteis: FY 1984 annual report

    SciTech Connect

    Kuhn, W.L.; Simonson, S.A.; Pulsipher, B.A.

    1987-03-01

    The Pacific Northwest Laboratory (PNL) is supporting the US Department of Energy's (DOE) Salt Repository Project (SRP) through its Waste Package Program (WPP). During FY 1984, the WPP continued its program of waste package component development and interactions testing and application of the resulting data base to develop predictive models describing waste package degradation and radionuclide release. Within the WPP, the Modeling Task (Task 04 during FY 1984) was conducted to interpret the tests in such a way that scientifically defensible models can be developed for use in qualification of the waste package.

  5. A comparison of genomic selection models across time in interior spruce (Picea engelmannii × glauca) using unordered SNP imputation methods.

    PubMed

    Ratcliffe, B; El-Dien, O G; Klápště, J; Porth, I; Chen, C; Jaquish, B; El-Kassaby, Y A

    2015-12-01

    Genomic selection (GS) potentially offers an unparalleled advantage over traditional pedigree-based selection (TS) methods by reducing the time commitment required to carry out a single cycle of tree improvement. This quality is particularly appealing to tree breeders, where lengthy improvement cycles are the norm. We explored the prospect of implementing GS for interior spruce (Picea engelmannii × glauca) utilizing a genotyped population of 769 trees belonging to 25 open-pollinated families. A series of repeated tree height measurements through ages 3-40 years permitted the testing of GS methods temporally. The genotyping-by-sequencing (GBS) platform was used for single nucleotide polymorphism (SNP) discovery in conjunction with three unordered imputation methods applied to a data set with 60% missing information. Further, three diverse GS models were evaluated based on predictive accuracy (PA), and their marker effects. Moderate levels of PA (0.31-0.55) were observed and were of sufficient capacity to deliver improved selection response over TS. Additionally, PA varied substantially through time accordingly with spatial competition among trees. As expected, temporal PA was well correlated with age-age genetic correlation (r=0.99), and decreased substantially with increasing difference in age between the training and validation populations (0.04-0.47). Moreover, our imputation comparisons indicate that k-nearest neighbor and singular value decomposition yielded a greater number of SNPs and gave higher predictive accuracies than imputing with the mean. Furthermore, the ridge regression (rrBLUP) and BayesCπ (BCπ) models both yielded equal, and better PA than the generalized ridge regression heteroscedastic effect model for the traits evaluated.

  6. A Model for the Thermal and Chemical Evolution of the Moon's Interior: Implications for the Onset of Mare Volcanism

    NASA Technical Reports Server (NTRS)

    Hess, Paul C.; Parmentier, E. M.

    1995-01-01

    Crystallization of the lunar magma ocean creates a chemically stratified Moon consisting of an anorthositic crust and magma ocean cumulates overlying the primitive lunar interior. Within the magma ocean cumulates the last liquids to crystallize form dense, ilmenite-rich cumulates that contain high concentrations of incompatible radioactive elements. The underlying olivine-orthopyroxene cumulates are also stratified with later crystallized, denser, more Fe-rich compositions at the top. This paper explores the chemical and thermal consequences of an internal evolution model accounting for the possible role of these sources of chemical buoyancy. Rayleigh-Taylor instability causes the dense ilmenite-rich cumulate layer and underlying Fe-rich cumulates to sink toward the center of the Moon, forming a dense lunar core. After this overturn, radioactive heating within the ilmenite-rich cumulate core heats the overlying mantle, causing it to melt. In this model, the source region for high-TiO2 mare basalts is a convectively mixed layer above the core-mantle boundary which would contain small and variable amounts of admixed ilmenite and KREEP. This deep high-pressure melting, as required for mare basalts, occurs after a reasonable time interval to explain the onset of mare basalt volcanism if the content of radioactive elements in the core and the chemical density gradients above the core are sufficiently high but within a range of values that might have been present in the Moon. Regardless of details implied by particular model parameters, gravitational overturn driven by the high density of magma ocean Fe-rich cumulates should concentrate high-TiO2 mare basalt sources, and probably a significant fraction of radioactive heating, toward the center of the Moon. This will have important implications for both the thermal evolution of the Moon and for mare basalt genesis.

  7. Comparison of empirical models with intensively observed data for prediction of salt intrusion in the Sumjin River estuary, Korea

    NASA Astrophysics Data System (ADS)

    Shaha, D. C.; Cho, Y.-K.

    2009-06-01

    Performance of empirical models has been compared with extensively observed data to determine the most suitable model for prediction of salt intrusion in the Sumjin River estuary, Korea. Intensive measurements of salt intrusion were taken at high and low waters during both spring and neap tide in each season from August 2004 to April 2007. The stratification parameter varied with the distance along the estuary, tidal period and freshwater discharge, indicating that the Sumjin River estuary experiences a transition from partially- or well-mixed during spring tide to stratified during neap tide. The salt intrusion length at high water varied from 13.4 km in summer 2005 to 25.6 km in autumn 2006. The salt intrusion mostly depends on the freshwater discharge rather than spring-neap tidal oscillation. Analysis of three years observed salinity data indicates that the scale of the salt intrusion length in the Sumjin River estuary is proportional to the river discharge to the -1/5 power. Four empirical models have been applied to the Sumjin River estuary to explore the most suitable model for prediction of the salt intrusion length. Comparative results show that the Nguyen and Savenije (2006) model, developed under both partially- and well-mixed estuaries, performs best of all models studied (relative error of 4.6%). The model was also applied under stratified neap tide conditions, with a relative error of 5.2%, implying applicability of this model under stratified conditions as well.

  8. 25 CFR Appendix A to Part 1000 - Model Compact of Self-Governance Between the Tribe and the Department of the Interior

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false Model Compact of Self-Governance Between the Tribe and..., INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ANNUAL FUNDING AGREEMENTS UNDER THE TRIBAL SELF-GOVERNMENT ACT AMENDMENTS TO THE INDIAN SELF-DETERMINATION AND EDUCATION ACT Pt. 1000, App. A Appendix A to Part...

  9. 25 CFR Appendix A to Part 1000 - Model Compact of Self-Governance Between the Tribe and the Department of the Interior

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 2 2011-04-01 2011-04-01 false Model Compact of Self-Governance Between the Tribe and... Compact of Self-Governance Between the Tribe and the Department of the Interior Article I—Authority and Purpose Section 1—Authority This agreement, denoted a compact of Self-Governance (hereinafter referred...

  10. 25 CFR Appendix A to Part 1000 - Model Compact of Self-Governance Between the Tribe and the Department of the Interior

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 2 2014-04-01 2014-04-01 false Model Compact of Self-Governance Between the Tribe and... Compact of Self-Governance Between the Tribe and the Department of the Interior Article I—Authority and Purpose Section 1—Authority This agreement, denoted a compact of Self-Governance (hereinafter referred...

  11. 25 CFR Appendix A to Part 1000 - Model Compact of Self-Governance Between the Tribe and the Department of the Interior

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 2 2013-04-01 2013-04-01 false Model Compact of Self-Governance Between the Tribe and... Compact of Self-Governance Between the Tribe and the Department of the Interior Article I—Authority and Purpose Section 1—Authority This agreement, denoted a compact of Self-Governance (hereinafter referred...

  12. 25 CFR Appendix A to Part 1000 - Model Compact of Self-Governance Between the Tribe and the Department of the Interior

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 2 2012-04-01 2012-04-01 false Model Compact of Self-Governance Between the Tribe and... Compact of Self-Governance Between the Tribe and the Department of the Interior Article I—Authority and Purpose Section 1—Authority This agreement, denoted a compact of Self-Governance (hereinafter referred...

  13. Modeling soluble salt assemblages on Mars: past aqueous history and present-day habitability

    NASA Astrophysics Data System (ADS)

    Toner, J. D.; Catling, D. C.; Light, B.

    2014-12-01

    Soluble salt assemblages formed through aqueous processes are widespread on Mars. These minerals are important for understanding the past aqueous history of Mars and indicate critical habitability parameters such as pH, temperature, water activity, and salinity. Equilibrium models have been used to determine solution chemistry and salt precipitation sequences from aqueous chemical data; however, current models are limited by a lack of experimental data for low-temperature perchlorates, and some model predictions are clearly anomalous. To address the need for accurate equilibrium models, we have developed a comprehensive model for low-temperature perchlorate-rich brines using (1) previously neglected literature data, (2) experimental solubilities determined in low-temperature perchlorate solutions, and (3) solubility and heat capacity results determined using Differential Scanning Calorimetry (DSC). Our resulting model is a significant improvement over existing models, such as FREZCHEM, particularly for perchlorate mixtures. We have applied our model to evaporation and freezing of a nominal Wet Chemistry Laboratory (WCL) solution measured at the Phoenix site. For a freezing WCL solution, our model indicates that ice, KClO4, hydromagnesite (3MgCO3·Mg(OH)2·3H2O), calcite (CaCO3), meridianiite (MgSO4·11H2O), MgCl2·12H2O, NaClO4·2H2O, and Mg(ClO4)2·6H2O form at the eutectic (209 K); whereas, KClO4, hydromagnesite, kieserite (MgSO4·H2O), anhydrite (CaSO4), halite (NaCl), NaClO4·H2O, and Mg(ClO4)2·6H2O form upon complete evaporation at 298 K. In general, evaporation yields more dehydrated mineral assemblages than salts produced by freezing. Hydrated phases that form during evaporation contain 0.3 wt. % water, which compares with 1.2 wt. % during freezing. Given independent evidence for the presence of calcite and minimum water contents in Martian soils of ~1.5 wt. %, salts at the Phoenix site, and possibly elsewhere, appear more likely to have formed during

  14. Integrative functional genomics of salt acclimatization in the model legume Lotus japonicus.

    PubMed

    Sanchez, Diego H; Lippold, Felix; Redestig, Henning; Hannah, Matthew A; Erban, Alexander; Krämer, Ute; Kopka, Joachim; Udvardi, Michael K

    2008-03-01

    The model legume Lotus japonicus was subjected to non-lethal long-term salinity and profiled at the ionomic, transcriptomic and metabolomic levels. Two experimental designs with various stress doses were tested: a gradual step acclimatization and an initial acclimatization approach. Ionomic profiling by inductively coupled plasma/atomic emission spectrometry (ICP-AES) revealed salt stress-induced reductions in potassium, phosphorus, sulphur, zinc and molybdenum. Microarray profiling using the Lotus Genechip allowed the identification of 912 probesets that were differentially expressed under the acclimatization regimes. Gas chromatography/mass spectrometry-based metabolite profiling identified 147 differentially accumulated soluble metabolites, indicating a change in metabolic phenotype upon salt acclimatization. Metabolic changes were characterized by a general increase in the steady-state levels of many amino acids, sugars and polyols, with a concurrent decrease in most organic acids. Transcript and metabolite changes exhibited a stress dose-dependent response within the range of NaCl concentrations used, although threshold and plateau behaviours were also observed. The combined observations suggest a successive and increasingly global requirement for the reprogramming of gene expression and metabolic pathways to maintain ionic and osmotic homeostasis. A simple qualitative model is proposed to explain the systems behaviour of plants during salt acclimatization.

  15. Magnesium degradation influenced by buffering salts in concentrations typical of in vitro and in vivo models.

    PubMed

    Agha, Nezha Ahmad; Feyerabend, Frank; Mihailova, Boriana; Heidrich, Stefanie; Bismayer, Ulrich; Willumeit-Römer, Regine

    2016-01-01

    Magnesium and its alloys have considerable potential for orthopedic applications. During the degradation process the interface between material and tissue is continuously changing. Moreover, too fast or uncontrolled degradation is detrimental for the outcome in vivo. Therefore in vitro setups utilizing physiological conditions are promising for the material/degradation analysis prior to animal experiments. The aim of this study is to elucidate the influence of inorganic salts contributing to the blood buffering capacity on degradation. Extruded pure magnesium samples were immersed under cell culture conditions for 3 and 10 days. Hank's balanced salt solution without calcium and magnesium (HBSS) plus 10% of fetal bovine serum (FBS) was used as the basic immersion medium. Additionally, different inorganic salts were added with respect to concentration in Dulbecco's modified Eagle's medium (DMEM, in vitro model) and human plasma (in vivo model) to form 12 different immersion media. Influences on the surrounding environment were observed by measuring pH and osmolality. The degradation interface was analyzed by electron-induced X-ray emission (EIXE) spectroscopy, including chemical-element mappings and electron microprobe analysis, as well as Fourier transform infrared reflection micro-spectroscopy (FTIR).

  16. Effect of excess dietary salt on calcium metabolism and bone mineral in a spaceflight rat model

    NASA Technical Reports Server (NTRS)

    Navidi, Meena; Wolinsky, Ira; Fung, Paul; Arnaud, Sara B.

    1995-01-01

    High levels of salt promote urinary calcium (UCa) loss and have the potential to cause bone mineral deficits if intestinal Ca absorption does not compensate for these losses. To determine the effect of excess dietary salt on the osteopenia that follows skeletal unloading, we used a spaceflight model that unloads the hindlimbs of 200-g rats by tail suspension (S). Rats were studied for 2 wk on diets containing high salt (4 and 8%) and normal calcium (0.45%) and for 4 wk on diets containing 8% salt (HiNa) and 0.2% Ca (LoCa). Final body weights were 9-11% lower in S than in control rats (C) in both experiments, reflecting lower growth rates in S than in C during pair feeding. UCa represented 12% of dietary Ca on HiNA diets and was twofold higher in S than in C transiently during unloading. Net intestinal Ca absorption was consistently 11-18% lower in S than in C. Serum 1,25-dihydroxyvitamin D was unaffected by either LoCa or HiNa diets in S but was increased by LoCa and HiNa diets in C. Despite depressed intestinal Ca absoption in S and a sluggish response of the Ca endocrine system to HiNa diets, UCa loss did not appear to affect the osteopenia induced by unloading. Although any deficit in bone mineral content from HiNa diets may have been too small to detect or the duration of the study too short to manifest, there were clear differences in Ca metabolism from control levels in the response of the spaceflight model to HiNa diets, indicated by depression of intestinal Ca absorption and its regulatory hormone.

  17. Effect of salt bridges on the energy landscape of a model protein

    NASA Astrophysics Data System (ADS)

    Wales, David J.; Dewsbury, Peter E. J.

    2004-11-01

    The effect of introducing salt bridges (gatekeepers) into an off-lattice three-color, 46-bead model protein is investigated in terms of the effect on global optimization statistics. The global minima for all the gatekeepers that exhibited faster folding in previous molecular dynamics studies are located more rapidly than for the original potential, although the global minimum itself may change. Visualization of the underlying potential energy surface using disconnectivity graphs reveals that the gatekeepers exhibit structure intermediate between the original potential and a Gō model. Competition between low-lying minima and the global minimum is reduced in the gatekeepers compared to the original potential, and interconversion barriers are generally smaller.

  18. SDSS-II: Determination of shape and color parameter coefficients for SALT-II fit model

    SciTech Connect

    Dojcsak, L.; Marriner, J.; /Fermilab

    2010-08-01

    In this study we look at the SALT-II model of Type IA supernova analysis, which determines the distance moduli based on the known absolute standard candle magnitude of the Type IA supernovae. We take a look at the determination of the shape and color parameter coefficients, {alpha} and {beta} respectively, in the SALT-II model with the intrinsic error that is determined from the data. Using the SNANA software package provided for the analysis of Type IA supernovae, we use a standard Monte Carlo simulation to generate data with known parameters to use as a tool for analyzing the trends in the model based on certain assumptions about the intrinsic error. In order to find the best standard candle model, we try to minimize the residuals on the Hubble diagram by calculating the correct shape and color parameter coefficients. We can estimate the magnitude of the intrinsic errors required to obtain results with {chi}{sup 2}/degree of freedom = 1. We can use the simulation to estimate the amount of color smearing as indicated by the data for our model. We find that the color smearing model works as a general estimate of the color smearing, and that we are able to use the RMS distribution in the variables as one method of estimating the correct intrinsic errors needed by the data to obtain the correct results for {alpha} and {beta}. We then apply the resultant intrinsic error matrix to the real data and show our results.

  19. Thermal conductivity of molten salt mixtures: Theoretical model supported by equilibrium molecular dynamics simulations.

    PubMed

    Gheribi, Aïmen E; Chartrand, Patrice

    2016-02-28

    A theoretical model for the description of thermal conductivity of molten salt mixtures as a function of composition and temperature is presented. The model is derived by considering the classical kinetic theory and requires, for its parametrization, only information on thermal conductivity of pure compounds. In this sense, the model is predictive. For most molten salt mixtures, no experimental data on thermal conductivity are available in the literature. This is a hindrance for many industrial applications (in particular for thermal energy storage technologies) as well as an obvious barrier for the validation of the theoretical model. To alleviate this lack of data, a series of equilibrium molecular dynamics (EMD) simulations has been performed on several molten chloride systems in order to determine their thermal conductivity in the entire range of composition at two different temperatures: 1200 K and 1300 K. The EMD simulations are first principles type, as the potentials used to describe the interactions have been parametrized on the basis of first principle electronic structure calculations. In addition to the molten chlorides system, the model predictions are also compared to a recent similar EMD study on molten fluorides and with the few reliable experimental data available in the literature. The accuracy of the proposed model is within the reported numerical and/or experimental errors.

  20. Simulation of arrested salt wedges with a multi-layer Shallow Water Lattice Boltzmann model

    NASA Astrophysics Data System (ADS)

    Prestininzi, P.; Montessori, A.; La Rocca, M.; Sciortino, G.

    2016-10-01

    The ability to accurately and efficiently model the intrusion of salt wedges into river beds is crucial to assay its interaction with human activities and the natural environment. We present a 2D multi-layer Shallow Water Lattice Boltzmann (SWLB) model able to predict the salt wedge intrusion in river estuaries. The formulation usually employed for the simulation of gravity currents is here equipped with proper boundary conditions to handle both the downstream seaside outlet and the upstream river inlet. Firstly, the model is validated against highly accurate semi-analytical solutions of the steady state 1D two-layer Shallow Water model. Secondly, the model is applied to a more complex, fully 3D geometry, to assess its capability to handle realistic cases. The simple formulation proposed for the shear interlayer stress is proven to be consistent with the general 3D viscous solution. In addition to the accuracy, the model inherits the efficiency of the Lattice Boltzmann approach to fluid dynamics problems.

  1. Thermal conductivity of molten salt mixtures: Theoretical model supported by equilibrium molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Gheribi, Aïmen E.; Chartrand, Patrice

    2016-02-01

    A theoretical model for the description of thermal conductivity of molten salt mixtures as a function of composition and temperature is presented. The model is derived by considering the classical kinetic theory and requires, for its parametrization, only information on thermal conductivity of pure compounds. In this sense, the model is predictive. For most molten salt mixtures, no experimental data on thermal conductivity are available in the literature. This is a hindrance for many industrial applications (in particular for thermal energy storage technologies) as well as an obvious barrier for the validation of the theoretical model. To alleviate this lack of data, a series of equilibrium molecular dynamics (EMD) simulations has been performed on several molten chloride systems in order to determine their thermal conductivity in the entire range of composition at two different temperatures: 1200 K and 1300 K. The EMD simulations are first principles type, as the potentials used to describe the interactions have been parametrized on the basis of first principle electronic structure calculations. In addition to the molten chlorides system, the model predictions are also compared to a recent similar EMD study on molten fluorides and with the few reliable experimental data available in the literature. The accuracy of the proposed model is within the reported numerical and/or experimental errors.

  2. Thermal conductivity of molten salt mixtures: Theoretical model supported by equilibrium molecular dynamics simulations.

    PubMed

    Gheribi, Aïmen E; Chartrand, Patrice

    2016-02-28

    A theoretical model for the description of thermal conductivity of molten salt mixtures as a function of composition and temperature is presented. The model is derived by considering the classical kinetic theory and requires, for its parametrization, only information on thermal conductivity of pure compounds. In this sense, the model is predictive. For most molten salt mixtures, no experimental data on thermal conductivity are available in the literature. This is a hindrance for many industrial applications (in particular for thermal energy storage technologies) as well as an obvious barrier for the validation of the theoretical model. To alleviate this lack of data, a series of equilibrium molecular dynamics (EMD) simulations has been performed on several molten chloride systems in order to determine their thermal conductivity in the entire range of composition at two different temperatures: 1200 K and 1300 K. The EMD simulations are first principles type, as the potentials used to describe the interactions have been parametrized on the basis of first principle electronic structure calculations. In addition to the molten chlorides system, the model predictions are also compared to a recent similar EMD study on molten fluorides and with the few reliable experimental data available in the literature. The accuracy of the proposed model is within the reported numerical and/or experimental errors. PMID:26931711

  3. Melting point trends and solid phase behaviors of model salts with ion size asymmetry and distributed cation charge.

    PubMed

    Lindenberg, E K; Patey, G N

    2015-07-14

    The melting point trends of model salts composed of coarse grain ions are examined using NPT molecular dynamics simulations. The model salts incorporate ion size asymmetry and distributed cation charge, which are two common features in ionic liquids. A series of single-phase and two-phase simulations are done at set temperatures with 50 K intervals for each salt, and the normal melting point is estimated within 50 K. The melting point trends are then established relative to a charge-centered, size symmetric salt with a normal melting point between 1250 K and 1300 K. We consider two sets of size asymmetric salts with size ratios up to 3:1; the melting point trends are different in each set. The lowest melting point we find is between 450 K and 500 K, which is a reduction of over 60% from the charge-centered, size symmetric case. In both sets, we find diversity in the solid phase structures. For all size ratios with small cation charge displacements, the salts crystallize with orientationally disordered cations. When the partial cation charge is far enough off-center in salts with ion size ratios near 1:1, the salts can become trapped in glassy states and have underlying crystal structures that are orientationally ordered. At ion size ratios near 3:1, the salts with large cation charge displacements show premelting transitions at temperatures as low as 300 K. After the premelting transition, these salts exist either as fast ion conductors, where the smaller anions move through a face centered cubic (fcc) cation lattice, or as plastic crystals, where ion pairs rotate on a fcc lattice.

  4. Salt effects on polyelectrolyte-ligand binding: comparison of Poisson-Boltzmann, and limiting law/counterion binding models.

    PubMed

    Sharp, K A; Friedman, R A; Misra, V; Hecht, J; Honig, B

    1995-08-01

    The theory for salt dependence of the free energy, entropy, and enthalpy of a polyelectrolyte in the PB (PB) model is extended to treat the nonspecific salt dependence of polyelectrolyte-ligand binding reactions. The salt dependence of the binding constant (K) is given by the difference in osmotic pressure terms between the reactants and products. For simple 1-1 salts it is shown that this treatment is equivalent to the general preferential interaction model for the salt dependence of binding [C. Anderson and M. Record (1993) Journal of Physical Chemistry, Vol. 97, pp. 7116-7126]. The salt dependence, entropy, and enthalpy are compared for the PB model and one specific form of the preferential interaction coefficient model that uses counterion condensation/limiting law (LL) behavior. The PB and LL models are applied to three ligand-polyelectrolyte systems with the same net ligand charge: a model sphere-cylinder binding reaction, a drug-DNA binding reaction, and a protein-DNA binding reaction. For the small ligands both the PB and limiting law models give (In K vs. In[salt]) slopes close in magnitude to the net ligand charge. However, the enthalpy/entropy breakdown of the salt dependence is quite different. In the PB model there are considerable contributions from electrostatic enthalpy and dielectric (water reorientation) entropy, compared to the predominant ion cratic (release) entropy in the limiting law model. The relative contributions of these three terms in the PB model depends on the ligand: For the protein, ion release entropy is the smallest contribution to the salt dependence of binding. The effect of three approximations made in the LL model is examined: These approximations are (1) the ligand behaves ideally, (2) the preferential interaction coefficient of the polyelectrolyte is unchanged upon ligand binding, and (3) the polyelectrolyte preferential interaction coefficient is given by the limiting law/counterion-condensation value. Analysis of the PB

  5. Transports and budgets of volume, heat, and salt from a global eddy-resolving ocean model

    SciTech Connect

    McCann, M.P.; Semtner, A.J. Jr.; Chervin, R.M.

    1994-07-01

    The results from an integration of a global ocean circulation model have been condensed into an analysis of the volume, heat, and salt transports among the major ocean basins. Transports are also broken down between the model`s Ekman, thermocline, and deep layers. Overall, the model does well. Horizontal exchanges of mass, heat, and salt between ocean basins have reasonable values: and the volume of North Atlantic Deep Water (NADW) transport is in general agreement with what limited observations exist. On a global basis the zonally integrated meridional heat transport is poleward at all latitudes except for the latitude band 30{degrees}S to 45{degrees}S. This anomalous transport is most likely a signature of the model`s inability to form Antarctic Intermediate (AAIW) and Antarctic bottom water (AABW) properly. Eddy heat transport is strong at the equator where its convergence heats the equatorial Pacific about twice as much as it heats the equatorial Atlantic. The greater heating in the Pacific suggests that mesoscale eddies may be a vital mechanism for warming and maintaining an upwelling portion of the global conveyor-belt circulation. The model`s fresh water transport compares well with observations. However, in the Atlantic there is an excessive southward transport of fresh water due to the absence of the Mediterranean outflow and weak northward flow of AAIW. Perhaps the model`s greatest weakness is the lack of strong AAIW and AABW circulation cells. Accurate thermohaline forcing in the North Atlantic (based on numerous hydrographic observations) helps the model adequately produce NADW. In contrast, the southern ocean is an area of sparse observation. Better thermohaline observations in this area may be needed if models such as this are to produce the deep convection that will achieve more accurate simulations of the global 3-dimensional circulation. 41 refs., 18 figs., 1 tab.

  6. Numerical modeling of water flow and salt transport in bare saline soil subjected to evaporation

    NASA Astrophysics Data System (ADS)

    Geng, Xiaolong; Boufadel, Michel C.

    2015-05-01

    A numerical study, based on a density-dependent variably saturated groundwater flow model MARUN, was conducted to investigate subsurface flow and salt transport in bare saline aquifers subjected to evaporation, which was simulated using the bulk aerodynamic formulation. As evaporation was assumed to depend on the pore moisture, the evaporation flux evolved gradually causing a gradual increase in the pore salinity. This is in contrast to prior studies where the high salinity was imposed instantaneously on the ground surface. Key factors likely affecting subsurface hydrodynamics were investigated, including saturated hydraulic conductivity, capillary drive, relative humidity in the air, and surrounding groundwater replenishment. The simulations showed two temporal regimes where the first consists of rapid evaporation for a duration of hours followed by slow evaporation, until evaporation ceases. In the absence of surrounding groundwater replenishment, evaporation-induced density gradient generated an upward water flow initially, and then the flow decreased at which time a high density salt "finger" formed and propagated downwards. Capillary properties and atmospheric condition had significant impacts on subsurface moisture distribution and salt migration in response to the evaporation. The results also suggested that the presence of subsurface water replenishment to the evaporation zone tended to produce a steady evaporation rate at the ground surface.

  7. A decision support model to assess vulnerability to salt water intrusion in the great bend prairie aquifer of Kansas

    USGS Publications Warehouse

    Sophocleous, M.; Ma, T.

    1998-01-01

    A relatively simple ground water decision support system (DSS) was developed to assist in identifying salt water vulnerable areas and in developing management policies to prevent salt water intrusion in central Kansas. The DSS is based on a combination of numerical modeling sensitivity analyses, multiple regression analyses, and classification procedures derived from our knowledge of the area. Six ground water salinity models are proposed to evaluate irrigation well permit applications. The choice of model depends on the availability of site-specific data. The DSS takes advantage of GIS database management procedures, and is applied to an actual salt water intrusion problem site in south-central Kansas. This approach can help local ground water management districts make better decisions on protecting ground water use in salt water vulnerable areas.

  8. Regional-scale hydrologic modeling of flow and reactive salt transport in the San Joaquin Valley, CA

    NASA Astrophysics Data System (ADS)

    Hopmans, J. W.; Schoups, G.

    2005-12-01

    A hydro-salinity model was developed to integrate subsurface hydrology with reactive salt transport for a 1,400 km2 study area in the San Joaquin Valley, CA. For the first time, such a modeling framework was used to reconstruct historical changes in salt storage by irrigated agriculture over the past 60 years. We show that patterns in soil and groundwater salinity were caused by spatial variations in soil hydrology, the switching from local groundwater to snowmelt water as the main irrigation water supply, and by occasional droughts. Gypsum dissolution was a critical component of the regional salt balance. Although results show that the total salt input and output were about equal for the past 20 years, the model also predicts salinization of the deeper aquifers, thereby questioning the sustainability of irrigated agriculture.

  9. Numerical Modeling of Water Flow and Salt Transport in Bare Saline Soil Subjected to Transient Evaporation

    NASA Astrophysics Data System (ADS)

    Geng, X.; Boufadel, M.; Saleh, F. S.

    2014-12-01

    It has been found that evaporation over bare soil plays an important role in subsurface solute transport processes. A numerical study, based on a density-dependent variably saturated groundwater flow model MARUN, was conducted to investigate subsurface flow and salt transport in bare saline aquifers subjected to transient evaporation. The bulk aerodynamic formulation was adopted to simulate transient evaporation rate at ground surface. Subsurface flow pattern, moisture distribution, and salt migration were quantified. Key factors likely affecting this process, including saturated hydraulic conductivity, capillary drive, air humidity, and surrounding water supply, were examined. The results showed that evaporation induced an upward flow pattern, which led to a high saline plume formed beneath the evaporation zone. In absence of surrounding water supply, as the humidity between the ground surface and air tended to equilibrium, evaporation-induced density gradient generated pore water circulations around the plume edge and caused the salt to migrate downwards with "finger" shapes. It was found that capillary properties and atmospheric condition had significant impacts on subsurface moisture distribution and salt migration in response to the evaporation. Larger capillary fringe and/or lower air humidity would allow evaporation to extract more water from the ground. It would induce a larger and denser saline plume formed beneath the evaporation zone. The results also suggested that the presence of the surrounding water supply (represented as a constant water table herein) could provide a steady evaporation rate at the ground surface; meanwhile, in response to the evaporation, a hydraulic gradient was formed from the water supply boundary, which induced an inclined upper saline plume with greater density far from the supply boundary.

  10. Comparison and Tensorial Formulation of Inelastic Constitutive Models of Salt Rock Behaviour and Efficient Numerical Implementatio

    NASA Astrophysics Data System (ADS)

    Nagel, T.; Böttcher, N.; Görke, U. J.; Kolditz, O.

    2014-12-01

    The design process of geotechnical installations includes the application of numerical simulation tools for safety assessment, dimensioning and long term effectiveness estimations. Underground salt caverns can be used for the storage of natural gas, hydrogen, oil, waste or compressed air. For their design one has to take into account fluctuating internal pressures due to different levels of filling, the stresses imposed by the surrounding rock mass, irregular geometries and possibly heterogeneous material properties [3] in order to estimate long term cavern convergence as well as locally critical wall stresses. Constitutive models applied to rock salt are usually viscoplastic in nature and most often based on a Burgers-type rheological model extended by non-linear viscosity functions and/or plastic friction elements. Besides plastic dilatation, healing and damage are sometimes accounted for as well [2]. The scales of the geotechnical system to be simulated and the laboratory tests from which material parameters are determined are vastly different. The most common material testing modalities to determine material parameters in geoengineering are the uniaxial and the triaxial compression tests. Some constitutive formulations in widespread use are formulated based on equivalent rather than tensorial quantities valid under these specific test conditions and are subsequently applied to heterogeneous underground systems and complex 3D load cases. We show here that this procedure is inappropriate and can lead to erroneous results. We further propose alternative formulations of the constitutive models in question that restore their validity under arbitrary loading conditions. For an efficient numerical simulation, the discussed constitutive models are integrated locally with a Newton-Raphson algorithm that directly provides the algorithmically consistent tangent matrix for the global Newton iteration of the displacement based finite element formulation. Finally, the finite

  11. Modelling the coupling between salt kinematics and subsidence evolution: Inferences for the Miocene evolution of the Transylvanian Basin

    NASA Astrophysics Data System (ADS)

    Tilita, Marius; Scheck-Wenderoth, Magdalena; Matenco, Liviu; Cloetingh, Sierd

    2015-09-01

    Large-scale diapiric salt movements affect the architecture of sedimentary basins and often prevent the understanding of their mechanics by hiding or distorting subsidence patterns. One good example is the evolution of the Transylvanian Basin, which formed during Miocene times in an area located in between the rapid slab rollback and continental collision recorded at the exterior of the Carpathians and the extension of the neighbouring Pannonian Basin. In the absence of major genetic fault systems, quantifying these external tectonic forcing factors requires an accurate reconstruction of subsidence evolution. Having the advent of a detailed 3D geometrical model of the Transylvanian Basin, we apply a 3D numerical modelling technique that couples salt re-distribution and subsidence evolution to quantify and understand the basin kinematics and vertical motions. Two techniques, backward and forward modelling are coupled in order to discriminate between salt migration driven by overburden and the influence of external tectonic forcing factors. The results show that salt kinematics was more complex than simple unidirectional migration, suggesting the existence of areas with significant subsidence hidden by the inward salt migration and areas with apparent large subsidence that are in reality artefacts of outwards salt migration. Additionally, the results suggest that parts of the basin have been successively affected by in- and out-ward salt migration events, an effect of localising subsidence and overburden. Furthermore, accelerated moments of salt migration took place during the main Miocene contraction events recorded at the exterior of the Carpathians, demonstrating that salt migration is enhanced by intraplate stresses. Our study also infers that the subsidence of the Transylvanian Basin is the result of the superposition of the contraction at the exterior of the orogenic chain and the back-arc extension.

  12. Assessing the wildlife habitat value of New England salt marshes: II. Model testing and validation.

    PubMed

    McKinney, Richard A; Charpentier, Michael A; Wigand, Cathleen

    2009-07-01

    We tested a previously described model to assess the wildlife habitat value of New England salt marshes by comparing modeled habitat values and scores with bird abundance and species richness at sixteen salt marshes in Narragansett Bay, Rhode Island USA. As a group, wildlife habitat value assessment scores for the marshes ranged from 307-509, or 31-67% of the maximum attainable score. We recorded 6 species of wading birds (Ardeidae; herons, egrets, and bitterns) at the sites during biweekly survey. Species richness (r (2)=0.24, F=4.53, p=0.05) and abundance (r (2)=0.26, F=5.00, p=0.04) of wading birds significantly increased with increasing assessment score. We optimized our assessment model for wading birds by using Akaike information criteria (AIC) to compare a series of models comprised of specific components and categories of our model that best reflect their habitat use. The model incorporating pre-classification, wading bird habitat categories, and natural land surrounding the sites was substantially supported by AIC analysis as the best model. The abundance of wading birds significantly increased with increasing assessment scores generated with the optimized model (r (2)=0.48, F=12.5, p=0.003), demonstrating that optimizing models can be helpful in improving the accuracy of the assessment for a given species or species assemblage. In addition to validating the assessment model, our results show that in spite of their urban setting our study marshes provide substantial wildlife habitat value. This suggests that even small wetlands in highly urbanized coastal settings can provide important wildlife habitat value if key habitat attributes (e.g., natural buffers, habitat heterogeneity) are present.

  13. 16. VIEW OF THE HOUSE INTERIOR, WEST AND NORTH WALLS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW OF THE HOUSE INTERIOR, WEST AND NORTH WALLS OF THE BASEMENT SHOWING FOUNDATION MATERIALS; LOOKING NORTHWEST. - Richard M. Fairbourn Farm, 170 West, 11,400 South, South Jordan, Salt Lake County, UT

  14. INTERIOR VIEW OF COLUMN TOPS. CARBON DIOXIDE BUBBLED THROUGH AMMONIONATED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF COLUMN TOPS. CARBON DIOXIDE BUBBLED THROUGH AMMONIONATED SALT BRINE TO MAKE BICARBONATE OF SODA. - Solvay Process Company, SA Wetside Building, Between Willis & Milton Avenue, Solvay, Onondaga County, NY

  15. 32. INTERIOR LAYOUT PLAN OF CROSSCUT STEAM AND DIESEL PLANT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. INTERIOR LAYOUT PLAN OF CROSSCUT STEAM AND DIESEL PLANT, TRACED FROM DRAWING BY C.C. MOORE AND CO., ENGINEERS. July 1947 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  16. 12. INTERIOR VIEW OF TRANSFORMER BUILDING, HIGHLINE PUMP PLANT, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. INTERIOR VIEW OF TRANSFORMER BUILDING, HIGHLINE PUMP PLANT, SHOWING NEW SWITCHES AND METERS, December 3, 1952 - Highline Canal & Pumping Station, South side of Salt River between Tempe, Phoenix & Mesa, Tempe, Maricopa County, AZ

  17. Modeling the Influence of River Flow and Salt Water Intrusion in the Terengganu Estuary, Malaysia

    NASA Astrophysics Data System (ADS)

    Lee, H. L.; Tangang, F.; Hamid, M. R.; Benson, Y.; Razali, M. R.

    2016-07-01

    Salinity intrusion is a major concern when the freshwater extraction station is located in the estuary. This paper attempt to predict the salt intrusion length in the upper stretch of estuary, by applying different magnitudes of freshwater discharge at the river regime. The integrated two dimensional hydrodynamics model associated with advection dispersion model was performed to investigate the salinity intrusion. The model was well calibrated and verified by the measured data undertaken during dry season. The maximum salt intrusion length to the threshold of salinity density is 1.00 ppt on the existing condition was predicted at 9.97 km from the river mouth. Moreover, with the magnitude of 100.00 m3s-1 and 30.00 m3s-1 freshwater discharges at the upstream boundary (Kpg Tanggol), it was predicted the maximum salt intrusion length was 11.84 km and 21.41 km, respectively, from the river mouth. Therefore, it was determined the minimum freshwater discharge of approximately 100.00 m3s-1 is required at the Kpg Tanggol river gauging station, in order to maintain the acceptable salinity levels at the Pulau Musang freshwater pump house. However, the actual water discharge at the Kpg Tanggol boundary station should be higher, since the minimum discharge does not take into consideration the amount of water extraction by the Pulau Musang and SATU pump stations. Further analysis is required to execute the consequences of water extraction toward the salinity intrusion in the Terengganu estuary that coupled with projected sea level rise.

  18. Comparison of empirical models with intensively observed data for prediction salt intrusion in the Sumjin River estuary, Korea

    NASA Astrophysics Data System (ADS)

    Shaha, D. C.; Cho, Y.-K.

    2009-03-01

    Intensive measurements of salt intrusion in the Sumjin River estuary were taken at high and low waters during both spring and neap tides in each season from August 2004 to April 2007. The estuary demonstrated partially- and well-mixed characteristics during the spring tide and stratified condition during the neap tide. The salt intrusion at high water varied from about 13.39 km in summer 2005 to 25.62 km in autumn 2006. The salt intrusion depended primarily on the freshwater discharges rather than those of spring-neap tidal oscillations. Analysis of three years of observed salinity data indicated that the salt intrusion length scale in the Sumjin River estuary was proportional to the river discharge to the -1/5 power. Five empirical models were applied to the Sumjin River estuary to explore the most suitable as an easy-to-use tool for prediction of the salt intrusion length as functions of the geometry, river discharge and tide. Comparative results showed that the Nguyen and Savenije (2006) model developed under both partially- and well-mixed estuaries yielded the most satisfactory results of all the models studied for computing the salt intrusion length in the Sumjin River estuary. Our study suggests that the model can generate reasonable results for stratified conditions also.

  19. Physical analog (centrifuge) model investigation of contrasting structural styles in the Salt Range and Potwar Plateau, northern Pakistan

    NASA Astrophysics Data System (ADS)

    Faisal, Shah; Dixon, John M.

    2015-08-01

    We use scaled physical analog (centrifuge) modeling to investigate along- and across-strike structural variations in the Salt Range and Potwar Plateau of the Himalayan foreland fold-thrust belt of Pakistan. The models, composed of interlayered plasticine and silicone putty laminae, comprise four mechanical units representing the Neoproterozoic Salt Range Formation (basal detachment), Cambrian-Eocene carapace sequence, and Rawalpindi and Siwalik Groups (Neogene molasse), on a rigid base representing the Indian craton. Pre-cut ramps simulate basement faults with various structural geometries. A pre-existing north-dipping basement normal fault under the model foreland induces a frontal ramp and a prominent fault-bend-fold culmination, simulating the Salt Range. The ramp localizes displacement on a frontal thrust that occurs out-of-sequence with respect to other foreland folds and thrusts. With a frontal basement fault terminating to the east against a right-stepping, east-dipping lateral ramp, deformation propagates further south in the east; strata to the east of the lateral ramp are telescoped in ENE-trending detachment folds, fault-propagation folds and pop-up structures above a thick basal detachment (Salt Range Formation), in contrast to translated but less-deformed strata with E-W-trending Salt-Range structures to the west. The models are consistent with Salt Range-Potwar Plateau structural style contrasts being due to basement fault geometry and variation in detachment thickness.

  20. Salted matters: modifying gelatine rheology for subduction thrust fault seismicity models

    NASA Astrophysics Data System (ADS)

    Brizzi, Silvia; Funiciello, Francesca; Corbi, Fabio; Di Giuseppe, Erika; Mojoli, Giorgio

    2016-04-01

    Most of the world's greatest earthquakes (Mw > 8.5, usually known as mega-earthquakes) occur at shallow depths along the subduction thrust fault (STF), i.e., the frictional interface between the subducting and overriding plates. The contribution of each subduction zone to the globally released seismic moment is not homogeneous, as well as the maximum Mw recorded in the instrumental and historical catalogues. To contribute to the unravelling of the seismic cycle along the STF, we used analogue models. Viscoelastic laboratory experiments realised with type A gelatine 2.5 wt% at 10 °C (Corbi et al., 2013) successfully simulate the seismic cycle along the STF, providing dynamic similarities with earthquakes in nature. However, analogue earthquakes are still not perfectly comparable to the natural prototype. In this work, we try to improve STF seismicity models by modifying the rheological behaviour of gelatine with the addition of NaCl. After testing salted gelatine rheology as a function of increasing concentration of NaCl, we selected 20 wt% NaCl gelatine, as this NaCl concentration provides a quasi-viscoelastic lithospheric analogue. Subduction interplate seismicity models were performed using both pure and salted gelatine to highlight the strengths and advantages this new material can provide for simulating the seismic cycle along the STF. We analysed analogue earthquakes Mw, recurrence time and rupture duration, which at first-order characterise the seismogenic behaviour of the STF. Results show that the experimental source parameters cover a wider range of values than obtained with pure gelatine, which is more compatible to the high variability globally observed. In particular, salted gelatine allows to simulate also smaller seismic events, giving the opportunity to apply the G-R law to the experimental seismicity of STF. Recurrence time and rupture duration are also characterised by an increased range of values when salted gelatine is used as analogue material

  1. A Salt Marsh Erosion Model: Interplay Between Biotic and Physical Factors at the Seaward Edge

    NASA Astrophysics Data System (ADS)

    Weiner, M. E.; Gilbert, L. A.; Alves, C. L.; Poole, P. A.; Schleicher, S.

    2014-12-01

    We present a new model to monitor the cycle of erosion occurring on the seaward edge of salt marshes as sea level rises. In our model, a southern New England salt marsh edge is stable when the bank edge exhibits a normal slope, is fringed by the low-marsh grass Spartina alterniflora, and the ribbed mussel Guekensia demissa is abundant. As erosion proceeds, the seaward bank becomes vertical (Stage 1), then undercut (Stage 2), then slumped (Stage 3), and finally a detached island (Stage 4) to expose a new vertical bank. If erosion progresses relatively slowly, S. alterniflora will dominate and G. demissa will be abundant. We applied this model to four sites at the Barn Island Salt Marsh in southeastern Connecticut. The central headland of the heavily mosquito-ditched Headquarters Marsh appears to be the most rapidly retreating: from 2006 to 2014, the seaward bank advanced two erosional stages and lost 3 m horizontally. This headland is dominated by low-marsh S. alterniflora, with mid-marsh grasses Distichlis spicata and Spartina patens also present on the seaward edge. By comparison, the nearby seaward edge of Wequetequock Point has only S. alterniflora and bare patches with no mid-marsh species. Wequetequock Point also appears more stable, with about one quarter of the seaward bank on a normal slope and abundant mussels (mean 4,500 m-2; max 20,000 m-2). Repeat surveys since 2006 show mussel vacancy rate is related to the rate of erosion. Open holes appear in normal slope banks due to wave erosion of rocks and other material embedded in the exposed peat. Banks that remain in the same erosion stage for multiple years show increased mussel occupation of these holes. In contrast, rapidly eroding banks at Barn Island Marsh have very few mussels (<100 m-2) and are typically fringed by grasses other than S. alterniflora. Much of the Barn Island Marsh bank is eroding too rapidly for mussel settlement and growth and normal marsh grass succession. In addition to documenting

  2. A salt oscillator in the glacial northern Atlantic? part II: A 'scale analysis' model

    NASA Astrophysics Data System (ADS)

    Birchfield, G. Edward; Broecker, Wallace S.

    1990-12-01

    A proposal has been made by Broecker et al. (1990) that rapid changes on a time scale of a thousand years or so, seen over much of the last major glacial in the Greenland ice core record, represent significant climate changes and are caused by a salt oscillator in the glacial Atlantic. This proposal is examined in terms of a rudimentary quantitative model. Scale analysis asserts that heat transported to the high-latitude atmosphere when the thermohaline circulation is turned on, is large enough to produce the melting rates found by Fairbanks (1989) for the time interval around that of the Younger Dryas event and that these melting rates are of the same order of magnitude as the mass flux associated with water vapor flux to the Pacific Ocean estimated by Broecker (1989). Scale analysis also suggests that the salinity fluxes associated with 1) the water vapor flux mechanism, 2) the rapid melting episodes of Fairbanks, 3) possibly ice sheet growth events, 4) net transport by the thermohaline circulation and 5) net transport by turbulent eddy mixing are roughly of the same order of magnitude and therefore may be important mechanisms for producing salinity oscillations on a time scale of a few thousands of years, (see Broecker, 1990). By integration of simple salt conservation equations, it is found that model oscillations with a period of a few thousand years occur over a significant range of salinity fluxes; estimated fluxes fall well within the range for which oscillations exist. The model also suggests that there may exist close coupling between the European-Scandinavian ice sheets and the bimodal response of the oscillator; that is, significant increases or decreases in continental ice volume may accompany each complete cycle of the oscillator. In addition, it appears that continental ice may be required for the salt oscillator to function. A crucial element, which cannot adequately be investigated with the present model, concerns the local effect of salinity

  3. Non-monotonic course of protein solubility in aqueous polymer-salt solutions can be modeled using the sol-mxDLVO model.

    PubMed

    Herhut, Marcel; Brandenbusch, Christoph; Sadowski, Gabriele

    2016-02-01

    Protein purification is often performed using cost-intensive chromatographic steps. To discover economic alternatives (e.g., crystallization), knowledge on protein solubility as a function of temperature, pH, and additives in solution as well as their concentration is required. State-of-the-art models for predicting protein solubility almost exclusively consider aqueous salt systems, whereas "salting-in" and "salting-out" effects induced by the presence of an additional polymer are not considered. Thus, we developed the sol-mxDLVO model. Using this newly developed model, protein solubility in the presence of one salt and one polymer, especially the non-monotonic course of protein solubility, could be predicted. Systems considered included salts (NaCl, Na-p-Ts, (NH(4))(2) SO(4)) and the polymer polyethylene glycol (MW: 2000 g/mol, 12000 g/mol) and proteins lysozyme from chicken egg white (pH 4 to 5.5) and D-xylose ketol-isomerase (pH 7) at 298.15 K. The results show that by using the sol-mxDLVO model, protein solubility in polymer-salt solutions can be modeled in good agreement with the experimental data for both proteins considered. The sol-mxDLVO model can describe the non-monotonic course of protein solubility as a function of polymer concentration and salt concentration, previously not covered by state-of-the-art models.

  4. The impact of ice I rheology on interior models of Ganymede: The elastic vs. the visco-elastic case

    NASA Astrophysics Data System (ADS)

    Steinbrügge, Gregor; Hussmann, Hauke; Sohl, Frank; Oberst, Jürgen

    2015-04-01

    Many investigations on key processes of icy satellites are driven by the rheological behavior of planetary ices. Future missions to Jupiter's icy moons (e.g. JUICE / Europa clipper) aimed at constraining the thickness of the outer ice shell using radio science and/or laser altimetry will have to address this problem. We investigate for the case of Ganymede under which conditions the ice I viscosity could be constrained by measuring the phase-lag of the tidal response using laser altimetry. In the absence of seismic data, interior structure models are constrained by the satellite's mean density and mean moment-of-inertia factor. One key observable to reduce the ambiguity of the corresponding structural models is the measurement of the dynamic response of the satellite's outer ice shells to tidal forces exerted by Jupiter and characterized by the body tide surface Love numbers h2 and k2. The Love number k2 measures the variation of the gravitational potential due to tidally induced internal redistribution of mass and can be inferred from radio science experiments. The Love number h2 is a measure for the tide-induced radial displacement of the satellite's surface. It is an advantage that Ganymede's surface displacement Love number h2 can be expected to be measured with a high accuracy using laser altimetry (Steinbrügge et al., 2014). However, the determination of the resulting ice thickness further depends on the possible existence of a liquid subsurface water ocean and on the tidally effective rheology of the outer ice shell (Moore and Schubert, 2003). Here, we distinguish between an elastic, visco-elastic or even fluid behavior in the sense of the Maxwell model and alternative rheological models. In the case of Ganymede the fluid case would imply high ice temperatures which are at odds with thermal equilibrium models calculated by Spohn and Schubert (2003). However the visco-elastic case is still possible. Laboratory measurements of ice I (e.g. Sotin et al., 1998

  5. A revised Pitzer model for low-temperature soluble salt assemblages at the Phoenix site, Mars

    NASA Astrophysics Data System (ADS)

    Toner, J. D.; Catling, D. C.; Light, B.

    2015-10-01

    The Wet Chemistry Laboratory (WCL) on the Mars Phoenix Lander measured ions in a soil-water extraction and found Na+, K+, H+ (pH), Ca2+, Mg2+, SO42-, ClO4-, and Cl-. Equilibrium models offer insights into salt phases that were originally present in the Phoenix soil, which dissolved to form the measured WCL solution; however, there are few experimental datasets for single cation perchlorates (ClO4-), and none for mixed perchlorates, at low temperatures, which are needed to build models. In this study, we measure ice and salt solubilities in binary and ternary solutions in the Na-Ca-Mg-ClO4 system, and then use this data, along with existing data, to construct a low-temperature Pitzer model for perchlorate brines. We then apply our model to a nominal WCL solution. Previous studies have modeled either freezing of a WCL solution or evaporation at a single temperature. For the first time, we model evaporation at subzero temperatures, which is relevant for dehydration conditions that might occur at the Phoenix site. Our model indicates that a freezing WCL solution will form ice, KClO4, hydromagnesite (3MgCO3·Mg(OH)2·3H2O), calcite (CaCO3), meridianiite (MgSO4·11H2O), MgCl2·12H2O, NaClO4·2H2O, and Mg(ClO4)2·6H2O at the eutectic (209 K). The total water held in hydrated salt phases at the eutectic is ∼1.2 wt.%, which is much greater than hydrated water contents when evaporation is modeled at 298.15 K (∼0.3 wt.%). Evaporation of WCL solutions at lower temperatures (down to 210 K) results in lower water activities and the formation of more dehydrated minerals, e.g. kieserite (MgSO4·H2O) instead of meridianiite. Potentially habitable brines, with water activity aw > 0.6, can occur when soil temperatures are above 220 K and when the soil liquid water content is greater than 0.4 wt.% (100 ×gH2O gsoil-1). In general, modeling indicates that mineral assemblages derived from WCL-type solutions are characteristic of the soil temperature, water content, and water

  6. Sensitivity of modeled atmospheric nitrogen species to variations in sea salt emissions in the North and Baltic Sea regions

    NASA Astrophysics Data System (ADS)

    Neumann, D.; Matthias, V.; Bieser, J.; Aulinger, A.; Quante, M.

    2015-10-01

    Coarse sea salt particles are emitted ubiquitously from the oceans' surfaces by wave breaking and bubble bursting processes. These particles impact atmospheric chemistry by affecting condensation of gas-phase species and nucleation of new fine particles, particularly in regions with high air pollution. In this study, atmospheric particle concentrations are modeled for the North and Baltic Sea regions, Northwestern Europe, using the Community Multiscale Air Quality (CMAQ) modeling system and evaluated against European Monitoring and Evaluation Programme (EMEP) measurement data. As model extension, sea salt emissions are scaled by water salinity because of low salinity in large parts of the Baltic Sea and in certain river estuaries. The resulting improvement in predicted sea salt concentrations is assessed. The contribution of surf zone emissions is separately considered. Additionally, the impact of sea salt particles on atmospheric nitrate, ammonium and sulfate concentrations is evaluated. The comparisons show that sea salt concentrations are commonly overestimated at coastal stations and partly underestimated when going inland. The introduced salinity scaling improves predicted Baltic Sea sea salt concentrations considerably. Dates of measured peak concentrations are appropriately reproduced by the model. The impact of surf zone emissions is negligible in both seas. Nevertheless, they might be relevant because surf zone emissions were cut at an upper threshold in this study. Deactivating sea salt leads to a minor increase of NH4+ and NO3- and a minor decrease of SO42- concentrations. However, the overall effect is very low and lower than the deviation from measurements. Size resolved measurements of Na+, NH4+, NO3-, and SO42- are needed for a more detailed analysis on the impact of sea salt particles.

  7. Field observations and morphodynamic modeling of spontaneous tidal network formation within a constructed salt marsh

    NASA Astrophysics Data System (ADS)

    D'Alpaos, A.; Lanzoni, S.; Marani, M.; Rinaldo, A.

    2007-12-01

    We have monitored and analyzed, through remote sensing and ancillary field surveys, the rapid (O(1) year) development of a tidal network within a newly established artificial salt marsh in the Venice Lagoon. After the construction of the salt marsh, a network of volunteer creeks established themselves away from an artificially constructed main channel (with mean and maximum annual headward-growth rates of 11 m/yr and 18 m/yr, respectively). The rapid formation of this system of tidal creeks provides a unique opportunity to test the reliability of a model of tidal network initiation and development, previously proposed by the authors. The restored marsh presents the characteristics of a controlled environment analogous to a large-scale field laboratory, as it allows comparison of the morphologic features of real and simulated network structures under the reasonable assumption of neglecting accretion and deposition processes over the timescales of observation. Our results compare favorably with observational evidence, showing that the model proves reasonably capable of reproducing the main features of the actual channel-network patterns. The model reproduces statistical network characteristics of eco-morphodynamic and hydrodynamic relevance and captures the dominant modes of the network-incision process.

  8. Spontaneous tidal network formation within a constructed salt marsh: Observations and morphodynamic modelling

    NASA Astrophysics Data System (ADS)

    D'Alpaos, Andrea; Lanzoni, Stefano; Marani, Marco; Bonometto, Andrea; Cecconi, Giovanni; Rinaldo, Andrea

    2007-11-01

    We have monitored and analyzed, through remote sensing and ancillary field surveys, the rapid (O(1) year) development of a tidal network within a newly established artificial salt marsh in the Venice Lagoon. After the construction of the salt marsh, a network of volunteer creeks established themselves away from an artificially constructed main channel (with mean and maximum annual headward-growth rates of 11 m/yr and 18 m/yr, respectively). The rapid formation of this system of tidal creeks provides a unique opportunity to test the reliability of a model of tidal network initiation and development, previously proposed by the authors. The restored marsh presents the characteristics of a controlled environment analogous to a large-scale field laboratory, as it allows comparison of the morphologic features of real and simulated network structures under the reasonable assumption of neglecting accretion and deposition processes over the timescales of observation. Our results compare favorably with observational evidence, showing that the model proves reasonably capable of reproducing the main features of the actual channel-network patterns. The model reproduces statistical network characteristics of eco-morphodynamic and hydrodynamic relevance and captures the dominant modes of the network-incision process.

  9. Steady-State Creep of Rock Salt: Improved Approaches for Lab Determination and Modelling

    NASA Astrophysics Data System (ADS)

    Günther, R.-M.; Salzer, K.; Popp, T.; Lüdeling, C.

    2015-11-01

    Actual problems in geotechnical design, e.g., of underground openings for radioactive waste repositories or high-pressure gas storages, require sophisticated constitutive models and consistent parameters for rock salt that facilitate reliable prognosis of stress-dependent deformation and associated damage. Predictions have to comprise the active mining phase with open excavations as well as the long-term development of the backfilled mine or repository. While convergence-induced damage occurs mostly in the vicinity of openings, the long-term behaviour of the backfilled system is dominated by the damage-free steady-state creep. However, because in experiments the time necessary to reach truly stationary creep rates can range from few days to years, depending mainly on temperature and stress, an innovative but simple creep testing approach is suggested to obtain more reliable results: A series of multi-step tests with loading and unloading cycles allows a more reliable estimate of stationary creep rate in a reasonable time. For modelling, we use the advanced strain-hardening approach of Günther-Salzer, which comprehensively describes all relevant deformation properties of rock salt such as creep and damage-induced rock failure within the scope of an unified creep ansatz. The capability of the combination of improved creep testing procedures and accompanied modelling is demonstrated by recalculating multi-step creep tests at different loading and temperature conditions. Thus reliable extrapolations relevant to in-situ creep rates (10^{-9} to 10^{-13} s^{-1}) become possible.

  10. Proteomic and phosphoproteomic analysis of renal cortex in a salt-load rat model of advanced kidney damage

    PubMed Central

    Jiang, Shaoling; He, Hanchang; Tan, Lishan; Wang, Liangliang; Su, Zhengxiu; Liu, Yufeng; Zhu, Hongguo; Zhang, Menghuan; Hou, Fan Fan; Li, Aiqing

    2016-01-01

    Salt plays an essential role in the progression of chronic kidney disease and hypertension. However, the mechanisms underlying pathogenesis of salt-induced kidney damage remain largely unknown. Here, Sprague-Dawley rats, that underwent 5/6 nephrectomy (5/6Nx, a model of advanced kidney damage) or sham operation, were treated for 2 weeks with a normal or high-salt diet. We employed aTiO2 enrichment, iTRAQ labeling and liquid-chromatography tandem mass spectrometry strategy for proteomic and phosphoproteomic profiling of the renal cortex. We found 318 proteins differentially expressed in 5/6Nx group relative to sham group, and 310 proteins significantly changed in response to salt load in 5/6Nx animals. Totally, 1810 unique phosphopeptides corresponding to 550 phosphoproteins were identified. We identified 113 upregulated and 84 downregulated phosphopeptides in 5/6Nx animals relative to sham animals. Salt load induced 78 upregulated and 91 downregulated phosphopeptides in 5/6Nx rats. The differentially expressed phospholproteins are important transporters, structural molecules, and receptors. Protein-protein interaction analysis revealed that the differentially phosphorylated proteins in 5/6Nx group, Polr2a, Srrm1, Gsta2 and Pxn were the most linked. Salt-induced differential phosphoproteins, Myh6, Lmna and Des were the most linked. Altered phosphorylation levels of lamin A and phospholamban were validated. This study will provide new insight into pathogenetic mechanisms of chronic kidney disease and salt sensitivity. PMID:27775022

  11. Deformations of the Protection Shelf in the "Wapno" Salt Mine, Based on Model Studies

    NASA Astrophysics Data System (ADS)

    Kortas, Grzegorz; Maj, Agnieszka

    2014-12-01

    The catastrophic mine failure resulting from the inrush of water into the Wapno Salt Mine was probably caused by a fracture in the roof protection shelf. The purpose of the present study was to apply the method of the homogenization of the multi-level room-and-pillar structure in the Wapno Salt Mine for 3D+t modelling of the elastic-viscous medium to determine the distribution of stress and strain, and, on that basis, to estimate the geomechanical conditions existing in the roof shelf. This paper presents briefly the spatial development of the salt mine's structure and the results of the surveying measurements carried out during the salt mine's operation and after the mine was flooded. Those results constituted a basis for the verification of the introduced homogenization parameters, i.e. the time-dependent changes of the elasticity modulus and the susceptibility to creep at particular salt mine's levels. A simulated process demonstrated the development of positive values of principle stresses, increasing with time, and of omnidirectional tensile strains. In such conditions, the cracking of the protection shelf body could proceed, also with opening of water flow paths from the dome cap into the salt mine's workings. This paper presents a new research method, the results of its application, and the obtained distribution of stresses and strains that can be useful for the assessment of water hazard in other salt mines. Katastrofa górnicza wywołana wdarciem wody do kopalni soli w Wapnie spowodowana była prawdopodobnie pęknięciem ochronnej półki stropowej. Celem tej pracy było zastosowanie metody homogenizacji struktury komorowo-filarowej wielopoziomowej kopalni Wapno do modelowania ośrodka sprężysto-lepkiego 3D+t dla określenia rozkładu naprężeń i odkształceń oraz na tej podstawie oszacowania warunków geomechanicznych w półce stropowej. W pracy przedstawiono krótko rozwój przestrzenny struktury kopalni oraz wyniki przeprowadzonych pomiar

  12. Mathematical modelling of the uptake and transport of salt in plant roots.

    PubMed

    Foster, Kylie J; Miklavcic, Stanley J

    2013-11-01

    In this paper, we present and discuss a mathematical model of ion uptake and transport in roots of plants. The underlying physical model of transport is based on the mechanisms of forced diffusion and convection. The model can take account of local variations in effective ion and water permeabilities across the major tissue regions of plant roots, represented through a discretized coupled system of governing equations including mass balance, forced diffusion, convection and electric potential. We present simulation results of an exploration of the consequent enormous parameter space. Among our findings we identify the electric potential as a major factor affecting ion transport across, and accumulation in, root tissues. We also find that under conditions of a constant but realistic level of bulk soil salt concentration and plant-soil hydraulic pressure, diffusion plays a significant role even when convection by the water transpiration stream is operating.

  13. Progress in Studying Salt Secretion from the Salt Glands in Recretohalophytes: How Do Plants Secrete Salt?

    PubMed Central

    Yuan, Fang; Leng, Bingying; Wang, Baoshan

    2016-01-01

    To survive in a saline environment, halophytes have evolved many strategies to resist salt stress. The salt glands of recretohalophytes are exceptional features for directly secreting salt out of a plant. Knowledge of the pathway(s) of salt secretion in relation to the function of salt glands may help us to change the salt-tolerance of crops and to cultivate the extensive saline lands that are available. Recently, ultrastructural studies of salt glands and the mechanism of salt secretion, particularly the candidate genes involved in salt secretion, have been illustrated in detail. In this review, we summarize current researches on salt gland structure, salt secretion mechanism and candidate genes involved, and provide an overview of the salt secretion pathway and the asymmetric ion transport of the salt gland. A new model recretohalophyte is also proposed. PMID:27446195

  14. Modeling of the T S D E Heater Test to Investigate Crushed Salt Reconsolidation and Rock Salt Creep for the Underground Disposal of High-Level Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Blanco Martin, L.; Rutqvist, J.; Birkholzer, J. T.; Wolters, R.; Lux, K. H.

    2014-12-01

    Rock salt is a potential medium for the underground disposal of nuclear waste because it has several assets, in particular its water and gas tightness in the undisturbed state, its ability to heal induced fractures and its high thermal conductivity as compared to other shallow-crustal rocks. In addition, the run-of-mine, granular salt, may be used to backfill the mined open spaces. We present simulation results associated with coupled thermal, hydraulic and mechanical processes in the TSDE (Thermal Simulation for Drift Emplacement) experiment, conducted in the Asse salt mine in Germany [1]. During this unique test, conceived to simulate reference repository conditions for spent nuclear fuel, a significant amount of data (temperature, stress changes and displacements, among others) was measured at 20 cross-sections, distributed in two drifts in which a total of six electrical heaters were emplaced. The drifts were subsequently backfilled with crushed salt. This test has been modeled in three-dimensions, using two sequential simulators for flow (mass and heat) and geomechanics, TOUGH-FLAC and FLAC-TOUGH [2]. These simulators have recently been updated to accommodate large strains and time-dependent rheology. The numerical predictions obtained by the two simulators are compared within the framework of an international benchmark exercise, and also with experimental data. Subsequently, a re-calibration of some parameters has been performed. Modeling coupled processes in saliniferous media for nuclear waste disposal is a novel approach, and in this study it has led to the determination of some creep parameters that are very difficult to assess at the laboratory-scale because they require extremely low strain rates. Moreover, the results from the benchmark are very satisfactory and validate the capabilities of the two simulators used to study coupled thermal, mechanical and hydraulic (multi-component, multi-phase) processes relative to the underground disposal of high

  15. Hanford Supplemental Treatment: Literature and Modeling Review of SRS HLW Salt Dissolution and Fractional Crystallization

    SciTech Connect

    Choi, A. S.; Flach, G. P.; Martino, C. J.; Zamecnik, J. R.; Harris, M. K.; Wilmarth, W. R.; Calloway, T. B.

    2005-03-23

    In order to accelerate waste treatment and disposal of Hanford tank waste by 2028, the Department of Energy (DOE) and CH2M Hill Hanford Group (CHG), Inc. are evaluating alternative technologies which will be used in conjunction with the Waste Treatment Plant (WTP) to safely pretreat and immobilize the tank waste. Several technologies (Bulk Vitrification and Steam Reforming) are currently being evaluated for immobilizing the pretreated waste. Since the WTP does not have sufficient capacity to pretreat all the waste going to supplemental treatment by the 2028 milestone, two technologies (Selective Dissolution and Fractional Crystallization) are being considered for pretreatment of salt waste. The scope of this task was to: (1) evaluate the recent Savannah River Site (SRS) Tank 41 dissolution campaign and other literature to provide a more complete understanding of selective dissolution, (2) provide an update on the progress of salt dissolution and modeling activities at SRS, (3) investigate SRS experience and outside literature sources on industrial equipment and experimental results of previous fractional crystallization processes, and (4) evaluate recent Hanford AP104 boildown experiments and modeling results and recommend enhancements to the Environmental Simulation Program (ESP) to improve its predictive capabilities. This report provides a summary of this work and suggested recommendations.

  16. Measuring and modeling the salting-out effect in ammonium sulfate solutions.

    PubMed

    Wang, Chen; Lei, Ying Duan; Endo, Satoshi; Wania, Frank

    2014-11-18

    The presence of inorganic salts significantly influences the partitioning behavior of organic compounds between environmentally relevant aqueous phases, such as seawater or aqueous aerosol, and other, nonaqueous phases (gas phase, organic phase, etc.). In this study, salting-out coefficients (or Setschenow constants) (KS [M(-1)]) for 38 diverse neutral compounds in ammonium sulfate ((NH4)2SO4) solutions were measured using a shared headspace passive dosing method and a negligible depletion solid phase microextraction technique. The measured KS were all positive, varied from 0.216 to 0.729, and had standard errors in the range of 0.006-0.060. Compared to KS for sodium chloride (NaCl) in the literature, KS values for (NH4)2SO4 are always higher for the same compound, suggesting a higher salting-out effect of (NH4)2SO4. A polyparameter linear free energy relationship (pp-LFER) for predicting KS in (NH4)2SO4 solutions was generated using the experimental data for calibration. pp-LFER predicted KS agreed well with measured KS reported in the literature. KS for (NH4)2SO4 was also predicted using the quantum-chemical COSMOtherm software and the thermodynamic model AIOMFAC. While COSMOtherm generally overpredicted the experimental KS, predicted and experimental values were correlated. Therefore, a fitting factor needs to be applied when using the current version of COSMOtherm to predict KS. AIOMFAC tends to underpredict the measured KS((NH4)2SO4) but always overpredicts KS(NaCl). The prediction error is generally larger for KS(NaCl) than for KS((NH4)2SO4). AIOMFAC also predicted a dependence of KS on the salt concentrations, which is not observed in the experimental data. In order to demonstrate that the models developed and calibrated in this study can be applied to estimate Setschenow coefficients for atmospherically relevant compounds involved in secondary organic aerosol formation based on chemical structure alone, we predicted and compared KS for selected

  17. High-Albedo Salt Crusts on the Tropical Ocean of Snowball Earth: Measurements and Modeling

    NASA Astrophysics Data System (ADS)

    Carns, R.; Light, B.; Warren, S. G.

    2014-12-01

    During a Snowball Earth event, almost all of the ocean surface first freezes as sea ice. As in modern sea ice, trapped inclusions of liquid brine permeate the ice cover. As the ice grows and cools, salt crystals precipitate within the inclusions. At -23C, the most abundant salt in seawater, sodium chloride, begins to precipitate as the dihydrate mineral hydrohalite (NaCl·2H2O). Crystals of hydrohalite within the sea ice scatter light. Measurements of cold, natural sea ice show a broadband albedo increase of 10-20% when salt precipitates. Such snow-free natural sea ice with a surface temperature below -23C is rare on modern Earth, but would have been common in tropical regions of a Snowball Earth where evaporation exceeded precipitation. The persistent cold and lack of summer melt on the Snowball ocean surface, combined with net evaporation, is hypothesized to yield lag deposits of hydrohalite crystals on the ice surface. To investigate this process, we prepared laboratory-grown sea ice in a 1000 liter tank in a walk-in freezer laboratory. The ice was cooled below -23 C and the surface sprayed with a 23% NaCl solution to create a layer of hydrohalite-enriched ice, a proxy for lag deposits that would have formed over long periods of surface sublimation. We have developed a novel technique for measuring the spectral albedo of ice surfaces in the laboratory; this technique was used to monitor the evolution of the surface albedo of our salt crust as the ice matrix sublimated away leaving a layer of fine-grained hydrohalite crystals. Measurements of this hydrohalite surface crust show a very high albedo, comparable to fresh snow at visible wavelengths and significantly larger than fresh snow at near infrared wavelengths. Broadband albedos are 0.55 for bare artificial sea ice at -30C, 0.75 for ice containing 25% hydrohalite by volume, 0.84 after five days of desiccation and 0.93 after 47 days of desiccation. Using our laboratory measurements, along with estimates of

  18. Interaction between crustal tectonics and salt deformation in the Eastern Sardinian margin, Western Tyrrhenian Sea: seismic data and analogue modelling

    NASA Astrophysics Data System (ADS)

    Vendeville, Bruno; Lymer, Gael; Gaullier, Virginie; Chanier, Frank; Maillard, Agnes; Sage, Françoise; Lofi, Johanna; Thinon, Isabelle

    2014-05-01

    by analogue modelling) show that basement fault slip and tilting (Eastward or Westward) was accommodated by lateral flow of salt, which thinned upslope and inflated downslope, while the overlying sediments remained sub-horizontal.

  19. SALMO and S3M: A Saliva Model and a Single Saliva Salt Model for Equilibrium Studies

    PubMed Central

    De Stefano, Concetta

    2015-01-01

    A model of synthetic saliva (SALMO, SALiva MOdel) is proposed for its use as standard medium in in vitro equilibrium and speciation studies of real saliva. The concentrations come out from the literature analysis of the composition of both real saliva and synthetic saliva. The chief interactions of main inorganic components of saliva, as well as urea and amino acids, are taken into account on the basis of a complex formation model, which also considers the dependence of the stability constants of these species on ionic strength and temperature. These last features allow the modelling of the speciation of saliva in different physiological conditions deriving from processes like dilution, pH, and temperature changes. To simplify equilibrium calculations, a plain approach is also proposed, in order to take into account all the interactions among the major components of saliva, by considering the inorganic components of saliva as a single 1 : 1 salt (MX), whose concentration is cMX = (1/2)∑ci (ci = analytical concentration of all the ions) and z ion charge calculated as z=±(I/cMX)1/2 = ±1.163. The use of the Single Saliva Salt Model (S3M) considerably reduces the complexity of the systems to be investigated. In fact, only four species deriving from internal ionic medium interactions must be considered. PMID:25733975

  20. Speciation of the major inorganic salts in atmospheric aerosols of Beijing, China: Measurements and comparison with model

    NASA Astrophysics Data System (ADS)

    Tang, Xiong; Zhang, Xiaoshan; Ci, Zhijia; Guo, Jia; Wang, Jiaqi

    2016-05-01

    In the winter and summer of 2013-2014, we used a sampling system, which consists of annular denuder, back-up filter and thermal desorption set-up, to measure the speciation of major inorganic salts in aerosols and the associated trace gases in Beijing. This sampling system can separate volatile ammonium salts (NH4NO3 and NH4Cl) from non-volatile ammonium salts ((NH4)2SO4), as well as the non-volatile nitrate and chloride. The measurement data was used as input of a thermodynamic equilibrium model (ISORROPIA II) to investigate the gas-aerosol equilibrium characteristics. Results show that (NH4)2SO4, NH4NO3 and NH4Cl were the major inorganic salts in aerosols and mainly existed in the fine particles. The sulfate, nitrate and chloride associated with crustal ions were also important in Beijing where mineral dust concentrations were high. About 19% of sulfate in winter and 11% of sulfate in summer were associated with crustal ions and originated from heterogeneous reactions or direct emissions. The non-volatile nitrate contributed about 33% and 15% of nitrate in winter and summer, respectively. Theoretical thermodynamic equilibrium calculations for NH4NO3 and NH4Cl suggest that the gaseous precursors were sufficient to form stable volatile ammonium salts in winter, whereas the internal mixing with sulfate and crustal species were important for the formation of volatile ammonium salts in summer. The results of the thermodynamic equilibrium model reasonably agreed with the measurements of aerosols and gases, but large discrepancy existed in predicting the speciation of inorganic ammonium salts. This indicates that the assumption on crustal species in the model was important for obtaining better understanding on gas-aerosol partitioning and improving the model prediction.

  1. Ion diffusion coefficients model and molar conductivities of ionic salts in aprotic solvents.

    PubMed

    Garrido, Leoncio; Mejía, Alberto; García, Nuria; Tiemblo, Pilar; Guzmán, Julio

    2015-02-19

    In the study of the electric properties of electrolytes, the determination of the diffusion coefficients of the species that intervene in the charge transport process is of great importance, particularly that of the free ions (D(+) and D(-)), the only species that contribute to the conductivity. In this work we propose a model that allows, with reasonable assumptions, determination of D(+) and D(-), and the degree of dissociation of the salt, α, at different concentrations, using the diffusion coefficients experimentally obtained with NMR. Also, it is shown that the NMR data suffice to estimate the conductivity of the electrolytes. The model was checked by means of experimental results of conductivity and NMR diffusion coefficients obtained with solutions of lithium triflate in ethylene and propylene carbonates, as well as with other results taken from the literature. PMID:25603311

  2. Photodynamics of optical excitations in one-dimensional models for organic salts.

    NASA Astrophysics Data System (ADS)

    Rincon, Julian; Al-Hassanieh, Khaled; Feiguin, Adrian; Dagotto, Elbio

    2015-03-01

    We study the time-dependent evolution of photogenerated optical excitations in a model for organic salts, using the density matrix renormalization group method. The model consists of the quarter-filled one-dimensional extended Peierls-Hubbard Hamiltonian interacting with a classical time-dependent electric field. Our main results show that the overall dynamics of the dominating 4kF bond and charge instabilities corresponds to a gigantic fluctuating behavior as a function of time, whereas the 2kF state remains largely unaffected. These results remain valid regardless of the nature of the optical excitations and whether the system is driven resonantly or not. We compare our calculations with experimental pump-and-probe ultrafast spectroscopy studies of the optical conductivity in organic compounds.

  3. Modeling W44 as a Supernova Remnant in a Density Gradient with a Partially Formed Dense Shell and Thermal Conduction in the Hot Interior. I. The Analytical Model

    NASA Astrophysics Data System (ADS)

    Cox, Donald P.; Shelton, R. L.; Maciejewski, Witold; Smith, Randall K.; Plewa, Tomasz; Pawl, Andrew; Różyczka, Michał

    1999-10-01

    We show that many observations of W44, a supernova remnant in the Galactic plane at a distance of about 2500 pc, are remarkably consistent with the simplest realistic model. The model remnant is evolving in a smooth ambient medium of fairly high density, about 6 cm-3 on average, with a substantial density gradient. At the observed time it has an age of about 20,000 yr, consistent with the age of the associated pulsar, and a radius of 11-13 pc. Over most of the outer surface, radiative cooling has become important in the postshock gas; on the denser end there has been sufficient compression of the cooled gas to develop a very thin dense half-shell of about 450 Msolar, supported against further compression by nonthermal pressure. The half-shell has an expansion velocity of about 150 km s-1 and is bounded on the outer surface by a radiative shock with that speed. The deep interior of the remnant has a substantial and fairly uniform pressure, as expected from even highly idealized adiabatic models; our model, however, is never adiabatic. Thermal conduction, while the remnant is young and hot, reduces the need for expansion cooling and prevents formation of the intensely vacuous cavity characteristic of adiabatic evolution. It radically alters the interior structure from what one might expect from familiarity with the Sedov solution. At the time of observation, the temperature in the center is about 6×106 K, the density about 1 cm-3. The temperature decreases gradually away from the center, while the density rises. Farther out, where cooling is becoming important, the pressure drops precipitously, and the temperature in the denser gas there is quite low. We provide several analytic tools for the assembly of models of this type. We review the early evolution and shell formation analyses and their generalizations to evolution in a density gradient. We also calculate the density and temperature that should be present in the hot interior of a remnant with thermal

  4. ABA flow modelling in Ricinus communis exposed to salt stress and variable nutrition

    PubMed Central

    Peuke, Andreas D.

    2016-01-01

    In a series of experiments with Ricinus communis, abscisic acid (ABA) concentrations in tissues and transport saps, its de novo biosynthesis, long-distance transport, and metabolism (degradation) were affected by nutritional conditions, nitrogen (N) source, and nutrient limitation, or salt stress. In the present study these data were statistically re-evaluated, and new correlations presented that underpin the importance of this universal phytohormone. The biggest differences in ABA concentration were observed in xylem sap. N source had the strongest effect; however, nutrient limitation (particularly phosphorus limitation) and salt also had significant effects. ABA was found in greater concentration in phloem sap compared with xylem sap; however, the effect of treatment on ABA concentration in phloem was lower. In the leaves, ABA concentration was most variable compared with the other tissues. This variation was only affected by the N source. In roots, ABA was significantly decreased by nutrient limitation. Of the compartments in which ABA was quantified, xylem sap ABA concentration was most significantly correlated with leaf stomatal conductance and leaf growth. Additionally, ABA concentration in xylem was significantly correlated to that in phloem, indicating a 6-fold concentration increase from xylem to phloem. The ABA flow model showed that biosynthesis of ABA in roots affected the xylem flow of ABA. Moreover, ABA concentration in xylem affected the degradation of the phytohormone in shoots and also its export from shoots via phloem. The role of phloem transport is discussed since it stimulates ABA metabolism in roots. PMID:27440939

  5. Salt tectonics on Venus

    SciTech Connect

    Wood, C.A.; Amsbury, D.

    1986-05-01

    The discovery of a surprisingly high deuterium/hydrogen ratio on Venus immediately led to the speculation that Venus may have once had a volume of surface water comparable to that of the terrestrial oceans. The authors propose that the evaporation of this putative ocean may have yielded residual salt deposits that formed various terrain features depicted in Venera 15 and 16 radar images. By analogy with models for the total evaporation of the terrestrial oceans, evaporite deposits on Venus should be at least tens to hundreds of meters thick. From photogeologic evidence and in-situ chemical analyses, it appears that the salt plains were later buried by lava flows. On Earth, salt diapirism leads to the formation of salt domes, anticlines, and elongated salt intrusions - features having dimensions of roughly 1 to 100 km. Due to the rapid erosion of salt by water, surface evaporite landforms are only common in dry regions such as the Zagros Mountains of Iran, where salt plugs and glaciers exist. Venus is far drier than Iran; extruded salt should be preserved, although the high surface temperature (470/sup 0/C) would probably stimulate rapid salt flow. Venus possesses a variety of circular landforms, tens to hundreds of kilometers wide, which could be either megasalt domes or salt intrusions colonizing impact craters. Additionally, arcurate bands seen in the Maxwell area of Venus could be salt intrusions formed in a region of tectonic stress. These large structures may not be salt features; nonetheless, salt features should exist on Venus.

  6. Analysis of Multistage and Other Creep Data for Domal Salts

    SciTech Connect

    Munson, D.E.

    1998-10-01

    There have existed for some time relatively sparse creep databases for a number of domal salts. Although all of these data were analyzed at the time they were reported, to date there has not been a comprehensive, overall evaluation within the same analysis framework. Such an evaluation may prove of value. The analysis methodology is based on the Multimechanism Deformation (M-D) description of salt creep and the corresponding model parameters determined from conventional creep tests. The constitutive model of creep wss formulated through application of principles involved in micromechanical modeling. It was possible, at minimum, to obtain the steady state parameters of the creep model from the data on the domal salts. When this was done, the creep of the domal salts, as compared to the well-defined Waste Isolation Pilot Plant (WIPP) bedded clean salt, was either essentially identical to, or significantly harder (more creep resistant) than WIPP salt. Interestingly, the domal salts form two distinct groups, either sofl or hard, where the difference is roughly a factor often in creep rate between the twcl groups. As might be expected, this classification corresponds quite well to the differences in magnitude of effective creep volume losses of the Strategic Petroleum Reserve (SPR) caverns as determined by the CAVEMAN cavern pressure history analysis, depending upon the specific dome or region within the dome. Creep response shoulcl also correlate to interior cavern conditions that produce salt falls. WMle, in general, the caverns in hard sah have a noticeably greater propensity for salt falls, a smaller number of similar events are exhibited even in the caverns in soft salt.

  7. Numerical modelling of salt diapirism and the surrounding temperature field during thin-skinned extension

    NASA Astrophysics Data System (ADS)

    Thieulot, Cedric; Harms, Guido

    2016-04-01

    The occurrence of salt diapirs is strongly associated with potential geothermal and hydrocarbon energy sources. Many numerical modelling studies of diapirism have been done in the past, though very few of these in fact use geologically realistic settings and materials. Besides, only analogue and structural studies have been done on full scale diapirism during thin-skinned extension. Two-dimensional numerical modelling of this problem using a Finite Element code aims at addressing the following questions: which geometrical or material parameters affect the growth rate and shape of the diapir and how? what is the effect of this diapirism on the temperature field and surface heat flux? How does the inclusion of simple surface processes influence these observations to first order ? Our results show that, in compliance with both analogue modelling and structural geological studies, a diapir formed during thin-skinned extension undergoes three phases: reactional piercement, active piercement and passive piercement. Extension rates directly influence the total time required for the diapir to reach the surface, as well as how long the system remains in a state of reactional diapirism, which both affect the shape of the resulting diapir. Erosion efficiency is found to affect the growth rate of the diapir during its active stage and the total rising time, which affects in turn its the shape. The density contrast between the salt and the sediments also influences the growth rate during active and passive piercement. Finally, the temperature surrounding a rising diapir (especially in the region above it) is found to be heightened by a few dozens of degrees.

  8. Salt marsh retreat induced by wind waves: experiments, field and modeling

    NASA Astrophysics Data System (ADS)

    Solari, L.; Francalanci, S.; Bendoni, M.; Cappietti, L.

    2013-12-01

    Edge erosion of salt marshes due to surface waves and tide forcing is likely the chief mechanism that models marsh boundaries and by which salt marshes in worldwide areas are being lost. To address this problem, an experimental investigation in a laboratory flume and field measurements collected in the lagoon of Venice were conducted to understand the main processes controlling marsh edge retreat with a focus on the erosion mechanisms caused by the impact of wind waves in the case of various tidal levels. A physical model reproducing a salt marsh bank was built inside a long wave current flume where random surface waves have been generated according to a given wave spectrum. The physical model was constructed with the original soil of salt marshes from the Venice Lagoon, while the wave climate was reproduced according to field measurements. In order to reveal the effect of vegetation on bank stability, two identical banks were built but for the inclusion of halophytic plants. A first set of experiments was conducted reproducing only tidal waves, a second set with wind waves superimposed to the tide. A third set o f experiments were aimed to investigate the dynamic impact and transmission of the waves on and within the bank. The following quantities were collected during the experiments: water content and pore water pressure inside the bank, water levels and velocities at various distances from the bank, dynamic pressures on the bank edge surface and internal pressure fluctuations due to wave impact. Bank geometry profile and bottom topography at different times have also been collected to characterize the erosion rate with time and the evolution of bank retreat. Two types of mass failures were observed during the experiments: slides and toppling failures. The latter were most frequently observed failures, consisting in the toppling of blocks and were often the consequence of the presence of deep tension cracks. In most cases the impact of wind waves caused the

  9. Dynamic modelling and simulation of linear Fresnel solar field model based on molten salt heat transfer fluid

    NASA Astrophysics Data System (ADS)

    Hakkarainen, Elina; Tähtinen, Matti

    2016-05-01

    Demonstrations of direct steam generation (DSG) in linear Fresnel collectors (LFC) have given promising results related to higher steam parameters compared to the current state-of-the-art parabolic trough collector (PTC) technology using oil as heat transfer fluid (HTF). However, DSG technology lacks feasible solution for long-term thermal energy storage (TES) system. This option is important for CSP technology in order to offer dispatchable power. Recently, molten salts have been proposed to be used as HTF and directly as storage medium in both line-focusing solar fields, offering storage capacity of several hours. This direct molten salt (DMS) storage concept has already gained operational experience in solar tower power plant, and it is under demonstration phase both in the case of LFC and PTC systems. Dynamic simulation programs offer a valuable effort for design and optimization of solar power plants. In this work, APROS dynamic simulation program is used to model a DMS linear Fresnel solar field with two-tank TES system, and example simulation results are presented in order to verify the functionality of the model and capability of APROS for CSP modelling and simulation.

  10. An approach to better understanding of salt weathering on stone monuments - the "petraSalt" research project

    NASA Astrophysics Data System (ADS)

    Heinrichs, K.; Azzam, R.

    2012-04-01

    sensor network (WSN), facilitating improved steps of evaluation. The 3D models, images and cross-sections of the monuments derived from laser scanning contributed, for example, to the assessment of the monumentś original geometry, thus providing the basis for precise quantification of apparent weathering damage on the monuments, in particular loss of stone material. An autonomously operating wireless sensor network was developed for continuous temporal and spatial high-resolution monitoring of environmental conditions affecting stone surface and stone interior of the monuments and acting as driving forces for the salt weathering processes. The extraordinary data output is to provide the basis for a differentiated numerical analysis of partial or complete salt crystallization / salt dissolution cycles, considering diurnal and seasonal variation. Methodological approach and results of the 'petraSalt' research project are presented.

  11. Estimation of Fresh and Salt Water Fluxes and Transports in the Indian Ocean using satellite observations and model simulations

    NASA Astrophysics Data System (ADS)

    Bulusu, Subrahmanyam; Nyadjro, Ebenezer

    2014-05-01

    This study describes the fresh and salt water fluxes and transports in the Indian Ocean using satellite-derived salinity observations from the SMOS (Soil Moisture and Ocean Salinity) and Aquarius missions, and model outputs from the HYbrid Coordinate Ocean Model (HYCOM) and the Simple Ocean Data Assimilation (SODA) Re-analysis. Argo salinity data is used to validate the aforementioned salinity datasets. Salt budget estimations using SMOS salinity data show favorable comparisons with published results, with the potential for additional novel studies when more valid satellite-derived salinity data become available. On seasonal time scales, there is a considerable exchange of salt and fresh waters between the Bay of Bengal (BoB) and the Arabian Sea (AS) and vice versa. The pathways of the high/low salinity waters are identified using satellite observations. The Sea Surface Salinity (SSS) changes in the Southeastern Arabian Sea are as a result of the advection of low salinity waters from the BoB via coastal Kelvin waves. The long term mean salt transport shows seasonal reversals that are more pronounced in the northern Indian Ocean than in the southern Indian Ocean. Meridional salt transport is northward along the Somali Current (SC) in the Arabian Sea and the East India coastal Current (EICC) in the Bay of Bengal during the southwest monsoon season. The opposite holds during the northeast monsoon season. Mean zonal salt transport is of a higher magnitude than the meridional component and shows significant seasonal reversals in the equatorial region. Empirical Orthogonal Function (EOF) analyses of meridional salt transport show that the variability is primarily seasonally driven and is the result of seasonally reversing monsoonal winds and currents. The amplitudes of the EOFs suggest that the Indian Ocean dipole may also influence the variability. Spatially, the most variable regions are along the northeast African coast, and in the eastern Arabian Sea, the Bay of

  12. A slab model of the Great Salt Lake for regional climate simulation

    NASA Astrophysics Data System (ADS)

    Strong, C.; Kochanski, A. K.; Crosman, E. T.

    2014-09-01

    A slab lake model was developed for the Great Salt Lake (GSL) and coupled to a regional climate model to enable better evaluation of regional effects of projected climate change. The GSL is hypersaline with an area of approximately 4400 km2, and its notable shallowness (the deeper sections average 6.5-9 m at current lake levels) renders it highly sensitive to climate change. A time-independent (constant) effective mixing depth of approximately 5 m was determined for the GSL by numerically optimizing model-observation agreement, and improvement gained using a time-dependent effective mixing depth assumption was smaller than the uncertainty in the satellite-based observations. The slab model with constant effective mixing depth accounted for more than 97% of the variance in satellite-based observations of GSL surface temperature for years 2001 through 2003. Using a lake surface temperature climatology in place of the lake model resulted in annual mean near-surface air temperature differences that were small (˜10-2 K) away from the lake, but differences in annual precipitation downstream reached 3 cm (4.5%) mainly because of enhanced turbulent heat fluxes off the lake during spring. When subjected to a range of pseudo global warming scenarios, the annual mean lake surface temperature increased by 0.8°C per degree of air temperature increase.

  13. Model of the biotic cycle "plants germs - microorganisms" by affect heavy metal salts

    NASA Astrophysics Data System (ADS)

    Pisman, Tamara

    The growth of wheat germ roots exposed to heavy metal salts (ZnSO4) was studied experimentally and theoretically. During the experiment the plant seeds were preliminarily treated with an experimental microbial association. As a result, data were obtained about the decrease of the inhibiting effect of zinc on the growth of wheat germ roots where the seeds had been treated with the microbial association. To understand such effect, calculations were made to reveal the specific growth rate of a germ root depending on the inhibitor concentration with and without microorganism association treatment. It was shown that in case with the wheat germ roots the seeds of which had been treated with the microorganisms the inhibition constant (kI = 45 MPC (Maximum Permissible Concentration) was higher than in the case with the roots growing out of the seeds that hadn't been treated with the microorganisms (kI = 32 MPC). One of possible reasons for the decrease of growth inhibition of wheat germ roots by zinc salt is the protective function of microorganism's treatment of the seeds. To verify and confirm the experimental results, a mathematical model was created imitating the interaction between wheat germ roots and microbial association exposed to an inhibitor. Investigation of the model proved that the microbial association has a positive effect on the growth of wheat germ roots exposed to an inhibitor. The experimental and theoretical results agreed quantitatively. It was found out that the increase of the inhibitor concentration led to the effect of maximum relief of zinc inhibiting impact. The work is supported by grants Yenissei 07-04-96806.

  14. Interior intrusion detection systems

    SciTech Connect

    Rodriguez, J.R.; Matter, J.C. ); Dry, B. )

    1991-10-01

    The purpose of this NUREG is to present technical information that should be useful to NRC licensees in designing interior intrusion detection systems. Interior intrusion sensors are discussed according to their primary application: boundary-penetration detection, volumetric detection, and point protection. Information necessary for implementation of an effective interior intrusion detection system is presented, including principles of operation, performance characteristics and guidelines for design, procurement, installation, testing, and maintenance. A glossary of sensor data terms is included. 36 figs., 6 tabs.

  15. Comparing field-based and numerically modelled reconstructions of the last Cordilleran Ice Sheet deglaciation over the Thompson Plateau, southern interior British Columbia, Canada.

    NASA Astrophysics Data System (ADS)

    Cripps, Jonathan; Brennand, Tracy; Seguinot, Julien; Perkins, Andrew

    2016-04-01

    Palaeoglaciological and palaeoclimate reconstructions of the deglaciation of the last Cordilleran Ice Sheet (CIS) over British Columbia (BC), Canada, are limited by the relative lack of understanding of the late-glacial ice sheet margins and dynamics. Deglaciation of the last CIS over the southern Interior Plateau of BC has been characterised as proceeding via stagnation and downwasting into dead ice lobes in valleys where ice was thickest. This conceptual model explains the apparent lack of moraines, which may otherwise imply active recession, and known palaeo-glacial lakes are explained as being dammed by these dead ice lobes. However, downwasting alone is at odds with coeval ice sheets which receded systematically towards their interiors. Presented here is a comparison between a new field-based reconstruction of the deglaciation of the northern Thompson Plateau, and ice sheet model results of the same area. Glacioisostatic tilts, reconstructed using mapped shoreline elevations, rise to the north-northwest at around 1.8 m/km, implying an ice surface slope, and likely active recession, towards the Coast Mountains. New reconstructions of the stages of glacial Lake Nicola (gLN), utilising field and aerial photographic mapping of shorelines, and sedimentology and geophysical surveys on ice-marginal and glaciolacustrine landforms, largely support this interpretation; the lake expanded and lowered to the north-northwest as progressively lower outlets were opened during ice retreat in this direction. Fields of newly discovered glaciotectonised moraines, grounding-line deposits and overridden glacial lake sediments record ice margin oscillations and minor readvances within gLN; the general alignment of these features further supports recession to the north-northwest. Numerical simulations of deglaciation of the area results in ice retreat to the north-northeast, which is inconsistent with the north-north-westward evolution of gLN. Excess precipitation over the eastern

  16. Optically measuring interior cavities

    DOEpatents

    Stone, Gary Franklin

    2008-12-21

    A method of measuring the three-dimensional volume or perimeter shape of an interior cavity includes the steps of collecting a first optical slice of data that represents a partial volume or perimeter shape of the interior cavity, collecting additional optical slices of data that represents a partial volume or perimeter shape of the interior cavity, and combining the first optical slice of data and the additional optical slices of data to calculate of the three-dimensional volume or perimeter shape of the interior cavity.

  17. Optically measuring interior cavities

    DOEpatents

    Stone, Gary Franklin

    2009-11-03

    A method of measuring the three-dimensional volume or perimeter shape of an interior cavity includes the steps of collecting a first optical slice of data that represents a partial volume or perimeter shape of the interior cavity, collecting additional optical slices of data that represents a partial volume or perimeter shape of the interior cavity, and combining the first optical slice of data and the additional optical slices of data to calculate of the three-dimensional volume or perimeter shape of the interior cavity.

  18. Nutritional modelling: distributions of salt intake from processed foods in New Zealand.

    PubMed

    Thomson, Barbara M

    2009-09-01

    The salt content of processed foods is important because of the high intake of Na by most New Zealanders. A database of Na concentrations in fifty-eight processed foods was compiled from existing and new data and combined with 24 h diet recall data from two national nutrition surveys (5771 respondents) to derive salt intakes for seven population groups. Mean salt intakes from processed foods ranged from 6.9 g/d for young males aged 19-24 years to 3.5 g/d for children aged 5-6 years. A total of > or = 50 % of children aged 5-6 years, boys aged 11-14 years and young males aged 19-24 years had salt intakes that exceeded the upper limit for Na, calculated as salt (3.2-5.3 g/d), from processed foods only. Bread accounted for the greatest contribution to salt intake for each population group (35-43 % of total salt intake). Other foods that contributed 2 % or more and common across most age groups were sausage, meat pies, pizza, instant noodles and cheese. The Na concentrations of key foods have changed little over the 16-year period from 1987 to 2003 except for corned beef and whole milk that have decreased by 34 and 50 % respectively. Bread is an obvious target for salt reduction but the implication on iodine intake needs consideration as salt is used as a vehicle for iodine fortification of bread.

  19. Micro-mechanical modelling of cellulose aerogels from molten salt hydrates.

    PubMed

    Rege, Ameya; Schestakow, Maria; Karadagli, Ilknur; Ratke, Lorenz; Itskov, Mikhail

    2016-09-14

    In this paper, a generalised micro-mechanical model capable of capturing the mechanical behaviour of polysaccharidic aerogels, in particular cellulose aerogels, is proposed. To this end, first the mechanical structure and properties of these highly nanoporous cellulose aerogels prepared from aqueous salt hydrate melts (calcium thiocyanate, Ca(SCN)2·6H2O and zinc chloride, ZnCl2·4H2O) are studied. The cellulose content within these aerogels is found to have a direct relation to the microstructural quantities such as the fibril length and diameter. This, along with porosity, appears to influence the resulting mechanical properties. Furthermore, experimental characterisation of cellulose aerogels was done using scanning electron microscopy (SEM), pore-size data analysis, and compression tests. Cellulose aerogels are of a characteristic cellular microstructures and accordingly a network formed by square shaped cells is considered in the micro-mechanical model proposed in this paper. This model is based on the non-linear bending and collapse of such cells of varying pore sizes. The extended Euler-Bernoulli beam theory for large deflections is used to describe the bending in the cell walls. The proposed model is physically motivated and demonstrates a good agreement with our experimental data of both ZnCl2 and Ca(SCN)2 based cellulose aerogels with different cellulose contents.

  20. Micro-mechanical modelling of cellulose aerogels from molten salt hydrates.

    PubMed

    Rege, Ameya; Schestakow, Maria; Karadagli, Ilknur; Ratke, Lorenz; Itskov, Mikhail

    2016-09-14

    In this paper, a generalised micro-mechanical model capable of capturing the mechanical behaviour of polysaccharidic aerogels, in particular cellulose aerogels, is proposed. To this end, first the mechanical structure and properties of these highly nanoporous cellulose aerogels prepared from aqueous salt hydrate melts (calcium thiocyanate, Ca(SCN)2·6H2O and zinc chloride, ZnCl2·4H2O) are studied. The cellulose content within these aerogels is found to have a direct relation to the microstructural quantities such as the fibril length and diameter. This, along with porosity, appears to influence the resulting mechanical properties. Furthermore, experimental characterisation of cellulose aerogels was done using scanning electron microscopy (SEM), pore-size data analysis, and compression tests. Cellulose aerogels are of a characteristic cellular microstructures and accordingly a network formed by square shaped cells is considered in the micro-mechanical model proposed in this paper. This model is based on the non-linear bending and collapse of such cells of varying pore sizes. The extended Euler-Bernoulli beam theory for large deflections is used to describe the bending in the cell walls. The proposed model is physically motivated and demonstrates a good agreement with our experimental data of both ZnCl2 and Ca(SCN)2 based cellulose aerogels with different cellulose contents. PMID:27487115

  1. Meteorological Modeling of Wintertime Cold Air Pool Stagnation Episodes in the Uintah and Salt Lake Basins

    NASA Astrophysics Data System (ADS)

    Crosman, E.; Horel, J.; Blaylock, B. K.; Foster, C.

    2014-12-01

    High wintertime ozone concentrations in rural areas associated with oil and gas development and high particulate concentrations in urban areas have become topics of increasing concern in the Western United States, as both primary and secondary pollutants become trapped within stable wintertime boundary layers. While persistent cold air pools that enable such poor wintertime air quality are typically associated with high pressure aloft and light winds, the complex physical processes that contribute to the formation, maintenance, and decay of persistent wintertime temperature inversions are only partially understood. In addition, obtaining sufficiently accurate numerical weather forecasts and meteorological simulations of cold air pools for input into chemical models remains a challenge. This study examines the meteorological processes associated with several wintertime pollution episodes in Utah's Uintah and Salt Lake Basins using numerical Weather Research and Forecasting model simulations and observations collected from the Persistent Cold Air Pool and Uintah Basin Ozone Studies. The temperature, vertical structure, and winds within these cold air pools was found to vary as a function of snow cover, snow albedo, land use, cloud cover, large-scale synoptic flow, and episode duration. We evaluate the sensitivity of key atmospheric features such as stability, planetary boundary layer depth, local wind flow patterns and transport mechanisms to variations in surface forcing, clouds, and synoptic flow. Finally, noted deficiencies in the meteorological models of cold air pools and modifications to the model snow and microphysics treatment that have resulted in improved cold pool simulations will be presented.

  2. Variational Principle for Planetary Interiors

    NASA Astrophysics Data System (ADS)

    Zeng, Li; Jacobsen, Stein B.

    2016-09-01

    In the past few years, the number of confirmed planets has grown above 2000. It is clear that they represent a diversity of structures not seen in our own solar system. In addition to very detailed interior modeling, it is valuable to have a simple analytical framework for describing planetary structures. The variational principle is a fundamental principle in physics, entailing that a physical system follows the trajectory, which minimizes its action. It is alternative to the differential equation formulation of a physical system. Applying the variational principle to the planetary interior can beautifully summarize the set of differential equations into one, which provides us some insight into the problem. From this principle, a universal mass-radius relation, an estimate of the error propagation from the equation of state to the mass-radius relation, and a form of the virial theorem applicable to planetary interiors are derived.

  3. Binding enthalpy calculations for a neutral host-guest pair yield widely divergent salt effects across water models.

    PubMed

    Gao, Kaifu; Yin, Jian; Henriksen, Niel M; Fenley, Andrew T; Gilson, Michael K

    2015-10-13

    Dissolved salts are a part of the physiological milieu and can significantly influence the kinetics and thermodynamics of various biomolecular processes, such as binding and catalysis; thus, it is important for molecular simulations to reliably describe their effects. The present study uses a simple, nonionized host-guest model system to study the sensitivity of computed binding enthalpies to the choice of water and salt models. Molecular dynamics simulations of a cucurbit[7]uril host with a neutral guest molecule show striking differences in the salt dependency of the binding enthalpy across four water models, TIP3P, SPC/E, TIP4P-Ew, and OPC, with additional sensitivity to the choice of parameters for sodium and chloride. In particular, although all of the models predict that binding will be less exothermic with increasing NaCl concentration, the strength of this effect varies by 7 kcal/mol across models. The differences appear to result primarily from differences in the number of sodium ions displaced from the host upon binding the guest rather than from differences in the enthalpy associated with this displacement, and it is the electrostatic energy that contributes most to the changes in enthalpy with increasing salt concentration. That a high sensitivity of salt affecting the choice of water model, as observed for the present host-guest system despite it being nonionized, raises issues regarding the selection and adjustment of water models for use with biological macromolecules, especially as these typically possess multiple ionized groups that can interact relatively strongly with ions in solution.

  4. Binding Enthalpy Calculations for a Neutral Host-Guest Pair Yield Widely Divergent Salt Effects across Water Models

    PubMed Central

    Gao, Kaifu; Yin, Jian; Henriksen, Niel M.; Fenley, Andrew T.; Gilson, Michael K.

    2015-01-01

    Dissolved salts are a part of the physiological milieu and can significantly influence the kinetics and thermodynamics of varied biomolecular processes, such as binding and catalysis, so it is important for molecular simulations to reliably describe their effects. The present study uses a simple, non-ionized host-guest model system to study the sensitivity of computed binding enthalpies to the choice of water and salt models. Molecular dynamics simulations of a cucurbit[7]uril host with a neutral guest molecule show striking differences in the salt dependency of the binding enthalpy across four water models, TIP3P, SPC/E, TIP4P-Ew and OPC, with additional sensitivity to the choice of parameters for sodium and chloride. In particular, although all of the models predict that binding will be less exothermic with increasing NaCl concentration, the strength of this effect varies by 7 kcal/mol across models. The differences appear to result primarily from differences in the number of sodium ions displaced from the host on binding the guest, rather than from differences in the enthalpy associated with this displacement; and it is the electrostatic energy that contributes most to the changes in enthalpy with increasing salt concentration. That a high sensitivity of salt effects to the choice of water model is observed for the present host-guest system, despite its being non-ionized, raises issues regarding the selection and adjustment of water models for use with biological macromolecules, especially as these typically possess multiple ionized groups which can interact relatively strongly with ions in solution. PMID:26574247

  5. Single Large Impacts and their Consequences on the Evolution of a Coupled Atmosphere-Interior Venus Model

    NASA Astrophysics Data System (ADS)

    Gillmann, C.; Golabek, G.; Tackley, P.

    2015-12-01

    We investigate the effect of a single large impact during the Late Veneer and Late Heavy Bombardment on the evolution of the mantle and atmosphere of Venus. We use a coupled interior/exterior numerical code based on StagYY and developed in Gillmann and Tackley [2014]. Single vertical impacts are simulated as instantaneous events affecting both the atmosphere and mantle of the planet by (i) eroding the atmosphere, causing atmospheric escape, and (ii) depositing energy in the crust and mantle of the planet. Main impactor parameters include timing, size/mass, velocity and efficiency of energy deposition. We observe that volatile delivery by the impactor and impact erosion of the atmosphere are both minor effects compared to melting and degassing triggered by the energy deposited in the mantle and crust. Small collisions (under 100 km radius) have only local and time-limited effects. Medium-sized impactors (100-300 km) will not have much more consequences unless the energy deposition is enhanced, for example by a fast collision. In that case, it will have comparable effects to the larger category of impacts (400-800 km): a strong thermal anomaly affecting both crust and mantle and triggering melting and a change in mantle dynamics patterns. Such an impact is a global event and can be responsible for volcanic events focused at the impact location and near the antipode. Depending on the timing of the impact, it can also have major consequences on the long-term evolution of the planet and its surface conditions by either (i) efficiently depleting the upper mantle of the planet, leading to the early loss of its water or (ii) imposing a volatile rich and hot atmosphere for billions of years. Due to the coupled nature of the evolution, both cases can affect the evolution of the whole planet (atmosphere and interior) on the long term.

  6. Statistical mechanics of light elements at high pressure. IV - A model free energy for the metallic phase. [for Jovian type planet interiors

    NASA Technical Reports Server (NTRS)

    Dewitt, H. E.; Hubbard, W. B.

    1976-01-01

    A large quantity of data on the thermodynamic properties of hydrogen-helium metallic liquids have been obtained in extended computer calculations in which a Monte Carlo code essentially identical to that described by Hubbard (1972) was used. A model free energy for metallic hydrogen with a relatively small mass fraction of helium is discussed, taking into account the definition of variables, a procedure for choosing the free energy, values for the fitting parameters, and the evaluation of the entropy constants. Possibilities concerning a use of the obtained data in studies of the interiors of the outer planets are briefly considered.

  7. Adaptation of Staphylococcus xylosus to Nutrients and Osmotic Stress in a Salted Meat Model.

    PubMed

    Vermassen, Aurore; Dordet-Frisoni, Emilie; de La Foye, Anne; Micheau, Pierre; Laroute, Valérie; Leroy, Sabine; Talon, Régine

    2016-01-01

    Staphylococcus xylosus is commonly used as starter culture for meat fermentation. Its technological properties are mainly characterized in vitro, but the molecular mechanisms for its adaptation to meat remain unknown. A global transcriptomic approach was used to determine these mechanisms. S. xylosus modulated the expression of about 40-50% of the total genes during its growth and survival in the meat model. The expression of many genes involved in DNA machinery and cell division, but also in cell lysis, was up-regulated. Considering that the S. xylosus population remained almost stable between 24 and 72 h of incubation, our results suggest a balance between cell division and cell lysis in the meat model. The expression of many genes encoding enzymes involved in glucose and lactate catabolism was up-regulated and revealed that glucose and lactate were used simultaneously. S. xylosus seemed to adapt to anaerobic conditions as revealed by the overexpression of two regulatory systems and several genes encoding cofactors required for respiration. In parallel, genes encoding transport of peptides and peptidases that could furnish amino acids were up-regulated and thus concomitantly a lot of genes involved in amino acid synthesis were down-regulated. Several genes involved in glutamate homeostasis were up-regulated. Finally, S. xylosus responded to the osmotic stress generated by salt added to the meat model by overexpressing genes involved in transport and synthesis of osmoprotectants, and Na(+) and H(+) extrusion.

  8. Adaptation of Staphylococcus xylosus to Nutrients and Osmotic Stress in a Salted Meat Model.

    PubMed

    Vermassen, Aurore; Dordet-Frisoni, Emilie; de La Foye, Anne; Micheau, Pierre; Laroute, Valérie; Leroy, Sabine; Talon, Régine

    2016-01-01

    Staphylococcus xylosus is commonly used as starter culture for meat fermentation. Its technological properties are mainly characterized in vitro, but the molecular mechanisms for its adaptation to meat remain unknown. A global transcriptomic approach was used to determine these mechanisms. S. xylosus modulated the expression of about 40-50% of the total genes during its growth and survival in the meat model. The expression of many genes involved in DNA machinery and cell division, but also in cell lysis, was up-regulated. Considering that the S. xylosus population remained almost stable between 24 and 72 h of incubation, our results suggest a balance between cell division and cell lysis in the meat model. The expression of many genes encoding enzymes involved in glucose and lactate catabolism was up-regulated and revealed that glucose and lactate were used simultaneously. S. xylosus seemed to adapt to anaerobic conditions as revealed by the overexpression of two regulatory systems and several genes encoding cofactors required for respiration. In parallel, genes encoding transport of peptides and peptidases that could furnish amino acids were up-regulated and thus concomitantly a lot of genes involved in amino acid synthesis were down-regulated. Several genes involved in glutamate homeostasis were up-regulated. Finally, S. xylosus responded to the osmotic stress generated by salt added to the meat model by overexpressing genes involved in transport and synthesis of osmoprotectants, and Na(+) and H(+) extrusion. PMID:26903967

  9. Adaptation of Staphylococcus xylosus to Nutrients and Osmotic Stress in a Salted Meat Model

    PubMed Central

    Vermassen, Aurore; Dordet-Frisoni, Emilie; de La Foye, Anne; Micheau, Pierre; Laroute, Valérie; Leroy, Sabine; Talon, Régine

    2016-01-01

    Staphylococcus xylosus is commonly used as starter culture for meat fermentation. Its technological properties are mainly characterized in vitro, but the molecular mechanisms for its adaptation to meat remain unknown. A global transcriptomic approach was used to determine these mechanisms. S. xylosus modulated the expression of about 40–50% of the total genes during its growth and survival in the meat model. The expression of many genes involved in DNA machinery and cell division, but also in cell lysis, was up-regulated. Considering that the S. xylosus population remained almost stable between 24 and 72 h of incubation, our results suggest a balance between cell division and cell lysis in the meat model. The expression of many genes encoding enzymes involved in glucose and lactate catabolism was up-regulated and revealed that glucose and lactate were used simultaneously. S. xylosus seemed to adapt to anaerobic conditions as revealed by the overexpression of two regulatory systems and several genes encoding cofactors required for respiration. In parallel, genes encoding transport of peptides and peptidases that could furnish amino acids were up-regulated and thus concomitantly a lot of genes involved in amino acid synthesis were down-regulated. Several genes involved in glutamate homeostasis were up-regulated. Finally, S. xylosus responded to the osmotic stress generated by salt added to the meat model by overexpressing genes involved in transport and synthesis of osmoprotectants, and Na+ and H+ extrusion. PMID:26903967

  10. [Simulation of effect of irrigation with reclaimed water on soil water-salt movement by ENVIRO-GRO model].

    PubMed

    Lü, Si-Dan; Chen, Wei-Ping; Wang, Mei-E

    2012-12-01

    As the conflict between water supply and demand, wastewater reuse has become an important measure, which can relieve the water shortage in Beijing. In order to promote safe irrigation with reclaimed water and prevent soil salinisation, the dynamic transport of salts in urban soils of Beijing, a city of water shortage, under irrigation of reclaimed water was simulated by ENVIRO-GRO model in this research. The accumulation trends of soil salinity were predicted. Simultaneously, it investigated the effects of different irrigation practices on soil water-salt movement and salt accumulation. Results indicated that annual averages of soil salinity (EC(e)) increased 29.5%, 97.2%, 197.8% respectively, with the higher irrigation, normal irrigation, and low irrigation under equilibrium conditions. Irrigation frequency had little effect on soil salt-water movement, and soil salt accumulation was in a downward trend with low frequency of irrigation. Under equilibrium conditions, annual averages of EC(e) increased 23.7%, 97.2%, 208.5% respectively, with irrigation water salinity (EC(w)) 0.6, 1.2, 2.4 dS x m(-1). Soil salinity increased slightly with EC(w) = 0.6 dS x m(-1), while soil salinization did not appear. Totally, the growth of Blue grass was not influenced by soil salinity under equilibrium conditions with the regular irrigation in Beijing, but mild soil salinization appeared.

  11. Using Kinetic Network Models To Probe Non-Native Salt-Bridge Effects on α-Helix Folding.

    PubMed

    Zhou, Guangfeng; Voelz, Vincent A

    2016-02-11

    Salt-bridge interactions play an important role in stabilizing many protein structures, and have been shown to be designable features for protein design. In this work, we study the effects of non-native salt bridges on the folding of a soluble alanine-based peptide (Fs peptide) using extensive all-atom molecular dynamics simulations performed on the Folding@home distributed computing platform. Using Markov State Models, we show how non-native salt-bridges affect the folding kinetics of Fs peptide by perturbing specific conformational states. Furthermore, we present methods for the automatic detection and analysis of such states. These results provide insight into helix folding mechanisms and useful information to guide simulation-based computational protein design.

  12. Simple theoretical model for ion cooperativity in aqueous solutions of simple inorganic salts and its effect on water surface tension.

    PubMed

    Gao, Yi Qin

    2011-11-01

    Careful analysis of experimental data showed that the salt aqueous solution/air surface tension depends on a rather complicated manner of salt composition and points to the importance of ion cooperativity. In this short article, we include the selective binding of anions over cations at interfaces (as revealed from molecular dynamics simulations, spectroscopic measurements, and Record's analysis of the surface tension data) and the anion-cation association (based on the observation of matching water affinity) in a simple theoretical model to understand salt effects on surface tension. The introduction of the surface effect and ion association provides a qualitative explanation of the experimental data, in particular, the strong anion dependence of the cations' rank according to their ability of increasing water surface tension. We hope that the physical insight provided by this study can be used to point to new directions for more detailed studies. PMID:21958050

  13. Salt II: Illusion and Reality. World Order Models Project. Working Paper Number Nine.

    ERIC Educational Resources Information Center

    Johansen, Robert C.

    The document discusses miscalculations by public officials, arms control experts, journalists, and the general public regarding the Strategic Arms Limitation Talks; assesses the Salt II treaty; and suggests criteria for appraising Salt II. The objective is to stimulate research, education, dialogue, and political action which will contribute to a…

  14. Modeling of Structural-Acoustic Interaction Using Coupled FE/BE Method and Control of Interior Acoustic Pressure Using Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Shi, Yacheng

    1997-01-01

    A coupled finite element (FE) and boundary element (BE) approach is presented to model full coupled structural/acoustic/piezoelectric systems. The dual reciprocity boundary element method is used so that the natural frequencies and mode shapes of the coupled system can be obtained, and to extend this approach to time dependent problems. The boundary element method is applied to interior acoustic domains, and the results are very accurate when compared with limited exact solutions. Structural-acoustic problems are then analyzed with the coupled finite element/boundary element method, where the finite element method models the structural domain and the boundary element method models the acoustic domain. Results for a system consisting of an isotropic panel and a cubic cavity are in good agreement with exact solutions and experiment data. The response of a composite panel backed cavity is then obtained. The results show that the mass and stiffness of piezoelectric layers have to be considered. The coupled finite element and boundary element equations are transformed into modal coordinates, which is more convenient for transient excitation. Several transient problems are solved based on this formulation. Two control designs, a linear quadratic regulator (LQR) and a feedforward controller, are applied to reduce the acoustic pressure inside the cavity based on the equations in modal coordinates. The results indicate that both controllers can reduce the interior acoustic pressure and the plate deflection.

  15. The Dahl salt-sensitive rat is a spontaneous model of superimposed preeclampsia.

    PubMed

    Gillis, Ellen E; Williams, Jan M; Garrett, Michael R; Mooney, Jennifer N; Sasser, Jennifer M

    2015-07-01

    The mechanisms of the pathogenesis of preeclampsia, a leading cause of maternal morbidity and death worldwide, are poorly understood in part due to a lack of spontaneous animal models of the disease. We hypothesized that the Dahl salt-sensitive (S) rat, a genetic model of hypertension and kidney disease, is a spontaneous model of superimposed preeclampsia. The Dahl S was compared with the Sprague-Dawley (SD) rat, a strain with a well-characterized normal pregnancy, and the spontaneously hypertensive rat (SHR), a genetic model of hypertension that does not experience a preeclamptic phenotype despite preexisting hypertension. Mean arterial pressure (MAP, measured via telemetry) was elevated in the Dahl S and SHR before pregnancy, but hypertension was exacerbated during pregnancy only in Dahl S. In contrast, SD and SHR exhibited significant reductions in MAP consistent with normal pregnancy. Dahl S rats exhibited a severe increase in urinary protein excretion, glomerulomegaly, increased placental hypoxia, increased plasma soluble fms-like tyrosine kinase-1 (sFlt-1), and increased placental production of tumor necrosis factor-α (TNF-α). The Dahl S did not exhibit the expected decrease in uterine artery resistance during late pregnancy in contrast to the SD and SHR. Dahl S pups and litter sizes were smaller than in the SD. The Dahl S phenotype is consistent with many of the characteristics observed in human superimposed preeclampsia, and we propose that the Dahl S should be considered further as a spontaneous model to improve our understanding of the pathogenesis of superimposed preeclampsia and to identify and test new therapeutic targets for its treatment.

  16. The Dahl salt-sensitive rat is a spontaneous model of superimposed preeclampsia

    PubMed Central

    Gillis, Ellen E.; Williams, Jan M.; Garrett, Michael R.; Mooney, Jennifer N.

    2015-01-01

    The mechanisms of the pathogenesis of preeclampsia, a leading cause of maternal morbidity and death worldwide, are poorly understood in part due to a lack of spontaneous animal models of the disease. We hypothesized that the Dahl salt-sensitive (S) rat, a genetic model of hypertension and kidney disease, is a spontaneous model of superimposed preeclampsia. The Dahl S was compared with the Sprague-Dawley (SD) rat, a strain with a well-characterized normal pregnancy, and the spontaneously hypertensive rat (SHR), a genetic model of hypertension that does not experience a preeclamptic phenotype despite preexisting hypertension. Mean arterial pressure (MAP, measured via telemetry) was elevated in the Dahl S and SHR before pregnancy, but hypertension was exacerbated during pregnancy only in Dahl S. In contrast, SD and SHR exhibited significant reductions in MAP consistent with normal pregnancy. Dahl S rats exhibited a severe increase in urinary protein excretion, glomerulomegaly, increased placental hypoxia, increased plasma soluble fms-like tyrosine kinase-1 (sFlt-1), and increased placental production of tumor necrosis factor-α (TNF-α). The Dahl S did not exhibit the expected decrease in uterine artery resistance during late pregnancy in contrast to the SD and SHR. Dahl S pups and litter sizes were smaller than in the SD. The Dahl S phenotype is consistent with many of the characteristics observed in human superimposed preeclampsia, and we propose that the Dahl S should be considered further as a spontaneous model to improve our understanding of the pathogenesis of superimposed preeclampsia and to identify and test new therapeutic targets for its treatment. PMID:25904684

  17. Faraday Discussion 160 Introductory Lecture: Interpreting and Predicting Hofmeister Salt Ion and Solute Effects on Biopolymer and Model Processes Using the Solute Partitioning Model

    PubMed Central

    Record, M. Thomas; Guinn, Emily; Pegram, Laurel; Capp, Michael

    2013-01-01

    Understanding how Hofmeister salt ions and other solutes interact with proteins, nucleic acids, other biopolymers and water and thereby affect protein and nucleic acid processes as well as model processes (e.g solubility of model compounds) in aqueous solution is a longstanding goal of biophysical research. Empirical Hofmeister salt and solute “m-values” (derivatives of the observed standard free energy change for a model or biopolymer process with respect to solute or salt concentration m3) are equal to differences in chemical potential derivatives: m-value = Δ(dμ2/dm3) = Δμ23 which quantify the preferential interactions of the solute or salt with the surface of the biopolymer or model system (component 2) exposed or buried in the process. Using the SPM, we dissect μ23 values for interactions of a solute or Hofmeister salt with a set of model compounds displaying the key functional groups of biopolymers to obtain interaction potentials (called α-values) that quantify the interaction of the solute or salt per unit area of each functional group or type of surface. Interpreted using the SPM, these α-values provide quantitative information about both the hydration of functional groups and the competitive interaction of water and the solute or salt with functional groups. The analysis corroborates and quantifies previous proposals that the Hofmeister anion and cation series for biopolymer processes are determined by ion-specific, mostly unfavorable interactions with hydrocarbon surfaces; the balance between these unfavorable nonpolar interactions and often-favorable interactions of ions with polar functional groups determine the series null points. The placement of urea and glycine betaine (GB) at opposite ends of the corresponding series of nonelectrolytes results from the favorable interactions of urea, and unfavorable interactions of GB, with many (but not all) biopolymer functional groups. Interaction potentials and local-bulk partition coefficients

  18. A new approach for modeling and analysis of molten salt reactors using SCALE

    SciTech Connect

    Powers, J. J.; Harrison, T. J.; Gehin, J. C.

    2013-07-01

    The Office of Fuel Cycle Technologies (FCT) of the DOE Office of Nuclear Energy is performing an evaluation and screening of potential fuel cycle options to provide information that can support future research and development decisions based on the more promising fuel cycle options. [1] A comprehensive set of fuel cycle options are put into evaluation groups based on physics and fuel cycle characteristics. Representative options for each group are then evaluated to provide the quantitative information needed to support the valuation of criteria and metrics used for the study. Included in this set of representative options are Molten Salt Reactors (MSRs), the analysis of which requires several capabilities that are not adequately supported by the current version of SCALE or other neutronics depletion software packages (e.g., continuous online feed and removal of materials). A new analysis approach was developed for MSR analysis using SCALE by taking user-specified MSR parameters and performing a series of SCALE/TRITON calculations to determine the resulting equilibrium operating conditions. This paper provides a detailed description of the new analysis approach, including the modeling equations and radiation transport models used. Results for an MSR fuel cycle option of interest are also provided to demonstrate the application to a relevant problem. The current implementation is through a utility code that uses the two-dimensional (2D) TRITON depletion sequence in SCALE 6.1 but could be readily adapted to three-dimensional (3D) TRITON depletion sequences or other versions of SCALE. (authors)

  19. An observational and numerical modeling investigation of Great Salt Lake-effect snow

    NASA Astrophysics Data System (ADS)

    Onton, Daryl John

    2000-05-01

    The structure and evolution of a lake-effect snow event associated with the Great Salt Lake (GSL) is described using observational and numerical modeling approaches. This event occurred in an environment characterized by low-level instability, large lake-land and lake-700 hPa temperature differences, and low-level flow nearly parallel to the major axis of the GSL. Localized heating over the relatively warm GSL is shown to have induced mesoscale pressure troughing, land-breeze circulations, and low-level convergence that led to the development of convective updrafts, and a wind-parallel band of clouds and precipitation. The hyper-saline content of the GSL produced reduced moisture fluxes compared to fresh water. Resulting moisture fluxes were sufficient, however, to enhance precipitation rates. Orographically-induced circulations did not play a major role in the formation of the bands, but orographic uplift (subsidence) enhanced (reduced) precipitation rates. Model diagnostics and sensitivity studies are used to examine the predictability of this event given known uncertainties in the specification of lake/land properties and large-scale conditions.

  20. The use of molten salts as physical models for the study of solidification in metals and semiconductors

    NASA Technical Reports Server (NTRS)

    Koziol, Jurek K.; Sadoway, Donald R.

    1987-01-01

    It is presently noted that molten salts possess attributes rendering them attractive as physical models of cast metals in solidification studies. Molten alkali halides have an approximately correct Prandtl number for this modeling of metallic melts, and are transparent to visible light. Attention is given to solidification in the LiCl-KCl system, in order to determine whether such phenomena as solute rejection can be observed and characterized through the application of laser schlieren imaging.

  1. Prediction of the concentration dependence of the surface tension and density of salt solutions: atomistic simulations using Drude oscillator polarizable and nonpolarizable models.

    PubMed

    Neyt, Jean-Claude; Wender, Aurélie; Lachet, Véronique; Ghoufi, Aziz; Malfreyt, Patrice

    2013-07-28

    Molecular simulations using Drude oscillator polarizable and nonpolarizable models for water and ions are carried out to predict the dependence of the surface tension on salt concentration. The polarizable water and ion models are based only on the classical Drude oscillators. The temperature dependence of the surface tension of water is examined for different water models. The dependence of salt densities on salt concentration is investigated through the nonpolarizable and Drude oscillator polarizable models. Finally, the reproduction of the surface tension of salt solution over a large range of concentrations is analyzed through a number of combinations between ions and water force fields. The structure of the interface is then discussed as a function of polarization effects. We establish here the inability of the Drude oscillator polarizable force fields to reproduce the salt concentration dependence of surface tension of NaCl aqueous solutions.

  2. On the feasibility of near infrared spectroscopy to detect contaminants in water using single salt solutions as model systems.

    PubMed

    Gowen, A A; Marini, F; Tsuchisaka, Y; De Luca, S; Bevilacqua, M; O'Donnell, C; Downey, G; Tsenkova, R

    2015-01-01

    This research work evaluates the feasibility of NIRS to detect contaminants in water using single salt solutions as model systems. Previous research has indicated the potential of near infrared spectroscopy (NIRS) for detecting solutes in water; however, a comprehensive investigation of the limit of detection of this technique has not been carried out. Near infrared transmittance spectra of aqueous salt solutions in the concentration range 0.002-0.1 mol L(-1) (equivalent to 117-13,334 ppm or 0.0001-0.01% mass/mass) were investigated. The first overtone region of the near infrared spectrum (1300-1600 nm) was found to be the most effective wavelength range for prediction of salt concentration in aqueous solutions. Calibration models built using this wavelength range and employing the extended multiplicative scatter spectral pre-treatment resulted in root mean squared error of prediction values ranging from 0.004 to 0.01 mol L(-1). The limit of detection (LOD) was estimated to be of the order of 0.1% (mass/mass) or 1000 ppm. Within the framework of Aquaphotomics, it was possible to examine the effect of different salts on the NIR spectra of water in the first overtone range. Our results were confirmed through test experiments at various geographical locations employing dispersive and Fourier transform type NIRS instruments.

  3. Modeling full-scale osmotic membrane bioreactor systems with high sludge retention and low salt concentration factor for wastewater reclamation.

    PubMed

    Park, Sung Hyuk; Park, Beomseok; Shon, Ho Kyong; Kim, Suhan

    2015-08-01

    A full-scale model was developed to find optimal design parameters for osmotic membrane bioreactor (OMBR) and reverse osmosis (RO) hybrid system for wastewater reclamation. The model simulates salt accumulation, draw solution dilution and water flux in OMBR with sludge concentrator for high retention and low salt concentration factor. The full-scale OMBR simulation results reveal that flat-sheet module with spacers exhibits slightly higher flux than hollow-fiber; forward osmosis (FO) membrane with high water permeability, low salt permeability, and low resistance to salt diffusion shows high water flux; an optimal water recovery around 50% ensures high flux and no adverse effect on microbial activity; and FO membrane cost decreases and RO energy consumption and product water concentration increases at higher DS flow rates and concentrations. The simulated FO water flux and RO energy consumption ranges from 3.03 to 13.76LMH and 0.35 to 1.39kWh/m(3), respectively. PMID:25840775

  4. Modeling full-scale osmotic membrane bioreactor systems with high sludge retention and low salt concentration factor for wastewater reclamation.

    PubMed

    Park, Sung Hyuk; Park, Beomseok; Shon, Ho Kyong; Kim, Suhan

    2015-08-01

    A full-scale model was developed to find optimal design parameters for osmotic membrane bioreactor (OMBR) and reverse osmosis (RO) hybrid system for wastewater reclamation. The model simulates salt accumulation, draw solution dilution and water flux in OMBR with sludge concentrator for high retention and low salt concentration factor. The full-scale OMBR simulation results reveal that flat-sheet module with spacers exhibits slightly higher flux than hollow-fiber; forward osmosis (FO) membrane with high water permeability, low salt permeability, and low resistance to salt diffusion shows high water flux; an optimal water recovery around 50% ensures high flux and no adverse effect on microbial activity; and FO membrane cost decreases and RO energy consumption and product water concentration increases at higher DS flow rates and concentrations. The simulated FO water flux and RO energy consumption ranges from 3.03 to 13.76LMH and 0.35 to 1.39kWh/m(3), respectively.

  5. Modeling the effects of fire severity and climate warming on active layer and soil carbon dynamics of black spruce forests across the landscape in interior Alaska

    USGS Publications Warehouse

    Genet, H.; McGuire, Anthony David; Barrett, K.; Breen, A.; Euskirchen, E.S.; Johnstone, J.F.; Kasischke, E.S.; Melvin, A.M.; Bennett, A.; Mack, M.C.; Rupp, T.S.; Schuur, A.E.G.; Turetsky, M.R.; Yuan, F.

    2013-01-01

    There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layer caused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness

  6. Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska

    NASA Astrophysics Data System (ADS)

    Genet, H.; McGuire, A. D.; Barrett, K.; Breen, A.; Euskirchen, E. S.; Johnstone, J. F.; Kasischke, E. S.; Melvin, A. M.; Bennett, A.; Mack, M. C.; Rupp, T. S.; Schuur, A. E. G.; Turetsky, M. R.; Yuan, F.

    2013-12-01

    There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layer caused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness

  7. Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska

    SciTech Connect

    Genet, Helene; McGuire, A. David; Barrett, K.; Breen, Amy; Euskirchen, Eugenie S; Johnstone, J. F.; Kasischke, Eric S.; Melvin, A. M.; Bennett, A.; Mack, M. C.; Rupp, Scott T.; Schuur, Edward; Turetsky, M. R.; Yuan, Fengming

    2013-01-01

    There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layercaused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness

  8. Integrating biomass, sulphate and sea-salt aerosol responses into a microphysical chemical parcel model: implications for climate studies.

    PubMed

    Ghosh, S; Smith, M H; Rap, A

    2007-11-15

    Aerosols are known to influence significantly the radiative budget of the Earth. Although the direct effect (whereby aerosols scatter and absorb solar and thermal infrared radiation) has a large perturbing influence on the radiation budget, the indirect effect (whereby aerosols modify the microphysical and hence the radiative properties and amounts of clouds) poses a greater challenge to climate modellers. This is because aerosols undergo chemical and physical changes while in the atmosphere, notably within clouds, and are removed largely by precipitation. The way in which aerosols are processed by clouds depends on the type, abundance and the mixing state of the aerosols concerned. A parametrization with sulphate and sea-salt aerosol has been successfully integrated within the Hadley Centre general circulation model (GCM). The results of this combined parametrization indicate a significantly reduced role, compared with previous estimates, for sulphate aerosol in cloud droplet nucleation and, consequently, in indirect radiative forcing. However, in this bicomponent system, the cloud droplet number concentration, N(d) (a crucial parameter that is used in GCMs for radiative transfer calculations), is a smoothly varying function of the sulphate aerosol loading. Apart from sea-salt and sulphate aerosol particles, biomass aerosol particles are also present widely in the troposphere. We find that biomass smoke can significantly perturb the activation and growth of both sulphate and sea-salt particles. For a fixed salt loading, N(d) increases linearly with modest increases in sulphate and smoke masses, but significant nonlinearities are observed at higher non-sea-salt mass loadings. This non-intuitive N(d) variation poses a fresh challenge to climate modellers.

  9. Studies in Interior Design

    ERIC Educational Resources Information Center

    Environ Planning Design, 1970

    1970-01-01

    Floor plans and photographs illustrate a description of the Samuel C. Williams Library at Stevens Institute of Technology, Hoboken, N.J. The unusual interior design allows students to take full advantage of the library's resources. (JW)

  10. Salt Lake Community College Veterans Services: A Model of Serving Veterans in Higher Education

    ERIC Educational Resources Information Center

    Ahern, Aaron; Foster, Michael; Head, Darlene

    2015-01-01

    This chapter outlines the birth and growth of a veterans' program in Salt Lake City, Utah, and discusses next steps in spurring additional innovations and advancements to improve service for student veterans in community colleges.

  11. Imidazolium salts as small-molecule urinary bladder exfoliants in a murine model.

    PubMed

    Wagers, Patrick O; Tiemann, Kristin M; Shelton, Kerri L; Kofron, William G; Panzner, Matthew J; Wooley, Karen L; Youngs, Wiley J; Hunstad, David A

    2015-09-01

    We present a novel family of small-molecule urinary bladder exfoliants that are expected to be of great value in preclinical studies of urologic conditions and have improved potential for translation compared with prior agents. There is broad urologic interest in the therapeutic potential of such exfoliating agents. The primary agent used in preclinical models, the cationic peptide protamine sulfate (PS), has limited translational potential due to concerns including systemic adverse reactions and bladder tissue injury. Intravesical application of a safe, systemically nontoxic exfoliant would have potential utility in the eradication of Escherichia coli and other uropathogens that reside in the bladder epithelium following cystitis, as well as in chronic bladder pain and bladder cancer. Here, we introduce a family of imidazolium salts with potent and focused exfoliating activity on the bladder epithelium. Synthesis and purification were straightforward and scalable, and the compounds exhibited prolonged stability in lyophilized form. Most members of the compound family were cytotoxic to cultured uroepithelial cells, with >10-fold differences in potency across the series. Upon topical (intravesical) administration of selected compounds to the murine bladder, complete epithelial exfoliation was achieved with physiologically relevant imidazolium concentrations and brief contact times. The exfoliative activity of these compounds was markedly improved in comparison to PS, as assessed by microscopy, immunofluorescence, and immunoblotting for uroplakins. Bladder uroepithelium regenerated within days to yield a histologically normal appearance, and no toxicity was observed. Finally, the chemical scaffold offers an opportunity for inclusion of antimicrobials or conjugation with chemotherapeutic or other moieties.

  12. Imidazolium Salts as Small-Molecule Urinary Bladder Exfoliants in a Murine Model

    PubMed Central

    Wagers, Patrick O.; Tiemann, Kristin M.; Shelton, Kerri L.; Kofron, William G.; Panzner, Matthew J.; Wooley, Karen L.; Youngs, Wiley J.

    2015-01-01

    We present a novel family of small-molecule urinary bladder exfoliants that are expected to be of great value in preclinical studies of urologic conditions and have improved potential for translation compared with prior agents. There is broad urologic interest in the therapeutic potential of such exfoliating agents. The primary agent used in preclinical models, the cationic peptide protamine sulfate (PS), has limited translational potential due to concerns including systemic adverse reactions and bladder tissue injury. Intravesical application of a safe, systemically nontoxic exfoliant would have potential utility in the eradication of Escherichia coli and other uropathogens that reside in the bladder epithelium following cystitis, as well as in chronic bladder pain and bladder cancer. Here, we introduce a family of imidazolium salts with potent and focused exfoliating activity on the bladder epithelium. Synthesis and purification were straightforward and scalable, and the compounds exhibited prolonged stability in lyophilized form. Most members of the compound family were cytotoxic to cultured uroepithelial cells, with >10-fold differences in potency across the series. Upon topical (intravesical) administration of selected compounds to the murine bladder, complete epithelial exfoliation was achieved with physiologically relevant imidazolium concentrations and brief contact times. The exfoliative activity of these compounds was markedly improved in comparison to PS, as assessed by microscopy, immunofluorescence, and immunoblotting for uroplakins. Bladder uroepithelium regenerated within days to yield a histologically normal appearance, and no toxicity was observed. Finally, the chemical scaffold offers an opportunity for inclusion of antimicrobials or conjugation with chemotherapeutic or other moieties. PMID:26124168

  13. Charged patchy particle models in explicit salt: Ion distributions, electrostatic potentials, and effective interactions

    SciTech Connect

    Yigit, Cemil; Dzubiella, Joachim; Heyda, Jan

    2015-08-14

    We introduce a set of charged patchy particle models (CPPMs) in order to systematically study the influence of electrostatic charge patchiness and multipolarity on macromolecular interactions by means of implicit-solvent, explicit-ion Langevin dynamics simulations employing the Gromacs software. We consider well-defined zero-, one-, and two-patched spherical globules each of the same net charge and (nanometer) size which are composed of discrete atoms. The studied mono- and multipole moments of the CPPMs are comparable to those of globular proteins with similar size. We first characterize ion distributions and electrostatic potentials around a single CPPM. Although angle-resolved radial distribution functions reveal the expected local accumulation and depletion of counter- and co-ions around the patches, respectively, the orientation-averaged electrostatic potential shows only a small variation among the various CPPMs due to space charge cancellations. Furthermore, we study the orientation-averaged potential of mean force (PMF), the number of accumulated ions on the patches, as well as the CPPM orientations along the center-to-center distance of a pair of CPPMs. We compare the PMFs to the classical Derjaguin-Verwey-Landau-Overbeek theory and previously introduced orientation-averaged Debye-Hückel pair potentials including dipolar interactions. Our simulations confirm the adequacy of the theories in their respective regimes of validity, while low salt concentrations and large multipolar interactions remain a challenge for tractable theoretical descriptions.

  14. Charged patchy particle models in explicit salt: Ion distributions, electrostatic potentials, and effective interactions.

    PubMed

    Yigit, Cemil; Heyda, Jan; Dzubiella, Joachim

    2015-08-14

    We introduce a set of charged patchy particle models (CPPMs) in order to systematically study the influence of electrostatic charge patchiness and multipolarity on macromolecular interactions by means of implicit-solvent, explicit-ion Langevin dynamics simulations employing the Gromacs software. We consider well-defined zero-, one-, and two-patched spherical globules each of the same net charge and (nanometer) size which are composed of discrete atoms. The studied mono- and multipole moments of the CPPMs are comparable to those of globular proteins with similar size. We first characterize ion distributions and electrostatic potentials around a single CPPM. Although angle-resolved radial distribution functions reveal the expected local accumulation and depletion of counter- and co-ions around the patches, respectively, the orientation-averaged electrostatic potential shows only a small variation among the various CPPMs due to space charge cancellations. Furthermore, we study the orientation-averaged potential of mean force (PMF), the number of accumulated ions on the patches, as well as the CPPM orientations along the center-to-center distance of a pair of CPPMs. We compare the PMFs to the classical Derjaguin-Verwey-Landau-Overbeek theory and previously introduced orientation-averaged Debye-Hückel pair potentials including dipolar interactions. Our simulations confirm the adequacy of the theories in their respective regimes of validity, while low salt concentrations and large multipolar interactions remain a challenge for tractable theoretical descriptions. PMID:26277163

  15. Computer modeling reveals that modifications of the histone tail charges define salt-dependent interaction of the nucleosome core particles.

    PubMed

    Yang, Ye; Lyubartsev, Alexander P; Korolev, Nikolay; Nordenskiöld, Lars

    2009-03-18

    Coarse-grained Langevin molecular dynamics computer simulations were conducted for systems that mimic solutions of nucleosome core particles (NCPs). The NCP was modeled as a negatively charged spherical particle representing the complex of DNA and the globular part of the histones combined with attached strings of connected charged beads modeling the histone tails. The size, charge, and distribution of the tails relative to the core were built to match real NCPs. Three models of NCPs were constructed to represent different extents of covalent modification on the histone tails: (nonmodified) recombinant (rNCP), acetylated (aNCP), and acetylated and phosphorylated (paNCP). The simulation cell contained 10 NCPs in a dielectric continuum with explicit mobile counterions and added salt. The NCP-NCP interaction is decisively dependent on the modification state of the histone tails and on salt conditions. Increasing the monovalent salt concentration (KCl) from salt-free to physiological concentration leads to NCP aggregation in solution for rNCP, whereas NCP associates are observed only occasionally in the system of aNCPs. In the presence of divalent salt (Mg(2+)), rNCPs form dense stable aggregates, whereas aNCPs form aggregates less frequently. Aggregates are formed via histone-tail bridging and accumulation of counterions in the regions of NCP-NCP contacts. The paNCPs do not show NCP-NCP interaction upon addition of KCl or in the presence of Mg(2+). Simulations for systems with a gradual substitution of K(+) for Mg(2+), to mimic the Mg(2+) titration of an NCP solution, were performed. The rNCP system showed stronger aggregation that occurred at lower concentrations of added Mg(2+), compared to the aNCP system. Additional molecular dynamics simulations performed with a single NCP in the simulation cell showed that detachment of the tails from the NCP core was modest under a wide range of salt concentrations. This implies that salt-induced tail dissociation of the

  16. Interior provinces in Alaska

    SciTech Connect

    Kirschner, C.E.; Fisher, M.A.; Bruns, T.R.; Stanley, R.G.

    1985-04-01

    Three types of interior provinces have been tested by exploratory drilling for their petroleum potential: three Tertiary nonmarine basins, two Jurassic and Cretaceous flysch and fold belts, and a Paleozoic thrust belt. Although the presence of hydrocarbons has not yet been demonstrated, the present data base is too limited to make a definitive assessment of hydrocarbon potential. During the 1983-84 field seasons, the authors acquired new gravity data and collected rock samples in and adjacent to the Yukon flats and the Nenana basins. These basins contain upper Tertiary, primarily nonmarine, sedimentary rock in extensional graben and half-graben complexes that are superimposed across preexisting terrane boundaries. The location and development of the basins result from strike-slip motion along the Tintina and Denali fault systems. Adjacent to the basins and within the fault systems are thick sections of nonmarine lower Tertiary coal-bearing rocks in deformed basin remnants. If these lower Tertiary rocks are present beneath the upper Tertiary fill, their greater depth and advanced maturation could enhance the hydrocarbon generative potential. Gravity modelling suggests the Tertiary fill is at least 3 km thick in the deeper parts of the basins and may be significantly thicker.

  17. 76. INTERIOR, FIRST FLOOR, WING 1200 WEST, INTERIOR DEPARTMENT MUSEUM, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    76. INTERIOR, FIRST FLOOR, WING 1200 WEST, INTERIOR DEPARTMENT MUSEUM, LOBBY, BRONZE GRILL (4' x 5' negative; 8' x 10' print) - U.S. Department of the Interior, Eighteenth & C Streets Northwest, Washington, District of Columbia, DC

  18. 77. INTERIOR, FIRST FLOOR, WING 1200 WEST, INTERIOR DEPARTMENT MUSEUM, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    77. INTERIOR, FIRST FLOOR, WING 1200 WEST, INTERIOR DEPARTMENT MUSEUM, NATIONAL PARK SERVICE EXHIBIT - U.S. Department of the Interior, Eighteenth & C Streets Northwest, Washington, District of Columbia, DC

  19. 78. INTERIOR, FIRST FLOOR, WING 1200 WEST, INTERIOR DEPARTMENT MUSEUM, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    78. INTERIOR, FIRST FLOOR, WING 1200 WEST, INTERIOR DEPARTMENT MUSEUM, MAIN AISLE, DETAIL OF LIGHT FIXTURE (4' x 5' negative; 8' x 10' print) - U.S. Department of the Interior, Eighteenth & C Streets Northwest, Washington, District of Columbia, DC

  20. Theory Of Salt Effects On Protein Solubility

    NASA Astrophysics Data System (ADS)

    Dahal, Yuba; Schmit, Jeremy

    Salt is one of the major factors that effects protein solubility. Often, at low salt concentration regime, protein solubility increases with the salt concentration(salting in) whereas at high salt concentration regime, solubility decreases with the increase in salt concentration(salting out). There are no quantitative theories to explain salting in and salting out. We have developed a model to describe the salting in and salting out. Our model accounts for the electrostatic Coulomb energy, salt entropy and non-electrostatic interaction between proteins. We analytically solve the linearized Poisson Boltzmann equation modelling the protein charge by a first order multipole expansion. In our model, protein charges are modulated by the anion binding. Consideration of only the zeroth order term in protein charge doesn't help to describe salting in phenomenon because of the repulsive interaction. To capture the salting in behaviour, it requires an attractive electrostatic interaction in low salt regime. Our work shows that at low salt concentration, dipole interaction is the cause for salting in and at high salt concentration a salt-dependent depletion interaction dominates and gives the salting out. Our theoretical result is consistent with the experimental result for Chymosin protein NIH Grant No R01GM107487.

  1. A modeling study of water and salt exchange for a micro-tidal, stratified northern Gulf of Mexico estuary

    NASA Astrophysics Data System (ADS)

    Kim, Choong-Ki; Park, Kyeong

    2012-08-01

    A three-dimensional hydrodynamic model is applied to the Mobile Bay system to study water and salt exchange with the northern Gulf of Mexico via Main Pass (MP) and eastern Mississippi Sound via Pass-aux-Herons (PaH). On average, more water leaves the Bay through MP than through PaH, and the Bay gains salt through MP and loses about the same amount through PaH. However, the volume discharge rate Qf and salt transport rate FS vary greatly in response to wind and river discharge with the range of variation 1-2 orders of magnitude larger than the corresponding mean. Stratification plays a key role for salt transport through MP. During periods of large river discharge, the landward shear dispersive transport FE peaking during equatorial tides and the landward tidal oscillatory transport FT peaking during tropic tides, respectively, balance the seaward advective transport QfS0. During periods of relatively weak stratification, FS at MP is almost entirely determined by QfS0 and its variability is well correlated with north-south (along-estuary) wind, associated with the barotropic (water level) adjustment. At the shallow, weakly stratified PaH, FS is almost identical to QfS0, and Qf is well correlated with east-west wind, with the correlation becoming stronger during the dry period.

  2. Do gamblers eat more salt? Testing a latent trait model of covariance in consumption.

    PubMed

    Goodwin, Belinda C; Browne, Matthew; Rockloff, Matthew; Donaldson, Phillip

    2015-09-01

    A diverse class of stimuli, including certain foods, substances, media, and economic behaviours, may be described as 'reward-oriented' in that they provide immediate reinforcement with little initial investment. Neurophysiological and personality concepts, including dopaminergic dysfunction, reward sensitivity and rash impulsivity, each predict the existence of a latent behavioural trait that leads to increased consumption of all stimuli in this class. Whilst bivariate relationships (co-morbidities) are often reported in the literature, to our knowledge, a multivariate investigation of this possible trait has not been done. We surveyed 1,194 participants (550 male) on their typical weekly consumption of 11 types of reward-oriented stimuli, including fast food, salt, caffeine, television, gambling products, and illicit drugs. Confirmatory factor analysis was used to compare models in a 3×3 structure, based on the definition of a single latent factor (none, fixed loadings, or estimated loadings), and assumed residual covariance structure (none, a-priori / literature based, or post-hoc / data-driven). The inclusion of a single latent behavioural 'consumption' factor significantly improved model fit in all cases. Also confirming theoretical predictions, estimated factor loadings on reward-oriented indicators were uniformly positive, regardless of assumptions regarding residual covariances. Additionally, the latent trait was found to be negatively correlated with the non-reward-oriented indicators of fruit and vegetable consumption. The findings support the notion of a single behavioural trait leading to increased consumption of reward-oriented stimuli across multiple modalities. We discuss implications regarding the concentration of negative lifestyle-related health behaviours. PMID:26551907

  3. Do gamblers eat more salt? Testing a latent trait model of covariance in consumption

    PubMed Central

    Goodwin, Belinda C.; Browne, Matthew; Rockloff, Matthew; Donaldson, Phillip

    2015-01-01

    A diverse class of stimuli, including certain foods, substances, media, and economic behaviours, may be described as ‘reward-oriented’ in that they provide immediate reinforcement with little initial investment. Neurophysiological and personality concepts, including dopaminergic dysfunction, reward sensitivity and rash impulsivity, each predict the existence of a latent behavioural trait that leads to increased consumption of all stimuli in this class. Whilst bivariate relationships (co-morbidities) are often reported in the literature, to our knowledge, a multivariate investigation of this possible trait has not been done. We surveyed 1,194 participants (550 male) on their typical weekly consumption of 11 types of reward-oriented stimuli, including fast food, salt, caffeine, television, gambling products, and illicit drugs. Confirmatory factor analysis was used to compare models in a 3×3 structure, based on the definition of a single latent factor (none, fixed loadings, or estimated loadings), and assumed residual covariance structure (none, a-priori / literature based, or post-hoc / data-driven). The inclusion of a single latent behavioural ‘consumption’ factor significantly improved model fit in all cases. Also confirming theoretical predictions, estimated factor loadings on reward-oriented indicators were uniformly positive, regardless of assumptions regarding residual covariances. Additionally, the latent trait was found to be negatively correlated with the non-reward-oriented indicators of fruit and vegetable consumption. The findings support the notion of a single behavioural trait leading to increased consumption of reward-oriented stimuli across multiple modalities. We discuss implications regarding the concentration of negative lifestyle-related health behaviours. PMID:26551907

  4. Simulating emission and chemical evolution of coarse sea-salt particles in the Community Multiscale Air Quality (CMAQ) model

    NASA Astrophysics Data System (ADS)

    Kelly, J. T.; Bhave, P. V.; Nolte, C. G.; Shankar, U.; Foley, K. M.

    2009-12-01

    Chemical processing of sea-salt particles in coastal environments significantly impacts concentrations of particle components and gas-phase species and has implications for human exposure to particulate matter and nitrogen deposition to sensitive ecosystems. Emission of sea-salt particles from the coastal surf zone is known to be elevated compared to that from the open ocean. Despite the importance of sea-salt emissions and chemical processing, the US EPA's Community Multiscale Air Quality (CMAQ) model has traditionally treated coarse sea-salt particles as chemically inert and has not accounted for enhanced surf-zone emissions. In this article, updates to CMAQ are described that enhance sea-salt emissions from the coastal surf zone and allow dynamic transfer of HNO3, H2SO4, HCl, and NH3 between coarse particles and the gas phase. Predictions of updated CMAQ models and the previous release version, CMAQv4.6, are evaluated using observations from three coastal sites during the Bay Regional Atmospheric Chemistry Experiment (BRACE) in Tampa, FL in May 2002. Model updates improve predictions of NO3-, SO42-, NH4+, Na+, and Cl- concentrations at these sites with only a 8% increase in run time. In particular, the chemically interactive coarse particle mode dramatically improves predictions of nitrate concentration and size distributions as well as the fraction of total nitrate in the particle phase. Also, the surf-zone emission parameterization improves predictions of total sodium and chloride concentration. Results of a separate study indicate that the model updates reduce the mean absolute error of nitrate predictions at coastal CASTNET and SEARCH sites in the eastern US. Although the new model features improve performance relative to CMAQv4.6, some persistent differences exist between observations and predictions. Modeled sodium concentration is biased low and causes under-prediction of coarse particle nitrate. Also, CMAQ over-predicts geometric mean diameter and

  5. Simulating emission and chemical evolution of coarse sea-salt particles in the Community Multiscale Air Quality (CMAQ) model

    NASA Astrophysics Data System (ADS)

    Kelly, J. T.; Bhave, P. V.; Nolte, C. G.; Shankar, U.; Foley, K. M.

    2010-04-01

    Chemical processing of sea-salt particles in coastal environments significantly impacts concentrations of particle components and gas-phase species and has implications for human exposure to particulate matter and nitrogen deposition to sensitive ecosystems. Emission of sea-salt particles from the coastal surf zone is known to be elevated compared to that from the open ocean. Despite the importance of sea-salt emissions and chemical processing, the US EPA's Community Multiscale Air Quality (CMAQ) model has traditionally treated coarse sea-salt particles as chemically inert and has not accounted for enhanced surf-zone emissions. In this article, updates to CMAQ are described that enhance sea-salt emissions from the coastal surf zone and allow dynamic transfer of HNO3, H2SO4, HCl, and NH3 between coarse particles and the gas phase. Predictions of updated CMAQ models and the previous release version, CMAQv4.6, are evaluated using observations from three coastal sites during the Bay Regional Atmospheric Chemistry Experiment (BRACE) in Tampa, FL in May 2002. Model updates improve predictions of NO3-, SO42-, NH4+, Na+, and Cl- concentrations at these sites with only a 8% increase in run time. In particular, the chemically interactive coarse particle mode dramatically improves predictions of nitrate concentration and size distributions as well as the fraction of total nitrate in the particle phase. Also, the surf-zone emission parameterization improves predictions of total sodium and chloride concentration. Results of a separate study indicate that the model updates reduce the mean absolute error of nitrate predictions at coastal CASTNET and SEARCH sites in the eastern US. Although the new model features improve performance relative to CMAQv4.6, some persistent differences exist between observations and predictions. Modeled sodium concentration is biased low and causes under-prediction of coarse particle nitrate. Also, CMAQ over-predicts geometric mean diameter and

  6. Regional geohydrology of the northern Louisiana salt-dome basin; Part I, conceptual model and data needs

    USGS Publications Warehouse

    Ryals, G.N.

    1982-01-01

    As part of the National Waste Terminal Storage Program, the U.S. Geological Survey is conducting a regional study of the geohydrology of the northern Louisiana salt-dome basin and developing a regional multi-layered ground-water flow model to determine regional flow paths. In the salt-dome basin the Tokio Formation and Brownstown Marl (Austin aquifer in this report), and Nacatoch Sand of Late Cretaceous age and the Wilcox Group, Carrizo Sand, Sparta Sand, and Cockfield Formation of Tertiary age contain regional aquifers within the maximum potential repository depth of 3,000 feet. The Cretaceous units contain saltwater throughout the basin. The Tertiary units contain freshwater to varying distances downdip from outcrop areas in the basin. Natural flow directions and rates of movement of groundwater have been changed in the salt-dome basin by the withdrawl of freshwater and by the injection of wastes (principally oil-field brines) into saline aquifers. Except for the Sparta aquifer, ground-water flow directions are not well known because of a lack of potentiometric data. A regional test-drilling program, to collect the data needed to document concepts of the flow system and to quantify inputs to the planned ground-water flow model, has been proposed. The Sparta aquifer is being modeled because data are available for the unit. As regional test drilling provides data on other units, will be added to the model developed for the Sparta aquifer. (USGS)

  7. Salt Water Intrusion Modeling of an Aquifer in the Northwest of Maharlu Lake

    NASA Astrophysics Data System (ADS)

    Ghader, Fatemeh; Zaree, Mohammad

    2010-05-01

    Coastal aquifers are important supply sources of fresh water in numerous area of earth. The problem of saltwater intrusion has been widely caused the deterioration of water qulity in these sources. As fresh water flows from the aquifer near the coastline. Eventually dynamic equilibrium is reached between the fresh and saltwater. Intrusion of pumping wells within coastal aquifer has the potential to disturb this equilibrium. Maharloo Lake is a salt lake located 27 km southeast of Shiraz. There are many fresh coastal aquifera around this lake that naturally are recharged by fresh water entering from the landward karstic aquifer. The hydraulic equilibrium could be disturbed due to large extraction rate and consequently dropping in groundwater table. So, the lake saltwater with high salinity (Ec more than 300ms/cm in summer) coukd flow toward the aquifer. This lake salinity is much more than oceans salinity, so aquifer salinity could be changed very much even at low equilibrium disturbance. As a result, the management and maintenance of this aquifer is very important. The object of this research is preparation of an intrusion model of a coastal aquifer at the northwestern of Maharloo Lake, where the coastal aquifer is the single supply source of fresh water and the saltwater intrusion has been widely caused the deterioration of water quality. In this study SEAWAT computer code, a three dimensional finit difference model, used to study the intrusion mechanisms and groundwater systems. After data collection including qualitative and quantitative data and geology and hydrogeology of study area in the field, a conseptual model were prepared. On the basis of collected data, condition of the aquifer in February 2008 were taken as the initial condition and the length of calibration and verification periods consequently take 150 and 121 days after this time. After model calibration and verification, the aquifer conditions for next year predicted on the basis of two following

  8. Modeling carbon dioxide emissions reductions for three commercial reference buildings in Salt Lake City

    NASA Astrophysics Data System (ADS)

    Lucich, Stephen M.

    In the United States, the buildings sector is responsible for approximately 40% of the national carbon dioxide (CO2) emissions. CO2 is created during the generation of heat and electricity, and has been linked to climate change, acid rain, a variety of health threats, surface water depletion, and the destruction of natural habitats. Building energy modeling is a powerful educational tool that building owners, architects, engineers, city planners, and policy makers can use to make informed decisions. The aim of this thesis is to simulate the reduction in CO2 emissions that may be achieved for three commercial buildings located in Salt Lake City, UT. The following two questions were used to guide this process: 1. How much can a building's annual CO2 emissions be reduced through a specific energy efficiency upgrade or policy? 2. How much can a building's annual CO2 emissions be reduced through the addition of a photovoltaic (PV) array? How large should the array be? Building energy simulations were performed with the Department of Energy's EnergyPlus software, commercial reference building models, and TMY3 weather data. The chosen models were a medium office building, a primary school, and a supermarket. Baseline energy consumption data were simulated for each model in order to identify changes that would have a meaningful impact. Modifications to the buildings construction and operation were considered before a PV array was incorporated. These modifications include (1) an improved building envelope, (2) reduced lighting intensity, and (3) modified HVAC temperature set points. The PV array sizing was optimized using a demand matching approach based on the method of least squares. The arrays tilt angle was optimized using the golden section search algorithm. Combined, energy efficiency upgrades and the PV array reduced building CO2 emissions by 58.6, 54.0, and 52.2% for the medium office, primary school, and supermarket, respectively. However, for these models, it was

  9. Analytical prediction of the interior noise for cylindrical models of aircraft fuselages for prescribed exterior noise fields. Phase 2: Models for sidewall trim, stiffened structures and cabin acoustics with floor partition

    NASA Technical Reports Server (NTRS)

    Pope, L. D.; Wilby, E. G.

    1982-01-01

    An airplane interior noise prediction model is developed to determine the important parameters associated with sound transmission into the interiors of airplanes, and to identify apropriate noise control methods. Models for stiffened structures, and cabin acoustics with floor partition are developed. Validation studies are undertaken using three test articles: a ring stringer stiffened cylinder, an unstiffened cylinder with floor partition, and ring stringer stiffened cylinder with floor partition and sidewall trim. The noise reductions of the three test articles are computed using the heoretical models and compared to measured values. A statistical analysis of the comparison data indicates that there is no bias in the predictions although a substantial random error exists so that a discrepancy of more than five or six dB can be expected for about one out of three predictions.

  10. Sensitivity Analysis for Model Simulations of the Effects of Irrigation Water Management on Crop Yields and Groundwater Salt Loading

    NASA Astrophysics Data System (ADS)

    Skaggs, T. H.; Suarez, D. L.; Corwin, D. L.

    2013-12-01

    One strategy for sustaining irrigated agricultural productivity in the face of diminishing water and land availability is to make greater use of marginal quality water for crop production. In implementing such a strategy, a key factor for maintaining productivity will be soil salinity. Irrigation waters, especially recycled or otherwise marginal quality waters, contain salts that can accumulate in soils over time and reduce yields. In arid regions where rainfall is not sufficient to flush the salts from the root zone, it is necessary to apply excess irrigation water to leach the soil. To avoid wasting water, and to lessen impacts on groundwater quality, it is desirable that soil leaching be minimized to the extent possible. Classical guidelines for managing salinity are intended to be general, providing a conservative estimate of the leaching requirement that is appropriate across a range of soils and waters. A consequence of this generality is that in some cases the guidelines recommend more leaching (and hence more salt and nutrient loading to groundwater) than is necessary. A simulation modeling approach offers potential advantages over classical methods for site-specific management, but the technique is considerably more complex, and difficulties exist with respect to developing procedures for routine use. The models typically have a large number of parameters and the simulations can have a high degree of uncertainty. Global sensitivity analyses can reveal which parameter variations or uncertainties have the greatest impact on variations or uncertainties in model predictions. In this work we evaluate UNSATCHEM model parameter sensitivities in simulating a seasonal irrigated cropping scenario. Parameters sensitivities are determined with respect to three performance measures: crop yield, root zone average soil salinity, and salt loading to groundwater.

  11. Internal boundary layer devleopment over a salt pan: Measured and modelled dust emissions

    NASA Astrophysics Data System (ADS)

    King, J.; Wiggs, G.; Haustein, K.; Eckardt, F. D.; Thomas, D. S. G.; Washington, R.

    2014-12-01

    A key component of a dust emission scheme is the threshold for sediment transport, which is a function of soil size distribution, soil moisture, air and soil particle density, and surface roughness. For a particular region or landform that is not vegetated the variable that controls the transport threshold the most is soil moisture. This is because it is assumed that the other components vary little (air and soil particle densities) or are kept constant (soil size distribution and surface roughness). This puts the emphasis very heavily on soil moisture and wind stress as the key drivers of dust emission for specific landforms and dust emission schemes. Dust emission measurements were undertaken in 2011 on Sua Pan in Botswana, a large, flat, unvegetated salt pan, as part of the Dust Observation for Models (DO4 Models) campaign. The observations consisted of 11 climate stations placed within a 144 km2. Out of the measured and calculated erodibility parameters responsible for predicting transport threshold within current schemes, surface soil moisture and aerodynamic roughness length varied the most over the duration of the project and spatially across the pan. In 2011, the pan was drying from extensive flooding and rainfall in the previous wet season. Within the dry winter season months of June through September the dominantly eastern winds dried the pan developing a directional increase in aerodynamic roughness length over time. This cumulated in a region of maximum roughness length with the highest potential for dust emissions. In some cases, the aerodynamic roughness length of the bare soil increased by three orders of magnitude within the three month period. This increase in roughness almost doubles the modelled threshold shear velocity required for this surface to be emissive. The temporal and spatial variability of the calculated transport threshold is explored with observed data and compared with the modelled transport threshold for this region for the

  12. Effects of sinking of salt rejected during formation of sea ice on results of an ocean-atmosphere-sea ice climate model

    NASA Astrophysics Data System (ADS)

    Duffy, P. B.; Eby, M.; Weaver, A. J.

    We show that results of an ocean-atmosphere-sea-ice model are sensitive to the treatment of salt rejected during formation of sea ice. In our Control simulation, we place all rejected salt in the top ocean-model level. In the Plume simulation, we instantaneously mix rejected salt into the subsurface ocean, to a maximum depth which depends on local density gradients. This mimics the effects of subgrid-scale convection of rejected salt. The results of the Plume simulation are more realistic than those of the Control simulation: the spatial pattern of simulated salinities (especially in the Southern Ocean), deep-ocean temperatures, simulated sea-ice extents and surface air temperatures all agree better with observations. A similar pair of simulations using horizontal tracer diffusion instead of the Gent-McWilliams eddy parameterization show similar changes due to instantaneous mixing of rejected salt.

  13. 4D RECONSTRUCTIONS FROM LOW-COUNT SPECT DATA USING DEFORMABLE MODELS WITH SMOOTH INTERIOR INTENSITY VARIATIONS

    SciTech Connect

    G. S. CUNNINGHAM; A. LEHOVICH

    2000-01-01

    The Bayes Inference Engine (BIE) has been used to perform a 4D reconstruction of a first-pass radiotracer bolus distribution inside a CardioWest Total Artificial Heart, imaged with the University of Arizona's FastSPECT system. The BIE estimates parameter values that define the 3D model of the radiotracer distribution at each of 41 times spanning about two seconds. The 3D models have two components: a closed surface, composed of hi-quadratic Bezier triangular surface patches, that defines the interface between the part of the blood pool that contains radiotracer and the part that contains no radiotracer, and smooth voxel-to-voxel variations in intensity within the closed surface. Ideally, the surface estimates the ventricular wall location where the bolus is infused throughout the part of the blood pool contained by the right ventricle. The voxel-to-voxel variations are needed to model an inhomogeneously-mixed bolus. Maximum a posterior (MAP) estimates of the Bezier control points and voxel values are obtained for each time frame. We show new reconstructions using the Bezier surface models, and discuss estimates of ventricular volume as a function of time, ejection fraction, and wall motion. The computation time for our reconstruction process, which directly estimates complex 3D model parameters from the raw data, is performed in a time that is competitive with more traditional voxel-based methods (ML-EM, e.g.).

  14. Analytical prediction of the interior noise for cylindrical models of aircraft fuselages for prescribed exterior noise fields. Phase 1: Development and validation of preliminary analytical models

    NASA Technical Reports Server (NTRS)

    Pope, L. D.; Rennison, D. C.; Wilby, E. G.

    1980-01-01

    The basic theoretical work required to understand sound transmission into an enclosed space (that is, one closed by the transmitting structure) is developed for random pressure fields and for harmonic (tonal) excitation. The analysis is used to predict the noise reducton of unpressurized unstiffened cylinder, and also the interior response of the cylinder given a tonal (plane wave) excitation. Predictions and measurements are compared and the transmission is analyzed. In addition, results for tonal (harmonic) mechanical excitation are considered.

  15. Modeling CH4 and CO2 cycling using porewater stable isotopes in a thermokarst bog, interior Alaska

    NASA Astrophysics Data System (ADS)

    Neumann, R. B.; Blazewicz, S.; Waldrop, M. P.

    2014-12-01

    Methane emitted from wetlands represents the end product of various microbial processes operating within anaerobic wetland soils. Determining the rate at which these microbial reactions occur is challenging, making it difficult to gain a mechanistic understanding of the factors and conditions that influence microbial rates and ultimately methane emissions. One approach for estimating in-situ reaction rates involves tracking the time evolution of porewater concentrations and stable carbon isotopes of CH4 and CO2. Microbes preferentially use isotopically light carbon substrates, which causes the carbon product pool to become isotopically lighter and the carbon substrate pool become isotopically heavier. Different microbial biochemical pathways fractionate carbon to different extents, allowing for differentiation between microbial reactions. This is a powerful approach to estimate in-situ rates, but, as we show in our presentation, it is possible for different combinations of reaction rates to provide equally good fits to the evolution of these data. The solution is non-unique and depends on the set of considered reactions. We used two different reaction network models on a set of porewater data collected from a thermokarst bog at the Alaska Peatland Experiment (APEX) outside of Fairbanks, AK to estimate in-situ microbial reaction rates during the summer season. Both models included methane production, methane oxidation and fermentation/respiration, but only one model included homoacetogenesis. We found that both reaction networks explained the evolution of dissolved gas concentrations and stable carbon isotope data, but predicted rates that differed from each other by up to a factor of six. The methane production rates estimated by the model that included homoacetogenesis aligned better with measured rates of methane emission. Despite differences in the magnitude of modeled rates, results from the two models told a similar story about the spatial and temporal

  16. Ocean Turbulence. Paper 2; One-Point Closure Model Momentum, Heat and Salt Vertical Diffusivities in the Presence of Shear

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Howard, A.; Cheng, Y.; Dubovikov, M. S.

    1999-01-01

    We develop and test a 1-point closure turbulence model with the following features: 1) we include the salinity field and derive the expression for the vertical turbulent diffusivities of momentum K(sub m) , heat K(sub h) and salt K(sub s) as a function of two stability parameters: the Richardson number R(sub i) (stratification vs. shear) and the Turner number R(sub rho) (salinity gradient vs. temperature gradient). 2) to describe turbulent mixing below the mixed layer (ML), all previous models have adopted three adjustable "background diffusivities" for momentum, heat and salt. We propose a model that avoids such adjustable diffusivities. We assume that below the ML, the three diffusivities have the same functional dependence on R( sub i) and R(sub rho) as derived from the turbulence model. However, in order to compute R(sub i) below the ML, we use data of vertical shear due to wave-breaking.measured by Gargett et al. The procedure frees the model from adjustable background diffusivities and indeed we employ the same model throughout the entire vertical extent of the ocean. 3) in the local model, the turbulent diffusivities K(sub m,h,s) are given as analytical functions of R(sub i) and R(sub rho). 5) the model is used in an O-GCM and several results are presented to exhibit the effect of double diffusion processes. 6) the code is available upon request.

  17. Planetary Interior in the Laboratory

    SciTech Connect

    Chau, R; Bastea, M; Mitchell, A C; Minich, R W; Nellis, W J

    2003-01-31

    In the three years of this project, we have provided a complete database of the electrical conductivity of planetary materials to 180 GPa. The electrical conductivities of these planetary materials now provide a basis for future modeling of planets taking into account full magnetohydrodynamics. By using a full magnetohydrodynamics simulation, the magnetic fields of the planets can then be taken into account. Moreover, the electrical conductivities of the planetary materials have given us insight into the structure and nature of these dense fluids. We showed that simple monoatomic fluids such as hydrogen, nitrogen, and oxygen at planetary interior conditions undergo a common metallization process which can be explained on a simple basis of their radial charge density distributions. This model also shows that the metallization process is actually rather common and likely to take place in a number of materials such as carbon monoxide which is also present within planetary objects. On the other hand, we have also showed that a simple two component fluid like water and methane take on much different behaviors than say nitrogen due to the chemical interactions within these systems. The dynamics of an even more complex system, ''synthetic Uranus'' are still being analyzed but suggest that on some levels the behavior is very simple, i.e. the electrical conductivity is essentially the same as water, but the local dynamics are very complex. This project has shed much light on the nature of electrical transport within planetary interiors but also has shown that understanding chemical processes in the complex fluids within planetary interiors to be very important. Understanding those local interactions and processes is required to gain further insight into planetary interiors.

  18. Modeling the influence of river discharge on salt intrusion and residual circulation in Danshuei River estuary, Taiwan

    USGS Publications Warehouse

    Liu, W.-C.; Chen, W.-B.; Cheng, R.T.; Hsu, M.-H.; Kuo, A.Y.

    2007-01-01

    A 3-D, time-dependent, baroclinic, hydrodynamic and salinity model was implemented and applied to the Danshuei River estuarine system and the adjacent coastal sea in Taiwan. The model forcing functions consist of tidal elevations along the open boundaries and freshwater inflows from the main stream and major tributaries in the Danshuei River estuarine system. The bottom friction coefficient was adjusted to achieve model calibration and verification in model simulations of barotropic and baroclinic flows. The turbulent diffusivities were ascertained through comparison of simulated salinity time series with observations. The model simulation results are in qualitative agreement with the available field data. The validated model was then used to investigate the influence of freshwater discharge on residual current and salinity intrusion under different freshwater inflow condition in the Danshuei River estuarine system. The model results reveal that the characteristic two-layered estuarine circulation prevails most of the time at Kuan-Du station near the river mouth. Comparing the estuarine circulation under low- and mean flow conditions, the circulation strengthens during low-flow period and its strength decreases at moderate river discharge. The river discharge is a dominating factor affecting the salinity intrusion in the estuarine system. A correlation between the distance of salt intrusion and freshwater discharge has been established allowing prediction of salt intrusion for different inflow conditions. ?? 2007 Elsevier Ltd. All rights reserved.

  19. Scale-up of osmotic membrane bioreactors by modeling salt accumulation and draw solution dilution using hollow-fiber membrane characteristics and operation conditions.

    PubMed

    Kim, Suhan

    2014-08-01

    A full-scale osmotic membrane bioreactor (OMBR) model was developed to simulate salt accumulation, draw solution (DS) dilution, and water flux over the hollow-fiber membrane length. The model uses the OMBR design parameters, DS properties, and forward osmosis (FO) membrane characteristics obtained from lab-scale tests. The modeling results revealed a tremendous water flux decline (10→0.82LMH) and short solids retention time (SRT: 5days) due to salt accumulation and DS dilution when OMBR is scaled up using commercially available DS and FO membrane. Simulated water flux is a result of interplay among reverse salt flux, internal and external concentration polarization (ICP and ECP). ECP adversely impacts water flux considerably in full-scale OMBR although it is often ignored in previous works. The OMBR model makes it possible to select better DS properties (higher flow rate and salt concentration) and FO membranes with higher water flux propensity in full-scale operation.

  20. Scale-up of osmotic membrane bioreactors by modeling salt accumulation and draw solution dilution using hollow-fiber membrane characteristics and operation conditions.

    PubMed

    Kim, Suhan

    2014-08-01

    A full-scale osmotic membrane bioreactor (OMBR) model was developed to simulate salt accumulation, draw solution (DS) dilution, and water flux over the hollow-fiber membrane length. The model uses the OMBR design parameters, DS properties, and forward osmosis (FO) membrane characteristics obtained from lab-scale tests. The modeling results revealed a tremendous water flux decline (10→0.82LMH) and short solids retention time (SRT: 5days) due to salt accumulation and DS dilution when OMBR is scaled up using commercially available DS and FO membrane. Simulated water flux is a result of interplay among reverse salt flux, internal and external concentration polarization (ICP and ECP). ECP adversely impacts water flux considerably in full-scale OMBR although it is often ignored in previous works. The OMBR model makes it possible to select better DS properties (higher flow rate and salt concentration) and FO membranes with higher water flux propensity in full-scale operation. PMID:24746768

  1. A fully predictive model for salt intrusion in estuaries applied to the Yangtze estuary

    NASA Astrophysics Data System (ADS)

    Cai, Huayang; Savenije, Hubert H. G.; Zuo, Shuhua; Jiang, Chenjuan; Chua, Vivien P.

    2015-04-01

    Understanding the way the salinity distribution in an estuary reacts to external drivers (e.g., tide, fresh water discharge, dredging etc.) is important for both water quality and water resources management in estuaries. The salinity distribution depends strongly on the geometry of an estuary, but also on the fresh water discharge that counteracts the salt intrusion. In estuaries it is notoriously hard to estimate this discharge and subsequently to predict the parameters that determine the mixing behaviour depending on it. Recently a method has been developed to predict the fresh water discharge on the basis of water level observations. In addition predictive equations for tidal mixing have been updated and revised. In this paper, these two predictive methods are combined and subsequently applied to the Yangtze estuary under a wide variation of fresh water discharge. The predicted salt distribution appears to be in good agreement with observations. To provide insight into the optimum use of water resources (e.g., to determine the amount of fresh water discharge required to maintain a specific salt intrusion length), we further studied the salt intrusion pattern under different fresh water discharge conditions.

  2. A predictive model for salt intrusion in estuaries applied to the Yangtze estuary

    NASA Astrophysics Data System (ADS)

    Cai, Huayang; Savenije, Hubert H. G.; Zuo, Shuhua; Jiang, Chenjuan; Chua, Vivien P.

    2015-10-01

    Understanding the way salinity distribution in an estuary reacts to external drivers (e.g., tide, fresh water discharge, dredging, etc.) is important for both water quality and water resources management in estuaries. The salinity distribution depends strongly on the geometry of an estuary, but also on the fresh water discharge that counteracts the salt intrusion. In estuaries it is notoriously hard to estimate this discharge and subsequently to predict the parameters that determine the mixing behaviour depending on it. Recently a method has been developed to predict the fresh water discharge on the basis of water level observations. In addition, predictive equations for tidal mixing have been updated and revised. In this paper, these two predictive methods are combined and subsequently applied to the Yangtze estuary under a wide variation of fresh water discharge. The predicted salt distribution appears to be in good agreement with observations. To provide insight into the optimum use of water resources (e.g., to determine the amount of fresh water discharge required to maintain a specific salt intrusion length), we further study the salt intrusion pattern under different tide and fresh water discharge conditions.

  3. A dynamic nitrogen budget model of a Pacific Northwest salt marsh

    EPA Science Inventory

    The role of salt marshes as either nitrogen sinks or sources in relation to their adjacent estuaries has been a focus of ecosystem service research for many decades. The complex hydrology of these systems is driven by tides, upland surface runoff, precipitation, evapotranspirati...

  4. Gas release during salt-well pumping: Model predictions and laboratory validation studies for soluble and insoluble gases

    SciTech Connect

    Peurrung, L.M.; Caley, S.M.; Gauglitz, P.A.

    1997-08-01

    The Hanford Site has 149 single-shell tanks (SSTs) containing radioactive wastes that are complex mixes of radioactive and chemical products. Of these, 67 are known or suspected to have leaked liquid from the tanks into the surrounding soil. Salt-well pumping, or interim stabilization, is a well-established operation for removing drainable interstitial liquid from SSTs. The overall objective of this ongoing study is to develop a quantitative understanding of the release rates and cumulative releases of flammable gases from SSTs as a result of salt-well pumping. The current study is an extension of the previous work reported by Peurrung et al. (1996). The first objective of this current study was to conduct laboratory experiments to quantify the release of soluble and insoluble gases. The second was to determine experimentally the role of characteristic waste heterogeneities on the gas release rates. The third objective was to evaluate and validate the computer model STOMP (Subsurface Transport over Multiple Phases) used by Peurrung et al. (1996) to predict the release of both soluble (typically ammonia) and insoluble gases (typically hydrogen) during and after salt-well pumping. The fourth and final objective of the current study was to predict the gas release behavior for a range of typical tank conditions and actual tank geometry. In these models, the authors seek to include all the pertinent salt-well pumping operational parameters and a realistic range of physical properties of the SST wastes. For predicting actual tank behavior, two-dimensional (2-D) simulations were performed with a representative 2-D tank geometry.

  5. Trends in Interior Environments.

    ERIC Educational Resources Information Center

    Hovey, Robyn

    2000-01-01

    Examines how an understanding of interior design trends can help planners address their present and future furniture needs. Examines how new types of construction and their associated concerns are requiring new approaches from the facility designers and manufacturers of product solutions. (GR)

  6. Interiors That Stand Out

    ERIC Educational Resources Information Center

    American School & University, 2008

    2008-01-01

    "It's what's on the inside that counts"--at least when it comes to "American School & University's" (AS&U's) annual Educational Interiors Showcase competition. Each May, "AS&U" assembles at its Overland Park, Kansas headquarters a jury made up of education and architectural professionals from across the country to pore over an array of exceptional…

  7. Interior of the Earth

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.

    1984-01-01

    Basic questions regarding the interior of the Earth in the 1990's are discussed. Research problems in the areas of plate tectonics, the Earth mantle the Earth core, and continental structure are discussed. Observational requirements of the GRAVSAT satellite mission are discussed.

  8. Planetary Interiors and Geodesy

    NASA Astrophysics Data System (ADS)

    Dehant, Veronique

    2013-04-01

    Lander and orbiter, even rover at the surface of planets or moons of the solar system help in determining their interior properties. First of all orbiters feel the gravity of the planet and its change. In particular, the tidal mass redistribution induces changes in the acceleration of the spacecraft orbiting around a planet. The Love number k2 has been determined for Venus, Mars and the Earth, as well as for Titan and will be deduced for instance for Mercury (MESSENGER and BepiColombo missions) and for the Galilean satellite from new missions such as JUICE (Jupiter Icy satellite Explorer). The properties of the interior can also be determined from the observation of the rotation of the celestial body. Radar observation from the Earth ground stations of Mercury has allowed Margo et al. (2012, JGR) to determine the moments of inertia of Mercury with an unprecedented accuracy. Rovers such as the MERs (Mars Exploration Rovers) allow as well to obtain the precession and nutation of Mars from which the moments of inertia of the planet and its core can be deduced. Future missions such as InSIGHT (Interior exploration using Seismic Investigations, Geodesy, and Heat Transport) will further help in the determination of Mars interior and evolution.

  9. Interior Design in Architectural Education

    ERIC Educational Resources Information Center

    Gurel, Meltem O.; Potthoff, Joy K.

    2006-01-01

    The domain of interiors constitutes a point of tension between practicing architects and interior designers. Design of interior spaces is a significant part of architectural profession. Yet, to what extent does architectural education keep pace with changing demands in rendering topics that are identified as pertinent to the design of interiors?…

  10. Development of an annoyance model based upon elementary auditory sensations for steady-state aircraft interior noise containing tonal components

    NASA Technical Reports Server (NTRS)

    Angerer, James R.; Mccurdy, David A.; Erickson, Richard A.

    1991-01-01

    The purpose of this investigation was to develop a noise annoyance model, superior to those already in use, for evaluating passenger response to sounds containing tonal components which may be heard within current and future commercial aircraft. The sound spectra investigated ranged from those being experienced by passengers on board turbofan powered aircraft now in service to those cabin noise spectra passengers may experience within advanced propeller-driven aircraft of the future. A total of 240 sounds were tested in this experiment. Sixty-six of these 240 sounds were steady state, while the other 174 varied temporally due to tonal beating. Here, the entire experiment is described, but the analysis is limited to those responses elicited by the 66 steady-state sounds.

  11. Interior rotation of a sample of γ Doradus stars from ensemble modelling of their gravity-mode period spacings

    NASA Astrophysics Data System (ADS)

    Van Reeth, T.; Tkachenko, A.; Aerts, C.

    2016-10-01

    Context. Gamma Doradus stars (hereafter γ Dor stars) are known to exhibit gravity- and/or gravito-intertial modes that probe the inner stellar region near the convective core boundary. The non-equidistant spacing of the pulsation periods is an observational signature of the stellar evolutions and current internal structure and is heavily influenced by rotation. Aims: We aim to constrain the near-core rotation rates for a sample of γ Dor stars for which we have detected period spacing patterns. Methods: We combined the asymptotic period spacing with the traditional approximation of stellar pulsation to fit the observed period spacing patterns using χ2-optimisation. The method was applied to the observed period spacing patterns of a sample of stars and used for ensemble modelling. Results: For the majority of stars with an observed period spacing pattern we successfully determined the rotation rates and the asymptotic period spacing values, although the uncertainty margins on the latter were typically large. This also resulted directly in the identification of the modes that correspond to the detected pulsation frequencies, which for most stars were prograde dipole gravity and gravito-inertial modes. The majority of the observed retrograde modes were found to be Rossby modes. We also discuss the limitations of the method that are due to the neglect of the centrifugal force and the incomplete treatment of the Coriolis force. Conclusions: Despite its current limitations, the proposed method was successful to derive the rotation rates and to identify the modes from the observed period spacing patterns. It forms the first step towards detailed seismic modelling based on observed period spacing patterns of moderately to rapidly rotating γDor stars. Based on data gathered with the NASA Discovery mission Kepler and the HERMES spectrograph, which is installed at the Mercator Telescope, operated on the island of La Palma by the Flemish Community at the Spanish

  12. Modeling of Flow, Transport and Controlled Sedimentation Phenomena during Mixing of Salt Solutions in Complex Porous Formations

    NASA Astrophysics Data System (ADS)

    Skouras, Eugene D.; Jaho, Sofia; Pavlakou, Efstathia I.; Sygouni, Varvara; Petsi, Anastasia; Paraskeva, Christakis A.

    2015-04-01

    The deposition of salts in porous media is a major engineering phenomenon encountered in a plethora of industrial and environmental applications where in some cases is desirable and in other not (oil production, geothermal systems, soil stabilization etc). Systematic approach of these problems requires knowledge of the key mechanisms of precipitating salts within the porous structures, in order to develop new methods to control the process. In this work, the development and the solution of spatiotemporally variable mass balances during salt solution mixing along specific pores were performed. Both analytical models and finite differences CFD models were applied for the study of flow and transport with simultaneous homogeneous and heterogeneous nucleation (by crystal growth on the surface of the pores) in simple geometries, while unstructured finite elements and meshless methods were developed and implemented for spatial discretization, reconstruction, and solution of transport equations and homogeneous / heterogeneous reactions in more complex geometries. At initial stages of this work, critical problem parameters were identified, such as the characteristics of the porosity, the number of dissolved components, etc. The parameters were then used for solving problems which correspond to available experimental data. For each combination of ions and materials, specific data and process characteristics were included: (a) crystal kinetics (nucleation, growth rates or reaction surface rates of crystals, critical suspension concentrations), (b) physico-chemical properties (bulk density, dimensions of generated crystals, ion diffusion coefficients in the solution), (c) operating parameters (macroscopic velocity, flow, or pressure gradient of the solution, ion concentration) (d) microfluidic data (geometry, flow area), (e) porosity data in Darcy description (initial porosity, specific surface area, tortuosity). During the modeling of flow and transport in three

  13. 24 CFR 3285.803 - Interior close-up.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Exterior and Interior Close-Up § 3285.803 Interior... doors. (b) Interior close up items necessary to join all sections of the home or items subject to transportation damage may be packaged or shipped with the home for site installation. (c) Shipped-loose...

  14. 24 CFR 3285.803 - Interior close-up.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Exterior and Interior Close-Up § 3285.803 Interior... doors. (b) Interior close up items necessary to join all sections of the home or items subject to transportation damage may be packaged or shipped with the home for site installation. (c) Shipped-loose...

  15. 24 CFR 3285.803 - Interior close-up.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Interior close-up. 3285.803 Section... DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Exterior and Interior Close-Up § 3285.803 Interior close-up. (a) All shipping blocking, strapping, or bracing must be removed from appliances, windows,...

  16. 24 CFR 3285.803 - Interior close-up.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Interior close-up. 3285.803 Section... DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Exterior and Interior Close-Up § 3285.803 Interior close-up. (a) All shipping blocking, strapping, or bracing must be removed from appliances, windows,...

  17. 24 CFR 3285.803 - Interior close-up.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Interior close-up. 3285.803 Section... DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Exterior and Interior Close-Up § 3285.803 Interior close-up. (a) All shipping blocking, strapping, or bracing must be removed from appliances, windows,...

  18. Great Salt Lake halophilic microorganisms as models for astrobiology: evidence for desiccation tolerance and ultraviolet irradiation resistance

    NASA Astrophysics Data System (ADS)

    Baxter, Bonnie K.; Eddington, Breanne; Riddle, Misty R.; Webster, Tabitha N.; Avery, Brian J.

    2007-09-01

    Great Salt Lake (GSL) is home to halophiles, salt-tolerant Bacteria and Archaea, which live at 2-5M NaCl. In addition to salt tolerance, GSL halophiles exhibit resistance to both ultraviolet (UV) irradiation and desiccation. First, to understand desiccation resistance, we sought to determine the diversity of GSL halophiles capable of surviving desiccation in either recently formed GSL halite crystals or GSL Artemia (brine shrimp) cysts. From these desiccated environments, surviving microorganisms were cultured and isolated, and genomic DNA was extracted from the individual species for identification by 16S rRNA gene homology. From the surface-sterilized cysts we also extracted DNA of the whole microbial population for non-cultivation techniques. We amplified the archaeal or bacterial 16S rRNA gene from all genomic DNA, cloned the cyst population amplicons, and sequenced. These sequences were compared to gene databases for determination of closest matched species. Interestingly, the isolates from the crystal dissolution are distinct from those previously isolated from GSL brine. The cyst population results reveal species not found in crystals or brine, and may indicate microorganisms that live as endosymbionts of this hypersaline arthropod. Second, we explored UV resistance in a GSL haloarchaea species, "H. salsolis." This strain resists UV irradiation an order of magnitude better than control species, all of which have intact repair systems. To test the hypothesis that halophiles have a photoprotection system, which prevents DNA damage from occurring, we designed an immunoassay to detect thymine dimers following UV irradiation. "H. salsolis" showed remarkable resistance to dimer formation. Evidence for both UV and desiccation resistance in these salt-tolerant GSL halophiles makes them well-suited as models for Astrobiological studies in pursuit of questions about life beyond earth.

  19. Multi-scale modelling for the assessment of water quality and land subsidence due to salt layers dissolution

    NASA Astrophysics Data System (ADS)

    Gourdier, Sébastien; Bazargan-Sabet, Behrooz; Quang Vong, Chan

    2016-04-01

    Long term evolution of salt mine depends on mechanical behavior of the material but also on specific conditions like the intrusion of water into working areas. Such phenomenon has been observed in the Nancy Basin (East of France) where brine percolates through access shafts accompanied by significant subsidence at the surface level, bringing about growing societal concerns. In order to understand the mechanisms and kinetics of dissolution of salt inducing the phenom-enon of subsidence, a numerical model is implemented. The circulation of water between the salt layer and the impervious layer induces the creation of dissolution channels. In active disso-lution zones, the channel network constantly evolves: new channels appear with new dissolution zones while others collapse because of their too important dimensions. The model simulates the phenomenon of dissolution at the channel scale first, then at the basin scale. Dissolution channels modeling has been realized using COMSOL Multiphysics® with Darcy's Law and Solute Transport interfaces. At the channel scale, realistic parameters used as input data gave raise to output results con-sistent with the expected range of values for numerical assessment of the transient period and mass fluxes. At the basin scale, initial porosity and hydraulic conductivity fields, related to each other by a cubic law, are assumed to follow a Weibull distribution. From this initial state, the transient model calculates the evolution of porosity with time, taking into account Darcy's velocity as it was formulated by Yao et al. (2014). Progress in dissolution and transport gives rise to the creation of dissolution channels. Channels mechanical behavior is investigated through extending 2D model into 3D one. The calculations show that open channels collapse when they reach a width of approximatively one meter. The results of these investigations are consistent with the in situ measurements, notably with the estimation of the subsidence rate

  20. Sensitivity of modeled atmospheric nitrogen species and nitrogen deposition to variations in sea salt emissions in the North Sea and Baltic Sea regions

    NASA Astrophysics Data System (ADS)

    Neumann, Daniel; Matthias, Volker; Bieser, Johannes; Aulinger, Armin; Quante, Markus

    2016-03-01

    Coarse sea salt particles are emitted ubiquitously from the ocean surface by wave-breaking and bubble-bursting processes. These particles impact the atmospheric chemistry by affecting the condensation of gas-phase species and, thus, indirectly the nucleation of new fine particles, particularly in regions with significant air pollution. In this study, atmospheric particle concentrations are modeled for the North Sea and Baltic Sea regions in northwestern Europe using the Community Multiscale Air Quality (CMAQ) modeling system and are compared to European Monitoring and Evaluation Programme (EMEP) measurement data. The sea salt emission module is extended by a salinity-dependent scaling of the sea salt emissions because the salinity in large parts of the Baltic Sea is very low, which leads to considerably lower sea salt mass emissions compared to other oceanic regions. The resulting improvement in predicted sea salt concentrations is assessed. The contribution of surf zone emissions is considered separately. Additionally, the impacts of sea salt particles on atmospheric nitrate and ammonium concentrations and on nitrogen deposition are evaluated. The comparisons with observational data show that sea salt concentrations are commonly overestimated at coastal stations and partly underestimated farther inland. The introduced salinity scaling improves the predicted Baltic Sea sea salt concentrations considerably. The dates of measured peak concentrations are appropriately reproduced by the model. The impact of surf zone emissions is negligible in both seas. Nevertheless, they might be relevant because surf zone emissions were cut at an upper threshold in this study. Deactivating sea salt leads to minor increases in NH3 + NH4+ and HNO3 + NO3- and a decrease in NO3- concentrations. However, the overall effect on NH3 + NH4+ and HNO3 + NO3- concentrations is smaller than the deviation from the measurements. Nitrogen wet deposition is underestimated by the model at most

  1. In vitro model systems to investigate bile salt export pump (BSEP) activity and drug interactions: A review.

    PubMed

    Cheng, Yaofeng; Woolf, Thomas F; Gan, Jinping; He, Kan

    2016-08-01

    The bile salt export pump protein (BSEP), expressed on the canalicular membranes of hepatocytes, is primarily responsible for the biliary excretion of bile salts. The inhibition of BSEP transport activity can lead to an increase in intracellular bile salt levels and liver injury. This review discusses the various in vitro assays currently available for assessing the effect of drugs or other chemical entities to modulate BSEP transport activity. BSEP transporter assays use one of the following platforms: Xenopus laevis oocytes; canalicular membrane vesicles (CMV); BSEP-expressed membrane vesicles; cell lines expressing BSEP; sandwich cultured hepatocytes (SCH); and hepatocytes in suspension. Two of these, BSEP-expressed insect membrane vesicles and sandwich cultured hepatocytes, are the most commonly used assays. BSEP membrane vesicles prepared from transfected insect cells are useful for assessing BSEP inhibition or substrate specificity and exploring mechanisms of BSEP-associated genetic diseases. This model can be applied in a high-throughput format for discovery-drug screening. However, experimental results from use of membrane vesicles may lack physiological relevance and the model does not allow for investigation of in situ metabolism in modulation of BSEP activity. Hepatocyte-based assays that use the SCH format provide results that are generally more physiologically relevant than membrane assays. The SCH model is useful in detailed studies of the biliary excretion of drugs and BSEP inhibition, but due to the complexity of SCH preparation, this model is used primarily for determining biliary clearance and BSEP inhibition in a limited number of compounds. The newly developed hepatocyte in suspension assay avoids many of the complexities of the SCH method. The use of pooled cryopreserved hepatocytes in suspension minimizes genetic variance and individual differences in BSEP activity and also provides the opportunity for higher throughput screening and cross

  2. 6. INTERIOR OF NORTH END OF STEAM PLANT, GROUND FLOOR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. INTERIOR OF NORTH END OF STEAM PLANT, GROUND FLOOR, SHOWING FORMER LOCATION OF DIESEL ENGINES. THIS WAS THE FIRST PART OF THE BUILDING TO BE CONSTRUCTED, WHEN IT HOUSED ONLY THE DIESEL ENGINES. December 4, 1990 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  3. INTERIOR VIEW SHOWING BATCH SCALES. SERIES OF FIVE SCALES WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW SHOWING BATCH SCALES. SERIES OF FIVE SCALES WITH SIX DIFFERENT MATERIALS. MIX SIFTED DOWN FROM SILOS ABOVE. INGREDIENTS: SAND, SODA ASH, DOLOMITE LIMESTONE, NEPHELINE SYENITE, SALT CAKE. - Chambers-McKee Window Glass Company, Batch Plant, Clay Avenue Extension, Jeannette, Westmoreland County, PA

  4. 3. VIEW OF INTERIOR, EAST SIDE (SIDE A) OF BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF INTERIOR, EAST SIDE (SIDE A) OF BUILDING 883. INSTALLATION OF EQUIPMENT FOR THE MOLTEN SALT BATHS AND ROLLING MILLS PROCESSES. (4/25/57) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO

  5. Mercury's Interior Structure and Geodesy

    NASA Astrophysics Data System (ADS)

    van Hoolst, T.

    2004-12-01

    Interior structure models of Mercury have been calculated with particular focus on the core. Mercury has a very large core, compared to the other terrestrial planets, thought to consist mainly of iron and an unknown amount of sulfur. Thermal evolution models, high pressure data on iron alloys, and the magnetic measurements of Mariner 10 point to a core structure as for the Earth, with a solid inner core and a liquid outer core. We have considered a plausible range in sulfur concentration for the core and constructed Mercury models in different phases of its core evolution, from entirely liquid to entirely solid cores. Data on core material relevant for the pressures and temperatures in Mercury's core is used, and we investigate the effects of sulfur dissolving in the solid inner core. Several geodesy experiments have the potential of providing insight into Mercury's deep interior. Precise measurements of Mercury's obliquity and libration in longitude, along with the harmonic degree 2 gravitational field coefficients will determine both the polar principal moment of inertia of the entire planet and of the mantle, C and Cm, respectively. On the other hand, Mercury's solid body tides, which are the largest of the solar system planets, are very sensitive to the core properties, and will be observed by the MESSENGER and BepiColombo missions. We calculated the moments of inertia C and Cm and the tidal reaction of our Mercury models, and studied their sensitivity to several core parameters.

  6. Interior of Callisto

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Cutaway view of the possible internal structure of Callisto. The surface of the satellite is a mosaic of images obtained in 1979 by NASA's Voyager spacecraft. The interior characteristics are inferred from gravity field and magnetic field measurements by NASA's Galileo spacecraft. Callisto's radius is 2403 km, larger than our Moon's radius. Callisto's interior is shown as a relatively uniform mixture of comparable amounts of ice and rock. The surface layer of Callisto is shown as white to indicate that it may differ from the underlying ice/rock layer in a variety of ways including, for example, the percentage of rock it contains.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.

  7. Integrated Salt Studies

    NASA Astrophysics Data System (ADS)

    Urai, Janos L.; Kukla, Peter A.

    2015-04-01

    The growing importance of salt in the energy, subsurface storage, and chemical and food industries also increases the challenges with prediction of geometries, kinematics, stress and transport in salt. This requires an approach, which integrates a broader range of knowledge than is traditionally available in the different scientific and engineering disciplines. We aim to provide a starting point for a more integrated understanding of salt, by presenting an overview of the state of the art in a wide range of salt-related topics, from (i) the formation and metamorphism of evaporites, (ii) rheology and transport properties, (iii) salt tectonics and basin evolution, (iv) internal structure of evaporites, (v) fluid flow through salt, to (vi) salt engineering. With selected case studies we show how integration of these domains of knowledge can bring better predictions of (i) sediment architecture and reservoir distribution, (ii) internal structure of salt for optimized drilling and better cavern design, (iii) reliable long-term predictions of deformations and fluid flow in subsurface storage. A fully integrated workflow is based on geomechanical models, which include all laboratory and natural observations and links macro- and micro-scale studies. We present emerging concepts for (i) the initiation dynamics of halokinesis, (ii) the rheology and deformation of the evaporites by brittle and ductile processes, (iii) the coupling of processes in evaporites and the under- and overburden, and (iv) the impact of the layered evaporite rheology on the structural evolution.

  8. Bupivacaine salts of diflunisal and other aromatic hydroxycarboxylic acids: aqueous solubility and release characteristics from solutions and suspensions using a rotating dialysis cell model.

    PubMed

    Østergaard, Jesper; Larsen, Susan W; Parshad, Henrik; Larsen, Claus

    2005-11-01

    In the search for poorly soluble bupivacaine salts potentially enabling prolonged postoperative pain relief after local joint administration in the form of suspensions the solubility of bupivacaine salts of diflunisal and other aromatic hydroxycarboxylic acids were investigated together with the release characteristics of selected 1:1 salts from solutions and suspensions using a rotating dialysis cell model. The poorest soluble bupivacaine salts were obtained from the aromatic ortho-hydroxycarboxylic acids diflunisal, 5-iodosalicylic acid, and salicylic acid (aqueous solubilities: 0.6-1.9 mM at 37 degrees C). Diffusant appearance rates in the acceptor phase upon instillation of solutions of various salts in the donor cell applied to first-order kinetics. Calculated permeability coefficients for bupivacaine and the counterions diflunisal, 5-iodosalicylic acid, and mandelic acid were found to be correlated with the molecular size of the diffusants. Release experiments at physiological pH involving suspensions of the bupivacaine-diflunisal salt revealed that at each sampling point the diflunisal concentration exceeded that of bupivacaine in the acceptor phase. However, after an initial lag period, a steady state situation was attained resulting in equal and constant fluxes of the two diffusants controlled by the permeability coefficients in combination with the solubility product of the salt. Due to the fact that the saturation solubility of the bupivacaine-salicylic acid salt in water exceeded that of bupivacaine at pH 7.4, suspensions of the latter salt were unable to provide simultaneous release of the cationic and anionic species at pH 7.4. The release profiles were characterised by a rapid release of salicylate accompanied by a much slower appearance of bupivacaine in the acceptor phase caused by precipitation of bupivacaine base from the solution upon dissolution of the salt in the donor cell.

  9. Modeling of salt-water migration through spod-podzolic soils under the field and laboratory conditions

    NASA Astrophysics Data System (ADS)

    Ronzhina, Tatiana

    2013-04-01

    The assessment of highly mineralized water influence on soils is an important issue in the contemporary world. Various regions with different conditions are exposed to salt-affected soils forming. Salinization of soils is a complex process of the chemical and physical properties changes. Therefore the chain of the laboratory and field experiments should be done in order to assess the main factors promoting highly mineralized water migration. In addition to it modelling is a good way to understand and evaluate main chemical and physical transformations in soils. The chain of experiments was done to assess salt water movement in spod-podzolic soils under field and laboratory conditions. The main goals were to evaluate the rate of salt water movement through soils and to estimate velocity of the desalinization process. Field experiment was conducted on spod-podzolic soils of Kaliningrad region. There were 4 sites measuring 20*25 cm watering with salt water in amount of 5 liters per each area. The mineralization of the solution was 100 g/l. In addition to the salt affected sites, 2 non polluted grounds were assessed too. Soils samples were collected in the period of 1 week, 1 month, 3 month and 1 year after the spill had been done. The samples were taken each 10 cm 110 cm deep and in double repeatability. Main chemical and physical parameters, such as volume water content, pH, conductivity, amount of calcium ion, magnesium, sodium, and chlorite in soils etc. were measured in each sample. The second experiment was conducted to evaluate the rate of soils solutions transformation under the laboratory conditions. Organic horizon was taken from the field and was stuffed in columns with 1.0 g/cm3 density. There were 16 columns with 4 cm diameter. 14 columns were showered with salt water with the same mineralization as in the field experiment. The amount of salt water injected in columns was 104 mm per one sample which is equal to the salt water volume spilled per one area in

  10. 6. INTERIOR VIEW OF CROSSCUT HYDRO PLANT, SHOWING 25 CYCLE60 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. INTERIOR VIEW OF CROSSCUT HYDRO PLANT, SHOWING 25 CYCLE-60 CYCLE FREQUENCY CHANGER Photographer unknown, December 14, 1940 - Cross Cut Hydro Plant, North Side of Salt River, Tempe, Maricopa County, AZ

  11. DNA terminal base pairs have weaker hydrogen bonds especially for AT under low salt concentration

    NASA Astrophysics Data System (ADS)

    Ferreira, Izabela; Amarante, Tauanne D.; Weber, Gerald

    2015-11-01

    DNA base pairs are known to open more easily at the helix terminal, a process usually called end fraying, the details of which are still poorly understood. Here, we present a mesoscopic model calculation based on available experimental data where we consider separately the terminal base pairs of a DNA duplex. Our results show an important reduction of hydrogen bond strength for terminal cytosine-guanine (CG) base pairs which is uniform over the whole range of salt concentrations, while for AT base pairs, we obtain a nearly 1/3 reduction but only at low salt concentrations. At higher salt concentrations, terminal adenine-thymine (AT) pair has almost the same hydrogen bond strength than interior bases. The calculated terminal stacking interaction parameters display some peculiarly contrasting behavior. While there is mostly no perceptible difference to internal stacking, for some cases, we observe an unusually strong dependence with salt concentration which does not appear follow any pattern or trend.

  12. Modelling coupled chemico-osmotic and advective-diffusive transport of nitrate salts in the Callovo-Oxfordian Clay

    NASA Astrophysics Data System (ADS)

    Baechler, S.; Croisé, J.; Altmann, S.

    2012-12-01

    Chemico-osmosis is a recognized phenomenon taking place in clay mineral-rich sedimentary formations and a number of questions have been raised concerning its potential effects on pressure fields in and around underground radioactive waste repositories installed in such formations. Certain radioactive waste packages contain large quantities of nitrate salts whose release might result in the presence of highly concentrated salt solutions in the disposal cells, during their resaturation after closure of the facility. This would lead to large solute concentration gradients within the formation's porewater which could then potentially induce significant chemico-osmotic fluxes. In this paper, we assess the impact of chemico-osmotic fluxes on the water pressure during the post-closure period of a typical disposal cell for intermediate-level, long-lived bituminised radioactive waste in the Callovo-Oxfordian Clay formation. A numerical model of chemico-osmotic water flow and solute transport has been developed based on the work of Bader and Kooi (2005) [5], and including Bresler's dependence of osmotic efficiency on concentration and compaction state [9]. Model validity has been extended to highly concentrated solutions by incorporating a concentration-dependent activity coefficient, based on the Pitzer's equations. Results show that due to the strong dependence of the osmotic coefficient on concentration, the impact of chemico-osmosis on water flow and on the pressure field around the disposal cell is relatively low. A maximum overpressure of the order of 1 MPa was obtained. No difference in the simulation results were noticed for disposal cell solutions having concentrations higher than 1 M NaNO3. Differences between simulations were found to be almost entirely due to Bresler's relationship i.e., the model of the dependence between osmotic efficiency and concentration, and only slightly on the activity coefficient correction. Questions remain regarding the appropriate

  13. A comparison of the coupled fresh water-salt water flow and the Ghyben-Herzberg sharp interface approaches to modeling of transient behavior in coastal aquifer systems

    USGS Publications Warehouse

    Essaid, H.I.

    1986-01-01

    A quasi-three dimensional finite difference model which simulates coupled, fresh water and salt water flow, separated by a sharp interface, is used to investigate the effects of storage characteristics, transmissivity, boundary conditions and anisotropy on the transient responses of such flow systems. The magnitude and duration of the departure of aquifer response from the behavior predicted using the Ghyben-Herzberg, one-fluid approach is a function of the ease with which flow can be induced in the salt water region. In many common hydrogeologic settings short-term fresh water head responses, and transitional responses between short-term and long-term, can only be realistically reproduced by including the effects of salt water flow on the dynamics of coastal flow systems. The coupled fresh water-salt water flow modeling approach is able to reproduce the observed annual fresh water head response of the Waialae aquifer of southeastern Oahu, Hawaii. ?? 1986.

  14. INTERIOR OF AIRLOCK FROM INTERIOR OF ALTITUDE CHAMBER R, FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF AIRLOCK FROM INTERIOR OF ALTITUDE CHAMBER R, FACING NORTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  15. 28. Interior view of telegrapher's bay, east wall, showing interior ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Interior view of telegrapher's bay, east wall, showing interior finishes, framing, and furring over stonework - Bend Railroad Depot, 1160 Northeast Divion Street (At foot of Kearny Street), Bend, Deschutes County, OR

  16. 49. INTERIOR OF GILLEY ROOM: Interior view towards southeast of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. INTERIOR OF GILLEY ROOM: Interior view towards southeast of the Gilley Room on the second floor of the powerhouse and ear barn. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  17. 3. INTERIOR VIEW OF PARTITIONS IN DRESSING ROOM; INTERIOR HALLWAY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. INTERIOR VIEW OF PARTITIONS IN DRESSING ROOM; INTERIOR HALLWAY FOR HYDROTHERAPY AREA AT RIGHT - Fort McCoy, Building No. T-1054, South side of South Tenth Avenue, Block 10, Sparta, Monroe County, WI

  18. Interior view of hallway showing interior door with transom on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of hallway showing interior door with transom on second floor, south wing; camera facing east. - Mare Island Naval Shipyard, Hospital Wards, Cedar Avenue, eat side between Fourteenth Avenue & Cossey Street, Vallejo, Solano County, CA

  19. The Palaeo-bathymetry of Base Aptian Salt Deposition on the Angolan Rifted Margin: Constraints from Flexural Backstripping and Reverse Post-Breakup Thermal Subsidence Modelling

    NASA Astrophysics Data System (ADS)

    Cowie, Leanne; Dos Santos Silva, Ricardo Angelo; Kusznir, Nick; Manatschal, Gianreto

    2014-05-01

    The bathymetric datum with respect to global sea-level for Aptian salt deposition in the S. Atlantic is hotly debated. Some models propose that salt was deposited in an isolated ocean basin in which local sea-level was 2-3 km below the global level. In this study we determine the palaeo-bathymetry of base Aptian salt deposition on the Angolan rifted continental margin using reverse post-breakup thermal subsidence modelling. The reverse post-breakup thermal subsidence modelling process consists of sequential flexural isostatic backstripping of the post-breakup sedimentary sequences, decompaction of remaining sedimentary units and reverse modelling of post-breakup lithosphere thermal subsidence. The assumptions underlying the prediction of base salt palaeo-bathymetry using reverse post-breakup thermal subsidence modelling are valid if the base salt is either late syn-rift or early post-rift. The reverse modelling of post-breakup lithosphere thermal subsidence is carried out in 2D and requires 2D knowledge of the rifted continental margin lithosphere beta stretching factor which is determined from gravity inversion. The analysis has been applied to the ION-GXT CS1-2400 deep long-offset seismic reflection profile and the P3 and P7+11 seismic cross-sections of Contrucci et al. (2004) offshore N Angola. A compaction controlled sediment density is assumed for non-salt lithologies. The gravity inversion used to determine the lithosphere beta stretching factor profiles is carried out in the 3D spectral domain and includes a correction for the lithosphere thermal gravity anomaly generated by elevated geothermal gradients within stretched continental margin and adjacent ocean basin lithosphere. Moho depths determined from the gravity inversion are in good agreement with those determined from the seismic refraction seismology of Contrucci et al. (2004) and ION -GXT deep long-offset reflection seismology. Reverse post-breakup subsidence modelling restores the proximal

  20. Characteristics of capacitance-micro-displacement for model of complex interior surface of the 3D Taiji ball and its applications

    NASA Astrophysics Data System (ADS)

    Zhu, Ruo-Gu; Jiang, Kun; Qing, Zhao-Bo; Liu, Yue-Hui; Yan, Jun

    2006-11-01

    Taiji image originated from ancient China. It is not only the Taoism emblem but also the ancient graphic presentation sign to everything origin. It either has a too far-reaching impact on traditional culture of China, or is influencing the development of current natural science. On the basis of analyzing the classical philosophic theory of two-dimensional (2-D) Taiji image, we developed it into the model of complex interior surface-three-dimensional (3-D) Taiji ball, and explored its possible applications. Combining modern mathematics and physics knowledge, we have studied on the physical meaning of 3-D Taiji ball, thus the plane change of original Taiji image is developed into space change which is more close to the real world. The change layers are obvious increased notably, and the amount of information included in this model increases correspondingly. We also realized a special paper 3-D Taiji ball whose surface is coved with metal foil by means of laser manufacture. A new experiment set-up for measuring micro displace has been designed and constituted thus the relation between capacitance and micro displacement for the 3-D Taiji ball has performed. Experimental and theoretical analyses are also finished. This models of 3-D Taiji ball for physical characteristics are the first time set up. Experimental data and fitting curves between capacitance and micro displacement for the special paper Taiji ball coved with metal foil are suggested. It is shown that the special Taiji ball has less leakage capacitance or more strengthen electric field than an ordinary half ball capacitance. Finally their potential applied values are explored.

  1. 78 FR 5197 - Notice of Intent To Repatriate a Cultural Item: Department of the Interior, Bureau of Land...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-24

    ... Land Management, Salt Lake City, UT AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY..., Bureau of Land Management, Utah State Office, P.O. Box 45155, Salt Lake City, UT 84145-0155, telephone... item in the possession of the BLM Utah State Office in Salt Lake City, UT, that meets the definition...

  2. A summary of methods for approximating salt creep and disposal room closure in numerical models of multiphase flow

    SciTech Connect

    Freeze, G.A.; Larson, K.W.; Davies, P.B.

    1995-10-01

    Eight alternative methods for approximating salt creep and disposal room closure in a multiphase flow model of the Waste Isolation Pilot Plant (WIPP) were implemented and evaluated: Three fixed-room geometries three porosity functions and two fluid-phase-salt methods. The pressure-time-porosity line interpolation method is the method used in current WIPP Performance Assessment calculations. The room closure approximation methods were calibrated against a series of room closure simulations performed using a creep closure code, SANCHO. The fixed-room geometries did not incorporate a direct coupling between room void volume and room pressure. The two porosity function methods that utilized moles of gas as an independent parameter for closure coupling. The capillary backstress method was unable to accurately simulate conditions of re-closure of the room. Two methods were found to be accurate enough to approximate the effects of room closure; the boundary backstress method and pressure-time-porosity line interpolation. The boundary backstress method is a more reliable indicator of system behavior due to a theoretical basis for modeling salt deformation as a viscous process. It is a complex method and a detailed calibration process is required. The pressure lines method is thought to be less reliable because the results were skewed towards SANCHO results in simulations where the sequence of gas generation was significantly different from the SANCHO gas-generation rate histories used for closure calibration. This limitation in the pressure lines method is most pronounced at higher gas-generation rates and is relatively insignificant at lower gas-generation rates. Due to its relative simplicity, the pressure lines method is easier to implement in multiphase flow codes and simulations have a shorter execution time.

  3. Determining building interior structures using compressive sensing

    NASA Astrophysics Data System (ADS)

    Lagunas, Eva; Amin, Moeness G.; Ahmad, Fauzia; Nájar, Montse

    2013-04-01

    We consider imaging of the building interior structures using compressive sensing (CS) with applications to through-the-wall imaging and urban sensing. We consider a monostatic synthetic aperture radar imaging system employing stepped frequency waveform. The proposed approach exploits prior information of building construction practices to form an appropriate sparse representation of the building interior layout. We devise a dictionary of possible wall locations, which is consistent with the fact that interior walls are typically parallel or perpendicular to the front wall. The dictionary accounts for the dominant normal angle reflections from exterior and interior walls for the monostatic imaging system. CS is applied to a reduced set of observations to recover the true positions of the walls. Additional information about interior walls can be obtained using a dictionary of possible corner reflectors, which is the response of the junction of two walls. Supporting results based on simulation and laboratory experiments are provided. It is shown that the proposed sparsifying basis outperforms the conventional through-the-wall CS model, the wavelet sparsifying basis, and the block sparse model for building interior layout detection.

  4. Modeling viscosity and conductivity of lithium salts in γ-butyrolactone

    NASA Astrophysics Data System (ADS)

    Chagnes, A.; Carré, B.; Willmann, P.; Lemordant, D.

    Viscosity and conductivity properties of Li-salts (lithium tetrafluoroborate (LiBF 4), lithium hexafluorophosphate (LiPF 6), lithium hexafluoroarsenate (LiAsF 6), lithium bis-(trifluoromethylsulfone)-imide (LiTFSI)) dissolved in γ-butyrolactone (BL) have been investigated. The B- and D-coefficients of the Jones-Dole (JD) equation for the relative viscosity of concentrated electrolyte solutions (concentration: C=0.1-1.5 M): ηr=1+ AC1/2+ BC+ DC2, have been determined as a function of the temperature. The B-coefficient is linked to the hydrodynamic volume of the solute and remains constant within the temperature range investigated (25-55 °C). The D-coefficient, which originates mainly from long-range coulombic ion-ion interactions, is a reciprocal function of the temperature. The variations of the molar conductivity ( Λ) with C follow the cube root law Λ= Λ0'- S' C1/3 issued from quasi-lattice theory of electrolyte solutions. From the Walden product W= Λη which does not vary with C and the JD equation, the bell shape of the conductivity-concentration relationship is explained and it is shown that the concentration in salt at the maximum of conductivity is linked to the D-coefficient. Raman spectroscopy has been used as an additional tool to investigate ion pairing in BL. Ions pairs have been evidenced for LiClO 4 solutions in BL but not for LiPF 6. As little variations occur for the ions pairs dissociation coefficient when the salt concentration is increased, the cube root law remains valid, at least in the concentration range investigated.

  5. Modeling the Effects of Changes to Physical, Hydrological, and Biological Processes on Porewater Salinity Distributions in a Southeastern Salt Marsh

    NASA Astrophysics Data System (ADS)

    Miklesh, D.; Meile, C. D.

    2014-12-01

    Coastal wetlands provide many important ecosystem services, which include carbon and nitrogen sequestration and transformations, the provision of habitats, and the reduction of erosion by the vegetation. Coastal wetlands will be affected by projected climate change and sea level rise and may fail to provide such services, prompting a need to understand the environmental controls on marsh and vegetation distribution. Therefore, as part of the Georgia Coastal Ecosystems Long Term Ecological Research project, an integrated modeling approach is being developed to simulate how changes in salinity and inundation may change marsh ecosystem services, by coupling a hydrodynamic with a soil and a plant model. In coastal marsh ecosystems, porewater salinity strongly determines vegetation distribution and productivity. We will present the development of the soil model, which is based on mass conservation for water and salt and links physical, hydrological, and biological processes that determine porewater salinity, including precipitation, evapotranspiration, salt exchange between surface and subsurface, drainage, groundwater exchange, tidal inundation, and surface runoff, with the lateral exchange controlled by marsh topography. The model is applied to the Duplin River marsh, Sapelo Island, Georgia. Model validation is performed by comparing model-estimated salinities to porewater salinity measurements taken in different vegetation classes and over a range of marsh elevations. Modeled variability in porewater salinities will be presented over spring-neap, seasonal, and annual time scales. To discuss potential impacts of climate change and sea level rise, a sensitivity analysis will be presented that demonstrates the effect precipitation intensity, evapotranspiration, permeability, and marsh elevation have on porewater salinities.

  6. Computational model of coupled heat, moisture and salt transport in multi-layered building structures: Implementation of the deterministic physical model and example of application

    NASA Astrophysics Data System (ADS)

    Kočí, Václav; Maděra, Jiří; Černý, Robert

    2013-10-01

    A computer simulation tool for modeling coupled heat, moisture and salt transport is presented in the paper. The code was developed at the Faculty of Civil Engineering, Czech Technical University in Prague using the finite element method. It is capable of solving various construction details in one or two dimensions for arbitrary exterior conditions. As an example of application of the code, a building envelope subjected to two different types of boundary conditions is analyzed and its performance is assessed.

  7. Reactions of coal and model coal compounds in room temperature molten salt mixtures

    SciTech Connect

    Newman, D.S.; Winans, R.E.; McBeth, R.L.

    1984-05-01

    A 2:1 AlCl/sub 3/-pyridinium chloride molten salt solution was used as the reaction medium for the alkylation of diphenylethane and a bituminous coal by 2-propanol. Probably accompanying the room temperature Friedel-Crafts alkylation is a reduction of C=O to -C-OH. Completely deuterated 2-propanol did not react at all with the pyridinium ring. The pyridinium chloride serves to lower the temperature at which the AlCl/sub 3/ is able to catalyze the reactions. The pyridinium chloride also catalyzes the Friedel-Crafts alkylation.

  8. Interior of the Moon

    NASA Technical Reports Server (NTRS)

    Weber, Renee C.

    2013-01-01

    A variety of geophysical measurements made from Earth, from spacecraft in orbit around the Moon, and by astronauts on the lunar surface allow us to probe beyond the lunar surface to learn about its interior. Similarly to the Earth, the Moon is thought to consist of a distinct crust, mantle, and core. The crust is globally asymmetric in thickness, the mantle is largely homogeneous, and the core is probably layered, with evidence for molten material. This chapter will review a range of methods used to infer the Moon's internal structure, and briefly discuss the implications for the Moon's formation and evolution.

  9. 11. Detail of the interior, looking through an interior doorway ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Detail of the interior, looking through an interior doorway toward the front and east window. Note: This photograph shows that the building had been converted to a residence following its use as a school. In addition, the hazardous condition of the structure's interior is evident. Two ceilings which are visible in the photograph, (the upper, probably original plastered ceiling, and a secondary, adapted ceiling) as well as ceiling joists in the southernmost rooms have collapsed. Because of the dangerous condition of the interior of the building, additional interior photography was not attempted at this time. - Perry Township School No. 3, Middle Mount Vernon & Eickhoff Roads, Evansville, Vanderburgh County, IN

  10. Ocean Turbulence. Paper 3; Two-Point Closure Model Momentum, Heat and Salt Vertical Diffusivities in the Presence of Shear

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Dubovikov, M. S.; Howard, A.; Cheng, Y.

    1999-01-01

    In papers 1 and 2 we have presented the results of the most updated 1-point closure model for the turbulent vertical diffusivities of momentum, heat and salt, K(sub m,h,s). In this paper, we derive the analytic expressions for K(sub m,h,s) using a new 2-point closure model that has recently been developed and successfully tested against some approx. 80 turbulence statistics for different flows. The new model has no free parameters. The expressions for K(sub m, h. s) are analytical functions of two stability parameters: the Turner number R(sub rho) (salinity gradient/temperature gradient) and the Richardson number R(sub i) (temperature gradient/shear). The turbulent kinetic energy K and its rate of dissipation may be taken local or non-local (K-epsilon model). Contrary to all previous models that to describe turbulent mixing below the mixed layer (ML) have adopted three adjustable "background diffusivities" for momentum. heat and salt, we propose a model that avoids such adjustable diffusivities. We assume that below the ML, K(sub m,h,s) have the same functional dependence on R(sub i) and R(sub rho) derived from the turbulence model. However, in order to compute R(sub i) below the ML, we use data of vertical shear due to wave-breaking measured by Gargett et al. (1981). The procedure frees the model from adjustable background diffusivities and indeed we use the same model throughout the entire vertical extent of the ocean. Using the new K(sub m,h, s), we run an O-GCM and present a variety of results that we compare with Levitus and the KPP model. Since the traditional 1-point (used in papers 1 and 2) and the new 2-point closure models used here represent different modeling philosophies and procedures, testing them in an O-GCM is indispensable. The basic motivation is to show that the new 2-point closure model gives results that are overall superior to the 1-point closure in spite of the fact that the latter rely on several adjustable parameters while the new 2-point

  11. An integrated modeling study on the effects of mineral dust and sea salt particles on clouds and precipitation

    NASA Astrophysics Data System (ADS)

    Solomos, S.; Kallos, G.; Kushta, J.; Astitha, M.; Tremback, C.; Nenes, A.; Levin, Z.

    2010-10-01

    The amount of airborne particles that will nucleate and form cloud droplets under specific atmospheric conditions, depends on their number concentration, size distribution and chemical composition. Aerosol is affected by primary particle emissions, gas-phase precursors, their transformation and interaction with atmospheric constituents, clouds and dynamics. A comprehensive assessment of these interactions requires an integrated approach; most studies however decouple aerosol processes from cloud and atmospheric dynamics and cannot account for all the feedbacks involved in aerosol-cloud-climate interactions. This study addresses aerosol-cloud-climate interactions with the Integrated Community Limited Area Modeling System (ICLAMS) that includes online parameterization of the physical and chemical processes between air quality and meteorology. ICLAMS is an extended version of the Regional Atmospheric Modeling System (RAMS) and it has been designed for coupled air quality - meteorology studies. Model sensitivity tests for a single-cloud study as well as for a case study over the Eastern Mediterranean illustrate the importance of aerosol properties in cloud formation and precipitation. Mineral dust particles are often coated with soluble material such as sea-salt, thus exhibiting increased CCN efficiency. Increasing the percentage of salt-coated dust particles by 15% in the model resulted in more vigorous convection and more intense updrafts. The clouds that were formed extended about 3 km higher and the initiation of precipitation was delayed by one hour. Including on-line parameterization of the aerosol effects improved the model bias for the twenty-four hour accumulated precipitation by 7%. However, the spatial distribution and the amounts of precipitation varied greatly between the different aerosol scenarios. These results indicate the large portion of uncertainty that remains unresolved and the need for more accurate description of aerosol feedbacks in atmospheric

  12. An elastic rod model to evaluate effects of ionic concentration on equilibrium configuration of DNA in salt solution.

    PubMed

    Xiao, Ye; Huang, Zaixing; Wang, Shengnan

    2014-03-01

    As a coarse-gained model, a super-thin elastic rod subjected to interfacial interactions is used to investigate the condensation of DNA in a multivalent salt solution. The interfacial traction between the rod and the solution environment is determined in terms of the Young-Laplace equation. Kirchhoff's theory of elastic rod is used to analyze the equilibrium configuration of a DNA chain under the action of the interfacial traction. Two models are established to characterize the change of the interfacial traction and elastic modulus of DNA with the ionic concentration of the salt solution, respectively. The influences of the ionic concentration on the equilibrium configuration of DNA are discussed. The results show that the condensation of DNA is mainly determined by competition between the interfacial energy and elastic strain energy of the DNA itself, and the interfacial traction is one of forces that drive DNA condensation. With the change of concentration, the DNA segments will undergo a series of alteration from the original configuration to the condensed configuration, and the spiral-shape appearing in the condensed configuration of DNA is independent of the original configuration.

  13. Three dimensional model evaluation of physical alterations of the Caloosahatchee River and Estuary: Impact on salt transport

    NASA Astrophysics Data System (ADS)

    Sun, Detong; Wan, Yongshan; Qiu, Chelsea

    2016-05-01

    Numerical hydrodynamic modeling provides quantitative understanding of how physical alterations of an estuary may alter the waterbody hydrodynamics and the rate of mixing with the ocean. In this study, a three dimensional hydrodynamic model (CH3D) was used to compare simulated salinities between the existing condition and five historical cases representing varying physical alterations of the Caloosahatchee Estuary involving (1) removal of the headwater structure (S-79); (2) removal of the downstream causeway to Sanibel Island; (3) backfilling an oyster bar near the estuary month; (4) refilling the navigation channel; and (5) the pre-development bathymetric condition. The results suggested that some alterations including the Sanibel Causeway, backfilling the oyster bar and the S-79 structure may have some local effects but did not change estuarine salinity structure significantly. Refilling the navigation channel had a more profound effect, resulting in a dry season salinity reduction of about 5 when compared with the existing condition. The reduced salt transport was more pronounced with the pre-development bathymetry because the estuary as a whole was much shallower than today. The significant system-wide increase in salt transport caused by the historic dredging of the navigation channel in the Caloosahatchee Estuary has significant implications in the development of attainable environmental flow targets for protecting the estuarine ecosystem.

  14. Chronic Antagonism of the Mineralocorticoid Receptor Ameliorates Hypertension and End Organ Damage in a Rodent Model of Salt-Sensitive Hypertension

    PubMed Central

    Zhou, Xiaoyan; Crook, Martin F; Sharif-Rodriguez, Wanda; Zhu, Yonghua; Ruben, Zadok; Pan, Yi; Urosevic-Price, Olga; Wang, Li; Flattery, Amy M; Forrest, Gail; Szeto, Daphne; Zhao, Huawei; Roy, Sophie; Forrest, Michael J

    2011-01-01

    We investigated the effects of chronic mineralocorticoid receptor blockade with eplerenone on the development and progression of hypertension and end organ damage in Dahl salt-sensitive rats. Eplerenone significantly attenuated the progressive rise in systolic blood pressure (SBP) (204 ± 3 vs. 179±3 mmHg, p < 0.05), reduced proteinuria (605.5 ± 29.6 vs. 479.7 ± 26.1 mg/24h, p < 0.05), improved injury scores of glomeruli, tubules, renal interstitium, and vasculature in Dahl salt-sensitive rats fed a high-salt diet. These results demonstrate that mineralocorticoid receptor antagonism provides target organ protection and attenuates the development of elevated blood pressure (BP) in a model of salt-sensitive hypertension. PMID:21950654

  15. Coulombic free energy of polymeric nucleic acid: low- and high-salt analytical approximations for the cylindrical Poisson-Boltzmann model.

    PubMed

    Shkel, Irina A

    2010-08-26

    An accurate analytical expression for the Coulombic free energy of DNA as a function of salt concentration ([salt]) is essential in applications to nucleic acid (NA) processes. The cylindrical model of DNA and the nonlinear Poisson-Boltzmann (NLPB) equation for ions in solution are among the simplest approaches capable of describing Coulombic interactions of NA and salt ions and of providing analytical expressions for thermodynamic quantities. Three approximations for Coulombic free energy G(u,infinity)(coul) of a polymeric nucleic acid are derived and compared with the numerical solution in a wide experimental range of 1:1 [salt] from 0.01 to 2 M. Two are obtained from the two asymptotic solutions of the cylindrical NLPB equation in the high-[salt] and low-[salt] limits: these are sufficient to determine G(u,infinity)(coul) of double-stranded (ds) DNA with 1% and of single-stranded (ss) DNA with 3% accuracy at any [salt]. The third approximation is experimentally motivated Taylor series up to the quadratic term in ln[salt] in the vicinity of the reference [salt] 0.15 M. This expression with three numerical coefficients (Coulombic free energy and its first and second derivatives at 0.15 M) predicts dependence of G(u,infinity)(coul) on [salt] within 2% of the numerical solution from 0.01 to 1 M for ss (a = 7 A, b = 3.4 A) and ds (a = 10 A, b = 1.7 A) DNA. Comparison of cylindrical free energy with that calculated for the all-atom structural model of linear B-DNA shows that the cylindrical model is completely sufficient above 0.01 M of 1:1 [salt]. The choice of two cylindrical parameters, the distance of closest approach of ion to cylinder axis (radius) a and the average axial charge separation b, is discussed in application to all-atom numerical calculations and analysis of experiment. Further development of analytical expression for Coulombic free energy with thermodynamic approaches accounting for ionic correlations and specific effects is suggested.

  16. The lunar interior

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.; Kovach, R. L.

    1972-01-01

    The compressional velocities are estimated for materials in the lunar interior and compared with lunar seismic results. The lower crust has velocities appropriate for basalts or anorthosites. The high velocities associated with the uppermost mantle imply high densities and a change in composition to a lighter assemblage at depths of the order of 120 km. Calcium and aluminum are probably important components of the upper mantle and are deficient in the lower mantle. Much of the moon may have accreted from material similar in composition to eucrites. The important mineral of the upper mantle is garnet; possible accessory minerals are kyanite, spinel, and rutile. If the seismic results stand up, the high velocity layer in the moon is more likely to be a high pressure form of anorthosite than eclogite, pyroxenite, or dunite. The thickness of the layer is of the order of 50 km. Cosmic abundances can be maintained if the lower mantle is ferromagnesium silicate with minimal amounts of calcium and aluminum. Achondrites such as eucrites and howardites have more of the required characteristics of the lunar interior than carbonaceous chondrites. A density inversion in the moon is a strong possibility.

  17. Modeling and Field Test Planning Activities in Support of Disposal of Heat-Generating Waste in Salt

    SciTech Connect

    Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit; Houseworth, Jim; Birkholzer, Jens

    2014-09-26

    The modeling efforts in support of the field test planning conducted at LBNL leverage on recent developments of tools for modeling coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. These are modeling capabilities that will be suitable for assisting in the design of field experiment, especially related to multiphase flow processes coupled with mechanical deformations, at high temperature. In this report, we first examine previous generic repository modeling results, focusing on the first 20 years to investigate the expected evolution of the different processes that could be monitored in a full-scale heater experiment, and then present new results from ongoing modeling of the Thermal Simulation for Drift Emplacement (TSDE) experiment, a heater experiment on the in-drift emplacement concept at the Asse Mine, Germany, and provide an update on the ongoing model developments for modeling brine migration. LBNL also supported field test planning activities via contributions to and technical review of framework documents and test plans, as well as participation in workshops associated with field test planning.

  18. Bile salt-stimulated lipase: an animal model for human lactation

    SciTech Connect

    Hamosh, M.; Freed, L.M.; York, C.M.; Sturman, J.A.; Hamosh, P.

    1986-03-01

    To date, bile salt-stimulated lipase (BSSL), an important digestive enzyme for the newborn, has only been described in the milk of primates - human and gorilla. The authors report the presence of BSSL in milks of dog and cat. Serial collections from two dogs (day 1-49) and cats (day 5-57) were analyzed for BSSL activity using a /sup 3/H-triolein emulsion as substrate. Comparable analyses of pooled, term human milk were made for comparison. BSSL activity in individual dog milks (x = 32.0; range: 4.8-107.4 U/ml) was similar, while that in cat milk (x = 6.6; range: 2.2-16.9 U/ml) was lower than in human milk (x = 37.0; range: 10-80 U/ml; n = 35). Longitudinal patterns for BSSL differed depending upon the enzyme source. Dog, cat and human milk BSSL all showed a neutral to alkaline pH optimum (pH 7.0-8.4), stability at low pH, and 95-100% inhibition (at concentrations of 0.6 mM) by NaCl and eserine. BSSL activity from all sources had an obligate requirement for primary bile salts. These data are the first to show BSSL activity in milk from mammals other than human and gorilla. Presence of BSSL in nonprimate milk will permit the careful study of BSSL biology in the mammary gland as well as its role in neonatal fat digestion.

  19. Plasmodium berghei mouse model: antimalarial activity of new alkaloid salts and of thiosemicarbazone and acridine derivatives.

    PubMed

    Loiseau, P M; Nguyen, D X

    1996-06-01

    Sixteen compounds were synthesized and evaluated on Plasmodium berghei in CD1 mouse. The nature of the salt associated to the active principle can give some advantages in the field of activity, bioavailability and toxicity. beta-Resorcylic acid was chosen in this study because of its previously described antimalarial activity and its expected enhancement of quinine antimalarial activity. While treatment with subcutaneous quinine sulphate at 1 mmol/kg cured 6/10 mice, quinine beta-resorcylate cured all the mice under identical conditions. Although such a result appeared promising, in vitro investigation should be performed to draw clear conclusions regarding a synergy between quinine and beta-resorcylate. Cinchonidine beta-resorcylate was also active; all mice were cured at 1 mmol/kg and the mean survival time was 13.8 +/- 2.4 days after a subcutaneous treatment at 0.5 mmol/kg in a single dose. In the series of acridines, (N-alpha, sigma-dioxopentyl)-5-amino-1,2,3,4-tetrahydroacridine cured all mice at 50 mumol/kg under the same conditions. The maximum tolerated doses in mice ranged from 100 to 150 mumol/kg for these acridine derivatives. The chemotherapeutic index of (N-alpha, sigma-dioxopentyl)-5-amino-1,2,3,4-tetrahydroacridine was estimated at 2-3. Other salts expected to reduce the toxicity, such as alpha-ketoglutarate and p-chlorophenoxyacetate, did not enhance the activity of the active principles. These results prompt us to further investigations including plasma kinetic evaluation in rats and in vitro on Plasmodium falciparum.

  20. Antilisterial effects of antibacterial formulations containing essential oils, nisin, nitrite and organic acid salts in a sausage model.

    PubMed

    Ghabraie, Mina; Vu, Khanh Dang; Huq, Tanzina; Khan, Avik; Lacroix, Monique

    2016-06-01

    This study was conducted to evaluate the effects of sixteen antibacterial formulations against Listeria monocytogenes in a sausage model using a standard experimental design with 4 independent factors at 2 levels (2(4)). Four independent factors consisted of nisin (12.5-25 ppm), nitrite (100-200 ppm) and organic acid salts (1.55-3.1 %) and the mixture of Chinese cinnamon and Cinnamon bark Essential Oils (EOs) (0.025-0.05 %). Based on the analysis, utilization of low (0.025 %) or high concentration (0.05 %) of EOs in combination with low concentration of nitrite (100 ppm), organic acid salts (1.55 %), and nisin (12.5 ppm) could reduce respectively 1.5 or 2.6 log CFU/g of L. monocytogenes in sausage at day 7 of storage as compared to the control. A predictive equation was created to predict the growth of L. monocytogenes in sausage. The sensory evaluation was then performed on selected optimized formulations in cooked meat (both pork and beef sausages) with a trained jury consisting of 35 individuals, demonstrated the selected antimicrobial formulations were organoleptically acceptable. The results revealed an important role of hurdle technology to control L. monocytogenes in meat product. PMID:27478218

  1. Antilisterial effects of antibacterial formulations containing essential oils, nisin, nitrite and organic acid salts in a sausage model.

    PubMed

    Ghabraie, Mina; Vu, Khanh Dang; Huq, Tanzina; Khan, Avik; Lacroix, Monique

    2016-06-01

    This study was conducted to evaluate the effects of sixteen antibacterial formulations against Listeria monocytogenes in a sausage model using a standard experimental design with 4 independent factors at 2 levels (2(4)). Four independent factors consisted of nisin (12.5-25 ppm), nitrite (100-200 ppm) and organic acid salts (1.55-3.1 %) and the mixture of Chinese cinnamon and Cinnamon bark Essential Oils (EOs) (0.025-0.05 %). Based on the analysis, utilization of low (0.025 %) or high concentration (0.05 %) of EOs in combination with low concentration of nitrite (100 ppm), organic acid salts (1.55 %), and nisin (12.5 ppm) could reduce respectively 1.5 or 2.6 log CFU/g of L. monocytogenes in sausage at day 7 of storage as compared to the control. A predictive equation was created to predict the growth of L. monocytogenes in sausage. The sensory evaluation was then performed on selected optimized formulations in cooked meat (both pork and beef sausages) with a trained jury consisting of 35 individuals, demonstrated the selected antimicrobial formulations were organoleptically acceptable. The results revealed an important role of hurdle technology to control L. monocytogenes in meat product.

  2. Optimizing a Candida Biofilm Microtiter Plate Model for Measurement of Antifungal Susceptibility by Tetrazolium Salt Assay▿

    PubMed Central

    Nett, Jeniel E.; Cain, Michael T.; Crawford, Kyler; Andes, David R.

    2011-01-01

    Candida spp. infect medical devices, such as venous and urinary catheters, by adhering to the surface and forming a community of drug-resistant cells surrounded by a matrix. The ability to measure drug activity during this biofilm mode of growth is of interest for the investigation of resistance mechanisms and novel antifungal therapies. The tetrazolium salt (XTT) reduction assay is the test most commonly used to estimate viable biofilm growth and to examine the impact of biofilm therapies. The primary goal of the current experiments was to identify assay variables that affect the XTT assay result in order to improve assay reproducibility, sensitivity, and throughput for the study of antifungal activity. The species used in the current studies included Candida albicans, C. parapsilosis, and C. glabrata. The assay variables that were studied included the impact of culture conditions, the duration of biofilm growth, the timing and frequency of drug administration, the XTT source and concentration, and the duration of XTT incubation. The conditions that impacted the assay readout and altered assay sensitivity included the duration of biofilm growth, the frequency of drug dosing, and the duration of XTT incubation. Several factors were found to reduce time and assay expense, including the elimination of washing steps, the shortening of incubation times, and the use of lower XTT concentrations. A description of assay pitfalls and troubleshooting is included. Recognition of these technical variables should allow investigators to better design reproducible biofilm therapeutic studies. PMID:21227984

  3. Solar interior structure and dynamics

    NASA Astrophysics Data System (ADS)

    Howe, Rachel

    2016-07-01

    Helioseismology allows us to probe the interior structure and dynamics of the Sun, and long-term observations allow us to follow their temporal variations. This review describes the important findings of recent years, covering the interior structure, the near-surface changes related to the solar cycle and possible deeper-seated variations, the interior rotation profile, and solar-cycle related changes in the zonal and meridional flows.

  4. BLENDING STUDY FOR SRR SALT DISPOSITION INTEGRATION: TANK 50H SCALE-MODELING AND COMPUTER-MODELING FOR BLENDING PUMP DESIGN, PHASE 2

    SciTech Connect

    Leishear, R.; Poirier, M.; Fowley, M.

    2011-05-26

    The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where 300,000-800,000 gallons of salt solution will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. Blending requires the miscible salt solutions from potentially multiple source tanks per batch to be well mixed without disturbing settled sludge solids that may be present in a Blend Tank. Disturbing solids may be problematic both from a feed quality perspective as well as from a process safety perspective where hydrogen release from the sludge is a potential flammability concern. To develop the necessary technical basis for the design and operation of blending equipment, Savannah River National Laboratory (SRNL) completed scaled blending and transfer pump tests and computational fluid dynamics (CFD) modeling. A 94 inch diameter pilot-scale blending tank, including tank internals such as the blending pump, transfer pump, removable cooling coils, and center column, were used in this research. The test tank represents a 1/10.85 scaled version of an 85 foot diameter, Type IIIA, nuclear waste tank that may be typical of Blend Tanks used in SDI. Specifically, Tank 50 was selected as the tank to be modeled per the SRR, Project Engineering Manager. SRNL blending tests investigated various fixed position, non-rotating, dual nozzle pump designs, including a blending pump model provided by the blend pump vendor, Curtiss Wright (CW). Primary research goals were to assess blending times and to evaluate incipient sludge disturbance for waste tanks. Incipient sludge disturbance was defined by SRR and SRNL as minor blending of settled sludge from the tank bottom into suspension due to blending pump operation, where

  5. Isostacy again: Explanation of salt movements

    SciTech Connect

    Lowrie, A.; Hamiter, R.; Lerche, I.; Petersen, K.; Egloff, J.

    1996-12-31

    The notion of isostacy is applicable to explain vertically-rising salt movements in those situations with large lateral extrusion of salt tongues. A salt tongue may be regarded as occurring at that depth within the earth above which the average density, regardless of lithology, is equal to that of salt, i.e., the salt tongue balances the material above it. The supra-salt tongue section can be salt diapirs or sedimentary sequences. Accumulating sediments compact and increase in their density with depth until equaling the density of the plastic balancing salt tongue. Under the heading of isostacy, with the balancing horizon being the salt tongue, the salt tongue is at the depth range where salt becomes buoyant relative to the overlying sediments. The isostatic depth/buoyancy level could then direct the advancing position depth of the salt tongue in the basin. Computer modeling of excess pressure under moving salt tongues indicates pressure build-ups of some 170 atm. The excess pressure may build up geologically instantaneously as the laterally migrating salt over-rides another column of sediment. Presumably the excess pressure evaporates as a discrete salt tongue leaves a supporting underlying sediment column. A puzzling question concerns how noses of salt tongues approach and even intersect the seafloor. Determining geologic reasons for positioning of salt tongues within terrigenous sediment complexes along passive margins is important due to major changes that salt insertion causes: impermeable barrier to rising hydrocarbons, stress fractures around advancing salt noses, possible regional faulting due to stress couple developed between dynamic salt tongue and stationary basement. Predicting potential stresses and deformation above, in front of, and below, a salt tongue is essential to successful wildcat drilling.

  6. 15. Interior view, greenhouse, from the northwest. The greenhouse interior ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Interior view, greenhouse, from the northwest. The greenhouse interior was quite modest, the space between the floor of the lower level and the joists carrying the loft floor is only five-and-one-half feet. - John Bartram House & Garden, Greenhouse, 54th Street & LIndbergh Boulevard, Philadelphia, Philadelphia County, PA

  7. Hangar no. 2 interior detail of roof structures and interior ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Hangar no. 2 interior detail of roof structures and interior work spaces. Note concrete piers and cross bracing. Seen at trusses no. 42, 43, & 44. - Marine Corps Air Station Tustin, Southern Lighter Than Air Ship Hangar, Near intersection of Windmill Road & Johnson Street, Tustin, Orange County, CA

  8. 44. SECOND FLOOR 'ANNEX' INTERIOR VIEW TO SOUTHWEST: Interior ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. SECOND FLOOR 'ANNEX' - INTERIOR VIEW TO SOUTHWEST: Interior view towards southwest on second floor of the powerhouse 'annex.' Note the steel column and beam construction and the old shunt car formerly used to move cable cars around the yard. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  9. 45. INTERIOR VIEW TO SOUTHWEST ON SECOND FLOOR: Interior view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. INTERIOR VIEW TO SOUTHWEST ON SECOND FLOOR: Interior view towards southwest on second floor of main portion of the powerhouse and car barn. This space is used for repair and storage of cable cars. Note wooden trussed roof. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  10. 46. INTERIOR VIEW TO SOUTH ON SECOND FLOOR: Interior view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. INTERIOR VIEW TO SOUTH ON SECOND FLOOR: Interior view looking south along the east wall on the second floor of the powerhouse and car barn. Note the cable car truck in the foreground. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  11. Designing fire safe interiors.

    PubMed

    Belles, D W

    1992-01-01

    Any product that causes a fire to grow large is deficient in fire safety performance. A large fire in any building represents a serious hazard. Multiple-death fires almost always are linked to fires that grow quickly to a large size. Interior finishes have large, continuous surfaces over which fire can spread. They are regulated to slow initial fire growth, and must be qualified for use on the basis of fire tests. To obtain meaningful results, specimens must be representative of actual installation. Variables--such as the substrate, the adhesive, and product thickness and density--can affect product performance. The tunnel test may not adequately evaluate some products, such as foam plastics or textile wall coverings, thermoplastic materials, or materials of minimal mass. Where questions exist, products should be evaluated on a full-scale basis. Curtains and draperies are examples of products that ignite easily and spread flames readily. The present method for testing curtains and draperies evaluates one fabric at a time. Although a fabric tested alone may perform well, fabrics that meet test standards individually sometimes perform poorly when tested in combination. Contents and furnishings constitute the major fuels in many fires. Contents may involve paper products and other lightweight materials that are easily ignited and capable of fast fire growth. Similarly, a small source may ignite many items of furniture that are capable of sustained fire growth. Upholstered furniture can reach peak burning rates in less than 5 minutes. Furnishings have been associated with many multiple-death fires.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Dynamics of salt playa polygons

    NASA Astrophysics Data System (ADS)

    Goehring, L.; Fourrière, A.

    2014-12-01

    In natural salt playa or in evaporation pools for the salt extraction industry, one can sometimes see surprising regular structures formed by ridges of salt. These ridges connect together to form a self-organized network of polygons one to two meters in diameter, which we call salt polygons. Here we propose a mechanism based on porous media convection of salty water in soil to explain the formation and the scaling of the salt polygons. Surface evaporation causes a steady upward flow of salty water, which can cause precipitation near the surface. A vertical salt gradient then builds up in the porous soil, with heavy salt-saturated water lying over the less salty source water. This can drive convection when a threshold is reached, given by a critical Rayleigh number of about 7. We suggest that the salt polygons are the surface expression of the porous medium convection, with salt crystallizing along the positions of the convective downwellings. To study this instability directly, we developed a 2D analogue experiment using a Hele-Shaw cell filled with a porous medium saturated with a salt solution and heated from above. We perform a linear stability analysis of this system, and find that it is unstable to convection, with a most unstable wavelength that is set by a balance between salt diffusion and water evaporation. The Rayleigh number in our experiment is controlled by the particle size of our model soil, and the evaporation rate. We obtain results that scale with the observation of natural salt polygons. Using dye, we observe the convective movement of salty water and find downwelling convective plumes underneath the spots where surface salt ridges form, as shown in the attached figure.

  13. A partially differentiated interior for (1) Ceres deduced from its gravity field and shape

    NASA Astrophysics Data System (ADS)

    Park, R. S.; Konopliv, A. S.; Bills, B. G.; Rambaux, N.; Castillo-Rogez, J. C.; Raymond, C. A.; Vaughan, A. T.; Ermakov, A. I.; Zuber, M. T.; Fu, R. R.; Toplis, M. J.; Russell, C. T.; Nathues, A.; Preusker, F.

    2016-09-01

    Remote observations of the asteroid (1) Ceres from ground- and space-based telescopes have provided its approximate density and shape, leading to a range of models for the interior of Ceres, from homogeneous to fully differentiated. A previously missing parameter that can place a strong constraint on the interior of Ceres is its moment of inertia, which requires the measurement of its gravitational variation together with either precession rate or a validated assumption of hydrostatic equilibrium. However, Earth-based remote observations cannot measure gravity variations and the magnitude of the precession rate is too small to be detected. Here we report gravity and shape measurements of Ceres obtained from the Dawn spacecraft, showing that it is in hydrostatic equilibrium with its inferred normalized mean moment of inertia of 0.37. These data show that Ceres is a partially differentiated body, with a rocky core overlaid by a volatile-rich shell, as predicted in some studies. Furthermore, we show that the gravity signal is strongly suppressed compared to that predicted by the topographic variation. This indicates that Ceres is isostatically compensated, such that topographic highs are supported by displacement of a denser interior. In contrast to the asteroid (4) Vesta, this strong compensation points to the presence of a lower-viscosity layer at depth, probably reflecting a thermal rather than compositional gradient. To further investigate the interior structure, we assume a two-layer model for the interior of Ceres with a core density of 2,460-2,900 kilograms per cubic metre (that is, composed of CI and CM chondrites), which yields an outer-shell thickness of 70-190 kilometres. The density of this outer shell is 1,680-1,950 kilograms per cubic metre, indicating a mixture of volatiles and denser materials such as silicates and salts. Although the gravity and shape data confirm that the interior of Ceres evolved thermally, its partially differentiated

  14. Theoretical modeling of the urinary supersaturation of calcium salts in healthy individuals and kidney stone patients: Precursors, speciation and therapeutic protocols for decreasing its value

    NASA Astrophysics Data System (ADS)

    Rodgers, Allen L.; Allie-Hamdulay, Shameez; Jackson, Graham E.; Durbach, Ian

    2013-11-01

    BackgroundSupersaturation (SS) of urinary salts has been extensively invoked for assessing the risk of renal stone formation, but precursors have often been ignored. Our objectives were to establish by computer modeling, which urinary components are essential for calculating reliable SS values, to investigate whether unique equilibrium processes occur in the urine of stone formers (SF) which might account for their higher SS levels relative to healthy controls (N), to determine the relative efficacies of three different, widely-used protocols for lowering urinary SS of calcium salts and to examine the influence of precursors.

  15. 2. VIEW OF INTERIOR, EAST SIDE (SIDE A) OF BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF INTERIOR, EAST SIDE (SIDE A) OF BUILDING 883. INSTALLATION OF ROLLING MILLS AND MOLTEN SALT BATH EQUIPMENT FOR DEPLETED URANIUM FABRICATION. THE CRANE NEAR THE CEILING WAS USED TO INSTALL THE EQUIPMENT. BOXES ON THE FLOOR CONTAINED EQUIPMENT TO BE INSTALLED. (1/23/57) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO

  16. A viscoplastic model with application to LiF-22 percent CaF2 hypereutectic salt

    NASA Technical Reports Server (NTRS)

    Freed, A. D.; Walker, K. P.

    1990-01-01

    A viscoplastic model for class M (metal-like behavior) materials is presented. One novel feature is its use of internal variables to change the stress exponent of creep (where n is approximately = 5) to that of natural creep (where n = 3), in accordance with experimental observations. Another feature is the introduction of a coupling in the evolution equations of the kinematic and isotropic internal variables, making thermal recovery of the kinematic variable implicit. These features enable the viscoplastic model to reduce to that of steady-state creep in closed form. In addition, the hardening parameters associated with the two internal state variables (one scalar-valued, the other tensor-valued) are considered to be functions of state, instead of being taken as constant-valued. This feature enables each internal variable to represent a much wider spectrum of internal states for the material. The model is applied to a LiF-22 percent CaF2 hypereutectic salt, which is being considered as a thermal energy storage material for space-based solar dynamic power systems.

  17. Multi-Physics Modeling of Molten Salt Transport in Solid Oxide Membrane (SOM) Electrolysis and Recycling of Magnesium

    SciTech Connect

    Powell, Adam; Pati, Soobhankar

    2012-03-11

    Solid Oxide Membrane (SOM) Electrolysis is a new energy-efficient zero-emissions process for producing high-purity magnesium and high-purity oxygen directly from industrial-grade MgO. SOM Recycling combines SOM electrolysis with electrorefining, continuously and efficiently producing high-purity magnesium from low-purity partially oxidized scrap. In both processes, electrolysis and/or electrorefining take place in the crucible, where raw material is continuously fed into the molten salt electrolyte, producing magnesium vapor at the cathode and oxygen at the inert anode inside the SOM. This paper describes a three-dimensional multi-physics finite-element model of ionic current, fluid flow driven by argon bubbling and thermal buoyancy, and heat and mass transport in the crucible. The model predicts the effects of stirring on the anode boundary layer and its time scale of formation, and the effect of natural convection at the outer wall. MOxST has developed this model as a tool for scale-up design of these closely-related processes.

  18. 9. Photographic copy of photograph (Source: Salt River Project Archives, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photographic copy of photograph (Source: Salt River Project Archives, Box 8040, File 31) Interior of high tension 45,000 volts room, Roosevelt power plant. No date. Post 1924. - Theodore Roosevelt Dam, Power Plant, Salt River, Tortilla Flat, Maricopa County, AZ

  19. Phosphate salts

    MedlinePlus

    ... taken by mouth or used as enemas. Indigestion. Aluminum phosphate and calcium phosphate are FDA-permitted ingredients ... Phosphate salts containing sodium, potassium, aluminum, or calcium are LIKELY SAFE for most people when taken by mouth short-term, when sodium phosphate is inserted into the ...

  20. Update on Small Modular Reactors Dynamics System Modeling Tool -- Molten Salt Cooled Architecture

    SciTech Connect

    Hale, Richard Edward; Cetiner, Sacit M.; Fugate, David L.; Qualls, A L.; Borum, Robert C.; Chaleff, Ethan S.; Rogerson, Doug W.; Batteh, John J.; Tiller, Michael M.

    2014-08-01

    The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the third year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled) concepts, including the use of multiple coupled reactors at a single site. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor SMR models, ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface (ICHMI) technical area, and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environment and suite of models are identified as the Modular Dynamic SIMulation (MoDSIM) tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the program, (2) developing a library of baseline component modules that can be assembled into full plant models using existing geometry and thermal-hydraulic data, (3) defining modeling conventions for interconnecting component models, and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.