A high and low noise model for strong motion accelerometers
NASA Astrophysics Data System (ADS)
Clinton, J. F.; Cauzzi, C.; Olivieri, M.
2010-12-01
We present reference noise models for high-quality strong motion accelerometer installations. We use continuous accelerometer data acquired by the Swiss Seismological Service (SED) since 2006 and other international high-quality accelerometer network data to derive very broadband (50Hz-100s) high and low noise models. The proposed noise models are compared to the Peterson (1993) low and high noise models designed for broadband seismometers; the datalogger self-noise; background noise levels at existing Swiss strong motion stations; and typical earthquake signals recorded in Switzerland and worldwide. The standard strong motion station operated by the SED consists of a Kinemetrics Episensor (2g clip level; flat acceleration response from 200 Hz to DC; <155dB dynamic range) coupled with a 24-bit Nanometrics Taurus datalogger. The proposed noise models are based on power spectral density (PSD) noise levels for each strong motion station computed via PQLX (McNamara and Buland, 2004) from several years of continuous recording. The 'Accelerometer Low Noise Model', ALNM, is dominated by instrument noise from the sensor and datalogger. The 'Accelerometer High Noise Model', AHNM, reflects 1) at high frequencies the acceptable site noise in urban areas, 2) at mid-periods the peak microseismal energy, as determined by the Peterson High Noise Model and 3) at long periods the maximum noise observed from well insulated sensor / datalogger systems placed in vault quality sites. At all frequencies, there is at least one order of magnitude between the ALNM and the AHNM; at high frequencies (> 1Hz) this extends to 2 orders of magnitude. This study provides remarkable confirmation of the capability of modern strong motion accelerometers to record low-amplitude ground motions with seismic observation quality. In particular, an accelerometric station operating at the ALNM is capable of recording the full spectrum of near source earthquakes, out to 100 km, down to M2. Of particular interest for the SED, this study provides acceptable noise limits for candidate sites for the on-going Strong Motion Network modernisation.
Engineering applications of strong ground motion simulation
NASA Astrophysics Data System (ADS)
Somerville, Paul
1993-02-01
The formulation, validation and application of a procedure for simulating strong ground motions for use in engineering practice are described. The procedure uses empirical source functions (derived from near-source strong motion recordings of small earthquakes) to provide a realistic representation of effects such as source radiation that are difficult to model at high frequencies due to their partly stochastic behavior. Wave propagation effects are modeled using simplified Green's functions that are designed to transfer empirical source functions from their recording sites to those required for use in simulations at a specific site. The procedure has been validated against strong motion recordings of both crustal and subduction earthquakes. For the validation process we choose earthquakes whose source models (including a spatially heterogeneous distribution of the slip of the fault) are independently known and which have abundant strong motion recordings. A quantitative measurement of the fit between the simulated and recorded motion in this validation process is used to estimate the modeling and random uncertainty associated with the simulation procedure. This modeling and random uncertainty is one part of the overall uncertainty in estimates of ground motions of future earthquakes at a specific site derived using the simulation procedure. The other contribution to uncertainty is that due to uncertainty in the source parameters of future earthquakes that affect the site, which is estimated from a suite of simulations generated by varying the source parameters over their ranges of uncertainty. In this paper, we describe the validation of the simulation procedure for crustal earthquakes against strong motion recordings of the 1989 Loma Prieta, California, earthquake, and for subduction earthquakes against the 1985 Michoacán, Mexico, and Valparaiso, Chile, earthquakes. We then show examples of the application of the simulation procedure to the estimatation of the design response spectra for crustal earthquakes at a power plant site in California and for subduction earthquakes in the Seattle-Portland region. We also demonstrate the use of simulation methods for modeling the attenuation of strong ground motion, and show evidence of the effect of critical reflections from the lower crust in causing the observed flattening of the attenuation of strong ground motion from the 1988 Saguenay, Quebec, and 1989 Loma Prieta earthquakes.
Construction of Source Model of Huge Subduction Earthquakes for Strong Ground Motion Prediction
NASA Astrophysics Data System (ADS)
Iwata, T.; Asano, K.; Kubo, H.
2013-12-01
It is a quite important issue for strong ground motion prediction to construct the source model of huge subduction earthquakes. Iwata and Asano (2012, AGU) summarized the scaling relationships of large slip area of heterogeneous slip model and total SMGA sizes on seismic moment for subduction earthquakes and found the systematic change between the ratio of SMGA to the large slip area and the seismic moment. They concluded this tendency would be caused by the difference of period range of source modeling analysis. In this paper, we try to construct the methodology of construction of the source model for strong ground motion prediction for huge subduction earthquakes. Following to the concept of the characterized source model for inland crustal earthquakes (Irikura and Miyake, 2001; 2011) and intra-slab earthquakes (Iwata and Asano, 2011), we introduce the proto-type of the source model for huge subduction earthquakes and validate the source model by strong ground motion modeling.
NASA Astrophysics Data System (ADS)
Asano, K.; Iwata, T.
2014-12-01
After the 2011 Tohoku earthquake in Japan (Mw9.0), many papers on the source model of this mega subduction earthquake have been published. From our study on the modeling of strong motion waveforms in the period 0.1-10s, four isolated strong motion generation areas (SMGAs) were identified in the area deeper than 25 km (Asano and Iwata, 2012). The locations of these SMGAs were found to correspond to the asperities of M7-class events in 1930's. However, many studies on kinematic rupture modeling using seismic, geodetic and tsunami data revealed that the existence of the large slip area from the trench to the hypocenter (e.g., Fujii et al., 2011; Koketsu et al., 2011; Shao et al., 2011; Suzuki et al., 2011). That is, the excitation of seismic wave is spatially different in long and short period ranges as is already discussed by Lay et al.(2012) and related studies. The Tohoku earthquake raised a new issue we have to solve on the relationship between the strong motion generation and the fault rupture process, and it is an important issue to advance the source modeling for future strong motion prediction. The previous our source model consists of four SMGAs, and observed ground motions in the period range 0.1-10s are explained well by this source model. We tried to extend our source model to explain the observed ground motions in wider period range with a simple assumption referring to the previous our study and the concept of the characterized source model (Irikura and Miyake, 2001, 2011). We obtained a characterized source model, which have four SMGAs in the deep part, one large slip area in the shallow part and background area with low slip. The seismic moment of this source model is equivalent to Mw9.0. The strong ground motions are simulated by the empirical Green's function method (Irikura, 1986). Though the longest period limit is restricted by the SN ratio of the EGF event (Mw~6.0) records, this new source model succeeded to reproduce the observed waveforms and Fourier amplitude spectra in the period range 0.1-50s. The location of this large slip area seems to overlap the source regions of historical events in 1793 and 1897 off Sanriku area. We think the source model for strong motion prediction of Mw9 event could be constructed by the combination of hierarchical multiple asperities or source patches related to histrorical events in this region.
Motion sickness: a negative reinforcement model.
Bowins, Brad
2010-01-15
Theories pertaining to the "why" of motion sickness are in short supply relative to those detailing the "how." Considering the profoundly disturbing and dysfunctional symptoms of motion sickness, it is difficult to conceive of why this condition is so strongly biologically based in humans and most other mammalian and primate species. It is posited that motion sickness evolved as a potent negative reinforcement system designed to terminate motion involving sensory conflict or postural instability. During our evolution and that of many other species, motion of this type would have impaired evolutionary fitness via injury and/or signaling weakness and vulnerability to predators. The symptoms of motion sickness strongly motivate the individual to terminate the offending motion by early avoidance, cessation of movement, or removal of oneself from the source. The motion sickness negative reinforcement mechanism functions much like pain to strongly motivate evolutionary fitness preserving behavior. Alternative why theories focusing on the elimination of neurotoxins and the discouragement of motion programs yielding vestibular conflict suffer from several problems, foremost that neither can account for the rarity of motion sickness in infants and toddlers. The negative reinforcement model proposed here readily accounts for the absence of motion sickness in infants and toddlers, in that providing strong motivation to terminate aberrant motion does not make sense until a child is old enough to act on this motivation.
NASA Astrophysics Data System (ADS)
Kamiyama, M.; Orourke, M. J.; Flores-Berrones, R.
1992-09-01
A new type of semi-empirical expression for scaling strong-motion peaks in terms of seismic source, propagation path, and local site conditions is derived. Peak acceleration, peak velocity, and peak displacement are analyzed in a similar fashion because they are interrelated. However, emphasis is placed on the peak velocity which is a key ground motion parameter for lifeline earthquake engineering studies. With the help of seismic source theories, the semi-empirical model is derived using strong motions obtained in Japan. In the derivation, statistical considerations are used in the selection of the model itself and the model parameters. Earthquake magnitude M and hypocentral distance r are selected as independent variables and the dummy variables are introduced to identify the amplification factor due to individual local site conditions. The resulting semi-empirical expressions for the peak acceleration, velocity, and displacement are then compared with strong-motion data observed during three earthquakes in the U.S. and Mexico.
A simple model for strong ground motions and response spectra
Safak, Erdal; Mueller, Charles; Boatwright, John
1988-01-01
A simple model for the description of strong ground motions is introduced. The model shows that response spectra can be estimated by using only four parameters of the ground motion, the RMS acceleration, effective duration and two corner frequencies that characterize the effective frequency band of the motion. The model is windowed band-limited white noise, and is developed by studying the properties of two functions, cumulative squared acceleration in the time domain, and cumulative squared amplitude spectrum in the frequency domain. Applying the methods of random vibration theory, the model leads to a simple analytical expression for the response spectra. The accuracy of the model is checked by using the ground motion recordings from the aftershock sequences of two different earthquakes and simulated accelerograms. The results show that the model gives a satisfactory estimate of the response spectra.
NASA Astrophysics Data System (ADS)
Meng, L.; Zhou, L.; Liu, J.
2013-12-01
Abstract: The April 20, 2013 Ms 7.0 earthquake in Lushan city, Sichuan province of China occurred as the result of east-west oriented reverse-type motion on a north-south striking fault. The source location suggests the event occurred on the Southern part of Longmenshan fault at a depth of 13km. The Lushan earthquake caused a great of loss of property and 196 deaths. The maximum intensity is up to VIII to IX at Boxing and Lushan city, which are located in the meizoseismal area. In this study, we analyzed the dynamic source process and calculated source spectral parameters, estimated the strong ground motion in the near-fault field based on the Brune's circle model at first. A dynamical composite source model (DCSM) has been developed further to simulate the near-fault strong ground motion with associated fault rupture properties at Boxing and Lushan city, respectively. The results indicate that the frictional undershoot behavior in the dynamic source process of Lushan earthquake, which is actually different from the overshoot activity of the Wenchuan earthquake. Based on the simulated results of the near-fault strong ground motion, described the intensity distribution of the Lushan earthquake field. The simulated intensity indicated that, the maximum intensity value is IX, and region with and above VII almost 16,000km2, which is consistence with observation intensity published online by China Earthquake Administration (CEA) on April 25. Moreover, the numerical modeling developed in this study has great application in the strong ground motion prediction and intensity estimation for the earthquake rescue purpose. In fact, the estimation methods based on the empirical relationship and numerical modeling developed in this study has great application in the strong ground motion prediction for the earthquake source process understand purpose. Keywords: Lushan, Ms7.0 earthquake; near-fault strong ground motion; DCSM; simulated intensity
NASA Astrophysics Data System (ADS)
Rodgers, A. J.; Pitarka, A.; Petersson, N. A.; Sjogreen, B.; McCallen, D.; Miah, M.
2016-12-01
Simulation of earthquake ground motions is becoming more widely used due to improvements of numerical methods, development of ever more efficient computer programs (codes), and growth in and access to High-Performance Computing (HPC). We report on how SW4 can be used for accurate and efficient simulations of earthquake strong motions. SW4 is an anelastic finite difference code based on a fourth order summation-by-parts displacement formulation. It is parallelized and can run on one or many processors. SW4 has many desirable features for seismic strong motion simulation: incorporation of surface topography; automatic mesh generation; mesh refinement; attenuation and supergrid boundary conditions. It also has several ways to introduce 3D models and sources (including Standard Rupture Format for extended sources). We are using SW4 to simulate strong ground motions for several applications. We are performing parametric studies of near-fault motions from moderate earthquakes to investigate basin edge generated waves and large earthquakes to provide motions to engineers study building response. We show that 3D propagation near basin edges can generate significant amplifications relative to 1D analysis. SW4 is also being used to model earthquakes in the San Francisco Bay Area. This includes modeling moderate (M3.5-5) events to evaluate the United States Geologic Survey's 3D model of regional structure as well as strong motions from the 2014 South Napa earthquake and possible large scenario events. Recently SW4 was built on a Commodity Technology Systems-1 (CTS-1) at LLNL, new systems for capacity computing at the DOE National Labs. We find SW4 scales well and runs faster on these systems compared to the previous generation of LINUX clusters.
Source Model of Huge Subduction Earthquakes for Strong Ground Motion Prediction
NASA Astrophysics Data System (ADS)
Iwata, T.; Asano, K.
2012-12-01
It is a quite important issue for strong ground motion prediction to construct the source model of huge subduction earthquakes. Irikura and Miyake (2001, 2011) proposed the characterized source model for strong ground motion prediction, which consists of plural strong ground motion generation area (SMGA, Miyake et al., 2003) patches on the source fault. We obtained the SMGA source models for many events using the empirical Green's function method and found the SMGA size has an empirical scaling relationship with seismic moment. Therefore, the SMGA size can be assumed from that empirical relation under giving the seismic moment for anticipated earthquakes. Concerning to the setting of the SMGAs position, the information of the fault segment is useful for inland crustal earthquakes. For the 1995 Kobe earthquake, three SMGA patches are obtained and each Nojima, Suma, and Suwayama segment respectively has one SMGA from the SMGA modeling (e.g. Kamae and Irikura, 1998). For the 2011 Tohoku earthquake, Asano and Iwata (2012) estimated the SMGA source model and obtained four SMGA patches on the source fault. Total SMGA area follows the extension of the empirical scaling relationship between the seismic moment and the SMGA area for subduction plate-boundary earthquakes, and it shows the applicability of the empirical scaling relationship for the SMGA. The positions of two SMGAs are in Miyagi-Oki segment and those other two SMGAs are in Fukushima-Oki and Ibaraki-Oki segments, respectively. Asano and Iwata (2012) also pointed out that all SMGAs are corresponding to the historical source areas of 1930's. Those SMGAs do not overlap the huge slip area in the shallower part of the source fault which estimated by teleseismic data, long-period strong motion data, and/or geodetic data during the 2011 mainshock. This fact shows the huge slip area does not contribute to strong ground motion generation (10-0.1s). The information of the fault segment in the subduction zone, or historical earthquake source area is also applicable for the construction of SMGA settings for strong ground motion prediction for future earthquakes.
NASA Astrophysics Data System (ADS)
Kuriyama, M.; Kumamoto, T.; Fujita, M.
2005-12-01
The 1995 Hyogo-ken Nambu Earthquake (1995) near Kobe, Japan, spurred research on strong motion prediction. To mitigate damage caused by large earthquakes, a highly precise method of predicting future strong motion waveforms is required. In this study, we applied empirical Green's function method to forward modeling in order to simulate strong ground motion in the Noubi Fault zone and examine issues related to strong motion prediction for large faults. Source models for the scenario earthquakes were constructed using the recipe of strong motion prediction (Irikura and Miyake, 2001; Irikura et al., 2003). To calculate the asperity area ratio of a large fault zone, the results of a scaling model, a scaling model with 22% asperity by area, and a cascade model were compared, and several rupture points and segmentation parameters were examined for certain cases. A small earthquake (Mw: 4.6) that occurred in northern Fukui Prefecture in 2004 were examined as empirical Green's function, and the source spectrum of this small event was found to agree with the omega-square scaling law. The Nukumi, Neodani, and Umehara segments of the 1891 Noubi Earthquake were targeted in the present study. The positions of the asperity area and rupture starting points were based on the horizontal displacement distributions reported by Matsuda (1974) and the fault branching pattern and rupture direction model proposed by Nakata and Goto (1998). Asymmetry in the damage maps for the Noubi Earthquake was then examined. We compared the maximum horizontal velocities for each case that had a different rupture starting point. In the case, rupture started at the center of the Nukumi Fault, while in another case, rupture started on the southeastern edge of the Umehara Fault; the scaling model showed an approximately 2.1-fold difference between these cases at observation point FKI005 of K-Net. This difference is considered to relate to the directivity effect associated with the direction of rupture propagation. Moreover, it was clarified that the horizontal velocities by assuming the cascade model was underestimated more than one standard deviation of empirical relation by Si and Midorikawa (1999). The scaling and cascade models showed an approximately 6.4-fold difference for the case, in which the rupture started along the southeastern edge of the Umehara Fault at observation point GIF020. This difference is significantly large in comparison with the effect of different rupture starting points, and shows that it is important to base scenario earthquake assumptions on active fault datasets before establishing the source characterization model. The distribution map of seismic intensity for the 1891 Noubi Earthquake also suggests that the synthetic waveforms in the southeastern Noubi Fault zone may be underestimated. Our results indicate that outer fault parameters (e.g., earthquake moment) related to the construction of scenario earthquakes influence strong motion prediction, rather than inner fault parameters such as the rupture starting point. Based on these methods, we will predict strong motion for approximately 140 to 150 km of the Itoigawa-Shizuoka Tectonic Line.
Atypical soil hardening during the Tohoku earthquake of March 11, 2011 ( M w = 9.0)
NASA Astrophysics Data System (ADS)
Pavlenko, O. V.
2017-10-01
Based on the records of KiK-net vertical arrays, models of soil behavior down to depths of 100-200 m in the near-fault zones during the Tohoku earthquake are examined. In contrast to the regular pattern observed during strong earthquakes, soft soils have not broadly demonstrated nonlinear behavior, or a reduction (with the onset of strong motions) and recovery (after strong motions finished) of the shear modulus in soil layers. At the stations where anomalously high peak ground accelerations were recorded (PGA > 1g), the values of the shear modulus in soil layers increased with the onset of strong motions and reached a maximum when motions were the most intensive, which indicated hardening of soils. Soil behavior was close to linear, here. The values of the shear moduli decrease along with a decrease in intensity of strong ground motions, and at soft soil stations, this was accompanied by a stepwise decrease in the frequency of motion.
Hartzell, S.; Harmsen, S.; Williams, R.A.; Carver, D.; Frankel, A.; Choy, G.; Liu, P.-C.; Jachens, R.C.; Brocher, T.M.; Wentworth, C.M.
2006-01-01
A 3D seismic velocity and attenuation model is developed for Santa Clara Valley, California, and its surrounding uplands to predict ground motions from scenario earthquakes. The model is developed using a variety of geologic and geophysical data. Our starting point is a 3D geologic model developed primarily from geologic mapping and gravity and magnetic surveys. An initial velocity model is constructed by using seismic velocities from boreholes, reflection/refraction lines, and spatial autocorrelation microtremor surveys. This model is further refined and the seismic attenuation is estimated through waveform modeling of weak motions from small local events and strong-ground motion from the 1989 Loma Prieta earthquake. Waveforms are calculated to an upper frequency of 1 Hz using a parallelized finite-difference code that utilizes two regions with a factor of 3 difference in grid spacing to reduce memory requirements. Cenozoic basins trap and strongly amplify ground motions. This effect is particularly strong in the Evergreen Basin on the northeastern side of the Santa Clara Valley, where the steeply dipping Silver Creek fault forms the southwestern boundary of the basin. In comparison, the Cupertino Basin on the southwestern side of the valley has a more moderate response, which is attributed to a greater age and velocity of the Cenozoic fill. Surface waves play a major role in the ground motion of sedimentary basins, and they are seen to strongly develop along the western margins of the Santa Clara Valley for our simulation of the Loma Prieta earthquake.
NASA Astrophysics Data System (ADS)
Asano, K.
2017-12-01
An MJMA 6.5 earthquake occurred offshore the Kii peninsula, southwest Japan on April 1, 2016. This event was interpreted as a thrust-event on the plate-boundary along the Nankai trough where (Wallace et al., 2016). This event is the largest plate-boundary earthquake in the source region of the 1944 Tonankai earthquake (MW 8.0) after that event. The significant point of this event regarding to seismic observation is that this event occurred beneath an ocean-bottom seismic network called DONET1, which is jointly operated by NIED and JAMSTEC. Since moderate-to-large earthquake of this focal type is very rare in this region in the last half century, it is a good opportunity to investigate the source characteristics relating to strong motion generation of subduction-zone plate-boundary earthquakes along the Nankai trough. Knowledge obtained from the study of this earthquake would contribute to ground motion prediction and seismic hazard assessment for future megathrust earthquakes expected in the Nankai trough. In this study, the source model of the 2016 offshore the Kii peninsula earthquake was estimated by broadband strong motion waveform modeling using the empirical Green's function method (Irikura, 1986). The source model is characterized by strong motion generation area (SMGA) (Miyake et al., 2003), which is defined as a rectangular area with high-stress drop or high slip-velocity. SMGA source model based on the empirical Green's function method has great potential to reproduce ground motion time history in broadband frequency range. We used strong motion data from offshore stations (DONET1 and LTBMS) and onshore stations (NIED F-net and DPRI). The records of an MJMA 3.2 aftershock at 13:04 on April 1, 2016 were selected for the empirical Green's functions. The source parameters of SMGA are optimized by the waveform modeling in the frequency range 0.4-10 Hz. The best estimate of SMGA size is 19.4 km2, and SMGA of this event does not follow the source scaling relationship for past plate-boundary earthquakes along the Japan trench, northeast Japan. This finding implies that the source characteristics of plate-boundary events in the Nankai trough are different from those in the Japan Trench, and it could be important information to consider regional variation in ground motion prediction.
The ShakeOut earthquake source and ground motion simulations
Graves, R.W.; Houston, Douglas B.; Hudnut, K.W.
2011-01-01
The ShakeOut Scenario is premised upon the detailed description of a hypothetical Mw 7.8 earthquake on the southern San Andreas Fault and the associated simulated ground motions. The main features of the scenario, such as its endpoints, magnitude, and gross slip distribution, were defined through expert opinion and incorporated information from many previous studies. Slip at smaller length scales, rupture speed, and rise time were constrained using empirical relationships and experience gained from previous strong-motion modeling. Using this rupture description and a 3-D model of the crust, broadband ground motions were computed over a large region of Southern California. The largest simulated peak ground acceleration (PGA) and peak ground velocity (PGV) generally range from 0.5 to 1.0 g and 100 to 250 cm/s, respectively, with the waveforms exhibiting strong directivity and basin effects. Use of a slip-predictable model results in a high static stress drop event and produces ground motions somewhat higher than median level predictions from NGA ground motion prediction equations (GMPEs).
NASA Astrophysics Data System (ADS)
Iwata, T.; Asano, K.; Sekiguchi, H.
2011-12-01
We propose a prototype of the procedure to construct source models for strong motion prediction during intraslab earthquakes based on the characterized source model (Irikura and Miyake, 2011). The key is the characterized source model which is based on the empirical scaling relationships for intraslab earthquakes and involve the correspondence between the SMGA (strong motion generation area, Miyake et al., 2003) and the asperity (large slip area). Iwata and Asano (2011) obtained the empirical relationships of the rupture area (S) and the total asperity area (Sa) to the seismic moment (Mo) as follows, with assuming power of 2/3 dependency of S and Sa on M0, S (km**2) = 6.57×10**(-11)×Mo**(2/3) (Nm) (1) Sa (km**2) = 1.04 ×10**(-11)×Mo**(2/3) (Nm) (2). Iwata and Asano (2011) also pointed out that the position and the size of SMGA approximately corresponds to the asperity area for several intraslab events. Based on the empirical relationships, we gave a procedure for constructing source models of intraslab earthquakes for strong motion prediction. [1] Give the seismic moment, Mo. [2] Obtain the total rupture area and the total asperity area according to the empirical scaling relationships between S, Sa, and Mo given by Iwata and Asano (2011). [3] Square rupture area and asperities are assumed. [4] The source mechanism is assumed to be the same as that of small events in the source region. [5] Plural scenarios including variety of the number of asperities and rupture starting points are prepared. We apply this procedure by simulating strong ground motions for several observed events for confirming the methodology.
Hazard assessment of long-period ground motions for the Nankai Trough earthquakes
NASA Astrophysics Data System (ADS)
Maeda, T.; Morikawa, N.; Aoi, S.; Fujiwara, H.
2013-12-01
We evaluate a seismic hazard for long-period ground motions associated with the Nankai Trough earthquakes (M8~9) in southwest Japan. Large interplate earthquakes occurring around the Nankai Trough have caused serious damages due to strong ground motions and tsunami; most recent events were in 1944 and 1946. Such large interplate earthquake potentially causes damages to high-rise and large-scale structures due to long-period ground motions (e.g., 1985 Michoacan earthquake in Mexico, 2003 Tokachi-oki earthquake in Japan). The long-period ground motions are amplified particularly on basins. Because major cities along the Nankai Trough have developed on alluvial plains, it is therefore important to evaluate long-period ground motions as well as strong motions and tsunami for the anticipated Nankai Trough earthquakes. The long-period ground motions are evaluated by the finite difference method (FDM) using 'characterized source models' and the 3-D underground structure model. The 'characterized source model' refers to a source model including the source parameters necessary for reproducing the strong ground motions. The parameters are determined based on a 'recipe' for predicting strong ground motion (Earthquake Research Committee (ERC), 2009). We construct various source models (~100 scenarios) giving the various case of source parameters such as source region, asperity configuration, and hypocenter location. Each source region is determined by 'the long-term evaluation of earthquakes in the Nankai Trough' published by ERC. The asperity configuration and hypocenter location control the rupture directivity effects. These parameters are important because our preliminary simulations are strongly affected by the rupture directivity. We apply the system called GMS (Ground Motion Simulator) for simulating the seismic wave propagation based on 3-D FDM scheme using discontinuous grids (Aoi and Fujiwara, 1999) to our study. The grid spacing for the shallow region is 200 m and 100 m in horizontal and vertical, respectively. The grid spacing for the deep region is three times coarser. The total number of grid points is about three billion. The 3-D underground structure model used in the FD simulation is the Japan integrated velocity structure model (ERC, 2012). Our simulation is valid for period more than two seconds due to the lowest S-wave velocity and grid spacing. However, because the characterized source model may not sufficiently support short period components, we should be interpreted the reliable period of this simulation with caution. Therefore, we consider the period more than five seconds instead of two seconds for further analysis. We evaluate the long-period ground motions using the velocity response spectra for the period range between five and 20 second. The preliminary simulation shows a large variation of response spectra at a site. This large variation implies that the ground motion is very sensitive to different scenarios. And it requires studying the large variation to understand the seismic hazard. Our further study will obtain the hazard curves for the Nankai Trough earthquake (M 8~9) by applying the probabilistic seismic hazard analysis to the simulation results.
Strong Ground Motion Generation during the 2011 Tohoku-Oki Earthquake
NASA Astrophysics Data System (ADS)
Asano, K.; Iwata, T.
2011-12-01
Strong ground motions during the 2011 Tohoku-Oki earthquake (Mw9.0) were densely observed by the strong motion observation networks all over Japan. Seeing the acceleration and velocity waveforms observed at strong stations in northeast Japan along the source region, those ground motions are characterized by plural wave packets with duration of about twenty seconds. Particularly, two wave packets separated by about fifty seconds could be found on the records in the northern part of the damaged area, whereas only one significant wave packets could be recognized on the records in the southern part of the damaged area. The record section shows four isolated wave packets propagating from different locations to north and south, and it gives us a hint of the strong motion generation process on the source fault which is related to the heterogeneous rupture process in the scale of tens of kilometers. In order to solve it, we assume that each isolated wave packet is contributed by the corresponding strong motion generation area (SMGA). It is a source patch whose slip velocity is larger than off the area (Miyake et al., 2003). That is, the source model of the 2011 Tohoku-Oki earthquake consists of four SMGAs. The SMGA source model has succeeded in reproducing broadband strong ground motions for past subduction-zone events (e.g., Suzuki and Iwata, 2007). The target frequency range is set to be 0.1-10 Hz in this study as this range is significantly related to seismic damage generation to general man-made structures. First, we identified the rupture starting points of each SMGA by picking up the onset of individual packets. The source fault plane is set following the GCMT solution. The first two SMGAs were located approximately 70 km and 30 km west of the hypocenter. The third and forth SMGAs were located approximately 160 km and 230 km southwest of the hypocenter. Then, the model parameters (size, rise time, stress drop, rupture velocity, rupture propagation pattern) of these four SMGAs were determined by waveform modeling using the empirical Green's function method (Irikura, 1986). The first and second SMGAs are located close to each other, and they are partially overlapped though the difference in the rupture time between them is more than 40 s. Those two SMGA appear to be included in the source region of the past repeating Miyagi-Oki subduction-zone event in 1936. The third and fourth SMGAs appear to be located in the source region of the past Fukushima-Oki events in 1938. Each of Those regions has been expected to cause next major earthquakes in the long-term evaluation. The obtained source model explains the acceleration, velocity, and displacement time histories in the target frequency range at most stations well. All of four SMGAs exist apparently outside of the large slip area along the trench east of the hypocenter, which was estimated by the seismic, geodetic, and tsunami inversion analyses, and this large slip zone near the trench does not contribute to strong motion much. At this point, we can conclude that the 2011 Tohoku-Oki earthquake has a possibility to be a complex event rupturing multiple preexisting asperities in terms of strong ground motion generation. It should be helpful to validate and improve the applicability of the strong motion prediction recipe for great subduction-zone earthquakes.
Consistency of GPS and strong-motion records: case study of the Mw9.0 Tohoku-Oki 2011 earthquake
NASA Astrophysics Data System (ADS)
Psimoulis, Panos; Houlié, Nicolas; Michel, Clotaire; Meindl, Michael; Rothacher, Markus
2014-05-01
High-rate GPS data are today commonly used to supplement seismic data for the Earth surface motions focusing on earthquake characterisation and rupture modelling. Processing of GPS records using Precise Point Positioning (PPP) can provide real-time information of seismic wave propagation, tsunami early-warning and seismic rupture. Most studies have shown differences between the GPS and seismic systems at very long periods (e.g. >100sec) and static displacements. The aim of this study is the assessment of the consistency of GPS and strong-motion records by comparing their respective displacement waveforms for several frequency bands. For this purpose, the records of the GPS (GEONET) and the strong-motion (KiK-net and K-NET) networks corresponding to the Mw9.0 Tohoku 2011 earthquake were analysed. The comparison of the displacement waveforms of collocated (distance<100m) GPS and strong-motion sites show that the consistency between the two datasets depends on the frequency of the excitation. Differences are mainly due to the GPS noise at relatively short-periods (<3-4 s) and the saturation of the strong-motion sensors for relatively long-periods (40-80 s). Furthermore the agreement between the GPS and strong-motion records also depends on the direction of the excitation signal and the distance from the epicentre. In conclusion, velocities and displacements recovered from GPS and strong-motion records are consistent for long-periods (3-100 s), proving that GPS networks can contribute to the real-time estimation of the long-period ground motion map of an earthquake.
NASA Astrophysics Data System (ADS)
Pulido, N.; Tavera, H.; Aguilar, Z.; Chlieh, M.; Calderon, D.; Sekiguchi, T.; Nakai, S.; Yamazaki, F.
2012-12-01
We have developed a methodology for the estimation of slip scenarios for megathrust earthquakes based on a model of interseismic coupling (ISC) distribution in subduction margins obtained from geodetic data, as well as information of recurrence of historical earthquakes. This geodetic slip model (GSM) delineates the long wavelength asperities within the megathrust. For the simulation of strong ground motion it becomes necessary to introduce short wavelength heterogeneities to the source slip to be able to efficiently simulate high frequency ground motions. To achieve this purpose we elaborate "broadband" source models constructed by combining the GSM with several short wavelength slip distributions obtained from a Von Karman PSD function with random phases. Our application of the method to Central Andes in Peru, show that this region has presently the potential of generating an earthquake with moment magnitude of 8.9, with a peak slip of 17 m and a source area of approximately 500 km along strike and 165 km along dip. For the strong motion simulations we constructed 12 broadband slip models, and consider 9 possible hypocenter locations for each model. We performed strong motion simulations for the whole central Andes region (Peru), spanning an area from the Nazca ridge (16^o S) to the Mendana fracture (9^o S). For this purpose we use the hybrid strong motion simulation method of Pulido et al. (2004), improved to handle a general slip distribution. Our simulated PGA and PGV distributions indicate that a region of at least 500 km along the coast of central Andes is subjected to a MMI intensity of approximately 8, for the slip model that yielded the largest ground motions among the 12 slip models considered, averaged for all assumed hypocenter locations. This result is in agreement with the macroseismic intensity distribution estimated for the great 1746 earthquake (M~9) in central Andes (Dorbath et al. 1990). Our results indicate that the simulated PGA and PGV for all scenario slips for central Andes, and for an average soil condition, exhibit similar amplitudes and attenuation characteristics with distance as the PGA and PGV values observed during the 2010 Maule (Mw 8.8), and 2011 Tohoku-oki (Mw 9.0) earthquakes. Our results clearly indicate that the simulated ground motions for scenarios with deep rupture nucleations (~40 km) are consistently smaller than the ground motions obtained for shallower rupture nucleations. We also performed strong ground motion simulations in metropolitan Lima by using the aforementioned slip scenarios, and incorporating site amplifications obtained from several microtremors array surveys conducted at representative geotechnical zones in this city. Our simulated PGA and PGV in Lima reach values of 1000 cm/s^2 and 80 cm/s. Our results show that the largest values of PGA (at Puente Piedra district, Northern Lima) are related with short period site effects, whereas the largest values of PGV are related with large site amplifications for periods from 1s to 1.5s (at Callao, Villa el Salvador and La Molina districts). Our results also indicate that the simulated PGA and PGV in central Lima (Parque de la Reserva) are in average 2~3 times larger than the values recorded by a strong motion instrument installed at this location, during the 1974 (Mw8.0) and 1966 (Mw8.0) earthquakes off-shore Lima.
Atypical soil behavior during the 2011 Tohoku earthquake ( Mw = 9)
NASA Astrophysics Data System (ADS)
Pavlenko, Olga V.
2016-07-01
To understand physical mechanisms of generation of abnormally high peak ground acceleration (PGA; >1 g) during the Tohoku earthquake, models of nonlinear soil behavior in the strong motion were constructed for 27 KiK-net stations located in the near-fault zones to the south of FKSH17. The method of data processing used was developed by Pavlenko and Irikura, Pure Appl Geophys 160:2365-2379, 2003 and previously applied for studying soil behavior at vertical array sites during the 1995 Kobe (Mw = 6.8) and 2000 Tottori (Mw = 6.7) earthquakes. During the Tohoku earthquake, we did not observe a widespread nonlinearity of soft soils and reduction at the beginning of strong motion and recovery at the end of strong motion of shear moduli in soil layers, as usually observed during strong earthquakes. Manifestations of soil nonlinearity and reduction of shear moduli during strong motion were observed at sites located close to the source, in coastal areas. At remote sites, where abnormally high PGAs were recorded, shear moduli in soil layers increased and reached their maxima at the moments of the highest intensity of the strong motion, indicating soil hardening. Then, shear moduli reduced with decreasing the intensity of the strong motion. At soft-soil sites, the reduction of shear moduli was accompanied by a step-like decrease of the predominant frequencies of motion. Evidently, the observed soil hardening at the moments of the highest intensity of the strong motion contributed to the occurrence of abnormally high PGA, recorded during the Tohoku earthquake.
NASA Astrophysics Data System (ADS)
Zhao, Fengfan; Meng, Lingyuan
2016-04-01
The April 20, 2013 Ms 7.0, earthquake in Lushan city, Sichuan province of China occurred as the result of east-west oriented reverse-type motion on a north-south striking fault. The source location suggests the event occurred on the Southern part of Longmenshan fault at a depth of 13km. The maximum intensity is up to VIII to IX at Boxing and Lushan city, which are located in the meizoseismal area. In this study, we analyzed the dynamic source process with the source mechanism and empirical relationships, estimated the strong ground motion in the near-fault field based on the Brune's circle model. A dynamical composite source model (DCSM) has been developed to simulate the near-fault strong ground motion with associated fault rupture properties at Boxing and Lushan city, respectively. The results indicate that the frictional undershoot behavior in the dynamic source process of Lushan earthquake, which is actually different from the overshoot activity of the Wenchuan earthquake. Moreover, we discussed the characteristics of the strong ground motion in the near-fault field, that the broadband synthetic seismogram ground motion predictions for Boxing and Lushan city produced larger peak values, shorter durations and higher frequency contents. It indicates that the factors in near-fault strong ground motion was under the influence of higher effect stress drop and asperity slip distributions on the fault plane. This work is financially supported by the Natural Science Foundation of China (Grant No. 41404045) and by Science for Earthquake Resilience of CEA (XH14055Y).
NASA Astrophysics Data System (ADS)
Oral, Elif; Gélis, Céline; Bonilla, Luis Fabián; Delavaud, Elise
2017-12-01
Numerical modelling of seismic wave propagation, considering soil nonlinearity, has become a major topic in seismic hazard studies when strong shaking is involved under particular soil conditions. Indeed, when strong ground motion propagates in saturated soils, pore pressure is another important parameter to take into account when successive phases of contractive and dilatant soil behaviour are expected. Here, we model 1-D seismic wave propagation in linear and nonlinear media using the spectral element numerical method. The study uses a three-component (3C) nonlinear rheology and includes pore-pressure excess. The 1-D-3C model is used to study the 1987 Superstition Hills earthquake (ML 6.6), which was recorded at the Wildlife Refuge Liquefaction Array, USA. The data of this event present strong soil nonlinearity involving pore-pressure effects. The ground motion is numerically modelled for different assumptions on soil rheology and input motion (1C versus 3C), using the recorded borehole signals as input motion. The computed acceleration-time histories show low-frequency amplification and strong high-frequency damping due to the development of pore pressure in one of the soil layers. Furthermore, the soil is found to be more nonlinear and more dilatant under triaxial loading compared to the classical 1C analysis, and significant differences in surface displacements are observed between the 1C and 3C approaches. This study contributes to identify and understand the dominant phenomena occurring in superficial layers, depending on local soil properties and input motions, conditions relevant for site-specific studies.
Hartzell, S.; Iida, M.
1990-01-01
Strong motion records for the Whittier Narrows earthquake are inverted to obtain the history of slip. Both constant rupture velocity models and variable rupture velocity models are considered. The results show a complex rupture process within a relatively small source volume, with at least four separate concentrations of slip. Two sources are associated with the hypocenter, the larger having a slip of 55-90 cm, depending on the rupture model. These sources have a radius of approximately 2-3 km and are ringed by a region of reduced slip. The aftershocks fall within this low slip annulus. Other sources with slips from 40 to 70 cm each ring the central source region and the aftershock pattern. All the sources are predominantly thrust, although some minor right-lateral strike-slip motion is seen. The overall dimensions of the Whittier earthquake from the strong motion inversions is 10 km long (along the strike) and 6 km wide (down the dip). The preferred dip is 30?? and the preferred average rupture velocity is 2.5 km/s. Moment estimates range from 7.4 to 10.0 ?? 1024 dyn cm, depending on the rupture model. -Authors
NASA Astrophysics Data System (ADS)
Irikura, K.; Kagawa, T.; Miyakoshi, K.; Kurahashi, S.
2007-12-01
The Niigataken Chuetsu-Oki earthquake occurred on July 16, 2007, northwest-off Kashiwazaki in Niigata Prefecture, Japan, causing severe damages of ten people dead, about 1300 injured, about 1000 collapsed houses and major lifelines suspended. In particular, strong ground motions from the earthquake struck the Kashiwazaki-Kariwa nuclear power plant (hereafter KKNPP), triggering a fire at an electric transformer and other problems such as leakage of water containing radioactive materials into air and the sea, although the radioactivity levels of the releases are as low as those of the radiation which normal citizens would receive from the natural environment in a year. The source mechanism of this earthquake is a reverse fault, but whether it is the NE-SW strike and NW dip or the SW-NE strike and SE dip are still controversial from the aftershock distribution and geological surveys near the source. Results of the rupture processes inverted by using the GPS and SAR data, tsunami data and teleseismic data so far did not succeed in determining which fault planes moved. Strong ground motions were recorded at about 390 stations by the K-NET of NIED including the stations very close to the source area. There was the KKNPP which is probably one of buildings and facilities closest to the source area. They have their own strong motion network with 22 three-components' accelerographs locating at ground-surface, underground, buildings and basements of reactors. The PGA attenuation-distance relationships made setting the fault plane estimated from the GPS data generally follow the empirical relations in Japan, for example, Fukushima and Tanaka (1990) and Si and Midorikawa (1999), even if either fault plane, SE dip or NW dip, is assumed. However, the strong ground motions in the site of the KKNPP had very large accelerations and velocities more than those expected from the empirical relations. The surface motions there had the PGA of more than 1200 gals and even underground motions at the basements of the reactors locating five stories below the ground had the PGA of 680 gals. We simulated ground motions using the characterized source model (Kamae and Irikura, 1998) with three asperities and the empirical Green's function method (Irikura, 1986). Then, we found that the source model should be a reverse fault with the NE-SW strike and NW dip to explain the strong motion records obtained near the source area. In particular, strong ground motions in the site of the KKNPP had three significant pulses which are generated as directivity pulses in forward direction of rupture propagation. This is the reason why the strong ground motions in the site of the KKNPP had very large accelerations and velocities. The source model is also verified comparing the observed records at the KKNPP with the numerical simulations by the discrete wavenumber method (Bouchon, 1981).
Neural representations of kinematic laws of motion: evidence for action-perception coupling.
Dayan, Eran; Casile, Antonino; Levit-Binnun, Nava; Giese, Martin A; Hendler, Talma; Flash, Tamar
2007-12-18
Behavioral and modeling studies have established that curved and drawing human hand movements obey the 2/3 power law, which dictates a strong coupling between movement curvature and velocity. Human motion perception seems to reflect this constraint. The functional MRI study reported here demonstrates that the brain's response to this law of motion is much stronger and more widespread than to other types of motion. Compliance with this law is reflected in the activation of a large network of brain areas subserving motor production, visual motion processing, and action observation functions. Hence, these results strongly support the notion of similar neural coding for motion perception and production. These findings suggest that cortical motion representations are optimally tuned to the kinematic and geometrical invariants characterizing biological actions.
NASA Astrophysics Data System (ADS)
Iwata, T.; Asano, K.; Kubo, H.
2014-12-01
The source model of the 2014 South Napa earthquake (Mw6.0) is estimated using broad band strong ground motion simulation by the empirical Green's function method (Irikura, 1986, Irikura et al., 1997). We used the CESMD strong motion data. Aftershock ground motion records of Mw3.6 which occurred at 05:33 on 24th August (PDT), are used as an empirical Green's function. We refer to the finite source model by Dreger et al. (2014) for setting the geometry of the source fault plane and the rupture velocity. We assume a single rectangular strong motion generation area (e.g. Miyake et al., 2003; Asano and Iwata, 2012). The seismic moment ratio between the target and EGF events is fixed from the moment magnitudes. As only five station data are available for the aftershock records, the size of SMGA area, rupture starting point, and the rise time on the SMGA are determined by the trial and error. Preliminary SMGA model is 6x6km2 and the rupture mainly propagates WNW and shallower directions. The SMGA size we obtained follows the empirical relationship of Mw and SMGA size for the inland crustal events (Irikura and Miyake, 2011). Waveform fittings are fairly well at the near source station NHC (Huichica creek) and 68150 (Napa Collage), where as the fitting is not good at the south-side stations, 68206 (Crockett - Carquinez Br. Geotech Array) and 68310 (Vallejo - Hwy 37/Napa River E Geo. Array). Particularly, we did not succeed in explaining the high PGA at the 68206 surface station. We will try to improve our SMGA model and will discuss the origin of the high PGA observed at that station.
Self-noise models of five commercial strong-motion accelerometers
Ringler, Adam; Evans, John R.; Hutt, Charles R.
2015-01-01
To better characterize the noise of a number of commonly deployed accelerometers in a standardized way, we conducted noise measurements on five different models of strong‐motion accelerometers. Our study was limited to traditional accelerometers (Fig. 1) and is in no way exhaustive.
NASA Astrophysics Data System (ADS)
Herman, M. W.; Furlong, K. P.; Hayes, G. P.; Benz, H.
2014-12-01
Strong motion accelerometers can record large amplitude shaking on-scale in the near-field of large earthquake ruptures; however, numerical integration of such records to determine displacement is typically unstable due to baseline changes (i.e., distortions in the zero value) that occur during strong shaking. We use datasets from the 2011 Mw 9.0 Tohoku earthquake to assess whether a relatively simple empirical correction scheme (Boore et al., 2002) can return accurate displacement waveforms useful for constraining details of the fault slip. The coseismic deformation resulting from the Tohoku earthquake was recorded by the Kiban Kyoshin network (KiK-net) of strong motion instruments as well as by a dense network of high-rate (1 Hz) GPS instruments. After baseline correcting the KiK-net records and integrating to displacement, over 85% of the KiK-net borehole instrument waveforms and over 75% of the KiK-net surface instrument waveforms match collocated 1 Hz GPS displacement time series. Most of the records that do not match the GPS-derived displacements following the baseline correction have large, systematic drifts that can be automatically identified by examining the slopes in the first 5-10 seconds of the velocity time series. We apply the same scheme to strong motion records from the 2014 Mw 8.2 Iquique earthquake. Close correspondence in both direction and amplitude between coseismic static offsets derived from the integrated strong motion time series and those predicted from a teleseismically-derived finite fault model, as well as displacement amplitudes consistent with InSAR-derived results, suggest that the correction scheme works successfully for the Iquique event. In the absence of GPS displacements, these strong motion-derived offsets provide constraints on the overall distribution of slip on the fault. In addition, the coseismic strong motion-derived displacement time series (50-100 s long) contain a near-field record of the temporal evolution of the rupture, supplementing teleseismic data and improving resolution of the location and timing of moment in finite fault models.
NASA Astrophysics Data System (ADS)
Asano, K.; Iwata, T.
2008-12-01
The 2008 Iwate-Miyagi Nairiku earthquake (MJMA7.2) on June 14, 2008, is a thrust type inland crustal earthquake, which occurred in northeastern Honshu, Japan. In order to see strong motion generation process of this event, the source rupture process is estimated by the kinematic waveform inversion using strong motion data. Strong motion data of the K-NET and KiK-net stations and Aratozawa Dam are used. These stations are located 3-94 km from the epicenter. Original acceleration time histories are integrated into velocity and band- pass filtered between 0.05 and 1 Hz. For obtaining the detailed source rupture process, appropriate velocity structure model for Green's functions should be used. We estimated one dimensional velocity structure model for each strong motion station by waveform modeling of aftershock records. The elastic wave velocity, density, and Q-values for four sedimentary layers are assumed following previous studies. The thickness of each sedimentary layer depends on the station, which is estimated to fit the observed aftershock's waveforms by the optimization using the genetic algorithm. A uniform layered structure model is assumed for crust and upper mantle below the seismic bedrock. We succeeded to get a reasonable velocity structure model for each station to give a good fit of the main S-wave part in the observation of aftershocks. The source rupture process of the mainshock is estimated by the linear kinematic waveform inversion using multiple time windows (Hartzell and Heaton, 1983). A fault plane model is assumed following the moment tensor solution by F-net, NIED. The strike and dip angle is 209° and 51°, respectively. The rupture starting point is fixed at the hypocenter located by the JMA. The obtained source model shows a large slip area in the shallow portion of the fault plane approximately 6 km southwest of the hypocenter. The rupture of the asperity finishes within about 9 s. This large slip area corresponds to the area with surface break reported by the field survey group (e.g., AIST/GSJ, 2008), which supports the existence of the large slip close to the ground surface. But, most of surface offset found by the field survey are less than 0.5 m whereas the slip amount of the shallow asperity of the source inversion result is 3-4 m. In north of the hypocenter, the estimated slip amount is small. Slip direction is almost pure dip-slip for the entire fault (Northwest side goes up against southeast side). Total seismic moment is 2.6× 1019 Nm (MW 6.9). Acknowledgments: Strong motion data of K-NET and KiK-net operated by the National Research Institute for Earth Science and Disaster Prevention are used. Strong motion data of Aratozawa Dam obtained by Miyagi prefecture government is also used in the study.
Flocking and Turning: a New Model for Self-organized Collective Motion
NASA Astrophysics Data System (ADS)
Cavagna, Andrea; Del Castello, Lorenzo; Giardina, Irene; Grigera, Tomas; Jelic, Asja; Melillo, Stefania; Mora, Thierry; Parisi, Leonardo; Silvestri, Edmondo; Viale, Massimiliano; Walczak, Aleksandra M.
2015-02-01
Birds in a flock move in a correlated way, resulting in large polarization of velocities. A good understanding of this collective behavior exists for linear motion of the flock. Yet observing actual birds, the center of mass of the group often turns giving rise to more complicated dynamics, still keeping strong polarization of the flock. Here we propose novel dynamical equations for the collective motion of polarized animal groups that account for correlated turning including solely social forces. We exploit rotational symmetries and conservation laws of the problem to formulate a theory in terms of generalized coordinates of motion for the velocity directions akin to a Hamiltonian formulation for rotations. We explicitly derive the correspondence between this formulation and the dynamics of the individual velocities, thus obtaining a new model of collective motion. In the appropriate overdamped limit we recover the well-known Vicsek model, which dissipates rotational information and does not allow for polarized turns. Although the new model has its most vivid success in describing turning groups, its dynamics is intrinsically different from previous ones in a wide dynamical regime, while reducing to the hydrodynamic description of Toner and Tu at very large length-scales. The derived framework is therefore general and it may describe the collective motion of any strongly polarized active matter system.
Seeing blur: 'motion sharpening' without motion.
Georgeson, Mark A; Hammett, Stephen T
2002-01-01
It is widely supposed that things tend to look blurred when they are moving fast. Previous work has shown that this is true for sharp edges but, paradoxically, blurred edges look sharper when they are moving than when stationary. This is 'motion sharpening'. We show that blurred edges also look up to 50% sharper when they are presented briefly (8-24 ms) than at longer durations (100-500 ms) without motion. This argues strongly against high-level models of sharpening based specifically on compensation for motion blur. It also argues against a recent, low-level, linear filter model that requires motion to produce sharpening. No linear filter model can explain our finding that sharpening was similar for sinusoidal and non-sinusoidal gratings, since linear filters can never distort sine waves. We also conclude that the idea of a 'default' assumption of sharpness is not supported by experimental evidence. A possible source of sharpening is a nonlinearity in the contrast response of early visual mechanisms to fast or transient temporal changes, perhaps based on the magnocellular (M-cell) pathway. Our finding that sharpening is not diminished at low contrast sets strong constraints on the nature of the nonlinearity. PMID:12137571
Strong motion from surface waves in deep sedimentary basins
Joyner, W.B.
2000-01-01
It is widely recognized that long-period surface waves generated by conversion of body waves at the boundaries of deep sedimentary basins make an important contribution to strong ground motion. The factors controlling the amplitude of such motion, however, are not widely understood. A study of pseudovelocity response spectra of strong-motion records from the Los Angeles Basin shows that late-arriving surface waves with group velocities of about 1 km/sec dominate the ground motion for periods of 3 sec and longer. The rate of amplitude decay for these waves is less than for the body waves and depends significantly on period, with smaller decay for longer periods. The amplitude can be modeled by the equation log y = f(M, RE) + c + bRB where y is the pseudovelocity response, f(M, RE) is an attenuation relation based on a general strong-motion data set, M is moment magnitude, RE is the distance from the source to the edge of the basin, RB is the distance from the edge of the basin to the recording site, and b and c are parameters fit to the data. The equation gives values larger by as much as a factor of 3 than given by the attenuation relationships based on general strong-motion data sets for the same source-site distance. It is clear that surface waves need to be taken into account in the design of long-period structures in deep sedimentary basins. The ground-motion levels specified by the earthquake provisions of current building codes, in California at least, accommodate the long-period ground motions from basin-edge-generated surface waves for periods of 5 sec and less and earthquakes with moment magnitudes of 7.5 or less located more than 20 km outside the basin. There may be problems at longer periods and for earthquakes located closer to the basin edge. The results of this study suggest that anelastic attenuation may need to be included in attempts to model long-period motion in deep sedimentary basins. To obtain better data on surface waves in the future, operators of strong-motion networks should take special care for the faithful recording of the long-period components of ground motion. It will also be necessary to insure that at least some selected recorders, once triggered, continue to operate for a time sufficient for the surface waves to traverse the basin. With velocities of about 1 km/sec, that time will be as long as 100 sec for a basin the size of the Los Angeles Basin.
Modeling absolute plate and plume motions
NASA Astrophysics Data System (ADS)
Bodinier, G. P.; Wessel, P.; Conrad, C. P.
2016-12-01
Paleomagnetic evidence for plume drift has made modeling of absolute plate motions challenging, especially since direct observations of plume drift are lacking. Predictions of plume drift arising from mantle convection models and broadly satisfying observed paleolatitudes have so far provided the only framework for deriving absolute plate motions over moving hotspots. However, uncertainties in mantle rheology, temperature, and initial conditions make such models nonunique. Using simulated and real data, we will show that age progressions along Pacific hotspot trails provide strong constraints on plume motions for all major trails, and furthermore that it is possible to derive models for relative plume drift from these data alone. Relative plume drift depends on the inter-hotspot distances derived from age progressions but lacks a fixed reference point and orientation. By incorporating paleolatitude histories for the Hawaii and Louisville chains we add further constraints on allowable plume motions, yet one unknown parameter remains: a longitude shift that applies equally to all plumes. To obtain a solution we could restrict either the Hawaii or Louisville plume to have latitudinal motion only, thus satisfying paleolatitude constraints. Yet, restricting one plume to latitudinal motion while all others move freely is not realistic. Consequently, it is only possible to resolve the motion of hotspots relative to an overall and unknown longitudinal shift as a function of time. Our plate motions are therefore dependent on the same shift via an unknown rotation about the north pole. Yet, as plume drifts are consequences of mantle convection, our results place strong constraints on the pattern of convection. Other considerations, such as imposed limits on plate speed, plume speed, proximity to LLSVP edges, model smoothness, or relative plate motions via ridge-spotting may add further constraints that allow a unique model of Pacific absolute plate and plume motions to be inferred. Our modeling suggests that the acquisition of new age and paleomagnetic data from hotspot trails where data are lacking would add valuable constraints on both plume and plate motions. At present, the limiting factor is inconsistencies between paleomagnetic, geometric, and chronologic data, leading to large uncertainties in the results.
Are recent empirical directivity models sufficient in capturing near-fault directivity effect?
NASA Astrophysics Data System (ADS)
Chen, Yen-Shin; Cotton, Fabrice; Pagani, Marco; Weatherill, Graeme; Reshi, Owais; Mai, Martin
2017-04-01
It has been widely observed that the ground motion variability in the near field can be significantly higher than that commonly reported in published GMPEs, and this has been suggested to be a consequence of directivity. To capture the spatial variation in ground motion amplitude and frequency caused by the near-fault directivity effect, several models for engineering applications have been developed using empirical or, more recently, the combination of empirical and simulation data. Many research works have indicated that the large velocity pulses mainly observed in the near-field are primarily related to slip heterogeneity (i.e., asperities), suggesting that the slip heterogeneity is a more dominant controlling factor than the rupture velocity or source rise time function. The first generation of broadband directivity models for application in ground motion prediction do not account for heterogeneity of slip and rupture speed. With the increased availability of strong motion recordings (e.g., NGA-West 2 database) in the near-fault region, the directivity models moved from broadband to narrowband models to include the magnitude dependence of the period of the rupture directivity pulses, wherein the pulses are believed to be closely related to the heterogeneity of slip distribution. After decades of directivity models development, does the latest generation of models - i.e. the one including narrowband directivity models - better capture the near-fault directivity effects, particularly in presence of strong slip heterogeneity? To address this question, a set of simulated motions for an earthquake rupture scenario, with various kinematic slip models and hypocenter locations, are used as a basis for a comparison with the directivity models proposed by the NGA-West 2 project for application with ground motion prediction equations incorporating a narrowband directivity model. The aim of this research is to gain better insights on the accuracy of narrowband directivity models under conditions commonly encountered in the real world. Our preliminary result shows that empirical models including directivity factors better predict physics based ground-motion and their spatial variability than classical empirical models. However, the results clearly indicate that it is still a challenge for the directivity models to capture the strong directivity effect if a high level of slip heterogeneity is involved during the source rupture process.
NASA Astrophysics Data System (ADS)
Yoshimi, M.; Matsushima, S.; Ando, R.; Miyake, H.; Imanishi, K.; Hayashida, T.; Takenaka, H.; Suzuki, H.; Matsuyama, H.
2017-12-01
We conducted strong ground motion prediction for the active Beppu-Haneyama Fault zone (BHFZ), Kyushu island, southwestern Japan. Since the BHFZ runs through Oita and Beppy cities, strong ground motion as well as fault displacement may affect much to the cities.We constructed a 3-dimensional velocity structure of a sedimentary basin, Beppu bay basin, where the fault zone runs through and Oita and Beppu cities are located. Minimum shear wave velocity of the 3d model is 500 m/s. Additional 1-d structure is modeled for sites with softer sediment: holocene plain area. We observed, collected, and compiled data obtained from microtremor surveys, ground motion observations, boreholes etc. phase velocity and H/V ratio. Finer structure of the Oita Plain is modeled, as 250m-mesh model, with empirical relation among N-value, lithology, depth and Vs, using borehole data, then validated with the phase velocity data obtained by the dense microtremor array observation (Yoshimi et al., 2016).Synthetic ground motion has been calculated with a hybrid technique composed of a stochastic Green's function method (for HF wave), a 3D finite difference (LF wave) and 1D amplification calculation. Fault geometry has been determined based on reflection surveys and active fault map. The rake angles are calculated with a dynamic rupture simulation considering three fault segments under a stress filed estimated from source mechanism of earthquakes around the faults (Ando et al., JpGU-AGU2017). Fault parameters such as the average stress drop, a size of asperity etc. are determined based on an empirical relation proposed by Irikura and Miyake (2001). As a result, strong ground motion stronger than 100 cm/s is predicted in the hanging wall side of the Oita plain.This work is supported by the Comprehensive Research on the Beppu-Haneyama Fault Zone funded by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake`s ground motion is a function of the earthquake`s magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is amore » stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. This document, Volume II, contains Appendices 2, 3, 5, 6, and 7 covering the following topics: Eastern North American Empirical Ground Motion Data; Examination of Variance of Seismographic Network Data; Soil Amplification and Vertical-to-Horizontal Ratios from Analysis of Strong Motion Data From Active Tectonic Regions; Revision and Calibration of Ou and Herrmann Method; Generalized Ray Procedure for Modeling Ground Motion Attenuation; Crustal Models for Velocity Regionalization; Depth Distribution Models; Development of Generic Site Effects Model; Validation and Comparison of One-Dimensional Site Response Methodologies; Plots of Amplification Factors; Assessment of Coupling Between Vertical & Horizontal Motions in Nonlinear Site Response Analysis; and Modeling of Dynamic Soil Properties.« less
Many-body-localization: strong disorder perturbative approach for the local integrals of motion
NASA Astrophysics Data System (ADS)
Monthus, Cécile
2018-05-01
For random quantum spin models, the strong disorder perturbative expansion of the local integrals of motion around the real-spin operators is revisited. The emphasis is on the links with other properties of the many-body-localized phase, in particular the memory in the dynamics of the local magnetizations and the statistics of matrix elements of local operators in the eigenstate basis. Finally, this approach is applied to analyze the many-body-localization transition in a toy model studied previously from the point of view of the entanglement entropy.
NASA Astrophysics Data System (ADS)
Yoshida, Kunikazu; Miyakoshi, Ken; Somei, Kazuhiro; Irikura, Kojiro
2017-05-01
In this study, we estimated source process of the 2016 Kumamoto earthquake from strong-motion data by using the multiple-time window linear kinematic waveform inversion method to discuss generation of strong motions and to explain crustal deformation pattern with a seismic source inversion model. A four-segment fault model was assumed based on the aftershock distribution, active fault traces, and interferometric synthetic aperture radar data. Three western segments were set to be northwest-dipping planes, and the most eastern segment under the Aso caldera was examined to be a southeast-dipping plane. The velocity structure models used in this study were estimated by using waveform modeling of moderate earthquakes that occurred in the source region. We applied a two-step approach of the inversions of 20 strong-motion datasets observed by K-NET and KiK-net by using band-pass-filtered strong-motion data at 0.05-0.5 Hz and then at 0.05-1.0 Hz. The rupture area of the fault plane was determined by applying the criterion of Somerville et al. (Seismol Res Lett 70:59-80, 1999) to the inverted slip distribution. From the first-step inversion, the fault length was trimmed from 52 to 44 km, whereas the fault width was kept at 18 km. The trimmed rupture area was not changed in the second-step inversion. The source model obtained from the two-step approach indicated 4.7 × 1019 Nm of the total moment release and 1.8 m average slip of the entire fault with a rupture area of 792 km2. Large slip areas were estimated in the seismogenic zone and in the shallow part corresponding to the surface rupture that occurred during the Mj7.3 mainshock. The areas of the high peak moment rate correlated roughly with those of large slip; however, the moment rate functions near the Earth surface have low peak, bell shape, and long duration. These subfaults with long-duration moment release are expected to cause weak short-period ground motions. We confirmed that the southeast dipping of the most eastern segment is more plausible rather than northwest-dipping from the observed subsidence around the central cones of the Aso volcano.[Figure not available: see fulltext.
NASA Technical Reports Server (NTRS)
Lin, Ray-Quing; Kuang, Weijia
2011-01-01
In this paper, we describe the details of our numerical model for simulating ship solidbody motion in a given environment. In this model, the fully nonlinear dynamical equations governing the time-varying solid-body ship motion under the forces arising from ship wave interactions are solved with given initial conditions. The net force and moment (torque) on the ship body are directly calculated via integration of the hydrodynamic pressure over the wetted surface and the buoyancy effect from the underwater volume of the actual ship hull with a hybrid finite-difference/finite-element method. Neither empirical nor free parametrization is introduced in this model, i.e. no a priori experimental data are needed for modelling. This model is benchmarked with many experiments of various ship hulls for heave, roll and pitch motion. In addition to the benchmark cases, numerical experiments are also carried out for strongly nonlinear ship motion with a fixed heading. These new cases demonstrate clearly the importance of nonlinearities in ship motion modelling.
NASA Astrophysics Data System (ADS)
Song, Seok Goo; Kwak, Sangmin; Lee, Kyungbook; Park, Donghee
2017-04-01
It is a critical element to predict the intensity and variability of strong ground motions in seismic hazard assessment. The characteristics and variability of earthquake rupture process may be a dominant factor in determining the intensity and variability of near-source strong ground motions. Song et al. (2014) demonstrated that the variability of earthquake rupture scenarios could be effectively quantified in the framework of 1-point and 2-point statistics of earthquake source parameters, constrained by rupture dynamics and past events. The developed pseudo-dynamic source modeling schemes were also validated against the recorded ground motion data of past events and empirical ground motion prediction equations (GMPEs) at the broadband platform (BBP) developed by the Southern California Earthquake Center (SCEC). Recently we improved the computational efficiency of the developed pseudo-dynamic source-modeling scheme by adopting the nonparametric co-regionalization algorithm, introduced and applied in geostatistics initially. We also investigated the effect of earthquake rupture process on near-source ground motion characteristics in the framework of 1-point and 2-point statistics, particularly focusing on the forward directivity region. Finally we will discuss whether the pseudo-dynamic source modeling can reproduce the variability (standard deviation) of empirical GMPEs and the efficiency of 1-point and 2-point statistics to address the variability of ground motions.
Alert Response to Motion Onset in the Retina
Chen, Eric Y.; Marre, Olivier; Fisher, Clark; Schwartz, Greg; Levy, Joshua; da Silveira, Rava Azeredo
2013-01-01
Previous studies have shown that motion onset is very effective at capturing attention and is more salient than smooth motion. Here, we find that this salience ranking is present already in the firing rate of retinal ganglion cells. By stimulating the retina with a bar that appears, stays still, and then starts moving, we demonstrate that a subset of salamander retinal ganglion cells, fast OFF cells, responds significantly more strongly to motion onset than to smooth motion. We refer to this phenomenon as an alert response to motion onset. We develop a computational model that predicts the time-varying firing rate of ganglion cells responding to the appearance, onset, and smooth motion of a bar. This model, termed the adaptive cascade model, consists of a ganglion cell that receives input from a layer of bipolar cells, represented by individual rectified subunits. Additionally, both the bipolar and ganglion cells have separate contrast gain control mechanisms. This model captured the responses to our different motion stimuli over a wide range of contrasts, speeds, and locations. The alert response to motion onset, together with its computational model, introduces a new mechanism of sophisticated motion processing that occurs early in the visual system. PMID:23283327
Rain Reevaporation, Boundary Layer Convection Interactions, and Pacific Rainfall Patterns in an AGCM
NASA Technical Reports Server (NTRS)
Bacmeister, Julio T.; Suarez, Max J.; Robertson, Franklin R.
2004-01-01
Sensitivity experiments with an atmospheric general circulation model (AGCM) show that parameterized rain re-evaporation has a large impact on simulated precipitation patterns in the tropical Pacific, especially on the configuration of the model s intertropical convergence zone (ITCZ). Weak re-evaporation leads t o the formation of a "double ITCZ" during the northern warm season. The double ITCZ is accompanied by strong coupling between precipitation and high-frequency vertical motion in the planetary boundary layer (PBL). Strong reevaporation leads to a better overall agreement of simulated precipitation with observations. The model s double ITCZ bias is reduced. At the same time, correlation between high-frequency vertical motion in the PBL and precipitation is reduced. Experiments with modified physics suggest that evaporative cooling by rain near the PBL top weakens the coupling between precipitation and vertical motion. This may reduce the model s tendency to form double ITCZs. The strength of high-frequency vertical motions in the PBL was also reduced directly through the introduction of a diffusive cumulus momentum transport (DCMT) parameterization. The DCMT had a visible impact on simulated precipitation in the tropics, but did not reduce the model s double bias in all cases.
NASA Astrophysics Data System (ADS)
Nagasaka, Yosuke; Nozu, Atsushi
2017-02-01
The pseudo point-source model approximates the rupture process on faults with multiple point sources for simulating strong ground motions. A simulation with this point-source model is conducted by combining a simple source spectrum following the omega-square model with a path spectrum, an empirical site amplification factor, and phase characteristics. Realistic waveforms can be synthesized using the empirical site amplification factor and phase models even though the source model is simple. The Kumamoto earthquake occurred on April 16, 2016, with M JMA 7.3. Many strong motions were recorded at stations around the source region. Some records were considered to be affected by the rupture directivity effect. This earthquake was suitable for investigating the applicability of the pseudo point-source model, the current version of which does not consider the rupture directivity effect. Three subevents (point sources) were located on the fault plane, and the parameters of the simulation were determined. The simulated results were compared with the observed records at K-NET and KiK-net stations. It was found that the synthetic Fourier spectra and velocity waveforms generally explained the characteristics of the observed records, except for underestimation in the low frequency range. Troughs in the observed Fourier spectra were also well reproduced by placing multiple subevents near the hypocenter. The underestimation is presumably due to the following two reasons. The first is that the pseudo point-source model targets subevents that generate strong ground motions and does not consider the shallow large slip. The second reason is that the current version of the pseudo point-source model does not consider the rupture directivity effect. Consequently, strong pulses were not reproduced enough at stations northeast of Subevent 3 such as KMM004, where the effect of rupture directivity was significant, while the amplitude was well reproduced at most of the other stations. This result indicates the necessity for improving the pseudo point-source model, by introducing azimuth-dependent corner frequency for example, so that it can incorporate the effect of rupture directivity.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Dhakal, Yadab P.; Kubo, Hisahiko; Suzuki, Wataru; Kunugi, Takashi; Aoi, Shin; Fujiwara, Hiroyuki
2016-04-01
Strong ground motions from the 2015 Mw 7.8 Gorkha, Nepal, earthquake and its eight aftershocks recorded by a strong-motion seismograph at Kantipath (KATNP), Kathmandu, were analyzed to assess the ground-motion characteristics and site effects at this location. Remarkably large elastic pseudo-velocity responses exceeding 300 cm/s at 5 % critical damping were calculated for the horizontal components of the mainshock recordings at peak periods of 4-5 s. Conversely, the short-period ground motions of the mainshock were relatively weak despite the proximity of the site to the source fault. The horizontal components of all large-magnitude (Mw ≥ 6.3) aftershock recordings showed peak pseudo-velocity responses at periods of 3-4 s. Ground-motion prediction equations (GMPEs) describing the Nepal Himalaya region have not yet been developed. A comparison of the observational data with GMPEs for Japan showed that with the exception of the peak ground acceleration (PGA) of the mainshock, the observed PGAs and peak ground velocities at the KATNP site are generally well described by the GMPEs for crustal and plate interface events. A comparison of the horizontal-to-vertical ( H/ V) spectral ratios for the S-waves of the mainshock and aftershock recordings suggested that the KATNP site experienced a considerable nonlinear site response, which resulted in the reduced amplitudes of short-period ground motions. The GMPEs were found to underestimate the response values at the peak periods (approximately 4-5 s) of the large-magnitude events. The deep subsurface velocity model of the Kathmandu basin has not been well investigated. Therefore, a one-dimensional velocity model was constructed for the deep sediments beneath the recording station based on an analysis of the H/ V spectral ratios for S-wave coda from aftershock recordings, and it was revealed that the basin sediments strongly amplified the long-period components of the ground motions of the mainshock and large-magnitude aftershocks.
NASA Astrophysics Data System (ADS)
Wang, Z.; Kato, T.; Wang, Y.
2015-12-01
The spatiotemporal fault slip history of the 2008 Iwate-Miyagi Nairiku earthquake, Japan, is obtained by the joint inversion of 1-Hz GPS waveforms and near-field strong motion records. 1-Hz GPS data from GEONET is processed by GAMIT/GLOBK and then a low-pass filter of 0.05 Hz is applied. The ground surface strong motion records from stations of K-NET and Kik-Net are band-pass filtered for the range of 0.05 ~ 0.3 Hz and integrated once to obtain velocity. The joint inversion exploits a broader frequency band for near-field ground motions, which provides excellent constraints for both the detailed slip history and slip distribution. A fully Bayesian inversion method is performed to simultaneously and objectively determine the rupture model, the unknown relative weighting of multiple data sets and the unknown smoothing hyperparameters. The preferred rupture model is stable for different choices of velocity structure model and station distribution, with maximum slip of ~ 8.0 m and seismic moment of 2.9 × 1019 Nm (Mw 6.9). By comparison with the single inversion of strong motion records, the cumulative slip distribution of joint inversion shows sparser slip distribution with two slip asperities. One common slip asperity extends from the hypocenter southeastward to the ground surface of breakage; another slip asperity, which is unique for joint inversion contributed by 1-Hz GPS waveforms, appears in the deep part of fault where very few aftershocks are occurring. The differential moment rate function of joint and single inversions obviously indicates that rich high frequency waves are radiated in the first three seconds but few low frequency waves.
NASA Astrophysics Data System (ADS)
Akiyama, S.; Kawaji, K.; Fujihara, S.
2013-12-01
Since fault fracturing due to an earthquake can simultaneously cause ground motion and tsunami, it is appropriate to evaluate the ground motion and the tsunami by single fault model. However, several source models are used independently in the ground motion simulation or the tsunami simulation, because of difficulty in evaluating both phenomena simultaneously. Many source models for the 2011 off the Pacific coast of Tohoku Earthquake are proposed from the inversion analyses of seismic observations or from those of tsunami observations. Most of these models show the similar features, which large amount of slip is located at the shallower part of fault area near the Japan Trench. This indicates that the ground motion and the tsunami can be evaluated by the single source model. Therefore, we examine the possibility of the tsunami prediction, using the fault model estimated from seismic observation records. In this study, we try to carry out the tsunami simulation using the displacement field of oceanic crustal movements, which is calculated from the ground motion simulation of the 2011 off the Pacific coast of Tohoku Earthquake. We use two fault models by Yoshida et al. (2011), which are based on both the teleseismic body wave and on the strong ground motion records. Although there is the common feature in those fault models, the amount of slip near the Japan trench is lager in the fault model from the strong ground motion records than in that from the teleseismic body wave. First, the large-scale ground motion simulations applying those fault models used by the voxel type finite element method are performed for the whole eastern Japan. The synthetic waveforms computed from the simulations are generally consistent with the observation records of K-NET (Kinoshita (1998)) and KiK-net stations (Aoi et al. (2000)), deployed by the National Research Institute for Earth Science and Disaster Prevention (NIED). Next, the tsunami simulations are performed by the finite difference calculation based on the shallow water theory. The initial wave height for tsunami generation is estimated from the vertical displacement of ocean bottom due to the crustal movements, which is obtained from the ground motion simulation mentioned above. The results of tsunami simulations are compared with the observations of the GPS wave gauges to evaluate the validity for the tsunami prediction using the fault model based on the seismic observation records.
On-chip visual perception of motion: a bio-inspired connectionist model on FPGA.
Torres-Huitzil, César; Girau, Bernard; Castellanos-Sánchez, Claudio
2005-01-01
Visual motion provides useful information to understand the dynamics of a scene to allow intelligent systems interact with their environment. Motion computation is usually restricted by real time requirements that need the design and implementation of specific hardware architectures. In this paper, the design of hardware architecture for a bio-inspired neural model for motion estimation is presented. The motion estimation is based on a strongly localized bio-inspired connectionist model with a particular adaptation of spatio-temporal Gabor-like filtering. The architecture is constituted by three main modules that perform spatial, temporal, and excitatory-inhibitory connectionist processing. The biomimetic architecture is modeled, simulated and validated in VHDL. The synthesis results on a Field Programmable Gate Array (FPGA) device show the potential achievement of real-time performance at an affordable silicon area.
NASA Astrophysics Data System (ADS)
Pulido Hernandez, N. E.; Dalguer Gudiel, L. A.; Aoi, S.
2009-12-01
The Iwate-Miyagi Nairiku earthquake, a reverse earthquake occurred in the southern Iwate prefecture Japan (2008/6/14), produced the largest peak ground acceleration recorded to date (4g) (Aoi et al. 2008), at the West Ichinoseki (IWTH25), KiK-net strong motion station of NIED. This station which is equipped with surface and borehole accelerometers (GL-260), also recorded very high peak accelerations up to 1g at the borehole level, despite being located in a rock site. From comparison of spectrograms of the observed surface and borehole records at IWTH25, Pulido et. al (2008) identified two high frequency (HF) ground motion events located at 4.5s and 6.3s originating at the source, which likely derived in the extreme observed accelerations of 3.9g and 3.5g at IWTH25. In order to understand the generation mechanism of these HF events we performed a dynamic fault rupture model of the Iwate-Miyagi Nairiku earthquake by using the Support Operator Rupture Dynamics (SORD) code, (Ely et al., 2009). SORD solves the elastodynamic equation using a generalized finite difference method that can utilize meshes of arbitrary structure and is capable of handling geometries appropriate to thrust earthquakes. Our spontaneous dynamic rupture model of the Iwate-Miyagi Nairiku earthquake is governed by the simple slip weakening friction law. The dynamic parameters, stress drop, strength excess and critical slip weakening distance are estimated following the procedure described in Pulido and Dalguer (2009) [PD09]. These parameters develop earthquake rupture consistent with the final slip obtained by kinematic source inversion of near source strong ground motion recordings. The dislocation model of this earthquake is characterized by a patch of large slip located ~7 km south of the hypocenter (Suzuki et al. 2009). Our results for the calculation of stress drop follow a similar pattern. Using the rupture times obtained from the dynamic model of the Iwate-Miyagi Nairiku earthquake we estimated the rupture velocity as well as rupture velocity changes distribution across the fault plane based on the procedure proposed by PD09. Our results show that rupture velocity has strong variations concentrated in small patches within large slip areas (asperities). Using this dynamic model we performed the strong motion simulation at the IWTH25 borehole. We obtained that this model is able to reproduce the two HF events observed in the strong motion data. Our preliminary results suggest that the extreme acceleration pulses were induced by two strong rupture velocity acceleration events at the rupture front. References Aoi, S., T. Kunugi, and H. Fujiwara, 2008, Science, 322, 727-730. Ely, G. P., S. M. Day, and J.-B. Minster (2009), Geophys. J. Int., 177(3), 1140-1150. Pulido, N., S. Aoi, and W. Suzuki (2008), AGU Fall meeting, S33C-02. Pulido, N., and L.A. Dalguer, (2009). Estimation of the high-frequency radiation of the 2000 Tottori (Japan) earthquake based on a dynamic model of fault rupture: Application to the strong ground motion simulation, Bull. Seism. Soc. Am. 99(4), 2305-2322. Suzuki, W., S. Aoi, and H. Sekiguchi, (2009), Bull. Seism. Soc. Am. (Accepted).
Uniformly Processed Strong Motion Database for Himalaya and Northeast Region of India
NASA Astrophysics Data System (ADS)
Gupta, I. D.
2018-03-01
This paper presents the first uniformly processed comprehensive database on strong motion acceleration records for the extensive regions of western Himalaya, northeast India, and the alluvial plains juxtaposing the Himalaya. This includes 146 three components of old analog records corrected for the instrument response and baseline distortions and 471 three components of recent digital records corrected for baseline errors. The paper first provides a background of the evolution of strong motion data in India and the seismotectonics of the areas of recording, then describes the details of the recording stations and the contributing earthquakes, which is finally followed by the methodology used to obtain baseline corrected data in a uniform and consistent manner. Two different schemes in common use for baseline correction are based on the application of the Ormsby filter without zero pads (Trifunac 1971) and that on the Butterworth filter with zero pads at the start as well as at the end (Converse and Brady 1992). To integrate the advantages of both the schemes, Ormsby filter with zero pads at the start only is used in the present study. A large number of typical example results are presented to illustrate that the methodology adopted is able to provide realistic velocity and displacement records with much smaller number of zero pads. The present strong motion database of corrected acceleration records will be useful for analyzing the ground motion characteristics of engineering importance, developing prediction equations for various strong motion parameters, and calibrating the seismological source model approach for ground motion simulation for seismically active and risk prone areas of India.
Wong, Ivan G.; Stokoe, Kenneth; Cox, Brady R.; Yuan, Jiabei; Knudsen, Keith L.; Terra, Fabia; Okubo, Paul G.; Lin, Yin-Cheng
2011-01-01
To assess the level and nature of ground shaking in Hawaii for the purposes of earthquake hazard mitigation and seismic design, empirical ground-motion prediction models are desired. To develop such empirical relationships, knowledge of the subsurface site conditions beneath strong-motion stations is critical. Thus, as a first step to develop ground-motion prediction models for Hawaii, spectral-analysis-of-surface-waves (SASW) profiling was performed at the 22 free-field U.S. Geological Survey (USGS) strong-motion sites on the Big Island to obtain shear-wave velocity (VS) data. Nineteen of these stations recorded the 2006 Kiholo Bay moment magnitude (M) 6.7 earthquake, and 17 stations recorded the triggered M 6.0 Mahukona earthquake. VS profiling was performed to reach depths of more than 100 ft. Most of the USGS stations are situated on sites underlain by basalt, based on surficial geologic maps. However, the sites have varying degrees of weathering and soil development. The remaining strong-motion stations are located on alluvium or volcanic ash. VS30 (average VS in the top 30 m) values for the stations on basalt ranged from 906 to 1908 ft/s [National Earthquake Hazards Reduction Program (NEHRP) site classes C and D], because most sites were covered with soil of variable thickness. Based on these data, an NEHRP site-class map was developed for the Big Island. These new VS data will be a significant input into an update of the USGS statewide hazard maps and to the operation of ShakeMap on the island of Hawaii.
Collective atomic scattering and motional effects in a dense coherent medium
Bromley, S. L.; Zhu, B.; Bishof, M.; Zhang, X.; Bothwell, T.; Schachenmayer, J.; Nicholson, T. L.; Kaiser, R.; Yelin, S. F.; Lukin, M. D.; Rey, A. M.; Ye, J.
2016-01-01
We investigate collective emission from coherently driven ultracold 88Sr atoms. We perform two sets of experiments using a strong and weak transition that are insensitive and sensitive, respectively, to atomic motion at 1 μK. We observe highly directional forward emission with a peak intensity that is enhanced, for the strong transition, by >103 compared with that in the transverse direction. This is accompanied by substantial broadening of spectral lines. For the weak transition, the forward enhancement is substantially reduced due to motion. Meanwhile, a density-dependent frequency shift of the weak transition (∼10% of the natural linewidth) is observed. In contrast, this shift is suppressed to <1% of the natural linewidth for the strong transition. Along the transverse direction, we observe strong polarization dependences of the fluorescence intensity and line broadening for both transitions. The measurements are reproduced with a theoretical model treating the atoms as coherent, interacting radiating dipoles. PMID:26984643
Hartzell, S.; Liu, P.; Mendoza, C.; Ji, C.; Larson, K.M.
2007-01-01
The 2004 Parkfield, California, earthquake is used to investigate stability and uncertainty aspects of the finite-fault slip inversion problem with different a priori model assumptions. We utilize records from 54 strong ground motion stations and 13 continuous, 1-Hz sampled, geodetic instruments. Two inversion procedures are compared: a linear least-squares subfault-based methodology and a nonlinear global search algorithm. These two methods encompass a wide range of the different approaches that have been used to solve the finite-fault slip inversion problem. For the Parkfield earthquake and the inversion of velocity or displacement waveforms, near-surface related site response (top 100 m, frequencies above 1 Hz) is shown to not significantly affect the solution. Results are also insensitive to selection of slip rate functions with similar duration and to subfault size if proper stabilizing constraints are used. The linear and nonlinear formulations yield consistent results when the same limitations in model parameters are in place and the same inversion norm is used. However, the solution is sensitive to the choice of inversion norm, the bounds on model parameters, such as rake and rupture velocity, and the size of the model fault plane. The geodetic data set for Parkfield gives a slip distribution different from that of the strong-motion data, which may be due to the spatial limitation of the geodetic stations and the bandlimited nature of the strong-motion data. Cross validation and the bootstrap method are used to set limits on the upper bound for rupture velocity and to derive mean slip models and standard deviations in model parameters. This analysis shows that slip on the northwestern half of the Parkfield rupture plane from the inversion of strong-motion data is model dependent and has a greater uncertainty than slip near the hypocenter.
Moment tensor inversions using strong motion waveforms of Taiwan TSMIP data, 1993–2009
Chang, Kaiwen; Chi, Wu-Cheng; Gung, Yuancheng; Dreger, Douglas; Lee, William H K.; Chiu, Hung-Chie
2011-01-01
Earthquake source parameters are important for earthquake studies and seismic hazard assessment. Moment tensors are among the most important earthquake source parameters, and are now routinely derived using modern broadband seismic networks around the world. Similar waveform inversion techniques can also apply to other available data, including strong-motion seismograms. Strong-motion waveforms are also broadband, and recorded in many regions since the 1980s. Thus, strong-motion data can be used to augment moment tensor catalogs with a much larger dataset than that available from the high-gain, broadband seismic networks. However, a systematic comparison between the moment tensors derived from strong motion waveforms and high-gain broadband waveforms has not been available. In this study, we inverted the source mechanisms of Taiwan earthquakes between 1993 and 2009 by using the regional moment tensor inversion method using digital data from several hundred stations in the Taiwan Strong Motion Instrumentation Program (TSMIP). By testing different velocity models and filter passbands, we were able to successfully derive moment tensor solutions for 107 earthquakes of Mw >= 4.8. The solutions for large events agree well with other available moment tensor catalogs derived from local and global broadband networks. However, for Mw = 5.0 or smaller events, we consistently over estimated the moment magnitudes by 0.5 to 1.0. We have tested accelerograms, and velocity waveforms integrated from accelerograms for the inversions, and found the results are similar. In addition, we used part of the catalogs to study important seismogenic structures in the area near Meishan Taiwan which was the site of a very damaging earthquake a century ago, and found that the structures were dominated by events with complex right-lateral strike-slip faulting during the recent decade. The procedures developed from this study may be applied to other strong-motion datasets to compliment or fill gaps in catalogs from regional broadband networks and teleseismic networks.
Vangeneugden, Joris; Pollick, Frank; Vogels, Rufin
2009-03-01
Neurons in the rostral superior temporal sulcus (STS) are responsive to displays of body movements. We employed a parametric action space to determine how similarities among actions are represented by visual temporal neurons and how form and motion information contributes to their responses. The stimulus space consisted of a stick-plus-point-light figure performing arm actions and their blends. Multidimensional scaling showed that the responses of temporal neurons represented the ordinal similarity between these actions. Further tests distinguished neurons responding equally strongly to static presentations and to actions ("snapshot" neurons), from those responding much less strongly to static presentations, but responding well when motion was present ("motion" neurons). The "motion" neurons were predominantly found in the upper bank/fundus of the STS, and "snapshot" neurons in the lower bank of the STS and inferior temporal convexity. Most "motion" neurons showed strong response modulation during the course of an action, thus responding to action kinematics. "Motion" neurons displayed a greater average selectivity for these simple arm actions than did "snapshot" neurons. We suggest that the "motion" neurons code for visual kinematics, whereas the "snapshot" neurons code for form/posture, and that both can contribute to action recognition, in agreement with computation models of action recognition.
A Bayesian model of stereopsis depth and motion direction discrimination.
Read, J C A
2002-02-01
The extraction of stereoscopic depth from retinal disparity, and motion direction from two-frame kinematograms, requires the solution of a correspondence problem. In previous psychophysical work [Read and Eagle (2000) Vision Res 40: 3345-3358], we compared the performance of the human stereopsis and motion systems with correlated and anti-correlated stimuli. We found that, although the two systems performed similarly for narrow-band stimuli, broadband anti-correlated kinematograms produced a strong perception of reversed motion, whereas the stereograms appeared merely rivalrous. I now model these psychophysical data with a computational model of the correspondence problem based on the known properties of visual cortical cells. Noisy retinal images are filtered through a set of Fourier channels tuned to different spatial frequencies and orientations. Within each channel, a Bayesian analysis incorporating a prior preference for small disparities is used to assess the probability of each possible match. Finally, information from the different channels is combined to arrive at a judgement of stimulus disparity. Each model system--stereopsis and motion--has two free parameters: the amount of noise they are subject to, and the strength of their preference for small disparities. By adjusting these parameters independently for each system, qualitative matches are produced to psychophysical data, for both correlated and anti-correlated stimuli, across a range of spatial frequency and orientation bandwidths. The motion model is found to require much higher noise levels and a weaker preference for small disparities. This makes the motion model more tolerant of poor-quality reverse-direction false matches encountered with anti-correlated stimuli, matching the strong perception of reversed motion that humans experience with these stimuli. In contrast, the lower noise level and tighter prior preference used with the stereopsis model means that it performs close to chance with anti-correlated stimuli, in accordance with human psychophysics. Thus, the key features of the experimental data can be reproduced assuming that the motion system experiences more effective noise than the stereoscopy system and imposes a less stringent preference for small disparities.
NASA Astrophysics Data System (ADS)
Liu, Bo-Yan; Shi, Bao-Ping; Zhang, Jian
2007-05-01
In this study, a composite source model has been used to calculate the realistic strong ground motions in Beijing area, caused by 1679 M S8.0 earthquake in Sanhe-Pinggu. The results could provide us the useful physical parameters for the future seismic hazard analysis in this area. Considering the regional geological/geophysical background, we simulated the scenario earthquake with an associated ground motions in the area ranging from 39.3°N to 41.1°N in latitude and from 115.35°E to 117.55°E in longitude. Some of the key factors which could influence the characteristics of strong ground motion have been discussed, and the resultant peak ground acceleration (PGA) distribution and the peak ground velocity (PGV) distribution around Beijing area also have been made as well. A comparison of the simulated result with the results derived from the attenuation relation has been made, and a sufficient discussion about the advantages and disadvantages of composite source model also has been given in this study. The numerical results, such as the PGA, PGV, peak ground displacement (PGD), and the three-component time-histories developed for Beijing area, have a potential application in earthquake engineering field and building code design, especially for the evaluation of critical constructions, government decision making and the seismic hazard assessment by financial/insurance companies.
Fast Computation of Ground Motion Shaking Map base on the Modified Stochastic Finite Fault Modeling
NASA Astrophysics Data System (ADS)
Shen, W.; Zhong, Q.; Shi, B.
2012-12-01
Rapidly regional MMI mapping soon after a moderate-large earthquake is crucial to loss estimation, emergency services and planning of emergency action by the government. In fact, many countries show different degrees of attention on the technology of rapid estimation of MMI , and this technology has made significant progress in earthquake-prone countries. In recent years, numerical modeling of strong ground motion has been well developed with the advances of computation technology and earthquake science. The computational simulation of strong ground motion caused by earthquake faulting has become an efficient way to estimate the regional MMI distribution soon after earthquake. In China, due to the lack of strong motion observation in network sparse or even completely missing areas, the development of strong ground motion simulation method has become an important means of quantitative estimation of strong motion intensity. In many of the simulation models, stochastic finite fault model is preferred to rapid MMI estimating for its time-effectiveness and accuracy. In finite fault model, a large fault is divided into N subfaults, and each subfault is considered as a small point source. The ground motions contributed by each subfault are calculated by the stochastic point source method which is developed by Boore, and then summed at the observation point to obtain the ground motion from the entire fault with a proper time delay. Further, Motazedian and Atkinson proposed the concept of Dynamic Corner Frequency, with the new approach, the total radiated energy from the fault and the total seismic moment are conserved independent of subfault size over a wide range of subfault sizes. In current study, the program EXSIM developed by Motazedian and Atkinson has been modified for local or regional computations of strong motion parameters such as PGA, PGV and PGD, which are essential for MMI estimating. To make the results more reasonable, we consider the impact of V30 for the ground shaking intensity, and the results of the comparisons between the simulated and observed MMI for the 2004 Mw 6.0 Parkfield earthquake, the 2008 Mw 7.9Wenchuan earthquake and the 1976 Mw 7.6Tangshan earthquake is fairly well. Take Parkfield earthquake as example, the simulative result reflect the directivity effect and the influence of the shallow velocity structure well. On the other hand, the simulative data is in good agreement with the network data and NGA (Next Generation Attenuation). The consumed time depends on the number of the subfaults and the number of the grid point. For the 2004 Mw 6.0 Parkfield earthquake, the grid size we calculated is 2.5° × 2.5°, the grid space is 0.025°, and the total time consumed is about 1.3hours. For the 2008 Mw 7.9 Wenchuan earthquake, the grid size calculated is 10° × 10°, the grid space is 0.05°, the total number of grid point is more than 40,000, and the total time consumed is about 7.5 hours. For t the 1976 Mw 7.6 Tangshan earthquake, the grid size we calculated is 4° × 6°, the grid space is 0.05°, and the total time consumed is about 2.1 hours. The CPU we used is 3.40GHz, and such computational time could further reduce by using GPU computing technique and other parallel computing technique. This is also our next focus.
High Frequency Ground Motion from Finite Fault Rupture Simulations
NASA Astrophysics Data System (ADS)
Crempien, Jorge G. F.
There are many tectonically active regions on earth with little or no recorded ground motions. The Eastern United States is a typical example of regions with active faults, but with low to medium seismicity that has prevented sufficient ground motion recordings. Because of this, it is necessary to use synthetic ground motion methods in order to estimate the earthquake hazard a region might have. Ground motion prediction equations for spectral acceleration typically have geometric attenuation proportional to the inverse of distance away from the fault. Earthquakes simulated with one-dimensional layered earth models have larger geometric attenuation than the observed ground motion recordings. We show that as incident angles of rays increase at welded boundaries between homogeneous flat layers, the transmitted rays decrease in amplitude dramatically. As the receiver distance increases away from the source, the angle of incidence of up-going rays increases, producing negligible transmitted ray amplitude, thus increasing the geometrical attenuation. To work around this problem we propose a model in which we separate wave propagation for low and high frequencies at a crossover frequency, typically 1Hz. The high-frequency portion of strong ground motion is computed with a homogeneous half-space and amplified with the available and more complex one- or three-dimensional crustal models using the quarter wavelength method. We also make use of seismic coda energy density observations as scattering impulse response functions. We incorporate scattering impulse response functions into our Green's functions by convolving the high-frequency homogeneous half-space Green's functions with normalized synthetic scatterograms to reproduce scattering physical effects in recorded seismograms. This method was validated against ground motion for earthquakes recorded in California and Japan, yielding results that capture the duration and spectral response of strong ground motion.
Source effects on the simulation of the strong groud motion of the 2011 Lorca earthquake
NASA Astrophysics Data System (ADS)
Saraò, Angela; Moratto, Luca; Vuan, Alessandro; Mucciarelli, Marco; Jimenez, Maria Jose; Garcia Fernandez, Mariano
2016-04-01
On May 11, 2011 a moderate seismic event (Mw=5.2) struck the city of Lorca (South-East Spain) causing nine casualties, a large number of injured people and damages at the civil buildings. The largest PGA value (360 cm/s2) ever recorded so far in Spain, was observed at the accelerometric station located in Lorca (LOR), and it was explained as due to the source directivity, rather than to local site effects. During the last years different source models, retrieved from the inversions of geodetic or seismological data, or a combination of the two, have been published. To investigate the variability that equivalent source models of an average earthquake can introduce in the computation of strong motion, we calculated seismograms (up to 1 Hz), using an approach based on the wavenumber integration and, as input, four different source models taken from the literature. The source models differ mainly for the slip distribution on the fault. Our results show that, as effect of the different sources, the ground motion variability, in terms of pseudo-spectral velocity (1s), can reach one order of magnitude for near source receivers or for sites influenced by the forward-directivity effect. Finally, we compute the strong motion at frequencies higher than 1 Hz using the Empirical Green Functions and the source model parameters that better reproduce the recorded shaking up to 1 Hz: the computed seismograms fit satisfactorily the signals recorded at LOR station as well as at the other stations close to the source.
Ground Motion Modeling in the Eastern Caucasus
Pitarka, Arben; Gok, Rengin; Yetirmishli, Gurban; ...
2016-05-13
In this paper, we analyzed the performance of a preliminary three-dimensional (3D) velocity model of the Eastern Caucasus covering most of the Azerbaijan. The model was developed in support to long-period ground motion simulations and seismic hazard assessment from regional earthquakes in Azerbaijan. The model’s performance was investigated by simulating ground motion from the damaging Mw 5.9, 2012 Zaqatala earthquake, which was well recorded throughout the region by broadband seismic instruments. In our simulations, we use a parallelized finite-difference method of fourth-order accuracy. The comparison between the simulated and recorded ground motion velocity in the modeled period range of 3–20more » s shows that in general, the 3D velocity model performs well. Areas in which the model needs improvements are located mainly in the central part of the Kura basin and in the Caspian Sea coastal areas. Comparisons of simulated ground motion using our 3D velocity model and corresponding 1D regional velocity model were used to locate areas with strong 3D wave propagation effects. In areas with complex underground structure, the 1D model fails to produce the observed ground motion amplitude and duration, and spatial extend of ground motion amplification caused by wave propagation effects.« less
Hartzell, S.; Harmsen, S.; Frankel, A.; Larsen, S.
1999-01-01
This article compares techniques for calculating broadband time histories of ground motion in the near field of a finite fault by comparing synthetics with the strong-motion data set for the 1994 Northridge earthquake. Based on this comparison, a preferred methodology is presented. Ground-motion-simulation techniques are divided into two general methods: kinematic- and composite-fault models. Green's functions of three types are evaluated: stochastic, empirical, and theoretical. A hybrid scheme is found to give the best fit to the Northridge data. Low frequencies ( 1 Hz) are calculated using a composite-fault model with a fractal subevent size distribution and stochastic, bandlimited, white-noise Green's functions. At frequencies below 1 Hz, theoretical elastic-wave-propagation synthetics introduce proper seismic-phase arrivals of body waves and surface waves. The 3D velocity structure more accurately reproduces record durations for the deep sedimentary basin structures found in the Los Angeles region. At frequencies above 1 Hz, scattering effects become important and wave propagation is more accurately represented by stochastic Green's functions. A fractal subevent size distribution for the composite fault model ensures an ??-2 spectral shape over the entire frequency band considered (0.1-20 Hz).
NASA Astrophysics Data System (ADS)
Gallovič, F.
2017-09-01
Strong ground motion simulations require physically plausible earthquake source model. Here, I present the application of such a kinematic model introduced originally by Ruiz et al. (Geophys J Int 186:226-244, 2011). The model is constructed to inherently provide synthetics with the desired omega-squared spectral decay in the full frequency range. The source is composed of randomly distributed overlapping subsources with fractal number-size distribution. The position of the subsources can be constrained by prior knowledge of major asperities (stemming, e.g., from slip inversions), or can be completely random. From earthquake physics point of view, the model includes positive correlation between slip and rise time as found in dynamic source simulations. Rupture velocity and rise time follows local S-wave velocity profile, so that the rupture slows down and rise times increase close to the surface, avoiding unrealistically strong ground motions. Rupture velocity can also have random variations, which result in irregular rupture front while satisfying the causality principle. This advanced kinematic broadband source model is freely available and can be easily incorporated into any numerical wave propagation code, as the source is described by spatially distributed slip rate functions, not requiring any stochastic Green's functions. The source model has been previously validated against the observed data due to the very shallow unilateral 2014 Mw6 South Napa, California, earthquake; the model reproduces well the observed data including the near-fault directivity (Seism Res Lett 87:2-14, 2016). The performance of the source model is shown here on the scenario simulations for the same event. In particular, synthetics are compared with existing ground motion prediction equations (GMPEs), emphasizing the azimuthal dependence of the between-event ground motion variability. I propose a simple model reproducing the azimuthal variations of the between-event ground motion variability, providing an insight into possible refinement of GMPEs' functional forms.
Bennington, Ninfa; Thurber, Clifford; Feigl, Kurt; ,
2011-01-01
Several studies of the 2004 Parkfield earthquake have linked the spatial distribution of the event’s aftershocks to the mainshock slip distribution on the fault. Using geodetic data, we find a model of coseismic slip for the 2004 Parkfield earthquake with the constraint that the edges of coseismic slip patches align with aftershocks. The constraint is applied by encouraging the curvature of coseismic slip in each model cell to be equal to the negative of the curvature of seismicity density. The large patch of peak slip about 15 km northwest of the 2004 hypocenter found in the curvature-constrained model is in good agreement in location and amplitude with previous geodetic studies and the majority of strong motion studies. The curvature-constrained solution shows slip primarily between aftershock “streaks” with the continuation of moderate levels of slip to the southeast. These observations are in good agreement with strong motion studies, but inconsistent with the majority of published geodetic slip models. Southeast of the 2004 hypocenter, a patch of peak slip observed in strong motion studies is absent from our curvature-constrained model, but the available GPS data do not resolve slip in this region. We conclude that the geodetic slip model constrained by the aftershock distribution fits the geodetic data quite well and that inconsistencies between models derived from seismic and geodetic data can be attributed largely to resolution issues.
Long-period Ground Motion Simulation in the Osaka Basin during the 2011 Great Tohoku Earthquake
NASA Astrophysics Data System (ADS)
Iwata, T.; Kubo, H.; Asano, K.; Sato, K.; Aoi, S.
2014-12-01
Large amplitude long-period ground motions (1-10s) with long duration were observed in the Osaka sedimentary basin during the 2011 Tohoku earthquake (Mw9.0) and its aftershock (Ibaraki-Oki, Mw7.7), which is about 600 km away from the source regions. Sato et al. (2013) analyzed strong ground motion records from the source region to the Osaka basin and showed the following characteristics. (1) In the period range of 1 to 10s, the amplitude of horizontal components of the ground motion at the site-specific period is amplified in the Osaka basin sites. The predominant period is about 7s in the bay area where the largest pSv were observed. (2) The velocity Fourier amplitude spectra with their predominant period of around 7s are observed at the bedrock sites surrounding the Osaka basin. Those characteristics were observed during both of the mainshock and the largest aftershock. Therefore, large long-period ground motions in the Osaka basin are generated by the combination of propagation-path and basin effects. They simulated ground motions due to the largest aftershock as a simple point source model using three-dimensional FDM (GMS; Aoi and Fujiwara, 1999). They used a three-dimensional velocity structure based on the Japan Integrated Velocity Structure Model (JIVSM, Koketsu et al., 2012), with the minimum effective period of the computation of 3s. Their simulation result reproduced the observation characteristics well and it validates the applicability of the JIVSM for the long period ground motion simulation. In this study, we try to simulate long-period ground motions during the mainshock. The source model we used for the simulation is based on the SMGA model obtained by Asano and Iwata (2012). We succeed to simulate long-period ground motion propagation from Kanto area to the Osaka basin fairly well. The long-period ground motion simulations with the several Osaka basin velocity structure models are done for improving the model applicability. We used strong motion data recorded by K-NET, KiK-net and F-net of NIED, CEORKA, BRI, JMA, Osaka city waterworks bureau, and Osaka prefecture. GMS provided by NIED is used for the computation.
Hydrological excitation of polar motion by different variables of the GLDAS models
NASA Astrophysics Data System (ADS)
Wińska, Małgorzata; Nastula, Jolanta
Continental hydrological loading, by land water, snow, and ice, is an element that is strongly needed for a full understanding of the excitation of polar motion. In this study we compute different estimations of hydrological excitation functions of polar motion (Hydrological Angular Momentum - HAM) using various variables from the Global Land Data Assimilation System (GLDAS) models of land hydrosphere. The main aim of this study is to show the influence of different variables for example: total evapotranspiration, runoff, snowmelt, soil moisture to polar motion excitations in annual and short term scale. In our consideration we employ several realizations of the GLDAS model as: GLDAS Common Land Model (CLM), GLDAS Mosaic Model, GLDAS National Centers for Environmental Prediction/Oregon State University/Air Force/Hydrologic Research Lab Model (Noah), GLDAS Variable Infiltration Capacity (VIC) Model. Hydrological excitation functions of polar motion, both global and regional, are determined by using selected variables of these GLDAS realizations. First we compare a timing, spectra and phase diagrams of different regional and global HAMs with each other. Next, we estimate, the hydrological signal in geodetically observed polar motion excitation by subtracting the atmospheric -- AAM (pressure + wind) and oceanic -- OAM (bottom pressure + currents) contributions. Finally, the hydrological excitations are compared to these hydrological signal in observed polar motion excitation series. The results help us understand which variables of considered hydrological models are the most important for the polar motion excitation and how well we can close polar motion excitation budget in the seasonal and inter-annual spectral ranges.
Communication: Adiabatic and non-adiabatic electron-nuclear motion: Quantum and classical dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, Julian; Kaiser, Dustin; Engel, Volker
2016-05-07
Using a model for coupled electronic-nuclear motion we investigate the range from negligible to strong non-adiabatic coupling. In the adiabatic case, the quantum dynamics proceeds in a single electronic state, whereas for strong coupling a complete transition between two adiabatic electronic states takes place. It is shown that in all coupling regimes the short-time wave-packet dynamics can be described using ensembles of classical trajectories in the phase space spanned by electronic and nuclear degrees of freedom. We thus provide an example which documents that the quantum concept of non-adiabatic transitions is not necessarily needed if electronic and nuclear motion ismore » treated on the same footing.« less
Strong-Motion Program report, January-December 1985
Porcella, R. L.
1989-01-01
This Program Report contains preliminary information on the nature and availability of strong-motion data recorded by the U.S. Geological Survey (USGS). The Strong-Motion Program is operated by the USGS in cooperation with numerous Federal, State, and local agencies and private organizations. Major objective of this program are to record both strong ground motion and the response of various types of engineered structures during earthquakes, and to disseminate this information and data to the international earthquake-engineering research and design community. This volume contains a summary of the accelerograms recovered from the USGS National Strong-Motion Instrumentation Network during 1985, summaries of recent strong-motion publications, notes on the availability of digitized data, and general information related to the USGS and other strong-motion programs. The data summary in table 1 contains information on all USGS accelerograms recovered (though not necessarily recorded) during 1985; event data are taken from "Preliminary Determination of Epicenters," published by the USGS.
Model and parametric uncertainty in source-based kinematic models of earthquake ground motion
Hartzell, Stephen; Frankel, Arthur; Liu, Pengcheng; Zeng, Yuehua; Rahman, Shariftur
2011-01-01
Four independent ground-motion simulation codes are used to model the strong ground motion for three earthquakes: 1994 Mw 6.7 Northridge, 1989 Mw 6.9 Loma Prieta, and 1999 Mw 7.5 Izmit. These 12 sets of synthetics are used to make estimates of the variability in ground-motion predictions. In addition, ground-motion predictions over a grid of sites are used to estimate parametric uncertainty for changes in rupture velocity. We find that the combined model uncertainty and random variability of the simulations is in the same range as the variability of regional empirical ground-motion data sets. The majority of the standard deviations lie between 0.5 and 0.7 natural-log units for response spectra and 0.5 and 0.8 for Fourier spectra. The estimate of model epistemic uncertainty, based on the different model predictions, lies between 0.2 and 0.4, which is about one-half of the estimates for the standard deviation of the combined model uncertainty and random variability. Parametric uncertainty, based on variation of just the average rupture velocity, is shown to be consistent in amplitude with previous estimates, showing percentage changes in ground motion from 50% to 300% when rupture velocity changes from 2.5 to 2.9 km/s. In addition, there is some evidence that mean biases can be reduced by averaging ground-motion estimates from different methods.
NASA Astrophysics Data System (ADS)
Gok, R.; Hutchings, L.
2004-05-01
We test a means to predict strong ground motion using the Mw=7.4 and Mw=7.2 1999 Izmit and Duzce, Turkey earthquakes. We generate 100 rupture scenarios for each earthquake, constrained by a prior knowledge, and use these to synthesize strong ground motion and make the prediction. Ground motion is synthesized with the representation relation using impulsive point source Green's functions and synthetic source models. We synthesize the earthquakes from DC to 25 Hz. We demonstrate how to incorporate this approach into standard probabilistic seismic hazard analyses (PSHA). The synthesis of earthquakes is based upon analysis of over 3,000 aftershocks recorded by several seismic networks. The analysis provides source parameters of the aftershocks; records available for use as empirical Green's functions; and a three-dimensional velocity structure from tomographic inversion. The velocity model is linked to a finite difference wave propagation code (E3D, Larsen 1998) to generate synthetic Green's functions (DC < f < 0.5 Hz). We performed the simultaneous inversion for hypocenter locations and three-dimensional P-wave velocity structure of the Marmara region using SIMULPS14 along with 2,500 events. We also obtained source moment and corner frequency and individual station attenuation parameter estimates for over 500 events by performing a simultaneous inversion to fit these parameters with a Brune source model. We used the results of the source inversion to deconvolve out a Brune model from small to moderate size earthquake (M<4.0) recordings to obtain empirical Green's functions for the higher frequency range of ground motion (0.5 < f < 25.0 Hz). Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-ENG-48.
SENSITIVITY OF STRUCTURAL RESPONSE TO GROUND MOTION SOURCE AND SITE PARAMETERS.
Safak, Erdal; Brebbia, C.A.; Cakmak, A.S.; Abdel Ghaffar, A.M.
1985-01-01
Designing structures to withstand earthquakes requires an accurate estimation of the expected ground motion. While engineers use the peak ground acceleration (PGA) to model the strong ground motion, seismologists use physical characteristics of the source and the rupture mechanism, such as fault length, stress drop, shear wave velocity, seismic moment, distance, and attenuation. This study presents a method for calculating response spectra from seismological models using random vibration theory. It then investigates the effect of various source and site parameters on peak response. Calculations are based on a nonstationary stochastic ground motion model, which can incorporate all the parameters both in frequency and time domains. The estimation of the peak response accounts for the effects of the non-stationarity, bandwidth and peak correlations of the response.
PRISM software—Processing and review interface for strong-motion data
Jones, Jeanne M.; Kalkan, Erol; Stephens, Christopher D.; Ng, Peter
2017-11-28
Rapidly available and accurate ground-motion acceleration time series (seismic recordings) and derived data products are essential to quickly providing scientific and engineering analysis and advice after an earthquake. To meet this need, the U.S. Geological Survey National Strong Motion Project has developed a software package called PRISM (Processing and Review Interface for Strong-Motion data). PRISM automatically processes strong-motion acceleration records, producing compatible acceleration, velocity, and displacement time series; acceleration, velocity, and displacement response spectra; Fourier amplitude spectra; and standard earthquake-intensity measures. PRISM is intended to be used by strong-motion seismic networks, as well as by earthquake engineers and seismologists.
Atmospheric forcing of sea ice anomalies in the Ross Sea polynya region
NASA Astrophysics Data System (ADS)
Dale, Ethan R.; McDonald, Adrian J.; Coggins, Jack H. J.; Rack, Wolfgang
2017-01-01
We investigate the impacts of strong wind events on the sea ice concentration within the Ross Sea polynya (RSP), which may have consequences on sea ice formation. Bootstrap sea ice concentration (SIC) measurements derived from satellite SSM/I brightness temperatures are correlated with surface winds and temperatures from Ross Ice Shelf automatic weather stations (AWSs) and weather models (ERA-Interim). Daily data in the austral winter period were used to classify characteristic weather regimes based on the percentiles of wind speed. For each regime a composite of a SIC anomaly was formed for the entire Ross Sea region and we found that persistent weak winds near the edge of the Ross Ice Shelf are generally associated with positive SIC anomalies in the Ross Sea polynya and vice versa. By analyzing sea ice motion vectors derived from the SSM/I brightness temperatures we find significant sea ice motion anomalies throughout the Ross Sea during strong wind events, which persist for several days after a strong wind event has ended. Strong, negative correlations are found between SIC and AWS wind speed within the RSP indicating that strong winds cause significant advection of sea ice in the region. We were able to partially recreate these correlations using colocated, modeled ERA-Interim wind speeds. However, large AWS and model differences are observed in the vicinity of Ross Island, where ERA-Interim underestimates wind speeds by a factor of 1.7 resulting in a significant misrepresentation of RSP processes in this area based on model data. Thus, the cross-correlation functions produced by compositing based on ERA-Interim wind speeds differed significantly from those produced with AWS wind speeds. In general the rapid decrease in SIC during a strong wind event is followed by a more gradual recovery in SIC. The SIC recovery continues over a time period greater than the average persistence of strong wind events and sea ice motion anomalies. This suggests that sea ice recovery occurs through thermodynamic rather than dynamic processes.
A multiple fault rupture model of the November 13 2016, M 7.8 Kaikoura earthquake, New Zealand
NASA Astrophysics Data System (ADS)
Benites, R. A.; Francois-Holden, C.; Langridge, R. M.; Kaneko, Y.; Fry, B.; Kaiser, A. E.; Caldwell, T. G.
2017-12-01
The rupture-history of the November 13 2016 MW7.8 Kaikoura earthquake recorded by near- and intermediate-field strong-motion seismometers and 2 high-rate GPS stations reveals a complex cascade of multiple crustal fault rupture. In spite of such complexity, we show that the rupture history of each fault is well approximated by simple kinematic model with uniform slip and rupture velocity. Using 9 faults embedded in a crustal layer 19 km thick, each with a prescribed slip vector and rupture velocity, this model accurately reproduces the displacement waveforms recorded at the near-field strong-motion and GPS stations. This model includes the `Papatea Fault' with a mixed thrust and strike-slip mechanism based on in-situ geological observations with up to 8 m of uplift observed. Although the kinematic model fits the ground-motion at the nearest strong station, it doesn not reproduce the one sided nature of the static deformation field observed geodetically. This suggests a dislocation based approach does not completely capture the mechanical response of the Papatea Fault. The fault system as a whole extends for approximately 150 km along the eastern side of the Marlborough fault system in the South Island of New Zealand. The total duration of the rupture was 74 seconds. The timing and location of each fault's rupture suggests fault interaction and triggering resulting in a northward cascade crustal ruptures. Our model does not require rupture of the underlying subduction interface to explain the data.
Seismic switch for strong motion measurement
Harben, Philip E.; Rodgers, Peter W.; Ewert, Daniel W.
1995-01-01
A seismic switching device that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period.
Seismic switch for strong motion measurement
Harben, P.E.; Rodgers, P.W.; Ewert, D.W.
1995-05-30
A seismic switching device is described that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period. 11 figs.
NASA Astrophysics Data System (ADS)
Chen, Kejie; Liu, Zhen; Liang, Cunren; Song, Y. Tony
2018-06-01
Dense strong motion and high-rate Global Navigation Satellite Systems (GNSS) networks have been deployed in central Italy for rapid seismic source determination and corresponding hazard mitigation. Different from previous studies for the consistency between two kinds of sensor at collocated stations, here we focus on the combination of high-rate GNSS displacement waveforms with collocated seismic strong motion accelerators, and investigate its application to image rupture history. Taking the 2016 August 24 Mw 6.1 Central Italy earthquake as a case study, we first generate more accurate and longer period seismogeodetic displacement waveforms by a Kalman filter, then model the rupture behaviour through a joint inversion including seismogeodetic waveforms and InSAR observations. Our results reveal that strong motion data alone can overestimate the magnitude and mismatch the GNSS observations, while 1 Hz sampling rate GNSS is insufficient and the displacement is too noisy to depict rupture process. By contrast, seismogeodetic data enhances temporal resolution and maintains the static offsets that provide vital constraint to the reliable estimation of earthquake magnitude. The obtained model is close to the jointly inverted one. Our work demonstrates the unique usefulness of seismogeodesy for fast seismic hazard response.
Embodied learning of a generative neural model for biological motion perception and inference
Schrodt, Fabian; Layher, Georg; Neumann, Heiko; Butz, Martin V.
2015-01-01
Although an action observation network and mirror neurons for understanding the actions and intentions of others have been under deep, interdisciplinary consideration over recent years, it remains largely unknown how the brain manages to map visually perceived biological motion of others onto its own motor system. This paper shows how such a mapping may be established, even if the biologically motion is visually perceived from a new vantage point. We introduce a learning artificial neural network model and evaluate it on full body motion tracking recordings. The model implements an embodied, predictive inference approach. It first learns to correlate and segment multimodal sensory streams of own bodily motion. In doing so, it becomes able to anticipate motion progression, to complete missing modal information, and to self-generate learned motion sequences. When biological motion of another person is observed, this self-knowledge is utilized to recognize similar motion patterns and predict their progress. Due to the relative encodings, the model shows strong robustness in recognition despite observing rather large varieties of body morphology and posture dynamics. By additionally equipping the model with the capability to rotate its visual frame of reference, it is able to deduce the visual perspective onto the observed person, establishing full consistency to the embodied self-motion encodings by means of active inference. In further support of its neuro-cognitive plausibility, we also model typical bistable perceptions when crucial depth information is missing. In sum, the introduced neural model proposes a solution to the problem of how the human brain may establish correspondence between observed bodily motion and its own motor system, thus offering a mechanism that supports the development of mirror neurons. PMID:26217215
Embodied learning of a generative neural model for biological motion perception and inference.
Schrodt, Fabian; Layher, Georg; Neumann, Heiko; Butz, Martin V
2015-01-01
Although an action observation network and mirror neurons for understanding the actions and intentions of others have been under deep, interdisciplinary consideration over recent years, it remains largely unknown how the brain manages to map visually perceived biological motion of others onto its own motor system. This paper shows how such a mapping may be established, even if the biologically motion is visually perceived from a new vantage point. We introduce a learning artificial neural network model and evaluate it on full body motion tracking recordings. The model implements an embodied, predictive inference approach. It first learns to correlate and segment multimodal sensory streams of own bodily motion. In doing so, it becomes able to anticipate motion progression, to complete missing modal information, and to self-generate learned motion sequences. When biological motion of another person is observed, this self-knowledge is utilized to recognize similar motion patterns and predict their progress. Due to the relative encodings, the model shows strong robustness in recognition despite observing rather large varieties of body morphology and posture dynamics. By additionally equipping the model with the capability to rotate its visual frame of reference, it is able to deduce the visual perspective onto the observed person, establishing full consistency to the embodied self-motion encodings by means of active inference. In further support of its neuro-cognitive plausibility, we also model typical bistable perceptions when crucial depth information is missing. In sum, the introduced neural model proposes a solution to the problem of how the human brain may establish correspondence between observed bodily motion and its own motor system, thus offering a mechanism that supports the development of mirror neurons.
Numerical simulation analysis on Wenchuan seismic strong motion in Hanyuan region
NASA Astrophysics Data System (ADS)
Chen, X.; Gao, M.; Guo, J.; Li, Z.; Li, T.
2015-12-01
69227 deaths, 374643 injured, 17923 people missing, direct economic losses 845.1 billion, and a large number houses collapse were caused by Wenchuan Ms8 earthquake in Sichuan Province on May 12, 2008, how to reproduce characteristics of its strong ground motion and predict its intensity distribution, which have important role to mitigate disaster of similar giant earthquake in the future. Taking Yunnan-Sichuan Province, Wenchuan town, Chengdu city, Chengdu basin and its vicinity as the research area, on the basis of the available three-dimensional velocity structure model and newly topography data results from ChinaArray of Institute of Geophysics, China Earthquake Administration, 2 type complex source rupture process models with the global and local source parameters are established, we simulated the seismic wave propagation of Wenchuan Ms8 earthquake throughout the whole three-dimensional region by the GMS discrete grid finite-difference techniques with Cerjan absorbing boundary conditions, and obtained the seismic intensity distribution in this region through analyzing 50×50 stations data (simulated ground motion output station). The simulated results indicated that: (1)Simulated Wenchuan earthquake ground motion (PGA) response and the main characteristics of the response spectrum are very similar to those of the real Wenchuan earthquake records. (2)Wenchuan earthquake ground motion (PGA) and the response spectra of the Plain are much greater than that of the left Mountain area because of the low velocity of the shallow surface media and the basin effect of the Chengdu basin structure. Simultaneously, (3) the source rupture process (inversion) with far-field P-wave, GPS data and InSAR information and the Longmenshan Front Fault (source rupture process) are taken into consideration in GMS numerical simulation, significantly different waveform and frequency component of the ground motion are obtained, though the strong motion waveform is distinct asymmetric, which should be much more real. It indicated that the Longmenshan Front Fault may be also involved in seismic activity during the long time(several minutes) Wenchuan earthquake process. (4) Simulated earthquake records in Hanyuan region are indeed very strong, which reveals source mechanism is one reason of Hanyuan intensity abnormaly.
Towards an integrated European strong motion data distribution
NASA Astrophysics Data System (ADS)
Luzi, Lucia; Clinton, John; Cauzzi, Carlo; Puglia, Rodolfo; Michelini, Alberto; Van Eck, Torild; Sleeman, Reinhoud; Akkar, Sinan
2013-04-01
Recent decades have seen a significant increase in the quality and quantity of strong motion data collected in Europe, as dense and often real-time and continuously monitored broadband strong motion networks have been constructed in many nations. There has been a concurrent increase in demand for access to strong motion data not only from researchers for engineering and seismological studies, but also from civil authorities and seismic networks for the rapid assessment of ground motion and shaking intensity following significant earthquakes (e.g. ShakeMaps). Aside from a few notable exceptions on the national scale, databases providing access to strong motion data has not appeared to keep pace with these developments. In the framework of the EC infrastructure project NERA (2010 - 2014), that integrates key research infrastructures in Europe for monitoring earthquakes and assessing their hazard and risk, the network activity NA3 deals with the networking of acceleration networks and SM data. Within the NA3 activity two infrastructures are being constructed: i) a Rapid Response Strong Motion (RRSM) database, that following a strong event, automatically parameterises all available on-scale waveform data within the European Integrated waveform Data Archives (EIDA) and makes the waveforms easily available to the seismological community within minutes of an event; and ii) a European Strong Motion (ESM) database of accelerometric records, with associated metadata relevant to earthquake engineering and seismology research communities, using standard, manual processing that reflects the state of the art and research needs in these fields. These two separate repositories form the core infrastructures being built to distribute strong motion data in Europe in order to guarantee rapid and long-term availability of high quality waveform data to both the international scientific community and the hazard mitigation communities. These infrastructures will provide the access to strong motion data in an eventual EPOS seismological service. A working group on Strong Motion data is being created at ORFEUS in 2013. This body, consisting of experts in strong motion data collection, processing and research from across Europe, will provide the umbrella organisation that will 1) have the political clout to negotiate data sharing agreements with strong motion data providers and 2) manage the software during a transition from the end of NERA to the EPOS community. We expect the community providing data to the RRSM and ESM will gradually grow, under the supervision of ORFEUS, and eventually include strong motion data from networks from all European countries that can have an open data policy.
Electric-field-stimulated protein mechanics
Hekstra, Doeke R.; White, K. Ian; Socolich, Michael A.; Henning, Robert W.; Šrajer, Vukica; Ranganathan, Rama
2017-01-01
The internal mechanics of proteins—the coordinated motions of amino acids and the pattern of forces constraining these motions—connects protein structure to function. Here we describe a new method combining the application of strong electric field pulses to protein crystals with time-resolved X-ray crystallography to observe conformational changes in spatial and temporal detail. Using a human PDZ domain (LNX2PDZ2) as a model system, we show that protein crystals tolerate electric field pulses strong enough to drive concerted motions on the sub-microsecond timescale. The induced motions are subtle, involve diverse physical mechanisms, and occur throughout the protein structure. The global pattern of electric-field-induced motions is consistent with both local and allosteric conformational changes naturally induced by ligand binding, including at conserved functional sites in the PDZ domain family. This work lays the foundation for comprehensive experimental study of the mechanical basis of protein function. PMID:27926732
Sources of shaking and flooding during the Tohoku-Oki earthquake: a mixture of rupture styles
Wei, Shengji; Graves, Robert; Helmberger, Don; Avouac, Jean-Philippe; Jiang, Junle
2012-01-01
Modeling strong ground motions from great subduction zone earthquakes is one of the great challenges of computational seismology. To separate the rupture characteristics from complexities caused by 3D sub-surface geology requires an extraordinary data set such as provided by the recent Mw9.0 Tohoku-Oki earthquake. Here we combine deterministic inversion and dynamically guided forward simulation methods to model over one thousand high-rate GPS and strong motion observations from 0 to 0.25 Hz across the entire Honshu Island. Our results display distinct styles of rupture with a deeper generic interplate event (~Mw8.5) transitioning to a shallow tsunamigenic earthquake (~Mw9.0) at about 25 km depth in a process driven by a strong dynamic weakening mechanism, possibly thermal pressurization. This source model predicts many important features of the broad set of seismic, geodetic and seafloor observations providing a major advance in our understanding of such great natural hazards.
NASA Astrophysics Data System (ADS)
Chung, Jen-Kuang
2013-09-01
A stochastic method called the random vibration theory (Boore, 1983) has been used to estimate the peak ground motions caused by shallow moderate-to-large earthquakes in the Taiwan area. Adopting Brune's ω-square source spectrum, attenuation models for PGA and PGV were derived from path-dependent parameters which were empirically modeled from about one thousand accelerograms recorded at reference sites mostly located in a mountain area and which have been recognized as rock sites without soil amplification. Consequently, the predicted horizontal peak ground motions at the reference sites, are generally comparable to these observed. A total number of 11,915 accelerograms recorded from 735 free-field stations of the Taiwan Strong Motion Network (TSMN) were used to estimate the site factors by taking the motions from the predictive models as references. Results from soil sites reveal site amplification factors of approximately 2.0 ~ 3.5 for PGA and about 1.3 ~ 2.6 for PGV. Finally, as a result of amplitude corrections with those empirical site factors, about 75% of analyzed earthquakes are well constrained in ground motion predictions, having average misfits ranging from 0.30 to 0.50. In addition, two simple indices, R 0.57 and R 0.38, are proposed in this study to evaluate the validity of intensity map prediction for public information reports. The average percentages of qualified stations for peak acceleration residuals less than R 0.57 and R 0.38 can reach 75% and 54%, respectively, for most earthquakes. Such a performance would be good enough to produce a faithful intensity map for a moderate scenario event in the Taiwan region.
New strong motion network in Georgia: basis for specifying seismic hazard
NASA Astrophysics Data System (ADS)
Kvavadze, N.; Tsereteli, N. S.
2017-12-01
Risk created by hazardous natural events is closely related to sustainable development of the society. Global observations have confirmed tendency of growing losses resulting from natural disasters, one of the most dangerous and destructive if which are earthquakes. Georgia is located in seismically active region. So, it is imperative to evaluate probabilistic seismic hazard and seismic risk with proper accuracy. National network of Georgia includes 35 station all of which are seismometers. There are significant gaps in strong motion recordings, which essential for seismic hazard assessment. To gather more accelerometer recordings, we have built a strong motion network distributed on the territory of Georgia. The network includes 6 stations for now, with Basalt 4x datalogger and strong motion sensor Episensor ES-T. For each site, Vs30 and soil resonance frequencies have been measured. Since all but one station (Tabakhmelam near Tbilisi), are located far from power and internet lines special system was created for instrument operation. Solar power is used to supply the system with electricity and GSM/LTE modems for internet access. VPN tunnel was set up using Raspberry pi, for two-way communication with stations. Tabakhmela station is located on grounds of Ionosphere Observatory, TSU and is used as a hub for the network. This location also includes a broadband seismometer and VLF electromagnetic waves observation antenna, for possible earthquake precursor studies. On server, located in Tabakhmela, the continues data is collected from all the stations, for later use. The recordings later will be used in different seismological and engineering problems, namely selecting and creating GMPE model for Caucasus, for probabilistic seismic hazard and seismic risk evaluation. These stations are a start and in the future expansion of strong motion network is planned. Along with this, electromagnetic wave observations will continue and additional antennas will be implemented with strong motion sensors and possible earthquake precursors will be studied using complex methods of observation and data analysis.
NASA Astrophysics Data System (ADS)
Bijukchhen, Subeg M.; Takai, Nobuo; Shigefuji, Michiko; Ichiyanagi, Masayoshi; Sasatani, Tsutomu; Sugimura, Yokito
2017-07-01
The Himalayan collision zone experiences many seismic activities with large earthquakes occurring at certain time intervals. The damming of the proto-Bagmati River as a result of rapid mountain-building processes created a lake in the Kathmandu Valley that eventually dried out, leaving thick unconsolidated lacustrine deposits. Previous studies have shown that the sediments are 600 m thick in the center. A location in a seismically active region, and the possible amplification of seismic waves due to thick sediments, have made Kathmandu Valley seismically vulnerable. It has suffered devastation due to earthquakes several times in the past. The development of the Kathmandu Valley into the largest urban agglomerate in Nepal has exposed a large population to seismic hazards. This vulnerability was apparent during the Gorkha Earthquake (Mw7.8) on April 25, 2015, when the main shock and ensuing aftershocks claimed more than 1700 lives and nearly 13% of buildings inside the valley were completely damaged. Preparing safe and up-to-date building codes to reduce seismic risk requires a thorough study of ground motion amplification. Characterizing subsurface velocity structure is a step toward achieving that goal. We used the records from an array of strong-motion accelerometers installed by Hokkaido University and Tribhuvan University to construct 1-D velocity models of station sites by forward modeling of low-frequency S-waves. Filtered records (0.1-0.5 Hz) from one of the accelerometers installed at a rock site during a moderate-sized (mb4.9) earthquake on August 30, 2013, and three moderate-sized (Mw5.1, Mw5.1, and Mw5.5) aftershocks of the 2015 Gorkha Earthquake were used as input motion for modeling of low-frequency S-waves. We consulted available geological maps, cross-sections, and borehole data as the basis for initial models for the sediment sites. This study shows that the basin has an undulating topography and sediment sites have deposits of varying thicknesses, from 155 to 440 m. These models also show high velocity contrast at the bedrock depth which results in significant wave amplification.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Yuan, Jie; Zhu, Shoubiao
2016-12-01
We perform 2-D finite element calculations of mode II rupture along a bimaterial interface governed by regularized rate- and state-dependent friction law, with the goal of understanding how the bimaterial interface influences the strong ground motion. By comparison with properties of rupture in a homogeneous solid, we found that bimaterial mechanism is important for earthquake ruptures and influences the strong ground motion significantly. The simulated results show that mode II rupture evolves with propagation distance along a bimaterial interface to a unilateral wrinkle-like pulse in the direction of slip on the compliant side of the fault, namely in the positive direction. Strong ground motion caused by seismic waves emanated from the rupture propagation is asymmetrically distributed in space. The computed peak ground acceleration (PGA) is high in the near-fault region. Particularly, PGA is much larger in the region on the side in the positive direction. In addition, it is greater in the more compliant area of the model than that in the stiffer area with corresponding locations. Moreover, the differential PGA due to bimaterial effect increases with increasing degree of material contrast across the fault. It is hoped that the results obtained in this investigation will provide some implications for seismic hazard assessment and fault rupture mechanics.
Rupture History of the 2001 Nisqually Washington Earthquake
NASA Astrophysics Data System (ADS)
Xu, Q.; Creager, K. C.; Crosson, R. S.
2001-12-01
We analyze the temporal-spatial rupture history of the magnitude 6.8 February 28, 2001 Nisqually earthquake using about two dozen 3-component strong-motion records from the Pacific Northwest Seismic Network (PNSN) and the USGS National Strong Motion Program (NSMP) network. We employ a finite-fault inversion scheme similar to Hartzell and Heaton [Bull. Seism. Soc. Am., 1983] to recover the slip history. We assume rupture initiates at the epicenter and origin time determined using PNSN P arrival times and a high-resolution 3-D velocity model. Hypocentral depth is 54 km based on our analysis of teleseismic pP-P times and the regional 3-D model. Using the IASP91 standard Earth model to explain the pP-P times gives a depth of 58 km. Three-component strong motion accelerograms are integrated to obtain velocity, low-pass filtered at 4 s period and windowed to include the direct P- and S- wave arrivals. Theoretical Green's functions are calculated using the Direct Solution Method (DSM) [Cummins, etal, Geophys. Res. Lett., 1994] for each of 169, 4km x 4km, subfaults which lie on one of the two fault plates specified by the Harvard CMT solution. A unique 1-D model that gives an adequate representation of velocity structure for each station is obtained by path averaging the 3-D tomographic model. The S velocity model is generated from the P velocity model. For Vp larger than 4.5 km/s, We use the linear relationship Vs=0.18+0.52Vp obtained from laboratory measurements of local mafic rock samples. For slower velocities, probably associated with sedimentary rocks, we derived Vs=Vp/2.04 which best fits the strong-motion S-arrival times. The resulting source model indicates unilateral rupture along a fault that is elongated in the north-south direction. Inversion for the near vertical (strike 1° , dip 72° ) and horizontal (strike 183° , dip 18° ) fault planes reveal the same source directivity, however, the horizontal fault plane gives a slightly better fit to the data than the vertical one. We will also incorporate teleseismic P pP and sP waves into the waveform modeling to provide additional constraints on vertical source directivity.
Motion patterns in acupuncture needle manipulation.
Seo, Yoonjeong; Lee, In-Seon; Jung, Won-Mo; Ryu, Ho-Sun; Lim, Jinwoong; Ryu, Yeon-Hee; Kang, Jung-Won; Chae, Younbyoung
2014-10-01
In clinical practice, acupuncture manipulation is highly individualised for each practitioner. Before we establish a standard for acupuncture manipulation, it is important to understand completely the manifestations of acupuncture manipulation in the actual clinic. To examine motion patterns during acupuncture manipulation, we generated a fitted model of practitioners' motion patterns and evaluated their consistencies in acupuncture manipulation. Using a motion sensor, we obtained real-time motion data from eight experienced practitioners while they conducted acupuncture manipulation using their own techniques. We calculated the average amplitude and duration of a sampled motion unit for each practitioner and, after normalisation, we generated a true regression curve of motion patterns for each practitioner using a generalised additive mixed modelling (GAMM). We observed significant differences in rotation amplitude and duration in motion samples among practitioners. GAMM showed marked variations in average regression curves of motion patterns among practitioners but there was strong consistency in motion parameters for individual practitioners. The fitted regression model showed that the true regression curve accounted for an average of 50.2% of variance in the motion pattern for each practitioner. Our findings suggest that there is great inter-individual variability between practitioners, but remarkable intra-individual consistency within each practitioner. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Three-dimensional finite element modelling of muscle forces during mastication.
Röhrle, Oliver; Pullan, Andrew J
2007-01-01
This paper presents a three-dimensional finite element model of human mastication. Specifically, an anatomically realistic model of the masseter muscles and associated bones is used to investigate the dynamics of chewing. A motion capture system is used to track the jaw motion of a subject chewing standard foods. The three-dimensional nonlinear deformation of the masseter muscles are calculated via the finite element method, using the jaw motion data as boundary conditions. Motion-driven muscle activation patterns and a transversely isotropic material law, defined in a muscle-fibre coordinate system, are used in the calculations. Time-force relationships are presented and analysed with respect to different tasks during mastication, e.g. opening, closing, and biting, and are also compared to a more traditional one-dimensional model. The results strongly suggest that, due to the complex arrangement of muscle force directions, modelling skeletal muscles as conventional one-dimensional lines of action might introduce a significant source of error.
A simple inertial model for Neptune's zonal circulation
NASA Technical Reports Server (NTRS)
Allison, Michael; Lumetta, James T.
1990-01-01
Voyager imaging observations of zonal cloud-tracked winds on Neptune revealed a strongly subrotational equatorial jet with a speed approaching 500 m/s and generally decreasing retrograde motion toward the poles. The wind data are interpreted with a speculative but revealingly simple model based on steady gradient flow balance and an assumed global homogenization of potential vorticity for shallow layer motion. The prescribed model flow profile relates the equatorial velocity to the mid-latitude shear, in reasonable agreement with the available data, and implies a global horizontal deformation scale L(D) of about 3000 km.
NASA Astrophysics Data System (ADS)
Wen, Yi-Ying
2018-02-01
The 2014 M L 5.9 Fanglin earthquake occurred at the northern end of the aftershock distribution of the 2013 M L 6.4 Ruisui event and caused strong ground shaking and some damage in the northern part of the Longitudinal Valley. We carried out the strong-motion simulation of the 2014 Fanglin event in the broadband frequency range (0.4-10 Hz) using the empirical Green's function method and then integrated the source models to investigate the source characteristics of the 2013 Ruisui and 2014 Fanglin events. The results show that the dimension of strong motion generation area of the 2013 Ruisui event is smaller, whereas that of the 2014 Fanglin event is comparable with the empirical estimation of inland crustal earthquakes, which indicates the different faulting behaviors. Furthermore, the localized high PGV patch might be caused by the radiation energy amplified by the local low-velocity structure in the northern Longitudinal Valley. Additional study issues are required for building up the knowledge of the potential seismic hazard related to moderate-large events for various seismogenic areas in Taiwan.
Hydrodynamic Simulations of Kepler's Supernova Remnant
NASA Astrophysics Data System (ADS)
Sullivan, Jessica; Blondin, John; Borkowski, Kazik; Reynolds, Stephen
2018-01-01
Kepler’s supernova remnant contains unusual features that strongly suggest an origin in a single-degenerate Type Ia explosion, including anisotropic circumstellar medium (CSM), a strong brightness gradient, and spatially varying expansion proper motions. We present 3Dhydrodynamic simulations to test a picture in which Kepler's progenitor binary emitted a strong asymmetric wind, densest in the orbital plane, while the system moved at high velocity through the ISM. We simulate the creation of the presupernova environment as well as the supernova blast wave, using the VH-1 grid-based hydrodynamics code. We first modeled an anisotropic wind to create an asymmetric bowshock around the progenitor, then the blast wave from thesupernova. The final simulation places both previous model pieces onto a single grid and allows the blast wave to expand into the bowshock. Models were completed on a Yin-Yang grids with matching angular resolutions. By manipulating parameters that control the asymmetry of the system, we attempted to find conditions that recreated the current state of Kepler. We analyzed these models by comparing images of Kepler from the Chandra X-ray Observatory to line-of-sight projections from the model results. We also present comparisons of simulated expansion velocities with recent observations of X-ray proper motions from Chandra images. We were able to produce models that contained similar features to those seen in Kepler. We find the greatest resemblance to Kepler images with a presupernova wind with an equator-to-pole density contrast of 3 and a moderately disk-like CSM at a 5° angle between equatorial plane and system motion.
In Situ Observational Constraints on GIA in Antarctica
NASA Astrophysics Data System (ADS)
Wilson, T. J.; Bevis, M. G.; Kendrick, E. C.; Konfal, S.; Dalziel, I. W.; Smalley, R.; Willis, M. J.; Wiens, D. A.; Heeszel, D. S.
2012-12-01
Geodetic and seismologic data sets have been acquired across a significant portion of Antarctica through deployment of autonomous, remote instrumentation by the Antarctic Network (ANET) project of the Polar Earth Observing Network (POLENET). Continuous GPS measurements of bedrock crustal motions are yielding a synoptic picture of vertical and horizontal crustal motion patterns from the Transantarctic Mountains to the Ellsworth-Whitmore Mountains and Marie Byrd Land regions. Vertical motion patterns are broadly compatible with predictions from current GIA models, but the magnitudes of the vertical motions are substantially lower than predicted. Slower rates of uplift due to GIA can be attributed to factors including errors in ice history, a superposed solid earth response to modern ice mass change, and/or the influence of laterally varying earth properties on the GIA response. Patterns of horizontal motions measured by ANET show that the role of laterally varying earth rheology is extremely important in Antarctica. Crustal motion vectors are closely aligned and document motion from East toward West Antarctica, in contradiction to ice sheet reconstructions placing maximum LGM ice mass loss in West Antarctica and GIA models that predict motions in the opposite direction. When compared to earth structure mapped by seismology, the horizontal crustal motions are consistently near-perpendicular to the very strong gradient in crust and mantle properties, perhaps the first confirmation of predictions from modeling studies that horizontal motions can be deflected or even reversed where such a lateral earth property exists. Accurate GIA models for Antarctica clearly require a laterally-varying earth model and tuning based on these new GPS and seismological constraints.
Ji, C.; Helmberger, D.V.; Wald, D.J.
2004-01-01
Slip histories for the 2002 M7.9 Denali fault, Alaska, earthquake are derived rapidly from global teleseismic waveform data. In phases, three models improve matching waveform data and recovery of rupture details. In the first model (Phase I), analogous to an automated solution, a simple fault plane is fixed based on the preliminary Harvard Centroid Moment Tensor mechanism and the epicenter provided by the Preliminary Determination of Epicenters. This model is then updated (Phase II) by implementing a more realistic fault geometry inferred from Digital Elevation Model topography and further (Phase III) by using the calibrated P-wave and SH-wave arrival times derived from modeling of the nearby 2002 M6.7 Nenana Mountain earthquake. These models are used to predict the peak ground velocity and the shaking intensity field in the fault vicinity. The procedure to estimate local strong motion could be automated and used for global real-time earthquake shaking and damage assessment. ?? 2004, Earthquake Engineering Research Institute.
Strong motion instrumentation of an RC building structure
Li, H.-J.; Celebi, M.
2001-01-01
The strong-motion instrumentation scheme of a reinforced concrete building observed by California Strong-Motion Instrumentation Program (CSMIP) is introduced in this paper. The instrumented building is also described and the recorded responses during 1994 Northridge earthquake are provided.
NASA Astrophysics Data System (ADS)
Nozu, A.
2013-12-01
A new simplified source model is proposed to explain strong ground motions from a mega-thrust earthquake. The proposed model is simpler, and involves less model parameters, than the conventional characterized source model, which itself is a simplified expression of actual earthquake source. In the proposed model, the spacio-temporal distribution of slip within a subevent is not modeled. Instead, the source spectrum associated with the rupture of a subevent is modeled and it is assumed to follow the omega-square model. By multiplying the source spectrum with the path effect and the site amplification factor, the Fourier amplitude at a target site can be obtained. Then, combining it with Fourier phase characteristics of a smaller event, the time history of strong ground motions from the subevent can be calculated. Finally, by summing up contributions from the subevents, strong ground motions from the entire rupture can be obtained. The source model consists of six parameters for each subevent, namely, longitude, latitude, depth, rupture time, seismic moment and corner frequency of the subevent. Finite size of the subevent can be taken into account in the model, because the corner frequency of the subevent is included in the model, which is inversely proportional to the length of the subevent. Thus, the proposed model is referred to as the 'pseudo point-source model'. To examine the applicability of the model, a pseudo point-source model was developed for the 2011 Tohoku earthquake. The model comprises nine subevents, located off Miyagi Prefecture through Ibaraki Prefecture. The velocity waveforms (0.2-1 Hz), the velocity envelopes (0.2-10 Hz) and the Fourier spectra (0.2-10 Hz) at 15 sites calculated with the pseudo point-source model agree well with the observed ones, indicating the applicability of the model. Then the results were compared with the results of a super-asperity (SPGA) model of the same earthquake (Nozu, 2012, AGU), which can be considered as an example of characterized source models. Although the pseudo point-source model involves much less model parameters than the super-asperity model, the errors associated with the former model were comparable to those for the latter model for velocity waveforms and envelopes. Furthermore, the errors associated with the former model were much smaller than those for the latter model for Fourier spectra. These evidences indicate the usefulness of the pseudo point-source model. Comparison of the observed (black) and synthetic (red) Fourier spectra. The spectra are the composition of two horizontal components and smoothed with a Parzen window with a band width of 0.05 Hz.
Strong Motion Recording in the United States
NASA Astrophysics Data System (ADS)
Archuleta, R. J.; Fletcher, J. B.; Shakal, A. F.
2014-12-01
The United States strong motion program began in 1932 when the Coast and Geodetic Survey (C&GS) installed eight strong motion accelerographs in California. During the March 1933 Long Beach earthquake, three of these produced the first strong motion records. With this success the C&GS expanded the number of accelerographs to 71 by 1964. With development of less expensive, mass-produced accelerographs the number of strong motion accelerographs expanded to ~575 by 1972. Responsibilities for operating the network and disseminating data were transferred to the National Oceanic and Atmospheric Administration in 1970 and then to the U.S. Geological Survey in 1973. In 1972 the California Legislature established the California Strong Motion Instrumentation Program (CSMIP). CSMIP operates accelerographs at 812 ground stations, with multi-channel accelerographs in 228 buildings, 125 lifelines and 37 geotechnical arrays, in California. The USGS and the ANSS effort operate accelerographs at 1584 ground stations, 96 buildings, 14 bridges, 70 dams, and 15 multi-channel geotechnical arrays. The USC Los Angeles array has 78 ground stations; UCSB operates 5 geotechnical arrays; other government and private institutions also operate accelerographs. Almost all accelerographs are now digital with a sampling rate of 200 Hz. Most of the strong motion data can be downloaded from the Center for Engineering Strong Motion Data (http://strongmotioncenter.org). As accelerographs have become more sophisticated, the concept of what constitutes strong motion has blurred because small earthquakes (M ~3) are well recorded on accelerometers as well as seismometers. However, when accelerations are over ~10%g and velocities over ~1 cm/s, the accelerometers remain on scale, providing the unclipped data necessary to analyze the ground motion and its consequences. Strong motion data are essential to the development of ground motion prediction equations, understanding structural response, performance based engineering, soil response, and inversions for earthquake rupture parameters. While an important number of stations have been installed, many areas of the US are significantly deficient, e.g., recordings were obtained from only 2 stations within 60 km of the Mineral earthquake that damaged the nation's capital and other areas.
Aagaard, Brad T.; Graves, Robert W.; Rodgers, Arthur; Brocher, Thomas M.; Simpson, Robert W.; Dreger, Douglas; Petersson, N. Anders; Larsen, Shawn C.; Ma, Shuo; Jachens, Robert C.
2010-01-01
We simulate long-period (T>1.0–2.0 s) and broadband (T>0.1 s) ground motions for 39 scenario earthquakes (Mw 6.7–7.2) involving the Hayward, Calaveras, and Rodgers Creek faults. For rupture on the Hayward fault, we consider the effects of creep on coseismic slip using two different approaches, both of which reduce the ground motions, compared with neglecting the influence of creep. Nevertheless, the scenario earthquakes generate strong shaking throughout the San Francisco Bay area, with about 50% of the urban area experiencing modified Mercalli intensity VII or greater for the magnitude 7.0 scenario events. Long-period simulations of the 2007 Mw 4.18 Oakland earthquake and the 2007 Mw 5.45 Alum Rock earthquake show that the U.S. Geological Survey’s Bay Area Velocity Model version 08.3.0 permits simulation of the amplitude and duration of shaking throughout the San Francisco Bay area for Hayward fault earthquakes, with the greatest accuracy in the Santa Clara Valley (San Jose area). The ground motions for the suite of scenarios exhibit a strong sensitivity to the rupture length (or magnitude), hypocenter (or rupture directivity), and slip distribution. The ground motions display a much weaker sensitivity to the rise time and rupture speed. Peak velocities, peak accelerations, and spectral accelerations from the synthetic broadband ground motions are, on average, slightly higher than the Next Generation Attenuation (NGA) ground-motion prediction equations. We attribute much of this difference to the seismic velocity structure in the San Francisco Bay area and how the NGA models account for basin amplification; the NGA relations may underpredict amplification in shallow sedimentary basins. The simulations also suggest that the Spudich and Chiou (2008) directivity corrections to the NGA relations could be improved by increasing the areal extent of rupture directivity with period.
Slow and fast visual motion channels have independent binocular-rivalry stages.
van de Grind, W. A.; van Hof, P.; van der Smagt, M. J.; Verstraten, F. A.
2001-01-01
We have previously reported a transparent motion after-effect indicating that the human visual system comprises separate slow and fast motion channels. Here, we report that the presentation of a fast motion in one eye and a slow motion in the other eye does not result in binocular rivalry but in a clear percept of transparent motion. We call this new visual phenomenon 'dichoptic motion transparency' (DMT). So far only the DMT phenomenon and the two motion after-effects (the 'classical' motion after-effect, seen after motion adaptation on a static test pattern, and the dynamic motion after-effect, seen on a dynamic-noise test pattern) appear to isolate the channels completely. The speed ranges of the slow and fast channels overlap strongly and are observer dependent. A model is presented that links after-effect durations of an observer to the probability of rivalry or DMT as a function of dichoptic velocity combinations. Model results support the assumption of two highly independent channels showing only within-channel rivalry, and no rivalry or after-effect interactions between the channels. The finding of two independent motion vision channels, each with a separate rivalry stage and a private line to conscious perception, might be helpful in visualizing or analysing pathways to consciousness. PMID:11270442
The influence of material anisotropy on vibration at onset in a three-dimensional vocal fold model
Zhang, Zhaoyan
2014-01-01
Although vocal folds are known to be anisotropic, the influence of material anisotropy on vocal fold vibration remains largely unknown. Using a linear stability analysis, phonation onset characteristics were investigated in a three-dimensional anisotropic vocal fold model. The results showed that isotropic models had a tendency to vibrate in a swing-like motion, with vibration primarily along the superior-inferior direction. Anterior-posterior (AP) out-of-phase motion was also observed and large vocal fold vibration was confined to the middle third region along the AP length. In contrast, increasing anisotropy or increasing AP-transverse stiffness ratio suppressed this swing-like motion and allowed the vocal fold to vibrate in a more wave-like motion with strong medial-lateral motion over the entire medial surface. Increasing anisotropy also suppressed the AP out-of-phase motion, allowing the vocal fold to vibrate in phase along the entire AP length. Results also showed that such improvement in vibration pattern was the most effective with large anisotropy in the cover layer alone. These numerical predictions were consistent with previous experimental observations using self-oscillating physical models. It was further hypothesized that these differences may facilitate complete glottal closure in finite-amplitude vibration of anisotropic models as observed in recent experiments. PMID:24606284
NASA Astrophysics Data System (ADS)
Climent, A.; Benito, M. B.; Piedra, R.; Lindholm, C.; Gaspar-Escribano, J.
2013-05-01
We present the results of a study aimed at choosing the more suitable strong-motion models for seismic hazard analysis in the Central America (CA) Region. After a careful revision of the state of the art, different models developed for subduction and volcanic crustal zones, in tectonic environment similar to those of CA, were selected. These models were calibrated with accelerograms recorded in Costa Rica, Nicaragua and El Salvador. The peak ground acceleration PGA and Spectral Acceleration SA (T) derived from the records were compared with the ones predicted by the models in similar conditions of magnitude, distance and soil. The type of magnitude (Ms, Mb, MW), distance (Rhyp, Rrup, etc) and ground motion parameter (maximum horizontal component, geometrical mean, etc ) was taken into account in the comparison with the real data. As results of the analysis, the models which present a best fit with the local data were identified. These models have been applied for carrying out seismic hazard analysis in the region, in the frame of the RESIS II project financed by the Norwegian Foreign Department and also by the Spanish project SISMOCAES. The methodology followed is based on the direct comparison between PGA and SA 5 % damped response values extracted from actual records with the corresponding acceleration values predicted by the selected ground-motion models for similar magnitude, distance and soil conditions. Residuals between observed and predicted values for PGA, and SA (1sec) are calculated and plotted as a function of distance and magnitude, analyzing their deviation from the mean value. Besides and most important, a statistical analysis of the normalized residuals was carry out using the criteria proposed by Scherbaum et al. (2004), which consists in categorizing ground motion models based in a likelihood parameter that reflects the goodness-of-fit of the median values as well as the shape of the underlying distribution of ground motion residuals. Considering the results of the both analysis the conclusions can be drawn in the following paragraphs. Analyses of residuals show that in some cases the best adjustments of PGA and SA values do not always favor the same equation. Consequently, the following equations that present reasonable adjustments for both parameters are finally selected: Schmidt (2010) and Zhao et al (2006) for shallow crustal sources; Schmidt (2010), Zhao et al (2006), Youngs et al. (1997) and Lin & Lee (2008) for subduction interface and Schmidt (2010), Youngs et al (1997), Zhao et al (2006) and Garcia et al (2005) for inslab subduction sources. Finally, to improve the development of proper models of attenuation of the region, it is recommended to the governmental and private institutions, to support the implementation of permanent strong ground motion networks in all Central America countries, especially in Guatemala, Honduras, Nicaragua and Panama, including free field stations. In case of Costa Rica and El Salvador to strengthen the networks that already they operate.
Puerto Rico Strong Motion Seismic Network
NASA Astrophysics Data System (ADS)
Huerta-Lopez, C. I.; Martínez-Cruzado, J. A.; Martínez-Pagan, J.; Santana-Torres, E. X.; Torres-O, D. M.
2014-12-01
The Puerto Rico Strong Motion Seismic Network is currently in charge of the operation of: (i) free-field (ff) strong motion stations, (ii) instrumented structures (STR) (Dams, Bridges, Buildings), and (iii) the data acquisition/monitoring and analysis of earthquakes considered strong from the point of view of their intensity and magnitude. All these instruments are deployed in the Puerto Rico Island (PRI), US-, and British-Virgin Islands (BVI), and Dominican Republic (DR). The Puerto Rico Island and the Caribbean region have high potential to be affected by earthquakes that could be catastrophic for the area. The Puerto Rico Strong Motion Seismic Network (actually Puerto Rico Strong Motion Program, PRSMP) has grown since 1970's from 7 ff strong motion stations and one instrumented building with analog accelerographs to 111 ff strong motion stations and 16 instrumented buildings with digital accelerographs: PRI: 88 ff, 16 STR., DR: 13 ff, BVI: 5 ff, 2 STR collecting data via IP (internet), DU (telephone), and stand alone stations The current stage of the PRSMP seismic network, the analysis of moderate earthquakes that were recorded and/or occurred on the island, results of the intensity distribution of selected earthquakes, as well as results of dynamic parameter identification of some of the instrumented structures are here presented.
Interpersonal Coordination of Head Motion in Distressed Couples
Hammal, Zakia; Cohn, Jeffrey F.; George, David T.
2015-01-01
In automatic emotional expression analysis, head motion has been considered mostly a nuisance variable, something to control when extracting features for action unit or expression detection. As an initial step toward understanding the contribution of head motion to emotion communication, we investigated the interpersonal coordination of rigid head motion in intimate couples with a history of interpersonal violence. Episodes of conflict and non-conflict were elicited in dyadic interaction tasks and validated using linguistic criteria. Head motion parameters were analyzed using Student’s paired t-tests; actor-partner analyses to model mutual influence within couples; and windowed cross-correlation to reveal dynamics of change in direction of influence over time. Partners’ RMS angular displacement for yaw and RMS angular velocity for pitch and yaw each demonstrated strong mutual influence between partners. Partners’ RMS angular displacement for pitch was higher during conflict. In both conflict and non-conflict, head angular displacement and angular velocity for pitch and yaw were strongly correlated, with frequent shifts in lead-lag relationships. The overall amount of coordination between partners’ head movement was more highly correlated during non-conflict compared with conflict interaction. While conflict increased head motion, it served to attenuate interpersonal coordination. PMID:26167256
Graves, R.W.; Wald, D.J.
2001-01-01
We develop a methodology to perform finite fault source inversions from strong motion data using Green's functions (GFs) calculated for a three-dimensional (3-D) velocity structure. The 3-D GFs are calculated numerically by inserting body forces at each of the strong motion sites and then recording the resulting strains along the target fault surface. Using reciprocity, these GFs can be recombined to represent the ground motion at each site for any (heterogeneous) slip distribution on the fault. The reciprocal formulation significantly reduces the required number of 3-D finite difference computations to at most 3NS, where NS is the number of strong motion sites used in the inversion. Using controlled numerical resolution tests, we have examined the relative importance of accurate GFs for finite fault source inversions which rely on near-source ground motions. These experiments use both 1-D and 3-D GFs in inversions for hypothetical rupture models in order (1) to analyze the ability of the 3-D methodology to resolve trade-offs between complex source phenomena and 3-D path effects, (2) to address the sensitivity of the inversion results to uncertainties in the 3-D velocity structure, and (3) to test the adequacy of the 1-D GF method when propagation effects are known to be three-dimensional. We find that given "data" from a prescribed 3-D Earth structure, the use of well-calibrated 3-D GFs in the inversion provides very good resolution of the assumed slip distribution, thus adequately separating source and 3-D propagation effects. In contrast, using a set of inexact 3-D GFs or a set of hybrid 1-D GFs allows only partial recovery of the slip distribution. These findings suggest that in regions of complex geology the use of well-calibrated 3-D GFs has the potential for increased resolution of the rupture process relative to 1-D GFs. However, realizing this full potential requires that the 3-D velocity model and associated GFs should be carefully validated against the true 3-D Earth structure before performing the inverse problem with actual data. Copyright 2001 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
OpršAl, Ivo; FäH, Donat; Mai, P. Martin; Giardini, Domenico
2005-04-01
The Basel earthquake of 18 October 1356 is considered one of the most serious earthquakes in Europe in recent centuries (I0 = IX, M ≈ 6.5-6.9). In this paper we present ground motion simulations for earthquake scenarios for the city of Basel and its vicinity. The numerical modeling combines the finite extent pseudodynamic and kinematic source models with complex local structure in a two-step hybrid three-dimensional (3-D) finite difference (FD) method. The synthetic seismograms are accurate in the frequency band 0-2.2 Hz. The 3-D FD is a linear explicit displacement formulation using an irregular rectangular grid including topography. The finite extent rupture model is adjacent to the free surface because the fault has been recognized through trenching on the Reinach fault. We test two source models reminiscent of past earthquakes (the 1999 Athens and the 1989 Loma Prieta earthquake) to represent Mw ≈ 5.9 and Mw ≈ 6.5 events that occur approximately to the south of Basel. To compare the effect of the same wave field arriving at the site from other directions, we considered the same sources placed east and west of the city. The local structural model is determined from the area's recently established P and S wave velocity structure and includes topography. The selected earthquake scenarios show strong ground motion amplification with respect to a bedrock site, which is in contrast to previous 2-D simulations for the same area. In particular, we found that the edge effects from the 3-D structural model depend strongly on the position of the earthquake source within the modeling domain.
NASA Astrophysics Data System (ADS)
Ruiz, S.; Ojeda, J.; DelCampo, F., Sr.; Pasten, C., Sr.; Otarola, C., Sr.; Silva, R., Sr.
2017-12-01
In May 1960 took place the most unusual seismic sequence registered instrumentally. The Mw 8.1, Concepción earthquake occurred May, 21, 1960. The aftershocks of this event apparently migrated to the south-east, and the Mw 9.5, Valdivia mega-earthquake occurred after 33 hours. The structural damage produced by both events is not larger than other earthquakes in Chile and lower than crustal earthquakes of smaller magnitude. The damage was located in the sites with shallow soil layers of low shear wave velocity (Vs). However, no seismological station recorded this sequence. For that reason, we generate synthetic acceleration times histories for strong motion in the main cities affected by these events. We use 155 points of vertical surface displacements recopiled by Plafker and Savage in 1968, and considering the observations of this authors and local residents we separated the uplift and subsidence information associated to the first earthquake Mw 8.1 and the second mega-earthquake Mw 9.5. We consider the elastic deformation propagation, assume realist lithosphere geometry, and compute a Bayesian method that maximizes the probability density a posteriori to obtain the slip distribution. Subsequently, we use a stochastic method of generation of strong motion considering the finite fault model obtained for both earthquakes. We considered the incidence angle of ray to the surface, free surface effect and energy partition for P, SV and SH waves, dynamic corner frequency and the influence of site effect. The results show that the earthquake Mw 8.1 occurred down-dip the slab, the strong motion records are similar to other Chilean earthquake like Tocopilla Mw 7.7 (2007). For the Mw 9.5 earthquake we obtain synthetic acceleration time histories with PGA values around 0.8 g in cities near to the maximum asperity or that have low velocity soil layers. This allows us to conclude that strong motion records have important influence of the shallow soil deposits. These records correlate well with our structural damage observations.
Hartzell, Stephen; Mendoza, Carlos; Ramírez-Guzmán, Leonardo; Zeng, Yuesha; Mooney, Walter
2013-01-01
An extensive data set of teleseismic and strong-motion waveforms and geodetic offsets is used to study the rupture history of the 2008 Wenchuan, China, earthquake. A linear multiple-time-window approach is used to parameterize the rupture. Because of the complexity of the Wenchuan faulting, three separate planes are used to represent the rupturing surfaces. This earthquake clearly demonstrates the strengths and limitations of geodetic, teleseismic, and strong-motion data sets. Geodetic data (static offsets) are valuable for determining the distribution of shallower slip but are insensitive to deeper faulting and reveal nothing about the timing of slip. Teleseismic data in the distance range 30°–90° generally involve no modeling difficulties because of simple ray paths and can distinguish shallow from deep slip. Teleseismic data, however, cannot distinguish between different slip scenarios when multiple fault planes are involved because steep takeoff angles lead to ambiguity in timing. Local strong-motion data, on the other hand, are ideal for determining the direction of rupture from directivity but can easily be over modeled with inaccurate Green’s functions, leading to misinterpretation of the slip distribution. We show that all three data sets are required to give an accurate description of the Wenchuan rupture. The moment is estimated to be approximately 1.0 × 1021 N · m with the slip characterized by multiple large patches with slips up to 10 m. Rupture initiates on the southern end of the Pengguan fault and proceeds unilaterally to the northeast. Upon reaching the cross-cutting Xiaoyudong fault, rupture of the adjacent Beichuan fault starts at this juncture and proceeds bilaterally to the northeast and southwest.
The Volume Field Model about Strong Interaction and Weak Interaction
NASA Astrophysics Data System (ADS)
Liu, Rongwu
2016-03-01
For a long time researchers have believed that strong interaction and weak interaction are realized by exchanging intermediate particles. This article proposes a new mechanism as follows: Volume field is a form of material existence in plane space, it takes volume-changing motion in the form of non-continuous motion, volume fields have strong interaction or weak interaction between them by overlapping their volume fields. Based on these concepts, this article further proposes a ``bag model'' of volume field for atomic nucleus, which includes three sub-models of the complex structure of fundamental body (such as quark), the atom-like structure of hadron, and the molecule-like structure of atomic nucleus. This article also proposes a plane space model and formulates a physics model of volume field in the plane space, as well as a model of space-time conversion. The model of space-time conversion suggests that: Point space-time and plane space-time convert each other by means of merging and rupture respectively, the essence of space-time conversion is the mutual transformations of matter and energy respectively; the process of collision of high energy hadrons, the formation of black hole, and the Big Bang of universe are three kinds of space-time conversions.
NASA Astrophysics Data System (ADS)
Assimaki, D.; Li, W.; Steidl, J. M.; Schmedes, J.
2007-12-01
The assessment of strong motion site response is of great significance, both for mitigating seismic hazard and for performing detailed analyses of earthquake source characteristics. There currently exists, however, large degree of uncertainty concerning the mathematical model to be employed for the computationally efficient evaluation of local site effects, and the site investigation program necessary to evaluate the nonlinear input model parameters and ensure cost-effective predictions; and while site response observations may provide critical constraints on interpretation methods, the lack of a statistically significant number of in-situ strong motion records prohibits statistical analyses to be conducted and uncertainties to be quantified based entirely on field data. In this paper, we combine downhole observations and broadband ground motion synthetics for characteristic site conditions the Los Angeles Basin, and investigate the variability in ground motion estimation introduced by the site response assessment methodology. In particular, site-specific regional velocity and attenuation structures are initially compiled using near-surface geotechnical data collected at downhole geotechnical arrays, inverse low-strain velocity and attenuation profiles at these sites obtained by inversion of weak motion records and the crustal velocity structure at the corresponding locations obtained from the Southern California Earthquake Centre Community Velocity Model. Successively, broadband ground motions are simulated by means of a hybrid low/high-frequency finite source model with correlated random parameters for rupture scenaria of weak, medium and large magnitude events (M =3.5-7.5). Observed estimates of site response at the stations of interest are first compared to the ensemble of approximate and incremental nonlinear site response models. Parametric studies are next conducted for each fixed magnitude (fault geometry) scenario by varying the source-to-site distance and source parameters for the ensemble of site conditions. Elastic, equivalent linear and nonlinear simulations are implemented for the deterministic description of the base-model velocity and attenuation structures and nonlinear soil properties, to examine the variability in ground motion predictions as a function of ground motion amplitude and frequency content, and nonlinear site response methodology. The modeling site response uncertainty introduced in the broadband ground motion predictions is reported by means of the COV of site amplification, defined as the ratio of the predicted peak ground acceleration (PGA) and spectral acceleration (SA) at short and long periods to the corresponding intensity measure on the ground surface of a typical NEHRP BC boundary profile (Vs30=760m/s), for the ensemble of approximate and incremental nonlinear models implemented. A frequency index is developed to describe the frequency content of incident ground motion. In conjunction with the rock-outcrop acceleration level, this index is used to identify the site and ground motion conditions where incremental nonlinear analyses should be employed in lieu of approximate methodologies. Finally, the effects of modeling uncertainty in ground response analysis is evaluated in the estimation of site amplification factors, which are successively compared to recently published factors of the New Generation Attenuation Relations (NGA) and the currently employed Seismic Code Provisions (NEHRP).
NASA Astrophysics Data System (ADS)
Fitzpatrick, Matthew R. C.; Kennett, Malcolm P.
2018-05-01
We develop a formalism that allows the study of correlations in space and time in both the superfluid and Mott insulating phases of the Bose-Hubbard Model. Specifically, we obtain a two particle irreducible effective action within the contour-time formalism that allows for both equilibrium and out of equilibrium phenomena. We derive equations of motion for both the superfluid order parameter and two-point correlation functions. To assess the accuracy of this formalism, we study the equilibrium solution of the equations of motion and compare our results to existing strong coupling methods as well as exact methods where possible. We discuss applications of this formalism to out of equilibrium situations.
Thygesen, Uffe Høgsbro
2016-03-01
We consider organisms which use a renewal strategy such as run-tumble when moving in space, for example to perform chemotaxis in chemical gradients. We derive a diffusion approximation for the motion, applying a central limit theorem due to Anscombe for renewal-reward processes; this theorem has not previously been applied in this context. Our results extend previous work, which has established the mean drift but not the diffusivity. For a classical model of tumble rates applied to chemotaxis, we find that the resulting chemotactic drift saturates to the swimming velocity of the organism when the chemical gradients grow increasingly steep. The dispersal becomes anisotropic in steep gradients, with larger dispersal across the gradient than along the gradient. In contrast to one-dimensional settings, strong bias increases dispersal. We next include Brownian rotation in the model and find that, in limit of high chemotactic sensitivity, the chemotactic drift is 64% of the swimming velocity, independent of the magnitude of the Brownian rotation. We finally derive characteristic timescales of the motion that can be used to assess whether the diffusion limit is justified in a given situation. The proposed technique for obtaining diffusion approximations is conceptually and computationally simple, and applicable also when statistics of the motion is obtained empirically or through Monte Carlo simulation of the motion.
Effects of energetic coherent motions on the power and wake of an axial-flow turbine
NASA Astrophysics Data System (ADS)
Chamorro, L. P.; Hill, C.; Neary, V. S.; Gunawan, B.; Arndt, R. E. A.; Sotiropoulos, F.
2015-05-01
A laboratory experiment examined the effects of energetic coherent motions on the structure of the wake and power fluctuations generated by a model axial-flow hydrokinetic turbine. The model turbine was placed in an open-channel flow and operated under subcritical conditions. The incoming flow was locally perturbed with vertically oriented cylinders of various diameters. An array of three acoustic Doppler velocimeters aligned in the cross-stream direction and a torque transducer were used to collect high-resolution and synchronous measurements of the three-velocity components of the incoming and wake flow as well as the turbine power. A strong scale-to-scale interaction between the large-scale and broadband turbulence shed by the cylinders and the turbine power revealed how the turbulence structure modulates the turbine behavior. In particular, the response of the turbine to the distinctive von Kármán-type vortices shed from the cylinders highlighted this phenomenon. The mean and fluctuating characteristics of the turbine wake are shown to be very sensitive to the energetic motions present in the flow. Tip vortices were substantially dampened and the near-field mean wake recovery accelerated in the presence of energetic motions in the flow. Strong coherent motions are shown to be more effective than turbulence levels for triggering the break-up of the spiral structure of the tip-vortices.
Individualistic weight perception from motion on a slope
Zintus-art, K.; Shin, D.; Kambara, H.; Yoshimura, N.; Koike, Y.
2016-01-01
Perception of an object’s weight is linked to its form and motion. Studies have shown the relationship between weight perception and motion in horizontal and vertical environments to be universally identical across subjects during passive observation. Here we show a contradicting finding in that not all humans share the same motion-weight pairing. A virtual environment where participants control the steepness of a slope was used to investigate the relationship between sliding motion and weight perception. Our findings showed that distinct, albeit subjective, motion-weight relationships in perception could be identified for slope environments. These individualistic perceptions were found when changes in environmental parameters governing motion were introduced, specifically inclination and surface texture. Differences in environmental parameters, combined with individual factors such as experience, affected participants’ weight perception. This phenomenon may offer evidence of the central nervous system’s ability to choose and combine internal models based on information from the sensory system. The results also point toward the possibility of controlling human perception by presenting strong sensory cues to manipulate the mechanisms managing internal models. PMID:27174036
Seismic hazard in the eastern United States
Mueller, Charles; Boyd, Oliver; Petersen, Mark D.; Moschetti, Morgan P.; Rezaeian, Sanaz; Shumway, Allison
2015-01-01
The U.S. Geological Survey seismic hazard maps for the central and eastern United States were updated in 2014. We analyze results and changes for the eastern part of the region. Ratio maps are presented, along with tables of ground motions and deaggregations for selected cities. The Charleston fault model was revised, and a new fault source for Charlevoix was added. Background seismicity sources utilized an updated catalog, revised completeness and recurrence models, and a new adaptive smoothing procedure. Maximum-magnitude models and ground motion models were also updated. Broad, regional hazard reductions of 5%–20% are mostly attributed to new ground motion models with stronger near-source attenuation. The revised Charleston fault geometry redistributes local hazard, and the new Charlevoix source increases hazard in northern New England. Strong increases in mid- to high-frequency hazard at some locations—for example, southern New Hampshire, central Virginia, and eastern Tennessee—are attributed to updated catalogs and/or smoothing.
Nonlinear microrheology of dense colloidal suspensions: A mode-coupling theory
NASA Astrophysics Data System (ADS)
Gazuz, I.; Fuchs, M.
2013-03-01
A mode-coupling theory for the motion of a strongly forced probe particle in a dense colloidal suspension is presented. Starting point is the Smoluchowski equation for N bath and a single probe particle. The probe performs Brownian motion under the influence of a strong constant and uniform external force Fex. It is immersed in a dense homogeneous bath of (different) particles also performing Brownian motion. Fluid and glass states are considered; solvent flow effects are neglected. Based on a formally exact generalized Green-Kubo relation, mode coupling approximations are performed and an integration through transients approach applied. A microscopic theory for the nonlinear velocity-force relations of the probe particle in a dense fluid and for the (de-) localized probe in a glass is obtained. It extends the mode coupling theory of the glass transition to strongly forced tracer motion and describes active microrheology experiments. A force threshold is identified which needs to be overcome to pull the probe particle free in a glass. For the model of hard sphere particles, the microscopic equations for the threshold force and the probability density of the localized probe are solved numerically. Neglecting the spatial structure of the theory, a schematic model is derived which contains two types of bifurcation, the glass transition and the force-induced delocalization, and which allows for analytical and numerical solutions. We discuss its phase diagram, forcing effects on the time-dependent correlation functions, and the friction increment. The model was successfully applied to simulations and experiments on colloidal hard sphere systems [Gazuz , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.102.248302 102, 248302 (2009)], while we provide detailed information on its derivation and general properties.
NASA Astrophysics Data System (ADS)
Causse, Mathieu; Cultrera, Giovanna; Herrero, André; Courboulex, Françoise; Schiappapietra, Erika; Moreau, Ludovic
2017-04-01
On May 29, 2012 occurred a Mw 5.9 earthquake in the Emilia-Romagna region (Po Plain) on a thrust fault system. This shock, as well as hundreds of aftershocks, were recorded by 10 strong motion stations located less than 10 km away from the rupture plane, with 4 stations located within the surface rupture projection. The Po Plain is a very large EW trending syntectonic alluvial basin, delimited by the Alps and Apennines chains to the North and South. The Plio-Quaternary sedimentary sequence filling the Po Plain is characterized by an uneven thickness, ranging from several thousands of meters to a few tens of meters. This particular context results especially in a resonance basin below 1 Hz and strong surface waves, which makes it particularly difficult to model wave propagation and hence to obtain robust images of the rupture propagation. This study proposes to take advantage of the large set of recorded aftershocks, considered as point sources, to model wave propagation. Due to the heterogeneous distribution of the aftershocks on the fault plane, an interpolation technique is proposed to compute an approximation of the Green's function between each fault point and each strong motion station in the frequency range [0.2-1Hz]. We then use a Bayesian inversion technique (Monte Carlo Markov Chain algorithm) to obtain images of the rupture propagation from the strong motion data. We propose to retrieve the slip distribution by inverting the final slip value at some control points, which are allowed to move on the fault plane, and by interpolating the slip value between these points. We show that the use of 5 control points to describe the slip, coupled with the hypothesis of spatially constant rupture velocity and rise-time (that is 18 free source parameters), results in a good level of fit with the data. This indicates that despite their complexity, the strong motion data can be properly modeled up to 1 Hz using a relatively simple rupture. The inversion results also reveal that the rupture propagated slowly, at a speed of about 45% of the shear wave velocity.
On the relative motions of long-lived Pacific mantle plumes.
Konrad, Kevin; Koppers, Anthony A P; Steinberger, Bernhard; Finlayson, Valerie A; Konter, Jasper G; Jackson, Matthew G
2018-02-27
Mantle plumes upwelling beneath moving tectonic plates generate age-progressive chains of volcanos (hotspot chains) used to reconstruct plate motion. However, these hotspots appear to move relative to each other, implying that plumes are not laterally fixed. The lack of age constraints on long-lived, coeval hotspot chains hinders attempts to reconstruct plate motion and quantify relative plume motions. Here we provide 40 Ar/ 39 Ar ages for a newly identified long-lived mantle plume, which formed the Rurutu hotspot chain. By comparing the inter-hotspot distances between three Pacific hotspots, we show that Hawaii is unique in its strong, rapid southward motion from 60 to 50 Myrs ago, consistent with paleomagnetic observations. Conversely, the Rurutu and Louisville chains show little motion. Current geodynamic plume motion models can reproduce the first-order motions for these plumes, but only when each plume is rooted in the lowermost mantle.
Nonlinear Site Response Validation Studies Using KIK-net Strong Motion Data
NASA Astrophysics Data System (ADS)
Asimaki, D.; Shi, J.
2014-12-01
Earthquake simulations are nowadays producing realistic ground motion time-series in the range of engineering design applications. Of particular significance to engineers are simulations of near-field motions and large magnitude events, for which observations are scarce. With the engineering community slowly adopting the use of simulated ground motions, site response models need to be re-evaluated in terms of their capabilities and limitations to 'translate' the simulated time-series from rock surface output to structural analyses input. In this talk, we evaluate three one-dimensional site response models: linear viscoelastic, equivalent linear and nonlinear. We evaluate the performance of the models by comparing predictions to observations at 30 downhole stations of the Japanese network KIK-Net that have recorded several strong events, including the 2011 Tohoku earthquake. Velocity profiles are used as the only input to all models, while additional parameters such as quality factor, density and nonlinear dynamic soil properties are estimated from empirical correlations. We quantify the differences of ground surface predictions and observations in terms of both seismological and engineering intensity measures, including bias ratios of peak ground response and visual comparisons of elastic spectra, and inelastic to elastic deformation ratio for multiple ductility ratios. We observe that PGV/Vs,30 — as measure of strain— is a better predictor of site nonlinearity than PGA, and that incremental nonlinear analyses are necessary to produce reliable estimates of high-frequency ground motion components at soft sites. We finally discuss the implications of our findings on the parameterization of nonlinear amplification factors in GMPEs, and on the extensive use of equivalent linear analyses in probabilistic seismic hazard procedures.
Ratchet effect for nanoparticle transport in hair follicles.
Radtke, Matthias; Patzelt, Alexa; Knorr, Fanny; Lademann, Jürgen; Netz, Roland R
2017-07-01
The motion of a single rigid nanoparticle inside a hair follicle is investigated by means of Brownian dynamics simulations. The cuticular hair structure is modeled as a periodic asymmetric ratchet-shaped surface. Induced by oscillating radial hair motion we find directed nanoparticle transport into the hair follicle with maximal velocity at a specific optimal frequency and an optimal particle size. We observe flow reversal when switching from radial to axial oscillatory hair motion. We also study the diffusion behavior and find strongly enhanced diffusion for axial motion with a diffusivity significantly larger than for free diffusion. Copyright © 2016 Elsevier B.V. All rights reserved.
Analysis of a system modelling the motion of a piston in a viscous gas
NASA Astrophysics Data System (ADS)
Maity, Debayan; Takahashi, Takéo; Tucsnak, Marius
2017-09-01
We study a free boundary problem modelling the motion of a piston in a viscous gas. The gas-piston system fills a cylinder with fixed extremities, which possibly allow gas from the exterior to penetrate inside the cylinder. The gas is modeled by the 1D compressible Navier-Stokes system and the piston motion is described by the second Newton's law. We prove the existence and uniqueness of global in time strong solutions. The main novelty brought in by our results is that they include the case of nonhomogeneous boundary conditions which, as far as we know, have not been studied in this context. Moreover, even for homogeneous boundary conditions, our results require less regularity of the initial data than those obtained in previous works.
Hydraulic modeling of unsteady debris-flow surges with solid-fluid interactions
Iverson, Richard M.
1997-01-01
Interactions of solid and fluid constituents produce the unique style of motion that typifies debris flows. To simulate this motion, a new hydraulic model represents debris flows as deforming masses of granular solids variably liquefied by viscous pore fluid. The momentum equation of the model describes how internal and boundary forces change as coarse-grained surge heads dominated by grain-contact friction grade into muddy debris-flow bodies more strongly influenced by fluid viscosity and pressure. Scaling analysis reveals that pore-pressure variations can cause flow resistance in surge heads to surpass that in debris-flow bodies by orders of magnitude. Numerical solutions of the coupled momentum and continuity equations provide good predictions of unsteady, nonuniform motion of experimental debris flows from initiation through deposition.
Explosion source strong ground motions in the Mississippi embayment
Langston, C.A.; Bodin, P.; Powell, C.; Withers, M.; Horton, S.; Mooney, W.
2006-01-01
Two strong-motion arrays were deployed for the October 2002 Embayment Seismic Excitation Experiment to study the spatial variation of strong ground motions in the deep, unconsolidated sediments of the Mississippi embayment because there are no comparable strong-motion data from natural earthquakes in the area. Each linear array consisted of eight three-component K2 accelerographs spaced 15 m apart situated 1.2 and 2.5 kin from 2268-kg and 1134-kg borehole explosion sources, respectively. The array data show distinct body-wave and surface-wave arrivals that propagate within the thick, unconsolidated sedimentary column, the high-velocity basement rocks, and small-scale structure near the surface. Time-domain coherence of body-wave and surface-wave arrivals is computed for acceleration, velocity, and displacement time windows. Coherence is high for relatively low-frequency verticalcomponent Rayleigh waves and high-frequency P waves propagating across the array. Prominent high-frequency PS conversions seen on radial components, a proxy for the direct S wave from earthquake sources, lose coherence quickly over the 105-m length of the array. Transverse component signals are least coherent for any ground motion and appear to be highly scattered. Horizontal phase velocity is computed by using the ratio of particle velocity to estimates of the strain based on a plane-wave-propagation model. The resulting time-dependent phase-velocity map is a useful way to infer the propagation mechanisms of individual seismic phases and time windows of three-component waveforms. Displacement gradient analysis is a complementary technique for processing general spatial-array data to obtain horizontal slowness information.
NASA Astrophysics Data System (ADS)
Galvez, P.; Somerville, P.; Bayless, J.; Dalguer, L. A.
2015-12-01
The rupture process of the 2011 Tohoku earthquake exhibits depth-dependent variations in the frequency content of seismic radiation from the plate interface. This depth-varying rupture property has also been observed in other subduction zones (Lay et al, 2012). During the Tohoku earthquake, the shallow region radiated coherent low frequency seismic waves whereas the deeper region radiated high frequency waves. Several kinematic inversions (Suzuki et al, 2011; Lee et al, 2011; Bletery et al, 2014; Minson et al, 2014) detected seismic waves below 0.1 Hz coming from the shallow depths that produced slip larger than 40-50 meters close to the trench. Using empirical green functions, Asano & Iwata (2012), Kurahashi and Irikura (2011) and others detected regions of strong ground motion radiation at frequencies up to 10Hz located mainly at the bottom of the plate interface. A recent dynamic model that embodies this depth-dependent radiation using physical models has been developed by Galvez et al (2014, 2015). In this model the rupture process is modeled using a linear weakening friction law with slip reactivation on the shallow region of the plate interface (Galvez et al, 2015). This model reproduces the multiple seismic wave fronts recorded on the Kik-net seismic network along the Japanese coast up to 0.1 Hz as well as the GPS displacements. In the deep region, the rupture sequence is consistent with the sequence of the strong ground motion generation areas (SMGAs) that radiate high frequency ground motion at the bottom of the plate interface (Kurahashi and Irikura, 2013). It remains challenging to perform ground motions fully coupled with a dynamic rupture up to 10 Hz for a megathrust event. Therefore, to generate high frequency ground motions, we make use of the stochastic approach of Graves and Pitarka (2010) but add to the source spectrum the slip rate function of the dynamic model. In this hybrid-dynamic approach, the slip rate function is windowed with Gaussian noise where the duration of the time window and the starting rupture is determined by the slip rate function at each point in the fault (Dalguer et al, 2002). Finally, to validate this method we compare the synthetic seismograms with the recorded ground motion for the 2011 Tohoku earthquake up to 10 Hz.
NASA Astrophysics Data System (ADS)
Rau, Ruey-Juin; Wen, Yi-Ying; Tseng, Po-Ching; Chen, Wei-Cheng; Cheu, Chi-Yu; Hsieh, Min-Che; Ching, Kuo-En
2017-04-01
The 6 February 2016 MW 6.5 Meinong earthquake (03:57:26.1 local time) occurred at about 30 km ESE of the Tainan city with a focal depth of 14.6 km. It is a mid-crust moderate-sized event, however, produced widespread strong shaking in the 30-km-away Tainan city and caused about 10 buildings collapsed and 117 death. Furthermore, the earthquake created a 20 x 10 km2 dome-shaped structure with a maximum uplift of 13 cm in between the epicenter and the Tainan city. We collected 81 50-Hz GPS and 130 strong motion data recorded within 60 km epicentral distances. High-rate GPS data are processed with GIPSY 6.4 and the calculated GPS displacement wavefield record section shows 40-60 cm Peak Ground Displacement (PGD) concentrated at 25-30 km WNW of the epicenter. The large PGDs correspond to 65-85 cm/sec PGV, which are significantly larger than the near-fault ground motion collected from moderate-sized earthquakes occurred worldwide. To investigate the source properties of the causative fault, considering the azimuthal coverage and data quality, we selected waveform data from 10 50-Hz GPS stations and 10 free-field 200-Hz strong motion stations to invert for the finite source parameters using the non-negative least squares approach. A bandpass filter of 0.05-0.5 Hz is applied to both high-rate GPS data and strong motion data, with sampling rate of 0.1 sec. The fault plane parameters (strike 281 degrees, dip 24 degrees) derived from Global Centroid Moment Tensor (CMT) are used in the finite fault inversion. The results of our joint GPS and strong motion data inversion indicates two major slip patches. The first large-slip patch occurred just below the hypocenter propagating westward at a 15-25 km depth range. The second high-slip patch appeared at 5-10 km depth slipping westward under the western side of the erected structure shown by InSAR image. These two large-slip patches appeared to devoid of aftershock seismicity, which concentrated mainly at the low-slip zones.
Broadband Ground Motion Simulation Recipe for Scenario Hazard Assessment in Japan
NASA Astrophysics Data System (ADS)
Koketsu, K.; Fujiwara, H.; Irikura, K.
2014-12-01
The National Seismic Hazard Maps for Japan, which consist of probabilistic seismic hazard maps (PSHMs) and scenario earthquake shaking maps (SESMs), have been published every year since 2005 by the Earthquake Research Committee (ERC) in the Headquarter for Earthquake Research Promotion, which was established in the Japanese government after the 1995 Kobe earthquake. The publication was interrupted due to problems in the PSHMs revealed by the 2011 Tohoku earthquake, and the Subcommittee for Evaluations of Strong Ground Motions ('Subcommittee') has been examining the problems for two and a half years (ERC, 2013; Fujiwara, 2014). However, the SESMs and the broadband ground motion simulation recipe used in them are still valid at least for crustal earthquakes. Here, we outline this recipe and show the results of validation tests for it.Irikura and Miyake (2001) and Irikura (2004) developed a recipe for simulating strong ground motions from future crustal earthquakes based on a characterization of their source models (Irikura recipe). The result of the characterization is called a characterized source model, where a rectangular fault includes a few rectangular asperities. Each asperity and the background area surrounding the asperities have their own uniform stress drops. The Irikura recipe defines the parameters of the fault and asperities, and how to simulate broadband ground motions from the characterized source model. The recipe for the SESMs was constructed following the Irikura recipe (ERC, 2005). The National Research Institute for Earth Science and Disaster Prevention (NIED) then made simulation codes along this recipe to generate SESMs (Fujiwara et al., 2006; Morikawa et al., 2011). The Subcommittee in 2002 validated a preliminary version of the SESM recipe by comparing simulated and observed ground motions for the 2000 Tottori earthquake. In 2007 and 2008, the Subcommittee carried out detailed validations of the current version of the SESM recipe and the NIED codes using ground motions from the 2005 Fukuoka earthquake. Irikura and Miyake (2011) summarized the latter validations, concluding that the ground motions were successfully simulated as shown in the figure. This indicates that the recipe has enough potential to generate broadband ground motions for scenario hazard assessment in Japan.
Characteristics of strong ground motion generation areas by fully dynamic earthquake cycles
NASA Astrophysics Data System (ADS)
Galvez, P.; Somerville, P.; Ampuero, J. P.; Petukhin, A.; Yindi, L.
2016-12-01
During recent subduction zone earthquakes (2010 Mw 8.8 Maule and 2011 Mw 9.0 Tohoku), high frequency ground motion radiation has been detected in deep regions of seismogenic zones. By semblance analysis of wave packets, Kurahashi & Irikura (2013) found strong ground motion generation areas (SMGAs) located in the down dip region of the 2011 Tohoku rupture. To reproduce the rupture sequence of SMGA's and replicate their rupture time and ground motions, we extended previous work on dynamic rupture simulations with slip reactivation (Galvez et al, 2016). We adjusted stresses on the most southern SMGAs of Kurahashi & Irikura (2013) model to reproduce the observed peak ground velocity recorded at seismic stations along Japan for periods up to 5 seconds. To generate higher frequency ground motions we input the rupture time, final slip and slip velocity of the dynamic model into the stochastic ground motion generator of Graves & Pitarka (2010). Our results are in agreement with the ground motions recorded at the KiK-net and K-NET stations.While we reproduced the recorded ground motions of the 2011 Tohoku event, it is unknown whether the characteristics and location of SMGA's will persist in future large earthquakes in this region. Although the SMGA's have large peak slip velocities, the areas of largest final slip are located elsewhere. To elucidate whether this anti-correlation persists in time, we conducted earthquake cycle simulations and analysed the spatial correlation of peak slip velocities, stress drops and final slip of main events. We also investigated whether or not the SMGA's migrate to other regions of the seismic zone.To perform this study, we coupled the quasi-dynamic boundary element solver QDYN (Luo & Ampuero, 2015) and the dynamic spectral element solver SPECFEM3D (Galvez et al., 2014; 2016). The workflow alternates between inter-seismic periods solved with QDYN and coseismic periods solved with SPECFEM3D, with automated switch based on slip rate thersholds (Kaneko et al., 2011). We parallelized QDYN with MPI to enable the simulation of fully dynamic earthquake cycles of Mw 8-9 earthquakes in faults that also produce Mw 7 earthquakes.This study was based on the 2015 research project `Improvement for uncertainty of strong ground motion prediction' by the Nuclear Regulation Authority (NRA), Japan.
Damage assessment of RC buildings subjected to the different strong motion duration
NASA Astrophysics Data System (ADS)
Mortezaei, Alireza; mohajer Tabrizi, Mohsen
2015-07-01
An earthquake has three important characteristics; namely, amplitude, frequency content and duration. Amplitude and frequency content have a direct impact but not necessarily the sole cause of structural damage. Regarding the duration, some researchers show a high correlation between strong motion duration and structural damage whereas some others find no relation. This paper focuses on the ground motion durations characterized by Arias Intensity (AI). High duration may increase the damage state of structure for the damage accumulation. This paper investigates the response time histories (acceleration, velocity and displacement) of RC buildings under the different strong motion durations. Generally, eight earthquake records were selected from different soil type, and these records were grouped according to their PGA and frequency ranges. Maximum plastic rotation and drift response was chosen as damage indicator. In general, there was a positive correlation between strong motion duration and damage; however, in some PGA and frequency ranges input motions with shorter durations might cause more damage than the input motions with longer durations. In soft soils, input motions with longer durations caused more damage than the input motions with shorter durations.
Seismic fragility analysis of typical pre-1990 bridges due to near- and far-field ground motions
NASA Astrophysics Data System (ADS)
Mosleh, Araliya; Razzaghi, Mehran S.; Jara, José; Varum, Humberto
2016-03-01
Bridge damages during the past earthquakes caused several physical and economic impacts to transportation systems. Many of the existing bridges in earthquake prone areas are pre-1990 bridges and were designed with out of date regulation codes. The occurrences of strong motions in different parts of the world show every year the vulnerability of these structures. Nonlinear dynamic time history analyses were conducted to assess the seismic vulnerability of typical pre-1990 bridges. A family of existing concrete bridge representative of the most common bridges in the highway system in Iran is studied. The seismic demand consists in a set of far-field and near-field strong motions to evaluate the likelihood of exceeding the seismic capacity of the mentioned bridges. The peak ground accelerations (PGAs) were scaled and applied incrementally to the 3D models to evaluate the seismic performance of the bridges. The superstructure was assumed to remain elastic and the nonlinear behavior in piers was modeled by assigning plastic hinges in columns. In this study the displacement ductility and the PGA are selected as a seismic performance indicator and intensity measure, respectively. The results show that pre-1990 bridges subjected to near-fault ground motions reach minor and moderate damage states.
The effect of eccentricity and spatiotemporal energy on motion silencing.
Choi, Lark Kwon; Bovik, Alan C; Cormack, Lawrence K
2016-01-01
The now well-known motion-silencing illusion has shown that salient changes among a group of objects' luminances, colors, shapes, or sizes may appear to cease when objects move rapidly (Suchow & Alvarez, 2011). It has been proposed that silencing derives from dot spacing that causes crowding, coherent changes in object color or size, and flicker frequencies combined with dot spacing (Choi, Bovik, & Cormack, 2014; Peirce, 2013; Turi & Burr, 2013). Motion silencing is a peripheral effect that does not occur near the point of fixation. To better understand the effect of eccentricity on motion silencing, we measured the amount of motion silencing as a function of eccentricity in human observers using traditional psychophysics. Fifteen observers reported whether dots in any of four concentric rings changed in luminance over a series of rotational velocities. The results in the human experiments showed that the threshold velocity for motion silencing almost linearly decreases as a function of log eccentricity. Further, we modeled the response of a population of simulated V1 neurons to our stimuli. We found strong matches between the threshold velocities on motion silencing observed in the human experiment and those seen in the energy model of Adelson and Bergen (1985). We suggest the plausible explanation that as eccentricity increases, the combined motion-flicker signal falls outside the narrow spatiotemporal frequency response regions of the modeled receptive fields, thereby reducing flicker visibility.
Nanoscopic dynamics of bicontinous microemulsions: effect of membrane associated protein
Sharma, V. K.; Hayes, Douglas G.; Urban, Volker S.; ...
2017-06-12
Bicontinous microemulsions (BμE) generally consist of nanodomains formed by surfactant in a mixture of water and oil at nearly equal proportions and are potential candidates for the solubilization and purification of membrane proteins. In this paper, we present the first time report of nanoscopic dynamics of surfactant monolayers within BμEs formed by the anionic surfactant sodium dodecyl sulfate (SDS) measured on the nanosecond to picosecond time scale using quasielastic neutron scattering (QENS). BμEs investigated herein consisted of middle phases isolated from Winsor-III microemulsion systems that were formed by mixing aqueous and oil solutions under optimal conditions. QENS data indicates thatmore » surfactants undergo two distinct motions, namely (i) lateral motion along the surface of the oil nanodomains and (ii) localized internal motion. Lateral motion can be described using a continuous diffusion model, from which the lateral diffusion coefficient is obtained. Internal motion of surfactant is described using a model which assumes that a fraction of the surfactants’ hydrogens undergoes localized translational diffusion that could be considered confined within a spherical volume. The effect of cytochrome c, an archetypal membrane-associated protein known to strongly partition near the surfactant head groups in BμEs (a trend supported by small-angle X-ray scattering [SAXS] analysis), on the dynamics of BμE has also been investigated. QENS results demonstrated that cytochrome c significantly hindered both the lateral and the internal motions of surfactant. The lateral motion was more strongly affected: a reduction of the lateral diffusion coefficient by 33% was measured. This change is mainly attributable to the strong association of cytochrome c with oppositely charged SDS. In contrast, analysis of SAXS data suggested that thermal fluctuations (for a longer length and slower time scale compared to QENS) were increased upon incorporation of cytochrome c. Finally, this study demonstrates the utility of QENS for evaluating dynamics of BμEs in nanoscopic region, and that proteins directly affect the microscopic dynamics, which is of relevance for evaluating release kinetics of encapsulated drugs from BμE delivery systems and the use of BμEs as biomembrane mimetic systems for investigating membrane protein–biomembrane interactions.« less
A Study for Anisotropic Wavefield Analysis with Elastic Layered Models
NASA Astrophysics Data System (ADS)
Yoneki, R.; Mikada, H.; Takekawa, J.
2015-12-01
Subsurface materials are generally anisotropic due to complicated geological conditions, for example, sedimentary materials, fractures reflecting various stress conditions in the past and present in the subsurface. There are many studies on seismic wave propagation in TI (transversely isotropic) and orthorhombic media (e.g., Thomsen, 1986; Alkhalifah, 2000; Bansal and Sen, 2008). In most of those studies, the magnitude of anisotropy is assumed to be weak. Therefore, it may be not appropriate to apply their theories directly to strongly anisotropic subsurface media in seismic exploration. It is necessary to understand the effects of the anisotropy on the behavior of seismic wave propagation in strongly anisotropic media in the seismic exploration. In this study, we investigate the influence of strong anisotropy on received seismic waveforms using three-dimensional numerical models, and verified capability of detecting subsurface anisotropy. Our numerical models contain an isotropic and an anisotropic (VTI, transversely isotropic media with vertical symmetry axis) layer, respectively, in the isotropic background subsurface. Since the difference between the two models is only the anisotropy in the vertical propagation velocity, we could look at the influence of anisotropy in the residual wavefield that is the difference in the observed wavefields of two models. We analyzed the orbital motions of the residual wavefield to see what kind of wave motions the waveforms show. We found that the residual waveforms generated by the anisotropic layer include the orbital motions of shear waves right after the first arrival, i.e., mode conversion from the compressional waves due to the anisotropy. The residual waveforms could be exploited to estimate both the order of anisotropy and the thickness of anisotropic layer in subsurface.
NASA Astrophysics Data System (ADS)
Moschetti, M. P.; Rennolet, S.; Thompson, E.; Yeck, W.; McNamara, D. E.; Herrmann, R. B.; Powers, P.; Hoover, S. M.
2016-12-01
Recent efforts to characterize the seismic hazard resulting from increased seismicity rates in Oklahoma and Kansas highlight the need for a regionalized ground motion characterization. To support these efforts, we measure and compile strong ground motions and compare these average ground motions intensity measures (IMs) with existing ground motion prediction equations (GMPEs). IMs are computed for available broadband and strong-motion records from M≥3 earthquakes occurring January 2009-April 2016, using standard strong motion processing guidelines. We verified our methods by comparing results from specific earthquakes to other standard procedures such as the USGS Shakemap system. The large number of records required an automated processing scheme, which was complicated by the extremely high rate of small-magnitude earthquakes 2014-2016. Orientation-independent IMs include peak ground motions (acceleration and velocity) and pseudo-spectral accelerations (5 percent damping, 0.1-10 s period). Metadata for the records included relocated event hypocenters. The database includes more than 160,000 records from about 3200 earthquakes. Estimates of the mean and standard deviation of the IMs are computed by distance binning at intervals of 2 km. Mean IMs exhibit a clear break in geometrical attenuation at epicentral distances of about 50-70 km, which is consistent with previous studies in the CEUS. Comparisons of these ground motions with modern GMPEs provide some insight into the relative IMs of induced earthquakes in Oklahoma and Kansas relative to the western U.S. and the central and eastern U.S. The site response for these stations is uncertain because very little is known about shallow seismic velocity in the region, and we make no attempt to correct observed IMs to a reference site conditions. At close distances, the observed IMs are lower than the predictions of the seed GMPEs of the NGA-East project (and about consistent with NGA-West-2 ground motions). This ground motion database may be used to inform future seismic hazard forecast models and in the development of regionally appropriate GMPEs.
Rrsm: The European Rapid Raw Strong-Motion Database
NASA Astrophysics Data System (ADS)
Cauzzi, C.; Clinton, J. F.; Sleeman, R.; Domingo Ballesta, J.; Kaestli, P.; Galanis, O.
2014-12-01
We introduce the European Rapid Raw Strong-Motion database (RRSM), a Europe-wide system that provides parameterised strong motion information, as well as access to waveform data, within minutes of the occurrence of strong earthquakes. The RRSM significantly differs from traditional earthquake strong motion dissemination in Europe, which has focused on providing reviewed, processed strong motion parameters, typically with significant delays. As the RRSM provides rapid open access to raw waveform data and metadata and does not rely on external manual waveform processing, RRSM information is tailored to seismologists and strong-motion data analysts, earthquake and geotechnical engineers, international earthquake response agencies and the educated general public. Access to the RRSM database is via a portal at http://www.orfeus-eu.org/rrsm/ that allows users to query earthquake information, peak ground motion parameters and amplitudes of spectral response; and to select and download earthquake waveforms. All information is available within minutes of any earthquake with magnitude ≥ 3.5 occurring in the Euro-Mediterranean region. Waveform processing and database population are performed using the waveform processing module scwfparam, which is integrated in SeisComP3 (SC3; http://www.seiscomp3.org/). Earthquake information is provided by the EMSC (http://www.emsc-csem.org/) and all the seismic waveform data is accessed at the European Integrated waveform Data Archive (EIDA) at ORFEUS (http://www.orfeus-eu.org/index.html), where all on-scale data is used in the fully automated processing. As the EIDA community is continually growing, the already significant number of strong motion stations is also increasing and the importance of this product is expected to also increase. Real-time RRSM processing started in June 2014, while past events have been processed in order to provide a complete database back to 2005.
NASA Astrophysics Data System (ADS)
Tu, Rui; Zhang, Pengfei; Zhang, Rui; Liu, Jinhai
2016-08-01
This paper has studied the key issues about integration of GNSS and strong-motion records for real-time earthquake monitoring. The validations show that the consistence of the coordinate system must be considered firstly to exclude the system bias between GNSS and strong-motion. The GNSS sampling rate is suggested about 1-5 Hz, and we should give the strong-motion's baseline shift with a larger dynamic noise as its variation is very swift. The initialization time of solving the baseline shift is less than one minute, and ambiguity resolution strategy is not greatly improved the solution. The data quality is very important for the solution, we advised to use multi-frequency and multi-system observations. These ideas give an important guide for real-time earthquake monitoring and early warning by the tight integration of GNSS and strong-motion records.
NASA Astrophysics Data System (ADS)
Yamanaka, Hiroaki; Özmen, Ögur Tuna; Chimoto, Kosuke; Alkan, Mehmet Akif; Tün, Muammer; Pekkan, Emrah; Özel, Oguz; Polat, Derya; Nurlu, Murat
2018-05-01
We have explored 1D S-wave velocity profiles of shallow and deep soil layers over a basement at strong motion stations in Eskisehir Province, Turkey. Microtremor array explorations were conducted at eight strong motion stations in the area to know shallow 1D S-wave velocity models. Rayleigh wave phase velocity at a frequency range from 3 to 30 Hz was estimated with the spatial autocorrelation analysis of array records of vertical microtremors at each station. Individual phase velocity was inverted to a shallow S-wave velocity profile. Low-velocity layers were identified at the stations in the basin. Site amplification factors from S-wave parts of earthquake records that had been estimated at the strong motion stations by Yamanaka et al. (2017) were inverted to the S-wave velocities and Q-values of the sedimentary layers. The depths to the basement with an S-wave velocity of 2.2 km/s are about 1 km in the central part of the basin, while the basement becomes shallow as 0.3 km in the marginal part of the basin. We finally discussed the effects of the shallow and deep sedimentary layers on the 1D S-wave amplification characteristics using the revealed profiles. It is found that the shallow soil layers have no significant effects in the amplification at a frequency range lower than 3 Hz in the area.
NASA Astrophysics Data System (ADS)
Mangaud, E.; Puthumpally-Joseph, R.; Sugny, D.; Meier, C.; Atabek, O.; Desouter-Lecomte, M.
2018-04-01
Optimal control theory is implemented with fully converged hierarchical equations of motion (HEOM) describing the time evolution of an open system density matrix strongly coupled to the bath in a spin-boson model. The populations of the two-level sub-system are taken as control objectives; namely, their revivals or exchange when switching off the field. We, in parallel, analyze how the optimal electric field consequently modifies the information back flow from the environment through different non-Markovian witnesses. Although the control field has a dipole interaction with the central sub-system only, its indirect influence on the bath collective mode dynamics is probed through HEOM auxiliary matrices, revealing a strong correlation between control and dissipation during a non-Markovian process. A heterojunction is taken as an illustrative example for modeling in a realistic way the two-level sub-system parameters and its spectral density function leading to a non-perturbative strong coupling regime with the bath. Although, due to strong system-bath couplings, control performances remain rather modest, the most important result is a noticeable increase of the non-Markovian bath response induced by the optimally driven processes.
Neural Models: An Option to Estimate Seismic Parameters of Accelerograms
NASA Astrophysics Data System (ADS)
Alcántara, L.; García, S.; Ovando-Shelley, E.; Macías, M. A.
2014-12-01
Seismic instrumentation for recording strong earthquakes, in Mexico, goes back to the 60´s due the activities carried out by the Institute of Engineering at Universidad Nacional Autónoma de México. However, it was after the big earthquake of September 19, 1985 (M=8.1) when the project of seismic instrumentation assumes a great importance. Currently, strong ground motion networks have been installed for monitoring seismic activity mainly along the Mexican subduction zone and in Mexico City. Nevertheless, there are other major regions and cities that can be affected by strong earthquakes and have not yet begun their seismic instrumentation program or this is still in development.Because of described situation some relevant earthquakes (e.g. Huajuapan de León Oct 24, 1980 M=7.1, Tehuacán Jun 15, 1999 M=7 and Puerto Escondido Sep 30, 1999 M= 7.5) have not been registered properly in some cities, like Puebla and Oaxaca, and that were damaged during those earthquakes. Fortunately, the good maintenance work carried out in the seismic network has permitted the recording of an important number of small events in those cities. So in this research we present a methodology based on the use of neural networks to estimate significant duration and in some cases the response spectra for those seismic events. The neural model developed predicts significant duration in terms of magnitude, epicenter distance, focal depth and soil characterization. Additionally, for response spectra we used a vector of spectral accelerations. For training the model we selected a set of accelerogram records obtained from the small events recorded in the strong motion instruments installed in the cities of Puebla and Oaxaca. The final results show that neural networks as a soft computing tool that use a multi-layer feed-forward architecture provide good estimations of the target parameters and they also have a good predictive capacity to estimate strong ground motion duration and response spectra.
Kong, Dali; Lin, Wei; Pan, Yongxin; Zhang, Keke
2014-01-01
We investigate the swimming motion of rod-shaped magnetotactic bacteria affiliated with the Nitrospirae phylum in a viscous liquid under the influence of an externally imposed, time-dependent magnetic field. By assuming that fluid motion driven by the translation and rotation of a swimming bacterium is of the Stokes type and that inertial effects of the motion are negligible, we derive a new system of the twelve coupled equations that govern both the motion and orientation of a swimming rod-shaped magnetotactic bacterium with a growing magnetic moment in the laboratory frame of reference. It is revealed that the initial pattern of swimming motion can be strongly affected by the rate of the growing magnetic moment. It is also revealed, through comparing mathematical solutions of the twelve coupled equations to the swimming motion observed in our laboratory experiments with rod-shaped magnetotactic bacteria, that the laboratory trajectories of the swimming motion can be approximately reproduced using an appropriate set of the parameters in our theoretical model. PMID:24523716
NASA Astrophysics Data System (ADS)
Meng, L.; Shi, B.
2011-12-01
The New Zealand Earthquake of February 21, 2011, Mw 6.1 occurred in the South Island, New Zealand with the epicenter at longitude 172.70°E and latitude 43.58°S, and with depth of 5 km. The Mw 6.1 earthquake occurred on an unknown blind fault involving oblique-thrust faulting, which is 9 km away from southern of the Christchurch, the third largest city of New Zealand, with a striking direction from east toward west (United State Geology Survey, USGS, 2011). The earthquake killed at least 163 people and caused a lot of construction damages in Christchurch city. The Peak Ground Acceleration (PGA) observed at station Heathcote Valley Primary School (HVSC), which is 1 km away from the epicenter, is up to almost 2.0g. The ground-motion observation suggests that the buried earthquake source generates much higher near-fault ground motion. In this study, we have analyzed the earthquake source spectral parameters based on the strong motion observations, and estimated the near-fault ground motion based on the Brune's circular fault model. The results indicate that the larger ground motion may be caused by a higher dynamic stress drop,Δσd , or effect stress drop named by Brune, in the major source rupture region. In addition, a dynamical composite source model (DCSM) has been developed to simulate the near-fault strong ground motion with associated fault rupture properties from the kinematic point of view. For comparison purpose, we also conducted the broadband ground motion predictions for the station of HVSC; the synthetic seismogram of time histories produced for this station has good agreement with the observations in the waveforms, peak values and frequency contents, which clearly indicate that the higher dynamic stress drop during the fault rupture may play an important role to the anomalous ground-motion amplification. The preliminary simulated result illustrated in at Station HVSC is that the synthetics seismograms have a realistic appearance in the waveform and time duration to the observations, especially for the vertical component. Synthetics Fourier spectra are reasonably similar to the recordings. The simulated PGA values of vertical and S26W components are consistent with the recorded, and for the S64E component, the PGA derived from our simulation is smaller than that from observation. The resultant Fourier spectra both for the synthetic and observation is much similar with each other for three components of acceleration time histories, except for the vertical component, where the derived spectra from synthetic data is smaller than that resultant from observation when the frequency is above 10 Hz. Both theoretical study and numerical simulation indicate that, for the 2011 Mw 6.1, New Zealand Earthquake, the higher dynamic stress drop during the source rupture process could play an important role to the anomalous ground-motion amplification beside to the other site-related seismic effects. The composite source modeling based on the simple Brune's pulse model could approximately provide us a good insight into earthquake source related rupture processes for a moderate-sized earthquake.
The dance of molecules: new dynamical perspectives on highly excited molecular vibrations.
Kellman, Michael E; Tyng, Vivian
2007-04-01
At low energies, molecular vibrational motion is described by the normal modes model. This model breaks down at higher energy, with strong coupling between normal modes and onset of chaotic dynamics. New anharmonic modes are born in bifurcations, or branchings of the normal modes. Knowledge of these new modes is obtained through the window of frequency-domain spectroscopy, using techniques of nonlinear classical dynamics. It may soon be possible to "watch" molecular rearrangement reactions spectroscopically. Connections are being made with reaction rate theories, condensed phase systems, and motions of electrons in quantum dots.
Grundy, John G; Nazar, Stefan; O'Malley, Shannon; Mohrenshildt, Martin V; Shedden, Judith M
2016-06-01
To examine the importance of platform motion to the transfer of performance in motion simulators. The importance of platform motion in simulators for pilot training is strongly debated. We hypothesized that the type of motion (e.g., disturbance) contributes significantly to performance differences. Participants used a joystick to perform a target tracking task in a pod on top of a MOOG Stewart motion platform. Five conditions compared training without motion, with correlated motion, with disturbance motion, with disturbance motion isolated to the visual display, and with both correlated and disturbance motion. The test condition involved the full motion model with both correlated and disturbance motion. We analyzed speed and accuracy across training and test as well as strategic differences in joystick control. Training with disturbance cues produced critical behavioral differences compared to training without disturbance; motion itself was less important. Incorporation of disturbance cues is a potentially important source of variance between studies that do or do not show a benefit of motion platforms in the transfer of performance in simulators. Potential applications of this research include the assessment of the importance of motion platforms in flight simulators, with a focus on the efficacy of incorporating disturbance cues during training. © 2016, Human Factors and Ergonomics Society.
Systematic observations of the slip pulse properties of large earthquake ruptures
Melgar, Diego; Hayes, Gavin
2017-01-01
In earthquake dynamics there are two end member models of rupture: propagating cracks and self-healing pulses. These arise due to different properties of faults and have implications for seismic hazard; rupture mode controls near-field strong ground motions. Past studies favor the pulse-like mode of rupture; however, due to a variety of limitations, it has proven difficult to systematically establish their kinematic properties. Here we synthesize observations from a database of >150 rupture models of earthquakes spanning M7–M9 processed in a uniform manner and show the magnitude scaling properties of these slip pulses indicates self-similarity. Further, we find that large and very large events are statistically distinguishable relatively early (at ~15 s) in the rupture process. This suggests that with dense regional geophysical networks strong ground motions from a large rupture can be identified before their onset across the source region.
The 2015 Gorkha (Nepal) earthquake sequence: I. Source modeling and deterministic 3D ground shaking
NASA Astrophysics Data System (ADS)
Wei, Shengji; Chen, Meng; Wang, Xin; Graves, Robert; Lindsey, Eric; Wang, Teng; Karakaş, Çağıl; Helmberger, Don
2018-01-01
To better quantify the relatively long period (< 0.3 Hz) shaking experienced during the 2015 Gorkha (Nepal) earthquake sequence, we study the finite rupture processes and the associated 3D ground motion of the Mw7.8 mainshock and the Mw7.2 aftershock. The 3D synthetics are then used in the broadband ground shaking in Kathmandu with a hybrid approach, summarized in a companion paper (Chen and Wei, 2017, submitted together). We determined the coseismic rupture process of the mainshock by joint inversion of InSAR/SAR, GPS (static and high-rate), strong motion and teleseismic waveforms. Our inversion for the mainshock indicates unilateral rupture towards the ESE, with an average rupture speed of 3.0 km/s and a total duration of 60 s. Additionally, we find that the beginning part of the rupture (5-18 s) has about 40% longer rise time than the rest of the rupture, as well as slower rupture velocity. Our model shows two strong asperities occurring 24 s and 36 s after the origin and located 30 km to the northwest and northeast of the Kathmandu valley, respectively. In contrast, the Mw7.2 aftershock is more compact both in time and space, as revealed by joint inversion of teleseismic body waves and InSAR data. The different rupture features between the mainshock and the aftershock could be related to difference in fault zone structure. The mainshock and aftershock ground motions in the Kathmandu valley, recorded by both strong motion and high-rate GPS stations, exhibited strong amplification around 0.2 Hz. A simplified 3D basin model, calibrated by an Mw5.2 aftershock, can match the observed waveforms reasonably well at 0.3 Hz and lower frequency. The 3D simulations indicate that the basin structure trapped the wavefield and produced an extensive ground vibration. Our study suggests that the combination of rupture characteristics and propagational complexity are required to understand the ground shaking produced by hazardous earthquakes such as the Gorkha event.
Update on the Center for Engineering Strong Motion Data
NASA Astrophysics Data System (ADS)
Haddadi, H. R.; Shakal, A. F.; Stephens, C. D.; Oppenheimer, D. H.; Huang, M.; Leith, W. S.; Parrish, J. G.; Savage, W. U.
2010-12-01
The U.S. Geological Survey (USGS) and the California Geological Survey (CGS) established the Center for Engineering Strong-Motion Data (CESMD, Center) to provide a single access point for earthquake strong-motion records and station metadata from the U.S. and international strong-motion programs. The Center has operational facilities in Sacramento and Menlo Park, California, to receive, process, and disseminate records through the CESMD web site at www.strongmotioncenter.org. The Center currently is in the process of transitioning the COSMOS Virtual Data Center (VDC) to integrate its functions with those of the CESMD for improved efficiency of operations, and to provide all users with a more convenient one-stop portal to both U.S. and important international strong-motion records. The Center is working with COSMOS and international and U.S. data providers to improve the completeness of site and station information, which are needed to most effectively employ the recorded data. The goal of all these and other new developments is to continually improve access by the earthquake engineering community to strong-motion data and metadata world-wide. The CESMD and its Virtual Data Center (VDC) provide tools to map earthquakes and recording stations, to search raw and processed data, to view time histories and spectral plots, to convert data files formats, and to download data and a variety of information. The VDC is now being upgraded to convert the strong-motion data files from different seismic networks into a common standard tagged format in order to facilitate importing earthquake records and station metadata to the CESMD database. An important new feature being developed is the automatic posting of Internet Quick Reports at the CESMD web site. This feature will allow users, and emergency responders in particular, to view strong-motion waveforms and download records within a few minutes after an earthquake occurs. Currently the CESMD and its Virtual Data Center provide selected strong-motion records from 17 countries. The Center has proved to be significantly useful for providing data to scientists, engineers, policy makers, and emergency response teams around the world.
Harmsen, Stephen C.; Hartzell, Stephen
2008-01-01
Models of the Santa Clara Valley (SCV) 3D velocity structure and 3D finite-difference software are used to predict ground motions from scenario earthquakes on the San Andreas (SAF), Monte Vista/Shannon, South Hayward, and Calaveras faults. Twenty different scenario ruptures are considered that explore different source models with alternative hypocenters, fault dimensions, and rupture velocities and three different velocity models. Ground motion from the full wave field up to 1 Hz is exhibited as maps of peak horizontal velocity and pseudospectral acceleration at periods of 1, 3, and 5 sec. Basin edge effects and amplification in sedimentary basins of the SCV are observed that exhibit effects from shallow sediments with relatively low shear-wave velocity (330 m/sec). Scenario earthquakes have been simulated for events with the following magnitudes: (1) M 6.8–7.4 Calaveras sources, (2) M 6.7–6.9 South Hayward sources, (3) M 6.7 Monte Vista/Shannon sources, and (4) M 7.1–7.2 Peninsula segment of the SAF sources. Ground motions are strongly influenced by source parameters such as rupture velocity, rise time, maximum depth of rupture, hypocenter, and source directivity. Cenozoic basins also exert a strong influence on ground motion. For example, the Evergreen Basin on the northeastern side of the SCV is especially responsive to 3–5-sec energy from most scenario earthquakes. The Cupertino Basin on the southwestern edge of the SCV tends to be highly excited by many Peninsula and Monte Vista fault scenarios. Sites over the interior of the Evergreen Basin can have long-duration coda that reflect the trapping of seismic energy within this basin. Plausible scenarios produce predominantly 5-sec wave trains with greater than 30 cm/sec sustained ground-motion amplitude with greater than 30 sec duration within the Evergreen Basin.
Model-Based Reinforcement of Kinect Depth Data for Human Motion Capture Applications
Calderita, Luis Vicente; Bandera, Juan Pedro; Bustos, Pablo; Skiadopoulos, Andreas
2013-01-01
Motion capture systems have recently experienced a strong evolution. New cheap depth sensors and open source frameworks, such as OpenNI, allow for perceiving human motion on-line without using invasive systems. However, these proposals do not evaluate the validity of the obtained poses. This paper addresses this issue using a model-based pose generator to complement the OpenNI human tracker. The proposed system enforces kinematics constraints, eliminates odd poses and filters sensor noise, while learning the real dimensions of the performer's body. The system is composed by a PrimeSense sensor, an OpenNI tracker and a kinematics-based filter and has been extensively tested. Experiments show that the proposed system improves pure OpenNI results at a very low computational cost. PMID:23845933
Trampoline effect in extreme ground motion.
Aoi, Shin; Kunugi, Takashi; Fujiwara, Hiroyuki
2008-10-31
In earthquake hazard assessment studies, the focus is usually on horizontal ground motion. However, records from the 14 June 2008 Iwate-Miyagi earthquake in Japan, a crustal event with a moment magnitude of 6.9, revealed an unprecedented vertical surface acceleration of nearly four times gravity, more than twice its horizontal counterpart. The vertical acceleration was distinctly asymmetric; the waveform envelope was about 1.6 times as large in the upward direction as in the downward direction, which is not explained by existing models of the soil response. We present a simple model of a mass bouncing on a trampoline to account for this asymmetry and the large vertical amplitude. The finding of a hitherto-unknown mode of strong ground motion may prompt major progress in near-source shaking assessments.
Strong Motion Instrumentation of Seismically-Strengthened Port Structures in California by CSMIP
Huang, M.J.; Shakal, A.F.
2009-01-01
The California Strong Motion Instrumentation Program (CSMIP) has instrumented five port structures. Instrumentation of two more port structures is underway and another one is in planning. Two of the port structures have been seismically strengthened. The primary goals of the strong motion instrumentation are to obtain strong earthquake shaking data for verifying seismic analysis procedures and strengthening schemes, and for post-earthquake evaluations of port structures. The wharves instrumented by CSMIP were recommended by the Strong Motion Instrumentation Advisory Committee, a committee of the California Seismic Safety Commission. Extensive instrumentation of a wharf is difficult and would be impossible without the cooperation of the owners and the involvement of the design engineers. The instrumentation plan for a wharf is developed through study of the retrofit plans of the wharf, and the strong-motion sensors are installed at locations where specific instrumentation objectives can be achieved and access is possible. Some sensor locations have to be planned during design; otherwise they are not possible to install after construction. This paper summarizes the two seismically-strengthened wharves and discusses the instrumentation schemes and objectives. ?? 2009 ASCE.
NASA Astrophysics Data System (ADS)
Kincaid, C.
2005-12-01
Subduction of oceanic lithosphere provides a dominant driving force for mantle dynamics and plate tectonics, and strongly modulates the thermal evolution of the mantle. Magma generation in arc environments is related to slab temperatures, slab dehydration/wedge hydration processes and circulation patterns in the mantle wedge. A series of laboratory experiments is used to model three-dimensional aspects of flow in subduction zones, and the consequent temperature variations in the slab and overlying mantle wedge. The experiments utilize a tank of glucose syrup to simulate the mantle and a Phenolic plate to represent subducting oceanic lithosphere. Different modes of plate sinking are produced using hydraulic pistons. The effects of longitudinal, rollback and slab-steepening components of slab motions are considered, along with different thicknesses of the over-riding lithosphere. Models look specifically at how distinct modes of back-arc spreading alter subduction zone temperatures and flow in the mantle wedge. Results show remarkably different temperature and circulation patterns when spreading is produced by rollback of the trench-slab-arc relative to a stationary overriding back-arc plate versus spreading due to motion of the overriding plate away from a fixed trench location. For rollback-induced spreading, flow trajectories in the wedge are shallow (e.g., limited upwelling), both the sub-arc and back-arc regions are supplied by material flowing around the receding slab. Flow lines in the sub-arc wedge are strongly trench-parallel. In these cases, strong lateral variations in slab surface temperature (SST) are recorded (hot at plate center, cool at plate edge). When the trench is fixed in space and spreading is produced by motion of the overriding plate, strong vertical flow velocities are recorded in the wedge, both the shallow sub-arc and back-arc regions are supplied by flow from under the overriding plate producing strong vertical shear. In these cases SSTs are nearly uniform across the plate. Results have implications for geochemical and seismic models of 3-D flow in subduction zones influenced by back-arc spreading, such as the Marianas.
Partially ionized hydrogen plasma in strong magnetic fields.
Potekhin, A Y; Chabrier, G; Shibanov, Y A
1999-08-01
We study the thermodynamic properties of a partially ionized hydrogen plasma in strong magnetic fields, B approximately 10(12)-10(13) G, typical of neutron stars. The properties of the plasma depend significantly on the quantum-mechanical sizes and binding energies of the atoms, which are strongly modified by thermal motion across the field. We use new fitting formulas for the atomic binding energies and sizes, based on accurate numerical calculations and valid for any state of motion of the atom. In particular, we take into account decentered atomic states, neglected in previous studies of thermodynamics of magnetized plasmas. We also employ analytic fits for the thermodynamic functions of nonideal fully ionized electron-ion Coulomb plasmas. This enables us to construct an analytic model of the free energy. An ionization equilibrium equation is derived, taking into account the strong magnetic field effects and the nonideality effects. This equation is solved by an iteration technique. Ionization degrees, occupancies, and the equation of state are calculated.
NASA Astrophysics Data System (ADS)
Zhang, Hao; Koper, Keith D.; Pankow, Kristine; Ge, Zengxi
2017-05-01
The 13 November 2016 Mw 7.8 Kaikoura, New Zealand, earthquake was investigated using teleseismic P waves. Backprojection of high-frequency P waves from two regional arrays shows unilateral rupture of at least two southwest-northeast striking faults with an average rupture speed of 1.4-1.6 km/s and total duration of 100 s. Guided by these backprojection results, 33 globally distributed low-frequency P waves were inverted for a finite fault model (FFM) of slip. The FFM showed evidence of several subevents; however, it lacked significant moment release near the epicenter, where a large burst of high-frequency energy was observed. A local strong-motion network recorded strong shaking near the epicenter; hence, for this earthquake the distribution of backprojection energy is superior to the FFM as a guide of strong shaking. For future large earthquakes that occur in regions without strong-motion networks, initial shaking estimates could benefit from backprojection constraints.
Modelling strong seismic ground motion: three-dimensional loading path versus wavefield polarization
NASA Astrophysics Data System (ADS)
Santisi d'Avila, Maria Paola; Lenti, Luca; Semblat, Jean-François
2012-09-01
Seismic waves due to strong earthquakes propagating in surficial soil layers may both reduce soil stiffness and increase the energy dissipation into the soil. To investigate seismic wave amplification in such cases, past studies have been devoted to one-directional shear wave propagation in a soil column (1D-propagation) considering one motion component only (1C-polarization). Three independent purely 1C computations may be performed ('1D-1C' approach) and directly superimposed in the case of weak motions (linear behaviour). This research aims at studying local site effects by considering seismic wave propagation in a 1-D soil profile accounting for the influence of the 3-D loading path and non-linear hysteretic behaviour of the soil. In the proposed '1D-3C' approach, the three components (3C-polarization) of the incident wave are simultaneously propagated into a horizontal multilayered soil. A 3-D non-linear constitutive relation for the soil is implemented in the framework of the Finite Element Method in the time domain. The complex rheology of soils is modelled by mean of a multisurface cyclic plasticity model of the Masing-Prandtl-Ishlinskii-Iwan type. The great advantage of this choice is that the only data needed to describe the model is the modulus reduction curve. A parametric study is carried out to characterize the changes in the seismic motion of the surficial layers due to both incident wavefield properties and soil non-linearities. The numerical simulations show a seismic response depending on several parameters such as polarization of seismic waves, material elastic and dynamic properties, as well as on the impedance contrast between layers and frequency content and oscillatory character of the input motion. The 3-D loading path due to the 3C-polarization leads to multi-axial stress interaction that reduces soil strength and increases non-linear effects. The non-linear behaviour of the soil may have beneficial or detrimental effects on the seismic response at the free surface, depending on the energy dissipation rate. Free surface time histories, stress-strain hysteresis loops and in-depth profiles of octahedral stress and strain are estimated for each soil column. The combination of three separate 1D-1C non-linear analyses is compared to the proposed 1D-3C approach, evidencing the influence of the 3C-polarization and the 3-D loading path on strong seismic motions.
Report on progress at the Center for Engineering Strong Motion Data (CESMD)
Haddadi, H.; Shakal, A.; Huang, M.; Parrish, J.; Stephens, C.; Savage, William U.; Leith, William S.
2012-01-01
The CESMD now provides strong-motion records from lower magnitude (
Ground Motions Due to Earthquakes on Creeping Faults
NASA Astrophysics Data System (ADS)
Harris, R.; Abrahamson, N. A.
2014-12-01
We investigate the peak ground motions from the largest well-recorded earthquakes on creeping strike-slip faults in active-tectonic continental regions. Our goal is to evaluate if the strong ground motions from earthquakes on creeping faults are smaller than the strong ground motions from earthquakes on locked faults. Smaller ground motions might be expected from earthquakes on creeping faults if the fault sections that strongly radiate energy are surrounded by patches of fault that predominantly absorb energy. For our study we used the ground motion data available in the PEER NGA-West2 database, and the ground motion prediction equations that were developed from the PEER NGA-West2 dataset. We analyzed data for the eleven largest well-recorded creeping-fault earthquakes, that ranged in magnitude from M5.0-6.5. Our findings are that these earthquakes produced peak ground motions that are statistically indistinguishable from the peak ground motions produced by similar-magnitude earthquakes on locked faults. These findings may be implemented in earthquake hazard estimates for moderate-size earthquakes in creeping-fault regions. Further investigation is necessary to determine if this result will also apply to larger earthquakes on creeping faults. Please also see: Harris, R.A., and N.A. Abrahamson (2014), Strong ground motions generated by earthquakes on creeping faults, Geophysical Research Letters, vol. 41, doi:10.1002/2014GL060228.
NASA Technical Reports Server (NTRS)
Reschke, Millard F.; Parker, Donald E.
1987-01-01
Seven astronauts reported translational self-motion during roll simulation 1-3 h after landing following 5-7 d of orbital flight. Two reported strong translational self-motion perception when they performed pitch head motions during entry and while the orbiter was stationary on the runway. One of two astronauts from whom adequate data were collected exhibited a 132-deg shift in the phase angle between roll stimulation and horizontal eye position 2 h after landing. Neither of two from whom adequate data were collected exhibited increased horizontal eye movement amplitude or disturbance of voluntary pitch or roll body motion immediately postflight. These results are generally consistent with an otolith tilt-translation reinterpretation model and are being applied to the development of apparatus and procedures intended to preadapt astronauts to the sensory rearrangement of weightlessness.
Strong Ground Motion Prediction By Composite Source Model
NASA Astrophysics Data System (ADS)
Burjanek, J.; Irikura, K.; Zahradnik, J.
2003-12-01
A composite source model, incorporating different sized subevents, provides a possible description of complex rupture processes during earthquakes. The number of subevents with characteristic dimension greater than R is proportional to R-2. The subevents do not overlap with each other, and the sum of their areas equals to the area of the target event (e.g. mainshock). The subevents are distributed randomly over the fault. Each subevent is modeled either as a finite or point source, differences between these choices are shown. The final slip and duration of each subevent is related to its characteristic dimension, using constant stress-drop scaling. Absolute value of subevents' stress drop is free parameter. The synthetic Green's functions are calculated by the discrete-wavenumber method in a 1D horizontally layered crustal model. An estimation of subevents' stress drop is based on fitting empirical attenuation relations for PGA and PGV, as they represent robust information on strong ground motion caused by earthquakes, including both path and source effect. We use the 2000 M6.6 Western Tottori, Japan, earthquake as validation event, providing comparison between predicted and observed waveforms.
Determining the effective system damping of highway bridges.
DOT National Transportation Integrated Search
2009-06-01
This project investigates four methods for modeling modal damping ratios of short-span and isolated : concrete bridges subjected to strong ground motion, which can be used for bridge seismic analysis : and design based on the response spectrum method...
NASA Astrophysics Data System (ADS)
Zafarani, H.; Luzi, Lucia; Lanzano, Giovanni; Soghrat, M. R.
2018-01-01
A recently compiled, comprehensive, and good-quality strong-motion database of the Iranian earthquakes has been used to develop local empirical equations for the prediction of peak ground acceleration (PGA) and 5%-damped pseudo-spectral accelerations (PSA) up to 4.0 s. The equations account for style of faulting and four site classes and use the horizontal distance from the surface projection of the rupture plane as a distance measure. The model predicts the geometric mean of horizontal components and the vertical-to-horizontal ratio. A total of 1551 free-field acceleration time histories recorded at distances of up to 200 km from 200 shallow earthquakes (depth < 30 km) with moment magnitudes ranging from Mw 4.0 to 7.3 are used to perform regression analysis using the random effects algorithm of Abrahamson and Youngs (Bull Seism Soc Am 82:505-510, 1992), which considers between-events as well as within-events errors. Due to the limited data used in the development of previous Iranian ground motion prediction equations (GMPEs) and strong trade-offs between different terms of GMPEs, it is likely that the previously determined models might have less precision on their coefficients in comparison to the current study. The richer database of the current study allows improving on prior works by considering additional variables that could not previously be adequately constrained. Here, a functional form used by Boore and Atkinson (Earthquake Spect 24:99-138, 2008) and Bindi et al. (Bull Seism Soc Am 9:1899-1920, 2011) has been adopted that allows accounting for the saturation of ground motions at close distances. A regression has been also performed for the V/H in order to retrieve vertical components by scaling horizontal spectra. In order to take into account epistemic uncertainty, the new model can be used along with other appropriate GMPEs through a logic tree framework for seismic hazard assessment in Iran and Middle East region.
Chaos in nuclei: Theory and experiment
NASA Astrophysics Data System (ADS)
Muñoz, L.; Molina, R. A.; Gómez, J. M. G.
2018-05-01
During the last three decades the quest for chaos in nuclei has been quite intensive, both with theoretical calculations using nuclear models and with detailed analyses of experimental data. In this paper we outline the concept and characteristics of quantum chaos in two different approaches, the random matrix theory fluctuations and the time series fluctuations. Then we discuss the theoretical and experimental evidence of chaos in nuclei. Theoretical calculations, especially shell-model calculations, have shown a strongly chaotic behavior of bound states in regions of high level density. The analysis of experimental data has shown a strongly chaotic behavior of nuclear resonances just above the one-nucleon emission threshold. For bound states, combining experimental data of a large number of nuclei, a tendency towards chaotic motion is observed in spherical nuclei, while deformed nuclei exhibit a more regular behavior associated to the collective motion. On the other hand, it had never been possible to observe chaos in the experimental bound energy levels of any single nucleus. However, the complete experimental spectrum of the first 151 states up to excitation energies of 6.20 MeV in the 208Pb nucleus have been recently identified and the analysis of its spectral fluctuations clearly shows the existence of chaotic motion.
NASA Astrophysics Data System (ADS)
Joshi, A.; LAL, S.
2017-12-01
Attenuation property of the medium determines the amplitude of seismic waves at different locations during an earthquake. Attenuation can be defined by the inverse of the parameter known as quality factor `Q' (Knopoff, 1964). It has been observed that the peak ground acceleration in the strong motion accelerogram is associated with arrival of S-waves which is controlled mainly by the shear wave attenuation characteristics of the medium. In the present work attenuation structure is obtained using the modified inversion algorithm given by Joshi et al. (2010). The modified inversion algorithm is designed to provide three dimensional attenuation structure of the region at different frequencies. A strong motion network is installed in the Kumaon Himalaya by the Department of Earth Sciences, Indian Institute of Technology Roorkee under a major research project sponsored by the Ministry of Earth Sciences, Government of India. In this work the detailed three dimensional shear wave quality factor has been determined for the Kumaon Himalaya using strong motion data obtained from this network. In the present work 164 records from 26 events recorded at 15 stations located in an area of 129 km x 62 km has been used. The shear wave attenuation structure for the Kumaon Himalaya has been calculated by dividing the study region into 108 three dimensional rectangular blocks of size 22 km x 11 km x 5 km. The input to the inversion algorithm is the acceleration spectra of S wave identified from each record. A total of 164 spectra from equal number of accelerograms with sampling frequency of .024 Hz is used as an input to the algorithms. A total of 2048 three dimensional attenuation structure is obtained upto frequency of 50 Hz. The obtained structure at various frequencies is compared with the existing geological models in the region and it is seen that the obtained model correlated well with the geological model of the region. References: Joshi, A., Mohanty, M., Bansal, A. R., Dimri, V. P. and Chadha, R. K., 2010, Use of spectral acceleration data for determination of three dimensional attenuation structure in the Pithoragarh region of Kumaon Himalaya, J Seismol., 14, 247-272. Knopoff, L., 1964, Q, Reviews of Geophysics, 2, 625-660.
The nonlinear breakup of the sun's toroidal field
NASA Technical Reports Server (NTRS)
Hughes, D. W.; Cattaneo, F.
1989-01-01
There are good reasons for believing that the sun has a strong toroidal magnetic field in the stably stratified region of convective overshoot sandwiched between the radiative zone and convective zone proper. The magnetic field in this region is modeled by studying the behavior of a layer of uniform field embedded in a subadiabatic atmosphere. Since the field can support extra mass, such a configuration is top-heavy, and instabilities of the Rayleigh-Taylor type can occur. Numerical integration of the two-dimensional compressible MHD equations makes it possible to follow the evolution of this instability into the nonlinear regime. The initial buoyancy-driven instability of the magnetic field gives rise to strong shearing motions, thereby exciting secondary Kelvin-Helmholtz instabilities which wrap the gas into regions of intense vorticity. The somewhat surprising subsequent motions are determined primarily by the strong interactions between vortices.
NASA Astrophysics Data System (ADS)
Chaljub, Emmanuel; Maufroy, Emeline; Moczo, Peter; Kristek, Jozef; Hollender, Fabrice; Bard, Pierre-Yves; Priolo, Enrico; Klin, Peter; de Martin, Florent; Zhang, Zhenguo; Zhang, Wei; Chen, Xiaofei
2015-04-01
Differences between 3-D numerical predictions of earthquake ground motion in the Mygdonian basin near Thessaloniki, Greece, led us to define four canonical stringent models derived from the complex realistic 3-D model of the Mygdonian basin. Sediments atop an elastic bedrock are modelled in the 1D-sharp and 1D-smooth models using three homogeneous layers and smooth velocity distribution, respectively. The 2D-sharp and 2D-smooth models are extensions of the 1-D models to an asymmetric sedimentary valley. In all cases, 3-D wavefields include strongly dispersive surface waves in the sediments. We compared simulations by the Fourier pseudo-spectral method (FPSM), the Legendre spectral-element method (SEM) and two formulations of the finite-difference method (FDM-S and FDM-C) up to 4 Hz. The accuracy of individual solutions and level of agreement between solutions vary with type of seismic waves and depend on the smoothness of the velocity model. The level of accuracy is high for the body waves in all solutions. However, it strongly depends on the discrete representation of the material interfaces (at which material parameters change discontinuously) for the surface waves in the sharp models. An improper discrete representation of the interfaces can cause inaccurate numerical modelling of surface waves. For all the numerical methods considered, except SEM with mesh of elements following the interfaces, a proper implementation of interfaces requires definition of an effective medium consistent with the interface boundary conditions. An orthorhombic effective medium is shown to significantly improve accuracy and preserve the computational efficiency of modelling. The conclusions drawn from the analysis of the results of the canonical cases greatly help to explain differences between numerical predictions of ground motion in realistic models of the Mygdonian basin. We recommend that any numerical method and code that is intended for numerical prediction of earthquake ground motion should be verified through stringent models that would make it possible to test the most important aspects of accuracy.
Active Brownian motion models and applications to ratchets
NASA Astrophysics Data System (ADS)
Fiasconaro, A.; Ebeling, W.; Gudowska-Nowak, E.
2008-10-01
We give an overview over recent studies on the model of Active Brownian Motion (ABM) coupled to reservoirs providing free energy which may be converted into kinetic energy of motion. First, we present an introduction to a general concept of active Brownian particles which are capable to take up energy from the source and transform part of it in order to perform various activities. In the second part of our presentation we consider applications of ABM to ratchet systems with different forms of differentiable potentials. Both analytical and numerical evaluations are discussed for three cases of sinusoidal, staircaselike and Mateos ratchet potentials, also with the additional loads modelled by tilted potential structure. In addition, stochastic character of the kinetics is investigated by considering perturbation by Gaussian white noise which is shown to be responsible for driving the directionality of the asymptotic flux in the ratchet. This stochastically driven directionality effect is visualized as a strong nonmonotonic dependence of the statistics of the right versus left trajectories of motion leading to a net current of particles. Possible applications of the ratchet systems to molecular motors are also briefly discussed.
Combining multiple earthquake models in real time for earthquake early warning
Minson, Sarah E.; Wu, Stephen; Beck, James L; Heaton, Thomas H.
2017-01-01
The ultimate goal of earthquake early warning (EEW) is to provide local shaking information to users before the strong shaking from an earthquake reaches their location. This is accomplished by operating one or more real‐time analyses that attempt to predict shaking intensity, often by estimating the earthquake’s location and magnitude and then predicting the ground motion from that point source. Other EEW algorithms use finite rupture models or may directly estimate ground motion without first solving for an earthquake source. EEW performance could be improved if the information from these diverse and independent prediction models could be combined into one unified, ground‐motion prediction. In this article, we set the forecast shaking at each location as the common ground to combine all these predictions and introduce a Bayesian approach to creating better ground‐motion predictions. We also describe how this methodology could be used to build a new generation of EEW systems that provide optimal decisions customized for each user based on the user’s individual false‐alarm tolerance and the time necessary for that user to react.
The SCEC Broadband Platform: Open-Source Software for Strong Ground Motion Simulation and Validation
NASA Astrophysics Data System (ADS)
Silva, F.; Goulet, C. A.; Maechling, P. J.; Callaghan, S.; Jordan, T. H.
2016-12-01
The Southern California Earthquake Center (SCEC) Broadband Platform (BBP) is a carefully integrated collection of open-source scientific software programs that can simulate broadband (0-100 Hz) ground motions for earthquakes at regional scales. The BBP can run earthquake rupture and wave propagation modeling software to simulate ground motions for well-observed historical earthquakes and to quantify how well the simulated broadband seismograms match the observed seismograms. The BBP can also run simulations for hypothetical earthquakes. In this case, users input an earthquake location and magnitude description, a list of station locations, and a 1D velocity model for the region of interest, and the BBP software then calculates ground motions for the specified stations. The BBP scientific software modules implement kinematic rupture generation, low- and high-frequency seismogram synthesis using wave propagation through 1D layered velocity structures, several ground motion intensity measure calculations, and various ground motion goodness-of-fit tools. These modules are integrated into a software system that provides user-defined, repeatable, calculation of ground-motion seismograms, using multiple alternative ground motion simulation methods, and software utilities to generate tables, plots, and maps. The BBP has been developed over the last five years in a collaborative project involving geoscientists, earthquake engineers, graduate students, and SCEC scientific software developers. The SCEC BBP software released in 2016 can be compiled and run on recent Linux and Mac OS X systems with GNU compilers. It includes five simulation methods, seven simulation regions covering California, Japan, and Eastern North America, and the ability to compare simulation results against empirical ground motion models (aka GMPEs). The latest version includes updated ground motion simulation methods, a suite of new validation metrics and a simplified command line user interface.
Zooplankton can actively adjust their motility to turbulent flow
Michalec, François-Gaël; Fouxon, Itzhak
2017-01-01
Calanoid copepods are among the most abundant metazoans in the ocean and constitute a vital trophic link within marine food webs. They possess relatively narrow swimming capabilities, yet are capable of significant self-locomotion under strong hydrodynamic conditions. Here we provide evidence for an active adaptation that allows these small organisms to adjust their motility in response to background flow. We track simultaneously and in three dimensions the motion of flow tracers and planktonic copepods swimming freely at several intensities of quasi-homogeneous, isotropic turbulence. We show that copepods synchronize the frequency of their relocation jumps with the frequency of small-scale turbulence by performing frequent relocation jumps of low amplitude that seem unrelated to localized hydrodynamic signals. We develop a model of plankton motion in turbulence that shows excellent quantitative agreement with our measurements when turbulence is significant. We find that, compared with passive tracers, active motion enhances the diffusion of organisms at low turbulence intensity whereas it dampens diffusion at higher turbulence levels. The existence of frequent jumps in a motion that is otherwise dominated by turbulent transport allows for the possibility of active locomotion and hence to transition from being passively advected to being capable of controlling diffusion. This behavioral response provides zooplankton with the capability to retain the benefits of self-locomotion despite turbulence advection and may help these organisms to actively control their distribution in dynamic environments. Our study reveals an active adaptation that carries strong fitness advantages and provides a realistic model of plankton motion in turbulence. PMID:29229858
Slip model and Synthetic Broad-band Strong Motions for the 2015 Mw 8.3 Illapel (Chile) Earthquake.
NASA Astrophysics Data System (ADS)
Aguirre, P.; Fortuno, C.; de la Llera, J. C.
2017-12-01
The MW 8.3 earthquake that occurred on September 16th 2015 west of Illapel, Chile, ruptured a 200 km section of the plate boundary between 29º S and 33º S. SAR data acquired by the Sentinel 1A satellite was used to obtain the interferogram of the earthquake, and from it, the component of the displacement field of the surface in the line of sight of the satellite. Based on this interferogram, the corresponding coseismic slip distribution for the earthquake was determined based on different plausible finite fault geometries. The model that best fits the data gathered is one whose rupture surface is consistent with the Slab 1.0 model, with a constant strike angle of 4º and variable dip angle ranging from 2.7º near the trench to 24.3º down dip. Using this geometry the maximum slip obtained is 7.52 m and the corresponding seismic moment is 3.78·1021 equivalent to a moment magnitude Mw 8.3. Calculation of the Coulomb failure stress change induced by this slip distribution evidences a strong correlation between regions where stress is increased as consequence of the earthquake, and the occurrence of the most relevant aftershocks, providing a consistency check for the inversion procedure applied and its results.The finite fault model for the Illapel earthquake is used to test a hybrid methodology for generation of synthetic ground motions that combines a deterministic calculation of the low frequency content, with stochastic modelling of the high frequency signal. Strong ground motions are estimated at the location of seismic stations recording the Illapel earthquake. Such simulations include the effect of local soil conditions, which are modelled empirically based on H/V ratios obtained from a large database of historical seismic records. Comparison of observed and synthetic records based on the 5%-damped response spectra yield satisfactory results for locations where the site response function is more robustly estimated.
NASA Astrophysics Data System (ADS)
Cruz, H.; Furumura, T.; Chavez-Garcia, F. J.
2002-12-01
The estimation of scenarios of the strong ground motions caused by future great earthquakes is an important problem in strong motion seismology. This was pointed out by the great 1985 Michoacan earthquake, which caused a great damage in Mexico City, 300 km away from the epicenter. Since the seismic wavefield is characterized by the source, path and site effects, the pattern of strong motion damage from different types of earthquakes should differ significantly. In this study, the scenarios for intermediate-depth normal-faulting, shallow-interplate thrust faulting, and crustal earthquakes have been estimated using a hybrid simulation technique. The character of the seismic wavefield propagating from the source to Mexico City for each earthquake was first calculated using the pseudospectral method for 2D SH waves. The site amplifications in the shallow structure of Mexico City are then calculated using the multiple SH wave reverberation theory. The scenarios of maximum ground motion for both inslab and interplate earthquakes obtained by the simulation show a good agreement with the observations. This indicates the effectiveness of the hybrid simulation approach to investigate the strong motion damage for future earthquakes.
Hartzell, S.; Guatteri, Mariagiovanna; Mai, P.M.; Liu, P.-C.; Fisk, M. R.
2005-01-01
In the evolution of methods for calculating synthetic time histories of ground motion for postulated earthquakes, kinematic source models have dominated to date because of their ease of application. Dynamic models, however, which incorporate a physical relationship between important faulting parameters of stress drop, slip, rupture velocity, and rise time, are becoming more accessible. This article compares a class of kinematic models based on the summation of a fractal distribution of subevent sizes with a dynamic model based on the slip-weakening friction law. Kinematic modeling is done for the frequency band 0.2 to 10.0. Hz, dynamic models are calculated from 0.2 to 2.0. Hz. The strong motion data set for the 1994 Northridge earthquake is used to evaluate and compare the synthetic time histories. Source models are propagated to the far field by convolution with 1D and 3D theoretical Green’s functions. In addition, the kinematic model is used to evaluate the importance of propagation path effects: velocity structure, scattering, and nonlinearity. At present, the kinematic model gives a better broadband fit to the Northridge ground motion than the simple slip-weakening dynamic model. In general, the dynamic model overpredicts rise times and produces insufficient shorter-period energy. Within the context of the slip-weakening model, the Northridge ground motion requires a short slip-weakening distance, on the order of 0.15 m or less. A more complex dynamic model including rate weakening or one that allows shorter rise times near the hypocenter may fit the data better.
Ground Motion in Central Mexico: A Comprehensive Analysis
NASA Astrophysics Data System (ADS)
Ramirez-Guzman, L.; Juarez, A.; Rábade, S.; Aguirre, J.; Bielak, J.
2015-12-01
This study presents a detailed analysis of the ground motion in Central Mexico based on numerical simulations, as well as broadband and strong ground motion records. We describe and evaluate a velocity model for Central Mexico derived from noise and regional earthquake cross-correlations, which is used throughout this research to estimate the ground motion in the region. The 3D crustal model includes a geotechnical structure of the Valley of Mexico (VM), subduction zone geometry, and 3D velocity distributions. The latter are based on more than 200 low magnitude (Mw < 4.5) earthquakes and two years of noise recordings. We emphasize the analysis on the ground motion in the Valley of Mexico originating from intra-slab deep events and temblors located along the Pacific coast. Also, we quantify the effects Trans-Mexican Volcanic Belt (TMVB) and the low-velocity deposits on the ground motion. The 3D octree-based finite element wave propagation computations, valid up to 1 Hz, reveal that the inclusion of a basin with a structure as complex as the Valley of Mexico dramatically enhances the regional effects induced by the TMVB. Moreover, the basin not only produces ground motion amplification and anomalous duration, but it also favors the energy focusing into zones of Mexico City where structures typically undergo high levels of damage.
Trouble with diffusion: Reassessing hillslope erosion laws with a particle-based model
NASA Astrophysics Data System (ADS)
Tucker, Gregory E.; Bradley, D. Nathan
2010-03-01
Many geomorphic systems involve a broad distribution of grain motion length scales, ranging from a few particle diameters to the length of an entire hillslope or stream. Studies of analogous physical systems have revealed that such broad motion distributions can have a significant impact on macroscale dynamics and can violate the assumptions behind standard, local gradient flux laws. Here, a simple particle-based model of sediment transport on a hillslope is used to study the relationship between grain motion statistics and macroscopic landform evolution. Surface grains are dislodged by random disturbance events with probabilities and distances that depend on local microtopography. Despite its simplicity, the particle model reproduces a surprisingly broad range of slope forms, including asymmetric degrading scarps and cinder cone profiles. At low slope angles the dynamics are diffusion like, with a short-range, thin-tailed hop length distribution, a parabolic, convex upward equilibrium slope form, and a linear relationship between transport rate and gradient. As slope angle steepens, the characteristic grain motion length scale begins to approach the length of the slope, leading to planar equilibrium forms that show a strongly nonlinear correlation between transport rate and gradient. These high-probability, long-distance motions violate the locality assumption embedded in many common gradient-based geomorphic transport laws. The example of a degrading scarp illustrates the potential for grain motion dynamics to vary in space and time as topography evolves. This characteristic renders models based on independent, stationary statistics inapplicable. An accompanying analytical framework based on treating grain motion as a survival process is briefly outlined.
Graizer, V.
2006-01-01
Most instruments used in seismological practice to record ground motion are pendulum seismographs, velocigraphs, or accelerographs. In most cases it is assumed that seismic instruments are only sensitive to the translational motion of the instrument's base. In this study the full equation of pendulum motion, including the inputs of rotations and tilts, is considered. It is shown that tilting the accelerograph's base can severely impact its response to the ground motion. The method of tilt evaluation using uncorrected strong-motion accelerograms was first suggested by Graizer (1989), and later tested in several laboratory experiments with different strong-motion instruments. The method is based on the difference in the tilt sensitivity of the horizontal and vertical pendulums. The method was applied to many of the strongest records of the Mw 6.7 Northridge earthquake of 1994. Examples are shown when relatively large tilts of up to a few degrees occurred during strong earthquake ground motion. Residual tilt extracted from the strong-motion record at the Pacoima Dam-Upper Left Abutment reached 3.1?? in N45??E direction, and was a result of local earthquake-induced tilting due to high-amplitude shaking. This value is in agreement with the residual tilt measured by using electronic level a few days after the earthquake. The method was applied to the building records from the Northridge earthquake. According to the estimates, residual tilt reached 2.6?? on the ground floor of the 12-story Hotel in Ventura. Processing of most of the strongest records of the Northridge earthquake shows that tilts, if happened, were within the error of the method, or less than about 0.5??.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, John
This project aims to understand the characteristics of the free-field strong-motion records that have yielded the 100 largest peak accelerations and the 100 largest peak velocities recorded to date. The peak is defined as the maximum magnitude of the acceleration or velocity vector during the strong shaking. This compilation includes 35 records with peak acceleration greater than gravity, and 41 records with peak velocities greater than 100 cm/s. The results represent an estimated 150,000 instrument-years of strong-motion recordings. The mean horizontal acceleration or velocity, as used for the NGA ground motion models, is typically 0.76 times the magnitude of thismore » vector peak. Accelerations in the top 100 come from earthquakes as small as magnitude 5, while velocities in the top 100 all come from earthquakes with magnitude 6 or larger. Records are dominated by crustal earthquakes with thrust, oblique-thrust, or strike-slip mechanisms. Normal faulting mechanisms in crustal earthquakes constitute under 5% of the records in the databases searched, and an even smaller percentage of the exceptional records. All NEHRP site categories have contributed exceptional records, in proportions similar to the extent that they are represented in the larger database.« less
Real-time Estimation of Fault Rupture Extent for Recent Large Earthquakes
NASA Astrophysics Data System (ADS)
Yamada, M.; Mori, J. J.
2009-12-01
Current earthquake early warning systems assume point source models for the rupture. However, for large earthquakes, the fault rupture length can be of the order of tens to hundreds of kilometers, and the prediction of ground motion at a site requires the approximated knowledge of the rupture geometry. Early warning information based on a point source model may underestimate the ground motion at a site, if a station is close to the fault but distant from the epicenter. We developed an empirical function to classify seismic records into near-source (NS) or far-source (FS) records based on the past strong motion records (Yamada et al., 2007). Here, we defined the near-source region as an area with a fault rupture distance less than 10km. If we have ground motion records at a station, the probability that the station is located in the near-source region is; P = 1/(1+exp(-f)) f = 6.046log10(Za) + 7.885log10(Hv) - 27.091 where Za and Hv denote the peak values of the vertical acceleration and horizontal velocity, respectively. Each observation provides the probability that the station is located in near-source region, so the resolution of the proposed method depends on the station density. The information of the fault rupture location is a group of points where the stations are located. However, for practical purposes, the 2-dimensional configuration of the fault is required to compute the ground motion at a site. In this study, we extend the methodology of NS/FS classification to characterize 2-dimensional fault geometries and apply them to strong motion data observed in recent large earthquakes. We apply a cosine-shaped smoothing function to the probability distribution of near-source stations, and convert the point fault location to 2-dimensional fault information. The estimated rupture geometry for the 2007 Niigata-ken Chuetsu-oki earthquake 10 seconds after the origin time is shown in Figure 1. Furthermore, we illustrate our method with strong motion data of the 2007 Noto-hanto earthquake, 2008 Iwate-Miyagi earthquake, and 2008 Wenchuan earthquake. The on-going rupture extent can be estimated for all datasets as the rupture propagates. For earthquakes with magnitude about 7.0, the determination of the fault parameters converges to the final geometry within 10 seconds.
Effects of Heterogeneous Social Interactions on Flocking Dynamics
NASA Astrophysics Data System (ADS)
Miguel, M. Carmen; Parley, Jack T.; Pastor-Satorras, Romualdo
2018-02-01
Social relationships characterize the interactions that occur within social species and may have an important impact on collective animal motion. Here, we consider a variation of the standard Vicsek model for collective motion in which interactions are mediated by an empirically motivated scale-free topology that represents a heterogeneous pattern of social contacts. We observe that the degree of order of the model is strongly affected by network heterogeneity: more heterogeneous networks show a more resilient ordered state, while less heterogeneity leads to a more fragile ordered state that can be destroyed by sufficient external noise. Our results challenge the previously accepted equivalence between the static Vicsek model and the equilibrium X Y model on the network of connections, and point towards a possible equivalence with models exhibiting a different symmetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thein, Pyi Soe, E-mail: pyisoethein@yahoo.com; Pramumijoyo, Subagyo; Wilopo, Wahyu
In this study, we investigated the strong ground motion characteristics under Palu City, Indonesia. The shear wave velocity structures evaluated by eight microtremors measurement are the most applicable to determine the thickness of sediments and average shear wave velocity with Vs ≤ 300 m/s. Based on subsurface underground structure models identified, earthquake ground motion was estimated in the future Palu-Koro earthquake by using statistical green’s function method. The seismic microzonation parameters were carried out by considering several significant controlling factors on ground response at January 23, 2005 earthquake.
Strong-motion data from the two Pingtung, Taiwan, earthquakes of 26 December 2006
Wu, C.-F.; Lee, W.H.K.; Boore, D.M.
2008-01-01
1016 strong-motion records at 527 free-field stations and 131 records at 42 strong-motion arrays at buildings and bridges were obtained for the Pingtung earthquake doublet from the Taiwan Central Weather Bureau's dense, digital strong-motion network. We carried out standard processing of these strong-motion records at free-field stations. A data set, including the originally recorded files, processed data files, and supporting software and information, is archived online http:// tecdc.earth.sinica.edu.tw/data/EQ2006Pingtung/. We have not yet completed the processing of the strong-motion array data at buildings and bridges. However, some preliminary results and the strong-motion array data recorded at the second nearest instrumented building to the Pingtung earthquake doublet are shown. This paper is intended to document our data processing procedures and the online archived data files, so that researchers can efficiently use the data. We also include two preliminary analyses: (1) a comparison of ground motions recorded by multiple accelerographs at a common site, the TAP 117 station in Taipei, and (2) attenuation of the horizontal ground motions (peak acceleration and response spectra at periods of 0.2, 1.0, and 3.0 s) with respect to distance. Our comparison study of multiple recordings at TAP 117 indicates that waveform coherence among 20- and 24-bit accelerograph records is much higher as compared to records from 16-bit or 12-bit accelerographs, suggesting that the former are of better quality. For the 20- and 24-bit accelerographs, waveform coherence is nearly 1 over the frequency range 1 to 8 Hz for all components, and is greater than about 0.9 from 8 to 20 Hz for the horizontal component, but only from 8 to 12 Hz for the vertical component. Plots of pseudo-acceleration response spectra (PSA) as a function of distance, however, show no clear indication for a difference related to the performance level of the accelerographs. The ground-motions of the first event (Mw = 7.0) are comparable, or even somewhat lower, than those from the smaller second event (Mw = 6.9), consistent with the relative difference of the local magnitudes (ML = 6.96 and 6.99 for the first and second events, respectively). The ground motions from the first event are generally lower than those predicted from equations based on other in-slab subduction earthquakes, whereas the ground motions from the second event are closer to the predictions. Ground-motions for soil sites are generally larger than those from rock sites.
Motion of gas in highly rarefied space
NASA Astrophysics Data System (ADS)
Chirkunov, Yu A.
2017-10-01
A model describing a motion of gas in a highly rarefied space received an unlucky number 13 in the list of the basic models of the motion of gas in the three-dimensional space obtained by L.V. Ovsyannikov. For a given initial pressure distribution, a special choice of mass Lagrangian variables leads to the system describing this motion for which the number of independent variables is less by one. Hence, there is a foliation of a highly rarefied gas with respect to pressure. In a strongly rarefied space for each given initial pressure distribution, all gas particles are localized on a two-dimensional surface that moves with time in this space We found some exact solutions of the obtained system that describe the processes taking place inside of the tornado. For this system we found all nontrivial conservation laws of the first order. In addition to the classical conservation laws the system has another conservation law, which generalizes the energy conservation law. With the additional condition we found another one generalized energy conservation law.
Motion analysis and trials of the deep sea hybrid underwater glider Petrel-II
NASA Astrophysics Data System (ADS)
Liu, Fang; Wang, Yan-hui; Wu, Zhi-liang; Wang, Shu-xin
2017-03-01
A hybrid underwater glider Petrel-II has been developed and field tested. It is equipped with an active buoyancy unit and a compact propeller unit. Its working modes have been expanded to buoyancy driven gliding and propeller driven level-flight, which can make the glider work in strong currents, as well as many other complicated ocean environments. Its maximal gliding speed reaches 1 knot and the propelling speed is up to 3 knots. In this paper, a 3D dynamic model of Petrel-II is derived using linear momentum and angular momentum equations. According to the dynamic model, the spiral motion in the underwater space is simulated for the gliding mode. Similarly the cycle motion on water surface and the depth-keeping motion underwater are simulated for the level-flight mode. These simulations are important to the performance analysis and parameter optimization for the Petrel-II underwater glider. The simulation results show a good agreement with field trials.
Motion of discrete solitons assisted by nonlinearity management.
Cuevas, Jesús; Malomed, Boris A; Kevrekidis, P G
2005-06-01
We demonstrate that time-periodic modulation of the nonlinearity coefficient in the discrete nonlinear Schrödinger equation strongly facilitates creation of traveling solitons in the lattice. We predict this possibility in a semi-qualitative form analytically, and test it in direct numerical simulations. Systematic computations reveal several generic dynamical regimes, depending on the amplitude and frequency of the time modulation, and on the initial thrust which sets the soliton in motion. These regimes include irregular motion of the soliton, regular motion of a decaying one, and regular motion of a stable soliton. The motion may occur in both the straight and reverse directions, relative to the initial thrust. In the case of stable motion, extremely long simulations in a lattice with periodic boundary conditions demonstrate that the soliton keeps moving indefinitely long without any visible loss. Velocities of moving stable solitons are in good agreement with the analytical prediction, which is based on requiring a resonance between the ac drive and motion of the soliton through the periodic lattice. The generic dynamical regimes are mapped in the model's parameter space. Collisions between moving stable solitons are briefly investigated too, with a conclusion that two different outcomes are possible: elastic bounce, or bounce with mass transfer from one soliton to the other. The model can be realized experimentally in a Bose-Einstein condensate trapped in a deep optical lattice.
Heathcote, Andrew
2016-01-01
In the real world, decision making processes must be able to integrate non-stationary information that changes systematically while the decision is in progress. Although theories of decision making have traditionally been applied to paradigms with stationary information, non-stationary stimuli are now of increasing theoretical interest. We use a random-dot motion paradigm along with cognitive modeling to investigate how the decision process is updated when a stimulus changes. Participants viewed a cloud of moving dots, where the motion switched directions midway through some trials, and were asked to determine the direction of motion. Behavioral results revealed a strong delay effect: after presentation of the initial motion direction there is a substantial time delay before the changed motion information is integrated into the decision process. To further investigate the underlying changes in the decision process, we developed a Piecewise Linear Ballistic Accumulator model (PLBA). The PLBA is efficient to simulate, enabling it to be fit to participant choice and response-time distribution data in a hierarchal modeling framework using a non-parametric approximate Bayesian algorithm. Consistent with behavioral results, PLBA fits confirmed the presence of a long delay between presentation and integration of new stimulus information, but did not support increased response caution in reaction to the change. We also found the decision process was not veridical, as symmetric stimulus change had an asymmetric effect on the rate of evidence accumulation. Thus, the perceptual decision process was slow to react to, and underestimated, new contrary motion information. PMID:26760448
Nonlinear dynamic failure process of tunnel-fault system in response to strong seismic event
NASA Astrophysics Data System (ADS)
Yang, Zhihua; Lan, Hengxing; Zhang, Yongshuang; Gao, Xing; Li, Langping
2013-03-01
Strong earthquakes and faults have significant effect on the stability capability of underground tunnel structures. This study used a 3-Dimensional Discrete Element model and the real records of ground motion in the Wenchuan earthquake to investigate the dynamic response of tunnel-fault system. The typical tunnel-fault system was composed of one planned railway tunnel and one seismically active fault. The discrete numerical model was prudentially calibrated by means of the comparison between the field survey and numerical results of ground motion. It was then used to examine the detailed quantitative information on the dynamic response characteristics of tunnel-fault system, including stress distribution, strain, vibration velocity and tunnel failure process. The intensive tunnel-fault interaction during seismic loading induces the dramatic stress redistribution and stress concentration in the intersection of tunnel and fault. The tunnel-fault system behavior is characterized by the complicated nonlinear dynamic failure process in response to a real strong seismic event. It can be qualitatively divided into 5 main stages in terms of its stress, strain and rupturing behaviors: (1) strain localization, (2) rupture initiation, (3) rupture acceleration, (4) spontaneous rupture growth and (5) stabilization. This study provides the insight into the further stability estimation of underground tunnel structures under the combined effect of strong earthquakes and faults.
Brief communication: The global signature of post-1900 land ice wastage on vertical land motion
NASA Astrophysics Data System (ADS)
Riva, Riccardo E. M.; Frederikse, Thomas; King, Matt A.; Marzeion, Ben; van den Broeke, Michiel R.
2017-06-01
Melting glaciers, ice caps and ice sheets have made an important contribution to sea-level rise through the last century. Self-attraction and loading effects driven by shrinking ice masses cause a spatially varying redistribution of ocean waters that affects reconstructions of past sea level from sparse observations. We model the solid-earth response to ice mass changes and find significant vertical deformation signals over large continental areas. We show how deformation rates have been strongly varying through the last century, which implies that they should be properly modelled before interpreting and extrapolating recent observations of vertical land motion and sea-level change.
Synchronous and asynchronous whirling of the balanced rotor with an orthotropic elastic shaft
NASA Astrophysics Data System (ADS)
Bykov, V. G.
2018-05-01
The motion of a fully balanced Jeffcott rotor excited by the external torque is considered. The mechanical model of the rotor takes into account the orthotropy of visco-elastic characteristics of the shaft and the influence of viscous external and internal damping forces. The self-excited whirling motions, due to the loss of stability of proper rotation, are investigated. It is established that, for sufficiently strong orthotropy of the shaft, there are two regions of instability of rotor's basic motion. In the first region the steady-state motion of the rotor is regular synchronous whirling, and in the second one there are asynchronous self-excited vibrations. We obtained the analytic formulas for the threshold values of the torque, which limit existence regions of both whirling modes.
Orientation selectivity sharpens motion detection in Drosophila
Fisher, Yvette E.; Silies, Marion; Clandinin, Thomas R.
2015-01-01
SUMMARY Detecting the orientation and movement of edges in a scene is critical to visually guided behaviors of many animals. What are the circuit algorithms that allow the brain to extract such behaviorally vital visual cues? Using in vivo two-photon calcium imaging in Drosophila, we describe direction selective signals in the dendrites of T4 and T5 neurons, detectors of local motion. We demonstrate that this circuit performs selective amplification of local light inputs, an observation that constrains motion detection models and confirms a core prediction of the Hassenstein-Reichardt Correlator (HRC). These neurons are also orientation selective, responding strongly to static features that are orthogonal to their preferred axis of motion, a tuning property not predicted by the HRC. This coincident extraction of orientation and direction sharpens directional tuning through surround inhibition and reveals a striking parallel between visual processing in flies and vertebrate cortex, suggesting a universal strategy for motion processing. PMID:26456048
Research and implementation of group animation based on normal cloud model
NASA Astrophysics Data System (ADS)
Li, Min; Wei, Bin; Peng, Bao
2011-12-01
Group Animation is a difficult technology problem which always has not been solved in computer Animation technology, All current methods have their limitations. This paper put forward a method: the Motion Coordinate and Motion Speed of true fish group was collected as sample data, reverse cloud generator was designed and run, expectation, entropy and super entropy are gotten. Which are quantitative value of qualitative concept. These parameters are used as basis, forward cloud generator was designed and run, Motion Coordinate and Motion Speed of two-dimensional fish group animation are produced, And two spirit state variable about fish group : the feeling of hunger, the feeling of fear are designed. Experiment is used to simulated the motion state of fish Group Animation which is affected by internal cause and external cause above, The experiment shows that the Group Animation which is designed by this method has strong Realistic.
NASA Astrophysics Data System (ADS)
Safdari, Hadiseh; Chechkin, Aleksei V.; Jafari, Gholamreza R.; Metzler, Ralf
2015-04-01
Scaled Brownian motion (SBM) is widely used to model anomalous diffusion of passive tracers in complex and biological systems. It is a highly nonstationary process governed by the Langevin equation for Brownian motion, however, with a power-law time dependence of the noise strength. Here we study the aging properties of SBM for both unconfined and confined motion. Specifically, we derive the ensemble and time averaged mean squared displacements and analyze their behavior in the regimes of weak, intermediate, and strong aging. A very rich behavior is revealed for confined aging SBM depending on different aging times and whether the process is sub- or superdiffusive. We demonstrate that the information on the aging factorizes with respect to the lag time and exhibits a functional form that is identical to the aging behavior of scale-free continuous time random walk processes. While SBM exhibits a disparity between ensemble and time averaged observables and is thus weakly nonergodic, strong aging is shown to effect a convergence of the ensemble and time averaged mean squared displacement. Finally, we derive the density of first passage times in the semi-infinite domain that features a crossover defined by the aging time.
Safdari, Hadiseh; Chechkin, Aleksei V; Jafari, Gholamreza R; Metzler, Ralf
2015-04-01
Scaled Brownian motion (SBM) is widely used to model anomalous diffusion of passive tracers in complex and biological systems. It is a highly nonstationary process governed by the Langevin equation for Brownian motion, however, with a power-law time dependence of the noise strength. Here we study the aging properties of SBM for both unconfined and confined motion. Specifically, we derive the ensemble and time averaged mean squared displacements and analyze their behavior in the regimes of weak, intermediate, and strong aging. A very rich behavior is revealed for confined aging SBM depending on different aging times and whether the process is sub- or superdiffusive. We demonstrate that the information on the aging factorizes with respect to the lag time and exhibits a functional form that is identical to the aging behavior of scale-free continuous time random walk processes. While SBM exhibits a disparity between ensemble and time averaged observables and is thus weakly nonergodic, strong aging is shown to effect a convergence of the ensemble and time averaged mean squared displacement. Finally, we derive the density of first passage times in the semi-infinite domain that features a crossover defined by the aging time.
Strong motions observed by K-NET and KiK-net during the 2016 Kumamoto earthquake sequence
NASA Astrophysics Data System (ADS)
Suzuki, Wataru; Aoi, Shin; Kunugi, Takashi; Kubo, Hisahiko; Morikawa, Nobuyuki; Nakamura, Hiromitsu; Kimura, Takeshi; Fujiwara, Hiroyuki
2017-01-01
The nationwide strong-motion seismograph network of K-NET and KiK-net in Japan successfully recorded the strong ground motions of the 2016 Kumamoto earthquake sequence, which show the several notable characteristics. For the first large earthquake with a JMA magnitude of 6.5 (21:26, April 14, 2016, JST), the large strong motions are concentrated near the epicenter and the strong-motion attenuations are well predicted by the empirical relation for crustal earthquakes with a moment magnitude of 6.1. For the largest earthquake of the sequence with a JMA magnitude of 7.3 (01:25, April 16, 2016, JST), the large peak ground accelerations and velocities extend from the epicentral area to the northeast direction. The attenuation feature of peak ground accelerations generally follows the empirical relation, whereas that for velocities deviates from the empirical relation for stations with the epicentral distance of greater than 200 km, which can be attributed to the large Love wave having a dominant period around 10 s. The large accelerations were observed at stations even in Oita region, more than 70 km northeast from the epicenter. They are attributed to the local induced earthquake in Oita region, whose moment magnitude is estimated to be 5.5 by matching the amplitudes of the corresponding phases with the empirical attenuation relation. The real-time strong-motion observation has a potential for contributing to the mitigation of the ongoing earthquake disasters. We test a methodology to forecast the regions to be exposed to the large shaking in real time, which has been developed based on the fact that the neighboring stations are already shaken, for the largest event of the Kumamoto earthquakes, and demonstrate that it is simple but effective to quickly make warning. We also shows that the interpolation of the strong motions in real time is feasible, which will be utilized for the real-time forecast of ground motions based on the observed shakings.[Figure not available: see fulltext.
Shear-wave velocity compilation for Northridge strong-motion recording sites
Borcherdt, Roger D.; Fumal, Thomas E.
2002-01-01
Borehole and other geotechnical information collected at the strong-motion recording sites of the Northridge earthquake of January 17, 1994 provide an important new basis for the characterization of local site conditions. These geotechnical data, when combined with analysis of strong-motion recordings, provide an empirical basis to evaluate site coefficients used in current versions of US building codes. Shear-wave-velocity estimates to a depth of 30 meters are derived for 176 strong-motion recording sites. The estimates are based on borehole shear-velocity logs, physical property logs, correlations with physical properties and digital geologic maps. Surface-wave velocity measurements and standard penetration data are compiled as additional constraints. These data as compiled from a variety of databases are presented via GIS maps and corresponding tables to facilitate use by other investigators.
NASA Astrophysics Data System (ADS)
Tu, Rui; Wang, Rongjiang; Zhang, Yong; Walter, Thomas R.
2014-06-01
The description of static displacements associated with earthquakes is traditionally achieved using GPS, EDM or InSAR data. In addition, displacement histories can be derived from strong-motion records, allowing an improvement of geodetic networks at a high sampling rate and a better physical understanding of earthquake processes. Strong-motion records require a correction procedure appropriate for baseline shifts that may be caused by rotational motion, tilting and other instrumental effects. Common methods use an empirical bilinear correction on the velocity seismograms integrated from the strong-motion records. In this study, we overcome the weaknesses of an empirically based bilinear baseline correction scheme by using a net-based criterion to select the timing parameters. This idea is based on the physical principle that low-frequency seismic waveforms at neighbouring stations are coherent if the interstation distance is much smaller than the distance to the seismic source. For a dense strong-motion network, it is plausible to select the timing parameters so that the correlation coefficient between the velocity seismograms of two neighbouring stations is maximized after the baseline correction. We applied this new concept to the KiK-Net and K-Net strong-motion data available for the 2011 Mw 9.0 Tohoku earthquake. We compared the derived coseismic static displacement with high-quality GPS data, and with the results obtained using empirical methods. The results show that the proposed net-based approach is feasible and more robust than the individual empirical approaches. The outliers caused by unknown problems in the measurement system can be easily detected and quantified.
Rezaeian, Sanaz; Bozorgnia, Yousef; Idriss, I.M.; Abrahamson, Norman; Campbell, Kenneth; Silva, Walter
2014-01-01
Ground motion prediction equations (GMPEs) for elastic response spectra are typically developed at a 5% viscous damping ratio. In reality, however, structural and nonstructural systems can have other damping ratios. This paper develops a new model for a damping scaling factor (DSF) that can be used to adjust the 5% damped spectral ordinates predicted by a GMPE for damping ratios between 0.5% to 30%. The model is developed based on empirical data from worldwide shallow crustal earthquakes in active tectonic regions. Dependencies of the DSF on potential predictor variables, such as the damping ratio, spectral period, ground motion duration, moment magnitude, source-to-site distance, and site conditions, are examined. The strong influence of duration is captured by the inclusion of both magnitude and distance in the DSF model. Site conditions show weak influence on the DSF. The proposed damping scaling model provides functional forms for the median and logarithmic standard deviation of DSF, and is developed for both RotD50 and GMRotI50 horizontal components. A follow-up paper develops a DSF model for vertical ground motion.
Nanoparticle Motion in Entangled Melts of Linear and Nonconcatenated Ring Polymers
2017-01-01
The motion of nanoparticles (NPs) in entangled melts of linear polymers and nonconcatenated ring polymers are compared by large-scale molecular dynamics simulations. The comparison provides a paradigm for the effects of polymer architecture on the dynamical coupling between NPs and polymers in nanocomposites. Strongly suppressed motion of NPs with diameter d larger than the entanglement spacing a is observed in a melt of linear polymers before the onset of Fickian NP diffusion. This strong suppression of NP motion occurs progressively as d exceeds a and is related to the hopping diffusion of NPs in the entanglement network. In contrast to the NP motion in linear polymers, the motion of NPs with d > a in ring polymers is not as strongly suppressed prior to Fickian diffusion. The diffusion coefficient D decreases with increasing d much slower in entangled rings than in entangled linear chains. NP motion in entangled nonconcatenated ring polymers is understood through a scaling analysis of the coupling between NP motion and the self-similar entangled dynamics of ring polymers. PMID:28392603
Motion processing with two eyes in three dimensions.
Rokers, Bas; Czuba, Thaddeus B; Cormack, Lawrence K; Huk, Alexander C
2011-02-11
The movement of an object toward or away from the head is perhaps the most critical piece of information an organism can extract from its environment. Such 3D motion produces horizontally opposite motions on the two retinae. Little is known about how or where the visual system combines these two retinal motion signals, relative to the wealth of knowledge about the neural hierarchies involved in 2D motion processing and binocular vision. Canonical conceptions of primate visual processing assert that neurons early in the visual system combine monocular inputs into a single cyclopean stream (lacking eye-of-origin information) and extract 1D ("component") motions; later stages then extract 2D pattern motion from the cyclopean output of the earlier stage. Here, however, we show that 3D motion perception is in fact affected by the comparison of opposite 2D pattern motions between the two eyes. Three-dimensional motion sensitivity depends systematically on pattern motion direction when dichoptically viewing gratings and plaids-and a novel "dichoptic pseudoplaid" stimulus provides strong support for use of interocular pattern motion differences by precluding potential contributions from conventional disparity-based mechanisms. These results imply the existence of eye-of-origin information in later stages of motion processing and therefore motivate the incorporation of such eye-specific pattern-motion signals in models of motion processing and binocular integration.
Effect of a Near Fault on the Seismic Response of a Base-Isolated Structure with a Soft Storey
NASA Astrophysics Data System (ADS)
Athamnia, B.; Ounis, A.; Abdeddaim, M.
2017-12-01
This study focuses on the soft-storey behavior of RC structures with lead core rubber bearing (LRB) isolation systems under near and far-fault motions. Under near-fault ground motions, seismic isolation devices might perform poorly because of large isolator displacements caused by large velocity and displacement pulses associated with such strong motions. In this study, four different structural models have been designed to study the effect of soft-storey behavior under near-fault and far-fault motions. The seismic analysis for isolated reinforced concrete buildings is carried out using a nonlinear time history analysis method. Inter-story drifts, absolute acceleration, displacement, base shear forces, hysteretic loops and the distribution of plastic hinges are examined as a result of the analysis. These results show that the performance of a base isolated RC structure is more affected by increasing the height of a story under nearfault motion than under far-fault motion.
Spectral damping scaling factors for shallow crustal earthquakes in active tectonic regions
Rezaeian, Sanaz; Bozorgnia, Yousef; Idriss, I.M.; Campbell, Kenneth; Abrahamson, Norman; Silva, Walter
2012-01-01
Ground motion prediction equations (GMPEs) for elastic response spectra, including the Next Generation Attenuation (NGA) models, are typically developed at a 5% viscous damping ratio. In reality, however, structural and non-structural systems can have damping ratios other than 5%, depending on various factors such as structural types, construction materials, level of ground motion excitations, among others. This report provides the findings of a comprehensive study to develop a new model for a Damping Scaling Factor (DSF) that can be used to adjust the 5% damped spectral ordinates predicted by a GMPE to spectral ordinates with damping ratios between 0.5 to 30%. Using the updated, 2011 version of the NGA database of ground motions recorded in worldwide shallow crustal earthquakes in active tectonic regions (i.e., the NGA-West2 database), dependencies of the DSF on variables including damping ratio, spectral period, moment magnitude, source-to-site distance, duration, and local site conditions are examined. The strong influence of duration is captured by inclusion of both magnitude and distance in the DSF model. Site conditions are found to have less significant influence on DSF and are not included in the model. The proposed model for DSF provides functional forms for the median value and the logarithmic standard deviation of DSF. This model is heteroscedastic, where the variance is a function of the damping ratio. Damping Scaling Factor models are developed for the “average” horizontal ground motion components, i.e., RotD50 and GMRotI50, as well as the vertical component of ground motion.
Tsetsos, Konstantinos; Gao, Juan; McClelland, James L.; Usher, Marius
2012-01-01
When people make decisions, do they give equal weight to evidence arriving at different times? A recent study (Kiani et al., 2008) using brief motion pulses (superimposed on a random moving dot display) reported a primacy effect: pulses presented early in a motion observation period had a stronger impact than pulses presented later. This observation was interpreted as supporting the bounded diffusion (BD) model and ruling out models in which evidence accumulation is subject to leakage or decay of early-arriving information. We use motion pulses and other manipulations of the timing of the perceptual evidence in new experiments and simulations that support the leaky competing accumulator (LCA) model as an alternative to the BD model. While the LCA does include leakage, we show that it can exhibit primacy as a result of competition between alternatives (implemented via mutual inhibition), when the inhibition is strong relative to the leak. Our experiments replicate the primacy effect when participants must be prepared to respond quickly at the end of a motion observation period. With less time pressure, however, the primacy effect is much weaker. For 2 (out of 10) participants, a primacy bias observed in trials where the motion observation period is short becomes weaker or reverses (becoming a recency effect) as the observation period lengthens. Our simulation studies show that primacy is equally consistent with the LCA or with BD. The transition from primacy-to-recency can also be captured by the LCA but not by BD. Individual differences and relations between the LCA and other models are discussed. PMID:22701399
Emergence of macroscopic directed motion in populations of motile colloids
NASA Astrophysics Data System (ADS)
Bricard, Antoine; Caussin, Jean-Baptiste; Desreumaux, Nicolas; Dauchot, Olivier; Bartolo, Denis
2013-11-01
From the formation of animal flocks to the emergence of coordinated motion in bacterial swarms, populations of motile organisms at all scales display coherent collective motion. This consistent behaviour strongly contrasts with the difference in communication abilities between the individuals. On the basis of this universal feature, it has been proposed that alignment rules at the individual level could solely account for the emergence of unidirectional motion at the group level. This hypothesis has been supported by agent-based simulations. However, more complex collective behaviours have been systematically found in experiments, including the formation of vortices, fluctuating swarms, clustering and swirling. All these (living and man-made) model systems (bacteria, biofilaments and molecular motors, shaken grains and reactive colloids) predominantly rely on actual collisions to generate collective motion. As a result, the potential local alignment rules are entangled with more complex, and often unknown, interactions. The large-scale behaviour of the populations therefore strongly depends on these uncontrolled microscopic couplings, which are extremely challenging to measure and describe theoretically. Here we report that dilute populations of millions of colloidal rolling particles self-organize to achieve coherent motion in a unique direction, with very few density and velocity fluctuations. Quantitatively identifying the microscopic interactions between the rollers allows a theoretical description of this polar-liquid state. Comparison of the theory with experiment suggests that hydrodynamic interactions promote the emergence of collective motion either in the form of a single macroscopic `flock', at low densities, or in that of a homogenous polar phase, at higher densities. Furthermore, hydrodynamics protects the polar-liquid state from the giant density fluctuations that were hitherto considered the hallmark of populations of self-propelled particles. Our experiments demonstrate that genuine physical interactions at the individual level are sufficient to set homogeneous active populations into stable directed motion.
NASA Astrophysics Data System (ADS)
Yun, S.; Koketsu, K.; Aoki, Y.
2014-12-01
The September 4, 2010, Canterbury earthquake with a moment magnitude (Mw) of 7.1 is a crustal earthquake in the South Island, New Zealand. The February 22, 2011, Christchurch earthquake (Mw=6.3) is the biggest aftershock of the 2010 Canterbury earthquake that is located at about 50 km to the east of the mainshock. Both earthquakes occurred on previously unrecognized faults. Field observations indicate that the rupture of the 2010 Canterbury earthquake reached the surface; the surface rupture with a length of about 30 km is located about 4 km south of the epicenter. Also various data including the aftershock distribution and strong motion seismograms suggest a very complex rupture process. For these reasons it is useful to investigate the complex rupture process using multiple data with various sensitivities to the rupture process. While previously published source models are based on one or two datasets, here we infer the rupture process with three datasets, InSAR, strong-motion, and teleseismic data. We first performed point source inversions to derive the focal mechanism of the 2010 Canterbury earthquake. Based on the focal mechanism, the aftershock distribution, the surface fault traces and the SAR interferograms, we assigned several source faults. We then performed the joint inversion to determine the rupture process of the 2010 Canterbury earthquake most suitable for reproducing all the datasets. The obtained slip distribution is in good agreement with the surface fault traces. We also performed similar inversions to reveal the rupture process of the 2011 Christchurch earthquake. Our result indicates steep dip and large up-dip slip. This reveals the observed large vertical ground motion around the source region is due to the rupture process, rather than the local subsurface structure. To investigate the effects of the 3-D velocity structure on characteristic strong motion seismograms of the two earthquakes, we plan to perform the inversion taking 3-D velocity structure of this region into account.
NASA Astrophysics Data System (ADS)
Chen, Bo; Wen, Zengping; Wang, Fang
2017-04-01
Using near-fault strong motions from Nepal Mw7.8 earthquake at KATNP station in the city center of Kathmandu, velocity-pulse and non-stationary characteristics of the strong motions are shown, and the reason and potential effect on earthquake damage for intense non-stationary characteristics of near fault velocity-pulse strong motions are mainly studied. The observed strong ground motions of main shock were collected from KATNP station located in 76 kilometers south-east away from epicenter along with forward direction of the rupture fault at an inter-montane basin of the Himalaya. Large velocity pulse show the period of velocity pulse reach up to 6.6s and peak ground velocity of the pulse ground motion is 120 cm/s. Compared with the median spectral acceleration value of NGA prediction equation, significant long-period amplification effect due to velocity pulse is detected at period more than 3.2s. Wavelet analysis shows that the two horizontal component of ground motion is intensely concentration of energy in a short time range of 25-38s and period range of 4-8s. The maximum wavelet-coefficient of horizontal component is 2455, which is about four time of vertical component of strong ground motion. On the perspective of this study, large velocity pulses are identified from two orthogonal components using wavelet method. Intense non-stationary characteristics amplitude and frequency content are mainly caused by site conditions and fault rupture mechanism, which will help to understand the damage evaluation and serve local seismic design.
Stochastic ground motion simulation
Rezaeian, Sanaz; Xiaodan, Sun; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan
2014-01-01
Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Ting; Kalathi, Jagannathan T.; Halverson, Jonathan D.
The motion of nanoparticles (NPs) in entangled melts of linear polymers and non-concatenated ring polymers are compared by large-scale molecular dynamics simulations. The comparison provides a paradigm for the effects of polymer architecture on the dynamical coupling between NPs and polymers in nanocomposites. Strongly suppressed motion of NPs with diameter d larger than the entanglement spacing a is observed in a melt of linear polymers before the onset of Fickian NP diffusion. This strong suppression of NP motion occurs progressively as d exceeds a, and is related to the hopping diffusion of NPs in the entanglement network. In contrast tomore » the NP motion in linear polymers, the motion of NPs with d > a in ring polymers is not as strongly suppressed prior to Fickian diffusion. The diffusion coefficient D decreases with increasing d much slower in entangled rings than in entangled linear chains. NP motion in entangled non-concatenated ring polymers is understood through a scaling analysis of the coupling between NP motion and the self-similar entangled dynamics of ring polymers.« less
Ge, Ting; Kalathi, Jagannathan T.; Halverson, Jonathan D.; ...
2017-02-13
The motion of nanoparticles (NPs) in entangled melts of linear polymers and non-concatenated ring polymers are compared by large-scale molecular dynamics simulations. The comparison provides a paradigm for the effects of polymer architecture on the dynamical coupling between NPs and polymers in nanocomposites. Strongly suppressed motion of NPs with diameter d larger than the entanglement spacing a is observed in a melt of linear polymers before the onset of Fickian NP diffusion. This strong suppression of NP motion occurs progressively as d exceeds a, and is related to the hopping diffusion of NPs in the entanglement network. In contrast tomore » the NP motion in linear polymers, the motion of NPs with d > a in ring polymers is not as strongly suppressed prior to Fickian diffusion. The diffusion coefficient D decreases with increasing d much slower in entangled rings than in entangled linear chains. NP motion in entangled non-concatenated ring polymers is understood through a scaling analysis of the coupling between NP motion and the self-similar entangled dynamics of ring polymers.« less
Slow-motion scattering and coalescence of maximally charged black holes
NASA Technical Reports Server (NTRS)
Ferrell, Robert C.; Eardley, Douglas M.
1987-01-01
Systems consisting of several maximally charged, nonrotating black holes ('Reissner-Nordstrom' black holes) interacting with one another are studied. An effective action for the system in the slow-motion, fully strong-field regime is presented. An exact calculation of black-hole-black-hole scattering and coalescence in the slow-motion (but strong-field) limit is given.
NASA Astrophysics Data System (ADS)
Monthus, Cécile
2018-03-01
For the many-body-localized phase of random Majorana models, a general strong disorder real-space renormalization procedure known as RSRG-X (Pekker et al 2014 Phys. Rev. X 4 011052) is described to produce the whole set of excited states, via the iterative construction of the local integrals of motion (LIOMs). The RG rules are then explicitly derived for arbitrary quadratic Hamiltonians (free-fermions models) and for the Kitaev chain with local interactions involving even numbers of consecutive Majorana fermions. The emphasis is put on the advantages of the Majorana language over the usual quantum spin language to formulate unified RSRG-X rules.
A strong-motion database from the Central American subduction zone
NASA Astrophysics Data System (ADS)
Arango, Maria Cristina; Strasser, Fleur O.; Bommer, Julian J.; Hernández, Douglas A.; Cepeda, Jose M.
2011-04-01
Subduction earthquakes along the Pacific Coast of Central America generate considerable seismic risk in the region. The quantification of the hazard due to these events requires the development of appropriate ground-motion prediction equations, for which purpose a database of recordings from subduction events in the region is indispensable. This paper describes the compilation of a comprehensive database of strong ground-motion recordings obtained during subduction-zone events in Central America, focusing on the region from 8 to 14° N and 83 to 92° W, including Guatemala, El Salvador, Nicaragua and Costa Rica. More than 400 accelerograms recorded by the networks operating across Central America during the last decades have been added to data collected by NORSAR in two regional projects for the reduction of natural disasters. The final database consists of 554 triaxial ground-motion recordings from events of moment magnitudes between 5.0 and 7.7, including 22 interface and 58 intraslab-type events for the time period 1976-2006. Although the database presented in this study is not sufficiently complete in terms of magnitude-distance distribution to serve as a basis for the derivation of predictive equations for interface and intraslab events in Central America, it considerably expands the Central American subduction data compiled in previous studies and used in early ground-motion modelling studies for subduction events in this region. Additionally, the compiled database will allow the assessment of the existing predictive models for subduction-type events in terms of their applicability for the Central American region, which is essential for an adequate estimation of the hazard due to subduction earthquakes in this region.
Clayey Landslide Initiation and Acceleration Strongly Modulated by Soil Swelling
NASA Astrophysics Data System (ADS)
Schulz, William H.; Smith, Joel B.; Wang, Gonghui; Jiang, Yao; Roering, Joshua J.
2018-02-01
Largely unknown mechanisms restrain motion of clay-rich, slow-moving landslides that are widespread worldwide and rarely accelerate catastrophically. We studied a clayey, slow-moving landslide typical of thousands in Northern California, USA, to decipher hydrologic-mechanical interactions that modulate landslide dynamics. Similar to some other studies, observed pore-water pressures correlated poorly with landslide reactivation and speed. In situ and laboratory measurements strongly suggested that variable pressure along the landslide's lateral shear boundaries resulting from seasonal soil expansion and contraction modulated its reactivation and speed. Slope-stability modeling suggested that the landslide's observed behavior could be predicted by including transient swell pressure as a resistance term, whereas modeling considering only transient hydrologic conditions predicted movement five to six months prior to when it was observed. All clayey soils swell to some degree; hence, our findings suggest that swell pressure likely modulates motion of many landslides and should be considered to improve forecasts of clayey landslide initiation and mobility.
Clayey landslide initiation and acceleration strongly modulated by soil swelling
Schulz, William; Smith, Joel B.; Wang, Gonghui; Jiang, Yao; Roering, Joshua J.
2018-01-01
Largely unknown mechanisms restrain motion of clay-rich, slow-moving landslides that are widespread worldwide and rarely accelerate catastrophically. We studied a clayey, slow-moving landslide typical of thousands in northern California, USA, to decipher hydrologic-mechanical interactions that modulate landslide dynamics. Similar to some other studies, observed pore-water pressures correlated poorly with landslide reactivation and speed. In situ and laboratory measurements strongly suggested that variable pressure along the landslide's lateral shear boundaries resulting from seasonal soil expansion and contraction modulated its reactivation and speed. Slope-stability modeling suggested that the landslide's observed behavior could be predicted by including transient swell pressure as a resistance term, whereas modeling considering only transient hydrologic conditions predicted movement 5–6 months prior to when it was observed. All clayey soils swell to some degree; hence, our findings suggest that swell pressure likely modulates motion of many landslides and should be considered to improve forecasts of clayey landslide initiation and mobility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasari, Paul K. R.; Shazeeb, Mohammed Salman; Könik, Arda
Purpose: Binning list-mode acquisitions as a function of a surrogate signal related to respiration has been employed to reduce the impact of respiratory motion on image quality in cardiac emission tomography (SPECT and PET). Inherent in amplitude binning is the assumption that there is a monotonic relationship between the amplitude of the surrogate signal and respiratory motion of the heart. This assumption is not valid in the presence of hysteresis when heart motion exhibits a different relationship with the surrogate during inspiration and expiration. The purpose of this study was to investigate the novel approach of using the Bouc–Wen (BW)more » model to provide a signal accounting for hysteresis when binning list-mode data with the goal of thereby improving motion correction. The study is based on the authors’ previous observations that hysteresis between chest and abdomen markers was indicative of hysteresis between abdomen markers and the internal motion of the heart. Methods: In 19 healthy volunteers, they determined the internal motion of the heart and diaphragm in the superior–inferior direction during free breathing using MRI navigators. A visual tracking system (VTS) synchronized with MRI acquisition tracked the anterior–posterior motions of external markers placed on the chest and abdomen. These data were employed to develop and test the Bouc–Wen model by inputting the VTS derived chest and abdomen motions into it and using the resulting output signals as surrogates for cardiac motion. The data of the volunteers were divided into training and testing sets. The training set was used to obtain initial values for the model parameters for all of the volunteers in the set, and for set members based on whether they were or were not classified as exhibiting hysteresis using a metric derived from the markers. These initial parameters were then employed with the testing set to estimate output signals. Pearson’s linear correlation coefficient between the abdomen, chest, average of chest and abdomen markers, and Bouc–Wen derived signals versus the true internal motion of the heart from MRI was used to judge the signals match to the heart motion. Results: The results show that the Bouc–Wen model generated signals demonstrated strong correlation with the heart motion. This correlation was slightly larger on average than that of the external surrogate signals derived from the abdomen marker, and average of the abdomen and chest markers, but was not statistically significantly different from them. Conclusions: The results suggest that the proposed model has the potential to be a unified framework for modeling hysteresis in respiratory motion in cardiac perfusion studies and beyond.« less
Nonlinear Inversion for Dynamic Rupture Parameters from the 2004 Mw6.0 Parkfield Earthquake
NASA Astrophysics Data System (ADS)
Jimenez, R. M.; Olsen, K. B.
2007-12-01
The Parkfield section of the San Andreas Fault has produced repeated moderate-size earthquakes at fairly regular intervals and is therefore an important target for investigations of rupture initiation, propagation and arrest, which could eventually lead to clues on earthquake prediction. The most recent member of the Parkfield series of earthquakes, the 2004 Mw6.0 event, produced a considerable amount of high-resolution strong motion data, and provides an ideal test bed for analysis of the dynamic rupture propagation. Here, we use a systematic nonlinear direct-search method to invert strong-ground motion data (less than 1 Hz) at 37 stations to obtain models of the slip weakening distance and spatially-varying stress drop (8 by 4 subfaults) on the (vertical) causative segment of the San Andreas fault (40 km long by 15 km wide), along with spatial-temporal coseismic slip distributions. The rupture and wave propagation modeling is performed by a three-dimensional finite-difference method with a slip- weakening friction law and the stress-glut dynamic-rupture formulation (Andrews, 1999), and the inversion is carried out by a neighborhood algorithm (Sambridge, 1999), minimizing the least-squares misfit between the calculated and observed seismograms. The dynamic rupture is nucleated artificially by lowering the yield stress in a 3 km by 3 km patch centered at the location of the hypocenter estimated from strong motion data. Outside the nucleation patch the yield stress is kept constant (5-10 MPa), and we constrain the slip-weakening distance to values less than 1 m. We compare the inversion results for two different velocity models: (1) a 3-D model based on the P-wave velocity structure by Thurber (2006), with S-wave and density relations based on Brocher (2005), and (2) a combination of two different 1-D layered velocity structures on either side of the fault, as proposed by Liu et al. (2006). Due to the non-uniqueness of the problem, the inversion provides an ensemble of equally valid rupture models that produce synthetics with comparable fit to the observed strong motion data. Our preliminary results with the smallest misfits, out of about 3000 tested rupture models, suggest an average slip-weakening distance of 19-81 cm and an average stress drop across the fault of 6.7 - 8.4 MPa. Compared to the kinematic inversion results by Liu et al. (2006) our models with the smallest misfits produce a larger maximum slip (up to about 81 cm) and smaller rupture area, but similar rupture duration (5-7s). The inversions carried out for the layered models tend to produce smaller misfit between data and synthetics as compared to the results using the 3D structure. This suggests that our 3D structure needs improvement, including the Vs-Vp and density-Vp relation. We expect further decrease in the misfit values by increasing the number of tested rupture models.
On the local well-posedness of Lovelock and Horndeski theories
NASA Astrophysics Data System (ADS)
Papallo, Giuseppe; Reall, Harvey S.
2017-08-01
We investigate local well-posedness of the initial value problem for Lovelock and Horndeski theories of gravity. A necessary condition for local well-posedness is strong hyperbolicity of the equations of motion. Even weak hyperbolicity can fail for strong fields so we restrict to weak fields. The Einstein equation is known to be strongly hyperbolic in harmonic gauge so we study Lovelock theories in harmonic gauge. We show that the equation of motion is always weakly hyperbolic for weak fields but, in a generic weak-field background, it is not strongly hyperbolic. For Horndeski theories, we prove that, for weak fields, the equation of motion is always weakly hyperbolic in any generalized harmonic gauge. For some Horndeski theories there exists a generalized harmonic gauge for which the equation of motion is strongly hyperbolic in a weak-field background. This includes "k-essence" like theories. However, for more general Horndeski theories, there is no generalized harmonic gauge for which the equation of motion is strongly hyperbolic in a generic weak-field background. Our results show that the standard method used to establish local well-posedness of the Einstein equation does not extend to Lovelock or general Horndeski theories. This raises the possibility that these theories may not admit a well-posed initial value problem even for weak fields.
Jones, Jeanne; Kalkan, Erol; Stephens, Christopher
2017-02-23
A continually increasing number of high-quality digital strong-motion records from stations of the National Strong-Motion Project (NSMP) of the U.S. Geological Survey (USGS), as well as data from regional seismic networks within the United States, call for automated processing of strong-motion records with human review limited to selected significant or flagged records. The NSMP has developed the Processing and Review Interface for Strong Motion data (PRISM) software to meet this need. In combination with the Advanced National Seismic System Quake Monitoring System (AQMS), PRISM automates the processing of strong-motion records. When used without AQMS, PRISM provides batch-processing capabilities. The PRISM version 1.0.0 is platform independent (coded in Java), open source, and does not depend on any closed-source or proprietary software. The software consists of two major components: a record processing engine and a review tool that has a graphical user interface (GUI) to manually review, edit, and process records. To facilitate use by non-NSMP earthquake engineers and scientists, PRISM (both its processing engine and review tool) is easy to install and run as a stand-alone system on common operating systems such as Linux, OS X, and Windows. PRISM was designed to be flexible and extensible in order to accommodate new processing techniques. This report provides a thorough description and examples of the record processing features supported by PRISM. All the computing features of PRISM have been thoroughly tested.
NASA Astrophysics Data System (ADS)
Yang, Xiaolin; Wu, Zhongliang; Jiang, Changsheng; Xia, Min
2011-05-01
One of the important issues in macroseismology and engineering seismology is how to get as much intensity and/or strong motion data as possible. We collected and studied several cases in the May 12, 2008, Wenchuan earthquake, exploring the possibility of estimating intensities and/or strong ground motion parameters using civilian monitoring videos which were deployed originally for security purposes. We used 53 video recordings in different places to determine the intensity distribution of the earthquake, which is shown to be consistent with the intensity distribution mapped by field investigation, and even better than that given by the Community Internet Intensity Map. In some of the videos, the seismic wave propagation is clearly visible, and can be measured with the reference of some artificial objects such as cars and/or trucks. By measuring the propagating wave, strong motion parameters can be roughly but quantitatively estimated. As a demonstration of this `propagating-wave method', we used a series of civilian videos recorded in different parts of Sichuan and Shaanxi and estimated the local PGAs. The estimate is compared with the measurement reported by strong motion instruments. The result shows that civilian monitoring video provide a practical way of collecting and estimating intensity and/or strong motion parameters, having the advantage of being dynamic, and being able to be played back for further analysis, reflecting a new trend for macroseismology in our digital era.
Recent Improvements to the Finite-Fault Rupture Detector Algorithm: FinDer II
NASA Astrophysics Data System (ADS)
Smith, D.; Boese, M.; Heaton, T. H.
2015-12-01
Constraining the finite-fault rupture extent and azimuth is crucial for accurately estimating ground-motion in large earthquakes. Detecting and modeling finite-fault ruptures in real-time is thus essential to both earthquake early warning (EEW) and rapid emergency response. Following extensive real-time and offline testing, the finite-fault rupture detector algorithm, FinDer (Böse et al., 2012 & 2015), was successfully integrated into the California-wide ShakeAlert EEW demonstration system. Since April 2015, FinDer has been scanning real-time waveform data from approximately 420 strong-motion stations in California for peak ground acceleration (PGA) patterns indicative of earthquakes. FinDer analyzes strong-motion data by comparing spatial images of observed PGA with theoretical templates modeled from empirical ground-motion prediction equations (GMPEs). If the correlation between the observed and theoretical PGA is sufficiently high, a report is sent to ShakeAlert including the estimated centroid position, length, and strike, and their uncertainties, of an ongoing fault rupture. Rupture estimates are continuously updated as new data arrives. As part of a joint effort between USGS Menlo Park, ETH Zurich, and Caltech, we have rewritten FinDer in C++ to obtain a faster and more flexible implementation. One new feature of FinDer II is that multiple contour lines of high-frequency PGA are computed and correlated with templates, allowing the detection of both large earthquakes and much smaller (~ M3.5) events shortly after their nucleation. Unlike previous EEW algorithms, FinDer II thus provides a modeling approach for both small-magnitude point-source and larger-magnitude finite-fault ruptures with consistent error estimates for the entire event magnitude range.
NASA Astrophysics Data System (ADS)
Takiguchi, M.; Asano, K.; Iwata, T.
2010-12-01
Two M7 class subduction zone earthquakes have occurred in the Ibaraki-ken-oki region, northeast Japan, at 23:23 on July 23, 1982 JST (Mw7.0; 1982MS) and at 01:45 on May 8, 2008 JST (Mw6.8; 2008MS). It has been reported that, from the results of the teleseismic waveform inversion, the rupture of the asperity repeated (HERP, 2010). We estimated the source processes of these earthquakes in detail by analyzing the strong motion records and discussed how much the source characteristics of the two earthquakes repeated. First, we estimated the source model of 2008MS following the method of Miyake et al. (2003). The best-fit set of the model parameters was determined by a grid search using forward modeling of broad-band ground motions. A single 12.6 km × 12.6 km rectangular Strong Motion Generation Area (SMGA, Miyake et al., 2003) was estimated. The rupture of the SMGA of 2008MS (2008SMGA) started from the hypocenter and propagated mainly to northeast. Next, we estimated the source model of 1982MS. We compared the waveforms of 1982MS and 2008MS recorded at the same stations and found the initial rupture phase before the main rupture phase on the waveforms of 1982MS. The travel time analysis showed that the main rupture of the 1982MS started approximately 33 km west of the hypocenter at about 11s after the origin time. The main rupture starting point was located inside 2008SMGA, suggesting that the two SMGAs overlapped in part. The seismic moment ratio of 1982MS to 2008MS was approximately 1.6, and we also found the observed acceleration amplitude spectra of 1982MS were 1.5 times higher than those of 2008MS in the available frequency range. We performed the waveform modeling for 1982MS with a constraint of these ratios. A single rectangular SMGA (1982SMGA) was estimated for the main rupture, which had the same size and the same rupture propagation direction as those of 2008SMGA. However, the estimated stress drop or average slip amount of 1982SMGA was 1.5 times larger than those of 2008SMGA.
Magnet Fall inside a Conductive Pipe: Motion and the Role of the Pipe Wall Thickness
ERIC Educational Resources Information Center
Donoso, G.; Ladera, C. L.; Martin, P.
2009-01-01
Theoretical models and experimental results are presented for the retarded fall of a strong magnet inside a vertical conductive non-magnetic tube. Predictions and experimental results are in good agreement modelling the magnet as a simple magnetic dipole. The effect of varying the pipe wall thickness on the retarding magnetic drag is studied for…
Intermediate scattering function of an anisotropic active Brownian particle
Kurzthaler, Christina; Leitmann, Sebastian; Franosch, Thomas
2016-01-01
Various challenges are faced when animalcules such as bacteria, protozoa, algae, or sperms move autonomously in aqueous media at low Reynolds number. These active agents are subject to strong stochastic fluctuations, that compete with the directed motion. So far most studies consider the lowest order moments of the displacements only, while more general spatio-temporal information on the stochastic motion is provided in scattering experiments. Here we derive analytically exact expressions for the directly measurable intermediate scattering function for a mesoscopic model of a single, anisotropic active Brownian particle in three dimensions. The mean-square displacement and the non-Gaussian parameter of the stochastic process are obtained as derivatives of the intermediate scattering function. These display different temporal regimes dominated by effective diffusion and directed motion due to the interplay of translational and rotational diffusion which is rationalized within the theory. The most prominent feature of the intermediate scattering function is an oscillatory behavior at intermediate wavenumbers reflecting the persistent swimming motion, whereas at small length scales bare translational and at large length scales an enhanced effective diffusion emerges. We anticipate that our characterization of the motion of active agents will serve as a reference for more realistic models and experimental observations. PMID:27830719
Intermediate scattering function of an anisotropic active Brownian particle.
Kurzthaler, Christina; Leitmann, Sebastian; Franosch, Thomas
2016-10-10
Various challenges are faced when animalcules such as bacteria, protozoa, algae, or sperms move autonomously in aqueous media at low Reynolds number. These active agents are subject to strong stochastic fluctuations, that compete with the directed motion. So far most studies consider the lowest order moments of the displacements only, while more general spatio-temporal information on the stochastic motion is provided in scattering experiments. Here we derive analytically exact expressions for the directly measurable intermediate scattering function for a mesoscopic model of a single, anisotropic active Brownian particle in three dimensions. The mean-square displacement and the non-Gaussian parameter of the stochastic process are obtained as derivatives of the intermediate scattering function. These display different temporal regimes dominated by effective diffusion and directed motion due to the interplay of translational and rotational diffusion which is rationalized within the theory. The most prominent feature of the intermediate scattering function is an oscillatory behavior at intermediate wavenumbers reflecting the persistent swimming motion, whereas at small length scales bare translational and at large length scales an enhanced effective diffusion emerges. We anticipate that our characterization of the motion of active agents will serve as a reference for more realistic models and experimental observations.
Intermediate scattering function of an anisotropic active Brownian particle
NASA Astrophysics Data System (ADS)
Kurzthaler, Christina; Leitmann, Sebastian; Franosch, Thomas
2016-10-01
Various challenges are faced when animalcules such as bacteria, protozoa, algae, or sperms move autonomously in aqueous media at low Reynolds number. These active agents are subject to strong stochastic fluctuations, that compete with the directed motion. So far most studies consider the lowest order moments of the displacements only, while more general spatio-temporal information on the stochastic motion is provided in scattering experiments. Here we derive analytically exact expressions for the directly measurable intermediate scattering function for a mesoscopic model of a single, anisotropic active Brownian particle in three dimensions. The mean-square displacement and the non-Gaussian parameter of the stochastic process are obtained as derivatives of the intermediate scattering function. These display different temporal regimes dominated by effective diffusion and directed motion due to the interplay of translational and rotational diffusion which is rationalized within the theory. The most prominent feature of the intermediate scattering function is an oscillatory behavior at intermediate wavenumbers reflecting the persistent swimming motion, whereas at small length scales bare translational and at large length scales an enhanced effective diffusion emerges. We anticipate that our characterization of the motion of active agents will serve as a reference for more realistic models and experimental observations.
Hand motion segmentation against skin colour background in breast awareness applications.
Hu, Yuqin; Naguib, Raouf N G; Todman, Alison G; Amin, Saad A; Al-Omishy, Hassanein; Oikonomou, Andreas; Tucker, Nick
2004-01-01
Skin colour modelling and classification play significant roles in face and hand detection, recognition and tracking. A hand is an essential tool used in breast self-examination, which needs to be detected and analysed during the process of breast palpation. However, the background of a woman's moving hand is her breast that has the same or similar colour as the hand. Additionally, colour images recorded by a web camera are strongly affected by the lighting or brightness conditions. Hence, it is a challenging task to segment and track the hand against the breast without utilising any artificial markers, such as coloured nail polish. In this paper, a two-dimensional Gaussian skin colour model is employed in a particular way to identify a breast but not a hand. First, an input image is transformed to YCbCr colour space, which is less sensitive to the lighting conditions and more tolerant of skin tone. The breast, thus detected by the Gaussian skin model, is used as the baseline or framework for the hand motion. Secondly, motion cues are used to segment the hand motion against the detected baseline. Desired segmentation results have been achieved and the robustness of this algorithm is demonstrated in this paper.
Chakraborty, Monojit; Chowdhury, Anamika; Bhusan, Richa; DasGupta, Sunando
2015-10-20
Droplet motion on a surface with chemical energy induced wettability gradient has been simulated using molecular dynamics (MD) simulation to highlight the underlying physics of molecular movement near the solid-liquid interface including the contact line friction. The simulations mimic experiments in a comprehensive manner wherein microsized droplets are propelled by the surface wettability gradient against forces opposed to motion. The liquid-wall Lennard-Jones interaction parameter and the substrate temperature are varied to explore their effects on the three-phase contact line friction coefficient. The contact line friction is observed to be a strong function of temperature at atomistic scales, confirming their experimentally observed inverse functionality. Additionally, the MD simulation results are successfully compared with those from an analytical model for self-propelled droplet motion on gradient surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilat-Lohinger, E.; Bazsó, A.; Funk, B.
Gravitational perturbations in multi-planet systems caused by an accompanying star are the subject of this investigation. Our dynamical model is based on the binary star HD 41004 AB where a giant planet orbits HD 41004 A. We modify the orbital parameters of this system and analyze the motion of a hypothetical test planet surrounding HD 41004 A on an interior orbit to the detected giant planet. Our numerical computations indicate perturbations due to mean motion and secular resonances (SRs). The locations of these resonances are usually connected to high eccentricity and highly inclined motion depending strongly on the binary-planet architecture.more » As the positions of mean motion resonances can easily be determined, the main purpose of this study is to present a new semi-analytical method to determine the location of an SR without huge computational effort.« less
Generation of a mixture model ground-motion prediction equation for Northern Chile
NASA Astrophysics Data System (ADS)
Haendel, A.; Kuehn, N. M.; Scherbaum, F.
2012-12-01
In probabilistic seismic hazard analysis (PSHA) empirically derived ground motion prediction equations (GMPEs) are usually applied to estimate the ground motion at a site of interest as a function of source, path and site related predictor variables. Because GMPEs are derived from limited datasets they are not expected to give entirely accurate estimates or to reflect the whole range of possible future ground motion, thus giving rise to epistemic uncertainty in the hazard estimates. This is especially true for regions without an indigenous GMPE where foreign models have to be applied. The choice of appropriate GMPEs can then dominate the overall uncertainty in hazard assessments. In order to quantify this uncertainty, the set of ground motion models used in a modern PSHA has to capture (in SSHAC language) the center, body, and range of the possible ground motion at the site of interest. This was traditionally done within a logic tree framework in which existing (or only slightly modified) GMPEs occupy the branches of the tree and the branch weights describe the degree-of-belief of the analyst in their applicability. This approach invites the problem to combine GMPEs of very different quality and hence to potentially overestimate epistemic uncertainty. Some recent hazard analysis have therefore resorted to using a small number of high quality GMPEs as backbone models from which the full distribution of GMPEs for the logic tree (to capture the full range of possible ground motion uncertainty) where subsequently generated by scaling (in a general sense). In the present study, a new approach is proposed to determine an optimized backbone model as weighted components of a mixture model. In doing so, each GMPE is assumed to reflect the generation mechanism (e. g. in terms of stress drop, propagation properties, etc.) for at least a fraction of possible ground motions in the area of interest. The combination of different models into a mixture model (which is learned from observed ground motion data in the region of interest) is then transferring information from other regions to the region where the observations have been produced in a data driven way. The backbone model is learned by comparing the model predictions to observations of the target region. For each observation and each model, the likelihood of an observation given a certain GMPE is calculated. Mixture weights can then be assigned using the expectation maximization (EM) algorithm or Bayesian inference. The new method is used to generate a backbone reference model for Northern Chile, an area for which no dedicated GMPE exists. Strong motion recordings from the target area are used to learn the backbone model from a set of 10 GMPEs developed for different subduction zones of the world. The formation of mixture models is done individually for interface and intraslab type events. The ability of the resulting backbone models to describe ground motions in Northern Chile is then compared to the predictive performance of their constituent models.
Computation of linear acceleration through an internal model in the macaque cerebellum
Laurens, Jean; Meng, Hui; Angelaki, Dora E.
2013-01-01
A combination of theory and behavioral findings has supported a role for internal models in the resolution of sensory ambiguities and sensorimotor processing. Although the cerebellum has been proposed as a candidate for implementation of internal models, concrete evidence from neural responses is lacking. Here we exploit un-natural motion stimuli, which induce incorrect self-motion perception and eye movements, to explore the neural correlates of an internal model proposed to compensate for Einstein’s equivalence principle and generate neural estimates of linear acceleration and gravity. We show that caudal cerebellar vermis Purkinje cells and cerebellar nuclei neurons selective for actual linear acceleration also encode erroneous linear acceleration, as expected from the internal model hypothesis, even when no actual linear acceleration occurs. These findings provide strong evidence that the cerebellum might be involved in the implementation of internal models that mimic physical principles to interpret sensory signals, as previously hypothesized by theorists. PMID:24077562
Earthquake Intensity and Strong Motion Analysis Within SEISCOMP3
NASA Astrophysics Data System (ADS)
Becker, J.; Weber, B.; Ghasemi, H.; Cummins, P. R.; Murjaya, J.; Rudyanto, A.; Rößler, D.
2017-12-01
Measuring and predicting ground motion parameters including seismic intensities for earthquakes is crucial and subject to recent research in engineering seismology.gempa has developed the new SIGMA module for Seismic Intensity and Ground Motion Analysis. The module is based on the SeisComP3 framework extending it in the field of seismic hazard assessment and engineering seismology. SIGMA may work with or independently of SeisComP3 by supporting FDSN Web services for importing earthquake or station information and waveforms. It provides a user-friendly and modern graphical interface for semi-automatic and interactive strong motion data processing. SIGMA provides intensity and (P)SA maps based on GMPE's or recorded data. It calculates the most common strong motion parameters, e.g. PGA/PGV/PGD, Arias intensity and duration, Tp, Tm, CAV, SED and Fourier-, power- and response spectra. GMPE's are configurable. Supporting C++ and Python plug-ins, standard and customized GMPE's including the OpenQuake Hazard Library can be easily integrated and compared. Originally tailored to specifications by Geoscience Australia and BMKG (Indonesia) SIGMA has become a popular tool among SeisComP3 users concerned with seismic hazard and strong motion seismology.
Comparison of damping in buildings under low-amplitude and strong motions
Celebi, M.
1996-01-01
This paper presents a comprehensive assessment of damping values and other dynamic characteristics of five buildings using strong-motion and low-amplitude (ambient vibration) data. The strong-motion dynamic characteristics of five buildings within the San Francisco Bay area are extracted from recordings of the 17 October 1989 Loma Prieta earthquake (LPE). Ambient vibration response characteristics for the same five buildings were inferred using data collected in 1990 following LPE. Additional earthquake data other than LPE for one building and ambient vibration data collected before LPE for two other buildings provide additional confirmation of the results obtained. For each building, the percentages of critical damping and the corresponding fundamental periods determined from low-amplitude test data are appreciably lower than those determined from strong-motion recordings. These differences are attributed mainly to soil-structure interaction and other non-linear behavior affecting the structures during strong shaking. Significant contribution of radiation damping to the effective damping of a specific building is discussed in detail.
Strong motion observations and recordings from the great Wenchuan Earthquake
Li, X.; Zhou, Z.; Yu, H.; Wen, R.; Lu, D.; Huang, M.; Zhou, Y.; Cu, J.
2008-01-01
The National Strong Motion Observation Network System (NSMONS) of China is briefly introduced in this paper. The NSMONS consists of permanent free-field stations, special observation arrays, mobile observatories and a network management system. During the Wenchuan Earthquake, over 1,400 components of acceleration records were obtained from 460 permanent free-field stations and three arrays for topographical effect and structural response observation in the network system from the main shock, and over 20,000 components of acceleration records from strong aftershocks occurred before August 1, 2008 were also obtained by permanent free-field stations of the NSMONS and 59 mobile instruments quickly deployed after the main shock. The strong motion recordings from the main shock and strong aftershocks are summarized in this paper. In the ground motion recordings, there are over 560 components with peak ground acceleration (PGA) over 10 Gal, the largest being 957.7 Gal. The largest PGA recorded during the aftershock exceeds 300 Gal. ?? 2008 Institute of Engineering Mechanics, China Earthquake Administration and Springer-Verlag GmbH.
NASA Astrophysics Data System (ADS)
Peters, William K.; Tiwari, Vivek; Jonas, David M.
2017-11-01
The nonadiabatic states and dynamics are investigated for a linear vibronic coupling Hamiltonian with a static electronic splitting and weak off-diagonal Jahn-Teller coupling through a single vibration with a vibrational-electronic resonance. With a transformation of the electronic basis, this Hamiltonian is also applicable to the anti-correlated vibration in a symmetric homodimer with marginally strong constant off-diagonal coupling, where the non-adiabatic states and dynamics model electronic excitation energy transfer or self-exchange electron transfer. For parameters modeling a free-base naphthalocyanine, the nonadiabatic couplings are deeply quantum mechanical and depend on wavepacket width; scalar couplings are as important as the derivative couplings that are usually interpreted to depend on vibrational velocity in semiclassical curve crossing or surface hopping theories. A colored visualization scheme that fully characterizes the non-adiabatic states using the exact factorization is developed. The nonadiabatic states in this nested funnel have nodeless vibrational factors with strongly avoided zeroes in their vibrational probability densities. Vibronic dynamics are visualized through the vibrational coordinate dependent density of the time-dependent dipole moment in free induction decay. Vibrational motion is amplified by the nonadiabatic couplings, with asymmetric and anisotropic motions that depend upon the excitation polarization in the molecular frame and can be reversed by a change in polarization. This generates a vibrational quantum beat anisotropy in excess of 2/5. The amplitude of vibrational motion can be larger than that on the uncoupled potentials, and the electronic population transfer is maximized within one vibrational period. Most of these dynamics are missed by the adiabatic approximation, and some electronic and vibrational motions are completely suppressed by the Condon approximation of a coordinate-independent transition dipole between adiabatic states. For all initial conditions investigated, the initial nonadiabatic electronic motion is driven towards the lower adiabatic state, and criteria for this directed motion are discussed.
Peters, William K; Tiwari, Vivek; Jonas, David M
2017-11-21
The nonadiabatic states and dynamics are investigated for a linear vibronic coupling Hamiltonian with a static electronic splitting and weak off-diagonal Jahn-Teller coupling through a single vibration with a vibrational-electronic resonance. With a transformation of the electronic basis, this Hamiltonian is also applicable to the anti-correlated vibration in a symmetric homodimer with marginally strong constant off-diagonal coupling, where the non-adiabatic states and dynamics model electronic excitation energy transfer or self-exchange electron transfer. For parameters modeling a free-base naphthalocyanine, the nonadiabatic couplings are deeply quantum mechanical and depend on wavepacket width; scalar couplings are as important as the derivative couplings that are usually interpreted to depend on vibrational velocity in semiclassical curve crossing or surface hopping theories. A colored visualization scheme that fully characterizes the non-adiabatic states using the exact factorization is developed. The nonadiabatic states in this nested funnel have nodeless vibrational factors with strongly avoided zeroes in their vibrational probability densities. Vibronic dynamics are visualized through the vibrational coordinate dependent density of the time-dependent dipole moment in free induction decay. Vibrational motion is amplified by the nonadiabatic couplings, with asymmetric and anisotropic motions that depend upon the excitation polarization in the molecular frame and can be reversed by a change in polarization. This generates a vibrational quantum beat anisotropy in excess of 2/5. The amplitude of vibrational motion can be larger than that on the uncoupled potentials, and the electronic population transfer is maximized within one vibrational period. Most of these dynamics are missed by the adiabatic approximation, and some electronic and vibrational motions are completely suppressed by the Condon approximation of a coordinate-independent transition dipole between adiabatic states. For all initial conditions investigated, the initial nonadiabatic electronic motion is driven towards the lower adiabatic state, and criteria for this directed motion are discussed.
Towards harmonized seismic analysis across Europe using supervised machine learning approaches
NASA Astrophysics Data System (ADS)
Zaccarelli, Riccardo; Bindi, Dino; Cotton, Fabrice; Strollo, Angelo
2017-04-01
In the framework of the Thematic Core Services for Seismology of EPOS-IP (European Plate Observing System-Implementation Phase), a service for disseminating a regionalized logic-tree of ground motions models for Europe is under development. While for the Mediterranean area the large availability of strong motion data qualified and disseminated through the Engineering Strong Motion database (ESM-EPOS), supports the development of both selection criteria and ground motion models, for the low-to-moderate seismic regions of continental Europe the development of ad-hoc models using weak motion recordings of moderate earthquakes is unavoidable. Aim of this work is to present a platform for creating application-oriented earthquake databases by retrieving information from EIDA (European Integrated Data Archive) and applying supervised learning models for earthquake records selection and processing suitable for any specific application of interest. Supervised learning models, i.e. the task of inferring a function from labelled training data, have been extensively used in several fields such as spam detection, speech and image recognition and in general pattern recognition. Their suitability to detect anomalies and perform a semi- to fully- automated filtering on large waveform data set easing the effort of (or replacing) human expertise is therefore straightforward. Being supervised learning algorithms capable of learning from a relatively small training set to predict and categorize unseen data, its advantage when processing large amount of data is crucial. Moreover, their intrinsic ability to make data driven predictions makes them suitable (and preferable) in those cases where explicit algorithms for detection might be unfeasible or too heuristic. In this study, we consider relatively simple statistical classifiers (e.g., Naive Bayes, Logistic Regression, Random Forest, SVMs) where label are assigned to waveform data based on "recognized classes" needed for our use case. These classes might be a simply binary case (e.g., "good for analysis" vs "bad") or more complex one (e.g., "good for analysis" vs "low SNR", "multi-event", "bad coda envelope"). It is important to stress the fact that our approach can be generalized to any use case providing, as in any supervised approach, an adequate training set of labelled data, a feature-set, a statistical classifier, and finally model validation and evaluation. Examples of use cases considered to develop the system prototype are the characterization of the ground motion in low seismic areas; harmonized spectral analysis across Europe for source and attenuation studies; magnitude calibration; coda analysis for attenuation studies.
Wang, Z.; Lu, M.
2011-01-01
The 12 May 2008 Wenchuan earthquake (M 7.9) occurred along the western edge of the eastern China SCR and was well recorded by modern strong-motion instruments: 93 strong-motion stations within 1.4 to 300 km rupture distance recorded the main event. Preliminary comparisons show some similarities between ground-motion attenuation in the Wenchuan region and the central and eastern United States, suggesting that ground motions from the Wenchuan earthquake could be used as a database providing constraints for developing GMPEs for large earthquakes in the central and eastern United States.
Documentation for the 2014 update of the United States national seismic hazard maps
Petersen, Mark D.; Moschetti, Morgan P.; Powers, Peter M.; Mueller, Charles S.; Haller, Kathleen M.; Frankel, Arthur D.; Zeng, Yuehua; Rezaeian, Sanaz; Harmsen, Stephen C.; Boyd, Oliver S.; Field, Edward; Chen, Rui; Rukstales, Kenneth S.; Luco, Nico; Wheeler, Russell L.; Williams, Robert A.; Olsen, Anna H.
2014-01-01
The national seismic hazard maps for the conterminous United States have been updated to account for new methods, models, and data that have been obtained since the 2008 maps were released (Petersen and others, 2008). The input models are improved from those implemented in 2008 by using new ground motion models that have incorporated about twice as many earthquake strong ground shaking data and by incorporating many additional scientific studies that indicate broader ranges of earthquake source and ground motion models. These time-independent maps are shown for 2-percent and 10-percent probability of exceedance in 50 years for peak horizontal ground acceleration as well as 5-hertz and 1-hertz spectral accelerations with 5-percent damping on a uniform firm rock site condition (760 meters per second shear wave velocity in the upper 30 m, VS30). In this report, the 2014 updated maps are compared with the 2008 version of the maps and indicate changes of plus or minus 20 percent over wide areas, with larger changes locally, caused by the modifications to the seismic source and ground motion inputs.
Mind the gap: a flow instability controlled by particle-surface distance
NASA Astrophysics Data System (ADS)
Driscoll, Michelle; Delmotte, Blaise; Youssef, Mena; Sacanna, Stefano; Donev, Aleksandar; Chaikin, Paul
2016-11-01
Does a rotating particle always spin in place? Not if that particle is near a surface: rolling leads to translational motion, as well as very strong flows around the particle, even quite far away. These large advective flows strongly couple the motion of neighboring particles, giving rise to strong collective effects in groups of rolling particles. Using a model experimental system, weakly magnetic colloids driven by a rotating magnetic field, we observe that driving a compact group of microrollers leads to a new kind of flow instability. First, an initially uniformly-distributed strip of particles evolves into a shock structure, and then it becomes unstable, emitting fingers with a well-defined wavelength. Using 3D large-scale simulations in tandem with our experiments, we find that the instability wavelength is controlled not by the driving torque or the fluid viscosity, but a geometric parameter: the microroller's distance above the container floor. Furthermore, we find that the instability dynamics can be reproduced using only one ingredient: hydrodynamic interactions near a no-slip boundary.
Broadband Ground Motion Observation and Simulation for the 2016 Kumamoto Earthquake
NASA Astrophysics Data System (ADS)
Miyake, H.; Chimoto, K.; Yamanaka, H.; Tsuno, S.; Korenaga, M.; Yamada, N.; Matsushima, T.; Miyakawa, K.
2016-12-01
During the 2016 Kumamoto earthquake, strong motion data were widely recorded by the permanent dense triggered strong motion network of K-NET/KiK-net and seismic intensity meters installed by local government and JMA. Seismic intensities close to the MMI 9-10 are recorded twice at the Mashiki town, and once at the Nishihara village and KiK-net Mashiki (KMMH16 ground surface). Near-fault records indicate extreme ground motion exceeding 400 cm/s in 5% pSv at a period of 1 s for the Mashiki town and 3-4 s for the Nishihara village. Fault parallel velocity components are larger between the Mashiki town and the Nishihara village, on the other hand, fault normal velocity components are larger inside the caldera of the Aso volcano. The former indicates rupture passed through along-strike stations, and the latter stations located at the forward rupture direction (e.g., Miyatake, 1999). In addition to the permanent observation, temporary continuous strong motion stations were installed just after the earthquake in the Kumamoto city, Mashiki town, Nishihara village, Minami-Aso village, and Aso town, (e.g., Chimoto et al., 2016; Tsuno et al., 2016; Yamanaka et al. 2016). This study performs to estimate strong motion generation areas for the 2016 Kumamoto earthquake sequence using the empirical Green's function method, then to simulate broadband ground motions for both the permanent and temporary strong motion stations. Currently the target period range is between 0.1 s to 5-10 s due to the signal-to-noise ratio of element earthquakes used for the empirical Green's functions. We also care fault dimension parameters N within 4 to 10 to avoid spectral sags and artificial periodicity. The simulated seismic intensities as well as fault normal and parallel velocity components will be discussed.
NASA Astrophysics Data System (ADS)
Irikura, Kojiro; Miyakoshi, Ken; Kamae, Katsuhiro; Yoshida, Kunikazu; Somei, Kazuhiro; Kurahashi, Susumu; Miyake, Hiroe
2017-01-01
A two-stage scaling relationship of the source parameters for crustal earthquakes in Japan has previously been constructed, in which source parameters obtained from the results of waveform inversion of strong motion data are combined with parameters estimated based on geological and geomorphological surveys. A three-stage scaling relationship was subsequently developed to extend scaling to crustal earthquakes with magnitudes greater than M w 7.4. The effectiveness of these scaling relationships was then examined based on the results of waveform inversion of 18 recent crustal earthquakes ( M w 5.4-6.9) that occurred in Japan since the 1995 Hyogo-ken Nanbu earthquake. The 2016 Kumamoto earthquake, with M w 7.0, was one of the largest earthquakes to occur since dense and accurate strong motion observation networks, such as K-NET and KiK-net, were deployed after the 1995 Hyogo-ken Nanbu earthquake. We examined the applicability of the scaling relationships of the source parameters of crustal earthquakes in Japan to the 2016 Kumamoto earthquake. The rupture area and asperity area were determined based on slip distributions obtained from waveform inversion of the 2016 Kumamoto earthquake observations. We found that the relationship between the rupture area and the seismic moment for the 2016 Kumamoto earthquake follows the second-stage scaling within one standard deviation ( σ = 0.14). The ratio of the asperity area to the rupture area for the 2016 Kumamoto earthquake is nearly the same as ratios previously obtained for crustal earthquakes. Furthermore, we simulated the ground motions of this earthquake using a characterized source model consisting of strong motion generation areas (SMGAs) based on the empirical Green's function (EGF) method. The locations and areas of the SMGAs were determined through comparison between the synthetic ground motions and observed motions. The sizes of the SMGAs were nearly coincident with the asperities with large slip. The synthetic ground motions obtained using the EGF method agree well with the observed motions in terms of acceleration, velocity, and displacement within the frequency range of 0.3-10 Hz. These findings indicate that the 2016 Kumamoto earthquake is a standard event that follows the scaling relationship of crustal earthquakes in Japan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodgers, A; Tkalcic, H; McCallen, D
2005-03-18
Between 2001-2004 the Las Vegas Seismic Response Project has sought to understand the response of Las Vegas Valley (LVV) to seismic excitation. In this study, the author report the findings of this project with an emphasis on ground motions in LVV from nuclear explosions at the Nevada Test Site (NTS). These ground motions are used to understand building structural response and damage as well as human perception. Historical nuclear explosion observations are augmented with earthquake recordings from a temporary deployment of seismometers to improve spatial coverage of LVV. The nuclear explosions were conducted between 1968 and 1989 and were recordedmore » at various sites within Las Vegas. The data from past nuclear tests were used to constrain ground motions in LVV and to gain a predictive capability of ground motions for possible future nuclear tests at NTS. Analysis of ground motion data includes peak ground motions (accelerations and velocities) and amplification of basin sites relative to hard rock sites (site response). Site response was measured with the Standard Spectral Ratios (SSR) technique relative to hard rock reference sites on the periphery of LVV. The site response curves indicate a strong basin amplification of up to a factor of ten at frequencies between 0.5-2 Hz. Amplifications are strongest in the central and northern portions of LVV, where the basin is deeper than 1 km based on the reported basin depths of Langenheim et al (2001a). They found a strong correlation between amplification and basin depth and shallow shear wave velocities. Amplification below 1 Hz is strongly controlled by slowness-averaged shear velocities to depths of 30 and 100 meters. Depth averaged shear velocities to 10 meters has modest control of amplifications between 1-3 Hz. Modeling reveals that low velocity material in the shallow layers (< 200 m) effectively controls amplification. They developed a method to scale nuclear explosion ground motion time series to sites around LVV that have no historical record of explosions. The method is also used to scale nuclear explosion ground motions to different yields. They also present a range of studies to understand basin structure and response performed on data from the temporary deployment.« less
PRISM, Processing and Review Interface for Strong Motion Data Software
NASA Astrophysics Data System (ADS)
Kalkan, E.; Jones, J. M.; Stephens, C. D.; Ng, P.
2016-12-01
A continually increasing number of high-quality digital strong-motion records from stations of the National Strong Motion Project (NSMP) of the U.S. Geological Survey (USGS), as well as data from regional seismic networks within the U.S., calls for automated processing of strong-motion records with human review limited to selected significant or flagged records. The NSMP has developed the Processing and Review Interface for Strong Motion data (PRISM) software to meet this need. PRISM automates the processing of strong-motion records by providing batch-processing capabilities. The PRISM software is platform-independent (coded in Java), open-source, and does not depend on any closed-source or proprietary software. The software consists of two major components: a record processing engine composed of modules for each processing step, and a graphical user interface (GUI) for manual review and processing. To facilitate the use by non-NSMP earthquake engineers and scientists, PRISM (both its processing engine and GUI components) is easy to install and run as a stand-alone system on common operating systems such as Linux, OS X and Windows. PRISM was designed to be flexible and extensible in order to accommodate implementation of new processing techniques. Input to PRISM currently is limited to data files in the Consortium of Organizations for Strong-Motion Observation Systems (COSMOS) V0 format, so that all retrieved acceleration time series need to be converted to this format. Output products include COSMOS V1, V2 and V3 files as: (i) raw acceleration time series in physical units with mean removed (V1), (ii) baseline-corrected and filtered acceleration, velocity, and displacement time series (V2), and (iii) response spectra, Fourier amplitude spectra and common earthquake-engineering intensity measures (V3). A thorough description of the record processing features supported by PRISM is presented with examples and validation results. All computing features have been thoroughly tested.
NASA Astrophysics Data System (ADS)
Wu, G.; Moresi, L. N.
2017-12-01
Trench motions not only reflect tectonic regimes on the overriding plate but also shed light on the competition between subducting slab and overriding plate, however, major controls over trench advance or retreat and their consequences are still illusive. We use 2D thermo-mechanical experiments to study the problem. We find that the coupling intensity particularly in the uppermost 200 km and the isostatic competition between subducting slab and overriding plate largely determine trench motion and tectonics of in the overriding plate. Coupling intensity is the result of many contributing factors, including frictional coefficient of brittle part of the subducting interface and the viscosity of the ductile part, thermal regime and rheology of the overriding plate, and water contents and magmatic activity in the subducting slab and overriding plate. In this study, we are not concerned with the dynamic evolution of individual controlling parameter but simply use effective media. For instance, we impose simple model parameters such as frictional coefficient and vary the temperature and strain-rate dependent viscosity of the weak layer between the subducting slab and overriding plate. In the coupled end-member case, strong coupling leads to strong corner flow, depth-dependent compression/extension, and mantle return flow on the overriding plate side. It results in fast trench retreat, broad overriding plate extension, and even slab breakoff. In the decoupled end-member case, weak coupling causes much weaker response on the overriding plate side compared with the coupled end-member case, and the subducting slab can be largely viewed as a conveyer belt. We find that the isostatic competition between the subducting slab and overriding plate also has a major control over trench motion, and may better be viewed in 3D models. This is consistent with the findings in previous 3D studies that trench motion is most pronounced close to the slab edge. Here we propose that the differential subduction and isostatic differences along strike are the major cause of complex trench behavior and tectonic variations in the overriding plate. Finally, our models must be placed in a reference frame outside our modeled domain when used in global scale.
Analysis of dynamically stable patterns in a maze-like corridor using the Wasserstein metric.
Ishiwata, Ryosuke; Kinukawa, Ryota; Sugiyama, Yuki
2018-04-23
The two-dimensional optimal velocity (2d-OV) model represents a dissipative system with asymmetric interactions, thus being suitable to reproduce behaviours such as pedestrian dynamics and the collective motion of living organisms. In this study, we found that particles in the 2d-OV model form optimal patterns in a maze-like corridor. Then, we estimated the stability of such patterns using the Wasserstein metric. Furthermore, we mapped these patterns into the Wasserstein metric space and represented them as points in a plane. As a result, we discovered that the stability of the dynamical patterns is strongly affected by the model sensitivity, which controls the motion of each particle. In addition, we verified the existence of two stable macroscopic patterns which were cohesive, stable, and appeared regularly over the time evolution of the model.
String-like cooperative motion in homogeneous melting
Zhang, Hao; Khalkhali, Mohammad; Liu, Qingxia; Douglas, Jack F.
2013-01-01
Despite the fundamental nature and practical importance of melting, there is still no generally accepted theory of this ubiquitous phenomenon. Even the earliest simulations of melting of hard discs by Alder and Wainwright indicated the active role of collective atomic motion in melting and here we utilize molecular dynamics simulation to determine whether these correlated motions are similar to those found in recent studies of glass-forming (GF) liquids and other condensed, strongly interacting, particle systems. We indeed find string-like collective atomic motion in our simulations of “superheated” Ni crystals, but other observations indicate significant differences from GF liquids. For example, we observe neither stretched exponential structural relaxation, nor any decoupling phenomenon, while we do find a boson peak, findings that have strong implications for understanding the physical origin of these universal properties of GF liquids. Our simulations also provide a novel view of “homogeneous” melting in which a small concentration of interstitial defects exerts a powerful effect on the crystal stability through their initiation and propagation of collective atomic motion. These relatively rare point defects are found to propagate down the strings like solitons, driving the collective motion. Crystal integrity remains preserved when the permutational atomic motions take the form of ring-like atomic exchanges, but a topological transition occurs at higher temperatures where the rings open to form linear chains similar in geometrical form and length distribution to the strings of GF liquids. The local symmetry breaking effect of the open strings apparently destabilizes the local lattice structure and precipitates crystal melting. The crystal defects are thus not static entities under dynamic conditions, such as elevated temperatures or material loading, but rather are active agents exhibiting a rich nonlinear dynamics that is not addressed in conventional “static” defect melting models. PMID:23556789
String-like cooperative motion in homogeneous melting.
Zhang, Hao; Khalkhali, Mohammad; Liu, Qingxia; Douglas, Jack F
2013-03-28
Despite the fundamental nature and practical importance of melting, there is still no generally accepted theory of this ubiquitous phenomenon. Even the earliest simulations of melting of hard discs by Alder and Wainwright indicated the active role of collective atomic motion in melting and here we utilize molecular dynamics simulation to determine whether these correlated motions are similar to those found in recent studies of glass-forming (GF) liquids and other condensed, strongly interacting, particle systems. We indeed find string-like collective atomic motion in our simulations of "superheated" Ni crystals, but other observations indicate significant differences from GF liquids. For example, we observe neither stretched exponential structural relaxation, nor any decoupling phenomenon, while we do find a boson peak, findings that have strong implications for understanding the physical origin of these universal properties of GF liquids. Our simulations also provide a novel view of "homogeneous" melting in which a small concentration of interstitial defects exerts a powerful effect on the crystal stability through their initiation and propagation of collective atomic motion. These relatively rare point defects are found to propagate down the strings like solitons, driving the collective motion. Crystal integrity remains preserved when the permutational atomic motions take the form of ring-like atomic exchanges, but a topological transition occurs at higher temperatures where the rings open to form linear chains similar in geometrical form and length distribution to the strings of GF liquids. The local symmetry breaking effect of the open strings apparently destabilizes the local lattice structure and precipitates crystal melting. The crystal defects are thus not static entities under dynamic conditions, such as elevated temperatures or material loading, but rather are active agents exhibiting a rich nonlinear dynamics that is not addressed in conventional "static" defect melting models.
Strong ground motion from the michoacan, Mexico, earthquake.
Anderson, J G; Bodin, P; Brune, J N; Prince, J; Singh, S K; Quaas, R; Onate, M
1986-09-05
The network of strong motion accelerographs in Mexico includes instruments that were installed, under an international cooperative research program, in sites selected for the high potenial of a large earthquake. The 19 September 1985 earthquake (magnitude 8.1) occurred in a seismic gap where an earthquake was expected. As a result, there is an excellent descripton of the ground motions that caused the disaster.
An exact sum-rule for the Hubbard model: an historical/pedagogical approach
NASA Astrophysics Data System (ADS)
Di Matteo, S.; Claveau, Y.
2017-07-01
The aim of the present article is to derive an exact integral equation for the Green function of the Hubbard model through an equation-of-motion procedure, like in the original Hubbard papers. Though our exact integral equation does not allow to solve the Hubbard model, it represents a strong constraint on its approximate solutions. An analogous sum rule has been already obtained in the literature, through the use of a spectral moment technique. We think however that our equation-of-motion procedure can be more easily related to the historical procedure of the original Hubbard papers. We also discuss examples of possible applications of the sum rule and propose and analyse a solution, fulfilling it, that can be used for a pedagogical introduction to the Mott-Hubbard metal-insulator transition.
Strong ground motion prediction using virtual earthquakes.
Denolle, M A; Dunham, E M; Prieto, G A; Beroza, G C
2014-01-24
Sedimentary basins increase the damaging effects of earthquakes by trapping and amplifying seismic waves. Simulations of seismic wave propagation in sedimentary basins capture this effect; however, there exists no method to validate these results for earthquakes that have not yet occurred. We present a new approach for ground motion prediction that uses the ambient seismic field. We apply our method to a suite of magnitude 7 scenario earthquakes on the southern San Andreas fault and compare our ground motion predictions with simulations. Both methods find strong amplification and coupling of source and structure effects, but they predict substantially different shaking patterns across the Los Angeles Basin. The virtual earthquake approach provides a new approach for predicting long-period strong ground motion.
Complex Ion Dynamics in Carbonate Lithium-Ion Battery Electrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ong, Mitchell T.; Bhatia, Harsh; Gyulassy, Attila G.
Li-ion battery performance is strongly influenced by ionic conductivity, which depends on the mobility of the Li ions in solution, and is related to their solvation structure. In this work, we have performed first-principles molecular dynamics (FPMD) simulations of a LiPF6 salt solvated in different Li-ion battery organic electrolytes. We employ an analytical method using relative angles from successive time intervals to characterize complex ionic motion in multiple dimensions from our FPMD simulations. We find different characteristics of ionic motion on different time scales. We find that the Li ion exhibits a strong caging effect due to its strong solvationmore » structure, while the counterion, PF6– undergoes more Brownian-like motion. Lastly, our results show that ionic motion can be far from purely diffusive and provide a quantitative characterization of the microscopic motion of ions over different time scales.« less
Complex Ion Dynamics in Carbonate Lithium-Ion Battery Electrolytes
Ong, Mitchell T.; Bhatia, Harsh; Gyulassy, Attila G.; ...
2017-03-06
Li-ion battery performance is strongly influenced by ionic conductivity, which depends on the mobility of the Li ions in solution, and is related to their solvation structure. In this work, we have performed first-principles molecular dynamics (FPMD) simulations of a LiPF6 salt solvated in different Li-ion battery organic electrolytes. We employ an analytical method using relative angles from successive time intervals to characterize complex ionic motion in multiple dimensions from our FPMD simulations. We find different characteristics of ionic motion on different time scales. We find that the Li ion exhibits a strong caging effect due to its strong solvationmore » structure, while the counterion, PF6– undergoes more Brownian-like motion. Lastly, our results show that ionic motion can be far from purely diffusive and provide a quantitative characterization of the microscopic motion of ions over different time scales.« less
A Numerical Model Study of Nocturnal Drainage Flows with Strong Wind and Temperature Gradients.
NASA Astrophysics Data System (ADS)
Yamada, T.; Bunker, S.
1989-07-01
A second-moment turbulence-closure model described in Yamada and Bunker is used to simulate nocturnal drainage flows observed during the 1984 ASCOT field expedition in Brush Creek, Colorado. In order to simulate the observed strong wind directional shear and temperature gradients, two modifications are added to the model. The strong wind directional shear was maintained by introducing a `nudging' term in the equation of motion to guide the modeled winds in the layers above the ridge top toward the observed wind direction. The second modification was accomplished by reformulating the conservation equation for the potential temperature in such a way that only the deviation from the horizontally averaged value was prognostically computed.The vegetation distribution used in this study is undoubtedly crude. Nevertheless, the present simulation suggests that tall tree canopy can play an important role in producing inhomogeneous wind distribution, particularly in the levels below the canopy top.
NASA Astrophysics Data System (ADS)
Xu, Peibin; Wen, Ruizhi; Wang, Hongwei; Ji, Kun; Ren, Yefei
2015-02-01
The Ludian County of Yunnan Province in southwestern China was struck by an M S6.5 earthquake on August 3, 2014, which was another destructive event following the M S8.0 Wenchuan earthquake in 2008, M S7.1 Yushu earthquake in 2010, and M S7.0 Lushan earthquake in 2013. National Strong-Motion Observation Network System of China collected 74 strong motion recordings, which the maximum peak ground acceleration recorded by the 053LLT station in Longtoushan Town was 949 cm/s2 in E-W component. The observed PGAs and spectral ordinates were compared with ground-motion prediction equation in China and the NGA-West2 developed by Pacific Earthquake Engineering Researcher Center. This earthquake is considered as the first case for testing applicability of NGA-West2 in China. Results indicate that the observed PGAs and the 5 % damped pseudo-response spectral accelerations are significantly lower than the predicted ones. The field survey around some typical strong motion stations verified that the earthquake damage was consistent with the official isoseismal by China Earthquake Administration.
Systematic comparisons between PRISM version 1.0.0, BAP, and CSMIP ground-motion processing
Kalkan, Erol; Stephens, Christopher
2017-02-23
A series of benchmark tests was run by comparing results of the Processing and Review Interface for Strong Motion data (PRISM) software version 1.0.0 to Basic Strong-Motion Accelerogram Processing Software (BAP; Converse and Brady, 1992), and to California Strong Motion Instrumentation Program (CSMIP) processing (Shakal and others, 2003, 2004). These tests were performed by using the MatLAB implementation of PRISM, which is equivalent to its public release version in Java language. Systematic comparisons were made in time and frequency domains of records processed in PRISM and BAP, and in CSMIP, by using a set of representative input motions with varying resolutions, frequency content, and amplitudes. Although the details of strong-motion records vary among the processing procedures, there are only minor differences among the waveforms for each component and within the frequency passband common to these procedures. A comprehensive statistical evaluation considering more than 1,800 ground-motion components demonstrates that differences in peak amplitudes of acceleration, velocity, and displacement time series obtained from PRISM and CSMIP processing are equal to or less than 4 percent for 99 percent of the data, and equal to or less than 2 percent for 96 percent of the data. Other statistical measures, including the Euclidian distance (L2 norm) and the windowed root mean square level of processed time series, also indicate that both processing schemes produce statistically similar products.
Hong, Tae-Kyung; Choi, Eunseo; Park, Seongjun; Shin, Jin Soo
2016-02-17
Strong ground motions induce large dynamic stress changes that may disturb the magma chamber of a volcano, thus accelerating the volcanic activity. An underground nuclear explosion test near an active volcano constitutes a direct treat to the volcano. This study examined the dynamic stress changes of the magma chamber of Baekdusan (Changbaishan) that can be induced by hypothetical North Korean nuclear explosions. Seismic waveforms for hypothetical underground nuclear explosions at North Korean test site were calculated by using an empirical Green's function approach based on a source-spectral model of a nuclear explosion; such a technique is efficient for regions containing poorly constrained velocity structures. The peak ground motions around the volcano were estimated from empirical strong-motion attenuation curves. A hypothetical M7.0 North Korean underground nuclear explosion may produce peak ground accelerations of 0.1684 m/s(2) in the horizontal direction and 0.0917 m/s(2) in the vertical direction around the volcano, inducing peak dynamic stress change of 67 kPa on the volcano surface and ~120 kPa in the spherical magma chamber. North Korean underground nuclear explosions with magnitudes of 5.0-7.6 may induce overpressure in the magma chamber of several tens to hundreds of kilopascals.
Stereoscopic advantages for vection induced by radial, circular, and spiral optic flows.
Palmisano, Stephen; Summersby, Stephanie; Davies, Rodney G; Kim, Juno
2016-11-01
Although observer motions project different patterns of optic flow to our left and right eyes, there has been surprisingly little research into potential stereoscopic contributions to self-motion perception. This study investigated whether visually induced illusory self-motion (i.e., vection) is influenced by the addition of consistent stereoscopic information to radial, circular, and spiral (i.e., combined radial + circular) patterns of optic flow. Stereoscopic vection advantages were found for radial and spiral (but not circular) flows when monocular motion signals were strong. Under these conditions, stereoscopic benefits were greater for spiral flow than for radial flow. These effects can be explained by differences in the motion aftereffects generated by these displays, which suggest that the circular motion component in spiral flow selectively reduced adaptation to stereoscopic motion-in-depth. Stereoscopic vection advantages were not observed for circular flow when monocular motion signals were strong, but emerged when monocular motion signals were weakened. These findings show that stereoscopic information can contribute to visual self-motion perception in multiple ways.
ROTATING MOTIONS AND MODELING OF THE ERUPTING SOLAR POLAR-CROWN PROMINENCE ON 2010 DECEMBER 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Yingna; Van Ballegooijen, Adriaan, E-mail: ynsu@head.cfa.harvard.edu
2013-02-10
A large polar-crown prominence composed of different segments spanning nearly the entire solar disk erupted on 2010 December 6. Prior to the eruption, the filament in the active region part split into two layers: a lower layer and an elevated layer. The eruption occurs in several episodes. Around 14:12 UT, the lower layer of the active region filament breaks apart: One part ejects toward the west, while the other part ejects toward the east, which leads to the explosive eruption of the eastern quiescent filament. During the early rise phase, part of the quiescent filament sheet displays strong rolling motionmore » (observed by STEREO-B) in the clockwise direction (viewed from east to west) around the filament axis. This rolling motion appears to start from the border of the active region, then propagates toward the east. The Atmospheric Imaging Assembly (AIA) observes another type of rotating motion: In some other parts of the erupting quiescent prominence, the vertical threads turn horizontal, then turn upside down. The elevated active region filament does not erupt until 18:00 UT, when the erupting quiescent filament has already reached a very large height. We develop two simplified three-dimensional models that qualitatively reproduce the observed rolling and rotating motions. The prominence in the models is assumed to consist of a collection of discrete blobs that are tied to particular field lines of a helical flux rope. The observed rolling motion is reproduced by continuous twist injection into the flux rope in Model 1 from the active region side. Asymmetric reconnection induced by the asymmetric distribution of the magnetic fields on the two sides of the filament may cause the observed rolling motion. The rotating motion of the prominence threads observed by AIA is consistent with the removal of the field line dips in Model 2 from the top down during the eruption.« less
Renewal of K-NET (National Strong-motion Observation Network of Japan)
NASA Astrophysics Data System (ADS)
Kunugi, T.; Fujiwara, H.; Aoi, S.; Adachi, S.
2004-12-01
The National Research Institute for Earth Science and Disaster Prevention (NIED) operates K-NET (Kyoshin Network), the national strong-motion observation network, which evenly covers the whole of Japan at intervals of 25 km on average. K-NET was constructed after the Hyogoken-Nambu (Kobe) earthquake in January 1995, and began operation in June 1996. Thus, eight years have passed since K-NET started, and large amounts of strong-motion records have been obtained. As technology has progressed and new technologies have become available, NIED has developed a new K-NET with improved functionality. New seismographs have been installed at 443 observatories mainly in southwestern Japan where there is a risk of strong-motion due to the Nankai and Tonankai earthquakes. The new system went into operation in June 2004, although seismographs have still to be replaced in other areas. The new seismograph (K-NET02) consists of a sensor module, a measurement module and a communication module. A UPS, a GPS antenna and a dial-up router are also installed together with a K-NET02. A triaxial accelerometer, FBA-ES-DECK (Kinemetrics Inc.) is built into the sensor module. The measurement module functions as a conventional strong-motion seismograph for high-precision observation. The communication module can perform sophisticated processes, such as calculation of the Japan Meteorological Agency (JMA) seismic intensity, continuous recording of data and near real-time data transmission. It connects to the Data Management Center (DMC) using an ISDN line. In case of a power failure, the measurement module can control the power supply to the router and the communication module to conserve battery power. One of the main features of K-NET02 is a function for processing JMA seismic intensity. K-NET02 functions as a proper seismic intensity meter that complies with the official requirements of JMA, although the old strong-motion seismograph (K-NET95) does not calculate seismic intensity. Another feature is near real-time data transmission. When a K-NET02 detects a strong-motion, it can automatically connect to the DMC in 2 to 5 seconds and then transmits seismic data. Furthermore, the full-scale is improved from 2000 gals to 4000 gals and the dynamic range of AD conversion is more than 132 dB. Strong-motion records of the new K-NET are available at: http://www.kyoshin.bosai.go.jp/
Probing Motion of Fast Radio Burst Sources by Timing Strongly Lensed Repeaters
NASA Astrophysics Data System (ADS)
Dai, Liang; Lu, Wenbin
2017-09-01
Given the possible repetitive nature of fast radio bursts (FRBs), their cosmological origin, and their high occurrence, detection of strongly lensed sources due to intervening galaxy lenses is possible with forthcoming radio surveys. We show that if multiple images of a repeating source are resolved with VLBI, using a method independent of lens modeling, accurate timing could reveal non-uniform motion, either physical or apparent, of the emission spot. This can probe the physical nature of FRBs and their surrounding environments, constraining scenarios including orbital motion around a stellar companion if FRBs require a compact star in a special system, and jet-medium interactions for which the location of the emission spot may randomly vary. The high timing precision possible for FRBs (˜ms) compared with the typical time delays between images in galaxy lensing (≳10 days) enables the measurement of tiny fractional changes in the delays (˜ {10}-9) and hence the detection of time-delay variations induced by relative motions between the source, the lens, and the Earth. We show that uniform cosmic peculiar velocities only cause the delay time to drift linearly, and that the effect from the Earth’s orbital motion can be accurately subtracted, thus enabling a search for non-trivial source motion. For a timing accuracy of ˜1 ms and a repetition rate (of detected bursts) of ˜0.05 per day of a single FRB source, non-uniform displacement ≳0.1-1 au of the emission spot perpendicular to the line of sight is detectable if repetitions are seen over a period of hundreds of days.
NASA Astrophysics Data System (ADS)
Pulido Hernandez, N. E.; Suzuki, W.; Aoi, S.
2014-12-01
A megathrust earthquake occurred in Northern Chile in April 1, 2014, 23:46 (UTC) (Mw 8.2), in a region that had not experienced a major earthquake since the great 1877 (~M8.6) event. This area had been already identified as a mature seismic gap with a strong interseismic coupling inferred from geodetic measurements (Chlieh et al., JGR, 2011 and Metois et al., GJI, 2013). We used 48 components of strong motion records belonging to the IPOC network in Northern Chile to investigate the source process of the M8.2 Pisagua earthquake. Acceleration waveforms were integrated to get velocities and filtered between 0.02 and 0.125 Hz. We assumed a single fault plane segment with an area of 180 km by 135 km, a strike of 357, and a dip of 18 degrees (GCMT). We set the starting point of rupture at the USGS hypocenter (19.610S, 70.769W, depth 25km), and employed a multi-time-window linear waveform inversion method (Hartzell and Heaton, BSSA, 1983), to derive the rupture process of the Pisagua earthquake. Our results show a slip model characterized by one large slip area (asperity) localized 50 km south of the epicenter, a peak slip of 10 m and a total seismic moment of 2.36 x 1021Nm (Mw 8.2). Fault rupture slowly propagated to the south in front of the main asperity for the initial 25 seconds, and broke it by producing a strong acceleration stage. The fault plane rupture velocity was in average 2.9 km/s. Our calculations show an average stress drop of 4.5MPa for the entire fault rupture area and 12MPa for the asperity area. We simulated the near-source strong ground motion records in a broad frequency band (0.1 ~ 20 Hz), to investigate a possible multi-frequency fault rupture process as the one observed in recent mega-thrust earthquakes such as the 2011 Tohoku-oki (M9.0). Acknowledgments Strong motion data was kindly provided by Chile University as well as the IPOC (Integrated Plate boundary Observatory Chile).
Tangle-Free Finite Element Mesh Motion for Ablation Problems
NASA Technical Reports Server (NTRS)
Droba, Justin
2016-01-01
Mesh motion is the process by which a computational domain is updated in time to reflect physical changes in the material the domain represents. Such a technique is needed in the study of the thermal response of ablative materials, which erode when strong heating is applied to the boundary. Traditionally, the thermal solver is coupled with a linear elastic or biharmonic system whose sole purpose is to update mesh node locations in response to altering boundary heating. Simple mesh motion algorithms rely on boundary surface normals. In such schemes, evolution in time will eventually cause the mesh to intersect and "tangle" with itself, causing failure. Furthermore, such schemes are greatly limited in the problems geometries on which they will be successful. This paper presents a comprehensive and sophisticated scheme that tailors the directions of motion based on context. By choosing directions for each node smartly, the inevitable tangle can be completely avoided and mesh motion on complex geometries can be modeled accurately.
Wing Rock Motion and its Flow Mechanism over a Chined-Body Configuration
NASA Astrophysics Data System (ADS)
Wang, Yankui; Li, Qian; Shi, Wei
2015-11-01
Wing rock motion is one kind of uncommanded oscillation around the body axis over the most of the aircraft at enough high angle of attack and has a strong threat to the flight safety. The purpose of this paper is to investigate the wing rock motion over a typical body-wing configuration with a chined fuselage at fixed angle of attack firstly and four kinds of wing rock motion are revealed based on the flow phenomena, namely non-oscillation, lateral deflection, limit-cycle oscillation and irregular oscillation. Simultaneously, some special relationship between the wing rock motion and the flow over the chined body configuration are discussed. In addition, the evolution of wing rock motion and its corresponding flows when the model undergoes pitching up are also given out. All the experiments have been conducted in a low-speed wind tunnel at a Reynolds number of 1.87*10E5 and angle of attack from 0deg to 65deg. National Natural Science Foundation of China(11472028) and Open fund from State Key Laboratory of Aerodynamics.
Cell motion predicts human epidermal stemness
Toki, Fujio; Tate, Sota; Imai, Matome; Matsushita, Natsuki; Shiraishi, Ken; Sayama, Koji; Toki, Hiroshi; Higashiyama, Shigeki
2015-01-01
Image-based identification of cultured stem cells and noninvasive evaluation of their proliferative capacity advance cell therapy and stem cell research. Here we demonstrate that human keratinocyte stem cells can be identified in situ by analyzing cell motion during their cultivation. Modeling experiments suggested that the clonal type of cultured human clonogenic keratinocytes can be efficiently determined by analysis of early cell movement. Image analysis experiments demonstrated that keratinocyte stem cells indeed display a unique rotational movement that can be identified as early as the two-cell stage colony. We also demonstrate that α6 integrin is required for both rotational and collective cell motion. Our experiments provide, for the first time, strong evidence that cell motion and epidermal stemness are linked. We conclude that early identification of human keratinocyte stem cells by image analysis of cell movement is a valid parameter for quality control of cultured keratinocytes for transplantation. PMID:25897083
NASA Astrophysics Data System (ADS)
Zuo, Ye; Sun, Guangjun; Li, Hongjing
2018-01-01
Under the action of near-fault ground motions, curved bridges are prone to pounding, local damage of bridge components and even unseating. A multi-scale fine finite element model of a typical three-span curved bridge is established by considering the elastic-plastic behavior of piers and pounding effect of adjacent girders. The nonlinear time-history method is used to study the seismic response of the curved bridge equipped with unseating failure control system under the action of near-fault ground motion. An in-depth analysis is carried to evaluate the control effect of the proposed unseating failure control system. The research results indicate that under the near-fault ground motion, the seismic response of the curved bridge is strong. The unseating failure control system perform effectively to reduce the pounding force of the adjacent girders and the probability of deck unseating.
Stably Stratified Atmospheric Boundary Layers
NASA Astrophysics Data System (ADS)
Mahrt, L.
2014-01-01
Atmospheric boundary layers with weak stratification are relatively well described by similarity theory and numerical models for stationary horizontally homogeneous conditions. With common strong stratification, similarity theory becomes unreliable. The turbulence structure and interactions with the mean flow and small-scale nonturbulent motions assume a variety of scenarios. The turbulence is intermittent and may no longer fully satisfy the usual conditions for the definition of turbulence. Nonturbulent motions include wave-like motions and solitary modes, two-dimensional vortical modes, microfronts, intermittent drainage flows, and a host of more complex structures. The main source of turbulence may not be at the surface, but rather may result from shear above the surface inversion. The turbulence is typically not in equilibrium with the nonturbulent motions, sometimes preventing the formation of an inertial subrange. New observational and analysis techniques are expected to advance our understanding of the very stable boundary layer.
Shakal, A.; Graizer, V.; Huang, M.; Borcherdt, R.; Haddadi, H.; Lin, K.-W.; Stephens, C.; Roffers, P.
2005-01-01
The Parkfield 2004 earthquake yielded the most extensive set of strong-motion data in the near-source region of a magnitude 6 earthquake yet obtained. The recordings of acceleration and volumetric strain provide an unprecedented document of the near-source seismic radiation for a moderate earthquake. The spatial density of the measurements alon g the fault zone and in the linear arrays perpendicular to the fault is expected to provide an exceptional opportunity to develop improved models of the rupture process. The closely spaced measurements should help infer the temporal and spatial distribution of the rupture process at much higher resolution than previously possible. Preliminary analyses of the peak a cceleration data presented herein shows that the motions vary significantly along the rupture zone, from 0.13 g to more than 2.5 g, with a map of the values showing that the larger values are concentrated in three areas. Particle motions at the near-fault stations are consistent with bilateral rupture. Fault-normal pulses similar to those observed in recent strike-slip earthquakes are apparent at several of the stations. The attenuation of peak ground acceleration with distance is more rapid than that indicated by some standard relationships but adequately fits others. Evidence for directivity in the peak acceleration data is not strong. Several stations very near, or over, the rupturing fault recorded relatively low accelerations. These recordings may provide a quantitative basis to understand observations of low near-fault shaking damage that has been reported in other large strike-slip earthquak.
Processing of strong-motion accelerograms: Needs, options and consequences
Boore, D.M.; Bommer, J.J.
2005-01-01
Recordings from strong-motion accelerographs are of fundamental importance in earthquake engineering, forming the basis for all characterizations of ground shaking employed for seismic design. The recordings, particularly those from analog instruments, invariably contain noise that can mask and distort the ground-motion signal at both high and low frequencies. For any application of recorded accelerograms in engineering seismology or earthquake engineering, it is important to identify the presence of this noise in the digitized time-history and its influence on the parameters that are to be derived from the records. If the parameters of interest are affected by noise then appropriate processing needs to be applied to the records, although it must be accepted from the outset that it is generally not possible to recover the actual ground motion over a wide range of frequencies. There are many schemes available for processing strong-motion data and it is important to be aware of the merits and pitfalls associated with each option. Equally important is to appreciate the effects of the procedures on the records in order to avoid errors in the interpretation and use of the results. Options for processing strong-motion accelerograms are presented, discussed and evaluated from the perspective of engineering application. ?? 2004 Elsevier Ltd. All rights reserved.
Seismic design and engineering research at the U.S. Geological Survey
1988-01-01
The Engineering Seismology Element of the USGS Earthquake Hazards Reduction Program is responsible for the coordination and operation of the National Strong Motion Network to collect, process, and disseminate earthquake strong-motion data; and, the development of improved methodologies to estimate and predict earthquake ground motion. Instrumental observations of strong ground shaking induced by damaging earthquakes and the corresponding response of man-made structures provide the basis for estimating the severity of shaking from future earthquakes, for earthquake-resistant design, and for understanding the physics of seismologic failure in the Earth's crust.
Recordings from the deepest borehole in the New Madrid Seismic Zone
Wang, Z.; Woolery, E.W.
2006-01-01
The recordings at the deepest vertical strong-motion array (VSAS) from three small events, the 21 October 2004 Tiptonville, Tennessee, earthquake; the 10 February 2005 Arkansas earthquake; and the 2 June 2005 Ridgely, Tennessee, earthquake show some interesting wave-propagation phenomena through the soils: the S-wave is attenuated from 260 m to 30 m depth and amplified from 30 m to the surface. The S-wave arrival times from the three events yielded different shear-wave velocity estimates for the soils. These different estimates may be the result of different incident angles of the S-waves due to different epicentral distances. The epicentral distances are about 22 km, 110 km, and 47 km for the Tiptonville, Arkansas, and Ridgely earthquakes, respectively. These recordings show the usefulness of the borehole strong-motion array. The vertical strong-motion arrays operated by the University of Kentucky have started to accumulate recordings that will provide a database for scientists and engineers to study the effects of the near-surface soils on the strong ground motion in the New Madrid Seismic Zone. More information about the Kentucky Seismic and Strong-Motion Network can be found at www.uky.edu/KGS/geologichazards. The digital recordings are available at ftp://kgsweb.uky.edu.
NASA Astrophysics Data System (ADS)
Bauke, Heiko; Wen, Meng; Keitel, Christoph H.
2017-05-01
Various different classical models of electrons including their spin degree of freedom are commonly applied to describe the coupled dynamics of relativistic electron motion and spin precession in strong electromagnetic fields. The spin dynamics is usually governed by the Thomas-Bargmann-Michel-Telegdi equation [1, 2] in these models, while the electron's orbital motion follows the (modified) Lorentz force and a spin-dependent Stern-Gerlach force. Various classical models can lead to different or even contradicting predictions how the spin degree of freedom modifies the electron's orbital motion when the electron moves in strong electromagnetic fields. This discrepancy is rooted in the model-specific energy dependency of the spin induced relativistic Stern-Gerlach force acting on the electron. The Frenkel model [3, 4] and the classical Foldy-Wouthuysen model 5 are compared exemplarily against each other and against the quantum mechanical Dirac equation in order to identify parameter regimes where these classical models make different predictions [6, 7]. Our theoretical results allow for experimental tests of these models. In the setup of the longitudinal Stern-Gerlach effect, the Frenkel model and classical Foldy-Wouthuysen model lead in the relativistic limit to qualitatively different spin effects on the electron trajectory. Furthermore, it is demonstrated that in tightly focused beams in the near infrared the effect of the Stern-Gerlach force of the Frenkel model becomes sufficiently large to be potentially detectable in an experiment. Among the classical spin models, the Frenkel model is certainly prominent for its long history and its wide application. Our results, however, suggest that the classical Foldy-Wouthuysen model is superior as it is qualitatively in better agreement with the quantum mechanical Dirac equation. In ultra strong laser setups at parameter regimes where effects of the Stern-Gerlach force become relevant also radiation reaction effects are expected to set in. We incorporate radiation reaction classically via the Landau-Lifshitz equation and demonstrate that although radiation reaction effects can have a significant effect on the electron trajectory, the Frenkel model and the classical Foldy-Wouthuysen model remain distinguishable also if radiation reaction effects are taken into account. Our calculations are also suitable to verify the Landau-Lifshitz equation for the radiation reaction of electrons and other spin one-half particles. 1. Thomas, L. H., "I. The kinematics of an electron with an axis," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 3(13), 1-22 (1927). 2. Bargmann, V., Michel, L., and Telegdi, V. L., "Precession of the polarization of particles moving in a homogeneous electromagnetic field," Phys. Rev. Lett. 2(10), 435-436 (1959). 3. Frenkel, J., "Die Elektrodynamik des rotierenden Elektrons," Z. Phys. 37(4-5), 243-262 (1926). 4. Frenkel, J., "Spinning electrons," Nature (London) 117(2949), 653-654 (1926). 5. Silenko, A. J., "Foldy-Wouthyusen transformation and semiclassical limit for relativistic particles in strong external fields," Phys. Rev. A 77(1), 012116 (2008). 6. Wen, M., Bauke, H., and Keitel, C. H., "Identifying the Stern-Gerlach force of classical electron dynamics," Sci. Rep. 6, 31624 (2016). 7. Wen, M., Keitel, C. H., and Bauke, H., "Spin one-half particles in strong electromagnetic fields: spin effects and radiation reaction," arXiv:1610.08951 (2016).
NASA Astrophysics Data System (ADS)
Yokota, Y.; Koketsu, K.; Hikima, K.; Miyazaki, S.
2009-12-01
1-Hz GPS data can be used as a ground displacement seismogram. The capability of high-rate GPS to record seismic wave fields for large magnitude (M8 class) earthquakes has been demonstrated [Larson et al., 2003]. Rupture models were inferred solely and supplementarily from 1-Hz GPS data [Miyazaki et al., 2004; Ji et al., 2004; Kobayashi et al., 2006]. However, none of the previous studies have succeeded in inferring the source process of the medium-sized (M6 class) earthquake solely from 1-Hz GPS data. We first compared 1-Hz GPS data with integrated strong motion waveforms for the 2008 Iwate-Miyagi Nairiku, Japan, earthquake. We performed a waveform inversion for the rupture process using 1-Hz GPS data only [Yokota et al., 2009]. We here discuss the rupture processes inferred from the inversion of 1-Hz GPS data of GEONET only, the inversion of strong motion data of K-NET and KiK-net only, and the joint inversion of 1-Hz GPS and strong motion data. The data were inverted to infer the rupture process of the earthquake using the inversion codes by Yoshida et al. [1996] with the revisions by Hikima and Koketsu [2005]. In the 1-Hz GPS inversion result, the total seismic moment is 2.7×1019 Nm (Mw: 6.9) and the maximum slip is 5.1 m. These results are approximately equal to 2.4×1019 Nm and 4.5 m from the inversion of strong motion data. The difference in the slip distribution on the northern fault segment may come from long-period motions possibly recorded only in 1-Hz GPS data. In the joint inversion result, the total seismic moment is 2.5×1019 Nm and the maximum slip is 5.4 m. These values also agree well with the result of 1-Hz GPS inversion. In all the series of snapshots that show the dynamic features of the rupture process, the rupture propagated bilaterally from the hypocenter to the south and north. The northern rupture speed is faster than the northern one. These agreements demonstrate the ability of 1-Hz GPS data to infer not only static, but also dynamic features of a medium-sized (M6 class) earthquake, although some details, such as the shallow extension of the southern asperity, are missing, due possibly to their limitations such as the sampling interval of 1 s and the sparse GPS stations distiribution in the near field of the earthquake. The result of the joint inversion indiates that these minor discrepancies can be reduced by the introduction of strong motion data. Continuous GPS monitoring at a much higher rate (e.g., 10 Hz) will also be helpful for reducing the minor discrepancies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aagaard, B; Brocher, T; Dreger, D
2007-02-09
We estimate the ground motions produced by the 1906 San Francisco earthquake making use of the recently developed Song et al. (2008) source model that combines the available geodetic and seismic observations and recently constructed 3D geologic and seismic velocity models. Our estimates of the ground motions for the 1906 earthquake are consistent across five ground-motion modeling groups employing different wave propagation codes and simulation domains. The simulations successfully reproduce the main features of the Boatwright and Bundock (2005) ShakeMap, but tend to over predict the intensity of shaking by 0.1-0.5 modified Mercalli intensity (MMI) units. Velocity waveforms at sitesmore » throughout the San Francisco Bay Area exhibit characteristics consistent with rupture directivity, local geologic conditions (e.g., sedimentary basins), and the large size of the event (e.g., durations of strong shaking lasting tens of seconds). We also compute ground motions for seven hypothetical scenarios rupturing the same extent of the northern San Andreas fault, considering three additional hypocenters and an additional, random distribution of slip. Rupture directivity exerts the strongest influence on the variations in shaking, although sedimentary basins do consistently contribute to the response in some locations, such as Santa Rosa, Livermore, and San Jose. These scenarios suggest that future large earthquakes on the northern San Andreas fault may subject the current San Francisco Bay urban area to stronger shaking than a repeat of the 1906 earthquake. Ruptures propagating southward towards San Francisco appear to expose more of the urban area to a given intensity level than do ruptures propagating northward.« less
Aagaard, Brad T.; Brocher, T.M.; Dolenc, D.; Dreger, D.; Graves, R.W.; Harmsen, S.; Hartzell, S.; Larsen, S.; McCandless, K.; Nilsson, S.; Petersson, N.A.; Rodgers, A.; Sjogreen, B.; Zoback, M.L.
2008-01-01
We estimate the ground motions produce by the 1906 San Francisco earthquake making use of the recently developed Song et al. (2008) source model that combines the available geodetic and seismic observations and recently constructed 3D geologic and seismic velocity models. Our estimates of the ground motions for the 1906 earthquake are consistent across five ground-motion modeling groups employing different wave propagation codes and simulation domains. The simulations successfully reproduce the main features of the Boatwright and Bundock (2005) ShakeMap, but tend to over predict the intensity of shaking by 0.1-0.5 modified Mercalli intensity (MMI) units. Velocity waveforms at sites throughout the San Francisco Bay Area exhibit characteristics consistent with rupture directivity, local geologic conditions (e.g., sedimentary basins), and the large size of the event (e.g., durations of strong shaking lasting tens of seconds). We also compute ground motions for seven hypothetical scenarios rupturing the same extent of the northern San Andreas fault, considering three additional hypocenters and an additional, random distribution of slip. Rupture directivity exerts the strongest influence on the variations in shaking, although sedimentary basins do consistently contribute to the response in some locations, such as Santa Rosa, Livermore, and San Jose. These scenarios suggest that future large earthquakes on the northern San Andreas fault may subject the current San Francisco Bay urban area to stronger shaking than a repeat of the 1906 earthquake. Ruptures propagating southward towards San Francisco appear to expose more of the urban area to a given intensity level than do ruptures propagating northward.
Recollection and unitization in associating actors with extrinsic and intrinsic motions.
Kersten, Alan W; Earles, Julie L; Berger, Johanna D
2015-04-01
Four experiments provide evidence for a distinction between 2 different kinds of motion representations. Extrinsic motions involve the path of an object with respect to an external frame of reference. Intrinsic motions involve the relative motions of the parts of an object. This research suggests that intrinsic motions are represented conjointly with information about the identities of the actors who perform them, whereas extrinsic motions are represented separately from identity information. Experiment 1 demonstrated that participants remembered which actor had performed a particular intrinsic motion better than they remembered which actor had performed a particular extrinsic motion. Experiment 2 replicated this effect with incidental encoding of actor information, suggesting that encoding intrinsic motions leads one to automatically encode identity information. The results of Experiments 3 and 4 were fit by Yonelinas's (1999) source-memory model to quantify the contributions of familiarity and recollection to memory for the actors who carried out the intrinsic and extrinsic motions. Successful performance with extrinsic motion items in Experiment 3 required participants to remember in which scene contexts an actor had appeared, whereas successful performance in Experiment 4 required participants to remember the exact path taken by an actor in each scene. In both experiments, discrimination of old and new combinations of actors and extrinsic motions relied strongly on recollection, suggesting independent but associated representations of actors and extrinsic motions. In contrast, participants discriminated old and new combinations of actors and intrinsic motions primarily on the basis of familiarity, suggesting unitized representations of actors and intrinsic motions. (c) 2015 APA, all rights reserved).
Flow Mapping Based on the Motion-Integration Errors of Autonomous Underwater Vehicles
NASA Astrophysics Data System (ADS)
Chang, D.; Edwards, C. R.; Zhang, F.
2016-02-01
Knowledge of a flow field is crucial in the navigation of autonomous underwater vehicles (AUVs) since the motion of AUVs is affected by ambient flow. Due to the imperfect knowledge of the flow field, it is typical to observe a difference between the actual and predicted trajectories of an AUV, which is referred to as a motion-integration error (also known as a dead-reckoning error if an AUV navigates via dead-reckoning). The motion-integration error has been essential for an underwater glider to compute its flow estimate from the travel information of the last leg and to improve navigation performance by using the estimate for the next leg. However, the estimate by nature exhibits a phase difference compared to ambient flow experienced by gliders, prohibiting its application in a flow field with strong temporal and spatial gradients. In our study, to mitigate the phase problem, we have developed a local ocean model by combining the flow estimate based on the motion-integration error with flow predictions from a tidal ocean model. Our model has been used to create desired trajectories of gliders for guidance. Our method is validated by Long Bay experiments in 2012 and 2013 in which we deployed multiple gliders on the shelf of South Atlantic Bight and near the edge of Gulf Stream. In our recent study, the application of the motion-integration error is further extended to create a spatial flow map. Considering that the motion-integration errors of AUVs accumulate along their trajectories, the motion-integration error is formulated as a line integral of ambient flow which is then reformulated into algebraic equations. By solving an inverse problem for these algebraic equations, we obtain the knowledge of such flow in near real time, allowing more effective and precise guidance of AUVs in a dynamic environment. This method is referred to as motion tomography. We provide the results of non-parametric and parametric flow mapping from both simulated and experimental data.
Transient tidal eddy motion in the western Gulf of Maine, part 1: Primary structure
NASA Astrophysics Data System (ADS)
Brown, W. S.; Marques, G. M.
2013-07-01
High frequency radar-derived surface current maps of the Great South Channel (GSC) in the western Gulf of Maine in 2005 revealed clockwise (CW) and anticlockwise (ACW) eddy motion associated with the strong regional tidal currents. To better elucidate the kinematics and dynamics of these transient tidal eddy motions, an observational and modeling study was conducted during the weakly stratified conditions of winter 2008-2009. Our moored bottom pressure and ADCP current measurements in 13m depth were augmented by historical current measurements in about 30m in documenting the dominance of highly polarized M2 semidiurnal currents in our nearshore study region. The high-resolution finite element coastal ocean model (QUODDY) - forced by the five principal tidal constituents - produced maps depicting the formation and evolution of the CW and ACW eddy motions that regularly follow maximum ebb and flood flows, respectively. Observation versus model current comparison required that the model bottom current drag coefficient be set to at an unusually high Cd=0.01 - suggesting the importance of form drag in the study region. The observations and model results were consistent in diagnosing CW or ACW eddy motions that (a) form nearshore in the coastal boundary layer (CBL) for about 3h after the respective tidal current maxima and then (b) translate southeastward across the GSC along curved 50m isobath at speeds of about 25m/s. Observation-based and model-based momentum budget estimates were consistent in showing a first order forced semidiurnal standing tidal wave dynamics (like the adjacent Gulf of Maine) which was modulated by adverse pressure gradient/bottom stress forcing to generate the eddy motions. Observation-based estimates of terms in the transport vorticity budget showed that in the shallower Inner Zone subregion (average depth=23m) that the diffusion of nearshore vorticity was dominant in feeding the growth of eddy motion vorticity; while in the somewhat deeper Outer Zone subregion (33m) bottom current lateral shear and water column stretching/squashing was significant in modulating the eddy motion. We conclude that the transient eddy motions in the GSC region are phase eddies that accompany the change of tide across the GSC and are (1) generated by bottom stress gradients in the shallower nearshore - an issue which needs to be better understood for improved future forecasting.
NASA Astrophysics Data System (ADS)
Todoriki, Masaru; Furumura, Takashi; Maeda, Takuto
2017-01-01
We investigated the effects of sea water on the propagation of seismic waves using a 3-D finite-difference-method simulation of seismic wave propagation following offshore earthquakes. When using a 1-D layered structure, the simulation results showed strong S- to P-wave conversion at the sea bottom; accordingly, S-wave energy was dramatically decreased by the sea water layer. This sea water de-amplification effect had strong frequency dependence, therefore resembling a low-pass filter in which the cut-off frequency and damping coefficients were defined by the thickness of the sea water layer. The sea water also acted to elongate the duration of Rayleigh wave packet. The importance of the sea water layer in modelling offshore earthquakes was further demonstrated by a simulation using a realistic 3-D velocity structure model with and without sea water for a shallow (h = 14 km) outer-rise Nankai Trough event, the 2004 SE Off Kii Peninsula earthquake (Mw = 7.2). Synthetic seismograms generated by the model when sea water was included were in accordance with observed seismograms for long-term longer period motions, particularly those in the shape of Rayleigh waves.
Borehole P- and S-wave velocity at thirteen stations in Southern California
Gibbs, James F.; Boore, David M.; Tinsley, John C.; Mueller, Charles S.
2001-01-01
The U.S. Geological Survey (USGS), as part of a program to acquire seismic velocity data at locations of strong-ground motion in earthquakes (e.g., Gibbs et al., 2000), has investigated thirteen additional sites in the Southern California region. Of the thirteen sites, twelve are in the vicinity of Whittier, California, and one is located in San Bernardino, California. Several deployments of temporary seismographs were made after the Whittier Narrows, California earthquake of 1 October 1987 (Mueller et al., 1988). A deployment, between 2 October and 9 November 1987, was the motivation for selection of six of the drill sites. Temporary portable seismographs at Hoover School (HOO), Lincoln School (LIN), Corps of Engineers Station (NAR), Olive Junior High School (OLV), Santa Anita Golf Course (SAG), and Southwestern Academy (SWA) recorded significant aftershock data. These portable sites, with the exception of Santa Anita Golf Course, were co-sited with strong-motion recorders. Stations at HOO, Lincoln School Whittier (WLB), Saint Paul High School (STP), Alisos Adult School (EXC), Cerritos College Gymnasium (CGM), Cerritos College Physical Science Building (CPS), and Cerritos College Police Building (CPB) were part of an array of digital strong-motion stations deployed from "bedrock" in Whittier to near the deepest part of the Los Angeles basin in Norwalk. Although development and siting of this new array (partially installed at the time of this writing) was generally motivated by the Whittier Narrows earthquake, these new sites (with the exception of HOO) were not part of any Whittier Narrows aftershock deployments. A similar new digital strong-motion site was installed at the San Bernardino Fire Station during the same time frame. Velocity data were obtained to depths of about 90 meters at two sites, 30 meters at seven sites, and 18 to 25 meters at four sites. Lithology data from the analysis of cuttings and samples was obtained from the two 90-meter deep holes and from five of the shallower holes to supplement the velocity interpretation. The two 90-meter boreholes (SB1, CPB) have been instrumented with borehole seismometers for continuous monitoring of earthquake activity (Rogers et al., 1998). No drill samples or cuttings were obtained from the other six sites, but driller's logs were scanned for major changes noted there. The velocity models at those sites were interpreted using only the measured data and major changes in the driller's log as noted above. The sites are shown in Figure 1 and listed in Table 1, which gives references to information regarding the strong-motion data. Several hundred strong-motion records of the main-shock were written by this moderate size earthquake (ML = 5.9), making it important from a scientific and engineering prospective (Brady et al., 1988; Shakal et al., 1988).
Chen, Mingqing; Zheng, Yefeng; Wang, Yang; Mueller, Kerstin; Lauritsch, Guenter
2013-01-01
Compared to pre-operative imaging modalities, it is more convenient to estimate the current cardiac physiological status from C-arm angiocardiography since C-arm is a widely used intra-operative imaging modality to guide many cardiac interventions. The 3D shape and motion of the left ventricle (LV) estimated from rotational angiocardiography provide important cardiac function measurements, e.g., ejection fraction and myocardium motion dyssynchrony. However, automatic estimation of the 3D LV motion is difficult since all anatomical structures overlap on the 2D X-ray projections and the nearby confounding strong image boundaries (e.g., pericardium) often cause ambiguities to LV endocardium boundary detection. In this paper, a new framework is proposed to overcome the aforementioned difficulties: (1) A new learning-based boundary detector is developed by training a boosting boundary classifier combined with the principal component analysis of a local image patch; (2) The prior LV motion model is learned from a set of dynamic cardiac computed tomography (CT) sequences to provide a good initial estimate of the 3D LV shape of different cardiac phases; (3) The 3D motion trajectory is learned for each mesh point; (4) All these components are integrated into a multi-surface graph optimization method to extract the globally coherent motion. The method is tested on seven patient scans, showing significant improvement on the ambiguous boundary cases with a detection accuracy of 2.87 +/- 1.00 mm on LV endocardium boundary delineation in the 2D projections.
Ion kinematics in a plasma focus.
NASA Technical Reports Server (NTRS)
Gary, S. P.; Hohl, F.
1973-01-01
The results of numerical integrations of three-dimensional equations of motion of ions subject to given electric and magnetic fields are presented. The fields represent those which may exist in the pinch phase of the plasma focus, although here they depend only on the radial coordinate. The ions initially have Maxwellian velocity distributions, and their trajectories are interpreted in terms of single-particle constants of the motion. Two models of the axial electric field Ez are considered. For strong Ez away from the axis, there is a cyclotron acceleration which leads to ion heating. For positive Ez on the axis, ions within a Larmor radius of the axis undergo very efficient acceleration; the results for this new model are in general agreement with experimental results.
Swimming trajectories of a three-sphere microswimmer near a wall
NASA Astrophysics Data System (ADS)
Daddi-Moussa-Ider, Abdallah; Lisicki, Maciej; Hoell, Christian; Löwen, Hartmut
2018-04-01
The hydrodynamic flow field generated by self-propelled active particles and swimming microorganisms is strongly altered by the presence of nearby boundaries in a viscous flow. Using a simple model three-linked sphere swimmer, we show that the swimming trajectories near a no-slip wall reveal various scenarios of motion depending on the initial orientation and the distance separating the swimmer from the wall. We find that the swimmer can either be trapped by the wall, completely escape, or perform an oscillatory gliding motion at a constant mean height above the wall. Using a far-field approximation, we find that, at leading order, the wall-induced correction has a source-dipolar or quadrupolar flow structure where the translational and angular velocities of the swimmer decay as inverse third and fourth powers with distance from the wall, respectively. The resulting equations of motion for the trajectories and the relevant order parameters fully characterize the transition between the states and allow for an accurate description of the swimming behavior near a wall. We demonstrate that the transition between the trapping and oscillatory gliding states is first order discontinuous, whereas the transition between the trapping and escaping states is continuous, characterized by non-trivial scaling exponents of the order parameters. In order to model the circular motion of flagellated bacteria near solid interfaces, we further assume that the spheres can undergo rotational motion around the swimming axis. We show that the general three-dimensional motion can be mapped onto a quasi-two-dimensional representational model by an appropriate redefinition of the order parameters governing the transition between the swimming states.
NASA Astrophysics Data System (ADS)
Bydlon, S. A.; Beroza, G. C.
2015-12-01
Recent debate on the efficacy of Probabilistic Seismic Hazard Analysis (PSHA), and the utility of hazard maps (i.e. Stein et al., 2011; Hanks et al., 2012), has prompted a need for validation of such maps using recorded strong ground motion data. Unfortunately, strong motion records are limited spatially and temporally relative to the area and time windows hazard maps encompass. We develop a framework to test the predictive powers of PSHA maps that is flexible with respect to a map's specified probability of exceedance and time window, and the strong motion receiver coverage. Using a combination of recorded and interpolated strong motion records produced through the ShakeMap environment, we compile a record of ground motion intensity measures for California from 2002-present. We use this information to perform an area-based test of California PSHA maps inspired by the work of Ward (1995). Though this framework is flexible in that it can be applied to seismically active areas where ShakeMap-like ground shaking interpolations have or can be produced, this testing procedure is limited by the relatively short lifetime of strong motion recordings and by the desire to only test with data collected after the development of the PSHA map under scrutiny. To account for this, we use the assumption that PSHA maps are time independent to adapt the testing procedure for periods of recorded data shorter than the lifetime of a map. We note that accuracy of this testing procedure will only improve as more data is collected, or as the time-horizon of interest is reduced, as has been proposed for maps of areas experiencing induced seismicity. We believe that this procedure can be used to determine whether PSHA maps are accurately portraying seismic hazard and whether discrepancies are localized or systemic.
NASA Astrophysics Data System (ADS)
Dhariwal, Rohit; Rani, Sarma; Koch, Donald
2015-11-01
In an earlier work, Rani, Dhariwal, and Koch (JFM, Vol. 756, 2014) developed an analytical closure for the diffusion current in the PDF transport equation describing the relative motion of high-Stokes-number particle pairs in isotropic turbulence. In this study, an improved closure was developed for the diffusion coefficient, such that the motion of the particle-pair center of mass is taken into account. Using the earlier and the new analytical closures, Langevin simulations of pair relative motion were performed for four particle Stokes numbers, Stη = 10 , 20 , 40 , 80 and at two Taylor micro-scale Reynolds numbers Reλ = 76 , 131 . Detailed comparisons of the analytical model predictions with those of DNS were undertaken. It is seen that the pair relative motion statistics obtained from the improved theory show excellent agreement with the DNS statistics. The radial distribution functions (RDFs), and relative velocity PDFs obtained from the improved-closure-based Langevin simulations are found to be in very good agreement with those from DNS. It was found that the RDFs and relative velocity RMS increased with Reλ for all Stη . The collision kernel also increased strongly with Reλ , since it depended on the RDF and the radial relative velocities.
NASA Astrophysics Data System (ADS)
Zhu, Gengshang; Zhang, Zhenguo; Wen, Jian; Zhang, Wei; Chen, Xiaofei
2013-08-01
The earthquake occurred in Lushan County on 20 April, 2013 caused heavy casualty and economic loss. In order to understand how the seismic energy propagates during this earthquake and how it causes the seismic hazard, we simulated the strong ground motions from a representative kinematic source model by Zhang et al. (Chin J Geophys 56(4):1408-1411, 2013) for this earthquake. To include the topographic effects, we used the curved grids finite difference method by Zhang and Chen (Geophys J Int 167(1):337-353, 2006), Zhang et al. (Geophys J Int 190(1):358-378, 2012) to implement the simulations. Our results indicated that the majority of seismic energy concentrated in the epicentral area and the vicinal Sichuan Basin, causing the XI and VII degree intensity. Due to the strong topographic effects of the mountain, the seismic intensity in the border area across the northeastern of Boxing County to the Lushan County also reached IX degree. Moreover, the strong influence of topography caused the amplifications of ground shaking at the mountain ridge, which is easy to cause landslides. These results are quite similar to those observed in the Wenchuan earthquake of 2008 occurred also in a strong topographic mountain area.
Gallen, Sean F.; Clark, Marin K.; Godt, Jonathan W.; Roback, Kevin; Niemi, Nathan A
2017-01-01
The 25 April 2015 Mw 7.8 Gorkha earthquake produced strong ground motions across an approximately 250 km by 100 km swath in central Nepal. To assist disaster response activities, we modified an existing earthquake-triggered landslide model based on a Newmark sliding block analysis to estimate the extent and intensity of landsliding and landslide dam hazard. Landslide hazard maps were produced using Shuttle Radar Topography Mission (SRTM) digital topography, peak ground acceleration (PGA) information from the U.S. Geological Survey (USGS) ShakeMap program, and assumptions about the regional rock strength based on end-member values from previous studies. The instrumental record of seismicity in Nepal is poor, so PGA estimates were based on empirical Ground Motion Prediction Equations (GMPEs) constrained by teleseismic data and felt reports. We demonstrate a non-linear dependence of modeled landsliding on aggregate rock strength, where the number of landslides decreases exponentially with increasing rock strength. Model estimates are less sensitive to PGA at steep slopes (> 60°) compared to moderate slopes (30–60°). We compare forward model results to an inventory of landslides triggered by the Gorkha earthquake. We show that moderate rock strength inputs over estimate landsliding in regions beyond the main slip patch, which may in part be related to poorly constrained PGA estimates for this event at far distances from the source area. Directly above the main slip patch, however, the moderate strength model accurately estimates the total number of landslides within the resolution of the model (landslides ≥ 0.0162 km2; observed n = 2214, modeled n = 2987), but the pattern of landsliding differs from observations. This discrepancy is likely due to the unaccounted for effects of variable material strength and local topographic amplification of strong ground motion, as well as other simplifying assumptions about source characteristics and their relationship to landsliding.
Bunge, Hans-Peter; Richards, M A; Baumgardner, J R
2002-11-15
Data assimilation is an approach to studying geodynamic models consistent simultaneously with observables and the governing equations of mantle flow. Such an approach is essential in mantle circulation models, where we seek to constrain an unknown initial condition some time in the past, and thus cannot hope to use first-principles convection calculations to infer the flow history of the mantle. One of the most important observables for mantle-flow history comes from models of Mesozoic and Cenozoic plate motion that provide constraints not only on the surface velocity of the mantle but also on the evolution of internal mantle-buoyancy forces due to subducted oceanic slabs. Here we present five mantle circulation models with an assimilated plate-motion history spanning the past 120 Myr, a time period for which reliable plate-motion reconstructions are available. All models agree well with upper- and mid-mantle heterogeneity imaged by seismic tomography. A simple standard model of whole-mantle convection, including a factor 40 viscosity increase from the upper to the lower mantle and predominantly internal heat generation, reveals downwellings related to Farallon and Tethys subduction. Adding 35% bottom heating from the core has the predictable effect of producing prominent high-temperature anomalies and a strong thermal boundary layer at the base of the mantle. Significantly delaying mantle flow through the transition zone either by modelling the dynamic effects of an endothermic phase reaction or by including a steep, factor 100, viscosity rise from the upper to the lower mantle results in substantial transition-zone heterogeneity, enhanced by the effects of trench migration implicit in the assimilated plate-motion history. An expected result is the failure to account for heterogeneity structure in the deepest mantle below 1500 km, which is influenced by Jurassic plate motions and thus cannot be modelled from sequential assimilation of plate motion histories limited in age to the Cretaceous. This result implies that sequential assimilation of past plate-motion models is ineffective in studying the temporal evolution of core-mantle-boundary heterogeneity, and that a method for extrapolating present-day information backwards in time is required. For short time periods (of the order of perhaps a few tens of Myr) such a method exists in the form of crude 'backward' convection calculations. For longer time periods (of the order of a mantle overturn), a rigorous approach to extrapolating information back in time exists in the form of iterative nonlinear optimization methods that carry assimilated information into the past through the use of an adjoint mantle convection model.
Surge dynamics coupled to pore-pressure evolution in debris flows
Savage, S.B.; Iverson, R.M.; ,
2003-01-01
Temporally and spatially varying pore-fluid pressures exert strong controls on debris-flow motion by mediating internal and basal friction at grain contacts. We analyze these effects by deriving a one-dimensional model of pore-pressure diffusion explicitly coupled to changes in debris-flow thickness. The new pore-pressure equation is combined with Iverson's (1997) extension of the depth-averaged Savage-Hutter (1989, 1991) granular avalanche equations to predict motion of unsteady debris-flow surges with evolving pore-pressure distributions. Computational results illustrate the profound effects of pore-pressure diffusivities on debris-flow surge depths and velocities. ?? 2003 Millpress,.
The upper spatial limit for perception of displacement is affected by preceding motion.
Stefanova, Miroslava; Mateeff, Stefan; Hohnsbein, Joachim
2009-03-01
The upper spatial limit D(max) for perception of apparent motion of a random dot pattern may be strongly affected by another, collinear, motion that precedes it [Mateeff, S., Stefanova, M., &. Hohnsbein, J. (2007). Perceived global direction of a compound of real and apparent motion. Vision Research, 47, 1455-1463]. In the present study this phenomenon was studied with two-dimensional motion stimuli. A random dot pattern moved alternately in the vertical and oblique direction (zig-zag motion). The vertical motion was of 1.04 degrees length; it was produced by three discrete spatial steps of the dots. Thereafter the dots were displaced by a single spatial step in oblique direction. Each motion lasted for 57ms. The upper spatial limit for perception of the oblique motion was measured under two conditions: the vertical component of the oblique motion and the vertical motion were either in the same or in opposite directions. It was found that the perception of the oblique motion was strongly influenced by the relative direction of the vertical motion that preceded it; in the "same" condition the upper spatial limit was much shorter than in the "opposite" condition. Decreasing the speed of the vertical motion reversed this effect. Interpretations based on networks of motion detectors and on Gestalt theory are discussed.
NASA Astrophysics Data System (ADS)
Huang, Jyun-Yan; Wen, Kuo-Liang; Lin, Che-Min; Kuo, Chun-Hsiang; Chen, Chun-Te; Chang, Shuen-Chiang
2017-05-01
In this study, an empirical transfer function (ETF), which is the spectrum difference in Fourier amplitude spectra between observed strong ground motion and synthetic motion obtained by a stochastic point-source simulation technique, is constructed for the Taipei Basin, Taiwan. The basis stochastic point-source simulations can be treated as reference rock site conditions in order to consider site effects. The parameters of the stochastic point-source approach related to source and path effects are collected from previous well-verified studies. A database of shallow, small-magnitude earthquakes is selected to construct the ETFs so that the point-source approach for synthetic motions might be more widely applicable. The high-frequency synthetic motion obtained from the ETF procedure is site-corrected in the strong site-response area of the Taipei Basin. The site-response characteristics of the ETF show similar responses as in previous studies, which indicates that the base synthetic model is suitable for the reference rock conditions in the Taipei Basin. The dominant frequency contour corresponds to the shape of the bottom of the geological basement (the top of the Tertiary period), which is the Sungshan formation. Two clear high-amplification areas are identified in the deepest region of the Sungshan formation, as shown by an amplification contour of 0.5 Hz. Meanwhile, a high-amplification area was shifted to the basin's edge, as shown by an amplification contour of 2.0 Hz. Three target earthquakes with different kinds of source conditions, including shallow small-magnitude events, shallow and relatively large-magnitude events, and deep small-magnitude events relative to the ETF database, are tested to verify site correction. The results indicate that ETF-based site correction is effective for shallow earthquakes, even those with higher magnitudes, but is not suitable for deep earthquakes. Finally, one of the most significant shallow large-magnitude earthquakes (the 1999 Chi-Chi earthquake in Taiwan) is verified in this study. A finite fault stochastic simulation technique is applied, owing to the complexity of the fault rupture process for the Chi-Chi earthquake, and the ETF-based site-correction function is multiplied to obtain a precise simulation of high-frequency (up to 10 Hz) strong motions. The high-frequency prediction has good agreement in both time and frequency domain in this study, and the prediction level is the same as that predicted by the site-corrected ground motion prediction equation.
Verification of the Velocity Structure in Mexico Basin Using the H/V Spectral Ratio of Microtremors
NASA Astrophysics Data System (ADS)
Matsushima, S.; Sanchez-Sesma, F. J.; Nagashima, F.; Kawase, H.
2011-12-01
The authors have been proposing a new theory to calculate the Horizontal-to-Vertical (H/V) spectral ratio of microtremors assuming that the wave field is completely diffuse and have attempted to apply the theory to understand the observed microtremor data. It is anticipated that this new theory can be applied to detect the subsurface velocity structure beneath urban area. Precise information about the subsurface velocity structure is essential for predicting strong ground motion accurately, which is necessary to mitigate seismic disaster. Mexico basin, who witnessed severe damage during the 1985 Michoacán Earthquake (Ms 8.1) several hundreds of kilometers away from the source region, is an interesting location in which the reassessment of soil properties is urgent. Because of subsidence, having improved estimates of properties is mandatory. In order to estimate possible changes in the velocity structure in the Mexico basin, we measured microtremors at strong motion observation sites in Mexico City. At those sites, information about the velocity profiles are available. Using the obtained data, we derive observed H/V spectral ratio and compare it with the theoretical H/V spectral ratio to gauge the goodness of our new theory. First we compared the observed H/V spectral ratios for five stations to see the diverse characteristics of this measurement. Then we compared the observed H/V spectral ratios with the theoretical predictions to confirm our theory. We assumed the velocity model of previous surveys at the strong motions observation sites as an initial model. We were able to closely fit both the peak frequency and amplitude of the observed H/V spectral ratio, by the theoretical H/V spectral ratio calculated by our new method. These results show that we have a good initial model. However, the theoretical estimates need some improvement to perfectly fit the observed H/V spectral ratio. This may be an indication that the initial model needs some adjustments. We explore how to improve the velocity model based on the comparison between observations and theory.
Strong Ground Motion Analysis and Afterslip Modeling of Earthquakes near Mendocino Triple Junction
NASA Astrophysics Data System (ADS)
Gong, J.; McGuire, J. J.
2017-12-01
The Mendocino Triple Junction (MTJ) is one of the most seismically active regions in North America in response to the ongoing motions between North America, Pacific and Gorda plates. Earthquakes near the MTJ come from multiple types of faults due to the interaction boundaries between the three plates and the strong internal deformation within them. Understanding the stress levels that drive the earthquake rupture on the various types of faults and estimating the locking state of the subduction interface are especially important for earthquake hazard assessment. However due to lack of direct offshore seismic and geodetic records, only a few earthquakes' rupture processes have been well studied and the locking state of the subducted slab is not well constrained. In this study we first use the second moment inversion method to study the rupture process of the January 28, 2015 Mw 5.7 strike slip earthquake on Mendocino transform fault using strong ground motion records from Cascadia Initiative community experiment as well as onshore seismic networks. We estimate the rupture dimension to be of 6 km by 3 km and a stress drop of 7 MPa on the transform fault. Next we investigate the frictional locking state on the subduction interface through afterslip simulation based on coseismic rupture models of this 2015 earthquake and a Mw 6.5 intraplate eathquake inside Gorda plate whose slip distribution is inverted using onshore geodetic network in previous study. Different depths for velocity strengthening frictional properties to start at the downdip of the locked zone are used to simulate afterslip scenarios and predict the corresponding surface deformation (GPS) movements onshore. Our simulations indicate that locking depth on the slab surface is at least 14 km, which confirms that the next M8 earthquake rupture will likely reach the coastline and strong shaking should be expected near the coast.
Dixit, Amod; Ringler, Adam; Sumy, Danielle F.; Cochran, Elizabeth S.; Hough, Susan E.; Martin, Stacey; Gibbons, Steven; Luetgert, James H.; Galetzka, John; Shrestha, Surya; Rajaure, Sudhir; McNamara, Daniel E.
2015-01-01
We present and describe strong-motion data observations from the 2015 M 7.8 Gorkha, Nepal, earthquake sequence collected using existing and new Quake-Catcher Network (QCN) and U.S. Geological Survey NetQuakes sensors located in the Kathmandu Valley. A comparison of QCN data with waveforms recorded by a conventional strong-motion (NetQuakes) instrument validates the QCN data. We present preliminary analysis of spectral accelerations, and peak ground acceleration and velocity for earthquakes up to M 7.3 from the QCN stations, as well as preliminary analysis of the mainshock recording from the NetQuakes station. We show that mainshock peak accelerations were lower than expected and conclude the Kathmandu Valley experienced a pervasively nonlinear response during the mainshock. Phase picks from the QCN and NetQuakes data are also used to improve aftershock locations. This study confirms the utility of QCN instruments to contribute to ground-motion investigations and aftershock response in regions where conventional instrumentation and open-access seismic data are limited. Initial pilot installations of QCN instruments in 2014 are now being expanded to create the Nepal–Shaking Hazard Assessment for Kathmandu and its Environment (N-SHAKE) network.
Borcherdt, Rodger D.; Johnston, Malcolm J.S.; Dietel, Christopher; Glassmoyer, Gary; Myren, Doug; Stephens, Christopher
2004-01-01
An integrated array of 11 General Earthquake Observation System (GEOS) stations installed near Parkfield, CA provided on scale broad-band, wide-dynamic measurements of acceleration and volumetric strain of the Parkfield earthquake (M 6.0) of September 28, 2004. Three component measurements of acceleration were obtained at each of the stations. Measurements of collocated acceleration and volumetric strain were obtained at four of the stations. Measurements of velocity at most sites were on scale only for the initial P-wave arrival. When considered in the context of the extensive set of strong-motion recordings obtained on more than 40 analog stations by the California Strong-Motion Instrumentation Program (Shakal, et al., 2004 http://www.quake.ca.gov/cisn-edc) and those on the dense array of Spudich, et al, (1988), these recordings provide an unprecedented document of the nature of the near source strong motion generated by a M 6.0 earthquake. The data set reported herein provides the most extensive set of near field broad band wide dynamic range measurements of acceleration and volumetric strain for an earthquake as large as M 6 of which the authors are aware. As a result considerable interest has been expressed in these data. This report is intended to describe the data and facilitate its use to resolve a number of scientific and engineering questions concerning earthquake rupture processes and resultant near field motions and strains. This report provides a description of the array, its scientific objectives and the strong-motion recordings obtained of the main shock. The report provides copies of the uncorrected and corrected data. Copies of the inferred velocities, displacements, and Psuedo velocity response spectra are provided. Digital versions of these recordings are accessible with information available through the internet at several locations: the National Strong-Motion Program web site (http://agram.wr.usgs.gov/), the COSMOS Virtual Data Center Web site (http://www.cosmos-eq.org), and the CISN Engineering and Berkeley data centers (http://www.quake.ca.gov/cisn-edc). They are also accessible together with recordings on the GEOS Strong-motion Array near Parkfield, CA since its installation in 1987 through the USGS GEOS web site ( http://nsmp.wr.usgs.gov/GEOS).
A Study on the Performance of Low Cost MEMS Sensors in Strong Motion Studies
NASA Astrophysics Data System (ADS)
Tanırcan, Gulum; Alçık, Hakan; Kaya, Yavuz; Beyen, Kemal
2017-04-01
Recent advances in sensors have helped the growth of local networks. In recent years, many Micro Electro Mechanical System (MEMS)-based accelerometers have been successfully used in seismology and earthquake engineering projects. This is basically due to the increased precision obtained in these downsized instruments. Moreover, they are cheaper alternatives to force-balance type accelerometers. In Turkey, though MEMS-based accelerometers have been used in various individual applications such as magnitude and location determination of earthquakes, structural health monitoring, earthquake early warning systems, MEMS-based strong motion networks are not currently available in other populated areas of the country. Motivation of this study comes from the fact that, if MEMS sensors are qualified to record strong motion parameters of large earthquakes, a dense network can be formed in an affordable price at highly populated areas. The goals of this study are 1) to test the performance of MEMS sensors, which are available in the inventory of the Institute through shake table tests, and 2) to setup a small scale network for observing online data transfer speed to a trusted in-house routine. In order to evaluate the suitability of sensors in strong motion related studies, MEMS sensors and a reference sensor are tested under excitations of sweeping waves as well as scaled earthquake recordings. Amplitude response and correlation coefficients versus frequencies are compared. As for earthquake recordings, comparisons are carried out in terms of strong motion(SM) parameters (PGA, PGV, AI, CAV) and elastic response of structures (Sa). Furthermore, this paper also focuses on sensitivity and selectivity for sensor performances in time-frequency domain to compare different sensing characteristics and analyzes the basic strong motion parameters that influence the design majors. Results show that the cheapest MEMS sensors under investigation are able to record the mid-frequency dominant SM parameters PGV and CAV with high correlation. PGA and AI, the high frequency components of the ground motion, are underestimated. Such a difference, on the other hand, does not manifest itself on intensity estimations. PGV and CAV values from the reference and MEMS sensors converge to the same seismic intensity level. Hence a strong motion network with MEMS sensors could be a modest option to produce PGV-based damage impact of an urban area under large magnitude earthquake threats in the immediate vicinity.
NASA Astrophysics Data System (ADS)
Kagawa, T.; Tsurugi, M.; Irikura, K.
2006-12-01
A study on high frequency cut-off characteristics of strong ground motion is presented for subduction and intra- slab earthquakes in Japan. In the latest decade, observed records at hard sites are published by NIED, National Research Institute for Earth Science and Disaster Prevention, and JCOLD, Japan Commission on Large Dams. Especially, KiK-net and K-NET maintained by NIED have been providing high quality data to study high-frequency characteristics. Kagawa et al.(2003) studied the characteristics for crustal earthquakes. We apply the same methodology to the recently observed Japanese records due to subduction and intra-slab earthquakes. We assume a Butterworth type high-cut filter with limit frequency (fmax) and its power factor. These two parameters were derived from Fourier spectrum of observed records fitting the theoretical filter shape. After analyzing the result from view points of site, path, or source effects, an averaged filter model is proposed with its standard deviation. Kagawa et al.(2003) derived average as 8.3 Hz with power factor of 1.92. It is used for strong ground motion simulation. We will propose parameters for the high-cut filters of subduction and intra-slab earthquakes and compare them with the results by Kagawa et al.(2003). REFERENCES: Kagawa et al. (2003), 27JEES (in Japanese with English Abstract).
Near-Fault Strong Ground Motions during the 2016 Kumamoto, Japan, Earthquake
NASA Astrophysics Data System (ADS)
Iwata, T.; Asano, K.
2016-12-01
The 2016 Kumamoto mainshock (Mw7.0) produced a surface ruptured fault of about 20km long with maximum 2m offset, and identified as a surface ruptured event. Two strong motion records were observed near the surface ruptured fault at Mashiki town hall and Nishihara village hall. We investigated characteristics of those strong ground motions. As the acceleration records consisted of the baseline errors caused by nonzero initial acceleration and tilting of the accelerograph, we carefully removed the baseline errors (c.f. Chiu, 2001, Boore and Bommer, 2005) so as to obtain velocity and displacements. The observed permanent displacements were about 1.2m in horizontal direction and about 0.7m sinking in vertical direction at Mashiki town hall, and about 1.7m and 1.8m, respectively, at Nishihara village hall. Those permanent displacements almost coincide to results by GNSS and InSAR analysis (e.g., GSI, 2016). It takes about only 3 s to reach the permanent displacement. Somerville (2003) pointed out that ground motions from earthquakes producing large surface ruptures appeared to have systematically weaker ground motions than ground motions from earthquakes whose rupture were confined to the subsurface using the Ground Motion Prediction Equation (GMPE) for response spectra (Abrahamson and Silva, 1997). We calculated the response spectra of those records, compared them to the GMPE with the same manner and found two records were systematically larger than the expected from the GMPE in the period range of 0.3 s to 5 s. We need to re-consider the working hypothesis that the near-fault ground motions are weaker and to separate the near-fault and site effects on ground motions. Strong motions in the longer period range would be mainly caused by the near-fault (near-field term) effect.We used the acceleration data of the Kumamoto seismic intensity information network, provided by JMA.
A crack-like rupture model for the 19 September 1985 Michoacan, Mexico, earthquake
NASA Astrophysics Data System (ADS)
Ruppert, Stanley D.; Yomogida, Kiyoshi
1992-09-01
Evidence supporting a smooth crack-like rupture process of the Michoacan earthquake of 1985 is obtained from a major earthquake for the first time. Digital strong motion data from three stations (Caleta de Campos, La Villita, and La Union), recording near-field radiation from the fault, show unusually simple ramped displacements and permanent offsets previously only seen in theoretical models. The recording of low frequency (0 to 1 Hz) near-field waves together with the apparently smooth rupture favors a crack-like model to a step or Haskell-type dislocation model under the constraint of the slip distribution obtained by previous studies. A crack-like rupture, characterized by an approximated dynamic slip function and systematic decrease in slip duration away from the point of rupture nucleation, produces the best fit to the simple ramped displacements observed. Spatially varying rupture duration controls several important aspects of the synthetic seismograms, including the variation in displacement rise times between components of motion observed at Caleta de Campos. Ground motion observed at Caleta de Campos can be explained remarkably well with a smoothly propagating crack model. However, data from La Villita and La Union suggest a more complex rupture process than the simple crack-like model for the south-eastern portion of the fault.
Tracking planets and moons: mechanisms of object tracking revealed with a new paradigm
Tombu, Michael
2014-01-01
People can attend to and track multiple moving objects over time. Cognitive theories of this ability emphasize location information and differ on the importance of motion information. Results from several experiments have shown that increasing object speed impairs performance, although speed was confounded with other properties such as proximity of objects to one another. Here, we introduce a new paradigm to study multiple object tracking in which object speed and object proximity were manipulated independently. Like the motion of a planet and moon, each target–distractor pair rotated about both a common local point as well as the center of the screen. Tracking performance was strongly affected by object speed even when proximity was controlled. Additional results suggest that two different mechanisms are used in object tracking—one sensitive to speed and proximity and the other sensitive to the number of distractors. These observations support models of object tracking that include information about object motion and reject models that use location alone. PMID:21264704
NASA Astrophysics Data System (ADS)
Myszkowski, Karol; Tawara, Takehiro; Seidel, Hans-Peter
2002-06-01
In this paper, we consider applications of perception-based video quality metrics to improve the performance of global lighting computations for dynamic environments. For this purpose we extend the Visible Difference Predictor (VDP) developed by Daly to handle computer animations. We incorporate into the VDP the spatio-velocity CSF model developed by Kelly. The CSF model requires data on the velocity of moving patterns across the image plane. We use the 3D image warping technique to compensate for the camera motion, and we conservatively assume that the motion of animated objects (usually strong attractors of the visual attention) is fully compensated by the smooth pursuit eye motion. Our global illumination solution is based on stochastic photon tracing and takes advantage of temporal coherence of lighting distribution, by processing photons both in the spatial and temporal domains. The VDP is used to keep noise inherent in stochastic methods below the sensitivity level of the human observer. As a result a perceptually-consistent quality across all animation frames is obtained.
Tracking planets and moons: mechanisms of object tracking revealed with a new paradigm.
Tombu, Michael; Seiffert, Adriane E
2011-04-01
People can attend to and track multiple moving objects over time. Cognitive theories of this ability emphasize location information and differ on the importance of motion information. Results from several experiments have shown that increasing object speed impairs performance, although speed was confounded with other properties such as proximity of objects to one another. Here, we introduce a new paradigm to study multiple object tracking in which object speed and object proximity were manipulated independently. Like the motion of a planet and moon, each target-distractor pair rotated about both a common local point as well as the center of the screen. Tracking performance was strongly affected by object speed even when proximity was controlled. Additional results suggest that two different mechanisms are used in object tracking--one sensitive to speed and proximity and the other sensitive to the number of distractors. These observations support models of object tracking that include information about object motion and reject models that use location alone.
Diffusiophoretic self-propulsion for partially catalytic spherical colloids.
de Graaf, Joost; Rempfer, Georg; Holm, Christian
2015-04-01
Colloidal spheres with a partial platinum surface coating perform autophoretic motion when suspended in hydrogen peroxide solution. We present a theoretical analysis of the self-propulsion velocity of these particles using a continuum multi-component, self-diffusiophoretic model. With this model as a basis, we show how the slip-layer approximation can be derived and in which limits it holds. First, we consider the differences between the full multi-component model and the slip-layer approximation. Then the slip model is used to demonstrate and explore the sensitive nature of the particle's velocity on the details of the molecule-surface interaction. We find a strong asymmetry in the dependence of the colloid's velocity as a function of the level of catalytic coating, when there is a different interaction between the solute and solvent molecules and the inert and catalytic part of the colloid, respectively. The direction of motion can even be reversed by varying the level of the catalytic coating. Finally, we investigate the robustness of these results with respect to variations in the reaction rate near the edge between the catalytic and inert parts of the particle. Our results are of significant interest to the interpretation of experimental results on the motion of self-propelled particles.
Modeling the dynamics of piano keys
NASA Astrophysics Data System (ADS)
Brenon, Celine; Boutillon, Xavier
2003-10-01
The models of piano keys available in the literature are crude: two degrees of freedom and a very few dynamical or geometrical parameters. Experiments on different piano mechanisms (upright, grand, one type of numerical keyboard) exhibit strong differences in the two successive phases of the key motion which are controlled by the finger. Understanding the controllability of the escapement velocity (typically a few percents for professional pianists), the differences between upright and grand pianos, the rationale for the numerous independent adjustments by technicians, and the feel by the pianist require sophisticated modeling. In addition to the inertia of the six independently moving parts of a grand piano mechanism, a careful modeling of friction at pivots and between the jack and the roll, of damping and nonlinearities in felts, and of internal springs will be presented. Simulations will be confronted to the measurements of the motions of the different parts. Currently, the first phase of the motion and the transition to the second phase are well understood while some progress must still be made in order to describe correctly this short but important phase before the escapement of the hammer. [Work done in part at the Laboratory for Musical Acoustics, Paris.
Infrared measurement and composite tracking algorithm for air-breathing hypersonic vehicles
NASA Astrophysics Data System (ADS)
Zhang, Zhao; Gao, Changsheng; Jing, Wuxing
2018-03-01
Air-breathing hypersonic vehicles have capabilities of hypersonic speed and strong maneuvering, and thus pose a significant challenge to conventional tracking methodologies. To achieve desirable tracking performance for hypersonic targets, this paper investigates the problems related to measurement model design and tracking model mismatching. First, owing to the severe aerothermal effect of hypersonic motion, an infrared measurement model in near space is designed and analyzed based on target infrared radiation and an atmospheric model. Second, using information from infrared sensors, a composite tracking algorithm is proposed via a combination of the interactive multiple models (IMM) algorithm, fitting dynamics model, and strong tracking filter. During the procedure, the IMMs algorithm generates tracking data to establish a fitting dynamics model of the target. Then, the strong tracking unscented Kalman filter is employed to estimate the target states for suppressing the impact of target maneuvers. Simulations are performed to verify the feasibility of the presented composite tracking algorithm. The results demonstrate that the designed infrared measurement model effectively and continuously observes hypersonic vehicles, and the proposed composite tracking algorithm accurately and stably tracks these targets.
Localized Models of Charged Particle Motion in Martian Crustal Magnetic Cusps
NASA Astrophysics Data System (ADS)
Brain, D. A.; Poppe, A. R.; Jarvinen, R.; Dong, Y.; Egan, H. L.; Fang, X.
2017-12-01
The induced magnetosphere of Mars is punctuated by localized but strong crustal magnetic fields that are observed to play host to a variety of phenomena typically associated with global magnetic fields, such as auroral processes and particle precipitation, field-aligned current systems, and ion outflow. Each of these phenomena occur on the night side, in small-scale magnetic `cusp' regions of vertically aligned field. Cusp regions are not yet capable of being spatially resolved in global scale models that include the ion kinetics necessary for simulating charged particle transport along cusps. Local models are therefore necessary if we are to understand how cusp processes operate at Mars. Here we present the first results of an effort to model the kinetic particle motion and electric fields in Martian cusps. We are adapting both a 1.5D Particle-in-Cell (PIC) model for lunar magnetic cusps regions to the Martian case and a hybrid model framework (used previously for the global Martian plasma interaction and for lunar magnetic anomaly regions) to cusps in 2D. By comparing the models we can asses the importance of electron kinetics in particle transport along cusp field lines. In this first stage of our study we model a moderately strong nightside cusp, with incident hot hydrogen plasma from above, and cold planetary (oxygen) plasma entering the simulation from below. We report on the spatial and temporal distribution of plasma along cusp field lines for this initial case.
NASA Astrophysics Data System (ADS)
Petukhin, A.; Galvez, P.; Somerville, P.; Ampuero, J. P.
2017-12-01
We perform earthquake cycle simulations to study the characteristics of source scaling relations and strong ground motions and in multi-segmented fault ruptures. For earthquake cycle modeling, a quasi-dynamic solver (QDYN, Luo et al, 2016) is used to nucleate events and the fully dynamic solver (SPECFEM3D, Galvez et al., 2014, 2016) is used to simulate earthquake ruptures. The Mw 7.3 Landers earthquake has been chosen as a target earthquake to validate our methodology. The SCEC fault geometry for the three-segmented Landers rupture is included and extended at both ends to a total length of 200 km. We followed the 2-D spatial correlated Dc distributions based on Hillers et. al. (2007) that associates Dc distribution with different degrees of fault maturity. The fault maturity is related to the variability of Dc on a microscopic scale. Large variations of Dc represents immature faults and lower variations of Dc represents mature faults. Moreover we impose a taper (a-b) at the fault edges and limit the fault depth to 15 km. Using these settings, earthquake cycle simulations are performed to nucleate seismic events on different sections of the fault, and dynamic rupture modeling is used to propagate the ruptures. The fault segmentation brings complexity into the rupture process. For instance, the change of strike between fault segments enhances strong variations of stress. In fact, Oglesby and Mai (2012) show the normal stress varies from positive (clamping) to negative (unclamping) between fault segments, which leads to favorable or unfavorable conditions for rupture growth. To replicate these complexities and the effect of fault segmentation in the rupture process, we perform earthquake cycles with dynamic rupture modeling and generate events similar to the Mw 7.3 Landers earthquake. We extract the asperities of these events and analyze the scaling relations between rupture area, average slip and combined area of asperities versus moment magnitude. Finally, the simulated ground motions will be validated by comparison of simulated response spectra with recorded response spectra and with response spectra from ground motion prediction models. This research is sponsored by the Japan Nuclear Regulation Authority.
NASA Astrophysics Data System (ADS)
Tang, T. F.; Chong, S. H.
2017-06-01
This paper presents a practical controller design method for ultra-precision positioning of pneumatic artificial muscle actuator stages. Pneumatic artificial muscle (PAM) actuators are safe to use and have numerous advantages which have brought these actuators to wide applications. However, PAM exhibits strong non-linear characteristics, and these limitations lead to low controllability and limit its application. In practice, the non-linear characteristics of PAM mechanism are difficult to be precisely modeled, and time consuming to model them accurately. The purpose of the present study is to clarify a practical controller design method that emphasizes a simple design procedure that does not acquire plants parameters modeling, and yet is able to demonstrate ultra-precision positioning performance for a PAM driven stage. The practical control approach adopts continuous motion nominal characteristic trajectory following (CM NCTF) control as the feedback controller. The constructed PAM driven stage is in low damping characteristic and causes severe residual vibration that deteriorates motion accuracy of the system. Therefore, the idea to increase the damping characteristic by having an acceleration feedback compensation to the plant has been proposed. The effectiveness of the proposed controller was verified experimentally and compared with a classical PI controller in point-to-point motion. The experiment results proved that the CM NCTF controller demonstrates better positioning performance in smaller motion error than the PI controller. Overall, the CM NCTF controller has successfully to reduce motion error to 3µm, which is 88.7% smaller than the PI controller.
Directional bias of illusory stream caused by relative motion adaptation.
Tomimatsu, Erika; Ito, Hiroyuki
2016-07-01
Enigma is an op-art painting that elicits an illusion of rotational streaming motion. In the present study, we tested whether adaptation to various motion configurations that included relative motion components could be reflected in the directional bias of the illusory stream. First, participants viewed the center of a rotating Enigma stimulus for adaptation. There was no physical motion on the ring area. During the adaptation period, the illusory stream on the ring was mainly seen in the direction opposite to that of the physical rotation. After the physical rotation stopped, the illusory stream on the ring was mainly seen in the same direction as that of the preceding physical rotation. Moreover, adapting to strong relative motion induced a strong bias in the illusory motion direction in the subsequently presented static Enigma stimulus. The results suggest that relative motion detectors corresponding to the ring area may produce the illusory stream of Enigma. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Srinagesh, Davuluri; Singh, Shri Krishna; Suresh, Gaddale; Srinivas, Dakuri; Pérez-Campos, Xyoli; Suresh, Gudapati
2018-05-01
The 2017 Guptkashi earthquake occurred in a segment of the Himalayan arc with high potential for a strong earthquake in the near future. In this context, a careful analysis of the earthquake is important as it may shed light on source and ground motion characteristics during future earthquakes. Using the earthquake recording on a single broadband strong-motion seismograph installed at the epicenter, we estimate the earthquake's location (30.546° N, 79.063° E), depth ( H = 19 km), the seismic moment ( M 0 = 1.12×1017 Nm, M w 5.3), the focal mechanism ( φ = 280°, δ = 14°, λ = 84°), the source radius ( a = 1.3 km), and the static stress drop (Δ σ s 22 MPa). The event occurred just above the Main Himalayan Thrust. S-wave spectra of the earthquake at hard sites in the arc are well approximated (assuming ω -2 source model) by attenuation parameters Q( f) = 500 f 0.9, κ = 0.04 s, and f max = infinite, and a stress drop of Δ σ = 70 MPa. Observed and computed peak ground motions, using stochastic method along with parameters inferred from spectral analysis, agree well with each other. These attenuation parameters are also reasonable for the observed spectra and/or peak ground motion parameters in the arc at distances ≤ 200 km during five other earthquakes in the region (4.6 ≤ M w ≤ 6.9). The estimated stress drop of the six events ranges from 20 to 120 MPa. Our analysis suggests that attenuation parameters given above may be used for ground motion estimation at hard sites in the Himalayan arc via the stochastic method.
NASA Astrophysics Data System (ADS)
Srinagesh, Davuluri; Singh, Shri Krishna; Suresh, Gaddale; Srinivas, Dakuri; Pérez-Campos, Xyoli; Suresh, Gudapati
2018-02-01
The 2017 Guptkashi earthquake occurred in a segment of the Himalayan arc with high potential for a strong earthquake in the near future. In this context, a careful analysis of the earthquake is important as it may shed light on source and ground motion characteristics during future earthquakes. Using the earthquake recording on a single broadband strong-motion seismograph installed at the epicenter, we estimate the earthquake's location (30.546° N, 79.063° E), depth (H = 19 km), the seismic moment (M 0 = 1.12×1017 Nm, M w 5.3), the focal mechanism (φ = 280°, δ = 14°, λ = 84°), the source radius (a = 1.3 km), and the static stress drop (Δσ s 22 MPa). The event occurred just above the Main Himalayan Thrust. S-wave spectra of the earthquake at hard sites in the arc are well approximated (assuming ω -2 source model) by attenuation parameters Q(f) = 500f 0.9, κ = 0.04 s, and f max = infinite, and a stress drop of Δσ = 70 MPa. Observed and computed peak ground motions, using stochastic method along with parameters inferred from spectral analysis, agree well with each other. These attenuation parameters are also reasonable for the observed spectra and/or peak ground motion parameters in the arc at distances ≤ 200 km during five other earthquakes in the region (4.6 ≤ M w ≤ 6.9). The estimated stress drop of the six events ranges from 20 to 120 MPa. Our analysis suggests that attenuation parameters given above may be used for ground motion estimation at hard sites in the Himalayan arc via the stochastic method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aagaard, B T; Graves, R W; Rodgers, A
We simulate long-period (T > 1.0-2.0 s) and broadband (T > 0.1 s) ground motions for 39 scenarios earthquakes (Mw 6.7-7.2) involving the Hayward, Calaveras, and Rodgers Creek faults. For rupture on the Hayward fault we consider the effects of creep on coseismic slip using two different approaches, both of which reduce the ground motions compared with neglecting the influence of creep. Nevertheless, the scenario earthquakes generate strong shaking throughout the San Francisco Bay area with about 50% of the urban area experiencing MMI VII or greater for the magnitude 7.0 scenario events. Long-period simulations of the 2007 Mw 4.18more » Oakland and 2007 Mw 4.5 Alum Rock earthquakes show that the USGS Bay Area Velocity Model version 08.3.0 permits simulation of the amplitude and duration of shaking throughout the San Francisco Bay area, with the greatest accuracy in the Santa Clara Valley (San Jose area). The ground motions exhibit a strong sensitivity to the rupture length (or magnitude), hypocenter (or rupture directivity), and slip distribution. The ground motions display a much weaker sensitivity to the rise time and rupture speed. Peak velocities, peak accelerations, and spectral accelerations from the synthetic broadband ground motions are, on average, slightly higher than the Next Generation Attenuation (NGA) ground-motion prediction equations. We attribute at least some of this difference to the relatively narrow width of the Hayward fault ruptures. The simulations suggest that the Spudich and Chiou (2008) directivity corrections to the NGA relations could be improved by including a dependence on the rupture speed and increasing the areal extent of rupture directivity with period. The simulations also indicate that the NGA relations may under-predict amplification in shallow sedimentary basins.« less
Three-dimensional models of deformation near strike-slip faults
ten Brink, Uri S.; Katzman, Rafael; Lin, J.
1996-01-01
We use three-dimensional elastic models to help guide the kinematic interpretation of crustal deformation associated with strike-slip faults. Deformation of the brittle upper crust in the vicinity of strike-slip fault systems is modeled with the assumption that upper crustal deformation is driven by the relative plate motion in the upper mantle. The driving motion is represented by displacement that is specified on the bottom of a 15-km-thick elastic upper crust everywhere except in a zone of finite width in the vicinity of the faults, which we term the "shear zone." Stress-free basal boundary conditions are specified within the shear zone. The basal driving displacement is either pure strike slip or strike slip with a small oblique component, and the geometry of the fault system includes a single fault, several parallel faults, and overlapping en echelon faults. We examine the variations in deformation due to changes in the width of the shear zone and due to changes in the shear strength of the faults. In models with weak faults the width of the shear zone has a considerable effect on the surficial extent and amplitude of the vertical and horizontal deformation and on the amount of rotation around horizontal and vertical axes. Strong fault models have more localized deformation at the tip of the faults, and the deformation is partly distributed outside the fault zone. The dimensions of large basins along strike-slip faults, such as the Rukwa and Dead Sea basins, and the absence of uplift around pull-apart basins fit models with weak faults better than models with strong faults. Our models also suggest that the length-to-width ratio of pull-apart basins depends on the width of the shear zone and the shear strength of the faults and is not constant as previously suggested. We show that pure strike-slip motion can produce tectonic features, such as elongate half grabens along a single fault, rotated blocks at the ends of parallel faults, or extension perpendicular to overlapping en echelon faults, which can be misinterpreted to indicate a regional component of extension. Zones of subsidence or uplift can become wider than expected for transform plate boundaries when a minor component of oblique motion is added to a system of parallel strike-slip faults.
Three-dimensional models of deformation near strike-slip faults
ten Brink, Uri S.; Katzman, Rafael; Lin, Jian
1996-01-01
We use three-dimensional elastic models to help guide the kinematic interpretation of crustal deformation associated with strike-slip faults. Deformation of the brittle upper crust in the vicinity of strike-slip fault systems is modeled with the assumption that upper crustal deformation is driven by the relative plate motion in the upper mantle. The driving motion is represented by displacement that is specified on the bottom of a 15-km-thick elastic upper crust everywhere except in a zone of finite width in the vicinity of the faults, which we term the “shear zone.” Stress-free basal boundary conditions are specified within the shear zone. The basal driving displacement is either pure strike slip or strike slip with a small oblique component, and the geometry of the fault system includes a single fault, several parallel faults, and overlapping en echelon faults. We examine the variations in deformation due to changes in the width of the shear zone and due to changes in the shear strength of the faults. In models with weak faults the width of the shear zone has a considerable effect on the surficial extent and amplitude of the vertical and horizontal deformation and on the amount of rotation around horizontal and vertical axes. Strong fault models have more localized deformation at the tip of the faults, and the deformation is partly distributed outside the fault zone. The dimensions of large basins along strike-slip faults, such as the Rukwa and Dead Sea basins, and the absence of uplift around pull-apart basins fit models with weak faults better than models with strong faults. Our models also suggest that the length-to-width ratio of pull-apart basins depends on the width of the shear zone and the shear strength of the faults and is not constant as previously suggested. We show that pure strike-slip motion can produce tectonic features, such as elongate half grabens along a single fault, rotated blocks at the ends of parallel faults, or extension perpendicular to overlapping en echelon faults, which can be misinterpreted to indicate a regional component of extension. Zones of subsidence or uplift can become wider than expected for transform plate boundaries when a minor component of oblique motion is added to a system of parallel strike-slip faults.
Nonlinear Wave propagation at sediment layers
NASA Astrophysics Data System (ADS)
Tsuda, K.; Archuleta, R. J.; O'Connell, D. R.; Bonilla, F. L.
2002-12-01
Data from some large earthquakes, such as the 2000 Tottoriken-Seibu earthquake, the 1995 Kobe earthquake, and 1994 Northridge earthquake have reinforced the importance of the effect of surface soil on seismic waves. This is especially true of the Tottoriken-Seibu earthquake where the damage from the liquefaction of surface soil was very severe. The mechanism of the liquefaction of soil is understood as the result of the nonlinear soil behavior-the pore water pressure build up-during the strong shaking. The model to explain the mechanics of pore water pressure build up has been proposed by many studies. In this study, we tried to predict the pore water pressure based on the constitutive model proposed by Iai et al. (1992). This model has been already applied to predict nonlinear soil behavior by Bonilla (2000) whose simulated results showed good agreement with the laboratory data in the VELACS program. We have applied this method to simulate ground motions at Jackson Lake Dam, Wyoming. We constructed a 140 m one-dimensional shear-wave velocity/depth profile for the sediment layers. The water table is at 2 m depth. The elastic material properties are based on in situ measurements. However, the parameters needed for the nonlinear response are taken from generic data for similar materials. To check for consistency we have constructed liquefaction resistance curves using a range of parameters that will be assumed for the soil column. These curves are compared with measured point values of the liquefaction resistance. To estimate the response at Jackson Lake Dam we have used strong motion records-JMA records from the 1995 Kobe earthquake and the Pleasant Valley Pumping Plant records from the 1983 Coalinga earthquake-as input motions at 140 m depth. We have also used synthetic ground motions computed from scenario earthquakes that might occur on the Teton Fault, very close to the dam. In the case of the synthetic input motions, the calculated shear strain approaches 20% in the sand layer. The material between 0 and 10 m shows maximum strain of about 1%, which still produces an increase in the fundamental period of the layer as well as a deamplification of the amplitude of the seismic waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, L; O’Connell, D; Lee, P
2016-06-15
Purpose: A published 5DCT breathing motion model enables image reconstruction at any user-selected breathing phase, defined by the model as a specific amplitude (v) and rate (f). Generation of reconstructed phase-specific CT scans will be required for time-independent radiation dose distribution simulations. This work answers the question: how many amplitude and rate bins are required to describe the tumor motion with a specific spatial resolution? Methods: 19 lung-cancer patients with 21 tumors were scanned using a free-breathing 5DCT protocol, employing an abdominally positioned pneumatic-bellows breathing surrogate and yielding voxel-specific motion model parameters α and β corresponding to motion as amore » function of amplitude and rate, respectively. Tumor GTVs were contoured on the first (reference) of 25 successive free-breathing fast helical CT image sets. The tumor displacements were binned into widths of 1mm to 5mm in 1mm steps and the total required number of bins recorded. The simulation evaluated the number of bins needed to encompass 100% of the breathing-amplitude and between the 5th and 95th percentile amplitudes to exclude breathing outliers. Results: The mean respiration-induced tumor motion was 9.90mm ± 7.86mm with a maximum of 25mm. The number of bins required was a strong function of the spatial resolution and varied widely between patients. For example, for 2mm bins, between 1–13 amplitude bins and 1–9 rate bins were required to encompass 100% of the breathing amplitude, while 1–6 amplitude bins and 1–3 rate bins were required to encompass 90% of the breathing amplitude. Conclusion: The strong relationship between number of bins and spatial resolution as well as the large variation between patients implies that time-independent radiation dose distribution simulations should be conducted using patient-specific data and that the breathing conditions will have to be carefully considered. This work will lead to the assessment of the dosimetric impact of binning resolution. This study is supported by Siemens Healthcare.« less
NASA Astrophysics Data System (ADS)
Cruz-Atienza, V. M.; Tago, J.; Villafuerte, C. D.; Chaljub, E.; Sanabria-Gómez, J. D.
2017-12-01
Built-up on top of ancient lake deposits, Mexico City experiences some of the largest seismic site effects in the world. The M7.1 intermediate-depth earthquake of September 19, 2017 (S19) collapsed 43 one-to-ten story buildings in the city close to the western edge of the lake-bed sediments, on top of the geotechnically-known transition zone. In this work we explore the physical reasons explaining such a damaging pattern and the long-lasting strong motion records well-documented from past events by means of new observations and high performance computational modeling. Besides the extreme amplification of seismic waves, duration of intense ground motion in the lake-bed lasts more than three times those recorded in hard-rock a few kilometers away. Different mechanisms contribute to the long lasting motions, such as the regional dispersion and multiple-scattering of the incoming wavefield all the way from the source. However, recent beamforming observations at hard-rock suggest that duration of the incoming field is significantly shorter than the strong shaking in the lake-bed. We show that despite the highly dissipative shallow deposits, seismic energy can propagate long distances in the deep structure of the valley, promoting also a large elongation of motion. Our simulations reveal that the seismic response of the basin is dominated by surface-waves overtones, and that this mechanism increases the duration of ground motion up to 280% and 500% of the incoming wavefield duration at 0.5 and 0.3 Hz, respectively. Furthermore, our results indicate that the damage pattern of the S19 earthquake is most likely due to the propagation of the fundamental mode in the transition zone of the basin. These conclusions contradicts what has been previously stated from observational and modeling investigations, where the basin itself has been discarded as a preponderant factor promoting long and devastating shaking in Mexico City. Reference: Cruz-Atienza, V. M., J. Tago, J. D. Sanabria-Gómez, E. Chaljub, V. Etienne, J. Virieux and L. Quintanar. Long Duration of Ground Motion in the Paradigmatic Valley of Mexico. Nature - Scientific Reports, 6, 38807; doi:10.1038/srep38807, 2016.
Strong motion deficits in dyslexia associated with DCDC2 gene alteration.
Cicchini, Guido Marco; Marino, Cecilia; Mascheretti, Sara; Perani, Daniela; Morrone, Maria Concetta
2015-05-27
Dyslexia is a specific impairment in reading that affects 1 in 10 people. Previous studies have failed to isolate a single cause of the disorder, but several candidate genes have been reported. We measured motion perception in two groups of dyslexics, with and without a deletion within the DCDC2 gene, a risk gene for dyslexia. We found impairment for motion particularly strong at high spatial frequencies in the population carrying the deletion. The data suggest that deficits in motion processing occur in a specific genotype, rather than the entire dyslexia population, contributing to the large variability in impairment of motion thresholds in dyslexia reported in the literature. Copyright © 2015 the authors 0270-6474/15/358059-06$15.00/0.
SU-E-J-31: Biodynamic Imaging of Cancer Tissue and Response to Chemotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nolte, D; Turek, J; Childress, M
2014-06-01
Purpose: To measure intracellular motions inside three-dimensional living cancer tissue samples to establish a novel set of biodynamic biomarkers that assess tissue proliferative activity and sensitivity or resistance to chemotherapy. Methods: Biodynamic imaging (BDI) uses digital holography with low-coherence low-intensity light illumination to construct 3D holograms from depths up to a millimeter deep inside cancer tissue models that include multicellular tumor spheroids and ex vivo cancer biopsies from canine non-Hodgkins lymphoma and epithelial ovarian cancer (EOC) mouse explants. Intracellular motions modulate the holographic intensity with frequencies related to the Doppler effect caused by the motions of a wide variety ofmore » intracellular components. These motions are affected by applied therapeutic agents, and BDI produces unique fingerprints of the action of specific drugs on the motions in specific cell types. In this study, chemotherapeutic agents (doxorubicin for canine lymphoma and oxoplatin for ovarian) are applied to the living tissue models and monitored over 10 hours by BDI. Results: Multicellular spheroids and patient biopsies are categorized as either sensitive or insensitive to applied therapeutics depending on the intracellular Doppler signatures of chemotherapy response. For both lymphoma and EOC there is strong specificity to the two types of sensitivities, with sensitive cell lines and biopsies exhibiting a global cessation of proliferation and strong suppression of metabolic activity, while insensitive cell lines and biopsies show moderate activation of Doppler frequencies associated with membrane processes and possible membrane trafficking. Conclusion: This work supports the hypothesis that biodynamic biomarkers from three-dimensional living tumor tissue, that includes tissue heterogeneity and measured within 24 hours of surgery, is predictive of near-term patient response to therapy. Future work will correlate biodynamic biomarkers with progression free survival times. This work is supported by NIH 1R01EB016582 and NSF 1263753-CBET. Nolte, Turek and An have a financial interest in Animated Dynamics, Inc. that will be licensing technology from Purdue University.« less
Effect of contrast on the perception of direction of a moving pattern
NASA Technical Reports Server (NTRS)
Stone, L. S.; Watson, A. B.; Mulligan, J. B.
1989-01-01
A series of experiments examining the effect of contrast on the perception of moving plaids was performed to test the hypothesis that the human visual system determines the direction of a moving plaid in a two-staged process: decomposition into component motion followed by application of the intersection-of-contraints rule. Although there is recent evidence that the first tenet of the hypothesis is correct, i.e., that plaid motion is initially decomposed into the motion of the individual grating components, the nature of the second-stage combination rule has not yet been established. It was found that when the gratings within the plaid are of different contrast the preceived direction is not predicted by the intersection-of-constraints rule. There is a strong (up to 20 deg) bias in the direction of the higher-constrast grating. A revised model, which incorporates a contrast-dependent weighting of perceived grating speed as observed for one-dimensional patterns, can quantitatively predict most of the results. The results are then discussed in the context of various models of human visual motion processing and of physiological responses of neurons in the primate visual system.
Rapid change in drift of the Australian plate records collision with Ontong Java plateau.
Knesel, Kurt M; Cohen, Benjamin E; Vasconcelos, Paulo M; Thiede, David S
2008-08-07
The subduction of oceanic plateaux, which contain extraordinarily thick basaltic crust and are the marine counterparts of continental flood-basalt provinces, is an important factor in many current models of plate motion and provides a potential mechanism for triggering plate reorganization. To evaluate such models, it is essential to decipher the history of the collision between the largest and thickest of the world's oceanic plateaux, the Ontong Java plateau, and the Australian plate, but this has been hindered by poor constraints for the arrival of the plateau at the Melanesian trench. Here we present (40)Ar-(39)Ar geochronological data on hotspot volcanoes in eastern Australian that reveal a strong link between collision of the Greenland-sized Ontong Java plateau with the Melanesian arc and motion of the Australian plate. The new ages define a short-lived period of reduced northward plate motion between 26 and 23 Myr ago, coincident with an eastward offset in the contemporaneous tracks of seamount chains in the Tasman Sea east of Australia. These features record a brief westward deflection of the Australian plate as the plateau entered and choked the Melanesian trench 26 Myr ago. From 23 Myr ago, Australia returned to a rapid northerly trajectory at roughly the same time that southwest-directed subduction began along the Trobriand trough. The timing and brevity of this collisional event correlate well with offsets in hotspot seamount tracks on the Pacific plate, including the archetypal Hawaiian chain, and thus provide strong evidence that immense oceanic plateaux, like the Ontong Java, can contribute to initiating rapid change in plate boundaries and motions on a global scale.
Rajaure, S.; Asimaki, Domniki; Thompson, Eric M.; Hough, Susan E.; Martin, Stacey; Ampuero, J.P.; Dhital, M.R.; Inbal, A; Takai, N; Shigefuji, M.; Bijukchhen, S; Ichiyanagi, M; Sasatani, T; Paudel, L
2017-01-01
We analyze strong motion records and high-rate GPS measurements of the M 7.8 Gorkha mainshock, M 7.3 Dolakha, and two moderate aftershock events recorded at four stations on the Kathmandu basin sediments, and one on rock-outcrop. Recordings on soil from all four events show systematic amplification relative to the rock site at multiple frequencies in the 0.1–2.5 Hz frequency range, and de-amplification of higher frequencies ( >2.5–10 Hz). The soil-to-rock amplification ratios for the M 7.8 and M 7.3 events have lower amplitude and frequency peaks relative to the ratios of the two moderate events, effects that could be suggestive of nonlinear site response. Further, comparisons to ground motion prediction equations show that 1) both soil and rock mainshock recordings were severely depleted of high frequencies, and 2) the depletion at high frequencies is not present in the aftershocks. These observations indicate that the high frequency deamplification is additionally related to characteristics of the source that are not captured by simplified ground motion prediction equations, and allude to seismic hazard analysis models being revised – possibly by treating isolated high frequency radiation sources separately from long period components to capture large magnitude near-source events such as the 2015 Gorkha mainshock.
Hong, Tae-Kyung; Choi, Eunseo; Park, Seongjun; Shin, Jin Soo
2016-01-01
Strong ground motions induce large dynamic stress changes that may disturb the magma chamber of a volcano, thus accelerating the volcanic activity. An underground nuclear explosion test near an active volcano constitutes a direct treat to the volcano. This study examined the dynamic stress changes of the magma chamber of Baekdusan (Changbaishan) that can be induced by hypothetical North Korean nuclear explosions. Seismic waveforms for hypothetical underground nuclear explosions at North Korean test site were calculated by using an empirical Green’s function approach based on a source-spectral model of a nuclear explosion; such a technique is efficient for regions containing poorly constrained velocity structures. The peak ground motions around the volcano were estimated from empirical strong-motion attenuation curves. A hypothetical M7.0 North Korean underground nuclear explosion may produce peak ground accelerations of 0.1684 m/s2 in the horizontal direction and 0.0917 m/s2 in the vertical direction around the volcano, inducing peak dynamic stress change of 67 kPa on the volcano surface and ~120 kPa in the spherical magma chamber. North Korean underground nuclear explosions with magnitudes of 5.0–7.6 may induce overpressure in the magma chamber of several tens to hundreds of kilopascals. PMID:26884136
Physics-based real time ground motion parameter maps: the Central Mexico example
NASA Astrophysics Data System (ADS)
Ramirez Guzman, L.; Contreras Ruiz Esparza, M. G.; Quiroz Ramirez, A.; Carrillo Lucia, M. A.; Perez Yanez, C.
2013-12-01
We present the use of near real time ground motion simulations in the generation of ground motion parameter maps for Central Mexico. Simple algorithm approaches to predict ground motion parameters of civil protection and risk engineering interest are based on the use of observed instrumental values, reported macroseismic intensities and their correlations, and ground motion prediction equations (GMPEs). A remarkable example of the use of this approach is the worldwide Shakemap generation program of the United States Geological Survey (USGS). Nevertheless, simple approaches rely strongly on the availability of instrumental and macroseismic intensity reports, as well as the accuracy of the GMPEs and the site effect amplification calculation. In regions where information is scarce, the GMPEs, a reference value in a mean sense, provide most of the ground motion information together with site effects amplification using a simple parametric approaches (e.g. the use of Vs30), and have proven to be elusive. Here we propose an approach that includes physics-based ground motion predictions (PBGMP) corrected by instrumental information using a Bayesian Kriging approach (Kitanidis, 1983) and apply it to the central region of Mexico. The method assumes: 1) the availability of a large database of low and high frequency Green's functions developed for the region of interest, using fully three-dimensional and representative one-dimension models, 2) enough real time data to obtain the centroid moment tensor and a slip rate function, and 3) a computational infrastructure that can be used to compute the source parameters and generate broadband synthetics in near real time, which will be combined with recorded instrumental data. By using a recently developed velocity model of Central Mexico and an efficient finite element octree-based implementation we generate a database of source-receiver Green's functions, valid to 0.5 Hz, that covers 160 km x 300 km x 700 km of Mexico, including a large portion of the Pacific Mexican subduction zone. A subset of the velocity and strong ground motion data available in real time is processed to obtain the source parameters to generate broadband ground motions in a dense grid ( 10 km x 10 km cells). These are interpolated later with instrumental values using a Bayesian Kriging method. Peak ground velocity and acceleration, as well as SA (T=0.1, 0.5, 1 and 2s) maps, are generated for a small set of medium to large magnitude Mexican earthquakes (Mw=5 to 7.4). We evaluate each map by comparing against stations not considered in the computation.
Towards Integrated Marmara Strong Motion Network
NASA Astrophysics Data System (ADS)
Durukal, E.; Erdik, M.; Safak, E.; Ansal, A.; Ozel, O.; Alcik, H.; Mert, A.; Kafadar, N.; Korkmaz, A.; Kurtulus, A.
2009-04-01
Istanbul has a 65% chance of having a magnitude 7 or above earthquake within the next 30 years. As part of the preparations for the future earthquake, strong motion networks have been installed in and around Istanbul. The Marmara Strong Motion Network, operated by the Department of Earthquake Engineering of Kandilli Observatory and Earthquake Research Institute, encompasses permanent systems outlined below. It is envisaged that the networks will be run by a single entity responsible for technical management and maintanence, as well as for data management, archiving and dissemination through dedicated web-based interfaces. • Istanbul Earthquake Rapid Response and Early Warning System - IERREWS (one hundred 18-bit accelerometers for rapid response; ten 24-bit accelerometers for early warning) • IGDAŞ Gas Shutoff Network (100 accelerometers to be installed in 2010 and integrated with IERREWS) • Structural Monitoring Arrays - Fatih Sultan Mehmet Suspension Bridge (1200m-long suspension bridge across the Bosphorus, five 3-component accelerometers + GPS sensors) - Hagia Sophia Array (1500-year-old historical edifice, 9 accelerometers) - Süleymaniye Mosque Array (450-year-old historical edifice,9 accelerometers) - Fatih Mosque Array (237-year-old historical edifice, 9 accelerometers) - Kanyon Building Array (high-rise office building, 5 accelerometers) - Isbank Tower Array (high-rise office building, 5 accelerometers) - ENRON Array (power generation facility, 4 acelerometers) - Mihrimah Sultan Mosque Array (450-year-old historical edifice,9 accelerometers + tiltmeters, to be installed in 2009) - Sultanahmet Mosque Array, (390-year-old historical edifice, 9 accelerometers + tiltmeters, to be installed in 2009) • Special Arrays - Atakoy Vertical Array (four 3-component accelerometers at 25, 50, 75, and 150 m depths) - Marmara Tube Tunnel (1400 m long submerged tunnel, 128 ch. accelerometric data, 24 ch. strain data, to be installed in 2010) - Air-Force Academy Array (72 ch. dense accelerometric array to be installed in 2010) - Gemlik Array (a dense basin array of 8 stations, to be installed in 2010) The objectives of these systems and networks are: (1) to produce rapid earthquake intensity, damage and loss assessment information after an earthquake (in the case of IERREWS), (2) to monitor conditions of structural systems, (3) to develop real-time data processing, analysis, and damage detection and location tools (in the case of structural networks) after an extreme event, (4) to assess spatial properties of strong ground motion and ground strain, and to characterise basin response (in the case of special arrays), (5) to investigate site response and wave propagation (in the case of vertical array). Ground motion data obtained from these strong motion networks have and are being used for investigations of attenuation, spatial variation (coherence), simulation benchmarking, source modeling, site response, seismic microzonation, system identification and structural model verification and structural health control. In addition to the systems and networks outlined above there are two temporary networks: KIMNET - a dense urban noise and microtremor network consisting of 50 broadband stations expected to be operational in mid 2009, and SOSEWIN - a 20-station, self-organizing structural integrated array at Ataköy in Istanbul.
Self-diffusion in dense granular shear flows.
Utter, Brian; Behringer, R P
2004-03-01
Diffusivity is a key quantity in describing velocity fluctuations in granular materials. These fluctuations are the basis of many thermodynamic and hydrodynamic models which aim to provide a statistical description of granular systems. We present experimental results on diffusivity in dense, granular shear flows in a two-dimensional Couette geometry. We find that self-diffusivities D are proportional to the local shear rate gamma; with diffusivities along the direction of the mean flow approximately twice as large as those in the perpendicular direction. The magnitude of the diffusivity is D approximately gamma;a(2), where a is the particle radius. However, the gradient in shear rate, coupling to the mean flow, and strong drag at the moving boundary lead to particle displacements that can appear subdiffusive or superdiffusive. In particular, diffusion appears to be superdiffusive along the mean flow direction due to Taylor dispersion effects and subdiffusive along the perpendicular direction due to the gradient in shear rate. The anisotropic force network leads to an additional anisotropy in the diffusivity that is a property of dense systems and has no obvious analog in rapid flows. Specifically, the diffusivity is suppressed along the direction of the strong force network. A simple random walk simulation reproduces the key features of the data, such as the apparent superdiffusive and subdiffusive behavior arising from the mean velocity field, confirming the underlying diffusive motion. The additional anisotropy is not observed in the simulation since the strong force network is not included. Examples of correlated motion, such as transient vortices, and Lévy flights are also observed. Although correlated motion creates velocity fields which are qualitatively different from collisional Brownian motion and can introduce nondiffusive effects, on average the system appears simply diffusive.
NASA Astrophysics Data System (ADS)
Šprem, Jurica; de Vos, Bob D.; de Jong, Pim A.; Viergever, Max A.; Išgum, Ivana
2017-02-01
Coronary artery calcification (CAC) is a strong and independent predictor of cardiovascular events (CVEs). CAC can be quantified in chest CT scans acquired in lung screening. However, in these images the reproducibility of CAC quantification is compromised by cardiac motion that occurs during scanning, thereby limiting the reproducibility of CVE risk assessment. We present a system for the identification of CACs strongly affected by cardiac motion artifacts by using a convolutional neural network (CNN). This study included 125 chest CT scans from the National Lung Screening Trial (NLST). Images were acquired with CT scanners from four different vendors (GE, Siemens, Philips, Toshiba) with varying tube voltage, image resolution settings, and without ECG synchronization. To define the reference standard, an observer manually identified CAC lesions and labeled each according to the presence of cardiac motion: strongly affected (positive), mildly affected/not affected (negative). A CNN was designed to automatically label the identified CAC lesions according to the presence of cardiac motion by analyzing a patch from the axial CT slice around each lesion. From 125 CT scans, 9201 CAC lesions were analyzed. 8001 lesions were used for training (19% positive) and the remaining 1200 (50% positive) were used for testing. The proposed CNN achieved a classification accuracy of 85% (86% sensitivity, 84% specificity). The obtained results demonstrate that the proposed algorithm can identify CAC lesions that are strongly affected by cardiac motion. This could facilitate further investigation into the relation of CAC scoring reproducibility and the presence of cardiac motion artifacts.
Site correction of stochastic simulation in southwestern Taiwan
NASA Astrophysics Data System (ADS)
Lun Huang, Cong; Wen, Kuo Liang; Huang, Jyun Yan
2014-05-01
Peak ground acceleration (PGA) of a disastrous earthquake, is concerned both in civil engineering and seismology study. Presently, the ground motion prediction equation is widely used for PGA estimation study by engineers. However, the local site effect is another important factor participates in strong motion prediction. For example, in 1985 the Mexico City, 400km far from the epicenter, suffered massive damage due to the seismic wave amplification from the local alluvial layers. (Anderson et al., 1986) In past studies, the use of stochastic method had been done and showed well performance on the simulation of ground-motion at rock site (Beresnev and Atkinson, 1998a ; Roumelioti and Beresnev, 2003). In this study, the site correction was conducted by the empirical transfer function compared with the rock site response from stochastic point-source (Boore, 2005) and finite-fault (Boore, 2009) methods. The error between the simulated and observed Fourier spectrum and PGA are calculated. Further we compared the estimated PGA to the result calculated from ground motion prediction equation. The earthquake data used in this study is recorded by Taiwan Strong Motion Instrumentation Program (TSMIP) from 1991 to 2012; the study area is located at south-western Taiwan. The empirical transfer function was generated by calculating the spectrum ratio between alluvial site and rock site (Borcheret, 1970). Due to the lack of reference rock site station in this area, the rock site ground motion was generated through stochastic point-source model instead. Several target events were then chosen for stochastic point-source simulating to the halfspace. Then, the empirical transfer function for each station was multiplied to the simulated halfspace response. Finally, we focused on two target events: the 1999 Chi-Chi earthquake (Mw=7.6) and the 2010 Jiashian earthquake (Mw=6.4). Considering the large event may contain with complex rupture mechanism, the asperity and delay time for each sub-fault is to be concerned. Both the stochastic point-source and the finite-fault model were used to check the result of our correction.
Effects of fiber motion on the acoustic behavior of an anisotropic, flexible fibrous material
NASA Technical Reports Server (NTRS)
Dahl, Milo D.; Rice, Edward J.; Groesbeck, Donald E.
1987-01-01
The acoustic behavior of a flexible fibrous material was studied experimentally. The material consisted of cylindrically shaped fibers arranged in a batting with the fibers primarily aligned parallel to the face of the batting. This type of material was considered anisotropic, with the acoustic propagation constant depending on whether the dirction of sound propagation was parallel or normal to the fiber arrangement. Normal incidence sound absorption measurements were taken for both fiber orientations over the frequency range 140 to 1500 Hz and with bulk densities ranging from 4.6 to 67 kg/cu m. When the sound propagated in a direction normal to the fiber alignment, the measured sound absorption showed the occurrence of a strong resonance, which increased absorption above that attributed to viscous and thermal effects. When the sound propagated in a direction parallel to the fiber alignment, indications of strong resonances in the data were not present. The resonance in the data for fibers normal to the direction of sound propagation is attributed to fiber motion. An analytical model was developed for the acoustic behavior of the material displaying the same fiber motion characteristics shown in the measurements.
Homologous White Light Solar Flares Driven by Photospheric Shear Motions
NASA Astrophysics Data System (ADS)
Romano, P.; Elmhamdi, A.; Falco, M.; Costa, P.; Kordi, A. S.; Al-Trabulsy, H. A.; Al-Shammari, R. M.
2018-01-01
We describe the peculiarity of two recurrent white light flares that occurred on 2017 September 06, in the super active region NOAA 12673, with a time interval, between their peaks, of about 3 hr. These events of the X2.2 and X9.3 GOES classes are very important, not only for their high level of emission and for the visible effects on the lower layers of the solar atmosphere, which are discernible as clear white light ribbons, but also for the strong horizontal photospheric motions, which seemed to drive them. In fact, we observed the displacement of a negative umbra located in the main delta spot of the active region for several hours before the flare occurrence. We measured velocities of up to 0.6 km s‑1. The strong and persistent shear motion of the photospheric structures, together with the high intensity of the magnetic flux involved in these events, can be considered responsible for the new energy that is continuously supplied to the magnetic system. From the timing of the emissions at different wavelengths, we were able to provide some constraints for the modeling of such events.
Effects of fiber motion on the acoustic behavior of an anisotropic, flexible fibrous material
NASA Technical Reports Server (NTRS)
Dahl, Milo D.; Rice, Edward J.; Groesbeck, Donald E.
1990-01-01
The acoustic behavior of a flexible fibrous material was studied experimentally. The material consisted of cylindrically shaped fibers arranged in a batting with the fibers primarily aligned parallel to the face of the batting. This type of material was considered anisotropic, with the acoustic propagation constant depending on whether the direction of sound propagation was parallel or normal to the fiber arrangement. Normal incidence sound absorption measurements were taken for both fiber orientations over the frequency range 140 to 1500 Hz and with bulk densities ranging from 4.6 to 67 kg/cu m. When the sound propagated in a direction normal to the fiber alignment, the measured sound absorption showed the occurrence of a strong resonance, which increased absorption above that attributed to viscous and thermal effects. When the sound propagated in a direction parallel to the fiber alignment, indications of strong resonances in the data were not present. The resonance in the data for fibers normal to the direction of sound propagation is attributed to fiber motion. An analytical model was developed for the acoustic behavior of the material displaying the same fiber motion characteristics shown in the measurements.
Wells, Stephen A; Crennell, Susan J; Danson, Michael J
2014-10-01
Citrate synthase (CS) catalyses the entry of carbon into the citric acid cycle and is highly-conserved structurally across the tree of life. Crystal structures of dimeric CSs are known in both "open" and "closed" forms, which differ by a substantial domain motion that closes the substrate-binding clefts. We explore both the static rigidity and the dynamic flexibility of CS structures from mesophilic and extremophilic organisms from all three evolutionary domains. The computational expense of this wide-ranging exploration is kept to a minimum by the use of rigidity analysis and rapid all-atom simulations of flexible motion, combining geometric simulation and elastic network modeling. CS structures from thermophiles display increased structural rigidity compared with the mesophilic enzyme. A CS structure from a psychrophile, stabilized by strong ionic interactions, appears to display likewise increased rigidity in conventional rigidity analysis; however, a novel modified analysis, taking into account the weakening of the hydrophobic effect at low temperatures, shows a more appropriate decreased rigidity. These rigidity variations do not, however, affect the character of the flexible dynamics, which are well conserved across all the structures studied. Simulation trajectories not only duplicate the crystallographically observed symmetric open-to-closed transitions, but also identify motions describing a previously unidentified antisymmetric functional motion. This antisymmetric motion would not be directly observed in crystallography but is revealed as an intrinsic property of the CS structure by modeling of flexible motion. This suggests that the functional motion closing the binding clefts in CS may be independent rather than symmetric and cooperative. © 2014 Wiley Periodicals, Inc.
Nonlinear surge motions of a ship in bi-chromatic following waves
NASA Astrophysics Data System (ADS)
Spyrou, Kostas J.; Themelis, Nikos; Kontolefas, Ioannis
2018-03-01
Unintended motions of a ship operating in steep and long following waves are investigated. A well-known such case is ;surf-riding; where a ship is carried forward by a single wave, an event invoking sometimes lateral instability and even capsize. The dynamics underlying this behavior has been clarified earlier for monochromatic waves. However, the unsteadiness of the phase space associated with ship behavior in a multichromatic sea, combined with the intrinsically strong system nonlinearity, pose new challenges. Here, current theory is extended to cover surging and surf-riding behavior in unidirectional bi-chromatic waves encountering a ship from the stern. Excitation is provided by two unidirectional harmonic wave components having their lengths comparable to the ship length and their frequencies in rational ratio. The techniques applied include (a) continuation analysis; (b) tracking of Lagrangian coherent structures in phase space, approximated through a finite-time Lyapunov exponents' calculation; and (c) large scale simulation. A profound feature of surf-riding in bi-chromatic waves is that it is turned oscillatory. Initially it appears as a frequency-locked motion, ruled by the harmonic wave component dominating the excitation. Transformations of oscillatory surf-riding are realized as the waves become steeper. In particular, heteroclinic tanglings are identified, governing abrupt transitions between qualitatively different motions. Chaotic transients, as well as long-term chaotic motions, exist near to these events. Some extraordinary patterns of ship motion are discovered. These include a counterintuitive low speed motion at very high wave excitation level; and a hybrid motion characterized by a wildly fluctuating velocity. Due to the quite generic nature of the core mathematical model of our investigation, the current results are believed to offer clues about the behavior of a class of nonlinear dynamical systems having in their modeling some analogy with a perturbed pendulum with bias.
The SCEC Broadband Platform: Open-Source Software for Strong Ground Motion Simulation and Validation
NASA Astrophysics Data System (ADS)
Goulet, C.; Silva, F.; Maechling, P. J.; Callaghan, S.; Jordan, T. H.
2015-12-01
The Southern California Earthquake Center (SCEC) Broadband Platform (BBP) is a carefully integrated collection of open-source scientific software programs that can simulate broadband (0-100Hz) ground motions for earthquakes at regional scales. The BBP scientific software modules implement kinematic rupture generation, low and high-frequency seismogram synthesis using wave propagation through 1D layered velocity structures, seismogram ground motion amplitude calculations, and goodness of fit measurements. These modules are integrated into a software system that provides user-defined, repeatable, calculation of ground motion seismograms, using multiple alternative ground motion simulation methods, and software utilities that can generate plots, charts, and maps. The BBP has been developed over the last five years in a collaborative scientific, engineering, and software development project involving geoscientists, earthquake engineers, graduate students, and SCEC scientific software developers. The BBP can run earthquake rupture and wave propagation modeling software to simulate ground motions for well-observed historical earthquakes and to quantify how well the simulated broadband seismograms match the observed seismograms. The BBP can also run simulations for hypothetical earthquakes. In this case, users input an earthquake location and magnitude description, a list of station locations, and a 1D velocity model for the region of interest, and the BBP software then calculates ground motions for the specified stations. The SCEC BBP software released in 2015 can be compiled and run on recent Linux systems with GNU compilers. It includes 5 simulation methods, 7 simulation regions covering California, Japan, and Eastern North America, the ability to compare simulation results against GMPEs, updated ground motion simulation methods, and a simplified command line user interface.
Nonlinear dynamic modeling of surface defects in rolling element bearing systems
NASA Astrophysics Data System (ADS)
Rafsanjani, Ahmad; Abbasion, Saeed; Farshidianfar, Anoushiravan; Moeenfard, Hamid
2009-01-01
In this paper an analytical model is proposed to study the nonlinear dynamic behavior of rolling element bearing systems including surface defects. Various surface defects due to local imperfections on raceways and rolling elements are introduced to the proposed model. The contact force of each rolling element described according to nonlinear Hertzian contact deformation and the effect of internal radial clearance has been taken into account. Mathematical expressions were derived for inner race, outer race and rolling element local defects. To overcome the strong nonlinearity of the governing equations of motion, a modified Newmark time integration technique was used to solve the equations of motion numerically. The results were obtained in the form of time series, frequency responses and phase trajectories. The validity of the proposed model verified by comparison of frequency components of the system response with those obtained from experiments. The classical Floquet theory has been applied to the proposed model to investigate the linear stability of the defective bearing rotor systems as the parameters of the system changes. The peak-to-peak frequency response of the system for each case is obtained and the basic routes to periodic, quasi-periodic and chaotic motions for different internal radial clearances are determined. The current study provides a powerful tool for design and health monitoring of machine systems.
NASA Astrophysics Data System (ADS)
Jana, Biman; Adkar, Bharat V.; Biswas, Rajib; Bagchi, Biman
2011-01-01
The catalytic conversion of adenosine triphosphate (ATP) and adenosine monophosphate (AMP) to adenosine diphosphate (ADP) by adenylate kinase (ADK) involves large amplitude, ligand induced domain motions, involving the opening and the closing of ATP binding domain (LID) and AMP binding domain (NMP) domains, during the repeated catalytic cycle. We discover and analyze an interesting dynamical coupling between the motion of the two domains during the opening, using large scale atomistic molecular dynamics trajectory analysis, covariance analysis, and multidimensional free energy calculations with explicit water. Initially, the LID domain must open by a certain amount before the NMP domain can begin to open. Dynamical correlation map shows interesting cross-peak between LID and NMP domain which suggests the presence of correlated motion between them. This is also reflected in our calculated two-dimensional free energy surface contour diagram which has an interesting elliptic shape, revealing a strong correlation between the opening of the LID domain and that of the NMP domain. Our free energy surface of the LID domain motion is rugged due to interaction with water and the signature of ruggedness is evident in the observed root mean square deviation variation and its fluctuation time correlation functions. We develop a correlated dynamical disorder-type theoretical model to explain the observed dynamic coupling between the motion of the two domains in ADK. Our model correctly reproduces several features of the cross-correlation observed in simulations.
NASA Astrophysics Data System (ADS)
Boemer, Dominik; Ponthot, Jean-Philippe
2017-01-01
Discrete element method simulations of a 1:5-scale laboratory ball mill are presented in this paper to study the influence of the contact parameters on the charge motion and the power draw. The position density limit is introduced as an efficient mathematical tool to describe and to compare the macroscopic charge motion in different scenarios, i.a. with different values of the contact parameters. While the charge motion and the power draw are relatively insensitive to the stiffness and the damping coefficient of the linear spring-slider-damper contact law, the coefficient of friction has a strong influence since it controls the sliding propensity of the charge. Based on the experimental calibration and validation by charge motion photographs and power draw measurements, the descriptive and predictive capabilities of the position density limit and the discrete element method are demonstrated, i.e. the real position of the charge is precisely delimited by the respective position density limit and the power draw can be predicted with an accuracy of about 5 %.
Probing antibody internal dynamics with fluorescence anisotropy and molecular dynamics simulations.
Kortkhonjia, Ekaterine; Brandman, Relly; Zhou, Joe Zhongxiang; Voelz, Vincent A; Chorny, Ilya; Kabakoff, Bruce; Patapoff, Thomas W; Dill, Ken A; Swartz, Trevor E
2013-01-01
The solution dynamics of antibodies are critical to antibody function. We explore the internal solution dynamics of antibody molecules through the combination of time-resolved fluorescence anisotropy experiments on IgG1 with more than two microseconds of all-atom molecular dynamics (MD) simulations in explicit water, an order of magnitude more than in previous simulations. We analyze the correlated motions with a mutual information entropy quantity, and examine state transition rates in a Markov-state model, to give coarse-grained descriptors of the motions. Our MD simulations show that while there are many strongly correlated motions, antibodies are highly flexible, with F(ab) and F(c) domains constantly forming and breaking contacts, both polar and non-polar. We find that salt bridges break and reform, and not always with the same partners. While the MD simulations in explicit water give the right time scales for the motions, the simulated motions are about 3-fold faster than the experiments. Overall, the picture that emerges is that antibodies do not simply fluctuate around a single state of atomic contacts. Rather, in these large molecules, different atoms come in contact during different motions.
NASA Astrophysics Data System (ADS)
Houston, Heidi; Kanamori, Hiroo
1990-08-01
A comparison of strong-motion spectra and teleseismic spectra was made for three Mw 7.8 to 8.0 earthquakes: the 1985 Michoacan (Mexico) earthquake, the 1985 Valparaiso (Chile) earthquake, and the 1983 Akita-Oki (Japan) earthquake. The decay of spectral amplitude with the distance from the station was determined, considering different measures of distance from a finite fault, and it was found to be different for these three events. The results can be used to establish empirical relations between the observed spectra and the half-space responses depending on the distance and the site condition, making it possible to estimate strong motions from source spectra determined from teleseismic records.
Boatwright, John; Jacobson, Muriel L.
1982-01-01
The strong ground motions radiated by earthquake faulting are controlled by the dynamic characteristics of the faulting process. Although this assertion seems self-evident, seismologists have only recently begun to derive and test quantitative relations between common measures of strong ground motion and the dynamic characteristics of faulting. Interest in this problem has increased dramatically in past several years, however, resulting in a number of important advances. The research presented in this workshop is a significant part of this scientific development. Watching this development occur through the work of many scientists is exciting; to be able to gather a number of these scientists together in one workshop is a remarkable opportunity.
Modeling of Driver Steering Operations in Lateral Wind Disturbances toward Driver Assistance System
NASA Astrophysics Data System (ADS)
Kurata, Yoshinori; Wada, Takahiro; Kamiji, Norimasa; Doi, Shun'ichi
Disturbances decrease vehicle stability and increase driver's mental and physical workload. Especially unexpected disturbances such as lateral winds have severe effect on vehicle stability and driver's workload. This study aims at building a driver model of steering operations in lateral wind toward developing effective driver assistance system. First, the relationship between the driver's lateral motion and its reactive quick steering behavior is investigated using driving simulator with lateral 1dof motion. In the experiments, four different wind patterns are displayed by the simulator. As the results, strong correlation was found between the driver's head lateral jerk by the lateral disturbance and the angular acceleration of the steering wheel. Then, we build a mathematical model of driver's steering model from lateral disturbance input to steering torque of the reactive quick feed-forward steering based on the experimental results. Finally, validity of the proposed model is shown by comparing the steering torque of experimental results and that of simulation results.
Running SW4 On New Commodity Technology Systems (CTS-1) Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodgers, Arthur J.; Petersson, N. Anders; Pitarka, Arben
We have recently been running earthquake ground motion simulations with SW4 on the new capacity computing systems, called the Commodity Technology Systems - 1 (CTS-1) at Lawrence Livermore National Laboratory (LLNL). SW4 is a fourth order time domain finite difference code developed by LLNL and distributed by the Computational Infrastructure for Geodynamics (CIG). SW4 simulates seismic wave propagation in complex three-dimensional Earth models including anelasticity and surface topography. We are modeling near-fault earthquake strong ground motions for the purposes of evaluating the response of engineered structures, such as nuclear power plants and other critical infrastructure. Engineering analysis of structures requiresmore » the inclusion of high frequencies which can cause damage, but are often difficult to include in simulations because of the need for large memory to model fine grid spacing on large domains.« less
NASA Astrophysics Data System (ADS)
De Filippis, G.; Cataudella, V.; Mishchenko, A. S.; Nagaosa, N.; Fierro, A.; de Candia, A.
2015-02-01
The transport properties at finite temperature of crystalline organic semiconductors are investigated, within the Su-Schrieffer-Heeger model, by combining an exact diagonalization technique, Monte Carlo approaches, and a maximum entropy method. The temperature-dependent mobility data measured in single crystals of rubrene are successfully reproduced: a crossover from super- to subdiffusive motion occurs in the range 150 ≤T ≤200 K , where the mean free path becomes of the order of the lattice parameter and strong memory effects start to appear. We provide an effective model, which can successfully explain features of the absorption spectra at low frequencies. The observed response to slowly varying electric field is interpreted by means of a simple model where the interaction between the charge carrier and lattice polarization modes is simulated by a harmonic interaction between a fictitious particle and an electron embedded in a viscous fluid.
De Filippis, G; Cataudella, V; Mishchenko, A S; Nagaosa, N; Fierro, A; de Candia, A
2015-02-27
The transport properties at finite temperature of crystalline organic semiconductors are investigated, within the Su-Schrieffer-Heeger model, by combining an exact diagonalization technique, Monte Carlo approaches, and a maximum entropy method. The temperature-dependent mobility data measured in single crystals of rubrene are successfully reproduced: a crossover from super- to subdiffusive motion occurs in the range 150≤T≤200 K, where the mean free path becomes of the order of the lattice parameter and strong memory effects start to appear. We provide an effective model, which can successfully explain features of the absorption spectra at low frequencies. The observed response to slowly varying electric field is interpreted by means of a simple model where the interaction between the charge carrier and lattice polarization modes is simulated by a harmonic interaction between a fictitious particle and an electron embedded in a viscous fluid.
The cause of larger local magnitude (Mj) in western Japan
NASA Astrophysics Data System (ADS)
Kawamoto, H.; Furumura, T.
2017-12-01
The local magnitude of the Japan Meteorological Agency (JMA) scale (Mj) in Japan sometimes show a significant discrepancy between Mw. The Mj is calculated using the amplitude of the horizontal component of ground displacement recorded by seismometers with the natural period of T0=5 s using Katsumata et al. (2004). A typical example of such a discrepancy in estimating Mj was an overestimation of the 2000 Western Tottori earthquake (Mj=7.3, Mw=6.7; hereafter referred to as event T). In this study, we examined the discrepancy between Mj and Mw for recent large earthquakes occurring in Japan.We found that the most earthquakes with larger Mj (>Mw) occur in western Japan while the earthquakes in northern Japan show reasonable Mj (=Mw). To understand the cause of such larger Mj for western Japan earthquakes we examined the strong motion record from the K-NET and KiK-net network for the event T and other earthquakes for reference. The observed ground displacement record from the event T shows a distinctive Love wave packet in tangential motion with a dominant period of about T=5 s which propagates long distances without showing strong dispersions. On the other hand, the ground motions from the earthquakes in northeastern Japan do not have such surface wave packet, and attenuation of ground motion is significant. Therefore, the overestimation of the Mj for earthquakes in western Japan may be attributed to efficient generation and propagation properties of Love wave probably relating to the crustal structure of western Japan. To explain this, we then conducted a numerical simulation of seismic wave propagation using 3D sedimentary layer model (JIVSM; Koketsu et al., 2012) and the source model of the event T. The result demonstrated the efficient generation of Love wave from the shallow strike-slip source which propagates long distances in western Japan without significant dispersions. On the other hand, the generation of surface wave was not so efficient when using a sedimentary layer model of northeastern Japan. In this case, the attenuation of surface wave is very significant due to the dispersion and scattering as propagating through sedimentary basins. Therefore, overestimation of the Mj for earthquakes in western Japan strongly relates to the structure of western Japan to generate distinctive Love wave packet for long distances.
Spatial Disorientation in Gondola Centrifuges Predicted by the Form of Motion as a Whole in 3-D
Holly, Jan E.; Harmon, Katharine J.
2009-01-01
INTRODUCTION During a coordinated turn, subjects can misperceive tilts. Subjects accelerating in tilting-gondola centrifuges without external visual reference underestimate the roll angle, and underestimate more when backward-facing than when forward-facing. In addition, during centrifuge deceleration, the perception of pitch can include tumble while paradoxically maintaining a fixed perceived pitch angle. The goal of the present research was to test two competing hypotheses: (1) that components of motion are perceived relatively independently and then combined to form a three-dimensional perception, and (2) that perception is governed by familiarity of motions as a whole in three dimensions, with components depending more strongly on the overall shape of the motion. METHODS Published experimental data were used from existing tilting-gondola centrifuge studies. The two hypotheses were implemented formally in computer models, and centrifuge acceleration and deceleration were simulated. RESULTS The second, whole-motion oriented, hypothesis better predicted subjects' perceptions, including the forward-backward asymmetry and the paradoxical tumble upon deceleration. Important was the predominant stimulus at the beginning of the motion as well as the familiarity of centripetal acceleration. CONCLUSION Three-dimensional perception is better predicted by taking into account familiarity with the form of three-dimensional motion. PMID:19198199
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Ping; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024; Sun, Jun
2015-06-15
In O-type high power microwave (HPM) devices, the annular relativistic electron beam is constrained by a strong guiding magnetic field and propagates through an interaction region to generate HPM. Some papers believe that the E × B drift of electrons may lead to beam breakup. This paper simplifies the interaction region with a smooth cylindrical waveguide to research the radial motion of electrons under conditions of strong guiding magnetic field and TM{sub 01} mode HPM. The single-particle trajectory shows that the radial electron motion presents the characteristic of radial guiding-center drift carrying cyclotron motion. The radial guiding-center drift is spatiallymore » periodic and is dominated by the polarization drift, not the E × B drift. Furthermore, the self fields of the beam space charge can provide a radial force which may pull electrons outward to some extent but will not affect the radial polarization drift. Despite the radial drift, the strong guiding magnetic field limits the drift amplitude to a small value and prevents beam breakup from happening due to this cause.« less
Ground Motion Characteristics of Induced Earthquakes in Central North America
NASA Astrophysics Data System (ADS)
Atkinson, G. M.; Assatourians, K.; Novakovic, M.
2017-12-01
The ground motion characteristics of induced earthquakes in central North America are investigated based on empirical analysis of a compiled database of 4,000,000 digital ground-motion records from events in induced-seismicity regions (especially Oklahoma). Ground-motion amplitudes are characterized non-parametrically by computing median amplitudes and their variability in magnitude-distance bins. We also use inversion techniques to solve for regional source, attenuation and site response effects. Ground motion models are used to interpret the observations and compare the source and attenuation attributes of induced earthquakes to those of their natural counterparts. Significant conclusions are that the stress parameter that controls the strength of high-frequency radiation is similar for induced earthquakes (depth of h 5 km) and shallow (h 5 km) natural earthquakes. By contrast, deeper natural earthquakes (h 10 km) have stronger high-frequency ground motions. At distances close to the epicenter, a greater focal depth (which increases distance from the hypocenter) counterbalances the effects of a larger stress parameter, resulting in motions of similar strength close to the epicenter, regardless of event depth. The felt effects of induced versus natural earthquakes are also investigated using USGS "Did You Feel It?" reports; 400,000 reports from natural events and 100,000 reports from induced events are considered. The felt reports confirm the trends that we expect based on ground-motion modeling, considering the offsetting effects of the stress parameter versus focal depth in controlling the strength of motions near the epicenter. Specifically, felt intensity for a given magnitude is similar near the epicenter, on average, for all event types and depths. At distances more than 10 km from the epicenter, deeper events are felt more strongly than shallow events. These ground-motion attributes imply that the induced-seismicity hazard is most critical for facilities in close proximity (<10 km) to oil and gas operations.
Imaging Strong Lateral Heterogeneities with USArray using Body-to-Surface Wave Scattering
NASA Astrophysics Data System (ADS)
Yu, C.; Zhan, Z.; Hauksson, E.; Cochran, E. S.
2017-12-01
Seismic scattering is commonly observed and results from wave propagation in heterogeneous medium. Yet, deterministic characterization of scatterers remains challenging. In this study, we analyze broadband waveforms recorded by the USArray across the entire conterminous US. With array analysis, we observe strong scattered surface waves following the arrival of teleseismic body waves over several hundreds of kilometers. We use back-projection to locate the body-to-surface scattering sources, and detect strong scatterers both around and within the conterminous US. For the former, strong scattering is associated with pronounced bathymetric relief, such as the Patton Escarpment in the Southern California Continental Borderland. For the latter, scatterers are consistent with sharp lateral heterogeneities, such as near the Yellowstone hotspot and Southern California fault zones. We further model the body-to-surface wave scattering using finite-difference simulations. As an example, in the Southern California Continental Borderland a simplified 2-D bathymetric and crustal model are able to predict the arrival times and amplitudes of major scatterers. The modeling also suggests a relatively low shear wave velocity in the Continental Borderland. These observation of strong body-to-surface wave scattering and waveform modeling not only helps us image sharp heterogeneities but also are useful for assessing seismic hazard, including the calibration and refinement of seismic velocity models used to locate earthquakes and simulate strong ground motions.
The INGV Real Time Strong Motion Database
NASA Astrophysics Data System (ADS)
Massa, Marco; D'Alema, Ezio; Mascandola, Claudia; Lovati, Sara; Scafidi, Davide; Gomez, Antonio; Carannante, Simona; Franceschina, Gianlorenzo; Mirenna, Santi; Augliera, Paolo
2017-04-01
The INGV real time strong motion data sharing is assured by the INGV Strong Motion Database. ISMD (http://ismd.mi.ingv.it) was designed in the last months of 2011 in cooperation among different INGV departments, with the aim to organize the distribution of the INGV strong-motion data using standard procedures for data acquisition and processing. The first version of the web portal was published soon after the occurrence of the 2012 Emilia (Northern Italy), Mw 6.1, seismic sequence. At that time ISMD was the first European real time web portal devoted to the engineering seismology community. After four years of successfully operation, the thousands of accelerometric waveforms collected in the archive need necessary a technological improvement of the system in order to better organize the new data archiving and to make more efficient the answer to the user requests. ISMD 2.0 was based on PostgreSQL (www.postgresql.org), an open source object- relational database. The main purpose of the web portal is to distribute few minutes after the origin time the accelerometric waveforms and related metadata of the Italian earthquakes with ML≥3.0. Data are provided both in raw SAC (counts) and automatically corrected ASCII (gal) formats. The web portal also provide, for each event, a detailed description of the ground motion parameters (i.e. Peak Ground Acceleration, Velocity and Displacement, Arias and Housner Intensities) data converted in velocity and displacement, response spectra up to 10.0 s and general maps concerning the recent and the historical seismicity of the area together with information about its seismic hazard. The focal parameters of the events are provided by the INGV National Earthquake Center (CNT, http://cnt.rm.ingv.it). Moreover, the database provides a detailed site characterization section for each strong motion station, based on geological, geomorphological and geophysical information. At present (i.e. January 2017), ISMD includes 987 (121.185 waveforms) Italian earthquakes with ML≥3.0, recorded since the 1st January 2012, besides 204 accelerometric stations belonging to the INGV strong motion network and regional partner.
ON HYDRODYNAMIC MOTIONS IN DEAD ZONES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oishi, Jeffrey S.; Mac Low, Mordecai-Mark, E-mail: jsoishi@astro.berkeley.ed, E-mail: mordecai@amnh.or
We investigate fluid motions near the midplane of vertically stratified accretion disks with highly resistive midplanes. In such disks, the magnetorotational instability drives turbulence in thin layers surrounding a resistive, stable dead zone. The turbulent layers in turn drive motions in the dead zone. We examine the properties of these motions using three-dimensional, stratified, local, shearing-box, non-ideal, magnetohydrodynamical simulations. Although the turbulence in the active zones provides a source of vorticity to the midplane, no evidence for coherent vortices is found in our simulations. It appears that this is because of strong vertical oscillations in the dead zone. By analyzingmore » time series of azimuthally averaged flow quantities, we identify an axisymmetric wave mode particular to models with dead zones. This mode is reduced in amplitude, but not suppressed entirely, by changing the equation of state from isothermal to ideal. These waves are too low frequency to affect sedimentation of dust to the midplane, but may have significance for the gravitational stability of the resulting midplane dust layers.« less
NASA Astrophysics Data System (ADS)
Aochi, Hideo; Douglas, John; Ulrich, Thomas
2017-03-01
We compare ground motions simulated from dynamic rupture scenarios, for the seismic gap along the North Anatolian Fault under the Marmara Sea (Turkey), to estimates from empirical ground motion prediction equations (GMPEs). Ground motions are simulated using a finite difference method and a 3-D model of the local crustal structure. They are analyzed at more than a thousand locations in terms of horizontal peak ground velocity. Characteristics of probable earthquake scenarios are strongly dependent on the hypothesized level of accumulated stress, in terms of a normalized stress parameter T. With respect to the GMPEs, it is found that simulations for many scenarios systematically overestimate the ground motions at all distances. Simulations for only some scenarios, corresponding to moderate stress accumulation, match the estimates from the GMPEs. The difference between the simulations and the GMPEs is used to quantify the relative probabilities of each scenario and, therefore, to revise the probability of the stress field. A magnitude Mw7+ operating at moderate prestress field (0.6 < T ≤ 0.7) is statistically more probable, as previously assumed in the logic tree of probabilistic assessment of rupture scenarios. This approach of revising the mechanical hypothesis by means of comparison to an empirical statistical model (e.g., a GMPE) is useful not only for practical seismic hazard assessments but also to understand crustal dynamics.
Nishida, Jun; Yan, Chang; Fayer, Michael D
2016-10-12
Polarization-selective angle-resolved infrared pump-probe spectroscopy was developed and used to study the orientational dynamics of a planar alkylsiloxane monolayer functionalized with a rhenium metal carbonyl headgroup on an SiO 2 surface. The technique, together with a time-averaged infrared linear dichroism measurement, characterized picosecond orientational relaxation of the headgroup occurring at the monolayer-air interface by employing several sets of incident angles of the infrared pulses relative to the sample surface. By application of this method and using a recently developed theory, it was possible to extract both the out-of-plane and "mainly"-in-plane orientational correlation functions in a model-independent manner. The observed correlation functions were compared with theoretically derived correlation functions based on several dynamical models. The out-of-plane correlation function reveals the highly restricted out-of-plane motions of the head groups and also suggests that the angular distribution of the transition dipole moments is bimodal. The mainly-in-plane correlation function, for the sample studied here with the strongly restricted out-of-plane motions, essentially arises from the purely in-plane dynamics. In contrast to the out-of-plane dynamics, significant in-plane motions occurring over various time scales were observed including an inertial motion, a restricted wobbling motion of ∼3 ps, and complete randomization occurring in ∼25 ps.
NASA Astrophysics Data System (ADS)
Asano, K.; Sekiguchi, H.; Iwata, T.; Yoshimi, M.; Hayashida, T.; Saomoto, H.; Horikawa, H.
2013-12-01
The three-dimensional velocity structure model for the Osaka sedimentary basin, southwest Japan is developed and improved based on many kinds of geophysical explorations for decades (e.g., Kagawa et al., 1993; Horikawa et al., 2003; Iwata et al., 2008). Recently, our project (Sekiguchi et al., 2013) developed a new three-dimensional velocity model for strong motion prediction of the Uemachi fault earthquake in the Osaka basin considering both geophysical and geological information by adding newly obtained exploration data such as reflection surveys, microtremor surveys, and receiver function analysis (hereafter we call UMC2013 model) . On April 13, 2013, an inland earthquake of Mw5.8 occurred in Awaji Island, which is close to the southwestern boundary of the aftershock area of the 1995 Kobe earthquake. The strong ground motions are densely observed at more than 100 stations in the basin. The ground motion lasted longer than four minutes in the Osaka urban area where its bedrock depth is about 1-2 km. This long-duration ground motions are mainly due to the surface waves excited in this sedimentary basin whereas the magnitude of this earthquake is moderate and the rupture duration is expected to be less than 5 s. In this study, we modeled long-period (more than 2s) ground motions during this earthquake to check the performance of the present UMC2013 model and to obtain a better constraint on the attenuation factor of sedimentary part of the basin. The seismic wave propagation in the region including the source and the Osaka basin is modeled by the finite difference method using the staggered grid solving the elasto-dynamic equations. The domain of 90km×85km×25.5km is modeled and discretized with a grid spacing of 50 m. Since the minimum S-wave velocity of the UMC2013 model is about 250 m/s, this calculation is valid up to the period of about 1 s. The effect of attenuation is included in the form of Q(f)=Q0(T0/T) proposed by Graves (1996). A PML is implemented in the side and bottom of the domain. It is parallelized by the MPI and OpenMP. We computed for 120000 steps with a time step of 0.0025 s, which equals to 300s from the origin time. The source is represented by a point source having the focal mechanism determined by the F-net, NIED and the duration of its source time function is set to 3.1s referring to the waveform fitting at the rock stations outside the basin. In the previous studies for the Osaka basin (Horikawa et al., 2003; Kawabe and Kamae, 2006; Iwaki and Iwata, 2011), Q0 at a reference period T0 is given by a function of S-wave velocity; Q0=αVs. We fixed T0 at 5s, and tested Q0 value changing α from 0.1 to 1.0. Comparing the envelope of synthetic velocity waveforms with that of observed waveforms in the basin, α of 0.3 fits to the observation well, whereas the difference from 0.2 to 0.5 is not significant. The simulation explains the characteristics of observed seismic waves propagating inside the basin in terms of duration and amplitude at most stations. The response velocity spectra and dominant period would be demonstrated to see the areal performance of present velocity model (UMC2013), and we will discuss how later phases generates and propagates based on the simulated wave field. Acknowledgements: We used strong motion data from K-NET/KiK-net, JMA, Osaka Prefectural Government, BRI, and CEORKA.
Infrared video based gas leak detection method using modified FAST features
NASA Astrophysics Data System (ADS)
Wang, Min; Hong, Hanyu; Huang, Likun
2018-03-01
In order to detect the invisible leaking gas that is usually dangerous and easily leads to fire or explosion in time, many new technologies have arisen in the recent years, among which the infrared video based gas leak detection is widely recognized as a viable tool. However, all the moving regions of a video frame can be detected as leaking gas regions by the existing infrared video based gas leak detection methods, without discriminating the property of each detected region, e.g., a walking person in a video frame may be also detected as gas by the current gas leak detection methods.To solve this problem, we propose a novel infrared video based gas leak detection method in this paper, which is able to effectively suppress strong motion disturbances.Firstly, the Gaussian mixture model(GMM) is used to establish the background model.Then due to the observation that the shapes of gas regions are different from most rigid moving objects, we modify the Features From Accelerated Segment Test (FAST) algorithm and use the modified FAST (mFAST) features to describe each connected component. In view of the fact that the statistical property of the mFAST features extracted from gas regions is different from that of other motion regions, we propose the Pixel-Per-Points (PPP) condition to further select candidate connected components.Experimental results show that the algorithm is able to effectively suppress most strong motion disturbances and achieve real-time leaking gas detection.
EVIDENCE FOR QUASI-ADIABATIC MOTION OF CHARGED PARTICLES IN STRONG CURRENT SHEETS IN THE SOLAR WIND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malova, H. V.; Popov, V. Yu.; Grigorenko, E. E.
We investigate quasi-adiabatic dynamics of charged particles in strong current sheets (SCSs) in the solar wind, including the heliospheric current sheet (HCS), both theoretically and observationally. A self-consistent hybrid model of an SCS is developed in which ion dynamics is described at the quasi-adiabatic approximation, while the electrons are assumed to be magnetized, and their motion is described in the guiding center approximation. The model shows that the SCS profile is determined by the relative contribution of two currents: (i) the current supported by demagnetized protons that move along open quasi-adiabatic orbits, and (ii) the electron drift current. The simplestmore » modeled SCS is found to be a multi-layered structure that consists of a thin current sheet embedded into a much thicker analog of a plasma sheet. This result is in good agreement with observations of SCSs at ∼1 au. The analysis of fine structure of different SCSs, including the HCS, shows that an SCS represents a narrow current layer (with a thickness of ∼10{sup 4} km) embedded into a wider region of about 10{sup 5} km, independently of the SCS origin. Therefore, multi-scale structuring is very likely an intrinsic feature of SCSs in the solar wind.« less
Application and API for Real-time Visualization of Ground-motions and Tsunami
NASA Astrophysics Data System (ADS)
Aoi, S.; Kunugi, T.; Suzuki, W.; Kubo, T.; Nakamura, H.; Azuma, H.; Fujiwara, H.
2015-12-01
Due to the recent progress of seismograph and communication environment, real-time and continuous ground-motion observation becomes technically and economically feasible. K-NET and KiK-net, which are nationwide strong motion networks operated by NIED, cover all Japan by about 1750 stations in total. More than half of the stations transmit the ground-motion indexes and/or waveform data in every second. Traditionally, strong-motion data were recorded by event-triggering based instruments with non-continues telephone line which is connected only after an earthquake. Though the data from such networks mainly contribute to preparations for future earthquakes, huge amount of real-time data from dense network are expected to directly contribute to the mitigation of ongoing earthquake disasters through, e.g., automatic shutdown plants and helping decision-making for initial response. By generating the distribution map of these indexes and uploading them to the website, we implemented the real-time ground motion monitoring system, Kyoshin (strong-motion in Japanese) monitor. This web service (www.kyoshin.bosai.go.jp) started in 2008 and anyone can grasp the current ground motions of Japan. Though this service provides only ground-motion map in GIF format, to take full advantage of real-time strong-motion data to mitigate the ongoing disasters, digital data are important. We have developed a WebAPI to provide real-time data and related information such as ground motions (5 km-mesh) and arrival times estimated from EEW (earthquake early warning). All response data from this WebAPI are in JSON format and are easy to parse. We also developed Kyoshin monitor application for smartphone, 'Kmoni view' using the API. In this application, ground motions estimated from EEW are overlapped on the map with the observed one-second-interval indexes. The application can playback previous earthquakes for demonstration or disaster drill. In mobile environment, data traffic and battery are limited and it is not practical to regularly visualize all the data. The application has automatic starting (pop-up) function triggered by EEW. Similar WebAPI and application for tsunami are being prepared using the pressure data recorded by dense offshore observation network (S-net), which is under construction along the Japan Trench.
A source-sink model of the generation of plate tectonics from non-Newtonian mantle flow
NASA Technical Reports Server (NTRS)
Bercovici, David
1995-01-01
A model of mantle convection which generates plate tectonics requires strain rate- or stress-dependent rheology in order to produce strong platelike flows with weak margins as well as strike-slip deformation and plate spin (i.e., toroidal motion). Here, we employ a simple model of source-sink driven surface flow to determine the form of such a rheology that is appropriate for Earth's present-day plate motions. In this model, lithospheric motion is treated as shallow layer flow driven by sources and sinks which correspond to spreading centers and subduction zones, respectively. Two plate motion models are used to derive the source sink field. As originally implied in the simpler Cartesian version of this model, the classical power law rheologies do not generate platelike flows as well as the hypothetical Whitehead-Gans stick-slip rheology (which incorporates a simple self-lubrication mechanism). None of the fluid rheologies examined, however, produce more than approximately 60% of the original maximum shear. For either plate model, the viscosity fields produced by the power law rheologies are diffuse, and the viscosity lows over strike-slip shear zones or pseudo-margins are not as small as over the prescribed convergent-divergent margins. In contrast, the stick-slip rheology generates very platelike viscosity fields, with sharp gradients at the plate boundaries, and margins with almost uniformly low viscosity. Power law rheologies with high viscosity contrasts, however, lead to almost equally favorable comparisons, though these also yield the least platelike viscosity fields. This implies that the magnitude of toroidal flow and platelike strength distributions are not necessarily related and thus may present independent constraints on the determination of a self-consistent plate-mantle rheology.
A source-sink model of the generation of plate tectonics from non-Newtonian mantle flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bercovici, D.
1995-02-01
A model of mantle convection which generates plate tectonics requires strain rate- or stress-dependent rheology in order to produce strong platelike flows with weak margins as well as strike-slip deformation and plate spin (i.e., toroidal motion). Here, we employ a simple model of source-sink driven surface flow to determine the form of such a rheology that is appropriate for Earth`s present-day plate motions. In this model, lithospheric motion is treated as shallow layer flow driven by sources and sinks which correspond to spreading centers and subduction zones, respectively. Two plate motion models are used to derive the source sink field.more » As originally implied in the simpler Cartesian version of this model, the classical power law rheologies do not generate platelike flows as well as the hypothetical Whitehead-Gans stick-slip rheology (which incorporates a simple self-lubrication mechanism). None of the fluid rheologies examined, however, produce more than approximately 60% of the original maximum shear. For either plate model, the viscosity fields produced by the power law rheologies are diffuse, and the viscosity lows over strike-slip shear zones or pseudo-margins are not as small as over the prescribed convergent-divergent margins. In contrast, the stick-slip rheology generates very platelike viscosity fields, with sharp gradients at the plate boundaries, and margins with almost uniformly low viscosity. Power law rheologies with high viscosity contrasts, however, lead to almost equally favorable comparisons, though these also yield the least platelike viscosity fields. This implies that the magnitude of toroidal flow and platelike strength distributions are not necessarily related and thus may present independent constraints on the determination of a self-consistent plate-mantle rheology.« less
Using Global Plate Velocity Boundary Conditions for Embedded Regional Geodynamic Models
NASA Astrophysics Data System (ADS)
Taramon Gomez, Jorge; Morgan, Jason; Perez-Gussinye, Marta
2015-04-01
The treatment of far-field boundary conditions is one of the most poorly resolved issues for regional modeling of geodynamic processes. In viscous flow, the choice of far-field boundary conditions often strongly shapes the large-scale structure of a geosimulation. The mantle velocity field along the sidewalls and base of a modeling region is typically much more poorly known than the geometry of past global motions of the surface plates as constrained by global plate motion reconstructions. For regional rifting models it has become routine to apply highly simplified 'plate spreading' or 'uniform rifting' boundary conditions to a 3-D model that limits its ability to simulate the geodynamic evolution of a specific rifted margin. One way researchers are exploring the sensitivity of regional models to uncertain boundary conditions is to use a nested modeling approach in which a global model is used to determine a large-scale flow pattern that is imposed as a constraint along the boundaries of the region to be modeled. Here we explore the utility of a different approach that takes advantage of the ability of finite element models to use unstructured meshes than can embed much higher resolution sub-regions within a spherical global mesh. In our initial project to validate this approach, we create a global spherical mesh in which a higher resolution sub-region is created around the nascent South Atlantic Rifting Margin. Global Plate motion BCs and plate boundaries are applied for the time of the onset of rifting, continuing through several 10s of Ma of rifting. Thermal, compositional, and melt-related buoyancy forces are only non-zero within the high-resolution subregion, elsewhere, motions are constrained by surface plate-motion constraints. The total number of unknowns needed to solve an embedded regional model with this approach is less than 1/3 larger than that needed for a structured-mesh solution on a Cartesian or spherical cap sub-regional mesh. Here we illustrate the initial steps within this workflow for creating time-varying surface boundary conditions (using GPlates), and a time-variable unstructured 3-D spherical mesh.
Camley, Brian A.; Zhang, Yunsong; Zhao, Yanxiang; Li, Bo; Ben-Jacob, Eshel; Levine, Herbert; Rappel, Wouter-Jan
2014-01-01
Pairs of endothelial cells on adhesive micropatterns rotate persistently, but pairs of fibroblasts do not; coherent rotation is present in normal mammary acini and kidney cells but absent in cancerous cells. Why? To answer this question, we develop a computational model of pairs of mammalian cells on adhesive micropatterns using a phase field method and study the conditions under which persistent rotational motion (PRM) emerges. Our model couples the shape of the cell, the cell’s internal chemical polarity, and interactions between cells such as volume exclusion and adhesion. We show that PRM can emerge from this minimal model and that the cell-cell interface may be influenced by the nucleus. We study the effect of various cell polarity mechanisms on rotational motion, including contact inhibition of locomotion, neighbor alignment, and velocity alignment, where cells align their polarity to their velocity. These polarity mechanisms strongly regulate PRM: Small differences in polarity mechanisms can create significant differences in collective rotation. We argue that the existence or absence of rotation under confinement may lead to insight into the cell’s methods for coordinating collective cell motility. PMID:25258412
Effects of vessel compliance on flow pattern in porcine epicardial right coronary arterial tree.
Huo, Yunlong; Choy, Jenny Susana; Svendsen, Mark; Sinha, Anjan Kumar; Kassab, Ghassan S
2009-03-26
The compliance of the vessel wall affects hemodynamic parameters which may alter the permeability of the vessel wall. Based on experimental measurements, the present study established a finite element (FE) model in the proximal elastic vessel segments of epicardial right coronary arterial (RCA) tree obtained from computed tomography. The motion of elastic vessel wall was measured by an impedance catheter and the inlet boundary condition was measured by an ultrasound flow probe. The Galerkin FE method was used to solve the Navier-Stokes and Continuity equations, where the convective term in the Navier-Stokes equation was changed in the arbitrary Lagrangian-Eulerian (ALE) framework to incorporate the motion due to vessel compliance. Various hemodynamic parameters (e.g., wall shear stress-WSS, WSS spatial gradient-WSSG, oscillatory shear index-OSI) were analyzed in the model. The motion due to vessel compliance affects the time-averaged WSSG more strongly than WSS at bifurcations. The decrease of WSSG at flow divider in elastic bifurcations, as compared to rigid bifurcations, implies that the vessel compliance decreases the permeability of vessel wall and may be atheroprotective. The model can be used to predict coronary flow pattern in subject-specific anatomy as determined by noninvasive imaging.
Plate Motions, Regional Deformation, and Time-Variation of Plate Motions
NASA Technical Reports Server (NTRS)
Gordon, R. G.
1998-01-01
The significant results obtained with support of this grant include the following: (1) Using VLBI data in combination with other geodetical, geophysical, and geological data to bound the present rotation of the Colorado Plateau, and to evaluate to its implications for the kinematics and seismogenic potential of the western half of the conterminous U.S. (2) Determining realistic estimates of uncertainties for VLBI data and then applying the data and uncertainties to obtain an upper bound on the integral of deformation within the "stable interior" of the North American and other plates and thus to place an upper bound on the seismogenic potential within these regions. (3) Combining VLBI data with other geodetic, geophysical, and geologic data to estimate the motion of coastal California in a frame of reference attached to the Sierra Nevada-Great Valley microplate. This analysis has provided new insights into the kinematic boundary conditions that may control or at least strongly influence the locations of asperities that rupture in great earthquakes along the San Andreas transform system. (4) Determining a global tectonic model from VLBI geodetic data that combines the estimation of plate angular velocities with individual site linear velocities where tectonically appropriate. and (5) Investigation of the some of the outstanding problems defined by the work leading to global plate motion model NUVEL-1. These problems, such as the motion between the Pacific and North American plates and between west Africa and east Africa, are focused on regions where the seismogenic potential may be greater than implied by published plate tectonic models.
Detailed p- and s-wave velocity models along the LARSE II transect, Southern California
Murphy, J.M.; Fuis, G.S.; Ryberg, T.; Lutter, W.J.; Catchings, R.D.; Goldman, M.R.
2010-01-01
Structural details of the crust determined from P-wave velocity models can be improved with S-wave velocity models, and S-wave velocities are needed for model-based predictions of strong ground motion in southern California. We picked P- and S-wave travel times for refracted phases from explosive-source shots of the Los Angeles Region Seismic Experiment, Phase II (LARSE II); we developed refraction velocity models from these picks using two different inversion algorithms. For each inversion technique, we calculated ratios of P- to S-wave velocities (VP/VS) where there is coincident P- and S-wave ray coverage.We compare the two VP inverse velocity models to each other and to results from forward modeling, and we compare the VS inverse models. The VS and VP/VS models differ in structural details from the VP models. In particular, dipping, tabular zones of low VS, or high VP/VS, appear to define two fault zones in the central Transverse Ranges that could be parts of a positive flower structure to the San Andreas fault. These two zones are marginally resolved, but their presence in two independent models lends them some credibility. A plot of VS versus VP differs from recently published plots that are based on direct laboratory or down-hole sonic measurements. The difference in plots is most prominent in the range of VP = 3 to 5 km=s (or VS ~ 1:25 to 2:9 km/s), where our refraction VS is lower by a few tenths of a kilometer per second from VS based on direct measurements. Our new VS - VP curve may be useful for modeling the lower limit of VS from a VP model in calculating strong motions from scenario earthquakes.
Seismic Wave Amplification in Las Vegas: Site Characterization Measurements and Response Models
NASA Astrophysics Data System (ADS)
Louie, J. N.; Anderson, J. G.; Luke, B.; Snelson, C.; Taylor, W.; Rodgers, A.; McCallen, D.; Tkalcic, H.; Wagoner, J.
2004-12-01
As part of a multidisciplinary effort to understand seismic wave amplification in Las Vegas Valley, we conducted geotechnical and seismic refraction field studies, geologic and lithologic interpretation, and geophysical model building. Frequency-dependent amplifications (site response) and peak ground motions strongly correlate with site conditions as characterized by the models. The models include basin depths and velocities, which also correlate against ground motions. Preliminary geologic models were constructed from detailed geologic and fault mapping, logs of over 500 wells penetrating greater than 200 m depth, gravity-inversion results from the USGS, and USDA soil maps. Valley-wide refraction studies we conducted in 2002 and 2003 were inverted for constraints on basin geometry, and deep basin and basement P velocities with some 3-d control to depths of 5 km. Surface-wave studies during 2002-2004 characterized more than 75 sites within the Valley for shear velocity to depths exceeding 100 m, including all the legacy sites where nuclear-blast ground motions were recorded. The SASW and refraction-microtremor surface-surveying techniques proved to provide complementary, and coordinating Rayleigh dispersion-curve data at a dozen sites. Borehole geotechnical studies at a half-dozen sites confirmed the shear-velocity profiles that we derived from surface-wave studies. We then correlated all the geotechnical data against a detailed stratigraphic model, derived from drilling logs, to create a Valley-wide model for shallow site conditions. This well-log-based model predicts site measurements better than do models based solely on geologic or soil mapping.
NASA Astrophysics Data System (ADS)
Kumar, Naresh; Kumar, Parveen; Chauhan, Vishal; Hazarika, Devajit
2017-10-01
Strong-motion records of recent Gorkha Nepal earthquake ( M w 7.8), its strong aftershocks and seismic events of Hindu kush region have been analysed for estimation of source parameters. The M w 7.8 Gorkha Nepal earthquake of 25 April 2015 and its six aftershocks of magnitude range 5.3-7.3 are recorded at Multi-Parametric Geophysical Observatory, Ghuttu, Garhwal Himalaya (India) >600 km west from the epicentre of main shock of Gorkha earthquake. The acceleration data of eight earthquakes occurred in the Hindu kush region also recorded at this observatory which is located >1000 km east from the epicentre of M w 7.5 Hindu kush earthquake on 26 October 2015. The shear wave spectra of acceleration record are corrected for the possible effects of anelastic attenuation at both source and recording site as well as for site amplification. The strong-motion data of six local earthquakes are used to estimate the site amplification and the shear wave quality factor ( Q β) at recording site. The frequency-dependent Q β( f) = 124 f 0.98 is computed at Ghuttu station by using inversion technique. The corrected spectrum is compared with theoretical spectrum obtained from Brune's circular model for the horizontal components using grid search algorithm. Computed seismic moment, stress drop and source radius of the earthquakes used in this work range 8.20 × 1016-5.72 × 1020 Nm, 7.1-50.6 bars and 3.55-36.70 km, respectively. The results match with the available values obtained by other agencies.
The consentaneous model of the financial markets exhibiting spurious nature of long-range memory
NASA Astrophysics Data System (ADS)
Gontis, V.; Kononovicius, A.
2018-09-01
It is widely accepted that there is strong persistence in the volatility of financial time series. The origin of the observed persistence, or long-range memory, is still an open problem as the observed phenomenon could be a spurious effect. Earlier we have proposed the consentaneous model of the financial markets based on the non-linear stochastic differential equations. The consentaneous model successfully reproduces empirical probability and power spectral densities of volatility. This approach is qualitatively different from models built using fractional Brownian motion. In this contribution we investigate burst and inter-burst duration statistics of volatility in the financial markets employing the consentaneous model. Our analysis provides an evidence that empirical statistical properties of burst and inter-burst duration can be explained by non-linear stochastic differential equations driving the volatility in the financial markets. This serves as an strong argument that long-range memory in finance can have spurious nature.
A deformable surface model for real-time water drop animation.
Zhang, Yizhong; Wang, Huamin; Wang, Shuai; Tong, Yiying; Zhou, Kun
2012-08-01
A water drop behaves differently from a large water body because of its strong viscosity and surface tension under the small scale. Surface tension causes the motion of a water drop to be largely determined by its boundary surface. Meanwhile, viscosity makes the interior of a water drop less relevant to its motion, as the smooth velocity field can be well approximated by an interpolation of the velocity on the boundary. Consequently, we propose a fast deformable surface model to realistically animate water drops and their flowing behaviors on solid surfaces. Our system efficiently simulates water drop motions in a Lagrangian fashion, by reducing 3D fluid dynamics over the whole liquid volume to a deformable surface model. In each time step, the model uses an implicit mean curvature flow operator to produce surface tension effects, a contact angle operator to change droplet shapes on solid surfaces, and a set of mesh connectivity updates to handle topological changes and improve mesh quality over time. Our numerical experiments demonstrate a variety of physically plausible water drop phenomena at a real-time rate, including capillary waves when water drops collide, pinch-off of water jets, and droplets flowing over solid materials. The whole system performs orders-of-magnitude faster than existing simulation approaches that generate comparable water drop effects.
Avoiding numerical pitfalls in social force models
NASA Astrophysics Data System (ADS)
Köster, Gerta; Treml, Franz; Gödel, Marion
2013-06-01
The social force model of Helbing and Molnár is one of the best known approaches to simulate pedestrian motion, a collective phenomenon with nonlinear dynamics. It is based on the idea that the Newtonian laws of motion mostly carry over to pedestrian motion so that human trajectories can be computed by solving a set of ordinary differential equations for velocity and acceleration. The beauty and simplicity of this ansatz are strong reasons for its wide spread. However, the numerical implementation is not without pitfalls. Oscillations, collisions, and instabilities occur even for very small step sizes. Classic solution ideas from molecular dynamics do not apply to the problem because the system is not Hamiltonian despite its source of inspiration. Looking at the model through the eyes of a mathematician, however, we realize that the right hand side of the differential equation is nondifferentiable and even discontinuous at critical locations. This produces undesirable behavior in the exact solution and, at best, severe loss of accuracy in efficient numerical schemes even in short range simulations. We suggest a very simple mollified version of the social force model that conserves the desired dynamic properties of the original many-body system but elegantly and cost efficiently resolves several of the issues concerning stability and numerical resolution.
Coupling motion between rearfoot and hip and knee joints during walking and single-leg landing.
Koshino, Yuta; Yamanaka, Masanori; Ezawa, Yuya; Okunuki, Takumi; Ishida, Tomoya; Samukawa, Mina; Tohyama, Harukazu
2017-12-01
The objective of the current study was to investigate the kinematic relationships between the rearfoot and hip/knee joint during walking and single-leg landing. Kinematics of the rearfoot relative to the shank, knee and hip joints during walking and single-leg landing were analyzed in 22 healthy university students. Kinematic relationships between two types of angular data were assessed by zero-lag cross-correlation coefficients and coupling angles, and were compared between joints and between tasks. During walking, rearfoot eversion/inversion and external/internal rotation were strongly correlated with hip adduction/abduction (R=0.69 and R=0.84), whereas correlations with knee kinematics were not strong (R≤0.51) and varied between subjects. The correlations with hip adduction/abduction were stronger than those with knee kinematics (P<0.001). Most coefficients during single-leg landing were strong (R≥0.70), and greater than those during walking (P<0.001). Coupling angles indicated that hip motion relative to rearfoot motion was greater than knee motion relative to rearfoot motion during both tasks (P<0.001). Interventions to control rearfoot kinematics may affect hip kinematics during dynamic tasks. The coupling motion between the rearfoot and hip/knee joints, especially in the knee, should be considered individually. Copyright © 2017 Elsevier Ltd. All rights reserved.
Intercepting a moving target: On-line or model-based control?
Zhao, Huaiyong; Warren, William H
2017-05-01
When walking to intercept a moving target, people take an interception path that appears to anticipate the target's trajectory. According to the constant bearing strategy, the observer holds the bearing direction of the target constant based on current visual information, consistent with on-line control. Alternatively, the interception path might be based on an internal model of the target's motion, known as model-based control. To investigate these two accounts, participants walked to intercept a moving target in a virtual environment. We degraded the target's visibility by blurring the target to varying degrees in the midst of a trial, in order to influence its perceived speed and position. Reduced levels of visibility progressively impaired interception accuracy and precision; total occlusion impaired performance most and yielded nonadaptive heading adjustments. Thus, performance strongly depended on current visual information and deteriorated qualitatively when it was withdrawn. The results imply that locomotor interception is normally guided by current information rather than an internal model of target motion, consistent with on-line control.
Systematic Observations of the Slip-pulse Properties of Large Earthquake Ruptures
NASA Astrophysics Data System (ADS)
Melgar, D.; Hayes, G. P.
2017-12-01
In earthquake dynamics there are two end member models of rupture: propagating cracks and self-healing pulses. These arise due to different properties of ruptures and have implications for seismic hazard; rupture mode controls near-field strong ground motions. Past studies favor the pulse-like mode of rupture, however, due to a variety of limitations, it has proven difficult to systematically establish their kinematic properties. Here we synthesize observations from a database of >150 rupture models of earthquakes spanning M7-M9 processed in a uniform manner and show the magnitude scaling properties (rise time, pulse width, and peak slip rate) of these slip pulses indicates self-similarity. Self similarity suggests a weak form of rupture determinism, where early on in the source process broader, higher amplitude slip pulses will distinguish between events of icnreasing magnitude. Indeed, we find by analyzing the moment rate functions that large and very large events are statistically distinguishable relatively early (at 15 seconds) in the rupture process. This suggests that with dense regional geophysical networks strong ground motions from a large rupture can be identified before their onset across the source region.
NASA Astrophysics Data System (ADS)
Su, Chin-Kuo; Sung, Yu-Chi; Chang, Shuenn-Yih; Huang, Chao-Hsun
2007-09-01
Strong near-fault ground motion, usually caused by the fault-rupture and characterized by a pulse-like velocity-wave form, often causes dramatic instantaneous seismic energy (Jadhav and Jangid 2006). Some reinforced concrete (RC) bridge columns, even those built according to ductile design principles, were damaged in the 1999 Chi-Chi earthquake. Thus, it is very important to evaluate the seismic response of a RC bridge column to improve its seismic design and prevent future damage. Nonlinear time history analysis using step-by-step integration is capable of tracing the dynamic response of a structure during the entire vibration period and is able to accommodate the pulsing wave form. However, the accuracy of the numerical results is very sensitive to the modeling of the nonlinear load-deformation relationship of the structural member. FEMA 273 and ATC-40 provide the modeling parameters for structural nonlinear analyses of RC beams and RC columns. They use three parameters to define the plastic rotation angles and a residual strength ratio to describe the nonlinear load-deformation relationship of an RC member. Structural nonlinear analyses are performed based on these parameters. This method provides a convenient way to obtain the nonlinear seismic responses of RC structures. However, the accuracy of the numerical solutions might be further improved. For this purpose, results from a previous study on modeling of the static pushover analyses for RC bridge columns (Sung et al. 2005) is adopted for the nonlinear time history analysis presented herein to evaluate the structural responses excited by a near-fault ground motion. To ensure the reliability of this approach, the numerical results were compared to experimental results. The results confirm that the proposed approach is valid.
NASA Astrophysics Data System (ADS)
Melgar, Diego; Geng, Jianghui; Crowell, Brendan W.; Haase, Jennifer S.; Bock, Yehuda; Hammond, William C.; Allen, Richard M.
2015-07-01
Real-time high-rate geodetic data have been shown to be useful for rapid earthquake response systems during medium to large events. The 2014 Mw6.1 Napa, California earthquake is important because it provides an opportunity to study an event at the lower threshold of what can be detected with GPS. We show the results of GPS-only earthquake source products such as peak ground displacement magnitude scaling, centroid moment tensor (CMT) solution, and static slip inversion. We also highlight the retrospective real-time combination of GPS and strong motion data to produce seismogeodetic waveforms that have higher precision and longer period information than GPS-only or seismic-only measurements of ground motion. We show their utility for rapid kinematic slip inversion and conclude that it would have been possible, with current real-time infrastructure, to determine the basic features of the earthquake source. We supplement the analysis with strong motion data collected close to the source to obtain an improved postevent image of the source process. The model reveals unilateral fast propagation of slip to the north of the hypocenter with a delayed onset of shallow slip. The source model suggests that the multiple strands of observed surface rupture are controlled by the shallow soft sediments of Napa Valley and do not necessarily represent the intersection of the main faulting surface and the free surface. We conclude that the main dislocation plane is westward dipping and should intersect the surface to the east, either where the easternmost strand of surface rupture is observed or at the location where the West Napa fault has been mapped in the past.
NASA Astrophysics Data System (ADS)
Takai, N.; Shigefuji, M.; Rajaure, S.; Bijukchhen, S.; Ichiyanagi, M.; Dhital, M. R.; Sasatani, T.
2015-12-01
Kathmandu is the capital of Nepal and is located in the Kathmandu Valley, which is formed by soft lake sediments of Plio-Pleistocene origin. Large earthquakes in the past have caused significant damage as the seismic waves were amplified in the soft sediments. To understand the site effect of the valley structure, we installed continuous recording accelerometers in four different parts of the valley. Four stations were installed along a west-to-east profile of the valley at KTP (Kirtipur; hill top), TVU (Kirtipur; hill side), PTN (Patan) and THM (Thimi). On 25 April 2015, a large interplate earthquake Mw 7.8 occurred in the Himalayan Range of Nepal. The focal area estimated was about 200 km long and 150 km wide, with a large slip area under the Kathmandu Valley where our strong motion observation stations were installed. The strong ground motions were observed during this large damaging earthquake. The maximum horizontal peak ground acceleration at the rock site was 271 cm s-2, and the maximum horizontal peak ground velocity at the sediment sites reached 112 cm s-1. We compared these values with the empirical attenuation formula for strong ground motions. We found the peak accelerations were smaller and the peak velocities were approximately the same as the predicted values. The rock site KTP motions are less affected by site amplification and were analysed further. The horizontal components were rotated to the fault normal (N205E) and fault parallel (N115E) directions using the USGS fault model. The velocity waveforms at KTP showed about 5 s triangular pulses on the N205E and the up-down components; however the N115E component was not a triangular pulse but one cycle sinusoidal wave. The velocity waveforms at KTP were integrated to derive the displacement waveforms. The derived displacements at KTP are characterized by a monotonic step on the N205E normal and up-down components. The displacement waveforms of KTP show permanent displacements of 130 cm in the fault normal direction and 60 cm in the upward direction; the vector sum of these is 143 cm. Inside the Kathmandu Valley, 147 cm deformation and the same moving direction as the USGS fault normal direction were reported using with GPS data. Our results derived from the KTP records are consistent with these observations.
Cultrera, G.; Boore, D.M.; Joyner, W.B.; Dietel, C.M.
1999-01-01
Ground-motion recordings obtained at the Van Norman Complex from the 1994 Northridge, California, mainshock and its aftershocks constitute an excellent data set for the analysis of soil response as a function of ground-motion amplitude. We searched for nonlinear response by comparing the Fourier spectral ratios of two pairs of sites for ground motions of different levels, using data from permanent strong-motion recorders and from specially deployed portable instruments. We also compared the amplitude dependence of the observed ratios with the amplitude dependence of the theoretical ratios obtained from 1-D linear and 1-D equivalent-linear transfer functions, using recently published borehole velocity profiles at the sites to provide the low-strain material properties. One pair of sites was at the Jensen Filtration Plant (JFP); the other pair was the Rinaldi Receiving Station (RIN) and the Los Angeles Dam (LAD). Most of the analysis was concentrated on the motions at the Jensen sites. Portable seismometers were installed at the JFP to see if the motions inside the structures housing the strong-motion recorders differed from nearby free-field motions. We recorded seven small earthquakes and found that the high-frequency, low-amplitude motions in the administration building were about 0.3 of those outside the building. This means that the lack of high frequencies on the strong-motion recordings in the administration building relative to the generator building is not due solely to nonlinear soil effects. After taking into account the effects of the buildings, however, analysis of the suite of strong- and weak-motion recordings indicates that nonlinearity occurred at the JFP. As predicted by equivalent-linear analysis, the largest events (the mainshock and the 20 March 1994 aftershock) show a significant deamplification of the high-frequency motion relative to the weak motions from aftershocks occurring many months after the mainshock. The weak-motion aftershocks recorded within 12 hours of the mainshock, however, show a relative deamplification similar to that in the mainshock. The soil behavior may be a consequence of a pore pressure buildup during large-amplitude motion that was not dissipated until sometime later. The motions at (RIN) and (LAD) are from free-field sites. The comparison among spectral ratios of the mainshock, weak-motion coda waves of the mainshock, and an aftershock within ten minutes of the mainshock indicate that some nonlinearity occurred, presumably at (RIN) because it is the softer site. The spectral ratio for the mainshock is between that calculated for pure linear response and that calculated from the equivalent-linear method, using commonly used modulus reduction and damping ratio curves. In contrast to the Jensen sites, the ratio of motions soon after the high-amplitude portion of the mainshock differs from the ratio of the mainshock motions, indicating the mechanical properties of the soil returned to the low-strain values as the high-amplitude motion ended. This may indicate a type of nonlinear soil response different from that affecting motion at the Jensen administration building.
NASA Astrophysics Data System (ADS)
Graizer, V.
2012-12-01
The MW 5.8 Mineral, Virginia earthquake was recorded at a relatively short epicentral distance of about 18 km at the North Anna Nuclear Power Plant (NPP) by the SMA-3 magnetic tape digital accelerographs installed inside the plant's containment at the foundation and deck levels. The North Anna NPP is operated by the Virginia Electric and Power Company (VEPCO) and has two pressurized water reactors (PWR) units that began operation in 1978 and 1980, respectively. Following the earthquake, both units were safely shutdown. The strong-motion records were processed to get velocity, displacement, Fourier and 5% damped response spectra. The basemat record demonstrated relatively high amplitudes of acceleration of 0.26 g and velocity of 13.8 cm/sec with a relatively short duration of strong motion of 2-3 sec. Recorded 5% damped Response Spectra exceed Design Basis Earthquake for the existing Units 1 and 2, while comprehensive plant inspections performed by VEPCO and U.S. Nuclear Regulatory Commission have concluded that the damage to the plant was minimal not affecting any structures and equipment significant to plant operation. This can be explained in part by short duration of the earthquake ground motion at the plant. The North Anna NPP did not have free-field strong motion instrumentation at the time of the earthquake. Since the containment is founded on rock there is a tendency to consider basemat record as an approximation of the free-field recording. However, comparisons of deck and basemat records demonstrate that the basemat recording is also affected by structural resonance frequencies higher than 3 Hz. Structural resonances in the frequency range of 3-4 Hz can at least partially explain significant exceedance of observed motions relative to ground motion calculated using ground motion prediction equations.cceleration, velocity and displacement at the North Anna NPP basemat level. Amplitudes of acceleration, velocity and displacement at basemat and deck levels
Extending Counter-Streaming Motion from an Active Region Filament to Sunspot Light Bridge
NASA Astrophysics Data System (ADS)
Wang, Haimin; Liu, Rui; Deng, Na; Liu, Chang; Xu, Yan; Jing, Ju; Wang, Yuming; Cao, Wenda
2017-08-01
In this study, we analyze the high-resolution observations from the 1.6 m New Solar Telescope at Big Bear Solar Observatory that cover an entire active region filament. The southern end of the filament is well defined by a narrow lane situated in the negative magnetic polarity, while the northern end lies in the positive polarity, extending to a much larger area. Counter-streaming motions are clearly seen in the filament. The northern end of the counter-streaming motions extends to a light bridge, forming a spectacular circulation pattern around a sunspot, with clockwise motion in the blue wing and counterclockwise motion in the red wing as observed in H-alpha off-band. The apparent speed of the flow is around 10 km/s. We show that the southern end of the filament is consistent with that of a flux rope in a NLFFF extrapolation model, but the northern ends of the modeled flux rope and observed H-alpha footpoints have a significant spatial mismatch. The most intriguing results are the magnetic structure and the counter-streaming motions in the light bridge. Similar to those in the filament, magnetic fields show a dominant transverse component in the light bridge. However, the filament is located between opposite magnetic polarities, while the light bridge is between strong fields of the same polarity. We studied the correlation coefficients of image sequences of constructed Dopplergrams, and found that the filament and the section of light bridge next to it do not show oscillation motions, while a small section of light bridge shows a prominent oscillation pattern. Therefore, we conclude that the observed circulating counter-streaming motions are largely collections of physical mass flows in the transverse direction from the filament extending to a large section of the light bridge, rather than a form of periodic oscillatory mass motions in line-of-sight direction generated by perturbations omnipresent in the chromosphere.
NASA Astrophysics Data System (ADS)
Edwards, Benjamin; Fäh, Donat
2017-11-01
Strong ground-motion databases used to develop ground-motion prediction equations (GMPEs) and calibrate stochastic simulation models generally include relatively few recordings on what can be considered as engineering rock or hard rock. Ground-motion predictions for such sites are therefore susceptible to uncertainty and bias, which can then propagate into site-specific hazard and risk estimates. In order to explore this issue we present a study investigating the prediction of ground motion at rock sites in Japan, where a wide range of recording-site types (from soil to very hard rock) are available for analysis. We employ two approaches: empirical GMPEs and stochastic simulations. The study is undertaken in the context of the PEGASOS Refinement Project (PRP), a Senior Seismic Hazard Analysis Committee (SSHAC) Level 4 probabilistic seismic hazard analysis of Swiss nuclear power plants, commissioned by swissnuclear and running from 2008 to 2013. In order to reduce the impact of site-to-site variability and expand the available data set for rock and hard-rock sites we adjusted Japanese ground-motion data (recorded at sites with 110 m s-1 < Vs30 < 2100 m s-1) to a common hard-rock reference. This was done through deconvolution of: (i) empirically derived amplification functions and (ii) the theoretical 1-D SH amplification between the bedrock and surface. Initial comparison of a Japanese GMPE's predictions with data recorded at rock and hard-rock sites showed systematic overestimation of ground motion. A further investigation of five global GMPEs' prediction residuals as a function of quarter-wavelength velocity showed that they all presented systematic misfit trends, leading to overestimation of median ground motions at rock and hard-rock sites in Japan. In an alternative approach, a stochastic simulation method was tested, allowing the direct incorporation of site-specific Fourier amplification information in forward simulations. We use an adjusted version of the model developed for Switzerland during the PRP. The median simulation prediction at true rock and hard-rock sites (Vs30 > 800 m s-1) was found to be comparable (within expected levels of epistemic uncertainty) to predictions using an empirical GMPE, with reduced residual misfit. As expected, due to including site-specific information in the simulations, the reduction in misfit could be isolated to a reduction in the site-related within-event uncertainty. The results of this study support the use of finite or pseudo-finite fault stochastic simulation methods in estimating strong ground motions in regions of weak and moderate seismicity, such as central and northern Europe. Furthermore, it indicates that weak-motion data has the potential to allow estimation of between- and within-site variability in ground motion, which is a critical issue in site-specific seismic hazard analysis, particularly for safety critical structures.
Fluid Dynamics of Underwater Flight in Sea Butterflies: Insights from Computational Modeling
NASA Astrophysics Data System (ADS)
Zhou, Zhuoyu; Mittal, Rajat; Yen, Jeannette; Webster, Donald
2014-11-01
Sea butterflies such as Limacine helicina swim by flapping their wing-like parapodia, in a stroke that exhibits a clap-and-fling type kinematics as well as a strong interaction between the parapodia and the body of the animal at the end of downstroke. We used numerical simulations based on videogrammetric data to examine the fluid dynamics and force generation associated with this swimming motion. The unsteady lift-generating mechanism of clap-and-fling results in a sawtooth trajectory with a characteristic ``wobble'' in pitch. We employ coupled flow-body-dynamics simulations to model the free-swimming motion of the organism and explore the efficiency of propulsion as well the factors such as shell weight, that affect its sawtooth swimming trajectory. This work is funded by NSF Grant 1246317 from the Division of Polar Programs.
Charged particle motions in the distended magnetospheres of Jupiter and Saturn
NASA Technical Reports Server (NTRS)
Birmingham, T. J.
1982-01-01
Charged particle motion in the guiding center approximation is analyzed for models of the Jovian and Saturnian magnetospheric magnetic fields based on Voyager magnetometer observations. Field lines are traced and exhibit the distention which arises from azimuthally circulating magnetospheric currents. The spatial dependencies of the guiding center bounce period and azimuthal drift rate are investigated for the model fields. Non-dipolar effects in the gradient-curvature drift rate are most important at the equator and affect particles with all mirror latitudes. The effect is a factor of 10-15 for Jupiter with its strong magnetodisc current and 1-2 for Saturn with its more moderate ring current. Limits of adiabaticity, where particle gyroradii become comparable with magnetic scale lengths, are discussed and are shown to occur at quite modest kinetic energies for protons and heavier ions.
Changes in foot and shank coupling due to alterations in foot strike pattern during running.
Pohl, Michael B; Buckley, John G
2008-03-01
Determining if and how the kinematic relationship between adjacent body segments changes when an individual's gait pattern is experimentally manipulated can yield insight into the robustness of the kinematic coupling across the associated joint(s). The aim of this study was to assess the effects on the kinematic coupling between the forefoot, rearfoot and shank during ground contact of running with alteration in foot strike pattern. Twelve subjects ran over-ground using three different foot strike patterns (heel strike, forefoot strike, toe running). Kinematic data were collected of the forefoot, rearfoot and shank, which were modelled as rigid segments. Coupling at the ankle-complex and midfoot joints was assessed using cross-correlation and vector coding techniques. In general good coupling was found between rearfoot frontal plane motion and transverse plane shank rotation regardless of foot strike pattern. Forefoot motion was also strongly coupled with rearfoot frontal plane motion. Subtle differences were noted in the amount of rearfoot eversion transferred into shank internal rotation in the first 10-15% of stance during heel strike running compared to forefoot and toe running, and this was accompanied by small alterations in forefoot kinematics. These findings indicate that during ground contact in running there is strong coupling between the rearfoot and shank via the action of the joints in the ankle-complex. In addition, there was good coupling of both sagittal and transverse plane forefoot with rearfoot frontal plane motion via the action of the midfoot joints.
Lietzow, Michael A; Hubbell, Wayne L
2004-03-23
A goal in the development of site-directed spin labeling in proteins is to correlate the motion of a nitroxide side chain with local structure, interactions, and dynamics. Significant progress toward this goal has been made using alpha-helical proteins of known structure, and the present study is the first step in a similar exploration of a beta-sheet protein, cellular retinol-binding protein (CRBP). Nitroxide side chains were introduced along both interior and edge strands. At sites in interior strands, the side-chain motion is strongly influenced by interactions with side chains of neighboring strands, giving rise to a rich variety of dynamic modes (weakly ordered, strongly ordered, immobilized) and complex electron paramagnetic resonance spectra that are modulated by strand twist. The interactions giving rise to the dynamic modes are explored using mutagenesis, and the results demonstrate the particular importance of the non-hydrogen-bonded neighbor residue in giving rise to highly ordered states. Along edge strands of the beta-sheet, the motion of the side chain is simple and weakly ordered, resembling that at solvent-exposed surfaces of an alpha-helix. A simple working model is proposed that can account for the wide variety of dynamic modes encountered. Collectively, the results suggest that the nitroxide side chain is an effective probe of side-chain interactions, and that site-directed spin labeling should be a powerful means of monitoring conformational changes that involve changes in beta-sheet topology.
Structure and dynamics of ionic micelles: MD simulation and neutron scattering study.
Aoun, B; Sharma, V K; Pellegrini, E; Mitra, S; Johnson, M; Mukhopadhyay, R
2015-04-16
Fully atomistic molecular dynamics (MD) simulations have been carried out on sodium dodecyl sulfate (SDS), an anionic micelle, and three cationic (CnTAB; n = 12, 14, 16) micelles, investigating the effects of size, the form of the headgroup, and chain length. They have been used to analyze neutron scattering data. MD simulations confirm the dynamical model of global motion of the whole micelle, segmental motion (headgroup and alkyl chain), and fast torsional motion associated with the surfactants that is used to analyze the experimental data. It is found that the solvent surrounding the headgroups results in their significant mobility, which exceeds that of the tails on the nanosecond time scale. The middle of the chain is found to be least mobile, consolidating the micellar configuration. This dynamical feature is similar for all the ionic micelles investigated and therefore independent of headgroup form and charge and chain length. Diffusion constants for global and segmental motion of the different micelles are consistent with experimentally obtained values as well as known structural features. This work provides a more realistic model of micelle dynamics and offers new insight into the strongly fluctuating surface of micelles which is important in understanding micelle dispersion and related functionality, like drug delivery.
Fidelity of the ensemble code for visual motion in primate retina.
Frechette, E S; Sher, A; Grivich, M I; Petrusca, D; Litke, A M; Chichilnisky, E J
2005-07-01
Sensory experience typically depends on the ensemble activity of hundreds or thousands of neurons, but little is known about how populations of neurons faithfully encode behaviorally important sensory information. We examined how precisely speed of movement is encoded in the population activity of magnocellular-projecting parasol retinal ganglion cells (RGCs) in macaque monkey retina. Multi-electrode recordings were used to measure the activity of approximately 100 parasol RGCs simultaneously in isolated retinas stimulated with moving bars. To examine how faithfully the retina signals motion, stimulus speed was estimated directly from recorded RGC responses using an optimized algorithm that resembles models of motion sensing in the brain. RGC population activity encoded speed with a precision of approximately 1%. The elementary motion signal was conveyed in approximately 10 ms, comparable to the interspike interval. Temporal structure in spike trains provided more precise speed estimates than time-varying firing rates. Correlated activity between RGCs had little effect on speed estimates. The spatial dispersion of RGC receptive fields along the axis of motion influenced speed estimates more strongly than along the orthogonal direction, as predicted by a simple model based on RGC response time variability and optimal pooling. on and off cells encoded speed with similar and statistically independent variability. Simulation of downstream speed estimation using populations of speed-tuned units showed that peak (winner take all) readout provided more precise speed estimates than centroid (vector average) readout. These findings reveal how faithfully the retinal population code conveys information about stimulus speed and the consequences for motion sensing in the brain.
Decoding the origins of vertical land motions observed today at coasts
NASA Astrophysics Data System (ADS)
Pfeffer, J.; Spada, G.; Mémin, A.; Boy, J.-P.; Allemand, P.
2017-07-01
In recent decades, geodetic techniques have allowed detecting vertical land motions and sea-level changes of a few millimetres per year, based on measurements taken at the coast (tide gauges), on board of satellite platforms (satellite altimetry) or both (Global Navigation Satellite System). Here, contemporary vertical land motions are analysed from January 1993 to July 2013 at 849 globally distributed coastal sites. The vertical displacement of the coastal platform due to surface mass changes is modelled using elastic and viscoelastic Green's functions. Special attention is paid to the effects of glacial isostatic adjustment induced by past and present-day ice melting. Various rheological and loading parameters are explored to provide a set of scenarios that could explain the coastal observations of vertical land motions globally. In well-instrumented regions, predicted vertical land motions explain more than 80 per cent of the variance observed at scales larger than a few hundred kilometres. Residual vertical land motions show a strong local variability, especially in the vicinity of plate boundaries due to the earthquake cycle. Significant residual signals are also observed at scales of a few hundred kilometres over nine well-instrumented regions forming observation windows on unmodelled geophysical processes. This study highlights the potential of our multitechnique database to detect geodynamical processes, driven by anthropogenic influence, surface mass changes (surface loading and glacial isostatic adjustment) and tectonic activity (including the earthquake cycle, sediment and volcanic loading, as well as regional tectonic constraints). Future improvements should be aimed at densifying the instrumental network and at investigating more thoroughly the uncertainties associated with glacial isostatic adjustment models.
NASA Technical Reports Server (NTRS)
Dcruz, Jonathan
1993-01-01
In view of the strong need for a well-documented set of experimental data which is suitable for the validation and/or calibration of modern Computational Fluid Dynamics codes, the Benchmark Models Program was initiated by the Structural Dynamics Division of the NASA Langley Research Center. One of the models in the program, the Benchmark Active Controls Testing Model, consists of a rigid wing of rectangular planform with a NACA 0012 profile and three control surfaces (a trailing-edge control surface, a lower-surface spoiler, and an upper-surface spoiler). The model is affixed to a flexible mount system which allows only plunging and/or pitching motion. An approximate analytical determination of the forces required to move this model, with its control surfaces fixed, in pure plunge and pure pitch at a number of test conditions is included. This provides a good indication of the type of actuator system required to generate the aerodynamic data resulting from pure plunging and pure pitching motion, in which much interest was expressed. The analysis makes use of previously obtained numerical results.
Site-specific strong ground motion prediction using 2.5-D modelling
NASA Astrophysics Data System (ADS)
Narayan, J. P.
2001-08-01
An algorithm was developed using the 2.5-D elastodynamic wave equation, based on the displacement-stress relation. One of the most significant advantages of the 2.5-D simulation is that the 3-D radiation pattern can be generated using double-couple point shear-dislocation sources in the 2-D numerical grid. A parsimonious staggered grid scheme was adopted instead of the standard staggered grid scheme, since this is the only scheme suitable for computing the dislocation. This new 2.5-D numerical modelling avoids the extensive computational cost of 3-D modelling. The significance of this exercise is that it makes it possible to simulate the strong ground motion (SGM), taking into account the energy released, 3-D radiation pattern, path effects and local site conditions at any location around the epicentre. The slowness vector (py) was used in the supersonic region for each layer, so that all the components of the inertia coefficient are positive. The double-couple point shear-dislocation source was implemented in the numerical grid using the moment tensor components as the body-force couples. The moment per unit volume was used in both the 3-D and 2.5-D modelling. A good agreement in the 3-D and 2.5-D responses for different grid sizes was obtained when the moment per unit volume was further reduced by a factor equal to the finite-difference grid size in the case of the 2.5-D modelling. The components of the radiation pattern were computed in the xz-plane using 3-D and 2.5-D algorithms for various focal mechanisms, and the results were in good agreement. A comparative study of the amplitude behaviour of the 3-D and 2.5-D wavefronts in a layered medium reveals the spatial and temporal damped nature of the 2.5-D elastodynamic wave equation. 3-D and 2.5-D simulated responses at a site using a different strike direction reveal that strong ground motion (SGM) can be predicted just by rotating the strike of the fault counter-clockwise by the same amount as the azimuth of the site with respect to the epicentre. This adjustment is necessary since the response is computed keeping the epicentre, focus and the desired site in the same xz-plane, with the x-axis pointing in the north direction.
Graves, R.W.; Wald, D.J.
2004-01-01
During the MW 7.1 Hector Mine earthquake, peak ground velocities recorded at sites in the central San Bernardino basin region were up to 2 times larger and had significantly longer durations of strong shaking than sites just outside the basin. To better understand the effects of 3D structure on the long-period ground-motion response in this region, we have performed finite-difference simulations for this earthquake. The simulations are numerically accurate for periods of 2 sec and longer and incorporate the detailed spatial and temporal heterogeneity of source rupture, as well as complex 3D basin structure. Here, we analyze three models of the San Bernardino basin: model A (with structural constraints from gravity and seismic reflection data), model F (water well and seismic refraction data), and the Southern California Earthquake Center version 3 model (hydrologic and seismic refraction data). Models A and F are characterized by a gradual increase in sediment thickness toward the south with an abrupt step-up in the basement surface across the San Jacinto fault. The basin structure in the SCEC version 3 model has a nearly uniform sediment thickness of 1 km with little basement topography along the San Jacinto fault. In models A and F, we impose a layered velocity structure within the sediments based on the seismic refraction data and an assumed depth-dependent Vp/Vs ratio. Sediment velocities within the SCEC version 3 model are given by a smoothly varying rule-based function that is calibrated to the seismic refraction measurements. Due to computational limitations, the minimum shear-wave velocity is fixed at 600 m/sec in all of the models. Ground-motion simulations for both models A and F provide a reasonably good match to the amplitude and waveform characteristics of the recorded motions. In these models, surface waves are generated as energy enters the basin through the gradually sloping northern margin. Due to the basement step along the San Jacinto fault, the surface wave energy is confined to the region north of this structure, consistent with the observations. The SCEC version 3 model, lacking the basin geometry complexity present in the other two models, fails to provide a satisfactory match to the characteristics of the observed motions. Our study demonstrates the importance of using detailed and accurate basin geometry for predicting ground motions and also highlights the utility of integrating geological, geophysical, and seismological observations in the development and validation of 3D velocity models.
Flocking from a quantum analogy: spin-orbit coupling in an active fluid
NASA Astrophysics Data System (ADS)
Loewe, Benjamin; Souslov, Anton; Goldbart, Paul M.
2018-01-01
Systems composed of strongly interacting self-propelled particles can form a spontaneously flowing polar active fluid. The study of the connection between the microscopic dynamics of a single such particle and the macroscopic dynamics of the fluid can yield insights into experimentally realizable active flows, but this connection is well understood in only a few select cases. We introduce a model of self-propelled particles based on an analogy with the motion of electrons that have strong spin-orbit coupling. We find that, within our model, self-propelled particles are subject to an analog of the Heisenberg uncertainty principle that relates translational and rotational noise. Furthermore, by coarse-graining this microscopic model, we establish expressions for the coefficients of the Toner-Tu equations—the hydrodynamic equations that describe an active fluid composed of these ‘active spins.’ The connection between stochastic self-propelled particles and quantum particles with spin may help realize exotic phases of matter using active fluids via analogies with systems composed of strongly correlated electrons.
NASA Astrophysics Data System (ADS)
Ayuso, David; Decleva, Piero; Patchkovskii, Serguei; Smirnova, Olga
2018-06-01
The generation of high-order harmonics in a medium of chiral molecules driven by intense bi-elliptical laser fields can lead to strong chiroptical response in a broad range of harmonic numbers and ellipticities (Ayuso et al 2018 J. Phys. B: At. Mol. Opt. Phys. 51 06LT01). Here we present a comprehensive analytical model that can describe the most relevant features arising in the high-order harmonic spectra of chiral molecules driven by strong bi-elliptical fields. Our model recovers the physical picture underlying chiral high-order harmonic generation (HHG) based on ultrafast chiral hole motion and identifies the rotationally invariant molecular pseudoscalars responsible for chiral dynamics. Using the chiral molecule propylene oxide as an example, we show that one can control and enhance the chiral response in bi-elliptical HHG by tailoring the driving field, in particular by tuning its frequency, intensity and ellipticity, exploiting a suppression mechanism of achiral background based on the linear Stark effect.
Lagrangian circulation study near Cape Henry, Virginia. [Chesapeake Bay
NASA Technical Reports Server (NTRS)
Johnson, R. E.
1981-01-01
A study of the circulation near Cape Henry, Virginia, was made using surface and seabed drifters and radar tracked surface buoys coupled to subsurface drag plates. Drifter releases were conducted on a line normal to the beach just south of Cape Henry. Surface drifter recoveries were few; wind effects were strongly noted. Seabed drifter recoveries all exhibited onshore motion into Chesapeake Bay. Strong winds also affected seabed recoveries, tending to move them farther before recovery. Buoy trajectories in the vicinity of Cape Henry appeared to be of an irrotational nature, showing a clockwise rotary tide motion. Nearest the cape, the buoy motion elongated to almost parallel depth contours around the cape. Buoy motion under the action of strong winds showed that currents to at least the depth of the drag plates substantially are altered from those of low wind conditions near the Bay mouth. Only partial evidence could be found to support the presence of a clockwise nontidal eddy at Virginia Beach, south of Cape Henry.
High-frequency filtering of strong-motion records
Douglas, J.; Boore, D.M.
2011-01-01
The influence of noise in strong-motion records is most problematic at low and high frequencies where the signal to noise ratio is commonly low compared to that in the mid-spectrum. The impact of low-frequency noise (5 Hz) on computed pseudo-absolute response spectral accelerations (PSAs). In contrast to the case of low-frequency noise our analysis shows that filtering to remove high-frequency noise is only necessary in certain situations and that PSAs can often be used up to 100 Hz even if much lower high-cut corner frequencies are required to remove the noise. This apparent contradiction can be explained by the fact that PSAs are often controlled by ground accelerations associated with much lower frequencies than the natural frequency of the oscillator because path and site attenuation (often modelled by Q and κ, respectively) have removed the highest frequencies. We demonstrate that if high-cut filters are to be used, then their corner frequencies should be selected on an individual basis, as has been done in a few recent studies.
Two-dimensional nanoscale correlations in the strong negative thermal expansion material ScF 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Handunkanda, Sahan U.; Occhialini, Connor A.; Said, Ayman H.
We present diffuse x-ray scattering data on the strong negative thermal expansion (NTE) material ScF3 and find that two-dimensional nanoscale correlations exist at momentum-space regions associated with possibly rigid rotations of the perovskite octahedra. We address the extent to which rigid octahedral motion describes the dynamical fluctuations behind NTE by generalizing a simple model supporting a single floppy mode that is often used to heuristically describe instances of NTE. We find this model has tendencies toward dynamic inhomogeneities and its application to recent and existing experimental data suggest an intricate link between the nanometer correlation length scale, the energy scalemore » for octahedral tilt fluctuations, and the coefficient of thermal expansion in ScF3. We then investigate the breakdown of the rigid limit and propose a resolution to an outstanding debate concerning the role of molecular rigidity in strong NTE materials.« less
NASA Astrophysics Data System (ADS)
De Ambrosis, Anna; Malgieri, Massimiliano; Mascheretti, Paolo; Onorato, Pasquale
2015-05-01
We designed a teaching-learning sequence on rolling motion, rooted in previous research about student conceptions, and proposing an educational reconstruction strongly centred on the role of friction in different cases of rolling. A series of experiments based on video analysis is used to highlight selected key concepts and to motivate students in their exploration of the topic; and interactive simulations, which can be modified on the fly by students to model different physical situations, are used to stimulate autonomous investigation in enquiry activities. The activity sequence was designed for students on introductory physics courses and was tested with a group of student teachers. Comparisons between pre- and post-tests, and between our results and those reported in the literature, indicate that students’ understanding of rolling motion improved markedly and some typical difficulties were overcome.
Subglacial discharge at tidewater glaciers revealed by seismic tremor
Amundson, Jason M.; Walter, Jacob I.; O'Neel, Shad; West, Michael E.; Larsen, Christopher F.
2015-01-01
Abstract Subglacial discharge influences glacier basal motion and erodes and redeposits sediment. At tidewater glacier termini, discharge drives submarine terminus melting, affects fjord circulation, and is a central component of proglacial marine ecosystems. However, our present inability to track subglacial discharge and its variability significantly hinders our understanding of these processes. Here we report observations of hourly to seasonal variations in 1.5–10 Hz seismic tremor that strongly correlate with subglacial discharge but not with basal motion, weather, or discrete icequakes. Our data demonstrate that vigorous discharge occurs from tidewater glaciers during summer, in spite of fast basal motion that could limit the formation of subglacial conduits, and then abates during winter. Furthermore, tremor observations and a melt model demonstrate that drainage efficiency of tidewater glaciers evolves seasonally. Glaciohydraulic tremor provides a means by which to quantify subglacial discharge variations and offers a promising window into otherwise obscured glacierized environments. PMID:27667869
Subglacial discharge at tidewater glaciers revealed by seismic tremor
Bartholomaus, Timothy C.; Amundson, Jason M.; Walter, Jacob I.; O'Neel, Shad; West, Michael E.; Larsen, Christopher F.
2015-01-01
Subglacial discharge influences glacier basal motion and erodes and redeposits sediment. At tidewater glacier termini, discharge drives submarine terminus melting, affects fjord circulation, and is a central component of proglacial marine ecosystems. However, our present inability to track subglacial discharge and its variability significantly hinders our understanding of these processes. Here we report observations of hourly to seasonal variations in 1.5–10 Hz seismic tremor that strongly correlate with subglacial discharge but not with basal motion, weather, or discrete icequakes. Our data demonstrate that vigorous discharge occurs from tidewater glaciers during summer, in spite of fast basal motion that could limit the formation of subglacial conduits, and then abates during winter. Furthermore, tremor observations and a melt model demonstrate that drainage efficiency of tidewater glaciers evolves seasonally. Glaciohydraulic tremor provides a means by which to quantify subglacial discharge variations and offers a promising window into otherwise obscured glacierized environments.
The effect of side motion in the dynamics of interacting molecular motors
NASA Astrophysics Data System (ADS)
Midha, Tripti; Gupta, Arvind Kumar; Kolomeisky, Anatoly B.
2017-07-01
To mimic the collective motion of interacting molecular motors, we propose and discuss an open two-lane symmetrically coupled interactive TASEP model that incorporates interaction in the thermodynamically consistent fashion. We study the effect of both repulsive and attractive interaction on the system’s dynamical properties using various cluster mean field analysis and extensive Monte Carlo simulations. The interactions bring correlations into the system, which were found to be reduced due to the side motion of particles. We produce the steady-state phase diagrams for symmetrically split interaction strength. The behavior of the maximal particle current with respect to the interaction energy E is analyzed for different coupling rates and interaction splittings. The results suggest that for strong coupling and large splittings, the maximal flow of the motors occurs at a weak attractive interaction strength which matches with the known experimental results on kinesin motor protein.
NASA Astrophysics Data System (ADS)
Reverey, Julia F.; Jeon, Jae-Hyung; Bao, Han; Leippe, Matthias; Metzler, Ralf; Selhuber-Unkel, Christine
2015-06-01
Acanthamoebae are free-living protists and human pathogens, whose cellular functions and pathogenicity strongly depend on the transport of intracellular vesicles and granules through the cytosol. Using high-speed live cell imaging in combination with single-particle tracking analysis, we show here that the motion of endogenous intracellular particles in the size range from a few hundred nanometers to several micrometers in Acanthamoeba castellanii is strongly superdiffusive and influenced by cell locomotion, cytoskeletal elements, and myosin II. We demonstrate that cell locomotion significantly contributes to intracellular particle motion, but is clearly not the only origin of superdiffusivity. By analyzing the contribution of microtubules, actin, and myosin II motors we show that myosin II is a major driving force of intracellular motion in A. castellanii. The cytoplasm of A. castellanii is supercrowded with intracellular vesicles and granules, such that significant intracellular motion can only be achieved by actively driven motion, while purely thermally driven diffusion is negligible.
Detection of ground motions using high-rate GPS time-series
NASA Astrophysics Data System (ADS)
Psimoulis, Panos A.; Houlié, Nicolas; Habboub, Mohammed; Michel, Clotaire; Rothacher, Markus
2018-05-01
Monitoring surface deformation in real-time help at planning and protecting infrastructures and populations, manage sensitive production (i.e. SEVESO-type) and mitigate long-term consequences of modifications implemented. We present RT-SHAKE, an algorithm developed to detect ground motions associated with landslides, sub-surface collapses, subsidences, earthquakes or rock falls. RT-SHAKE detects first transient changes in individual GPS time series before investigating for spatial correlation(s) of observations made at neighbouring GPS sites and eventually issue a motion warning. In order to assess our algorithm on fast (seconds to minute), large (from 1 cm to meters) and spatially consistent surface motions, we use the 1 Hz GEONET GNSS network data of the Tohoku-Oki MW9.0 2011 as a test scenario. We show the delay of detection of seismic wave arrival by GPS records is of ˜10 seconds with respect to an identical analysis based on strong-motion data and this time delay depends on the level of the time-variable noise. Nevertheless, based on the analysis of the GPS network noise level and ground motion stochastic model, we show that RT-SHAKE can narrow the range of earthquake magnitude, by setting a lower threshold of detected earthquakes to MW6.5-7, if associated with a real-time automatic earthquake location system.
Origin of strong dispersion in Hubbard insulators
Wang, Y.; Wohlfeld, K.; Moritz, B.; ...
2015-08-10
Using cluster perturbation theory, we explain the origin of the strongly dispersive feature found at high binding energy in the spectral function of the Hubbard model. By comparing the Hubbard and $t₋J₋3s$ model spectra, we show that this dispersion does not originate from either coupling to spin fluctuations ($∝ J$ ) or the free hopping ($∝ t$ ). Instead, it should be attributed to a long-range, correlated hopping $∝ t²/U$ which allows an effectively free motion of the hole within the same antiferromagnetic sublattice. This origin explains both the formation of the high-energy anomaly in the single-particle spectrum and themore » sensitivity of the high-binding-energy dispersion to the next-nearest-neighbor hopping $t'$ .« less
Shankar, Swetha; Kayser, Andrew S
2017-06-01
To date it has been unclear whether perceptual decision making and rule-based categorization reflect activation of similar cognitive processes and brain regions. On one hand, both map potentially ambiguous stimuli to a smaller set of motor responses. On the other hand, decisions about perceptual salience typically concern concrete sensory representations derived from a noisy stimulus, while categorization is typically conceptualized as an abstract decision about membership in a potentially arbitrary set. Previous work has primarily examined these types of decisions in isolation. Here we independently varied salience in both the perceptual and categorical domains in a random dot-motion framework by manipulating dot-motion coherence and motion direction relative to a category boundary, respectively. Behavioral and modeling results suggest that categorical (more abstract) information, which is more relevant to subjects' decisions, is weighted more strongly than perceptual (more concrete) information, although they also have significant interactive effects on choice. Within the brain, BOLD activity within frontal regions strongly differentiated categorical salience and weakly differentiated perceptual salience; however, the interaction between these two factors activated similar frontoparietal brain networks. Notably, explicitly evaluating feature interactions revealed a frontal-parietal dissociation: parietal activity varied strongly with both features, but frontal activity varied with the combined strength of the information that defined the motor response. Together, these data demonstrate that frontal regions are driven by decision-relevant features and argue that perceptual decisions and rule-based categorization reflect similar cognitive processes and activate similar brain networks to the extent that they define decision-relevant stimulus-response mappings. NEW & NOTEWORTHY Here we study the behavioral and neural dynamics of perceptual categorization when decision information varies in multiple domains at different levels of abstraction. Behavioral and modeling results suggest that categorical (more abstract) information is weighted more strongly than perceptual (more concrete) information but that perceptual and categorical domains interact to influence decisions. Frontoparietal brain activity during categorization flexibly represents decision-relevant features and highlights significant dissociations in frontal and parietal activity during decision making. Copyright © 2017 the American Physiological Society.
Kayser, Andrew S.
2017-01-01
To date it has been unclear whether perceptual decision making and rule-based categorization reflect activation of similar cognitive processes and brain regions. On one hand, both map potentially ambiguous stimuli to a smaller set of motor responses. On the other hand, decisions about perceptual salience typically concern concrete sensory representations derived from a noisy stimulus, while categorization is typically conceptualized as an abstract decision about membership in a potentially arbitrary set. Previous work has primarily examined these types of decisions in isolation. Here we independently varied salience in both the perceptual and categorical domains in a random dot-motion framework by manipulating dot-motion coherence and motion direction relative to a category boundary, respectively. Behavioral and modeling results suggest that categorical (more abstract) information, which is more relevant to subjects’ decisions, is weighted more strongly than perceptual (more concrete) information, although they also have significant interactive effects on choice. Within the brain, BOLD activity within frontal regions strongly differentiated categorical salience and weakly differentiated perceptual salience; however, the interaction between these two factors activated similar frontoparietal brain networks. Notably, explicitly evaluating feature interactions revealed a frontal-parietal dissociation: parietal activity varied strongly with both features, but frontal activity varied with the combined strength of the information that defined the motor response. Together, these data demonstrate that frontal regions are driven by decision-relevant features and argue that perceptual decisions and rule-based categorization reflect similar cognitive processes and activate similar brain networks to the extent that they define decision-relevant stimulus-response mappings. NEW & NOTEWORTHY Here we study the behavioral and neural dynamics of perceptual categorization when decision information varies in multiple domains at different levels of abstraction. Behavioral and modeling results suggest that categorical (more abstract) information is weighted more strongly than perceptual (more concrete) information but that perceptual and categorical domains interact to influence decisions. Frontoparietal brain activity during categorization flexibly represents decision-relevant features and highlights significant dissociations in frontal and parietal activity during decision making. PMID:28250149
NASA Astrophysics Data System (ADS)
Cramer, C. H.; Kutliroff, J.; Dangkua, D.
2011-12-01
The M5.8 Mineral, Virginia earthquake of August 23, 2011 is the largest instrumentally recorded earthquake in eastern North America since the 1988 M5.9 Saguenay, Canada earthquake. Historically, a similar magnitude earthquake occurred on May 31, 1897 at 18:58 UCT in western Virginia west of Roanoke. Paleoseismic evidence for larger magnitude earthquakes has also been found in the central Virginia region. The Next Generation Attenuation (NGA) East project to develop new ground motion prediction equations for stable continental regions (SCRs), including eastern North America (ENA), is ongoing at the Pacific Earthquake Engineering Research Center funded by the U.S. Nuclear Regulatory Commission, the U.S. Geological Survey, the Electric Power Research Institute, and the U.S. Department of Energy. The available recordings from the M5.8 Virginia are being added to the NGA East ground motion database. Close in (less than 100 km) strong motion recordings are particularly interesting for both ground motion and stress drop estimates as most close-in broadband seismometers clipped on the mainshock. A preliminary estimate for earthquake corner frequency for the M5.8 Virginia earthquake of ~0.7 Hz has been obtained from a strong motion record 57 km from the mainshock epicenter. For a M5.8 earthquake this suggests a Brune stress drop of ~300 bars for the Virginia event. Very preliminary comparisons using accelerometer data suggest the ground motions from the M5.8 Virginia earthquake agree well with current ENA ground motion prediction equations (GMPEs) at short periods (PGA, 0.2 s) and are below the GMPEs at longer periods (1.0 s), which is the same relationship seen from other recent M5 ENA earthquakes. We will present observed versus GMPE ground motion comparisons for all the ground motion observations and stress drop estimates from strong motion recordings at distances less than 100 km. A review of the completed NGA East ENA ground motion database will also be provided.
Foliage motion under wind, from leaf flutter to branch buffeting.
Tadrist, Loïc; Saudreau, Marc; Hémon, Pascal; Amandolese, Xavier; Marquier, André; Leclercq, Tristan; de Langre, Emmanuel
2018-05-01
The wind-induced motion of the foliage in a tree is an important phenomenon both for biological issues (photosynthesis, pathogens development or herbivory) and for more subtle effects such as on wi-fi transmission or animal communication. Such foliage motion results from a combination of the motion of the branches that support the leaves, and of the motion of the leaves relative to the branches. Individual leaf dynamics relative to the branch, and branch dynamics have usually been studied separately. Here, in an experimental study on a whole tree in a large-scale wind tunnel, we present the first empirical evidence that foliage motion is actually dominated by individual leaf flutter at low wind velocities, and by branch turbulence buffeting responses at higher velocities. The transition between the two regimes is related to a weak dependence of leaf flutter on wind velocity, while branch turbulent buffeting is strongly dependent on it. Quantitative comparisons with existing engineering-based models of leaf and branch motion confirm the prevalence of these two mechanisms. Simultaneous measurements of the wind-induced drag on the tree and of the light interception by the foliage show the role of an additional mechanism, reconfiguration, whereby leaves bend and overlap, limiting individual leaf flutter. We then discuss the consequences of these findings on the role of wind-mediated phenomena. © 2018 The Author(s).
Before and after retrofit - response of a building during ambient and strong motions
Celebi, M.; Liu, Huaibao P.; ,
1998-01-01
This paper presents results obtained from ambient vibration and strong-motion responses of a thirteen-story, moment-resisting steel framed Santa Clara County Office Building (SCCOB) before being retrofitted by visco-elastic dampers and from ambient vibration response following the retrofit. Understanding the cumulative structural and site characteristics that affect the response of SCCOB before and after the retrofit is important in assessing earthquake hazards to other similar buildings and decision making in retrofitting them. The results emphasize the need to better evaluate structural and site characteristics in developing earthquake resisting designs that avoid resonating effects. Various studies of the strong-motion response records from the SCCOB during the 24 April 1984 (MHE) Morgan Hill (MS = 6.1), the 31 March 1986 (MLE) Mt. Lewis (MS = 6.1) and the 17 October 1989 (LPE) Loma Prieta (MS = 7.1) earthquakes show that the dynamic characteristics of the building are such that it (a) resonated (b) responded with a beating effect due to close-coupling of its translational and torsional frequencies, and (c) had a long-duration response due to low-damping. During each of these earthquakes, there was considerable contents damage and the occupants felt the rigorous vibration of the building. Ambient tests of SCCOB performed following LPE showed that both translational and torsional periods of the building are smaller than those derived from strong motions. Ambient tests performed following the retrofit of the building with visco-elastic dampers show that the structural fundamental mode frequency of the building has increased. The increased frequency implies a stiffer structure. Strong-motion response of the building during future earthquakes will ultimately validate the effectiveness of the retrofit method.This paper presents results obtained from ambient vibration and strong-motion responses of a thirteen-story, moment-resisting steel framed Santa Clara County Office Building (SCCOB) before being retrofitted by visco-elastic dampers and from ambient vibration response following the retrofit. Understanding the cumulative structural and site characteristics that affect the response of SCCOB before and after the retrofit is important in assessing earthquake hazards to other similar buildings and decision making in retrofitting them. The results emphasize the need to better evaluate structural and site characteristics in developing earthquake resisting designs that avoid resonating effects. Various studies of the strong-motion response records from the SCCOB during the 24 April 1984 (MHE) Morgan Hill (Ms = 6.1), the 31 March 1986 (MLE) Mt. Lewis (Ms = 6.1) and the 17 October 1989(LPE) Loma Prieta (Ms = 7.1) earthquakes show that the dynamic characteristics of the building are such that it (a) resonated (b) responded with a beating effect due to close-coupling of its translational and torsional frequencies, and (c) had a long-duration response due to low-damping. During each of these earthquakes, there was considerable contents damage and the occupants felt the rigorous vibration of the building. Ambient tests of SCCOB performed following LPE showed that both translational and torsional periods of the building are smaller than those derived from strong motions. Ambient tests performed following the retrofit of the building with visco-elastic dampers show that the structural fundamental mode frequency of the building has increased. The increased frequency implies a stiffer structure. Strong-motion response of the building during future earthquakes will ultimately validate the effectiveness of the retrofit method.
Cabin location and the likelihood of motion sickness in cruise ship passengers.
Gahlinger , P M
2000-01-01
The prevalence of motion sickness approaches 100% on rough seas. Some previous studies have reported a strong association between location on a ship and the risk of motion sickness, whereas other studies found no association. This study was undertaken to determine if there is a statistical association between the location of the passenger cabin on a ship and the risk of motion sickness in unadapted passengers. Data were collected on 260 passengers on an expedition ship traversing the Drake Passage between South America and Antarctica, during rough sea conditions. A standard scale was employed to record motion sickness severity. The risk of motion sickness was found to be statistically associated with age and sex. However, no association was found with the location of the passenger cabin. Previous research reporting a strong association of motion sickness and passenger location on a ship, studied passengers in the seated position. Passengers who are able to lie in a supine position are at considerably reduced risk of motion sickness. Expedition or cruise ships that provide ready access to berths, allow passengers to avoid the most nauseogenic positions. The location of the passenger cabin does not appear to be related to the likelihood of seasickness.
NASA Technical Reports Server (NTRS)
Zirin, H.; Tanaka, K.
1972-01-01
Analysis is made of observations of the August, 1972 flares at Big Bear and Tel Aviv, involving monochromatic movies, magnetograms, and spectra. In each flare the observations fit a model of particle acceleration in the chromosphere with emission produced by impart and by heating by the energetic electrons and protons. The region showed twisted flux and high gradients from birth, and flares appear due to strong magnetic shears and gradients across the neutral line produced by sunspot motions. Post flare loops show a strong change from sheared, force-free fields parallel to potential-field-like loops, perpendicular to the neutral line above the surface.
NASA Technical Reports Server (NTRS)
Shine, R. A.
1975-01-01
The problem of LTE and non-LTE line formation in the presence of nonthermal velocity fields with geometric scales between the microscopic and macroscopic limits is investigated in the cases of periodic sinusoidal and sawtooth waves. For a fixed source function (the LTE case), it is shown that time-averaged line profiles progress smoothly from the microscopic to the macroscopic limits as the geometric scale of the motions increases, that the sinusoidal motions produce symmetric time-averaged profiles, and that the sawtooth motions cause a redshift. In several idealized non-LTE cases, it is found that intermediate-scale velocity fields can significantly increase the surface source functions and line-core intensities. Calculations are made for a two-level atom in an isothermal atmosphere for a range of velocity scales and non-LTE coupling parameters and also for a two-level atom and a four-level representation of Na I line formation in the Harvard-Smithsonian Reference Atmosphere (1971) solar model. It is found that intermediate-scale velocity fields in the solar atmosphere could explain the central intensities of the Na I D lines and other strong absorption lines without invoking previously suggested high electron densities.
Stewart, Jonathan P.; Midorikawa, Saburoh; Graves, Robert W.; Khodaverdi, Khatareh; Kishida, Tadahiro; Miura, Hiroyuki; Bozorgnia, Yousef; Campbell, Kenneth W.
2013-01-01
The Mw9.0 Tohoku-oki Japan earthquake produced approximately 2,000 ground motion recordings. We consider 1,238 three-component accelerograms corrected with component-specific low-cut filters. The recordings have rupture distances between 44 km and 1,000 km, time-averaged shear wave velocities of VS30 = 90 m/s to 1,900 m/s, and usable response spectral periods of 0.01 sec to >10 sec. The data support the notion that the increase of ground motions with magnitude saturates at large magnitudes. High-frequency ground motions demonstrate faster attenuation with distance in backarc than in forearc regions, which is only captured by one of the four considered ground motion prediction equations for subduction earthquakes. Recordings within 100 km of the fault are used to estimate event terms, which are generally positive (indicating model underprediction) at short periods and zero or negative (overprediction) at long periods. We find site amplification to scale minimally with VS30 at high frequencies, in contrast with other active tectonic regions, but to scale strongly with VS30 at low frequencies.
Physics-Based Hazard Assessment for Critical Structures Near Large Earthquake Sources
NASA Astrophysics Data System (ADS)
Hutchings, L.; Mert, A.; Fahjan, Y.; Novikova, T.; Golara, A.; Miah, M.; Fergany, E.; Foxall, W.
2017-09-01
We argue that for critical structures near large earthquake sources: (1) the ergodic assumption, recent history, and simplified descriptions of the hazard are not appropriate to rely on for earthquake ground motion prediction and can lead to a mis-estimation of the hazard and risk to structures; (2) a physics-based approach can address these issues; (3) a physics-based source model must be provided to generate realistic phasing effects from finite rupture and model near-source ground motion correctly; (4) wave propagations and site response should be site specific; (5) a much wider search of possible sources of ground motion can be achieved computationally with a physics-based approach; (6) unless one utilizes a physics-based approach, the hazard and risk to structures has unknown uncertainties; (7) uncertainties can be reduced with a physics-based approach, but not with an ergodic approach; (8) computational power and computer codes have advanced to the point that risk to structures can be calculated directly from source and site-specific ground motions. Spanning the variability of potential ground motion in a predictive situation is especially difficult for near-source areas, but that is the distance at which the hazard is the greatest. The basis of a "physical-based" approach is ground-motion syntheses derived from physics and an understanding of the earthquake process. This is an overview paper and results from previous studies are used to make the case for these conclusions. Our premise is that 50 years of strong motion records is insufficient to capture all possible ranges of site and propagation path conditions, rupture processes, and spatial geometric relationships between source and site. Predicting future earthquake scenarios is necessary; models that have little or no physical basis but have been tested and adjusted to fit available observations can only "predict" what happened in the past, which should be considered description as opposed to prediction. We have developed a methodology for synthesizing physics-based broadband ground motion that incorporates the effects of realistic earthquake rupture along specific faults and the actual geology between the source and site.
Attenuation of ground-motion spectral amplitudes in southeastern Australia
Allen, T.I.; Cummins, P.R.; Dhu, T.; Schneider, J.F.
2007-01-01
A dataset comprising some 1200 weak- and strong-motion records from 84 earthquakes is compiled to develop a regional ground-motion model for southeastern Australia (SEA). Events were recorded from 1993 to 2004 and range in size from moment magnitude 2.0 ??? M ??? 4.7. The decay of vertical-component Fourier spectral amplitudes is modeled by trilinear geometrical spreading. The decay of low-frequency spectral amplitudes can be approximated by the coefficient of R-1.3 (where R is hypocentral distance) within 90 km of the seismic source. From approximately 90 to 160 km, we observe a transition zone in which the seismic coda are affected by postcritical reflections from midcrustal and Moho discontinuities. In this hypocentral distance range, geometrical spreading is approximately R+0.1. Beyond 160 km, low-frequency seismic energy attenuates rapidly with source-receiver distance, having a geometrical spreading coefficient of R-1.6. The associated regional seismic-quality factor can be expressed by the polynomial: log Q(f) = 3.66 - 1.44 log f + 0.768 (log f)2 + 0.058 (log f)3 for frequencies 0.78 ??? f ??? 19.9 Hz. Fourier spectral amplitudes, corrected for geometrical spreading and anelastic attenuation, are regressed with M to obtain quadratic source scaling coefficients. Modeled vertical-component displacement spectra fit the observed data well. Amplitude residuals are, on average, relatively small and do not vary with hypocentral distance. Predicted source spectra (i.e., at R = 1 km) are consistent with eastern North American (ENA) Models at low frequencies (f less than approximately 2 Hz) indicating that moment magnitudes calculated for SEA earthquakes are consistent with moment magnitude scales used in ENA over the observed magnitude range. The models presented represent the first spectral ground-motion prediction equations develooed for the southeastern Australian region. This work provides a useful framework for the development of regional ground-motion relations for earthquake hazard and risk assessment in SEA.
Chapter A. The Loma Prieta, California, Earthquake of October 17, 1989 - Strong Ground Motion
Borcherdt, Roger D.
1994-01-01
Strong ground motion generated by the Loma Prieta, Calif., earthquake (MS~7.1) of October 17, 1989, resulted in at least 63 deaths, more than 3,757 injuries, and damage estimated to exceed $5.9 billion. Strong ground motion severely damaged critical lifelines (freeway overpasses, bridges, and pipelines), caused severe damage to poorly constructed buildings, and induced a significant number of ground failures associated with liquefaction and landsliding. It also caused a significant proportion of the damage and loss of life at distances as far as 100 km from the epicenter. Consequently, understanding the characteristics of the strong ground motion associated with the earthquake is fundamental to understanding the earthquake's devastating impact on society. The papers assembled in this chapter address this problem. Damage to vulnerable structures from the earthquake varied substantially with the distance from the causative fault and the type of underlying geologic deposits. Most of the damage and loss of life occurred in areas underlain by 'soft soil'. Quantifying these effects is important for understanding the tragic concentrations of damage in such areas as Santa Cruz and the Marina and Embarcadero Districts of San Francisco, and the failures of the San Francisco-Oakland Bay Bridge and the Interstate Highway 880 overpass. Most importantly, understanding these effects is a necessary prerequisite for improving mitigation measures for larger earthquakes likely to occur much closer to densely urbanized areas in the San Francisco Bay region. The earthquake generated an especially important data set for understanding variations in the severity of strong ground motion. Instrumental strong-motion recordings were obtained at 131 sites located from about 6 to 175 km from the rupture zone. This set of recordings, the largest yet collected for an event of this size, was obtained from sites on various geologic deposits, including a unique set on 'soft soil' deposits (artificial fill and bay mud). These exceptional ground-motion data are used by the authors of the papers in this chapter to infer radiation characteristics of the earthquake source, identify dominant propagation characteristics of the Earth?s crust, quantify amplification characteristics of near-surface geologic deposits, develop general amplification factors for site-dependent building-code provisions, and revise earthquake-hazard assessments for the San Francisco Bay region. Interpretations of additional data recorded in well-instrumented buildings, dams, and freeway overpasses are provided in other chapters of this report.
Perceptual Training Strongly Improves Visual Motion Perception in Schizophrenia
ERIC Educational Resources Information Center
Norton, Daniel J.; McBain, Ryan K.; Ongur, Dost; Chen, Yue
2011-01-01
Schizophrenia patients exhibit perceptual and cognitive deficits, including in visual motion processing. Given that cognitive systems depend upon perceptual inputs, improving patients' perceptual abilities may be an effective means of cognitive intervention. In healthy people, motion perception can be enhanced through perceptual learning, but it…
NASA Astrophysics Data System (ADS)
Si, H.; Koketsu, K.; Miyake, H.; Ibrahim, R.
2016-12-01
During the two major earthquakes occurred in Kumamoto prefecture, at 21:26 on 14 April, 2016 (Mw 6.2, GCMT), and at 1:25 on 16 April, 2016 (Mw7.0, GCMT), a large number of strong ground motions were recorded, including those very close to the surface fault. In this study, we will discuss the attenuation characteristics of strong ground motions observed during the earthquakes. The data used in this study are mainly observed by K-NET, KiK-net, Osaka University, JMA and Kumamoto prefecture. The 5% damped acceleration response spectra (GMRotI50) are calculated based on the method proposed by Boore et al. (2006). PGA and PGV is defined as the larger one among the PGAs and PGVs of two horizontal components. The PGA, PGV, and GMRotI50 data were corrected to the bedrock with Vs of 1.5km/s based on the method proposed by Si et al. (2016) using the average shear wave velocity (Vs30) and the thickness of sediments over the bedrock. The thickness is estimated based on the velocity structure model provided by J-SHIS. We use a source model proposed by Koketsu et al. (2016) to calculate the fault distance and the median distance (MED) which defined as the closest distance from a station to the median line of the fault plane (Si et al., 2014). We compared the observed PGAs, PGVs, and GMRotI50 with the GMPEs developed in Japan using MED (Si et al., 2014). The predictions by the GMPEs are generally consistent with the observations during the two Kumamoto earthquakes. The results of the comparison also indicated that, (1) strong motion records from the earthquake on April 14th are generally consistent with the predictions by GMPE, however, at the periods of 0.5 to 2 seconds, several records close to the fault plane show larger amplitudes than the predictions by GMPE, including the KiK-net station Mashiki (KMMH16); (2) for the earthquake on April 16, the PGAs and GMRotI50 at periods from 0.1s to 0.4s with short distance from the fault plane are slightly smaller than the predictions by GMPE. On the other hand, for the PGVs and GMRotI50s at periods longer than 2.5s with MED larger than about 100 km, the observations are generally larger than the prediction by GMPE, showing smaller attenuation.
Endocardial Energy Harvesting by Electromagnetic Induction.
Zurbuchen, Adrian; Haeberlin, Andreas; Bereuter, Lukas; Pfenniger, Alois; Bosshard, Simon; Kernen, Micha; Philipp Heinisch, Paul; Fuhrer, Juerg; Vogel, Rolf
2018-02-01
cardiac pacemakers require regular medical follow-ups to ensure proper functioning. However, device replacements due to battery depletion are common and account for ∼25% of all implantation procedures. Furthermore, conventional pacemakers require pacemaker leads which are prone to fractures, dislocations or isolation defects. The ensuing surgical interventions increase risks for the patients and costs that need to be avoided. in this study, we present a method to harvest energy from endocardial heart motions. We developed a novel generator, which converts the heart's mechanical into electrical energy by electromagnetic induction. A mathematical model has been introduced to identify design parameters strongly related to the energy conversion efficiency of heart motions and fit the geometrical constraints for a miniaturized transcatheter deployable device. The implemented final design was tested on the bench and in vivo. the mathematical model proved an accurate method to estimate the harvested energy. For three previously recorded heart motions, the model predicted a mean output power of 14.5, 41.9, and 16.9 μW. During an animal experiment, the implanted device harvested a mean output power of 0.78 and 1.7 μW at a heart rate of 84 and 160 bpm, respectively. harvesting kinetic energy from endocardial motions seems feasible. Implanted at an energetically favorable location, such systems might become a welcome alternative to extend the lifetime of cardiac implantable electronic device. the presented endocardial energy harvesting concept has the potential to turn pacemakers into battery- and leadless systems and thereby eliminate two major drawbacks of contemporary systems.
An analytical model of flagellate hydrodynamics
NASA Astrophysics Data System (ADS)
Dölger, Julia; Bohr, Tomas; Andersen, Anders
2017-04-01
Flagellates are unicellular microswimmers that propel themselves using one or several beating flagella. We consider a hydrodynamic model of flagellates and explore the effect of flagellar arrangement and beat pattern on swimming kinematics and near-cell flow. The model is based on the analytical solution by Oseen for the low Reynolds number flow due to a point force outside a no-slip sphere. The no-slip sphere represents the cell and the point force a single flagellum. By superposition we are able to model a freely swimming flagellate with several flagella. For biflagellates with left-right symmetric flagellar arrangements we determine the swimming velocity, and we show that transversal forces due to the periodic movements of the flagella can promote swimming. For a model flagellate with both a longitudinal and a transversal flagellum we determine radius and pitch of the helical swimming trajectory. We find that the longitudinal flagellum is responsible for the average translational motion whereas the transversal flagellum governs the rotational motion. Finally, we show that the transversal flagellum can lead to strong feeding currents to localized capture sites on the cell surface.
NASA Astrophysics Data System (ADS)
Sawazaki, K.
2016-12-01
It is well known that seismic velocity of the subsurface medium changes after a large earthquake. The cause of the velocity change is roughly attributed to strong ground motion (dynamic strain change), crustal deformation (static strain change), and fracturing around the fault zone. Several studies have revealed that the velocity reduction down to several percent concentrates at the depths shallower than several hundred meters. The amount of velocity reduction correlates well with the intensity of strong ground motion, which indicates that the strong motion is the primary cause of the velocity reduction. Although some studies have proposed contributions of coseismic static strain change and fracturing around fault zone to the velocity change, separation of their contributions from the site-related velocity change is usually difficult. Velocity recovery after a large earthquake is also widely observed. The recovery process is generally proportional to logarithm of the lapse time, which is similar to the behavior of "slow dynamics" recognized in laboratory experiments. The time scale of the recovery is usually months to years in field observations, while it is several hours in laboratory experiments. Although the factor that controls the recovery speed is not well understood, cumulative strain change due to post-seismic deformation, migration of underground water, mechanical and chemical reactions on the crack surface could be the candidate. In this study, I summarize several observations that revealed spatiotemporal distribution of seismic velocity change due to large earthquakes; especially I focus on the case of the M9.0 2011 Tohoku earthquake. Combining seismograms of Hi-net (high-sensitivity) and KiK-net (strong motion), geodetic records of GEONET and the seafloor GPS/Acoustic ranging, I investigate contribution of the strong ground motion and crustal deformation to the velocity change associated with the Tohoku earthquake, and propose a gross view of spatiotemporal velocity change due to large earthquakes. Acknowledgement: Hi-net and KiK-net seismograms (NIED), GEONET GNSS record (Geospatial Information Authority of Japan), and the JMA unified hypocenter catalog are used in this study.
NASA Astrophysics Data System (ADS)
Iwaki, A.; Fujiwara, H.
2012-12-01
Broadband ground motion computations of scenario earthquakes are often based on hybrid methods that are the combinations of deterministic approach in lower frequency band and stochastic approach in higher frequency band. Typical computation methods for low-frequency and high-frequency (LF and HF, respectively) ground motions are the numerical simulations, such as finite-difference and finite-element methods based on three-dimensional velocity structure model, and the stochastic Green's function method, respectively. In such hybrid methods, LF and HF wave fields are generated through two different methods that are completely independent of each other, and are combined at the matching frequency. However, LF and HF wave fields are essentially not independent as long as they are from the same event. In this study, we focus on the relation among acceleration envelopes at different frequency bands, and attempt to synthesize HF ground motion using the information extracted from LF ground motion, aiming to propose a new method for broad-band strong motion prediction. Our study area is Kanto area, Japan. We use the K-NET and KiK-net surface acceleration data and compute RMS envelope at four frequency bands: 0.5-1.0 Hz, 1.0-2.0 Hz, 2.0-4.0 Hz, .0-8.0 Hz, and 8.0-16.0 Hz. Taking the ratio of the envelopes of adjacent bands, we find that the envelope ratios have stable shapes at each site. The empirical envelope-ratio characteristics are combined with low-frequency envelope of the target earthquake to synthesize HF ground motion. We have applied the method to M5-class earthquakes and a M7 target earthquake that occurred in the vicinity of Kanto area, and successfully reproduced the observed HF ground motion of the target earthquake. The method can be applied to a broad band ground motion simulation for a scenario earthquake by combining numerically-computed low-frequency (~1 Hz) ground motion with the empirical envelope ratio characteristics to generate broadband ground motion. The strengths of the proposed method are that: 1) it is based on observed ground motion characteristics, 2) it takes full advantage of precise velocity structure model, and 3) it is simple and easy to apply.
Resolving High Amplitude Surface Motion with Diffusing Light
NASA Technical Reports Server (NTRS)
Wright, W.; Budakian, R.; Putterman, Seth J.
1996-01-01
A new technique has been developed for the purpose of imaging high amplitude surface motion. With this method one can quantitatively measure the transition to ripple wave turbulence. In addition, one can measure the phase of the turbulent state. These experiments reveal strong coherent structures in turbulent range of motion.
NASA Astrophysics Data System (ADS)
Zheng, Ao; Wang, Mingfeng; Yu, Xiangwei; Zhang, Wenbo
2018-03-01
On 2016 November 13, an Mw 7.8 earthquake occurred in the northeast of the South Island of New Zealand near Kaikoura. The earthquake caused severe damages and great impacts on local nature and society. Referring to the tectonic environment and defined active faults, the field investigation and geodetic evidence reveal that at least 12 fault sections ruptured in the earthquake, and the focal mechanism is one of the most complicated in historical earthquakes. On account of the complexity of the source rupture, we propose a multisegment fault model based on the distribution of surface ruptures and active tectonics. We derive the source rupture process of the earthquake using the kinematic waveform inversion method with the multisegment fault model from strong-motion data of 21 stations (0.05-0.35 Hz). The inversion result suggests the rupture initiates in the epicentral area near the Humps fault, and then propagates northeastward along several faults, until the offshore Needles fault. The Mw 7.8 event is a mixture of right-lateral strike and reverse slip, and the maximum slip is approximately 19 m. The synthetic waveforms reproduce the characteristics of the observed ones well. In addition, we synthesize the coseismic offsets distribution of the ruptured region from the slips of upper subfaults in the fault model, which is roughly consistent with the surface breaks observed in the field survey.
Attenuation relation for strong motion in Eastern Java based on appropriate database and method
NASA Astrophysics Data System (ADS)
Mahendra, Rian; Rohadi, Supriyanto; Rudyanto, Ariska
2017-07-01
The selection and determination of attenuation relation has become important for seismic hazard assessment in active seismic region. This research initially constructs the appropriate strong motion database, including site condition and type of the earthquake. The data set consisted of large number earthquakes of 5 ≤ Mw ≤ 9 and distance less than 500 km that occurred around Java from 2009 until 2016. The location and depth of earthquake are being relocated using double difference method to improve the quality of database. Strong motion data from twelve BMKG's accelerographs which are located in east Java is used. The site condition is known by using dominant period and Vs30. The type of earthquake is classified into crustal earthquake, interface, and intraslab based on slab geometry analysis. A total of 10 Ground Motion Prediction Equations (GMPEs) are tested using Likelihood (Scherbaum et al., 2004) and Euclidean Distance Ranking method (Kale and Akkar, 2012) with the associated database. The evaluation of these methods lead to a set of GMPEs that can be applied for seismic hazard in East Java where the strong motion data is collected. The result of these methods found that there is still high deviation of GMPEs, so the writer modified some GMPEs using inversion method. Validation was performed by analysing the attenuation curve of the selected GMPE and observation data in period 2015 up to 2016. The results show that the selected GMPE is suitable for estimated PGA value in East Java.
Celebi, M.
2000-01-01
During the 27 June 1998 Adana (Turkey) earthquake, only one strong-motion record was retrieved in the region where the most damage occurred. This single record from the station in Ceyhan, approximately 15 km from the epicenter of that earthquake, exhibits characteristics that are related to the dominant frequencies of the ground and structures. The purpose of this paper is to explain the causes of the damage as inferred from both field observations and the characteristics of a single strong-motion record retrieved from the immediate epicentral area. In the town of Ceyhan there was considerable but selective damage to a significant number of mid-rise (7-12 stories high) buildings. The strong-motion record exhibits dominant frequencies that are typically similar for the mid-rise building structures. This is further supported by spectral ratios derived using Nakamura's method [QR of RTRI, 30 (1989) 25] that facilitates computation of a spectral ratio from a single tri-axial record as the ratio of amplitude spectrum of horizontal component to that of the vertical component [R = H(f)/V(f)]. The correlation between the damage and the characteristics exhibited from the single strong-motion record is remarkable. Although deficient construction practices played a significant role in the extent of damage to the mid-rise buildings, it is clear that site resonance also contributed to the detrimental fate of most of the mid-rise buildings. Therefore, even a single record can be useful to explain the effect of site resonance on building response and performance. Such information can be very useful for developing zonation criteria in similar alluvial valleys. Published by Elsevier Science Ltd.
ShakeMapple : tapping laptop motion sensors to map the felt extents of an earthquake
NASA Astrophysics Data System (ADS)
Bossu, Remy; McGilvary, Gary; Kamb, Linus
2010-05-01
There is a significant pool of untapped sensor resources available in portable computer embedded motion sensors. Included primarily to detect sudden strong motion in order to park the disk heads to prevent damage to the disks in the event of a fall or other severe motion, these sensors may also be tapped for other uses as well. We have developed a system that takes advantage of the Apple Macintosh laptops' embedded Sudden Motion Sensors to record earthquake strong motion data to rapidly build maps of where and to what extent an earthquake has been felt. After an earthquake, it is vital to understand the damage caused especially in urban environments as this is often the scene for large amounts of damage caused by earthquakes. Gathering as much information from these impacts to determine where the areas that are likely to be most effected, can aid in distributing emergency services effectively. The ShakeMapple system operates in the background, continuously saving the most recent data from the motion sensors. After an earthquake has occurred, the ShakeMapple system calculates the peak acceleration within a time window around the expected arrival and sends that to servers at the EMSC. A map plotting the felt responses is then generated and presented on the web. Because large-scale testing of such an application is inherently difficult, we propose to organize a broadly distributed "simulated event" test. The software will be available for download in April, after which we plan to organize a large-scale test by the summer. At a specified time, participating testers will be asked to create their own strong motion to be registered and submitted by the ShakeMapple client. From these responses, a felt map will be produced representing the broadly-felt effects of the simulated event.
Active Tectonics of the Far North Pacific Observed with GPS
NASA Astrophysics Data System (ADS)
Elliott, J.; Freymueller, J. T.; Jiang, Y.; Leonard, L. J.; Hyndman, R. D.; Mazzotti, S.
2017-12-01
The idea that the tectonics of the northeastern Pacific is defined by relatively discrete deformation along the boundary between the Pacific and North American plates has given way to a more complex picture of broad plate boundary zones and distributed deformation. This is due in large part to the Plate Boundary Observatory and several focused GPS studies, which have greatly increased the density of high-quality GPS data throughout the region. We will present an updated GPS velocity field in a consistent reference frame as well as a new, integrated block model that sheds light on regional tectonics and provides improved estimates of motion along faults and their potential seismic hazard. Crustal motions in southern Alaska are strongly influenced by the collision and flat-slab subduction of the Yakutat block along the central Gulf of Alaska margin. In the area nearest to the collisional front, small blocks showing evidence of internal deformation are required. East of the front, block motions show clockwise rotation into the Canadian Cordillera while west of the front there are counterclockwise rotations that extend along the Alaska forearc, suggesting crustal extrusion. Farther from the convergent margin, the crust appears to move as rigid blocks, with uniform motion over large areas. In western Alaska, block motions show a southwesterly rotation into the Bering Sea. Arctic Alaska displays southeasterly motions that gradually transition into easterly motion in Canada. Much of the southeastern Alaska panhandle and coastal British Columbia exhibit northwesterly motions. Although the relative plate motions are mainly accommodated along major faults systems, including the Fairweather-Queen Charlotte transform system, the St. Elias fold-and-thrust belt, the Denali-Totschunda system, and the Alaska-Aleutian subduction zone, a number of other faults accommodate lesser but still significant amounts of motion in the model. These faults include the eastern Denali/Duke River system, the Castle Mountain fault, the western Denali fault, the Kaltag fault, and the Kobuk fault. Based on the expanded GPS data set, locked or partially locked sections of the Alaska subduction zone may extend as far north and east as the eastern Alaska Range.
NASA Astrophysics Data System (ADS)
Holden, C.; Kaneko, Y.; D'Anastasio, E.; Benites, R.; Fry, B.; Hamling, I. J.
2017-11-01
The 2016 Kaikōura (New Zealand) earthquake generated large ground motions and resulted in multiple onshore and offshore fault ruptures, a profusion of triggered landslides, and a regional tsunami. Here we examine the rupture evolution using two kinematic modeling techniques based on analysis of local strong-motion and high-rate GPS data. Our kinematic models capture a complex pattern of slowly (Vr < 2 km/s) propagating rupture from south to north, with over half of the moment release occurring in the northern source region, mostly on the Kekerengu fault, 60 s after the origin time. Both models indicate rupture reactivation on the Kekerengu fault with the time separation of 11 s between the start of the original failure and start of the subsequent one. We further conclude that most near-source waveforms can be explained by slip on the crustal faults, with little (<8%) or no contribution from the subduction interface.
Turbulence and wave particle interactions in solar-terrestrial plasmas
NASA Technical Reports Server (NTRS)
Dulk, G. A.
1982-01-01
Theoretical modelling of two dimensional compressible convection in the Sun shows that convective flows can extend over many pressure scale heights without the nonlinear motions becoming supersonic, and that compressional work arising from pressure fluctuations can be comparable to that by buoyancy forces. These results are contrary to what was supposed in prevailing mixing length models for solar convection, and they imply a much greater degree of organized flow extending over the full depth of the convection zone. The nonlinear penetration of motions into the stable region below the convection zone was emphasized. These compressible flows are dominated by downward directed plumes in the unstable zone. Their strong penetration into the region of stable stratification below excites a broad spectrum of internal gravity waves there, and these in turn feed back upon the convection in the unstable zone to produce a rich time dependence.
NASA Astrophysics Data System (ADS)
Gao, Feng-Yin; Kang, Yan-Mei; Chen, Xi; Chen, Guanrong
2018-05-01
This paper reveals the effect of fractional Gaussian noise with Hurst exponent H ∈(1 /2 ,1 ) on the information capacity of a general nonlinear neuron model with binary signal input. The fGn and its corresponding fractional Brownian motion exhibit long-range, strong-dependent increments. It extends standard Brownian motion to many types of fractional processes found in nature, such as the synaptic noise. In the paper, for the subthreshold binary signal, sufficient conditions are given based on the "forbidden interval" theorem to guarantee the occurrence of stochastic resonance, while for the suprathreshold binary signal, the simulated results show that additive fGn with Hurst exponent H ∈(1 /2 ,1 ) could increase the mutual information or bits count. The investigation indicated that the synaptic noise with the characters of long-range dependence and self-similarity might be the driving factor for the efficient encoding and decoding of the nervous system.
Real-Time Unsteady Loads Measurements Using Hot-Film Sensors
NASA Technical Reports Server (NTRS)
Mangalam, Arun S.; Moes, Timothy R.
2004-01-01
Several flight-critical aerodynamic problems such as buffet, flutter, stall, and wing rock are strongly affected or caused by abrupt changes in unsteady aerodynamic loads and moments. Advanced sensing and flow diagnostic techniques have made possible simultaneous identification and tracking, in realtime, of the critical surface, viscosity-related aerodynamic phenomena under both steady and unsteady flight conditions. The wind tunnel study reported here correlates surface hot-film measurements of leading edge stagnation point and separation point, with unsteady aerodynamic loads on a NACA 0015 airfoil. Lift predicted from the correlation model matches lift obtained from pressure sensors for an airfoil undergoing harmonic pitchup and pitchdown motions. An analytical model was developed that demonstrates expected stall trends for pitchup and pitchdown motions. This report demonstrates an ability to obtain unsteady aerodynamic loads in real time, which could lead to advances in air vehicle safety, performance, ride-quality, control, and health management.
Real-Time Unsteady Loads Measurements Using Hot-Film Sensors
NASA Technical Reports Server (NTRS)
Mangalam, Arun S.; Moes, Timothy R.
2004-01-01
Several flight-critical aerodynamic problems such as buffet, flutter, stall, and wing rock are strongly affected or caused by abrupt changes in unsteady aerodynamic loads and moments. Advanced sensing and flow diagnostic techniques have made possible simultaneous identification and tracking, in real-time, of the critical surface, viscosity-related aerodynamic phenomena under both steady and unsteady flight conditions. The wind tunnel study reported here correlates surface hot-film measurements of leading edge stagnation point and separation point, with unsteady aerodynamic loads on a NACA 0015 airfoil. Lift predicted from the correlation model matches lift obtained from pressure sensors for an airfoil undergoing harmonic pitchup and pitchdown motions. An analytical model was developed that demonstrates expected stall trends for pitchup and pitchdown motions. This report demonstrates an ability to obtain unsteady aerodynamic loads in real-time, which could lead to advances in air vehicle safety, performance, ride-quality, control, and health management.
NASA Astrophysics Data System (ADS)
Burby, Joshua; Brizard, Alain
2017-10-01
Test-particle gyrocenter equations of motion play an essential role in the diagnosis of turbulent strongly-magnetized plasmas, and are playing an increasingly-important role in the formulation of kinetic-gyrokinetic hybrid models. Previous gyrocenter models required the knowledge of the perturbed electromagnetic potentials, which are not directly observable quantities (since they are gauge-dependent). A new gauge-free formulation of gyrocenter motion is presented, which enables gyrocenter trajectories to be determined using only measured values of the directly-observable electromagnetic field. Our gauge-free gyrokinetic theory is general enough to allow for gyroradius-scale fluctuations in both the electric and magnetic field. In addition, we provide gauge-free expressions for the charge and current densities produced by a distribution of gyrocenters, which explicitly include guiding-center and gyrocenter polarization and magnetization effects. This research was supported by the U.S. DOE Contract Nos. DE-SC0014032 (AB) and DE-AC05-06OR23100 (JB).
Probabilistic versus deterministic hazard assessment in liquefaction susceptible zones
NASA Astrophysics Data System (ADS)
Daminelli, Rosastella; Gerosa, Daniele; Marcellini, Alberto; Tento, Alberto
2015-04-01
Probabilistic seismic hazard assessment (PSHA), usually adopted in the framework of seismic codes redaction, is based on Poissonian description of the temporal occurrence, negative exponential distribution of magnitude and attenuation relationship with log-normal distribution of PGA or response spectrum. The main positive aspect of this approach stems into the fact that is presently a standard for the majority of countries, but there are weak points in particular regarding the physical description of the earthquake phenomenon. Factors like site effects, source characteristics like duration of the strong motion and directivity that could significantly influence the expected motion at the site are not taken into account by PSHA. Deterministic models can better evaluate the ground motion at a site from a physical point of view, but its prediction reliability depends on the degree of knowledge of the source, wave propagation and soil parameters. We compare these two approaches in selected sites affected by the May 2012 Emilia-Romagna and Lombardia earthquake, that caused widespread liquefaction phenomena unusually for magnitude less than 6. We focus on sites liquefiable because of their soil mechanical parameters and water table level. Our analysis shows that the choice between deterministic and probabilistic hazard analysis is strongly dependent on site conditions. The looser the soil and the higher the liquefaction potential, the more suitable is the deterministic approach. Source characteristics, in particular the duration of strong ground motion, have long since recognized as relevant to induce liquefaction; unfortunately a quantitative prediction of these parameters appears very unlikely, dramatically reducing the possibility of their adoption in hazard assessment. Last but not least, the economic factors are relevant in the choice of the approach. The case history of 2012 Emilia-Romagna and Lombardia earthquake, with an officially estimated cost of 6 billions Euros, shows that geological and geophysical investigations necessary to assess a reliable deterministic hazard evaluation are largely justified.
Strong ground motion in the Taipei basin from the 1999 Chi-Chi, Taiwan, earthquake
Fletcher, Joe B.; Wen, K.-L.
2005-01-01
The Taipei basin, located in northwest Taiwan about 160 km from the epicenter of the Chi-Chi earthquake, is a shallow, triangular-shaped basin filled with low-velocity fluvial deposits. There is a strong velocity contrast across the basement interface of about 600 m/sec at a depth of about 600-700 m in the deeper section of the basin, suggesting that ground motion should be amplified at sites in the basin. In this article, the ground-motion recordings are analyzed to determine the effect of the basin both in terms of amplifications expected from a 1D model of the sediments in the basin and in terms of the 3D structure of the basin. Residuals determined for peak acceleration from attenuation curves are more positive (amplified) in the basin (average of 5.3 cm/ sec2 compared to - 24.2 cm/sec2 for those stations outside the basin and between 75 and 110 km from the surface projection of the faulted area, a 40% increase in peak ground acceleration). Residuals for peak velocity are also significantly more positive at stations in the basin (31.8 cm/sec compared to 20.0 cm/sec out). The correlation of peak motion with depth to basement, while minor in peak acceleration, is stronger in the peak velocities. Record sections of ground motion from stations in and around the Taipei basin show that the largest long-period arrival, which is coherent across the region, is strongest on the vertical component and has a period of about 10-12 sec. This phase appears to be a Rayleigh wave, probably associated with rupture at the north end of the Chelungpu fault. Records of strong motion from stations in and near the basin have an additional, higher frequency signal: nearest the deepest point in the basin, the signal is characterized by frequencies of about 0.3 - 0.4 Hz. These frequencies are close to simple predictions using horizontal layers and the velocity structure of the basin. Polarizations of the S wave are mostly coherent across the array, although there are significant differences along the northwest edge that may indicate large strains across that edge of the basin. The length of each record after the main S wave are all longer at basin stations compared to those outside. This increase in duration of ground shaking is probably caused by amplification of ground motion at basin stations, although coda Q (0.67 - 1.30 Hz) is slightly larger inside the basin compared to those at local stations outside the basin. Durations correlate with depth to basement. These motions are in the range that can induce damage in buildings and may have contributed to the structural collapse of multistory buildings in the Taipei basin.
Neutral biogeography and the evolution of climatic niches.
Boucher, Florian C; Thuiller, Wilfried; Davies, T Jonathan; Lavergne, Sébastien
2014-05-01
Recent debate on whether climatic niches are conserved through time has focused on how phylogenetic niche conservatism can be measured by deviations from a Brownian motion model of evolutionary change. However, there has been no evaluation of this methodological approach. In particular, the fact that climatic niches are usually obtained from distribution data and are thus heavily influenced by biogeographic factors has largely been overlooked. Our main objective here was to test whether patterns of climatic niche evolution that are frequently observed might arise from neutral dynamics rather than from adaptive scenarios. We developed a model inspired by neutral biodiversity theory, where individuals disperse, compete, and undergo speciation independently of climate. We then sampled the climatic niches of species according to their geographic position and showed that even when species evolve independently of climate, their niches can nonetheless exhibit evolutionary patterns strongly differing from Brownian motion. Indeed, climatic niche evolution is better captured by a model of punctuated evolution with constraints due to landscape boundaries, two features that are traditionally interpreted as evidence for selective processes acting on the niche. We therefore suggest that deviation from Brownian motion alone should not be used as evidence for phylogenetic niche conservatism but that information on phenotypic traits directly linked to physiology is required to demonstrate that climatic niches have been conserved through time.
Neutral biogeography and the evolution of climatic niches
Boucher, Florian C.; Thuiller, Wilfried; Davies, T. Jonathan; Lavergne, Sébastien
2014-01-01
Recent debate on whether climatic niches are conserved through time has focused on how phylogenetic niche conservatism can be measured by deviations from a Brownian motion model of evolutionary change. However, there has been no evaluation of this methodological approach. In particular, the fact that climatic niches are usually obtained from distribution data and are thus heavily influenced by biogeographic factors has largely been overlooked. Our main objective here was to test whether patterns of climatic niche evolution that are frequently observed might arise from neutral dynamics rather than adaptive scenarios. We develop a model inspired by Neutral Biodiversity Theory, where individuals disperse, compete, and undergo speciation independently of climate. We then sample the climatic niches of species according to their geographic position and show that even when species evolved independently of climate, their niches can nonetheless exhibit evolutionary patterns strongly differing from Brownian motion. Indeed, climatic niche evolution is better captured by a model of punctuated evolution with constraints due to landscape boundaries, two features that are traditionally interpreted as evidence for selective processes acting on the niche. We therefore suggest that deviation from Brownian motion alone should not be used as evidence for phylogenetic niche conservatism, but that information on phenotypic traits directly linked to physiology is required to demonstrate that climatic niches have been conserved through time. PMID:24739191
Active elastic dimers: cells moving on rigid tracks.
Lopez, J H; Das, Moumita; Schwarz, J M
2014-09-01
Experiments suggest that the migration of some cells in the three-dimensional extracellular matrix bears strong resemblance to one-dimensional cell migration. Motivated by this observation, we construct and study a minimal one-dimensional model cell made of two beads and an active spring moving along a rigid track. The active spring models the stress fibers with their myosin-driven contractility and α-actinin-driven extendability, while the friction coefficients of the two beads describe the catch and slip-bond behaviors of the integrins in focal adhesions. In the absence of active noise, net motion arises from an interplay between active contractility (and passive extendability) of the stress fibers and an asymmetry between the front and back of the cell due to catch-bond behavior of integrins at the front of the cell and slip-bond behavior of integrins at the back. We obtain reasonable cell speeds with independently estimated parameters. We also study the effects of hysteresis in the active spring, due to catch-bond behavior and the dynamics of cross linking, and the addition of active noise on the motion of the cell. Our model highlights the role of α-actinin in three-dimensional cell motility and does not require Arp2/3 actin filament nucleation for net motion.
NASA Astrophysics Data System (ADS)
Shen, W. H.; Luo, Y.; Jiao, Q. S.
2018-04-01
On August 8, 2017, an earthquake of M 7.0 occurred at Jiuzhaigou. Based on the Sentinel-1 satellite InSAR data, we obtained coseismic deformation field and inverted the source slip model. Results show that this event is dominated by strike slip, and the total released seismic moment is 8.06 × 1018 Nm, equivalent to an earthquake of Mw 6.57. We calculated static stress changes along strike and dip direction, and the static stress analysis show that the average stress drop are at low level, which may be responsible for the low level of ground motion during Jiuzhaigou earthquake. The coseismic Coulomb stress changes are calculated base on the inverted slip model, which revealed that 82.59 % of aftershocks are located in the Coulomb stress increasing area, 78.42 % of total aftershocks may be triggered by the mainshock aftershock, indicating that the mainshock has a significant triggering effect on the subsequent aftershocks. Based on stochastic finite fault model, we simulated regional peak ground acceleration (PGA), peak ground velocity (PGV) and the intensity, and results could capture basic features associated with the ground motion patterns. Moreover, the simulated results reflect the obvious rupture directivity effect.
Large-scale ground motion simulation using GPGPU
NASA Astrophysics Data System (ADS)
Aoi, S.; Maeda, T.; Nishizawa, N.; Aoki, T.
2012-12-01
Huge computation resources are required to perform large-scale ground motion simulations using 3-D finite difference method (FDM) for realistic and complex models with high accuracy. Furthermore, thousands of various simulations are necessary to evaluate the variability of the assessment caused by uncertainty of the assumptions of the source models for future earthquakes. To conquer the problem of restricted computational resources, we introduced the use of GPGPU (General purpose computing on graphics processing units) which is the technique of using a GPU as an accelerator of the computation which has been traditionally conducted by the CPU. We employed the CPU version of GMS (Ground motion Simulator; Aoi et al., 2004) as the original code and implemented the function for GPU calculation using CUDA (Compute Unified Device Architecture). GMS is a total system for seismic wave propagation simulation based on 3-D FDM scheme using discontinuous grids (Aoi&Fujiwara, 1999), which includes the solver as well as the preprocessor tools (parameter generation tool) and postprocessor tools (filter tool, visualization tool, and so on). The computational model is decomposed in two horizontal directions and each decomposed model is allocated to a different GPU. We evaluated the performance of our newly developed GPU version of GMS on the TSUBAME2.0 which is one of the Japanese fastest supercomputer operated by the Tokyo Institute of Technology. First we have performed a strong scaling test using the model with about 22 million grids and achieved 3.2 and 7.3 times of the speed-up by using 4 and 16 GPUs. Next, we have examined a weak scaling test where the model sizes (number of grids) are increased in proportion to the degree of parallelism (number of GPUs). The result showed almost perfect linearity up to the simulation with 22 billion grids using 1024 GPUs where the calculation speed reached to 79.7 TFlops and about 34 times faster than the CPU calculation using the same number of cores. Finally, we applied GPU calculation to the simulation of the 2011 Tohoku-oki earthquake. The model was constructed using a slip model from inversion of strong motion data (Suzuki et al., 2012), and a geological- and geophysical-based velocity structure model comprising all the Tohoku and Kanto regions as well as the large source area, which consists of about 1.9 billion grids. The overall characteristics of observed velocity seismograms for a longer period than range of 8 s were successfully reproduced (Maeda et al., 2012 AGU meeting). The turn around time for 50 thousand-step calculation (which correspond to 416 s in seismograph) using 100 GPUs was 52 minutes which is fairly short, especially considering this is the performance for the realistic and complex model.
Advance in prediction of soil slope instabilities
NASA Astrophysics Data System (ADS)
Sigarán-Loría, C.; Hack, R.; Nieuwenhuis, J. D.
2012-04-01
Six generic soils (clays and sands) were systematically modeled with plane-strain finite elements (FE) at varying heights and inclinations. A dataset was generated in order to develop predictive relations of soil slope instabilities, in terms of co-seismic displacements (u), under strong motions with a linear multiple regression. For simplicity, the seismic loads are monochromatic artificial sinusoidal functions at four frequencies: 1, 2, 4, and 6 Hz, and the slope failure criterion used corresponds to near 10% Cartesian shear strains along a continuous region comparable to a slip surface. The generated dataset comprises variables from the slope geometry and site conditions: height, H, inclination, i, shear wave velocity from the upper 30 m, vs30, site period, Ts; as well as the input strong motion: yield acceleration, ay (equal to peak ground acceleration, PGA in this research), frequency, f; and in some cases moment magnitude, M, and Arias intensity, Ia, assumed from empirical correlations. Different datasets or scenarios were created: "Magnitude-independent", "Magnitude-dependent", and "Soil-dependent", and the data was statistically explored and analyzed with varying mathematical forms. Qualitative relations show that the permanent deformations are highly related to the soil class for the clay slopes, but not for the sand slopes. Furthermore, the slope height does not constrain the variability in the co-seismic displacements. The input frequency decreases the variability of the co-seismic displacements for the "Magnitude-dependent" and "Soil-dependent" datasets. The empirical models were developed with two and three predictors. For the sands it was not possible because they could not satisfy the constrains from the statistical method. For the clays, the best models with the smallest errors coincided with the simple general form of multiple regression with three predictors (e.g. near 0.16 and 0.21 standard error, S.E. and 0.75 and 0.55 R2 for the "M-independent" and "M-dependent" datasets correspondingly). From the models with two predictors, a 2nd-order polynom gave the best performance but with a not-significant parameter. The best models with both predictors significant have slightly larger error and smaller R2, e.g. 0.15 S.E., 44% R2 with ay and i. The predictive models obtained with the three scenarios from the clay slopes provide well-constrained predictions but low R2, suggesting the predictors are "not complete", most likely in relation to the simplicity used in the strong motion characterization. Nevertheless, the findings from this work demonstrate the potential from analytical methods in developing more precise predictions as well as the importance on treating different different ground types.
Dynamic investigation of a locomotive with effect of gear transmissions under tractive conditions
NASA Astrophysics Data System (ADS)
Chen, Zaigang; Zhai, Wanming; Wang, Kaiyun
2017-11-01
Locomotive is used to drag trailers to move or supply the braking forces to slow the running speed of a train. The electromagnetic torque of the motor is always transmitted by the gear transmission system to the wheelset for generation of the tractive or braking forces at the wheel-rail contact interface. Consequently, gear transmission system is significant for power delivery of a locomotive. This paper develops a comprehensive locomotive-track vertical-longitudinal coupled dynamics model with dynamic effect of gear transmissions. This dynamics model enables considering the coupling interactions between the gear transmission motion, the vertical and the longitudinal motions of the vehicle, and the vertical vibration of the track structure. In this study, some complicated dynamic excitations, such as the gear time-varying mesh stiffness, nonlinear gear tooth backlash, the nonlinear wheel-rail normal contact force and creep force, and the rail vertical geometrical irregularity, are considered. Then, the dynamic responses of the locomotive under the tractive conditions are demonstrated by numerical simulations based on the established dynamics model and by experimental test. The developed dynamics model is validated by the good agreement between the experimental and the theoretical results. The calculated results reveal that the gear transmission system has strong dynamic interactions with the wheel-rail contact interface including both the vertical and the longitudinal motions, and it has negligible effect on the vibrations of the bogie frame and carbody.
Surface velocity divergence model of air/water interfacial gas transfer in open-channel flows
NASA Astrophysics Data System (ADS)
Sanjou, M.; Nezu, I.; Okamoto, T.
2017-04-01
Air/water interfacial gas transfer through a free surface plays a significant role in preserving and restoring water quality in creeks and rivers. However, direct measurements of the gas transfer velocity and reaeration coefficient are still difficult, and therefore a reliable prediction model needs to be developed. Varying systematically the bulk-mean velocity and water depth, laboratory flume experiments were conducted and we measured surface velocities and dissolved oxygen (DO) concentrations in open-channel flows to reveal the relationship between DO transfer velocity and surface divergence (SD). Horizontal particle image velocimetry measurements provide the time-variations of surface velocity divergence. Positive and negative regions of surface velocity divergence are transferred downstream in time, as occurs in boil phenomenon on natural river free-surfaces. The result implies that interfacial gas transfer is related to bottom-situated turbulence motion and vertical mass transfer. The original SD model focuses mainly on small-scale viscous motion, and this model strongly depends on the water depth. Therefore, we modify the SD model theoretically to accommodate the effects of the water depth on gas transfer, introducing a non-dimensional parameter that includes contributions of depth-scale large-vortex motion, such as secondary currents, to surface renewal events related to DO transport. The modified SD model proved effective and reasonable without any dependence on the bulk mean velocity and water depth, and has a larger coefficient of determination than the original SD model. Furthermore, modeling of friction velocity with the Reynolds number improves the practicality of a new formula that is expected to be used in studies of natural rivers.
Enhancement of the national strong-motion network in Turkey
Gulkan, Polat; Ceken, U.; Colakoglu, Z.; Ugras, T.; Kuru, T.; Apak, A.; Anderson, J.G.; Sucuoglu, H.; Celebi, M.; Akkar, D.S.; Yazgan, U.; Denizlioglu, A.Z.
2007-01-01
Two arrays comprising 20 strong-motion sensors were established in western Turkey. The 14 stations of BYTNet follow a N-S trending line about 65 km in length, normal to strands of the North Anatolian fault that runs between the cities of Bursa and Yalova. Here the dominant character of the potential fault movement is a right-lateral transform slip. The DATNet array, comprising a total of eight stations, is arranged along a 110-km-long E-W trending direction along the Menderes River valley between Denizli and Aydin. (Two stations in this array were incorporated from the existing Turkish national strong-motion network.) This is an extensional tectonic environment, and the network mornitors potential large normal-faulting earthquakes on the faults in the valley. The installation of the arrays was supported by the North Atlantic Treaty Organization (NATO) under its Science for Peace Program. Maintenance and calibration is performed by the General Directorate of Disaster Affairs (GDDA) according to a protocol between Middle East Technical University (METU) and GDDA. Many young engineers and scientists have been trained in network operation and evaluation during the course of the project, and an international workshop dealing with strong-motion instrumentation has been organized as part of the project activities.
NASA Astrophysics Data System (ADS)
Okumura, K.
2011-12-01
Accurate location and geometry of seismic sources are critical to estimate strong ground motion. Complete and precise rupture history is also critical to estimate the probability of the future events. In order to better forecast future earthquakes and to reduce seismic hazards, we should consider over all options and choose the most likely parameter. Multiple options for logic trees are acceptable only after thorough examination of contradicting estimates and should not be a result from easy compromise or epoche. In the process of preparation and revisions of Japanese probabilistic and deterministic earthquake hazard maps by Headquarters for Earthquake Research Promotion since 1996, many decisions were made to select plausible parameters, but many contradicting estimates have been left without thorough examinations. There are several highly-active faults in central Japan such as Itoigawa-Shizuoka Tectonic Line active fault system (ISTL), West Nagano Basin fault system (WNBF), Inadani fault system (INFS), and Atera fault system (ATFS). The highest slip rate and the shortest recurrence interval are respectively ~1 cm/yr and 500 to 800 years, and estimated maximum magnitude is 7.5 to 8.5. Those faults are very hazardous because almost entire population and industries are located above the fault within tectonic depressions. As to the fault location, most uncertainties arises from interpretation of geomorphic features. Geomorphological interpretation without geological and structural insight often leads to wrong mapping. Though non-existent longer fault may be a safer estimate, incorrectness harm reliability of the forecast. Also this does not greatly affect strong motion estimates, but misleading to surface displacement issues. Fault geometry, on the other hand, is very important to estimate intensity distribution. For the middle portion of the ISTL, fast-moving left-lateral strike-slip up to 1 cm/yr is obvious. Recent seismicity possibly induced by 2011 Tohoku earthquake show pure strike-slip. However, thrusts are modeled from seismic profiles and gravity anomalies. Therefore, two contradicting models are presented for strong motion estimates. There should be a unique solution of the geometry, which will be discussed. As to the rupture history, there is plenty of paleoseismological evidence that supports segmentation of those faults above. However, in most fault zones, the largest and sometimes possibly less frequent earthquakes are modeled. Segmentation and modeling of coming earthquakes should be more carefully examined without leaving them in contradictions.
Stirrup, Oliver T; Babiker, Abdel G; Carpenter, James R; Copas, Andrew J
2016-04-30
Longitudinal data are widely analysed using linear mixed models, with 'random slopes' models particularly common. However, when modelling, for example, longitudinal pre-treatment CD4 cell counts in HIV-positive patients, the incorporation of non-stationary stochastic processes such as Brownian motion has been shown to lead to a more biologically plausible model and a substantial improvement in model fit. In this article, we propose two further extensions. Firstly, we propose the addition of a fractional Brownian motion component, and secondly, we generalise the model to follow a multivariate-t distribution. These extensions are biologically plausible, and each demonstrated substantially improved fit on application to example data from the Concerted Action on SeroConversion to AIDS and Death in Europe study. We also propose novel procedures for residual diagnostic plots that allow such models to be assessed. Cohorts of patients were simulated from the previously reported and newly developed models in order to evaluate differences in predictions made for the timing of treatment initiation under different clinical management strategies. A further simulation study was performed to demonstrate the substantial biases in parameter estimates of the mean slope of CD4 decline with time that can occur when random slopes models are applied in the presence of censoring because of treatment initiation, with the degree of bias found to depend strongly on the treatment initiation rule applied. Our findings indicate that researchers should consider more complex and flexible models for the analysis of longitudinal biomarker data, particularly when there are substantial missing data, and that the parameter estimates from random slopes models must be interpreted with caution. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
Satellite-motion Compensation for Monitoring Travelling Ionospheric Disturbances (TIDs) Using GPS
NASA Astrophysics Data System (ADS)
Jackson-Booth, N.; Penney, R.
2016-12-01
The ionosphere exerts a strong influence over a wide range of modern communications and navigtion systems, but is subject to complex influences from both terrestrial and solar sources. Ionospheric disturbances can be triggered by lower-atmosphere phenomena such as hurricanes as well as geophysical events such as earthquakes, as well as being strongly influenced by cyclical and unpredictable solar behaviour. Dual-band GPS receivers provide a popular and convenient means of obtaining information about the ionosphere, and ionospheric disturbances. While GPS measurements can provide clues about the state of the ionosphere, there are many challenges in obtaining reliable information from them. For example, drop-outs and carrier-phase cycle slips may have little influence on using GPS for (medium-precision) navigation, but can lead to signal-processing artefacts that would cause false alarms in detecting ionospheric disturbances. If one is interested in measuring the motion of travelling ionospheric disturbances (TIDs) one must also be able to disentangle the effects of satellite motion from the TID motion. We discuss a novel approach to robustly separating TID waveforms from background trends within GPS time-series of total electron content (TEC), as well as innovative techniques for estimating TID velocities using ideas from Synthetic Aperture Radar (SAR). Underpinning these, we consider how to robustly pre-process GPS time-series to reduce the influence of drop-outs while also reducing data volumes. We present comparisons of our TID velocity estimates with more standard "cross-correlation" techniques, including cases where these standard techniques produce pathological results. We also show results from simulated GPS time-series derived from modelled ionospheric disturbances.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-28
..., Protests, and Motions To Intervene Take notice that the following hydroelectric proceeding has been... . i. Deadline for filing comments, protests, and motions to intervene is 30 days from the issuance of...-8233-001) on any documents or motions filed. The Commission strongly encourages electronic filings...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-28
..., Protests, and Motions To Intervene Take notice that the following hydroelectric proceeding has been... (202)502-6302 or [email protected] . i. Deadline for filing comments, protests, and motions to... project number (P-7783-000) on any documents or motions filed. The Commission strongly encourages...
Jibson, Randall W.; Jibson, Matthew W.
2003-01-01
Landslides typically cause a large proportion of earthquake damage, and the ability to predict slope performance during earthquakes is important for many types of seismic-hazard analysis and for the design of engineered slopes. Newmark's method for modeling a landslide as a rigid-plastic block sliding on an inclined plane provides a useful method for predicting approximate landslide displacements. Newmark's method estimates the displacement of a potential landslide block as it is subjected to earthquake shaking from a specific strong-motion record (earthquake acceleration-time history). A modification of Newmark's method, decoupled analysis, allows modeling landslides that are not assumed to be rigid blocks. This open-file report is available on CD-ROM and contains Java programs intended to facilitate performing both rigorous and simplified Newmark sliding-block analysis and a simplified model of decoupled analysis. For rigorous analysis, 2160 strong-motion records from 29 earthquakes are included along with a search interface for selecting records based on a wide variety of record properties. Utilities are available that allow users to add their own records to the program and use them for conducting Newmark analyses. Also included is a document containing detailed information about how to use Newmark's method to model dynamic slope performance. This program will run on any platform that supports the Java Runtime Environment (JRE) version 1.3, including Windows, Mac OSX, Linux, Solaris, etc. A minimum of 64 MB of available RAM is needed, and the fully installed program requires 400 MB of disk space.
NASA Astrophysics Data System (ADS)
Vilà, A.; Zhu, J.; Scrinzi, A.; Emmanouilidou, A.
2018-03-01
We study frustrated double ionization (FDI) in a strongly-driven heteronuclear molecule HeH+ and compare with H2. We compute the probability distribution of the sum of the final kinetic energies of the nuclei for strongly-driven HeH+. We find that this distribution has more than one peak for strongly-driven HeH+, a feature we do not find to be present for strongly-driven H2. Moreover, we compute the probability distribution of the principal quantum number n of FDI. We find that this distribution has several peaks for strongly-driven HeH+, while the respective distribution has one main peak and a ‘shoulder’ at lower principal quantum numbers n for strongly-driven H2. Surprisingly, we find this feature to be a clear signature of the intertwined electron-nuclear motion.
A cloud model simulation of space shuttle exhaust clouds in different atmospheric conditions
NASA Technical Reports Server (NTRS)
Chen, C.; Zak, J. A.
1989-01-01
A three-dimensional cloud model was used to characterize the dominant influence of the environment on the Space Shuttle exhaust cloud. The model was modified to accept the actual heat and moisture from rocket exhausts and deluge water as initial conditions. An upper-air sounding determined the ambient atmosphere in which the cloud could grow. The model was validated by comparing simulated clouds with observed clouds from four actual Shuttle launches. The model successfully produced clouds with dimensions, rise, decay, liquid water contents and vertical motion fields very similar to observed clouds whose dimensions were calculated from 16 mm film frames. Once validated, the model was used in a number of different atmospheric conditions ranging from very unstable to very stable. In moist, unstable atmospheres simulated clouds rose to about 3.5 km in the first 4 to 8 minutes then decayed. Liquid water contents ranged from 0.3 to 1.0 g kg-1 mixing ratios and vertical motions were from 2 to 10 ms-1. An inversion served both to reduce entrainment (and erosion) at the top and to prevent continued cloud rise. Even in the most unstable atmospheres, the ground cloud did not rise beyond 4 km and in stable atmospheres with strong low level inversions the cloud could be trapped below 500 m. Wind shear strongly affected the appearance of both the ground cloud and vertical column cloud. The ambient low-level atmospheric moisture governed the amount of cloud water in model clouds. Some dry atmospheres produced little or no cloud water. One case of a simulated TITAN rocket explosion is also discussed.
The Non-Gaussian Nature of Prostate Motion Based on Real-Time Intrafraction Tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yuting; Liu, Tian; Yang, Wells
2013-10-01
Purpose: The objective of this work is to test the validity of the Gaussian approximation for prostate motion through characterization of its spatial distribution. Methods and Materials: Real-time intrafraction prostate motion was observed using Calypso 4-dimensional (4D) nonradioactive electromagnetic tracking system. We report the results from a total of 1024 fractions from 31 prostate cancer patients. First, the correlation of prostate motion in right/left (RL), anteroposterior (AP), and superoinferior (SI) direction were determined using Pearson's correlation of coefficient. Then the spatial distribution of prostate motion was analyzed for individual fraction, individual patient including all fractions, and all patients including allmore » fractions. The displacement in RL, AP, SI, oblique, or total direction is fitted into a Gaussian distribution, and a Lilliefors test was used to evaluate the validity of the hypothesis that the displacement is normally distributed. Results: There is high correlation in AP/SI direction (61% of fractions with medium or strong correlation). This is consistent with the longitudinal oblique motion of the prostate, and likely the effect from respiration on an organ confined within the genitourinary diaphragm with the rectum sitting posteriorly and bladder sitting superiorly. In all directions, the non-Gaussian distribution is more common for individual fraction, individual patient including all fractions, and all patients including all fractions. The spatial distribution of prostate motion shows an elongated shape in oblique direction, indicating a higher range of motion in the AP and SI directions. Conclusions: Our results showed that the prostate motion is highly correlated in AP and SI direction, indicating an oblique motion preference. In addition, the spatial distribution of prostate motion is elongated in an oblique direction, indicating that the organ motion dosimetric modeling using Gaussian kernel may need to be modified to account for the particular organ motion character of prostate.« less
The non-Gaussian nature of prostate motion based on real-time intrafraction tracking.
Lin, Yuting; Liu, Tian; Yang, Wells; Yang, Xiaofeng; Khan, Mohammad K
2013-10-01
The objective of this work is to test the validity of the Gaussian approximation for prostate motion through characterization of its spatial distribution. Real-time intrafraction prostate motion was observed using Calypso 4-dimensional (4D) nonradioactive electromagnetic tracking system. We report the results from a total of 1024 fractions from 31 prostate cancer patients. First, the correlation of prostate motion in right/left (RL), anteroposterior (AP), and superoinferior (SI) direction were determined using Pearson's correlation of coefficient. Then the spatial distribution of prostate motion was analyzed for individual fraction, individual patient including all fractions, and all patients including all fractions. The displacement in RL, AP, SI, oblique, or total direction is fitted into a Gaussian distribution, and a Lilliefors test was used to evaluate the validity of the hypothesis that the displacement is normally distributed. There is high correlation in AP/SI direction (61% of fractions with medium or strong correlation). This is consistent with the longitudinal oblique motion of the prostate, and likely the effect from respiration on an organ confined within the genitourinary diaphragm with the rectum sitting posteriorly and bladder sitting superiorly. In all directions, the non-Gaussian distribution is more common for individual fraction, individual patient including all fractions, and all patients including all fractions. The spatial distribution of prostate motion shows an elongated shape in oblique direction, indicating a higher range of motion in the AP and SI directions. Our results showed that the prostate motion is highly correlated in AP and SI direction, indicating an oblique motion preference. In addition, the spatial distribution of prostate motion is elongated in an oblique direction, indicating that the organ motion dosimetric modeling using Gaussian kernel may need to be modified to account for the particular organ motion character of prostate. Copyright © 2013 Elsevier Inc. All rights reserved.
Low-Power Photothermal Self-Oscillation of Bimetallic Nanowires.
De Alba, Roberto; Abhilash, T S; Rand, Richard H; Craighead, Harold G; Parpia, Jeevak M
2017-07-12
We investigate the nonlinear mechanics of a bimetallic, optically absorbing SiN-Nb nanowire in the presence of incident laser light and a reflecting Si mirror. Situated in a standing wave of optical intensity and subject to photothermal forces, the nanowire undergoes self-induced oscillations at low incident light thresholds of <1 μW due to engineered strong temperature-position (T-z) coupling. Along with inducing self-oscillation, laser light causes large changes to the mechanical resonant frequency ω 0 and equilibrium position z 0 that cannot be neglected. We present experimental results and a theoretical model for the motion under laser illumination. In the model, we solve the governing nonlinear differential equations by perturbative means to show that self-oscillation amplitude is set by the competing effects of direct T-z coupling and 2ω 0 parametric excitation due to T-ω 0 coupling. We then study the linearized equations of motion to show that the optimal thermal time constant τ for photothermal feedback is τ → ∞ rather than the previously reported ω 0 τ = 1. Lastly, we demonstrate photothermal quality factor (Q) enhancement of driven motion as a means to counteract air damping. Understanding photothermal effects on nano- and micromechanical devices, as well as nonlinear aspects of optics-based motion detection, can enable new device applications as oscillators or other electronic elements with smaller device footprints and less stringent ambient vacuum requirements.
On Drift Effects in Velocity and Displacement of Greek Uncorrected Digital Strong Motion Data
NASA Astrophysics Data System (ADS)
Skarlatoudis, A.; Margaris, B.
2005-12-01
Fifty years after the first installation of analog accelerographs, digital instruments recording the strong-motion came in operation. Their advantages comparing to the analog ones are obvious and they have been described in detail in several works. Nevertheless it has been pointed out that velocity and displacement values derived from several accelerograms, recorded in various strong earthquakes worldwide (e.g. 1999 Chi-Chi, Taiwan, Hector Mine, 2002 Denali) by digital instruments, are plagued by drifts when only a simple baseline correction derived from the pre-event portion of the record is removed. In Greece a significant number of accelerographic networks and arrays have been deployed covering the whole area. Digital accelerographs now constitute a significant part of the National Strong Motion network of the country. Detailed analyses of the data processing of accelerograms recorded by digital instruments exhibited that the same drifts exist in the Greek strong motion database. In this work, a methodology proposed and described in various articles (Boore, 2001; 2003; 2005) for removing the aforementioned drifts of the accelerograms is applied. It is also attempted a careful look of the nature of the drifts for understanding the noise characteristics relative to the signal. The intrinsic behaviour of signal to noise ratio is crucial for the adequacy of baseline corrections applied on digital uncorrected accelerograms. Velocities and displacements of the uncorrected and corrected accelerograms are compared and the drift effects in the Fourier and response spectra are presented.
Response of Seismometer with Symmetric Triaxial Sensor Configuration to Complex Ground Motion
NASA Astrophysics Data System (ADS)
Graizer, V.
2007-12-01
Most instruments used in seismological practice to record ground motion in all directions use three sensors oriented toward North, East and upward. In this standard configuration horizontal and vertical sensors differ in their construction because of gravity acceleration always applied to a vertical sensor. An alternative way of symmetric sensor configuration was first introduced by Galperin (1955) for petroleum exploration. In this arrangement three identical sensors are also positioned orthogonally to each other but are tilted at the same angle of 54.7 degrees to the vertical axis (triaxial system of coordinate balanced on its corner). Records obtained using symmetric configuration must be rotated into an earth referenced X, Y, Z coordinate system. A number of recent seismological instruments (e.g., broadband seismometers Streckeisen STS-2, Trillium of Nanometrics and Cronos of Kinemetrics) are using symmetric sensor configuration. In most of seismological studies it is assumed that rotational (rocking and torsion) components of earthquake ground motion are small enough to be neglected. However, recently examples were shown when rotational components are significant relative to translational components of motions. Response of pendulums installed in standard configuration (vertical and two horizontals) to complex input motion that includes rotations has been studied in a number of publications. We consider the response of pendulums in a symmetric sensor configuration to complex input motions including rotations, and the resultant triaxial system response. Possible implications of using symmetric sensor configuration in strong motion studies are discussed. Considering benefits of equal design of all three sensors in symmetric configuration, and as a result potentially lower cost of the three-component accelerograph, it may be useful for strong motion measurements not requiring high resolution post signal processing. The disadvantage of this configuration is that if one of the sensors is not working properly or there is a misalignment of sensors, it results in degradation of all three components. Symmetric sensor configuration requires identical processing of each channel putting a number of limitations on further processing of strong motion records.
Operational EEW Networks in Turkey
NASA Astrophysics Data System (ADS)
Zulfikar, Can; Pinar, Ali
2016-04-01
There are several EEW networks and algorithms under operation in Turkey. The first EEW system was deployed in Istanbul in 2002 after the 1999 Mw7.4 Kocaeli and Mw7.1 Duzce earthquake events. The system consisted of 10 strong motion stations located as close as possible to the main Marmara Fault line. The system was upgraded by 5 OBS (Ocean Bottom Seismometer) in 2012 located in Marmara Sea. The system works in threshold based algorithm. The alert is given according to exceedance of certain threshold levels of amplitude of ground motion acceleration in certain time interval at least in 3 stations. Currently, there are two end-users of EEW system in Istanbul. The critical facilities of Istanbul Gas Distribution Company (IGDAS) and Marmaray Tube tunnel receives the EEW information in order to activate their automatic shut-off mechanisms. The IGDAS has their own strong motion network located at their district regulators. After receiving the EEW signal if the threshold values of ground motion parameters are exceeded the gas-flow is cut automatically at the district regulators. The IGDAS has 750 district regulators distributed in Istanbul. At the moment, the 110 of them are instrumented with strong motion accelerometers. As a 2nd stage of the on-going project, the IGDAS company proposes to install strong motion accelerometers to all remaining district regulators. The Marmaray railway tube tunnel is the world's deepest immersed tube tunnel with 60m undersea depth. The tunnel has 1.4km length with 13 segments. The tunnel is monitored with 2 strong motion accelerometers in each segment, 26 in total. Once the EEW signal is received, the monitoring system is activated and the recording ground motion parameters are calculated in real-time. Depending on the exceedance of threshold levels, further actions are taken such as reducing the train speed, stopping the train before entering the tunnel etc. In Istanbul, there are also on-site EEW system applied in several high-rise buildings. As similar to threshold based algorithm, once the threshold level is exceeded in several strong motion accelerometers installed in the high-rise building, the automated shut-off mechanism is activated in order to prevent secondary damage effects of the earthquakes. In addition to the threshold based EEW system, the regional EEW algorithms Virtual Seismologist (VS) as implemented in SeisComP3 VS(SC3) and PRESTo have been also implemented in Marmara region of Turkey. These applications use the regional seismic networks. The purpose of the regional EEW systems is to determine the magnitude and location of the event from the P-wave information of the closest 3-4 stations and forward this information to interested sites. The regional EEW systems are also important for Istanbul in order to detect far distance earthquake events and provide alert especially for the high-rise buildings for their long duration shaking.
Garcia, D.; Mah, R.T.; Johnson, K.L.; Hearne, M.G.; Marano, K.D.; Lin, K.-W.; Wald, D.J.
2012-01-01
We introduce the second version of the U.S. Geological Survey ShakeMap Atlas, which is an openly-available compilation of nearly 8,000 ShakeMaps of the most significant global earthquakes between 1973 and 2011. This revision of the Atlas includes: (1) a new version of the ShakeMap software that improves data usage and uncertainty estimations; (2) an updated earthquake source catalogue that includes regional locations and finite fault models; (3) a refined strategy to select prediction and conversion equations based on a new seismotectonic regionalization scheme; and (4) vastly more macroseismic intensity and ground-motion data from regional agencies All these changes make the new Atlas a self-consistent, calibrated ShakeMap catalogue that constitutes an invaluable resource for investigating near-source strong ground-motion, as well as for seismic hazard, scenario, risk, and loss-model development. To this end, the Atlas will provide a hazard base layer for PAGER loss calibration and for the Earthquake Consequences Database within the Global Earthquake Model initiative.
Carriot, Jérome; Jamali, Mohsen; Cullen, Kathleen E; Chacron, Maurice J
2017-01-01
There is accumulating evidence that the brain's neural coding strategies are constrained by natural stimulus statistics. Here we investigated the statistics of the time varying envelope (i.e. a second-order stimulus attribute that is related to variance) of rotational and translational self-motion signals experienced by human subjects during everyday activities. We found that envelopes can reach large values across all six motion dimensions (~450 deg/s for rotations and ~4 G for translations). Unlike results obtained in other sensory modalities, the spectral power of envelope signals decreased slowly for low (< 2 Hz) and more sharply for high (>2 Hz) temporal frequencies and thus was not well-fit by a power law. We next compared the spectral properties of envelope signals resulting from active and passive self-motion, as well as those resulting from signals obtained when the subject is absent (i.e. external stimuli). Our data suggest that different mechanisms underlie deviation from scale invariance in rotational and translational self-motion envelopes. Specifically, active self-motion and filtering by the human body cause deviation from scale invariance primarily for translational and rotational envelope signals, respectively. Finally, we used well-established models in order to predict the responses of peripheral vestibular afferents to natural envelope stimuli. We found that irregular afferents responded more strongly to envelopes than their regular counterparts. Our findings have important consequences for understanding the coding strategies used by the vestibular system to process natural second-order self-motion signals.
Deformations and Rotational Ground Motions Inferred from Downhole Vertical Array Observations
NASA Astrophysics Data System (ADS)
Graizer, V.
2017-12-01
Only few direct reliable measurements of rotational component of strong earthquake ground motions are obtained so far. In the meantime, high quality data recorded at downhole vertical arrays during a number of earthquakes provide an opportunity to calculate deformations based on the differences in ground motions recorded simultaneously at different depths. More than twenty high resolution strong motion downhole vertical arrays were installed in California with primary goal to study site response of different geologic structures to strong motion. Deformation or simple shear strain with the rate γ is the combination of pure shear strain with the rate γ/2 and rotation with the rate of α=γ/2. Deformations and rotations were inferred from downhole array records of the Mw 6.0 Parkfield 2004, the Mw 7.2 Sierra El Mayor (Mexico) 2010, the Mw 6.5 Ferndale area in N. California 2010 and the two smaller earthquakes in California. Highest amplitude of rotation of 0.60E-03 rad was observed at the Eureka array corresponding to ground velocity of 35 cm/s, and highest rotation rate of 0.55E-02 rad/s associated with the S-wave was observed at a close epicentral distance of 4.3 km from the ML 4.2 event in Southern California at the La Cienega array. Large magnitude Sierra El Mayor earthquake produced long duration rotational motions of up to 1.5E-04 rad and 2.05E-03 rad/s associated with shear and surface waves at the El Centro array at closest fault distance of 33.4km. Rotational motions of such levels, especially tilting can have significant effect on structures. High dynamic range well synchronized and properly oriented instrumentation is necessary for reliable calculation of rotations from vertical array data. Data from the dense Treasure Island array near San Francisco demonstrate consistent change of shape of rotational motion with depth and material. In the frequency range of 1-15 Hz Fourier amplitude spectrum of vertical ground velocity is similar to the scaled tilt spectrum. Amplitudes of rotations at the site depend upon the size of the base and usually decrease with depth. They are also amplified by soft material. Earthquake data used in this study were downloaded from the Center for Engineering Strong Motion Data at http://www.strongmotioncenter.org/.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Xiwen; Jing, Xiaodong, E-mail: jingxd@buaa.edu.cn; Sun, Xiaofeng
The acoustic resonance in a Helmholtz resonator excited by a low Mach number grazing flow is studied theoretically. The nonlinear numerical model is established by coupling the vortical motion at the cavity opening with the cavity acoustic mode through an explicit force balancing relation between the two sides of the opening. The vortical motion is modeled in the potential flow framework, in which the oscillating motion of the thin shear layer is described by an array of convected point vortices, and the unsteady vortex shedding is determined by the Kutta condition. The cavity acoustic mode is obtained from the one-dimensionalmore » acoustic propagation model, the time-domain equivalent of which is given by means of a broadband time-domain impedance model. The acoustic resistances due to radiation and viscous loss at the opening are also taken into account. The physical processes of the self-excited oscillations, at both resonance and off-resonance states, are simulated directly in the time domain. Results show that the shear layer exhibits a weak flapping motion at the off-resonance state, whereas it rolls up into large-scale vortex cores when resonances occur. Single and dual-vortex patterns are observed corresponding to the first and second hydrodynamic modes. The simulation also reveals different trajectories of the two vortices across the opening when the first and second hydrodynamic modes co-exist. The strong modulation of the shed vorticity by the acoustic feedback at the resonance state is demonstrated. The model overestimates the pressure pulsation amplitude by a factor 2, which is expected to be due to the turbulence of the flow which is not taken into account. The model neglects vortex shedding at the downstream and side edges of the cavity. This will also result in an overestimation of the pulsation amplitude.« less
Magnetic field distribution in superconducting composites as revealed by ESR-probe and magnetization
NASA Astrophysics Data System (ADS)
Davidov, D.; Bontemps, N.; Golosovsky, M.; Waysand, G.
1998-03-01
The distribution of a static magnetic field in superconductor-insulator composites consisting of BSCCO (YBCO) powder in paraffin wax is studied by ESR bulk probing and magnetization. The average field and field variance in the non-superconducting host are measured as function of temperature and volume fraction of superconductor. We develop a model of the field distribution in dilute magnetic and superconducting composites that relates the field inhomogeneity to magnetization and particle shape. We find that this model satisfactorily describes field distribution in our superconducting composites in the regime of strong flux pinning, i.e. below irreversibility line. We find deviations from the model above the irreversibility line and attribute this to flux motion. We show that the field distribution in superconducting composites is determined not only by magnetization and particle shape, but is strongly affected by the flux profile within the superconducting particles.
Bending the law: tidal bending and its effects on ice viscosity and flow
NASA Astrophysics Data System (ADS)
Rosier, S.; Gudmundsson, G. H.
2017-12-01
Many ice shelves are subject to strong ocean tides and, in order to accommodate this vertical motion, the ice must bend within the grounding zone. This tidal bending generates large stresses within the ice, changing its effective viscosity. For a confined ice shelf, this is particularly relevant because the tidal bending stresses occur along the sidewalls, which play an important role in the overall flow regime of the ice shelf. Hence, tidal bending stresses will affect both the mean and time-varying components of ice shelf flow. GPS measurements reveal strong variations in horizontal ice shelf velocities at a variety of tidal frequencies. We show, using full-Stokes viscoelastic modelling, that inclusion of tidal bending within the model accounts for much of the observed tidal modulation of horizontal ice shelf flow. Furthermore, our model shows that in the absence of a vertical tidal forcing, the mean flow of the ice shelf is reduced considerably.
The Presence of Dense Material in the Deep Mantle: Implications for Plate Motion
NASA Astrophysics Data System (ADS)
Stein, C.; Hansen, U.
2017-12-01
The dense material in the deep mantle strongly interacts with the convective flow in the mantle. On the one hand, it has a restoring effect on rising plumes. On the other hand, the dense material is swept about by the flow forming dense piles. Consequently this affects the plate motion and, in particular, the onset time and the style of plate tectonics varies considerably for different model scenarios. In this study we apply a thermochemical mantle convection model combined with a rheological model (temperature- and stress-dependent viscosity) that allows for plate formation according to the convective flow. The model's starting condition is the post-magma ocean period. We analyse a large number of model scenarios ranging from variations in thickness, density and depth of a layer of dense material to different initial temperatures.Furthermore, we present a mechanism in which the dense layer at the core-mantle boundary forms without prescribing the thickness or the density contrast. Due to advection-assisted diffusion, long-lived piles can be established that act on the style of convection and therefore on plate motion. We distinguish between the subduction-triggered regime with early plate tectonics and the plume-triggered regime with a late onset of plate tectonics. The formation of piles by advection-assisted diffusion is a typical phenomenon that appears not only at the lower boundary, but also at internal boundaries that form in the layering phase during the evolution of the system.
Levy, Tal J; Rabani, Eran
2013-04-28
We study steady state transport through a double quantum dot array using the equation-of-motion approach to the nonequilibrium Green functions formalism. This popular technique relies on uncontrolled approximations to obtain a closure for a hierarchy of equations; however, its accuracy is questioned. We focus on 4 different closures, 2 of which were previously proposed in the context of the single quantum dot system (Anderson impurity model) and were extended to the double quantum dot array, and develop 2 new closures. Results for the differential conductance are compared to those attained by a master equation approach known to be accurate for weak system-leads couplings and high temperatures. While all 4 closures provide an accurate description of the Coulomb blockade and other transport properties in the single quantum dot case, they differ in the case of the double quantum dot array, where only one of the developed closures provides satisfactory results. This is rationalized by comparing the poles of the Green functions to the exact many-particle energy differences for the isolate system. Our analysis provides means to extend the equation-of-motion technique to more elaborate models of large bridge systems with strong electronic interactions.
NASA Astrophysics Data System (ADS)
Liu, Chengli; Zheng, Yong; Wang, Rongjiang; Xiong, Xiong
2015-08-01
On 2014 April 1, a magnitude Mw 8.1 interplate thrust earthquake ruptured a densely instrumented region of Iquique seismic gap in northern Chile. The abundant data sets near and around the rupture zone provide a unique opportunity to study the detailed source process of this megathrust earthquake. We retrieved the spatial and temporal distributions of slip during the main shock and one strong aftershock through a joint inversion of teleseismic records, GPS offsets and strong motion data. The main shock rupture initiated at a focal depth of about 25 km and propagated around the hypocentre. The peak slip amplitude in the model is ˜6.5 m, located in the southeast of the hypocentre. The major slip patch is located around the hypocentre, spanning ˜150 km along dip and ˜160 km along strike. The associated static stress drop is ˜3 MPa. Most of the seismic moment was released within 150 s. The total seismic moment of our preferred model is 1.72 × 1021 N m, equivalent to Mw 8.1. For the strong aftershock on 2014 April 3, the slip mainly occurred in a relatively compact area, and the major slip area surrounded the hypocentre with the peak amplitude of ˜2.5 m. There is a secondary slip patch located downdip from the hypocentre with the peak slip of ˜2.1 m. The total seismic moment is about 3.9 × 1020 N m, equivalent to Mw 7.7. Between the rupture areas of the main shock and the 2007 November 14 Mw 7.7 Antofagasta, Chile earthquake, there is an earthquake vacant zone with a total length of about 150 km. Historically, if there is no big earthquake or obvious aseismic creep occurring in this area, it has a great potential of generating strong earthquakes with magnitude larger than Mw 7.0 in the future.
Vision for the Future of the US National Strong-Motion Program
,
1997-01-01
This document provides the requested vision for the future of the National Strong-Motion Program operated by the US Geological Survey. Options for operation of the program are presented in a companion document. Each of the three major charges of the EHRP, program council pertaining to the vision document is addressed here. The 'Vision Summary' through a series of answers to specific questions is intended to provide a complete synopsis of the committees response to program council charges. The Vision for the Future of the NSMP is presented as section III of the Summary. Analysis and detailed discussion supporting the answers in the summary are presented as sections organized according to the charges of the program council. The mission for the program is adopted from that developed at the national workshop entitled 'Research Needs for Strong Motion Data to Support Earthquake Engineering' sponsored by the National Science Foundation.
The California Integrated Seismic Network
NASA Astrophysics Data System (ADS)
Hellweg, M.; Given, D.; Hauksson, E.; Neuhauser, D.; Oppenheimer, D.; Shakal, A.
2007-05-01
The mission of the California Integrated Seismic Network (CISN) is to operate a reliable, modern system to monitor earthquakes throughout the state; to generate and distribute information in real-time for emergency response, for the benefit of public safety, and for loss mitigation; and to collect and archive data for seismological and earthquake engineering research. To meet these needs, the CISN operates data processing and archiving centers, as well as more than 3000 seismic stations. Furthermore, the CISN is actively developing and enhancing its infrastructure, including its automated processing and archival systems. The CISN integrates seismic and strong motion networks operated by the University of California Berkeley (UCB), the California Institute of Technology (Caltech), and the United States Geological Survey (USGS) offices in Menlo Park and Pasadena, as well as the USGS National Strong Motion Program (NSMP), and the California Geological Survey (CGS). The CISN operates two earthquake management centers (the NCEMC and SCEMC) where statewide, real-time earthquake monitoring takes place, and an engineering data center (EDC) for processing strong motion data and making it available in near real-time to the engineering community. These centers employ redundant hardware to minimize disruptions to the earthquake detection and processing systems. At the same time, dual feeds of data from a subset of broadband and strong motion stations are telemetered in real- time directly to both the NCEMC and the SCEMC to ensure the availability of statewide data in the event of a catastrophic failure at one of these two centers. The CISN uses a backbone T1 ring (with automatic backup over the internet) to interconnect the centers and the California Office of Emergency Services. The T1 ring enables real-time exchange of selected waveforms, derived ground motion data, phase arrivals, earthquake parameters, and ShakeMaps. With the goal of operating similar and redundant statewide earthquake processing systems at both real-time EMCs, the CISN is currently adopting and enhancing the database-centric, earthquake processing and analysis software originally developed for the Caltech/USGS Pasadena TriNet project. Earthquake data and waveforms are made available to researchers and to the public in near real-time through the CISN's Northern and Southern California Eathquake Data Centers (NCEDC and SCEDC) and through the USGS Earthquake Notification System (ENS). The CISN partners have developed procedures to automatically exchange strong motion data, both waveforms and peak parameters, for use in ShakeMap and in the rapid engineering reports which are available near real-time through the strong motion EDC.
A Nocturnal Boundary Layer Simulation over the ARM-CART Site
NASA Astrophysics Data System (ADS)
Werth, D.; Leclerc, M.; Duarte, H.; Fischer, M.; Kurzeja, R.; Parker, M.
2008-12-01
The nocturnal boundary layer (NBL) is characterized by strong inversions and weak turbulent motions. It is during this time that low-level jets (LLJs) often form as the winds aloft reach speeds approaching 15-25m/s at levels below 1000m. During the daytime, turbulent mixing quickly damps such organized motion, but at night the surface cooling establishes an inversion which reduces turbulence and allows jets to form uninhibited. A field project over the ARM-CART site during a period of several nights in September, 2007 was conducted to explore the jet evolution. Data was collected from a tower and analyzed for turbulent behavior. With data limited to a single location, however, the full range of NBL behavior is difficult to determine. The Regional Atmospheric Modeling System (RAMS) is therefore used to simulate the ARM-CART NBL field experiment and validated against the data collected from the site. This model was run at high resolution, and is ideal for calculating the interactions among the various motions within the boundary layer and their influence on the surface. The model can provide information throughout the NBL - with a larger domain, a simulation of the NBL can provide information over a large range of locations and heights. In particular, we are interested in the way that the simulated NBL eddies are affected by their height and proximity to the LLJ, and how this compares to the tower results. The eddy sizes that exist in the model are limited by its grid spacing, but a series of smaller, finer nests allow us to study eddy motion at the relevant scales for short periods.
NASA Astrophysics Data System (ADS)
Krauss, Andreas; Fast, Martin F.; Nill, Simeon; Oelfke, Uwe
2012-04-01
We have previously developed a tumour tracking system, which adapts the aperture of a Siemens 160 MLC to electromagnetically monitored target motion. In this study, we exploit the use of a novel linac-mounted kilovoltage x-ray imaging system for MLC tracking. The unique in-line geometry of the imaging system allows the detection of target motion perpendicular to the treatment beam (i.e. the directions usually featuring steep dose gradients). We utilized the imaging system either alone or in combination with an external surrogate monitoring system. We equipped a Siemens ARTISTE linac with two flat panel detectors, one directly underneath the linac head for motion monitoring and the other underneath the patient couch for geometric tracking accuracy assessments. A programmable phantom with an embedded metal marker reproduced three patient breathing traces. For MLC tracking based on x-ray imaging alone, marker position was detected at a frame rate of 7.1 Hz. For the combined external and internal motion monitoring system, a total of only 85 x-ray images were acquired prior to or in between the delivery of ten segments of an IMRT beam. External motion was monitored with a potentiometer. A correlation model between external and internal motion was established. The real-time component of the MLC tracking procedure then relied solely on the correlation model estimations of internal motion based on the external signal. Geometric tracking accuracies were 0.6 mm (1.1 mm) and 1.8 mm (1.6 mm) in directions perpendicular and parallel to the leaf travel direction for the x-ray-only (the combined external and internal) motion monitoring system in spite of a total system latency of ˜0.62 s (˜0.51 s). Dosimetric accuracy for a highly modulated IMRT beam-assessed through radiographic film dosimetry-improved substantially when tracking was applied, but depended strongly on the respective geometric tracking accuracy. In conclusion, we have for the first time integrated MLC tracking with x-ray imaging in the in-line geometry and demonstrated highly accurate respiratory motion tracking.
NASA Technical Reports Server (NTRS)
Antar, Basil N.; Witherow, William K.; Paley, Mark S.; Curreri, Peter A. (Technical Monitor)
2001-01-01
This paper presents results from numerical simulations as well as laboratory experiments of buoyancy driven convection in an ampoule under varying heating and gravitational acceleration loadings. The modeling effort in this work resolves the large scale natural convective motion that occurs in the fluid during photodeposition of polydiacetelene films which is due to energy absorbed by the growth solution from a UV source. Consequently, the growth kinetics of the film are ignored in the model discussed here, and also a much simplified ampoule geometry is considered. The objective of this work is to validate the numerical prediction on the strength and structure of buoyancy driven convection that could occur under terrestrial conditions during nonlinear optical film growth. The validation is used to enable a reliable predictive capability on the nature and strength of the convective motion under low gravity conditions. The ampoule geometry is in the form of a parallelepiped with rectangular faces. The numerical results obtained from the solution to the Boussinesq equations show that natural convection will occur regardless of the orientation of the UV source with respect to the gravity vector. The least strong convective motion occurred with the UV beam directed at the top face of the parallelepiped. The strength of the convective motion was found to be almost linearly proportional to the total power of the UV source. Also, it was found that the strength of the convective motion decreased linearly with the gravity due to acceleration. The pattern of the convective flow on the other hand, depended on the source location.
Motions and crew responses on an offshore oil production and storage vessel.
Haward, Barbara M; Lewis, Christopher H; Griffin, Michael J
2009-09-01
The motions of vessels may interfere with crew activities and well-being, but the relationships between motion and the experiences of crew are not well-established. Crew responses to motions of a floating production and storage offshore vessel at a fixed location in the North Sea were studied over a 5-month period to identify any changes in crew difficulties and symptoms associated with changes in vessel motion. Ship motions in all six axes (fore-aft, lateral, vertical, roll, pitch, and yaw) were recorded continuously over the 5-month period while 47 crew completed a total of 1704 daily diary entries, a participation rate of 66-78% of the crew complement. The dominant oscillations had frequencies of around 0.1 Hz, producing magnitudes of translational oscillation in accommodation areas of up to about 0.7 ms(-2)r.m.s., depending on the weather, and magnitudes up to three times greater in some other areas. The daily diaries gave ratings of difficulties with tasks, effort level, motion sickness, health symptoms, fatigue, and sleep. Problems most strongly associated with vessel motions were difficulties with physical tasks (balancing, moving and carrying), and sleep problems. Physical and mental tiredness, cognitive aspects of task performance, and stomach awareness and dizziness were also strongly associated with motion magnitude. There was a vomiting incidence of 3.1%, compared with a predicted mean vomiting incidence of 9.3% for a mixed population of unadapted adults. It is concluded that crew difficulties increase on days when vessel motions increase, with some activities and responses particularly influenced by vessel motions.
Seismogeodesy and Rapid Earthquake and Tsunami Source Assessment
NASA Astrophysics Data System (ADS)
Melgar Moctezuma, Diego
This dissertation presents an optimal combination algorithm for strong motion seismograms and regional high rate GPS recordings. This seismogeodetic solution produces estimates of ground motion that recover the whole seismic spectrum, from the permanent deformation to the Nyquist frequency of the accelerometer. This algorithm will be demonstrated and evaluated through outdoor shake table tests and recordings of large earthquakes, notably the 2010 Mw 7.2 El Mayor-Cucapah earthquake and the 2011 Mw 9.0 Tohoku-oki events. This dissertations will also show that strong motion velocity and displacement data obtained from the seismogeodetic solution can be instrumental to quickly determine basic parameters of the earthquake source. We will show how GPS and seismogeodetic data can produce rapid estimates of centroid moment tensors, static slip inversions, and most importantly, kinematic slip inversions. Throughout the dissertation special emphasis will be placed on how to compute these source models with minimal interaction from a network operator. Finally we will show that the incorporation of off-shore data such as ocean-bottom pressure and RTK-GPS buoys can better-constrain the shallow slip of large subduction events. We will demonstrate through numerical simulations of tsunami propagation that the earthquake sources derived from the seismogeodetic and ocean-based sensors is detailed enough to provide a timely and accurate assessment of expected tsunami intensity immediately following a large earthquake.
Visual acuity, contrast sensitivity, and range performance with compressed motion video
NASA Astrophysics Data System (ADS)
Bijl, Piet; de Vries, Sjoerd C.
2010-10-01
Video of visual acuity (VA) and contrast sensitivity (CS) test charts in a complex background was recorded using a CCD color camera mounted on a computer-controlled tripod and was fed into real-time MPEG-2 compression/decompression equipment. The test charts were based on the triangle orientation discrimination (TOD) test method and contained triangle test patterns of different sizes and contrasts in four possible orientations. In a perception experiment, observers judged the orientation of the triangles in order to determine VA and CS thresholds at the 75% correct level. Three camera velocities (0, 1.0, and 2.0 deg/s, or 0, 4.1, and 8.1 pixels/frame) and four compression rates (no compression, 4 Mb/s, 2 Mb/s, and 1 Mb/s) were used. VA is shown to be rather robust to any combination of motion and compression. CS, however, dramatically decreases when motion is combined with high compression ratios. The measured thresholds were fed into the TOD target acquisition model to predict the effect of motion and compression on acquisition ranges for tactical military vehicles. The effect of compression on static performance is limited but strong with motion video. The data suggest that with the MPEG2 algorithm, the emphasis is on the preservation of image detail at the cost of contrast loss.
The Role of Large-Scale Motions in Catalysis by Dihydrofolate Reductase
2011-01-01
Dihydrofolate reductase has long been used as a model system to study the coupling of protein motions to enzymatic hydride transfer. By studying environmental effects on hydride transfer in dihydrofolate reductase (DHFR) from the cold-adapted bacterium Moritella profunda (MpDHFR) and comparing the flexibility of this enzyme to that of DHFR from Escherichia coli (EcDHFR), we demonstrate that factors that affect large-scale (i.e., long-range, but not necessarily large amplitude) protein motions have no effect on the kinetic isotope effect on hydride transfer or its temperature dependence, although the rates of the catalyzed reaction are affected. Hydrogen/deuterium exchange studies by NMR-spectroscopy show that MpDHFR is a more flexible enzyme than EcDHFR. NMR experiments with EcDHFR in the presence of cosolvents suggest differences in the conformational ensemble of the enzyme. The fact that enzymes from different environmental niches and with different flexibilities display the same behavior of the kinetic isotope effect on hydride transfer strongly suggests that, while protein motions are important to generate the reaction ready conformation, an optimal conformation with the correct electrostatics and geometry for the reaction to occur, they do not influence the nature of the chemical step itself; large-scale motions do not couple directly to hydride transfer proper in DHFR. PMID:22060818
Maziero, Danilo; Velasco, Tonicarlo R; Hunt, Nigel; Payne, Edwin; Lemieux, Louis; Salmon, Carlos E G; Carmichael, David W
2016-09-01
The simultaneous acquisition of electroencephalography and functional magnetic resonance imaging (EEG-fMRI) is a multimodal technique extensively applied for mapping the human brain. However, the quality of EEG data obtained within the MRI environment is strongly affected by subject motion due to the induction of voltages in addition to artefacts caused by the scanning gradients and the heartbeat. This has limited its application in populations such as paediatric patients or to study epileptic seizure onset. Recent work has used a Moiré-phase grating and a MR-compatible camera to prospectively update image acquisition and improve fMRI quality (prospective motion correction: PMC). In this study, we use this technology to retrospectively reduce the spurious voltages induced by motion in the EEG data acquired inside the MRI scanner, with and without fMRI acquisitions. This was achieved by modelling induced voltages from the tracking system motion parameters; position and angles, their first derivative (velocities) and the velocity squared. This model was used to remove the voltages related to the detected motion via a linear regression. Since EEG quality during fMRI relies on a temporally stable gradient artefact (GA) template (calculated from averaging EEG epochs matched to scan volume or slice acquisition), this was evaluated in sessions both with and without motion contamination, and with and without PMC. We demonstrate that our approach is capable of significantly reducing motion-related artefact with a magnitude of up to 10mm of translation, 6° of rotation and velocities of 50mm/s, while preserving physiological information. We also demonstrate that the EEG-GA variance is not increased by the gradient direction changes associated with PMC. Provided a scan slice-based GA template is used (rather than a scan volume GA template) we demonstrate that EEG variance during motion can be supressed towards levels found when subjects are still. In summary, we show that PMC can be used to dramatically improve EEG quality during large amplitude movements, while benefiting from previously reported improvements in fMRI quality, and does not affect EEG data quality in the absence of large amplitude movements. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Progress Towards a Comprehensive Site Database for Taiwan Strong Motion Network
NASA Astrophysics Data System (ADS)
Kuo, C. H.; Lin, C. M.; Chang, S. C.; Wen, K. L.
2016-12-01
Site effect is usually treated as a simple site parameter like Vs30, which is a value of average shear wave velocity for the top 30 m of layers, in Ground Motion Prediction Equations (GMPEs) and engineering seismology. Although debates on usage of Vs30 for its advantage and disadvantage are still an open question, it has become the most widely be used site parameter in ground motion prediction, seismic hazard analysis, and building codes. Depth to the horizons with shear wave velocity of larger than 1.0 km/s (or 1.5 km/s, 2.5 km/s), the so called Z1.0 (or Z1.5, Z2.5), was recently introduced to the GMPEs of the Next Generation of Attenuation Equations (NGA) project in order to make up for the insufficient of Vs30 especially in regions covered by large thickness of sediments. However this kind of data is still rare and quite difficult to be acquired. This parameter is only available in Japan, California, and part region of Turkey at present. The high-frequency attenuation factor, i.e. kappa, is considered a significant parameter controlling attenuation of high-frequency seismic waves. High correlation is believed between kappa and local site conditions. S-wave velocity profiles of the Engineering Geology Database for TSMIP (EGDT) were measured using suspension PS-logging at more than 450 strong ground motion stations throughout Taiwan. Accurate Vs30 is therefore provided by the site database. Although the depths of most stations were only 35 m, Z1.0 still can be derived at dozens of stations near basin edges or piedmont area from EGDT. Several techniques including microtremor array, receiver function, and HVSR inversion have been used to obtain S-wave velocity profiles at strong motion stations and thus the parameter Z1.0 can be derived. A relationship between Vs30 and Z1.0 for Taiwan is consequently evaluated and further compared with those for Japan and California. Kappa at strong motion stations was calculated and a special correlation with Vs30 is found. The achievement in the progress toward a comprehensive site database for a national strong motion network is quite important for engineering seismology and national seismic hazard analysis.
Simulation of Human-induced Vibrations Based on the Characterized In-field Pedestrian Behavior
Van Nimmen, Katrien; Lombaert, Geert; De Roeck, Guido; Van den Broeck, Peter
2016-01-01
For slender and lightweight structures, vibration serviceability is a matter of growing concern, often constituting the critical design requirement. With designs governed by the dynamic performance under human-induced loads, a strong demand exists for the verification and refinement of currently available load models. The present contribution uses a 3D inertial motion tracking technique for the characterization of the in-field pedestrian behavior. The technique is first tested in laboratory experiments with simultaneous registration of the corresponding ground reaction forces. The experiments include walking persons as well as rhythmical human activities such as jumping and bobbing. It is shown that the registered motion allows for the identification of the time variant pacing rate of the activity. Together with the weight of the person and the application of generalized force models available in literature, the identified time-variant pacing rate allows to characterize the human-induced loads. In addition, time synchronization among the wireless motion trackers allows identifying the synchronization rate among the participants. Subsequently, the technique is used on a real footbridge where both the motion of the persons and the induced structural vibrations are registered. It is shown how the characterized in-field pedestrian behavior can be applied to simulate the induced structural response. It is demonstrated that the in situ identified pacing rate and synchronization rate constitute an essential input for the simulation and verification of the human-induced loads. The main potential applications of the proposed methodology are the estimation of human-structure interaction phenomena and the development of suitable models for the correlation among pedestrians in real traffic conditions. PMID:27167309
Parametric Studies for Scenario Earthquakes: Site Effects and Differential Motion
NASA Astrophysics Data System (ADS)
Panza, G. F.; Panza, G. F.; Romanelli, F.
2001-12-01
In presence of strong lateral heterogeneities, the generation of local surface waves and local resonance can give rise to a complicated pattern in the spatial groundshaking scenario. For any object of the built environment with dimensions greater than the characteristic length of the ground motion, different parts of its foundations can experience severe non-synchronous seismic input. In order to perform an accurate estimate of the site effects, and of differential motion, in realistic geometries, it is necessary to make a parametric study that takes into account the complex combination of the source and propagation parameters. The computation of a wide set of time histories and spectral information, corresponding to possible seismotectonic scenarios for different source and structural models, allows us the construction of damage scenarios that are out of reach of stochastic models. Synthetic signals, to be used as seismic input in a subsequent engineering analysis, e.g. for the design of earthquake-resistant structures or for the estimation of differential motion, can be produced at a very low cost/benefit ratio. We illustrate the work done in the framework of a large international cooperation following the guidelines of the UNESCO IUGS IGCP Project 414 "Realistic Modeling of Seismic Input for Megacities and Large Urban Areas" and show the very recent numerical experiments carried out within the EC project "Advanced methods for assessing the seismic vulnerability of existing motorway bridges" (VAB) to assess the importance of non-synchronous seismic excitation of long structures. >http://www.ictp.trieste.it/www_users/sand/projects.html
NASA Astrophysics Data System (ADS)
Viens, L.; Miyake, H.; Koketsu, K.
2016-12-01
Large subduction earthquakes have the potential to generate strong long-period ground motions. The ambient seismic field, also called seismic noise, contains information about the elastic response of the Earth between two seismic stations that can be retrieved using seismic interferometry. The DONET1 network, which is composed of 20 offshore stations, has been deployed atop the Nankai subduction zone, Japan, to continuously monitor the seismotectonic activity in this highly seismically active region. The surrounding onshore area is covered by hundreds of seismic stations, which are operated the National Research Institute for Earth Science and Disaster Prevention (NIED) and the Japan Meteorological Agency (JMA), with a spacing of 15-20 km. We retrieve offshore-onshore Green's functions from the ambient seismic field using the deconvolution technique and use them to simulate the long-period ground motions of moderate subduction earthquakes that occurred at shallow depth. We extend the point source method, which is appropriate for moderate events, to finite source modeling to simulate the long-period ground motions of large Mw 7 class earthquake scenarios. The source models are constructed using scaling relations between moderate and large earthquakes to discretize the fault plane of the large hypothetical events into subfaults. Offshore-onshore Green's functions are spatially interpolated over the fault plane to obtain one Green's function for each subfault. The interpolated Green's functions are finally summed up considering different rupture velocities. Results show that this technique can provide additional information about earthquake ground motions that can be used with the existing physics-based simulations to improve seismic hazard assessment.
Delorey, Andrew; Frankel, Arthur; Liu, Pengcheng; Stephenson, William J.
2014-01-01
We ran finite‐difference earthquake simulations for great subduction zone earthquakes in Cascadia to model the effects of source and path heterogeneity for the purpose of improving strong‐motion predictions. We developed a rupture model for large subduction zone earthquakes based on a k−2 slip spectrum and scale‐dependent rise times by representing the slip distribution as the sum of normal modes of a vibrating membrane.Finite source and path effects were important in determining the distribution of strong motions through the locations of the hypocenter, subevents, and crustal structures like sedimentary basins. Some regions in Cascadia appear to be at greater risk than others during an event due to the geometry of the Cascadia fault zone relative to the coast and populated regions. The southern Oregon coast appears to have increased risk because it is closer to the locked zone of the Cascadia fault than other coastal areas and is also in the path of directivity amplification from any rupture propagating north to south in that part of the subduction zone, and the basins in the Puget Sound area are efficiently amplified by both north and south propagating ruptures off the coast of western Washington. We find that the median spectral accelerations at 5 s period from the simulations are similar to that of the Zhao et al. (2006) ground‐motion prediction equation, although our simulations predict higher amplitudes near the region of greatest slip and in the sedimentary basins, such as the Seattle basin.
Thermal and chemical convection in planetary mantles
NASA Technical Reports Server (NTRS)
Dupeyrat, L.; Sotin, C.; Parmentier, E. M.
1995-01-01
Melting of the upper mantle and extraction of melt result in the formation of a less dense depleted mantle. This paper describes series of two-dimensional models that investigate the effects of chemical buoyancy induced by these density variations. A tracer particles method has been set up to follow as closely as possible the chemical state of the mantle and to model the chemical buoyant force at each grid point. Each series of models provides the evolution with time of magma production, crustal thickness, surface heat flux, and thermal and chemical state of the mantle. First, models that do not take into account the displacement of plates at the surface of Earth demonstrate that chemical buoyancy has an important effect on the geometry of convection. Then models include horizontal motion of plates 5000 km wide. Recycling of crust is taken into account. For a sufficiently high plate velocity which depends on the thermal Rayleigh number, the cell's size is strongly coupled with the plate's size. Plate motion forces chemically buoyant material to sink into the mantle. Then the positive chemical buoyancy yields upwelling as depleted mantle reaches the interface between the upper and the lower mantle. This process is very efficient in mixing the depleted and undepleted mantle at the scale of the grid spacing since these zones of upwelling disrupt the large convective flow. At low spreading rates, zones of upwelling develop quickly, melting occurs, and the model predicts intraplate volcanism by melting of subducted crust. At fast spreading rates, depleted mantle also favors the formation of these zones of upwelling, but they are not strong enough to yield partial melting. Their rapid displacement toward the ridge contributes to faster large-scale homogenization.
NASA Astrophysics Data System (ADS)
Aoi, S.; Sekiguchi, H.; Morikawa, N.; Ozawa, T.; Kunugi, T.; Shirasaka, M.
2007-12-01
The 2007 Niigata-ken Chuetsu-oki earthquake occurred on July 16th, 2007, 10:13 JST. We performed a multi- time window linear waveform inversion analysis (Hartzell and Heaton, 1983) to estimate the rupture process from the near fault strong motion data of 14 stations from K-NET, KiK-net, F-net, JMA, and Niigata prefecture. The fault plane for the mainshock has not been clearly determined yet from the aftershock distribution, so that we performed two waveform inversions for north-west dipping fault (Model A) and south-east dipping fault (Model B). Their strike, dip, and rake are set to those of the moment tensor solutions by F-net. Fault plane model of 30 km length by 24 km width is set to cover aftershock distribution within 24 hours after the mainshock. Theoretical Green's functions were calculated by the discrete wavenumber method (Bouchon, 1981) and the R/T matrix method (Kennett, 1983) with the different stratified medium for each station based on the velocity structure including the information form the reflection survey and borehole logging data. Convolution of moving dislocation was introduced to represent the rupture propagation in an each subfault (Sekiguchi et al., 2002). The observed acceleration records were integrated into velocity except of F-net velocity data, and bandpass filtered between 0.1 and 1.0 Hz. We solved least-squared equation to obtain slip amount of each time window on each subfault to minimize squared residual of the waveform fitting between observed and synthetic waveforms. Both models provide moment magnitudes of 6.7. Regarding Model A, we obtained large slip in the south-west deeper part of the rupture starting point, which is close to Kashiwazaki-city. The second or third velocity pulses of observed velocity waveforms seem to be composed of slip from the asperity. Regarding Model B, we obtained large slip in the southwest shallower part of the rupture starting point, which is also close to Kashiwazaki-city. In both models, we found small slip near the rupture starting point, and largest slip at about ten kilometer in the south-west of the rupture starting point with the maximum slip of 2.3 and 2.5 m for Models A and B, respectively. The difference of the residual between observed and synthetic waveforms for both models is not significant, therefore it is difficult to conclude which fault plane is appropriate to explain. The estimated large-slip regions in the inverted source models with the Models A and B are located near the cross point of the two fault plane models, which should have similar radiation pattern. This situation may be one of the reasons why judgment of the fault plane orientation is such difficult. We need careful examinations not only strong motion data but also geodetic data to further explore the fault orientation and the source process of this earthquake.
Tomography reveals buoyant asthenosphere accumulating beneath the Juan de Fuca plate
NASA Astrophysics Data System (ADS)
Hawley, William B.; Allen, Richard M.; Richards, Mark A.
2016-09-01
The boundary between Earth’s strong lithospheric plates and the underlying mantle asthenosphere corresponds to an abrupt seismic velocity decrease and electrical conductivity increase with depth, perhaps indicating a thin, weak layer that may strongly influence plate motion dynamics. The behavior of such a layer at subduction zones remains unexplored. We present a tomographic model, derived from on- and offshore seismic experiments, that reveals a strong low-velocity feature beneath the subducting Juan de Fuca slab along the entire Cascadia subduction zone. Through simple geodynamic arguments, we propose that this low-velocity feature is the accumulation of material from a thin, weak, buoyant layer present beneath the entire oceanic lithosphere. The presence of this feature could have major implications for our understanding of the asthenosphere and subduction zone dynamics.
Dawes, Timothy J W; de Marvao, Antonio; Shi, Wenzhe; Fletcher, Tristan; Watson, Geoffrey M J; Wharton, John; Rhodes, Christopher J; Howard, Luke S G E; Gibbs, J Simon R; Rueckert, Daniel; Cook, Stuart A; Wilkins, Martin R; O'Regan, Declan P
2017-05-01
Purpose To determine if patient survival and mechanisms of right ventricular failure in pulmonary hypertension could be predicted by using supervised machine learning of three-dimensional patterns of systolic cardiac motion. Materials and Methods The study was approved by a research ethics committee, and participants gave written informed consent. Two hundred fifty-six patients (143 women; mean age ± standard deviation, 63 years ± 17) with newly diagnosed pulmonary hypertension underwent cardiac magnetic resonance (MR) imaging, right-sided heart catheterization, and 6-minute walk testing with a median follow-up of 4.0 years. Semiautomated segmentation of short-axis cine images was used to create a three-dimensional model of right ventricular motion. Supervised principal components analysis was used to identify patterns of systolic motion that were most strongly predictive of survival. Survival prediction was assessed by using difference in median survival time and area under the curve with time-dependent receiver operating characteristic analysis for 1-year survival. Results At the end of follow-up, 36% of patients (93 of 256) died, and one underwent lung transplantation. Poor outcome was predicted by a loss of effective contraction in the septum and free wall, coupled with reduced basal longitudinal motion. When added to conventional imaging and hemodynamic, functional, and clinical markers, three-dimensional cardiac motion improved survival prediction (area under the receiver operating characteristic curve, 0.73 vs 0.60, respectively; P < .001) and provided greater differentiation according to difference in median survival time between high- and low-risk groups (13.8 vs 10.7 years, respectively; P < .001). Conclusion A machine-learning survival model that uses three-dimensional cardiac motion predicts outcome independent of conventional risk factors in patients with newly diagnosed pulmonary hypertension. Online supplemental material is available for this article.
Computational model for noncontact atomic force microscopy: energy dissipation of cantilever.
Senda, Yasuhiro; Blomqvist, Janne; Nieminen, Risto M
2016-09-21
We propose a computational model for noncontact atomic force microscopy (AFM) in which the atomic force between the cantilever tip and the surface is calculated using a molecular dynamics method, and the macroscopic motion of the cantilever is modeled by an oscillating spring. The movement of atoms in the tip and surface is connected with the oscillating spring using a recently developed coupling method. In this computational model, the oscillation energy is dissipated, as observed in AFM experiments. We attribute this dissipation to the hysteresis and nonconservative properties of the interatomic force that acts between the atoms in the tip and sample surface. The dissipation rate strongly depends on the parameters used in the computational model.
Chan, E J; Welberry, T R; Goossens, D J; Heerdegen, A P; Beasley, A G; Chupas, P J
2009-06-01
The drug benzocaine (ethyl 4-aminobenzoate), commonly used as a local anaesthetic, is a bimorphic solid at room temperature. Form (I) is monoclinic P2(1)/c, while the metastable form (II) is orthorhombic P2(1)2(1)2(1). Three-dimensional diffuse X-ray scattering data have been collected for the two forms on the 11-ID-B beamline at the Advanced Photon Source (APS). Both forms show strong and highly structured diffuse scattering. The data have been interpreted and analysed using Monte Carlo (MC) modelling on the basis that the scattering is purely thermal in origin and indicates the presence of highly correlated molecular motions. In both forms (I) and (II) broad diffuse streaks are observed in the 0kl section which indicate strong longitudinal displacement correlations between molecules in the 031 directions, extending over distances of up to 50 A. Streaks extending between Bragg peaks in the hk0 section normal to [100] correspond to correlated motions of chains of molecules extending along a that are linked by N-H...O=C hydrogen bonds and which occur together as coplanar ribbon pairs. The main difference between the two forms is in the dynamical behaviour of the ribbon pairs and in particular how they are able to slide relative to each other. While for form (I) a model involving harmonic springs is able to describe the motion satisfactorily, as simple excursions away from the average structure, there is evidence in form (II) of anharmonic effects that are precursors of a phase transition to a new low-temperature phase, form (III), that was subsequently found.
Nonlinear damping based semi-active building isolation system
NASA Astrophysics Data System (ADS)
Ho, Carmen; Zhu, Yunpeng; Lang, Zi-Qiang; Billings, Stephen A.; Kohiyama, Masayuki; Wakayama, Shizuka
2018-06-01
Many buildings in Japan currently have a base-isolation system with a low stiffness that is designed to shift the natural frequency of the building below the frequencies of the ground motion due to earthquakes. However, the ground motion observed during the 2011 Tohoku earthquake contained strong long-period waves that lasted for a record length of 3 min. To provide a novel and better solution against the long-period waves while maintaining the performance of the standard isolation range, the exploitation of the characteristics of nonlinear damping is proposed in this paper. This is motivated by previous studies of the authors, which have demonstrated that nonlinear damping can achieve desired performance over both low and high frequency regions and the optimal nonlinear damping force can be realized by closed loop controlled semi-active dampers. Simulation results have shown strong vibration isolation performance on a building model with identified parameters and have indicated that nonlinear damping can achieve low acceleration transmissibilities round the structural natural frequency as well as the higher ground motion frequencies that have been frequently observed during most earthquakes in Japan. In addition, physical building model based laboratory experiments are also conducted, The results demonstrate the advantages of the proposed nonlinear damping technologies over both traditional linear damping and more advanced Linear-Quadratic Gaussian (LQG) feedback control which have been used in practice to address building isolation system design and implementation problems. In comparison with the tuned-mass damper and other active control methods, the proposed solution offers a more pragmatic, low-cost, robust and effective alternative that can be readily installed into the base-isolation system of most buildings.
Hayashi, Hideaki; Nakamura, Go; Chin, Takaaki; Tsuji, Toshio
2017-01-01
This paper proposes an artificial electromyogram (EMG) signal generation model based on signal-dependent noise, which has been ignored in existing methods, by introducing the stochastic construction of the EMG signals. In the proposed model, an EMG signal variance value is first generated from a probability distribution with a shape determined by a commanded muscle force and signal-dependent noise. Artificial EMG signals are then generated from the associated Gaussian distribution with a zero mean and the generated variance. This facilitates representation of artificial EMG signals with signal-dependent noise superimposed according to the muscle activation levels. The frequency characteristics of the EMG signals are also simulated via a shaping filter with parameters determined by an autoregressive model. An estimation method to determine EMG variance distribution using rectified and smoothed EMG signals, thereby allowing model parameter estimation with a small number of samples, is also incorporated in the proposed model. Moreover, the prediction of variance distribution with strong muscle contraction from EMG signals with low muscle contraction and related artificial EMG generation are also described. The results of experiments conducted, in which the reproduction capability of the proposed model was evaluated through comparison with measured EMG signals in terms of amplitude, frequency content, and EMG distribution demonstrate that the proposed model can reproduce the features of measured EMG signals. Further, utilizing the generated EMG signals as training data for a neural network resulted in the classification of upper limb motion with a higher precision than by learning from only measured EMG signals. This indicates that the proposed model is also applicable to motion classification. PMID:28640883
Estimation of empirical site amplification factors in Taiwan
NASA Astrophysics Data System (ADS)
Chung, Chi-Hsuan; Wen, Kuo-Liang; Kuo, Chun-Hsiang
2017-04-01
Lots of infrastructures are under construction in metropolises in Taiwan in recent years and thus leads to increasement of population density and urbanization in those area. Taiwan island is located in plate boundaries in which the high seismicity is caused by active tectonic plates. The Chi-Chi earthquake (Mw 7.6) in 1999 caused a fatality of more than 2000, and the Meinong earthquake (Mw 6.5) in 2016 caused a fatality of 117 in Tainan city as well as damages on hundreds of buildings. The cases imply seismic vulnerability of urban area. During the improvements for seismic hazard analysis and seismic design, consideration of seismic site amplifications in different site conditions is one of important issues. This study used selected and processed strong motion records observed by the TSMIP network. The site conditions considered as Vs30 used in this study were investigated at most stations (Kuo et al. 2012; Kuo et al. 2016). Since strong motion records and site conditions are both available, we are able to use the data to analyze site amplifications of seismic waves at different periods. The result may be a reference for future modification of seismic design codes to decrease potential seismic hazards and losses. We adopted the strong motion and site database of the SSHAC (Senior Seismic Hazard Analysis Committee) Level 3 project in Taiwan. The selected significant crustal and subduction events of magnitude larger than six for analysis. The amplification factors of PGA, PGV, PGD, and spectra acceleration at 0.3, 1.0, and 3.0 seconds were evaluated using the processed strong motions. According to the recommendation of SSHAC Level 3 project, the site condition of Vs30 = 760 m/s is considered as the reference rock site in this study. The stations with Vs30 between 600 m/s and 900 m/s and used as the reference rock sites in reality. For each event, we find a reference rock site and other site within a certain distance (region dependent) to calculate site amplifications of ground motions. Relationships of site amplification factors and Vs30 are therefore derived for strong motions by regression analysis. Soil nonlinearity (decrease of amplifications) has to be considered at soft soil sites during a strong shaking. We also discuss amplification factors in terms of different intensities if data is available.
Orientation-independent measures of ground motion
Boore, D.M.; Watson-Lamprey, Jennie; Abrahamson, N.A.
2006-01-01
The geometric mean of the response spectra for two orthogonal horizontal components of motion, commonly used as the response variable in predictions of strong ground motion, depends on the orientation of the sensors as installed in the field. This means that the measure of ground-motion intensity could differ for the same actual ground motion. This dependence on sensor orientation is most pronounced for strongly correlated motion (the extreme example being linearly polarized motion), such as often occurs at periods of 1 sec or longer. We propose two new measures of the geometric mean, GMRotDpp, and GMRotIpp, that are independent of the sensor orientations. Both are based on a set of geometric means computed from the as-recorded orthogonal horizontal motions rotated through all possible non-redundant rotation angles. GMRotDpp is determined as the ppth percentile of the set of geometric means for a given oscillator period. For example, GMRotDOO, GMRotD50, and GMRotD100 correspond to the minimum, median, and maximum values, respectively. The rotations that lead to GMRotDpp depend on period, whereas a single-period-independent rotation is used for GMRotIpp, the angle being chosen to minimize the spread of the rotation-dependent geometric mean (normalized by GMRotDpp) over the usable range of oscillator periods. GMRotI50 is the ground-motion intensity measure being used in the development of new ground-motion prediction equations by the Pacific Earthquake Engineering Center Next Generation Attenuation project. Comparisons with as-recorded geometric means for a large dataset show that the new measures are systematically larger than the geometric-mean response spectra using the as-recorded values of ground acceleration, but only by a small amount (less than 3%). The theoretical advantage of the new measures is that they remove sensor orientation as a contributor to aleatory uncertainty. Whether the reduction is of practical significance awaits detailed studies of large datasets. A preliminary analysis contained in a companion article by Beyer and Bommer finds that the reduction is small-to-nonexistent for equations based on a wide range of magnitudes and distances. The results of Beyer and Bommer do suggest, however, that there is an increasing reduction as period increases. Whether the reduction increases with other subdivisions of the dataset for which strongly correlated motions might be expected (e.g., pulselike motions close to faults) awaits further analysis.
NASA Astrophysics Data System (ADS)
Ma, Yue; Hoang, Thai M.; Gong, Ming; Li, Tongcang; Yin, Zhang-qi
2017-08-01
Hybrid spin-mechanical systems have great potential in sensing, macroscopic quantum mechanics, and quantum information science. In order to induce strong coupling between an electron spin and the center-of-mass motion of a mechanical oscillator, a large magnetic gradient usually is required, which is difficult to achieve. Here we show that strong coupling between the electron spin of a nitrogen-vacancy (NV) center and the torsional vibration of an optically levitated nanodiamond can be achieved in a uniform magnetic field. Thanks to the uniform magnetic field, multiple spins can strongly couple to the torsional vibration at the same time. We propose utilizing this coupling mechanism to realize the Lipkin-Meshkov-Glick (LMG) model by an ensemble of NV centers in a levitated nanodiamond. The quantum phase transition in the LMG model and finite number effects can be observed with this system. We also propose generating torsional superposition states and realizing torsional matter-wave interferometry with spin-torsional coupling.
Classical dimer model with anisotropic interactions on the square lattice
NASA Astrophysics Data System (ADS)
Otsuka, Hiromi
2009-07-01
We discuss phase transitions and the phase diagram of a classical dimer model with anisotropic interactions defined on a square lattice. For the attractive region, the perturbation of the orientational order parameter introduced by the anisotropy causes the Berezinskii-Kosterlitz-Thouless transitions from a dimer-liquid to columnar phases. According to the discussion by Nomura and Okamoto for a quantum-spin chain system [J. Phys. A 27, 5773 (1994)], we proffer criteria to determine transition points and also universal level-splitting conditions. Subsequently, we perform numerical diagonalization calculations of the nonsymmetric real transfer matrices up to linear dimension specified by L=20 and determine the global phase diagram. For the repulsive region, we find the boundary between the dimer-liquid and the strong repulsion phases. Based on the dispersion relation of the one-string motion, which exhibits a twofold “zero-energy flat band” in the strong repulsion limit, we give an intuitive account for the property of the strong repulsion phase.
Effects of Radiation Damping in Extreme Ultra-intense Laser-Plasma Interaction
NASA Astrophysics Data System (ADS)
Pandit, Rishi R.
Recent advances in the development of intense short pulse lasers are significant. Now it is available to access a laser with intensity 1021W/cm2 by focusing a petawatt class laser. In a few years, the intensity will exceed 1022W/cm2 , at which intensity electrons accelerated by the laser get energy more than 100 MeV and start to emit radiation strongly. Resultingly, the damping of electron motion can become large. In order to study this problem, we developed a code to solve a set of equations describing the evolution of a strong electromagnetic wave interacting with a single electron. Usually the equation of motion of an electron including radiation damping under the influence of electromagnetic fields is derived from the Lorentz-Dirac equation treating the damping as a perturbation. So far people had used the first order damping equation. This is because the second order term seems to be small and actually it is negligible under 1022W/cm2 intensity. The derivation of 2nd order equation is also complicated and challenging. We derived the second order damping equations for the first time and implemented in the code. The code was then tested via single particle motion in the extreme intensity laser. It was found that the 1st order damping term is reasonable up to the intensity 1022W/cm2, but the 2nd oder term becomes not negligible and comparable in magnitude to the first order term beyond 1023W/cm2. The radiation damping model was introduced using a one-dimensional particle-in-cell code (PIC), and tested in the laser-plasma interaction at extreme intensity. The strong damping of hot electrons in high energy tail was demonstrated in PIC simulations.
Comprehensive Analysis of Broadband Seismic Data in Las Vegas Valley
NASA Astrophysics Data System (ADS)
Tkalcic, H.; Rodgers, A.; Snelson, C.; McEwan, D.
2003-12-01
The city of Las Vegas is one of the fastest growing metropolitan areas in the world. Its urban area is located in a relatively broad sedimentary basin in the Basin and Range Province. Acknowledging that Las Vegas of 2003 is drastically different from Las Vegas of a decade ago, our objectives are to understand and predict ground motions and evaluate the effects of possible future earthquakes and nuclear tests at Nevada Test Site (NTS) on buildings in Las Vegas. A model of the basin depth was derived from gravity data in an independent study, while a model of compressional velocity structure of the basin was derived from seismic refraction studies. We are using strong motion accelerometers regional data, as well as newly acquired broadband teleseismic data to evaluate these models, and predict ground motions at the surface. Delay times of about a dozen analyzed teleseismic P-waves show variation of up to 0.5 seconds across relatively short distances (15 km or less), providing some valuable information on basin shape and thickness. Teleseismic P-waves have favorable signal-to-noise for low frequencies (0.1 to 1.0 Hz). This provides complementary site response measurements to those obtained from regional earthquakes and explosions. Our results indicate a clear difference in site response between hard-rock and basin stations, with amplification reaching factor 5 for the basin stations. The measured P and S wave energies for the recorded data also corelate well with the existing basin depth model, providing additional constraint in modeling the basin shape and structure. We use time domain deconvolution receiver functions to constrain the position of basin boundaries and main crustal discontinuities. Finally, we simulate low frequency (f < 1 Hz) theoretical ground motion in Las Vegas Valley by an elastic finite difference code. Preliminary results show that we can predict relative amplification, as well as some of the complexity in the waveforms, even without invoking complex (and computationaly expensive) three-dimensional structural models. This work is in progress.
Joyner, William B.; Boore, David M.
1981-01-01
We have taken advantage of the recent increase in strong-motion data at close distances to derive new attenuation relations for peak horizontal acceleration and velocity. This new analysis uses a magnitude-independent shape, based on geometrical spreading and anelastic attenuation, for the attenuation curve. An innovation in technique is introduced that decouples the determination of the distance dependence of the data from the magnitude dependence.
Site classification of Indian strong motion network using response spectra ratios
NASA Astrophysics Data System (ADS)
Chopra, Sumer; Kumar, Vikas; Choudhury, Pallabee; Yadav, R. B. S.
2018-03-01
In the present study, we tried to classify the Indian strong motion sites spread all over Himalaya and adjoining region, located on varied geological formations, based on response spectral ratio. A total of 90 sites were classified based on 395 strong motion records from 94 earthquakes recorded at these sites. The magnitude of these earthquakes are between 2.3 and 7.7 and the hypocentral distance for most of the cases is less than 50 km. The predominant period obtained from response spectral ratios is used to classify these sites. It was found that the shape and predominant peaks of the spectra at these sites match with those in Japan, Italy, Iran, and at some of the sites in Europe and the same classification scheme can be applied to Indian strong motion network. We found that the earlier schemes based on description of near-surface geology, geomorphology, and topography were not able to capture the effect of sediment thickness. The sites are classified into seven classes (CL-I to CL-VII) with varying predominant periods and ranges as proposed by Alessandro et al. (Bull Seismol Soc Am 102:680-695 2012). The effect of magnitudes and hypocentral distances on the shape and predominant peaks were also studied and found to be very small. The classification scheme is robust and cost-effective and can be used in region-specific attenuation relationships for accounting local site effect.
NASA Technical Reports Server (NTRS)
Fritts, David C.; Wang, Ding-Yi
1991-01-01
Results are presented of radar observations of horizontal and vertical velocities near the summer mesopause at Poker Flat (Alaska), showing that the observed vertical velocity spectra were influenced strongly by Doppler-shifting effects. The horizontal velocity spectra, however, were relatively insensitive to horizontal wind speed. The observed spectra are compared with predicted spectra for various models of the intrinsic motion spectrum and degrees of Doppler shifting.
Numerical Simulation of Forced and Free-to-Roll Delta-Wing Motions
NASA Technical Reports Server (NTRS)
Chaderjian, Neal M.; Schiff, Lewis B.
1996-01-01
The three-dimensional, Reynolds-averaged, Navier-Stokes (RANS) equations are used to numerically simulate nonsteady vortical flow about a 65-deg sweep delta wing at 30-deg angle of attack. Two large-amplitude, high-rate, forced-roll motions, and a damped free-to-roll motion are presented. The free-to-roll motion is computed by coupling the time-dependent RANS equations to the flight dynamic equation of motion. The computed results are in good agreement with the forces, moments, and roll-angle time histories. Vortex breakdown is present in each case. Significant time lags in the vortex breakdown motions relative to the body motions strongly influence the dynamic forces and moments.
Rotational Seismology: AGU Session, Working Group, and Website
Lee, William H.K.; Igel, Heiner; Todorovska, Maria I.; Evans, John R.
2007-01-01
Introduction Although effects of rotational motions due to earthquakes have long been observed (e. g., Mallet, 1862), nevertheless Richter (1958, p. 213) stated that: 'Perfectly general motion would also involve rotations about three perpendicular axes, and three more instruments for these. Theory indicates, and observation confirms, that such rotations are negligible.' However, Richter provided no references for this claim. Seismology is based primarily on the observation and modeling of three-component translational ground motions. Nevertheless, theoretical seismologists (e.g., Aki and Richards, 1980, 2002) have argued for decades that the rotational part of ground motions should also be recorded. It is well known that standard seismometers are quite sensitive to rotations and therefore subject to rotation-induced errors. The paucity of observations of rotational motions is mainly the result of a lack, until recently, of affordable rotational sensors of sufficient resolution. Nevertheless, in the past decade, a number of authors have reported direct observations of rotational motions and rotations inferred from rigid-body rotations in short baseline accelerometer arrays, creating a burgeoning library of rotational data. For example, ring laser gyros in Germany and New Zealand have led to the first significant and consistent observations of rotational motions from distant earthquakes (Igel et al., 2005, 2007). A monograph on Earthquake Source Asymmetry, Structural Media and Rotation Effects was published recently as well by Teisseyre et al. (2006). Measurement of rotational motions has implications for: (1) recovering the complete ground-displacement history from seismometer recordings; (2) further constraining earthquake rupture properties; (3) extracting information about subsurface properties; and (4) providing additional ground motion information to earthquake engineers for seismic design. A special session on Rotational Motions in Seismology was convened by H. Igel, W.H.K. Lee, and M. Todorovska during the 2006 AGU Fall Meeting. The goal of this session was to discuss rotational sensors, observations, modeling, theoretical aspects, and potential applications of rotational ground motions. The session was accompanied by the inauguration of an International Working Group on Rotational Seismology (IWGoRS) which aims to promote investigations of all aspects of rotational motions in seismology and their implications for related fields such as earthquake engineering, geodesy, strong-motion seismology, and tectonics, as well as to share experience, data, software, and results in an open Web-based environment. The primary goal of this article is to make the Earth Science Community aware of the emergence of the field of rotational seismology.
Çelebi, Mehmet; Ghahari, S. Farid; Taciroglu, Ertugrul
2015-01-01
This paper reports the results of Part A of a study of the recorded strong-motion accelerations at the well-instrumented network of the two side-by-side parallel bridges over the Carquinez Strait during the 24 August 2014 (Mw6.0 ) South Napa, Calif. earthquake that occurred at 03:20:44 PDT with epicentral coordinates 38.22N, 122.31W. (http://earthquake.usgs.gov/earthquakes/eqarchives/poster/2014/20140824.php, last accessed on October 17, 2014). Both bridges and two boreholes were instrumented by the California Strong motion Instrumentation Program (CSMIP) of California Geological Survey (CGS) (Shakal et al., 2014). A comprehensive comparison of several ground motion prediction equations as they relate to recorded ground motions of the earthquake is provided by Baltay and Boatright (2015).
Computational Motion Phantoms and Statistical Models of Respiratory Motion
NASA Astrophysics Data System (ADS)
Ehrhardt, Jan; Klinder, Tobias; Lorenz, Cristian
Breathing motion is not a robust and 100 % reproducible process, and inter- and intra-fractional motion variations form an important problem in radiotherapy of the thorax and upper abdomen. A widespread consensus nowadays exists that it would be useful to use prior knowledge about respiratory organ motion and its variability to improve radiotherapy planning and treatment delivery. This chapter discusses two different approaches to model the variability of respiratory motion. In the first part, we review computational motion phantoms, i.e. computerized anatomical and physiological models. Computational phantoms are excellent tools to simulate and investigate the effects of organ motion in radiation therapy and to gain insight into methods for motion management. The second part of this chapter discusses statistical modeling techniques to describe the breathing motion and its variability in a population of 4D images. Population-based models can be generated from repeatedly acquired 4D images of the same patient (intra-patient models) and from 4D images of different patients (inter-patient models). The generation of those models is explained and possible applications of those models for motion prediction in radiotherapy are exemplified. Computational models of respiratory motion and motion variability have numerous applications in radiation therapy, e.g. to understand motion effects in simulation studies, to develop and evaluate treatment strategies or to introduce prior knowledge into the patient-specific treatment planning.
Estimation of source processes of the 2016 Kumamoto earthquakes from strong motion waveforms
NASA Astrophysics Data System (ADS)
Kubo, H.; Suzuki, W.; Aoi, S.; Sekiguchi, H.
2016-12-01
In this study, we estimated the source processes for two large events of the 2016 Kumamoto earthquakes (the M7.3 event at 1:25 JST on April 16, 2016 and the M6.5 event at 21:26 JST on April 14, 2016) from strong motion waveforms using multiple-time-window linear waveform inversion (Hartzell and Heaton 1983; Sekiguchi et al. 2000). Based on the observations of surface ruptures, the spatial distribution of aftershocks, and the geodetic data, a realistic curved fault model was developed for the source-process analysis of the M7.3 event. The source model obtained for the M7.3 event with a seismic moment of 5.5 × 1019 Nm (Mw 7.1) had two significant ruptures. One rupture propagated toward the northeastern shallow region at 4 s after rupture initiation, and continued with large slips to approximately 16 s. This rupture caused a large slip region with a peak slip of 3.8 m that was located 10-30 km northeast of the hypocenter and reached the caldera of Mt. Aso. The contribution of the large slip region to the seismic waveforms was large at many stations. Another rupture propagated toward the surface from the hypocenter at 2-6 s, and then propagated toward the northeast along the near surface at 6-10 s. This rupture largely contributed to the seismic waveforms at the stations south of the fault and close to the hypocenter. A comparison with the results obtained using a single fault plane model demonstrate that the use of the curved fault model led to improved waveform fit at the stations south of the fault. The extent of the large near-surface slips in this source model for the M7.3 event is roughly consistent with the extent of the observed large surface ruptures. The source model obtained for the M6.5 event with a seismic moment of 1.7 × 1018 Nm (Mw 6.1) had large slips in the region around the hypocenter and in the shallow region north-northeast of the hypocenter, both of which had a maximum slip of 0.7 m. The rupture of the M6.5 event propagated from the former region to the latter region at 1-6 s after rupture initiation, which is expected to have caused the strong ground motions due to the forward directivity effect at KMMH16 and surroundings. The occurrence of the near-surface large slips in this source model for the M6.5 event is consistent with the appearance of small surface cracks, which were observed by some residents.
A model for attenuation and scattering in the Earth's crust
NASA Astrophysics Data System (ADS)
Toksöz, M. Nafi; Dainty, Anton M.; Reiter, Edmund; Wu, Ru-Shan
1988-03-01
The mechanisms contributing to the attenuation of earthquake ground motion in the distance range of 10 to 200 km are studied with the aid of laboratory data, coda waves Rg attenuation, strong motion attenuation measurements in the northeast United States and Canada, and theoretical models. The frequency range 1 10 Hz has been studied. The relative contributions to attenuation of anelasticity of crustal rocks (constant Q), fluid flow and scattering are evaluated. Scattering is found to be strong with an albedo B 0=0.8 0.9 and a scattering extinction length of 17 32 km. The albedo is defined as the ratio of the total extinction length to the scattering extinction length. The Rg results indicate that Q increases with depth in the upper kilometer or two of the crust, at least in New England. Coda Q appears to be equivalent to intrinsic (anelastic) Q and indicates that this Q increases with frequency as Q=Q o f n , where n is in the range of 0.2 0.9. The intrinsic attenuation in the crust can be explained by a high constant Q (500≤ Q o≤2000) and a frequency dependent mechanism most likely due to fluid effects in rocks and cracks. A fluid-flow attenuation model gives a frequency dependence ( Q≃ Q o f 0.5) similar to those determined from the analysis of coda waves of regional seismograms. Q is low near the surface and high in the body of the crust.
Laboratory and theoretical models of planetary-scale instabilities and waves
NASA Technical Reports Server (NTRS)
Hart, John E.; Toomre, Juri
1990-01-01
Meteorologists and planetary astronomers interested in large-scale planetary and solar circulations recognize the importance of rotation and stratification in determining the character of these flows. In the past it has been impossible to accurately model the effects of sphericity on these motions in the laboratory because of the invariant relationship between the uni-directional terrestrial gravity and the rotation axis of an experiment. Researchers studied motions of rotating convecting liquids in spherical shells using electrohydrodynamic polarization forces to generate radial gravity, and hence centrally directed buoyancy forces, in the laboratory. The Geophysical Fluid Flow Cell (GFFC) experiments performed on Spacelab 3 in 1985 were analyzed. Recent efforts at interpretation led to numerical models of rotating convection with an aim to understand the possible generation of zonal banding on Jupiter and the fate of banana cells in rapidly rotating convection as the heating is made strongly supercritical. In addition, efforts to pose baroclinic wave experiments for future space missions using a modified version of the 1985 instrument led to theoretical and numerical models of baroclinic instability. Rather surprising properties were discovered, which may be useful in generating rational (rather than artificially truncated) models for nonlinear baroclinic instability and baroclinic chaos.
Social aggregation in pea aphids: experiment and random walk modeling.
Nilsen, Christa; Paige, John; Warner, Olivia; Mayhew, Benjamin; Sutley, Ryan; Lam, Matthew; Bernoff, Andrew J; Topaz, Chad M
2013-01-01
From bird flocks to fish schools and ungulate herds to insect swarms, social biological aggregations are found across the natural world. An ongoing challenge in the mathematical modeling of aggregations is to strengthen the connection between models and biological data by quantifying the rules that individuals follow. We model aggregation of the pea aphid, Acyrthosiphon pisum. Specifically, we conduct experiments to track the motion of aphids walking in a featureless circular arena in order to deduce individual-level rules. We observe that each aphid transitions stochastically between a moving and a stationary state. Moving aphids follow a correlated random walk. The probabilities of motion state transitions, as well as the random walk parameters, depend strongly on distance to an aphid's nearest neighbor. For large nearest neighbor distances, when an aphid is essentially isolated, its motion is ballistic with aphids moving faster, turning less, and being less likely to stop. In contrast, for short nearest neighbor distances, aphids move more slowly, turn more, and are more likely to become stationary; this behavior constitutes an aggregation mechanism. From the experimental data, we estimate the state transition probabilities and correlated random walk parameters as a function of nearest neighbor distance. With the individual-level model established, we assess whether it reproduces the macroscopic patterns of movement at the group level. To do so, we consider three distributions, namely distance to nearest neighbor, angle to nearest neighbor, and percentage of population moving at any given time. For each of these three distributions, we compare our experimental data to the output of numerical simulations of our nearest neighbor model, and of a control model in which aphids do not interact socially. Our stochastic, social nearest neighbor model reproduces salient features of the experimental data that are not captured by the control.
Fast computation of derivative based sensitivities of PSHA models via algorithmic differentiation
NASA Astrophysics Data System (ADS)
Leövey, Hernan; Molkenthin, Christian; Scherbaum, Frank; Griewank, Andreas; Kuehn, Nicolas; Stafford, Peter
2015-04-01
Probabilistic seismic hazard analysis (PSHA) is the preferred tool for estimation of potential ground-shaking hazard due to future earthquakes at a site of interest. A modern PSHA represents a complex framework which combines different models with possible many inputs. Sensitivity analysis is a valuable tool for quantifying changes of a model output as inputs are perturbed, identifying critical input parameters and obtaining insight in the model behavior. Differential sensitivity analysis relies on calculating first-order partial derivatives of the model output with respect to its inputs. Moreover, derivative based global sensitivity measures (Sobol' & Kucherenko '09) can be practically used to detect non-essential inputs of the models, thus restricting the focus of attention to a possible much smaller set of inputs. Nevertheless, obtaining first-order partial derivatives of complex models with traditional approaches can be very challenging, and usually increases the computation complexity linearly with the number of inputs appearing in the models. In this study we show how Algorithmic Differentiation (AD) tools can be used in a complex framework such as PSHA to successfully estimate derivative based sensitivities, as is the case in various other domains such as meteorology or aerodynamics, without no significant increase in the computation complexity required for the original computations. First we demonstrate the feasibility of the AD methodology by comparing AD derived sensitivities to analytically derived sensitivities for a basic case of PSHA using a simple ground-motion prediction equation. In a second step, we derive sensitivities via AD for a more complex PSHA study using a ground motion attenuation relation based on a stochastic method to simulate strong motion. The presented approach is general enough to accommodate more advanced PSHA studies of higher complexity.