Sample records for models differ greatly

  1. SE Great Basin Play Fairway Analysis

    DOE Data Explorer

    Adam Brandt

    2015-11-15

    This submission includes a Na/K geothermometer probability greater than 200 deg C map, as well as two play fairway analysis (PFA) models. The probability map acts as a composite risk segment for the PFA models. The PFA models differ in their application of magnetotelluric conductors as composite risk segments. These PFA models map out the geothermal potential in the region of SE Great Basin, Utah.

  2. Romantic Love: A Special Case of Social Competence.

    ERIC Educational Resources Information Center

    Warren, James D.

    Two different clinical models provide different explanations of the interactions that typically occur in romantic love. One portrays love as one of the great delusions of the human experience, while the other suggests that romantic love is one of the great possibilities of the human experience. The delusional hypothesis, presented by Casler (1973)…

  3. The Model of Unification and the Model of Diversification of Public School Teachers' Continuing Professional Development in Great Britain, Canada and the USA

    ERIC Educational Resources Information Center

    Mukan, Nataliya; Myskiv, Iryna; Kravets, Svitlana

    2016-01-01

    In the article the theoretical framework of public school teachers' continuing professional development (CPD) in Great Britain, Canada and the USA has been presented. The main objectives have been defined as theoretical analysis of scientific and pedagogical literature, which highlights different aspects of the problem under research; presentation…

  4. Nonword Reading: Comparing Dual-Route Cascaded and Connectionist Dual-Process Models with Human Data

    ERIC Educational Resources Information Center

    Pritchard, Stephen C.; Coltheart, Max; Palethorpe, Sallyanne; Castles, Anne

    2012-01-01

    Two prominent dual-route computational models of reading aloud are the dual-route cascaded (DRC) model, and the connectionist dual-process plus (CDP+) model. While sharing similarly designed lexical routes, the two models differ greatly in their respective nonlexical route architecture, such that they often differ on nonword pronunciation. Neither…

  5. Why Are There so Many Different Models of Light?

    ERIC Educational Resources Information Center

    Robertson, William C.

    2008-01-01

    Is light a ray, a wave, or a particle? Yes, yes, and yes. An article in this issue ("The Benefits of Scientific Modeling," p. 40) discusses the process of scientific modeling, and light is a great example of how modeling works. There are three viable models for light, each appropriate for different situations. The author will discuss the…

  6. Validation of the North American Land Data Assimilation System (NLDAS) retrospective forcing over the southern Great Plains

    NASA Astrophysics Data System (ADS)

    Luo, Lifeng; Robock, Alan; Mitchell, Kenneth E.; Houser, Paul R.; Wood, Eric F.; Schaake, John C.; Lohmann, Dag; Cosgrove, Brian; Wen, Fenghua; Sheffield, Justin; Duan, Qingyun; Higgins, R. Wayne; Pinker, Rachel T.; Tarpley, J. Dan

    2003-11-01

    Atmospheric forcing used by land surface models is a critical component of the North American Land Data Assimilation System (NLDAS) and its quality crucially affects the final product of NLDAS and our work on model improvement. A three-year (September 1996-September 1999) retrospective forcing data set was created from the Eta Data Assimilation System and observations and used to run the NLDAS land surface models for this period. We compared gridded NLDAS forcing with station observations obtained from networks including the Oklahoma Mesonet and Atmospheric Radiation Measurement/Cloud and Radiation Testbed at the southern Great Plains. Differences in all forcing variables except precipitation between the NLDAS forcing data set and station observations are small at all timescales. While precipitation data do not agree very well at an hourly timescale, they do agree better at longer timescales because of the way NLDAS precipitation forcing is generated. A small high bias in downward solar radiation and a low bias in downward longwave radiation exist in the retrospective forcing. To investigate the impact of these differences on land surface modeling we compared two sets of model simulations, one forced by the standard NLDAS product and one with station-observed meteorology. The differences in the resulting simulations of soil moisture and soil temperature for each model were small, much smaller than the differences between the models and between the models and observations. This indicates that NLDAS retrospective forcing provides an excellent state-of-the-art data set for land surface modeling, at least over the southern Great Plains region.

  7. Drop Hammer Tests with Three Oleo Strut Models and Three Different Shock Strut Oils at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Kranz, M

    1954-01-01

    Drop hammer tests with different shock strut models and shock strut oils were performed at temperatures ranging to -40 C. The various shock strut models do not differ essentially regarding their springing and damping properties at low temperatures; however, the influence of the different shock strut oils on the springing properties at low temperatures varies greatly.

  8. Toxicity to Daphnia pulex and QSAR predictions for polycyclic hydrocarbons representative of Great Lakes contaminants

    USGS Publications Warehouse

    Passino-Reader, D.R.; Hickey, J.P.; Ogilvie, L.M.

    1997-01-01

    The objectives of this study were (1) to determine the toxicity of several types of polycyclic hydrocarbons characteristic of Great Lakes samples to Daphnia pulex, a Great Lakes zooplankter, (2) to investigate the influence of different structural characteristics on toxicity, and (3) to determine the linear solvation energy relationship (LSER) parameters and model that describe these compounds. These results will be related to comparative toxicity of other Great Lakes environmental compounds and to their application in site specific risk assessment.

  9. Dynamic Heights in the Great Lakes at Different Epochs

    NASA Astrophysics Data System (ADS)

    Roman, D. R.

    2016-12-01

    Vertical control in the Great Lakes region is currently defined by the International Great Lakes Datum of 1985 (IGLD 85) in the form of dynamic heights. Starting in 2025, dynamic heights will be defined through GNSS-derived geometric coordinates and a geopotential model. This paper explores the behavior of an existing geopotential model at different epochs when the Great Lakes were at significantly different (meter-level) geopotential surfaces. Water surfaces were examined in 2015 and 2010 at six sites on Lakes Superior and Lake Erie (three on each Lake). These sites have collocated a Continuously Operating Reference Station (CORS) and a Water Level Sensor (WLS). The offset between the antenna phase center for the CORS and the WLS datum are known at each site. The WLS then measures the distance from its datum to the Lake surface via an open well. Thus it is possible to determine the height above an ellipsoid datum at these sites as long as both the CORS and WLS are operational. The geometric coordinates are then used to estimate the geopotential value from the xGEOID16B model. This accomplished in two steps. To provide an improved reference model, EGM2008 was spectrally enhanced using observations from the GOCE satellite gravity mission and aerogravity from the Gravity for the Redefinition of the American Vertical Datum (GRAV-D) Project. This enhanced model, xGEOID16B_Ref, is still only a five arcminute resolution model (d/o 2160), but resolves dynamic heights at about 2 cm on Lake Superior for December 2015. The reference model was primarily developed to determine a one arcminute geoid height grid, xGEOID16B, available on the NGS website. This geoid height model was used to iteratively develop improved geopotential value for each of the site locations, which then improved comparisons to the cm-level. Comparisons were then made at the 2010 epoch for these same locations to determine if the performance of the geopotential model was consistent.

  10. Slaying the Great Green Dragon: Learning and Modelling Iterable Ordered Optional Adjuncts

    ERIC Educational Resources Information Center

    Fowlie, Meaghan

    2017-01-01

    Adjuncts and arguments exhibit different syntactic behaviours, but modelling this difference in minimalist syntax is challenging: on the one hand, adjuncts differ from arguments in that they are optional, transparent, and iterable, but on the other hand they are often strictly ordered, reflecting the kind of strict selection seen in argument…

  11. Precipitation Dynamical Downscaling Over the Great Plains

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-Ming; Xue, Ming; McPherson, Renee A.; Martin, Elinor; Rosendahl, Derek H.; Qiao, Lei

    2018-02-01

    Detailed, regional climate projections, particularly for precipitation, are critical for many applications. Accurate precipitation downscaling in the United States Great Plains remains a great challenge for most Regional Climate Models, particularly for warm months. Most previous dynamic downscaling simulations significantly underestimate warm-season precipitation in the region. This study aims to achieve a better precipitation downscaling in the Great Plains with the Weather Research and Forecast (WRF) model. To this end, WRF simulations with different physics schemes and nudging strategies are first conducted for a representative warm season. Results show that different cumulus schemes lead to more pronounced difference in simulated precipitation than other tested physics schemes. Simply choosing different physics schemes is not enough to alleviate the dry bias over the southern Great Plains, which is related to an anticyclonic circulation anomaly over the central and western parts of continental U.S. in the simulations. Spectral nudging emerges as an effective solution for alleviating the precipitation bias. Spectral nudging ensures that large and synoptic-scale circulations are faithfully reproduced while still allowing WRF to develop small-scale dynamics, thus effectively suppressing the large-scale circulation anomaly in the downscaling. As a result, a better precipitation downscaling is achieved. With the carefully validated configurations, WRF downscaling is conducted for 1980-2015. The downscaling captures well the spatial distribution of monthly climatology precipitation and the monthly/yearly variability, showing improvement over at least two previously published precipitation downscaling studies. With the improved precipitation downscaling, a better hydrological simulation over the trans-state Oologah watershed is also achieved.

  12. Effects of Grazing Pressure on Efficiency of Grazing on North American Great Plains Rangelands

    USDA-ARS?s Scientific Manuscript database

    Robust prediction models describing vegetation and animal responses to stocking rate in North American Great Plains rangelands are lacking as across site comparisons are limited by different qualitative designations of light, moderate and heavy stocking. Comparisons of stocking rates across sites ca...

  13. Steady-state numerical groundwater flow model of the Great Basin carbonate and alluvial aquifer system

    USGS Publications Warehouse

    Brooks, Lynette E.; Masbruch, Melissa D.; Sweetkind, Donald S.; Buto, Susan G.

    2014-01-01

    Examples of potential use of the model to investigate the groundwater system include (1) the effects of different recharge, (2) different interpretations of the extent or offset of long faults or fault zones, and (3) different conceptual models of the spatial variation of hydraulic properties. The model can also be used to examine the ultimate effects of groundwater withdrawals on a regional scale, to provide boundary conditions for local-scale models, and to guide data collection.

  14. Land-atmosphere coupling and soil moisture memory contribute to long-term agricultural drought

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Newman, M.; Lawrence, D. M.; Livneh, B.; Lombardozzi, D. L.

    2017-12-01

    We assessed the contribution of land-atmosphere coupling and soil moisture memory on long-term agricultural droughts in the US. We performed an ensemble of climate model simulations to study soil moisture dynamics under two atmospheric forcing scenarios: active and muted land-atmosphere coupling. Land-atmosphere coupling contributes to a 12% increase and 36% decrease in the decorrelation time scale of soil moisture anomalies in the US Great Plains and the Southwest, respectively. These differences in soil moisture memory affect the length and severity of modeled drought. Consequently, long-term droughts are 10% longer and 3% more severe in the Great Plains, and 15% shorter and 21% less severe in the Southwest. An analysis of Coupled Model Intercomparsion Project phase 5 data shows four fold uncertainty in soil moisture memory across models that strongly affects simulated long-term droughts and is potentially attributable to the differences in soil water storage capacity across models.

  15. Gravity and solidity in four great ape species (Gorilla gorilla, Pongo pygmaeus, Pan troglodytes, Pan paniscus): vertical and horizontal variations of the table task.

    PubMed

    Cacchione, Trix; Call, Josep; Zingg, Robert

    2009-05-01

    Three experiments modeled after infant studies were run on four great ape species (Gorilla gorilla, Pongo pygmaeus, Pan troglodytes, Pan paniscus) to investigate their reasoning about solidity and gravity constraints. The aims were: (a) to find out if great apes are subject to gravity biased search or display sensitivity for object solidity, (b) to check for species differences, and (c) to assess if a gravity hypothesis or more parsimonious explanations best account for failures observed. Results indicate that great apes, unlike monkeys, show no reliable gravity bias, that ape species slightly differ in terms of their performance, and that the errors made are best explained by a gravity account. (PsycINFO Database Record (c) 2009 APA, all rights reserved).

  16. The statistical average of optical properties for alumina particle cluster in aircraft plume

    NASA Astrophysics Data System (ADS)

    Li, Jingying; Bai, Lu; Wu, Zhensen; Guo, Lixin

    2018-04-01

    We establish a model for lognormal distribution of monomer radius and number of alumina particle clusters in plume. According to the Multi-Sphere T Matrix (MSTM) theory, we provide a method for finding the statistical average of optical properties for alumina particle clusters in plume, analyze the effect of different distributions and different detection wavelengths on the statistical average of optical properties for alumina particle cluster, and compare the statistical average optical properties under the alumina particle cluster model established in this study and those under three simplified alumina particle models. The calculation results show that the monomer number of alumina particle cluster and its size distribution have a considerable effect on its statistical average optical properties. The statistical average of optical properties for alumina particle cluster at common detection wavelengths exhibit obvious differences, whose differences have a great effect on modeling IR and UV radiation properties of plume. Compared with the three simplified models, the alumina particle cluster model herein features both higher extinction and scattering efficiencies. Therefore, we may find that an accurate description of the scattering properties of alumina particles in aircraft plume is of great significance in the study of plume radiation properties.

  17. Quantitative interpretation of Great Lakes remote sensing data

    NASA Technical Reports Server (NTRS)

    Shook, D. F.; Salzman, J.; Svehla, R. A.; Gedney, R. T.

    1980-01-01

    The paper discusses the quantitative interpretation of Great Lakes remote sensing water quality data. Remote sensing using color information must take into account (1) the existence of many different organic and inorganic species throughout the Great Lakes, (2) the occurrence of a mixture of species in most locations, and (3) spatial variations in types and concentration of species. The radiative transfer model provides a potential method for an orderly analysis of remote sensing data and a physical basis for developing quantitative algorithms. Predictions and field measurements of volume reflectances are presented which show the advantage of using a radiative transfer model. Spectral absorptance and backscattering coefficients for two inorganic sediments are reported.

  18. A CONCEPT MAP FOR INTEGRATED ENVIRONMENTAL ASSESSMENT AND FUTURES MODELING

    EPA Science Inventory

    Integrated assessment models are differentiated from other models by their explicit concern for results that are useful to decision makers. While the details will differ greatly for each particular integrated assessments project, there are certain concepts that will be present f...

  19. Model accuracy impact through rescaled observations in hydrological data assimilation studies

    USDA-ARS?s Scientific Manuscript database

    Signal and noise time-series variability of soil moisture datasets (e.g. satellite-, model-, station-based) vary greatly. Optimality of the analysis obtained after observations are assimilated into the model depends on the degree that the differences between the signal variances of model and observa...

  20. Bringing Educational Fundraising Back to Great Britain: A Comparison with the United States

    ERIC Educational Resources Information Center

    Proper, Eve

    2009-01-01

    As a solution to dwindling government revenue, higher education in Great Britain has recently begun to increase fundraising. While it looks to the United States' higher education sector as a model, there are significant legal, historical and cultural differences between the two nations that could limit the British higher education sector's…

  1. Evaluation of regional climate simulations over the Great Lakes region driven by three global data sets

    Treesearch

    Shiyuan Zhong; Xiuping Li; Xindi Bian; Warren E. Heilman; L. Ruby Leung; William I. Jr. Gustafson

    2012-01-01

    The performance of regional climate simulations is evaluated for the Great Lakes region. Three 10-year (1990-1999) current-climate simulations are performed using the MM5 regional climate model (RCM) with 36-km horizontal resolution. The simulations employed identical configuration and physical parameterizations, but different lateral boundary conditions and sea-...

  2. Influence of crop type specification and spatial resolution on empirical modeling of field-scale Maize and Soybean carbon fluxes in the US Great Plains

    NASA Astrophysics Data System (ADS)

    McCombs, A. G.; Hiscox, A.; Wang, C.; Desai, A. R.

    2016-12-01

    A challenge in satellite land surface remote-sensing models of ecosystem carbon dynamics in agricultural systems is the lack of differentiation by crop type and management. This generalization can lead to large discrepancies between model predictions and eddy covariance flux tower observations of net ecosystem exchange of CO2 (NEE). Literature confirms that NEE varies remarkably among different crop types making the generalization of agriculture in remote sensing based models inaccurate. Here, we address this inaccuracy by identifying and mapping net ecosystem exchange (NEE) in agricultural fields by comparing bulk modeling and modeling by crop type, and using this information to develop empirical models for future use. We focus on mapping NEE in maize and soybean fields in the US Great Plains at higher spatial resolution using the fusion of MODIS and LandSAT surface reflectance. MODIS observed reflectance was downscaled using the ESTARFM downscaling methodology to match spatial scales to those found in LandSAT and that are more appropriate for carbon dynamics in agriculture fields. A multiple regression model was developed from surface reflectance of the downscaled MODIS and LandSAT remote sensing values calibrated against five FLUXNET/AMERIFLUX flux towers located on soybean and/or maize agricultural fields in the US Great Plains with multi-year NEE observations. Our new methodology improves upon bulk approximates to map and model carbon dynamics in maize and soybean fields, which have significantly different photosynthetic capacities.

  3. Cardiovascular cast model fabrication and casting effectiveness evaluation in fetus with severe congenital heart disease or normal heart.

    PubMed

    Wang, Yu; Cao, Hai-yan; Xie, Ming-xing; He, Lin; Han, Wei; Hong, Liu; Peng, Yuan; Hu, Yun-fei; Song, Ben-cai; Wang, Jing; Wang, Bin; Deng, Cheng

    2016-04-01

    To investigate the application and effectiveness of vascular corrosion technique in preparing fetal cardiovascular cast models, 10 normal fetal heart specimens with other congenital disease (control group) and 18 specimens with severe congenital heart disease (case group) from induced abortions were enrolled in this study from March 2013 to June 2015 in our hospital. Cast models were prepared by injecting casting material into vascular lumen to demonstrate real geometries of fetal cardiovascular system. Casting effectiveness was analyzed in terms of local anatomic structures and different anatomical levels (including overall level, atrioventricular and great vascular system, left-sided and right-sided heart), as well as different trimesters of pregnancy. In our study, all specimens were successfully casted. Casting effectiveness analysis of local anatomic structures showed a mean score from 1.90±1.45 to 3.60±0.52, without significant differences between case and control groups in most local anatomic structures except left ventricle, which had a higher score in control group (P=0.027). Inter-group comparison of casting effectiveness in different anatomical levels showed no significant differences between the two groups. Intra-group comparison also revealed undifferentiated casting effectiveness between atrioventricular and great vascular system, or left-sided and right-sided heart in corresponding group. Third-trimester group had a significantly higher perfusion score in great vascular system than second-trimester group (P=0.046), while the other anatomical levels displayed no such difference. Vascular corrosion technique can be successfully used in fabrication of fetal cardiovascular cast model. It is also a reliable method to demonstrate three-dimensional anatomy of severe congenital heart disease and normal heart in fetus.

  4. Modeling of temporal patterns and sources of atmospherically transported and deposited pesticides in ecosystems of concern: A case study of toxaphene in the Great Lakes

    NASA Astrophysics Data System (ADS)

    Li, Rong; Jin, Jiming

    2013-10-01

    have adverse effects on human health and the environment and can be transported through the atmosphere from application sites and deposited to sensitive ecosystems. This study applies a comprehensive multimedia regional pesticide fate and chemical transport modeling system that we developed to investigate the atmospheric transport and deposition of toxaphene to the Great Lakes. Simulated results predict a significant amount of toxaphene (~350 kg) being transported through the atmosphere and deposited into the Great Lakes in the simulation year. Results also show that U.S. residues and global background are major sources to toxaphene deposition into the Great Lakes and atmospheric concentrations in the region. While the U.S. residues are the dominant source in warm months, the background dominates during winter months. In addition, different sources have different influences on the individual Great Lakes due to their proximity and relative geographical positions to the sources; U.S. residues are the dominant source to Lakes Ontario, Erie, Huron, and Michigan, but they are a much less important source to Lake Superior. These results shed light on the mystery that observed toxaphene concentrations in Great Lakes' lake trout and smelt declined between 1982 and 1992 in four of the Great Lakes except Lake Superior. While monthly total depositions to Lakes Ontario, Erie, Huron, and Michigan have clear seasonal variability with much greater values in April, May, and June, monthly total depositions to Lake Superior are more uniformly distributed over the year with comparatively greater levels in cold months.

  5. Assessing the Impacts of Climate Change on Tourism-Dependent Communities in the Great Lakes

    NASA Astrophysics Data System (ADS)

    Chin, N.; Day, J.; Sydnor, S.; Cherkauer, K. A.

    2013-12-01

    Tourism is an essential element of the Laurentian Great Lakes economy as well as one of the sectors expected to be affected most by climate change, particularly through extreme weather events. While studies looking at climate change impacts on the Great Lakes tourism, specifically, are limited, the results of other studies suggest that both summer tourism activities, such as beach-going, and winter tourism activities, such as skiing and snowboarding, could feel the effects of a changing climate. The purpose of this study was to determine how existing data and models might be used to predict the potential impacts of climate change on tourism-dependent communities at the local scale. Future climate projections and variable infiltration capacity (VIC) model simulations based on historical climate data were used to quantify trends in environmental metrics with a potential influence on tourism for several tourism-dependent Great Lakes communities. The results of this research show that the potential impacts of climate change vary at the local scale and could require different adaptation strategies for different communities and for different sectors of the tourism industry. For example, communities in the northern parts of the Great Lakes may find benefit in a greater diversification of their tourism industries, given that warming temperatures could be beneficial for summer tourism activities, while communities in the southern parts of the Great Lakes may have to find other ways to cope with climate conditions that are less conducive to summer tourism activities. Stakeholder input could also help inform the process of producing scientific information that is useful to policymakers when it comes to tourism sector-related decision making.

  6. Evaluation of the North American Land Data Assimilation System over the southern Great Plains during the warm season

    NASA Astrophysics Data System (ADS)

    Robock, Alan; Luo, Lifeng; Wood, Eric F.; Wen, Fenghua; Mitchell, Kenneth E.; Houser, Paul R.; Schaake, John C.; Lohmann, Dag; Cosgrove, Brian; Sheffield, Justin; Duan, Qingyun; Higgins, R. Wayne; Pinker, Rachel T.; Tarpley, J. Dan; Basara, Jeffery B.; Crawford, Kenneth C.

    2003-11-01

    North American Land Data Assimilation System (NLDAS) land surface models have been run for a retrospective period forced by atmospheric observations from the Eta analysis and actual precipitation and downward solar radiation to calculate land hydrology. We evaluated these simulations using in situ observations over the southern Great Plains for the periods of May-September of 1998 and 1999 by comparing the model outputs with surface latent, sensible, and ground heat fluxes at 24 Atmospheric Radiation Measurement/Cloud and Radiation Testbed stations and with soil temperature and soil moisture observations at 72 Oklahoma Mesonet stations. The standard NLDAS models do a fairly good job but with differences in the surface energy partition and in soil moisture between models and observations and among models during the summer, while they agree quite well on the soil temperature simulations. To investigate why, we performed a series of experiments accounting for differences between model-specified soil types and vegetation and those observed at the stations, and differences in model treatment of different soil types, vegetation properties, canopy resistance, soil column depth, rooting depth, root density, snow-free albedo, infiltration, aerodynamic resistance, and soil thermal diffusivity. The diagnosis and model enhancements demonstrate how the models can be improved so that they can be used in actual data assimilation mode.

  7. Projecting Future Water Levels of the Laurentian Great Lakes

    NASA Astrophysics Data System (ADS)

    Bennington, V.; Notaro, M.; Holman, K.

    2013-12-01

    The Laurentian Great Lakes are the largest freshwater system on Earth, containing 84% of North America's freshwater. The lakes are a valuable economic and recreational resource, valued at over 62 billion in annual wages and supporting a 7 billion fishery. Shipping, recreation, and coastal property values are significantly impacted by water level variability, with large economic consequences. Great Lakes water levels fluctuate both seasonally and long-term, responding to natural and anthropogenic climate changes. Due to the integrated nature of water levels, a prolonged small change in any one of the net basin supply components: over-lake precipitation, watershed runoff, or evaporation from the lake surface, may result in important trends in water levels. We utilize the Abdus Salam International Centre for Theoretical Physics's Regional Climate Model Version 4.5.6 to dynamically downscale three global global climate models that represent a spread of potential future climate change for the region to determine whether the climate models suggest a robust response of the Laurentian Great Lakes to anthropogenic climate change. The Model for Interdisciplinary Research on Climate Version 5 (MIROC5), the National Centre for Meteorological Research Earth system model (CNRM-CM5), and the Community Climate System Model Version 4 (CCSM4) project different regional temperature increases and precipitation change over the next century and are used as lateral boundary conditions. We simulate the historical (1980-2000) and late-century periods (2080-2100). Upon model evaluation we will present dynamically downscaled projections of net basin supply changes for each of the Laurentian Great Lakes.

  8. Influence of off-great-circle propagation of Rayleigh waves on event-based surface wave tomography in Northeast China

    NASA Astrophysics Data System (ADS)

    Chen, Haopeng; Ni, Sidao; Chu, Risheng; Chong, Jiajun; Liu, Zhikun; Zhu, Liangbao

    2018-05-01

    Surface waves are generally assumed to propagate along great-circle paths in most surface-wave tomography. However, when lateral heterogeneity is strong, off-great-circle propagation may occur and deteriorate surface wave tomography results based on the great-circle assumption. In this study, we used teleseismic waveforms recorded by the NECESSArray in Northeast China to study off-great-circle propagation of Rayleigh waves using the beamforming method and evaluated the influence of off-great-circle propagation on event-based surface wave tomography. The results show that arrival angle anomalies generally increase with decreasing period. The arrival angle anomalies at 60 and 50 s periods are smaller than that at 40 and 30 s periods, which indicates that the off-great-circle propagation is relatively weak for longer periods. At 30 s period, the arrival angle anomalies are relatively larger and some of the measurements can exceed 20°, which represents a strong off-great-circle propagation effect. In some areas, the arrival angle anomalies of adjacent events differ significantly, which may be attributed to multipathing propagation of surface waves. To evaluate the influence of off-great-circle propagation on event-based surface wave tomography, we used measured arrival angle anomalies to correct two-station phase velocity measurements, and performed azimuthal anisotropy tomography using dispersion datasets with and without the arrival angle correction. At longer periods, such as 60 s, the influence of off-great-circle propagation on surface wave tomography is weak even though the corrected model has better data fit than the uncorrected model. However, the influence of off-great-circle propagation is non-negligible at short periods. The tomography results at 30 s period show that the differences in phase velocity, the strength of anisotropy and the fast direction can be as large as 1.5 per cent, 1.0 per cent and 30°, respectively. Furthermore, the corrected phase velocity is systematically lower than that without correction. This study illustrates the necessity of studying the off-great-circle propagation of surface waves to improve the accuracy of event-based surface wave tomography, especially for shorter periods.

  9. Natural Disasters and Human Behavior: Explanation, Research and Models.

    ERIC Educational Resources Information Center

    Glenn, Christopher

    1979-01-01

    A survey of published research determined that individual and group reactions to natural disasters differ greatly and depend partially on the predisaster personality. Four models are examined to explain individual and group reactions to natural disasters. A conglomerate model and a possible structure to future disaster research are offered.…

  10. Research on "STI +" Model in College Entrepreneurship Education

    ERIC Educational Resources Information Center

    Liu, Maike; Xu, Shuo; Gu, Jibao

    2017-01-01

    The current state attaches great importance to college entrepreneurship education, but entrepreneurship education should combine with college students' professional learning. Different professional learning backgrounds have commonalities in entrepreneurship education; there may be differences, too. Various professional knowledge background and…

  11. Hindlimb muscle architecture in non-human great apes and a comparison of methods for analysing inter-species variation

    PubMed Central

    Myatt, Julia P; Crompton, Robin H; Thorpe, Susannah K S

    2011-01-01

    By relating an animal's morphology to its functional role and the behaviours performed, we can further develop our understanding of the selective factors and constraints acting on the adaptations of great apes. Comparison of muscle architecture between different ape species, however, is difficult because only small sample sizes are ever available. Further, such samples are often comprised of different age–sex classes, so studies have to rely on scaling techniques to remove body mass differences. However, the reliability of such scaling techniques has been questioned. As datasets increase in size, more reliable statistical analysis may eventually become possible. Here we employ geometric and allometric scaling techniques, and ancovas (a form of general linear model, GLM) to highlight and explore the different methods available for comparing functional morphology in the non-human great apes. Our results underline the importance of regressing data against a suitable body size variable to ascertain the relationship (geometric or allometric) and of choosing appropriate exponents by which to scale data. ancova models, while likely to be more robust than scaling for species comparisons when sample sizes are high, suffer from reduced power when sample sizes are low. Therefore, until sample sizes are radically increased it is preferable to include scaling analyses along with ancovas in data exploration. Overall, the results obtained from the different methods show little significant variation, whether in muscle belly mass, fascicle length or physiological cross-sectional area between the different species. This may reflect relatively close evolutionary relationships of the non-human great apes; a universal influence on morphology of generalised orthograde locomotor behaviours or, quite likely, both. PMID:21507000

  12. Evaluating the Critical Thinking Skills and Academic Characteristics of Undergraduate Students at Two Post-Secondary Institutions Utilizing Two Different Curriculum Models

    ERIC Educational Resources Information Center

    Hepner, Michael Robert

    2012-01-01

    This mixed methods study compared the critical thinking skills of students at two post-secondary education institutions that utilize two different curriculum models. A contemporary institution that offers a core curriculum and degree specialization (majors) was contrasted with a Great Books school that utilizes a canon of primary sources and…

  13. A total variation diminishing finite difference algorithm for sonic boom propagation models

    NASA Technical Reports Server (NTRS)

    Sparrow, Victor W.

    1993-01-01

    It is difficult to accurately model the rise phases of sonic boom waveforms with traditional finite difference algorithms because of finite difference phase dispersion. This paper introduces the concept of a total variation diminishing (TVD) finite difference method as a tool for accurately modeling the rise phases of sonic booms. A standard second order finite difference algorithm and its TVD modified counterpart are both applied to the one-way propagation of a square pulse. The TVD method clearly outperforms the non-TVD method, showing great potential as a new computational tool in the analysis of sonic boom propagation.

  14. Identifying pollination service hotspots and coldspots using citizen science data from the Great Sunflower Project

    NASA Astrophysics Data System (ADS)

    LeBuhn, G.; Schmucki, R.

    2016-12-01

    Identifying the spatial patterns of pollinator visitation rates is key to identifying the drivers of differences in pollination service and the areas where pollinator conservation will provide the highest return on investment. However, gathering pollinator abundance data at the appropriate regional and national scales is untenable. As a surrogate, habitat models have been developed to identify areas of pollinator losses but these models have been developed using expert opinion based on foraging and nesting requirements. Thousands of citizen scientists across the United States participating in The Great Sunflower Project (www.GreatSunflower.org) contribute timed counts of pollinator visits to a focal sunflower variety planted in local gardens and green spaces. While these data provide a more direct measure of pollination service to a standardized plant and include a measure of effort, the data are complicated. Each location is sampled at different dates, times and frequencies as well as different points across the local flight season. To overcome this complication, we have used a generalized additive model to generate regional flight curves to calibrate each individual data point and to attain better estimates of pollination service at each site. Using these flight season corrected data, we identify hotspots and cold spots in pollinator service across the United States, evaluate the drivers shaping the spatial patterns and observe how these data align with the results obtained from predictive models that are based on expert knowledge on foraging and nesting habitats.

  15. Statistical models for detecting differential chromatin interactions mediated by a protein.

    PubMed

    Niu, Liang; Li, Guoliang; Lin, Shili

    2014-01-01

    Chromatin interactions mediated by a protein of interest are of great scientific interest. Recent studies show that protein-mediated chromatin interactions can have different intensities in different types of cells or in different developmental stages of a cell. Such differences can be associated with a disease or with the development of a cell. Thus, it is of great importance to detect protein-mediated chromatin interactions with different intensities in different cells. A recent molecular technique, Chromatin Interaction Analysis by Paired-End Tag Sequencing (ChIA-PET), which uses formaldehyde cross-linking and paired-end sequencing, is able to detect genome-wide chromatin interactions mediated by a protein of interest. Here we proposed two models (One-Step Model and Two-Step Model) for two sample ChIA-PET count data (one biological replicate in each sample) to identify differential chromatin interactions mediated by a protein of interest. Both models incorporate the data dependency and the extent to which a fragment pair is related to a pair of DNA loci of interest to make accurate identifications. The One-Step Model makes use of the data more efficiently but is more computationally intensive. An extensive simulation study showed that the models can detect those differentially interacted chromatins and there is a good agreement between each classification result and the truth. Application of the method to a two-sample ChIA-PET data set illustrates its utility. The two models are implemented as an R package MDM (available at http://www.stat.osu.edu/~statgen/SOFTWARE/MDM).

  16. Statistical Models for Detecting Differential Chromatin Interactions Mediated by a Protein

    PubMed Central

    Niu, Liang; Li, Guoliang; Lin, Shili

    2014-01-01

    Chromatin interactions mediated by a protein of interest are of great scientific interest. Recent studies show that protein-mediated chromatin interactions can have different intensities in different types of cells or in different developmental stages of a cell. Such differences can be associated with a disease or with the development of a cell. Thus, it is of great importance to detect protein-mediated chromatin interactions with different intensities in different cells. A recent molecular technique, Chromatin Interaction Analysis by Paired-End Tag Sequencing (ChIA-PET), which uses formaldehyde cross-linking and paired-end sequencing, is able to detect genome-wide chromatin interactions mediated by a protein of interest. Here we proposed two models (One-Step Model and Two-Step Model) for two sample ChIA-PET count data (one biological replicate in each sample) to identify differential chromatin interactions mediated by a protein of interest. Both models incorporate the data dependency and the extent to which a fragment pair is related to a pair of DNA loci of interest to make accurate identifications. The One-Step Model makes use of the data more efficiently but is more computationally intensive. An extensive simulation study showed that the models can detect those differentially interacted chromatins and there is a good agreement between each classification result and the truth. Application of the method to a two-sample ChIA-PET data set illustrates its utility. The two models are implemented as an R package MDM (available at http://www.stat.osu.edu/~statgen/SOFTWARE/MDM). PMID:24835279

  17. RNA secondary structure prediction with pseudoknots: Contribution of algorithm versus energy model.

    PubMed

    Jabbari, Hosna; Wark, Ian; Montemagno, Carlo

    2018-01-01

    RNA is a biopolymer with various applications inside the cell and in biotechnology. Structure of an RNA molecule mainly determines its function and is essential to guide nanostructure design. Since experimental structure determination is time-consuming and expensive, accurate computational prediction of RNA structure is of great importance. Prediction of RNA secondary structure is relatively simpler than its tertiary structure and provides information about its tertiary structure, therefore, RNA secondary structure prediction has received attention in the past decades. Numerous methods with different folding approaches have been developed for RNA secondary structure prediction. While methods for prediction of RNA pseudoknot-free structure (structures with no crossing base pairs) have greatly improved in terms of their accuracy, methods for prediction of RNA pseudoknotted secondary structure (structures with crossing base pairs) still have room for improvement. A long-standing question for improving the prediction accuracy of RNA pseudoknotted secondary structure is whether to focus on the prediction algorithm or the underlying energy model, as there is a trade-off on computational cost of the prediction algorithm versus the generality of the method. The aim of this work is to argue when comparing different methods for RNA pseudoknotted structure prediction, the combination of algorithm and energy model should be considered and a method should not be considered superior or inferior to others if they do not use the same scoring model. We demonstrate that while the folding approach is important in structure prediction, it is not the only important factor in prediction accuracy of a given method as the underlying energy model is also as of great value. Therefore we encourage researchers to pay particular attention in comparing methods with different energy models.

  18. The integration of geophysical and enhanced Moderate Resolution Imaging Spectroradiometer Normalized Difference Vegetation Index data into a rule-based, piecewise regression-tree model to estimate cheatgrass beginning of spring growth

    USGS Publications Warehouse

    Boyte, Stephen P.; Wylie, Bruce K.; Major, Donald J.; Brown, Jesslyn F.

    2015-01-01

    Cheatgrass exhibits spatial and temporal phenological variability across the Great Basin as described by ecological models formed using remote sensing and other spatial data-sets. We developed a rule-based, piecewise regression-tree model trained on 99 points that used three data-sets – latitude, elevation, and start of season time based on remote sensing input data – to estimate cheatgrass beginning of spring growth (BOSG) in the northern Great Basin. The model was then applied to map the location and timing of cheatgrass spring growth for the entire area. The model was strong (R2 = 0.85) and predicted an average cheatgrass BOSG across the study area of 29 March–4 April. Of early cheatgrass BOSG areas, 65% occurred at elevations below 1452 m. The highest proportion of cheatgrass BOSG occurred between mid-April and late May. Predicted cheatgrass BOSG in this study matched well with previous Great Basin cheatgrass green-up studies.

  19. Evaluation of a Mesoscale Atmospheric Dispersion Modeling System with Observations from the 1980 Great Plains Mesoscale Tracer Field Experiment. Part I: Datasets and Meteorological Simulations.

    NASA Astrophysics Data System (ADS)

    Moran, Michael D.; Pielke, Roger A.

    1996-03-01

    The Colorado State University mesoscale atmospheric dispersion (MAD) numerical modeling system, which consists of a prognostic mesoscale meteorological model coupled to a mesoscale Lagrangian particle dispersion model, has been used to simulate the transport and diffusion of a perfluorocarbon tracer-gas cloud for one afternoon surface release during the July 1980 Great Plains mesoscale tracer field experiment. Ground-level concentration (GLC) measurements taken along arcs of samplers 100 and 600 km downwind of the release site at Norman, Oklahoma, up to three days after the tracer release were available for comparison. Quantitative measures of a number of significant dispersion characteristics obtained from analysis of the observed tracer cloud's moving GLC `footprint' have been used to evaluate the modeling system's skill in simulating this MAD case.MAD is more dependent upon the spatial and temporal structure of the transport wind field than is short-range atmospheric dispersion. For the Great Plains mesoscale tracer experiment, the observations suggest that the Great Plains nocturnal low-level jet played an important role in transporting and deforming the tracer cloud. A suite of ten two- and three-dimensional numerical meteorological experiments was devised to investigate the relative contributions of topography, other surface inhomogeneities, atmospheric baroclinicity, synoptic-scale flow evolution, and meteorological model initialization time to the structure and evolution of the low-level mesoscale flow field and thus to MAD. Results from the ten mesoscale meteorological simulations are compared in this part of the paper. The predicted wind fields display significant differences, which give rise in turn to significant differences in predicted low-level transport. The presence of an oscillatory ageostrophic component in the observed synoptic low-level winds for this case is shown to complicate initialization of the meteorological model considerably and is the likely cause of directional errors in the predicted mean tracer transport. A companion paper describes the results from the associated dispersion simulations.

  20. Lake Huron LAMPs

    EPA Pesticide Factsheets

    The approach in Lake Huron differs from the Lakewide Management Plans of the other Great Lakes: no formal binational designation of lakewide beneficial use impairments, nor extensive lakewide modeling of chemical loadings

  1. Evaluation of the North American Land Data Assimilation System over the Southern Great Plains during the warm season

    NASA Astrophysics Data System (ADS)

    Robock, A.; Luo, L.; Wood, E. F.; Wen, F.; Mitchell, K. E.; Houser, P. R.; Schaake, J. C.; Nldas Team

    2003-04-01

    To conduct land data assimilation, validated land surface models are needed. The first step in the North American Land Data Assimilation System (NLDAS) is to evaluate four such state-of-the-art models. These models (VIC, Noah, Mosaic, and Sacramento) have been run for a retrospective period forced by atmospheric observations from the Eta analysis and actual precipitation and downward solar radiation (on a 1/8 degree North American grid) to calculate land hydrology. First we show that the forcing data set agrees very well with local observations and that simulations forced with local observations differ little from those forced with the NLDAS forcing data set. Then we evaluated the simulations using in situ observations over the Southern Great Plains for the periods of May-September of 1998 and 1999 by comparing the model outputs with surface latent, sensible, and ground heat fluxes at 24 Atmospheric Radiation Measurement/Cloud and Radiation Testbed stations and with soil temperature and soil moisture observations at 72 Oklahoma Mesonet stations. The standard NLDAS models do a fairly good job but with differences in the surface energy partition and in soil moisture between models and observations and among models during the summer, while they agree quite well on the soil temperature simulations. To investigate why, we performed a series of experiments accounting for differences between model-specified soil types and vegetation and those observed at the stations, and differences in model treatment of different soil types, vegetation properties, canopy resistance, soil column depth, rooting depth, root density, snow-free albedo, infiltration, aerodynamic resistance, and soil thermal diffusivity. The diagnosis and model enhancements demonstrate how the models can be improved so that they can be used in actual data assimilation mode.

  2. A Bayesian Analysis of the Post-seismic Deformation of the Great 11 March 2011 Tohoku-Oki (Mw 9.0) Earthquake: Implications for Future Earthquake Occurrence

    NASA Astrophysics Data System (ADS)

    Ortega Culaciati, F. H.; Simons, M.; Minson, S. E.; Owen, S. E.; Moore, A. W.; Hetland, E. A.

    2011-12-01

    We aim to quantify the spatial distribution of after-slip following the Great 11 March 2011 Tohoku-Oki (Mw 9.0) earthquake and its implications for the occurrence of a future Great Earthquake, particularly in the Ibaraki region of Japan. We use a Bayesian approach (CATMIP algorithm), constrained by on-land Geonet GPS time series, to infer models of after-slip to date in the Japan megathrust. Unlike traditional inverse methods, in which a single optimum model is found, the Bayesian approach allows a complete characterization of the model parameter space by searching a-posteriori estimates of the range of plausible models. We use the Kullback-Liebler information divergence as a metric of the information gain on each subsurface slip patch, to quantify the extent to which land-based geodetic observations can constrain the upper parts of the megathrust, where the Great Tohoku-Oki earthquake took place. We aim to understand the relationships of spatial distribution of fault slip behavior in the different stages of the seismic cycle. We compare our post-seismic slip distributions to inter- and co-seismic slip distributions obtained through a Bayesian methodology as well as through traditional (optimization) inverse estimates in the published literature. We discuss implications of these analyses for the occurrence of a large earthquake in the Japan megathrust regions adjacent to the Great Tohoku-Oki earthquake.

  3. Selection of Variables in Cluster Analysis: An Empirical Comparison of Eight Procedures

    ERIC Educational Resources Information Center

    Steinley, Douglas; Brusco, Michael J.

    2008-01-01

    Eight different variable selection techniques for model-based and non-model-based clustering are evaluated across a wide range of cluster structures. It is shown that several methods have difficulties when non-informative variables (i.e., random noise) are included in the model. Furthermore, the distribution of the random noise greatly impacts the…

  4. Relationships of elevation, channel slope, and stream width to occurrences of native fishes at the Great Plains-Rocky Mountains interface

    USGS Publications Warehouse

    Brunger, Lipsey T.S.; Hubert, W.A.; Rahel, F.J.

    2005-01-01

    Environmental gradients occur with upstream progression from plains to mountains and affect the occurrence of native warmwater fish species, but the relative importance of various environmental gradients are not defined. We assessed the relative influences of elevation, channel slope, and stream width on the occurrences of 15 native warmwater fish species among 152 reaches scattered across the North Platte River drainage of Wyoming at the interface of the Great Plains and Rocky Mountains. Most species were collected in reaches that were lower in elevation, had lower channel slopes, and were wider than the medians of the 152 sampled reaches. Several species occurred over a relatively narrow range of elevation, channel slope, or stream width among the sampled reaches, but the distributions of some species appeared to extend beyond the ranges of the sampled reaches. We identified competing logistic-regression models that accounted for the occurrence of individual species using the information-theoretic approach. Linear logistic-regression models accounted for patterns in the data better than curvilinear models for all species. The highest ranked models included channel slope for seven species, elevation for six species, stream width for one species, and both channel slope and stream width for one species. Our results suggest that different environmental gradients may affect upstream boundaries of different fish species at the interface of the Great Plains and Rocky Mountains in Wyoming.

  5. Simulating the impact of human land use change on forest composition in the Great Plains agroecosystems with the Seedscape model

    USGS Publications Warehouse

    Easterling, W.E.; Brandle, J.R.; Hays, C.J.; Guo, Q.; Guertin, D.S.

    2001-01-01

    The expansion and contraction of marginal cropland in the Great Plains often involves small forested strips of land that provide important ecological benefits. The effect of human disturbance on these forests is not well known. Because of their unique structure such forests are not well-represented by forest gap models. In this paper, the development, testing and application of a new model known as Seedscape are described. Seedscape is a modification of the JABOWA-II model, and it uses a spatially-explicit landscape to resolve small-scale features of highly fragmented forests in the eastern Great Plains. It was tested and evaluated with observations from two sites, one in Nebraska and a second in eastern Iowa. Seedscape realistically simulates succession at the Nebraska site, but is less successful at the Iowa site. Seedscape was also applied to the Nebraska site to simulate the effect that varying forest corridor widths, in response to the presumed expansion/contraction of adjacent agricultural land, has on succession properties. Results suggest that small differences in widths have negligible effects on forest composition, but large differences in widths may cause statistically-significant changes in the relative importance of some species. We assert that long-term ecological change in human dominated landscapes is not well understood, in part, because of inadequate modeling techniques. Seedscape provides a much-needed tool for assessing the ecological implications of land use change in forests of predominately agricultural landscapes.

  6. Impact of model relative accuracy in framework of rescaling observations in hydrological data assimilation studies

    USDA-ARS?s Scientific Manuscript database

    Soil moisture datasets (e.g. satellite-, model-, station-based) vary greatly with respect to their signal, noise, and/or combined time-series variability. Minimizing differences in signal variances is particularly important in data assimilation techniques to optimize the accuracy of the analysis obt...

  7. Comparative bioenergetics modeling of two Lake Trout morphotypes

    USGS Publications Warehouse

    Kepler, Megan V.; Wagner, Tyler; Sweka, John A.

    2014-01-01

    Efforts to restore Lake Trout Salvelinus namaycush in the Laurentian Great Lakes have been hampered for decades by several factors, including overfishing and invasive species (e.g., parasitism by Sea Lampreys Petromyzon marinus and reproductive deficiencies associated with consumption of Alewives Alosa pseudoharengus). Restoration efforts are complicated by the presence of multiple body forms (i.e., morphotypes) of Lake Trout that differ in habitat utilization, prey consumption, lipid storage, and spawning preferences. Bioenergetics models constitute one tool that is used to help inform management and restoration decisions; however, bioenergetic differences among morphotypes have not been evaluated. The goal of this research was to investigate bioenergetic differences between two actively stocked morphotypes: lean and humper Lake Trout. We measured consumption and respiration rates across a wide range of temperatures (4–22°C) and size-classes (5–100 g) to develop bioenergetics models for juvenile Lake Trout. Bayesian estimation was used so that uncertainty could be propagated through final growth predictions. Differences between morphotypes were minimal, but when present, the differences were temperature and weight dependent. Basal respiration did not differ between morphotypes at any temperature or size-class. When growth and consumption differed between morphotypes, the differences were not consistent across the size ranges tested. Management scenarios utilizing the temperatures presently found in the Great Lakes (e.g., predicted growth at an average temperature of 11.7°C and 14.4°C during a 30-d period) demonstrated no difference in growth between the two morphotypes. Due to a lack of consistent differences between lean and humper Lake Trout, we developed a model that combined data from both morphotypes. The combined model yielded results similar to those of the morphotype-specific models, suggesting that accounting for morphotype differences may not be necessary in bioenergetics modeling of lean and humper Lake Trout.

  8. Software reliability studies

    NASA Technical Reports Server (NTRS)

    Hoppa, Mary Ann; Wilson, Larry W.

    1994-01-01

    There are many software reliability models which try to predict future performance of software based on data generated by the debugging process. Our research has shown that by improving the quality of the data one can greatly improve the predictions. We are working on methodologies which control some of the randomness inherent in the standard data generation processes in order to improve the accuracy of predictions. Our contribution is twofold in that we describe an experimental methodology using a data structure called the debugging graph and apply this methodology to assess the robustness of existing models. The debugging graph is used to analyze the effects of various fault recovery orders on the predictive accuracy of several well-known software reliability algorithms. We found that, along a particular debugging path in the graph, the predictive performance of different models can vary greatly. Similarly, just because a model 'fits' a given path's data well does not guarantee that the model would perform well on a different path. Further we observed bug interactions and noted their potential effects on the predictive process. We saw that not only do different faults fail at different rates, but that those rates can be affected by the particular debugging stage at which the rates are evaluated. Based on our experiment, we conjecture that the accuracy of a reliability prediction is affected by the fault recovery order as well as by fault interaction.

  9. Communication—indentation of Li-ion pouch cell: Effect of material homogenization on prediction of internal short circuit

    DOE PAGES

    Kumar, A.; Kalnaus, Sergiy; Simunovic, Srdjan; ...

    2016-09-12

    We performed finite element simulations of spherical indentation of Li-ion pouch cells. Our model fully resolves different layers in the cell. The results of the layer resolved models were compared to the models available in the literature that treat the cell as an equivalent homogenized continuum material. Simulations were carried out for different sizes of the spherical indenter. Here, we show that calibration of a failure criterion for the cell in the homogenized model depends on the indenter size, whereas in the layer-resoled model, such dependency is greatly diminished.

  10. Thermal analysis of void cavity for heat pipe receiver under microgravity

    NASA Astrophysics Data System (ADS)

    Gui, Xiaohong; Song, Xiange; Nie, Baisheng

    2017-04-01

    Based on theoretical analysis of PCM (Phase Change Material) solidification process, the model of improved void cavity distribution tending to high temperature region is established. Numerical results are compared with NASA (National Aeronautics and Space Administration) results. Analysis results show that the outer wall temperature, the melting ratio of PCM and the temperature gradient of PCM canister, have great difference in different void cavity distribution. The form of void distribution has a great effect on the process of phase change. Based on simulation results under the model of improved void cavity distribution, phase change heat transfer process in thermal storage container is analyzed. The main goal of the improved designing for PCM canister is to take measures in reducing the concentration distribution of void cavity by adding some foam metal into phase change material.

  11. The Great Lakes' regional climate regimes

    NASA Astrophysics Data System (ADS)

    Sugiyama, Noriyuki

    For the last couple of decades, the Great Lakes have undergone rapid surface warming. In particular, the magnitude of the summer surface-warming trends of the Great Lakes have been much greater than those of surrounding land (Austin and Colman, 2007). Among the Great Lakes, the deepest Lake Superior exhibited the strongest warming trend in its annual, as well as summer surface water temperature. We find that many aspects of this behavior can be explained in terms of the tendency of deep lakes to exhibit multiple regimes characterized, under the same seasonally varying forcing, by the warmer and colder seasonal cycles exhibiting different amounts of wintertime lake-ice cover and corresponding changes in the summertime lake-surface temperatures. In this thesis, we address the problem of the Great Lakes' warming using one-dimensional lake modeling to interpret diverse observations of the recent lake behavior. (Abstract shortened by ProQuest.).

  12. Impact of an equality constraint on the class-specific residual variances in regression mixtures: A Monte Carlo simulation study

    PubMed Central

    Kim, Minjung; Lamont, Andrea E.; Jaki, Thomas; Feaster, Daniel; Howe, George; Van Horn, M. Lee

    2015-01-01

    Regression mixture models are a novel approach for modeling heterogeneous effects of predictors on an outcome. In the model building process residual variances are often disregarded and simplifying assumptions made without thorough examination of the consequences. This simulation study investigated the impact of an equality constraint on the residual variances across latent classes. We examine the consequence of constraining the residual variances on class enumeration (finding the true number of latent classes) and parameter estimates under a number of different simulation conditions meant to reflect the type of heterogeneity likely to exist in applied analyses. Results showed that bias in class enumeration increased as the difference in residual variances between the classes increased. Also, an inappropriate equality constraint on the residual variances greatly impacted estimated class sizes and showed the potential to greatly impact parameter estimates in each class. Results suggest that it is important to make assumptions about residual variances with care and to carefully report what assumptions were made. PMID:26139512

  13. Annual crop type classification of the U.S. Great Plains for 2000 to 2011

    USGS Publications Warehouse

    Howard, Daniel M.; Wylie, Bruce K.

    2014-01-01

    The purpose of this study was to increase the spatial and temporal availability of crop classification data. In this study, nearly 16.2 million crop observation points were used in the training of the US Great Plains classification tree crop type model (CTM). Each observation point was further defined by weekly Normalized Difference Vegetation Index, annual climate, and a number of other biogeophysical environmental characteristics. This study accounted for the most prevalent crop types in the region, including, corn, soybeans, winter wheat, spring wheat, cotton, sorghum, and alfalfa. Annual CTM crop maps of the US Great Plains were created for 2000 to 2011 at a spatial resolution of 250 meters. The CTM achieved an 87 percent classification success rate on 1.8 million observation points that were withheld from model training. Product validation was performed on greater than 15,000 county records with a coefficient of determination of R2 = 0.76.

  14. Ophiolitic basement to the Great Valley forearc basin, California, from seismic and gravity data: Implications for crustal growth at the North American continental margin

    USGS Publications Warehouse

    Godfrey, N.J.; Beaudoin, B.C.; Klemperer, S.L.; Levander, A.; Luetgert, J.; Meltzer, A.; Mooney, W.; Tréhu, A.

    1997-01-01

    The nature of the Great Valley basement, whether oceanic or continental, has long been a source of controversy. A velocity model (derived from a 200-km-long east-west reflection-refraction profile collected south of the Mendocino triple junction, northern California, in 1993), further constrained by density and magnetic models, reveals an ophiolite underlying the Great Valley (Great Valley ophiolite), which in turn is underlain by a westward extension of lower-density continental crust (Sierran affinity material). We used an integrated modeling philosophy, first modeling the seismic-refraction data to obtain a final velocity model, and then modeling the long-wavelength features of the gravity data to obtain a final density model that is constrained in the upper crust by our velocity model. The crustal section of Great Valley ophiolite is 7-8 km thick, and the Great Valley ophiolite relict oceanic Moho is at 11-16 km depth. The Great Valley ophiolite does not extend west beneath the Coast Ranges, but only as far as the western margin of the Great Valley, where the 5-7-km-thick Great Valley ophiolite mantle section dips west into the present-day mantle. There are 16-18 km of lower-density Sierran affinity material beneath the Great Valley ophiolite mantle section, such that a second, deeper, "present-day" continental Moho is at about 34 km depth. At mid-crustal depths, the boundary between the eastern extent of the Great Valley ophiolite and the western extent of Sierran affinity material is a near-vertical velocity and density discontinuity about 80 km east of the western margin of the Great Valley. Our model has important implications for crustal growth at the North American continental margin. We suggest that a thick ophiolite sequence was obducted onto continental material, probably during the Jurassic Nevadan orogeny, so that the Great Valley basement is oceanic crust above oceanic mantle vertically stacked above continental crust and continental mantle.

  15. Improved Regional Seismic Event Locations Using 3-D Velocity Models

    DTIC Science & Technology

    1999-12-15

    regional velocity model to estimate event hypocenters. Travel times for the regional phases are calculated using a sophisticated eikonal finite...can greatly improve estimates of event locations. Our algorithm calculates travel times using a finite difference approximation of the eikonal ...such as IASP91 or J-B. 3-D velocity models require more sophisticated travel time modeling routines; thus, we use a 3-D eikonal equation solver

  16. Programs and Practices for Identifying and Nurturing High Intellectual Abilities in Spain

    ERIC Educational Resources Information Center

    Sastre-Riba, Sylvia; Pérez-Sánchez, Luz F.; Villaverde, Angeles Bueno

    2018-01-01

    The recent educational legislation in Spain shows a great interest in enhancing the talents of all citizens. Different models of identification and intervention for students with high intellectual abilities (HIAs) coexist. The assessment model based on intelligence is still in force in the psychoeducational guidance field; however, from the…

  17. Logistic models--an odd(s) kind of regression.

    PubMed

    Jupiter, Daniel C

    2013-01-01

    The logistic regression model bears some similarity to the multivariable linear regression with which we are familiar. However, the differences are great enough to warrant a discussion of the need for and interpretation of logistic regression. Copyright © 2013 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  18. Modelling Farm Animal Welfare

    PubMed Central

    Collins, Lisa M.; Part, Chérie E.

    2013-01-01

    Simple Summary In this review paper we discuss the different modeling techniques that have been used in animal welfare research to date. We look at what questions they have been used to answer, the advantages and pitfalls of the methods, and how future research can best use these approaches to answer some of the most important upcoming questions in farm animal welfare. Abstract The use of models in the life sciences has greatly expanded in scope and advanced in technique in recent decades. However, the range, type and complexity of models used in farm animal welfare is comparatively poor, despite the great scope for use of modeling in this field of research. In this paper, we review the different modeling approaches used in farm animal welfare science to date, discussing the types of questions they have been used to answer, the merits and problems associated with the method, and possible future applications of each technique. We find that the most frequently published types of model used in farm animal welfare are conceptual and assessment models; two types of model that are frequently (though not exclusively) based on expert opinion. Simulation, optimization, scenario, and systems modeling approaches are rarer in animal welfare, despite being commonly used in other related fields. Finally, common issues such as a lack of quantitative data to parameterize models, and model selection and validation are discussed throughout the review, with possible solutions and alternative approaches suggested. PMID:26487411

  19. Shot Peening Numerical Simulation of Aircraft Aluminum Alloy Structure

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Lv, Sheng-Li; Zhang, Wei

    2018-03-01

    After shot peening, the 7050 aluminum alloy has good anti-fatigue and anti-stress corrosion properties. In the shot peening process, the pellet collides with target material randomly, and generated residual stress distribution on the target material surface, which has great significance to improve material property. In this paper, a simplified numerical simulation model of shot peening was established. The influence of pellet collision velocity, pellet collision position and pellet collision time interval on the residual stress of shot peening was studied, which is simulated by the ANSYS/LS-DYNA software. The analysis results show that different velocity, different positions and different time intervals have great influence on the residual stress after shot peening. Comparing with the numerical simulation results based on Kriging model, the accuracy of the simulation results in this paper was verified. This study provides a reference for the optimization of the shot peening process, and makes an effective exploration for the precise shot peening numerical simulation.

  20. 3D tomographic seismic imaging of the southern rupture barrier of the great Sumatra-Andaman 2005 earthquake

    NASA Astrophysics Data System (ADS)

    Vermeesch, P. M.; Henstock, T. J.; Lange, D.; McNeill, L. C.; Barton, P. J.; Tang, G.; Bull, J. M.; Tilmann, F.; Dean, S. M.; Djajadihardja, Y.; Permana, H.

    2009-04-01

    In 2008 a 3D onshore-offshore controlled-source seismic experiment was carried out in an area of 300 km x 400 km, centered on the southern termination of the great Sumatra-Andaman 2005 earthquake rupture. In the first part of cruise SO198 on R/V Sonne ~10000 airgun shots were fired into an array of 47 Ocean Bottom Seismometers (OBSs). A further ~50000 shots were fired into an array of 10 long-deployment OBSs. All shots were recorded on ~15 seismometers on the islands and more than 20 seismometers along the coast of Sumatra. An initial velocity model has been derived from 70132 first-arrival traveltimes from 45 OBSs, using the First-Arrival Seismic Tomography (FAST) inversion code developed by Zelt and Barton (1998). Root Mean Square traveltime misfit reduces from 1311 ms in the 1D starting model to 81 ms after 20 non-linear iterations. Offsets range between 0 and 265 km, with rays penetrating up to 28 km depth in the final model, hereby imaging the top of the subducting oceanic plate and revealing its complex 3D topography. Ray coverage is still being extended by including first-arrival traveltime picks from the landstations on the coast of Sumatra and the islands and from the 10 long-term deployment OBSs that will be recovered in January. The robustness and resolution of the final 3D model is examined by exploring different starting models, different inversion parameters and by carrying out checkerboard tests and synthetic tests. The resulting crustal 3D velocity model will allow us to explore the nature and physical cause of the rupture barrier of the 2005 great earthquake. Comparison with a similar dataset and subsequent 3D velocity model acquired at the boundary between the 2004 and 2005 earthquakes will provide important insights into the segmentation of the Sumatra subduction zone and the dynamics of its great earthquakes. Zelt, C. A. and P. J. Barton (1998). Three-dimensional seismic refraction tomography: A comparison of two methods applied to data from the Faroe Basin. Journal of Geophysical Research 103: 7187-7210.

  1. Integrating 3D geological information with a national physically-based hydrological modelling system

    NASA Astrophysics Data System (ADS)

    Lewis, Elizabeth; Parkin, Geoff; Kessler, Holger; Whiteman, Mark

    2016-04-01

    Robust numerical models are an essential tool for informing flood and water management and policy around the world. Physically-based hydrological models have traditionally not been used for such applications due to prohibitively large data, time and computational resource requirements. Given recent advances in computing power and data availability, a robust, physically-based hydrological modelling system for Great Britain using the SHETRAN model and national datasets has been created. Such a model has several advantages over less complex systems. Firstly, compared with conceptual models, a national physically-based model is more readily applicable to ungauged catchments, in which hydrological predictions are also required. Secondly, the results of a physically-based system may be more robust under changing conditions such as climate and land cover, as physical processes and relationships are explicitly accounted for. Finally, a fully integrated surface and subsurface model such as SHETRAN offers a wider range of applications compared with simpler schemes, such as assessments of groundwater resources, sediment and nutrient transport and flooding from multiple sources. As such, SHETRAN provides a robust means of simulating numerous terrestrial system processes which will add physical realism when coupled to the JULES land surface model. 306 catchments spanning Great Britain have been modelled using this system. The standard configuration of this system performs satisfactorily (NSE > 0.5) for 72% of catchments and well (NSE > 0.7) for 48%. Many of the remaining 28% of catchments that performed relatively poorly (NSE < 0.5) are located in the chalk in the south east of England. As such, the British Geological Survey 3D geology model for Great Britain (GB3D) has been incorporated, for the first time in any hydrological model, to pave the way for improvements to be made to simulations of catchments with important groundwater regimes. This coupling has involved development of software to allow for easy incorporation of geological information into SHETRAN for any model setup. The addition of more realistic subsurface representation following this approach is shown to greatly improve model performance in areas dominated by groundwater processes. The resulting modelling system has great potential to be used as a resource at national, regional and local scales in an array of different applications, including climate change impact assessments, land cover change studies and integrated assessments of groundwater and surface water resources.

  2. Circuit transients due to negative bias arcs-II. [on solar cell power systems in low earth orbit

    NASA Technical Reports Server (NTRS)

    Metz, R. N.

    1986-01-01

    Two new models of negative-bias arcing on a solar cell power system in Low Earth Orbit are presented. One is an extended, analytical model and the other is a non-linear, numerical model. The models are based on an earlier analytical model in which the interactions between solar cell interconnects and the space plasma as well as the parameters of the power circuit are approximated linearly. Transient voltages due to arcs struck at the negative thermal of the solar panel are calculated in the time domain. The new models treat, respectively, further linear effects within the solar panel load circuit and non-linear effects associated with the plasma interactions. Results of computer calculations with the models show common-mode voltage transients of the electrically floating solar panel struck by an arc comparable to the early model but load transients that differ substantially from the early model. In particular, load transients of the non-linear model can be more than twice as great as those of the early model and more than twenty times as great as the extended, linear model.

  3. Application of wheat yield model to United States and India. [Great Plains

    NASA Technical Reports Server (NTRS)

    Feyerherm, A. M. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. The wheat yield model was applied to the major wheat-growing areas of the US and India. In the US Great Plains, estimates from the winter and spring wheat models agreed closely with USDA-SRS values in years with the lowest yields, but underestimated in years with the highest yields. Application to the Eastern Plains and Northwest indicated the importance of cultural factors, as well as meteorological ones in the model. It also demonstrated that the model could be used, in conjunction with USDA-SRRS estimates, to estimate yield losses due to factors not included in the model, particularly diseases and freezes. A fixed crop calendar for India was built from a limited amount of available plot data from that country. Application of the yield model gave measurable evidence that yield variation from state to state was due to different mixes of levels of meteorological and cultural factors.

  4. Direct 3D-printing of cell-laden constructs in microfluidic architectures.

    PubMed

    Liu, Justin; Hwang, Henry H; Wang, Pengrui; Whang, Grace; Chen, Shaochen

    2016-04-21

    Microfluidic platforms have greatly benefited the biological and medical fields, however standard practices require a high cost of entry in terms of time and energy. The utilization of three-dimensional (3D) printing technologies has greatly enhanced the ability to iterate and build functional devices with unique functions. However, their inability to fabricate within microfluidic devices greatly increases the cost of producing several different devices to examine different scientific questions. In this work, a variable height micromixer (VHM) is fabricated using projection 3D-printing combined with soft lithography. Theoretical and flow experiments demonstrate that altering the local z-heights of VHM improved mixing at lower flow rates than simple geometries. Mixing of two fluids occurs as low as 320 μL min(-1) in VHM whereas the planar zigzag region requires a flow rate of 2.4 mL min(-1) before full mixing occurred. Following device printing, to further demonstrate the ability of this projection-based method, complex, user-defined cell-laden scaffolds are directly printed inside the VHM. The utilization of this unique ability to produce 3D tissue models within a microfluidic system could offer a unique platform for medical diagnostics and disease modeling.

  5. Potential distribution of the viral haemorrhagic septicaemia virus in the Great Lakes region

    USGS Publications Warehouse

    Escobar, Luis E.; Kurath, Gael; Escobar-Dodero, Joaquim; Craft, Meggan E.; Phelps, Nicholas B.D.

    2017-01-01

    Viral haemorrhagic septicaemia virus (VHSV) genotype IVb has been responsible for large-scale fish mortality events in the Great Lakes of North America. Anticipating the areas of potential VHSV occurrence is key to designing epidemiological surveillance and disease prevention strategies in the Great Lakes basin. We explored the environmental features that could shape the distribution of VHSV, based on remote sensing and climate data via ecological niche modelling. Variables included temperature measured during the day and night, precipitation, vegetation, bathymetry, solar radiation and topographic wetness. VHSV occurrences were obtained from available reports of virus confirmation in laboratory facilities. We fit a Maxent model using VHSV-IVb reports and environmental variables under different parameterizations to identify the best model to determine potential VHSV occurrence based on environmental suitability. VHSV reports were generated from both passive and active surveillance. VHSV occurrences were most abundant near shore sites. We were, however, able to capture the environmental signature of VHSV based on the environmental variables employed in our model, allowing us to identify patterns of VHSV potential occurrence. Our findings suggest that VHSV is not at an ecological equilibrium and more areas could be affected, including areas not in close geographic proximity to past VHSV reports.

  6. An optimal implicit staggered-grid finite-difference scheme based on the modified Taylor-series expansion with minimax approximation method for elastic modeling

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Yan, Hongyong; Liu, Hong

    2017-03-01

    Implicit staggered-grid finite-difference (ISFD) scheme is competitive for its great accuracy and stability, whereas its coefficients are conventionally determined by the Taylor-series expansion (TE) method, leading to a loss in numerical precision. In this paper, we modify the TE method using the minimax approximation (MA), and propose a new optimal ISFD scheme based on the modified TE (MTE) with MA method. The new ISFD scheme takes the advantage of the TE method that guarantees great accuracy at small wavenumbers, and keeps the property of the MA method that keeps the numerical errors within a limited bound at the same time. Thus, it leads to great accuracy for numerical solution of the wave equations. We derive the optimal ISFD coefficients by applying the new method to the construction of the objective function, and using a Remez algorithm to minimize its maximum. Numerical analysis is made in comparison with the conventional TE-based ISFD scheme, indicating that the MTE-based ISFD scheme with appropriate parameters can widen the wavenumber range with high accuracy, and achieve greater precision than the conventional ISFD scheme. The numerical modeling results also demonstrate that the MTE-based ISFD scheme performs well in elastic wave simulation, and is more efficient than the conventional ISFD scheme for elastic modeling.

  7. A study of the current group evaporation/combustion theories

    NASA Technical Reports Server (NTRS)

    Shen, Hayley H.

    1990-01-01

    Liquid fuel combustion can be greatly enhanced by disintegrating the liquid fuel into droplets, an effect achieved by various configurations. A number of experiments carried out in the seventies showed that combustion of droplet arrays and sprays do not form individual flames. Moreover, the rate of burning in spray combustion greatly deviates from that of the single combustion rate. Such observations naturally challenge its applicability to spray combustion. A number of mathematical models were developed to evaluate 'group combustion' and the related 'group evaporation' phenomena. This study investigates the similarity and difference of these models and their applicability to spray combustion. Future work that should be carried out in this area is indicated.

  8. Forecasting effects of climate change on Great Lakes fisheries: models that link habitat supply to population dynamics can help

    USGS Publications Warehouse

    Jones, Michael L.; Shuter, Brian J.; Zhao, Yingming; Stockwell, Jason D.

    2006-01-01

    Future changes to climate in the Great Lakes may have important consequences for fisheries. Evidence suggests that Great Lakes air and water temperatures have risen and the duration of ice cover has lessened during the past century. Global circulation models (GCMs) suggest future warming and increases in precipitation in the region. We present new evidence that water temperatures have risen in Lake Erie, particularly during summer and winter in the period 1965–2000. GCM forecasts coupled with physical models suggest lower annual runoff, less ice cover, and lower lake levels in the future, but the certainty of these forecasts is low. Assessment of the likely effects of climate change on fish stocks will require an integrative approach that considers several components of habitat rather than water temperature alone. We recommend using mechanistic models that couple habitat conditions to population demographics to explore integrated effects of climate-caused habitat change and illustrate this approach with a model for Lake Erie walleye (Sander vitreum). We show that the combined effect on walleye populations of plausible changes in temperature, river hydrology, lake levels, and light penetration can be quite different from that which would be expected based on consideration of only a single factor.

  9. Effects of Land-use/Land-cover and Climate Changes on Water Quantity and Quality in Sub-basins near Major US Cities in the Great Lakes Region

    NASA Astrophysics Data System (ADS)

    Murphy, L.; Al-Hamdan, M. Z.; Crosson, W. L.; Barik, M.

    2017-12-01

    Land-cover change over time to urbanized, less permeable surfaces, leads to reduced water infiltration at the location of water input while simultaneously transporting sediments, nutrients and contaminants farther downstream. With an abundance of agricultural fields bordering the greater urban areas of Milwaukee, Detroit, and Chicago, water and nutrient transport is vital to the farming industry, wetlands, and communities that rely on water availability. Two USGS stream gages each located within a sub-basin near each of these Great Lakes Region cities were examined, one with primarily urban land-cover between 1992 and 2011, and one with primarily agriculture land-cover. ArcSWAT, a watershed model and soil and water assessment tool used in extension with ArcGIS, was used to develop hydrologic models that vary the land-covers to simulate surface runoff during a model run period from 2004 to 2008. Model inputs that include a digital elevation model (DEM), Landsat-derived land-use/land-cover (LULC) satellite images from 1992, 2001, and 2011, soil classification, and meteorological data were used to determine the effect of different land-covers on the water runoff, nutrients and sediments. The models were then calibrated and validated to USGS stream gage data measurements over time. Additionally, the watershed model was run based on meteorological data from an IPCC CMIP5 high emissions climate change scenario for 2050. Model outputs from the different LCLU scenarios were statistically evaluated and results showed that water runoff, nutrients and sediments were impacted by LULC change in four out of the six sub-basins. In the 2050 climate scenario, only one out of the six sub-basin's water quantity and quality was affected. These results contribute to the importance of developing hydrologic models as the dependence on the Great Lakes as a freshwater resource competes with the expansion of urbanization leading to the movement of runoff, nutrients, and sediments off the land.

  10. In vitro evaluation of physiological spiral anastomoses for the arterial switch operation in simple transposition of the great arteries: a first step towards a surgical alternative?

    PubMed

    Sievers, Hans-Hinrich; Scharfschwerdt, Michael; Putman, Léon M

    2015-08-01

    The currently most frequently used technique for the arterial switch operation (ASO) in simple transposition of the great arteries (TGA) includes the transposition of the pulmonary artery anterior to the ascending aorta. This arterial arrangement is less anatomical, and although the initial results are excellent, some long-term data are indicating a certain risk of morbidity, encouraging the search for more physiological techniques. As a first step, we studied the feasibility of anatomical spiral anastomoses of the great vessels in vitro. A TGA model was constructed to simulate the different spatial positions of the great arteries followed by ASO with physiological spiral connections of the great arteries. It was possible to perform a physiological spiral connection of the great arteries without tension or torsion when the roots of the great vessels were arranged anterior-posterior and with up to 35° rotation of the aortic root to the right around the pulmonary root. With further rotation of the aorta, patch plasties were required for pulmonary artery elongation. The maximal width of the patch was 5 mm. In this TGA model, it was possible to perform tension- and torsion-free arterial anastomoses for ASO without artificial material, when the aortic root was positioned from 0° up to 35° to the right of the pulmonary root. Evaluation of coronary transfer is the next step. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  11. NASA's Great Observatories Paper Model Kits.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Education Dept.

    The Hubble Space Telescope, the most complex and sensitive optical telescope ever made, was built to study the cosmos from low-Earth orbit for 10 to 15 years or more. The Compton Gamma Ray Observatory is a complex spacecraft fitted with four different gamma ray detectors, each of which concentrates on different but overlapping energy range and was…

  12. Learner Control, User Characteristics, Platform Difference, and Their Role in Adoption Intention for MOOC Learning in China

    ERIC Educational Resources Information Center

    Zhang, Min; Yin, Shuaijun; Luo, Meifen; Yan, Weiwei

    2017-01-01

    Massive open online course (MOOC) learning attracts more and more attention in both the practice and the research field. Finding out what factors influence learners' MOOC adoption is of great importance. This study focuses on learner control, user characteristics and platform difference. Hypotheses and a research model are proposed by…

  13. The spatial scale for cisco recruitment dynamics in Lake Superior during 1978-2007

    USGS Publications Warehouse

    Rook, Benjamin J.; Hansen, Michael J.; Gorman, Owen T.

    2012-01-01

    The cisco Coregonus artedi was once the most abundant fish species in the Great Lakes, but currently cisco populations are greatly reduced and management agencies are attempting to restore the species throughout the basin. To increase understanding of the spatial scale at which density‐independent and density‐dependent factors influence cisco recruitment dynamics in the Great Lakes, we used a Ricker stock–recruitment model to identify and quantify the appropriate spatial scale for modeling age‐1 cisco recruitment dynamics in Lake Superior. We found that the recruitment variation of ciscoes in Lake Superior was best described by a five‐parameter regional model with separate stock–recruitment relationships for the western, southern, eastern, and northern regions. The spatial scale for modeling was about 260 km (range = 230–290 km). We also found that the density‐independent recruitment rate and the rate of compensatory density dependence varied among regions at different rates. The density‐independent recruitment rate was constant among regions (3.6 age‐1 recruits/spawner), whereas the rate of compensatory density dependence varied 16‐fold among regions (range = −0.2 to −2.9/spawner). Finally, we found that peak recruitment and the spawning stock size that produced peak recruitment varied among regions. Both peak recruitment (0.5–7.1 age‐1 recruits/ha) and the spawning stock size that produced peak recruitment (0.3–5.3 spawners/ha) varied 16‐fold among regions. Our findings support the hypothesis that the factors driving cisco recruitment operate within four different regions of Lake Superior, suggest that large‐scale abiotic factors are more important than small‐scale biotic factors in influencing cisco recruitment, and suggest that fishery managers throughout Lake Superior and the entire Great Lakes basin should address cisco restoration and management efforts on a regional scale in each lake.

  14. Probability of a great earthquake to recur in the Tokai district, Japan: reevaluation based on newly-developed paleoseismology, plate tectonics, tsunami study, micro-seismicity and geodetic measurements

    NASA Astrophysics Data System (ADS)

    Rikitake, T.

    1999-03-01

    In light of newly-acquired geophysical information about earthquake generation in the Tokai area, Central Japan, where occurrence of a great earthquake of magnitude 8 or so has recently been feared, probabilities of earthquake occurrence in the near future are reevaluated. Much of the data used for evaluation here relies on recently-developed paleoseismology, tsunami study and GPS geodesy.The new Weibull distribution analysis of recurrence tendency of great earthquakes in the Tokai-Nankai zone indicates that the mean return period of great earthquakes there is estimated as 109 yr with a standard deviation amounting to 33 yr. These values do not differ much from those of previous studies (Rikitake, 1976, 1986; Utsu, 1984).Taking the newly-determined velocities of the motion of Philippine Sea plate at various portions of the Tokai-Nankai zone into account, the ultimate displacements to rupture at the plate boundary are obtained. A Weibull distribution analysis results in the mean ultimate displacement amounting to 4.70 m with a standard deviation estimated as 0.86 m. A return period amounting to 117 yr is obtained at the Suruga Bay portion by dividing the mean ultimate displacement by the relative plate velocity.With the aid of the fault models as determined from the tsunami studies, the increases in the cumulative seismic slips associated with the great earthquakes are examined at various portions of the zone. It appears that a slip-predictable model can better be applied to the occurrence mode of great earthquakes in the zone than a time-predictable model. The crustal strain accumulating over the Tokai area as estimated from the newly-developed geodetic work including the GPS observations is compared to the ultimate strain presumed by the above two models.The probabilities for a great earthquake to recur in the Tokai district are then estimated with the aid of the Weibull analysis parameters obtained for the four cases discussed in the above. All the probabilities evaluated for the four cases take on values ranging 35-45 percent for a ten-year period following the year 2000.

  15. Preliminary Cost Model for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Prince, F. Andrew; Smart, Christian; Stephens, Kyle; Henrichs, Todd

    2009-01-01

    Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. However, great care is required. Some space telescope cost models, such as those based only on mass, lack sufficient detail to support such analysis and may lead to inaccurate conclusions. Similarly, using ground based telescope models which include the dome cost will also lead to inaccurate conclusions. This paper reviews current and historical models. Then, based on data from 22 different NASA space telescopes, this paper tests those models and presents preliminary analysis of single and multi-variable space telescope cost models.

  16. Simulated and experimental evaluation of factors affecting the rate and extent of reductive dehalogenation of chloroethenes with glucose.

    PubMed

    Lee, Il-Su; Bae, Jae-Ho; Yang, Yanru; McCarty, Perry L

    2004-10-01

    Carbohydrates such as molasses are being added to aquifers to serve as electron donors for reductive dehalogenation of chloroethenes. Glucose, as a model carbohydrate, was studied to better understand the processes involved and to evaluate the effectiveness for dehalogenation of different approaches for carbohydrate addition. A simulation model was developed and calibrated with experimental data for the reductive dehalogenation of tetrachloroethene to ethene via cis-1,2-dichloroethene. The model included fermentors that convert the primary donor (glucose) into butyrate, acetate and hydrogen, methanogens, and two separate dehalogenator groups. The dehalogenation groups use the hydrogen intermediate as an electron donor and the different haloethenes as electron acceptors through competitive inhibition. Model simulations suggest first that the initial relative population size of dehalogenators and H(2)-utilizing methanogens greatly affects the degree of dehalogenation achieved. Second, the growth and decay of biomass from soluble carbohydrate plays a significant role in reductive dehalogenation. Finally, the carbohydrate delivery strategies used (periodic versus batch addition and the time interval between periodic addition) greatly affect the degree of dehalogenation that can be obtained with a given amount of added carbohydrate.

  17. Impact of an equality constraint on the class-specific residual variances in regression mixtures: A Monte Carlo simulation study.

    PubMed

    Kim, Minjung; Lamont, Andrea E; Jaki, Thomas; Feaster, Daniel; Howe, George; Van Horn, M Lee

    2016-06-01

    Regression mixture models are a novel approach to modeling the heterogeneous effects of predictors on an outcome. In the model-building process, often residual variances are disregarded and simplifying assumptions are made without thorough examination of the consequences. In this simulation study, we investigated the impact of an equality constraint on the residual variances across latent classes. We examined the consequences of constraining the residual variances on class enumeration (finding the true number of latent classes) and on the parameter estimates, under a number of different simulation conditions meant to reflect the types of heterogeneity likely to exist in applied analyses. The results showed that bias in class enumeration increased as the difference in residual variances between the classes increased. Also, an inappropriate equality constraint on the residual variances greatly impacted on the estimated class sizes and showed the potential to greatly affect the parameter estimates in each class. These results suggest that it is important to make assumptions about residual variances with care and to carefully report what assumptions are made.

  18. Dynamic modelling and estimation of the error due to asynchronism in a redundant asynchronous multiprocessor system

    NASA Technical Reports Server (NTRS)

    Huynh, Loc C.; Duval, R. W.

    1986-01-01

    The use of Redundant Asynchronous Multiprocessor System to achieve ultrareliable Fault Tolerant Control Systems shows great promise. The development has been hampered by the inability to determine whether differences in the outputs of redundant CPU's are due to failures or to accrued error built up by slight differences in CPU clock intervals. This study derives an analytical dynamic model of the difference between redundant CPU's due to differences in their clock intervals and uses this model with on-line parameter identification to idenitify the differences in the clock intervals. The ability of this methodology to accurately track errors due to asynchronisity generate an error signal with the effect of asynchronisity removed and this signal may be used to detect and isolate actual system failures.

  19. Ontology method for 3DGIS modeling

    NASA Astrophysics Data System (ADS)

    Sun, Min; Chen, Jun

    2006-10-01

    Data modeling is a baffling problem in 3DGIS, no satisfied solution has been provided until today, reason come from various sides. In this paper, a new solution named "Ontology method" is proposed. GIS traditional modeling method mainly focus on geometrical modeling, i.e., try to abstract geometry primitives for objects representation, this kind modeling method show it's awkward in 3DGIS modeling process. Ontology method begins modeling from establishing a set of ontology with different levels. The essential difference of this method is to swap the position of 'spatial data' and 'attribute data' in 2DGIS modeling process for 3DGIS modeling. Ontology method has great advantages in many sides, a system based on ontology is easy to realize interoperation for communication and data mining for knowledge deduction, in addition has many other advantages.

  20. Modeling species invasions in Ecopath with Ecosim: an evaluation using Laurentian Great Lakes models

    USGS Publications Warehouse

    Langseth, Brian J.; Rogers, Mark; Zhang, Hongyan

    2012-01-01

    Invasive species affect the structure and processes of ecosystems they invade. Invasive species have been particularly relevant to the Laurentian Great Lakes, where they have played a part in both historical and recent changes to Great Lakes food webs and the fisheries supported therein. There is increased interest in understanding the effects of ecosystem changes on fisheries within the Great Lakes, and ecosystem models provide an essential tool from which this understanding can take place. A commonly used model for exploring fisheries management questions within an ecosystem context is the Ecopath with Ecosim (EwE) modeling software. Incorporating invasive species into EwE models is a challenging process, and descriptions and comparisons of methods for modeling species invasions are lacking. We compared four methods for incorporating invasive species into EwE models for both Lake Huron and Lake Michigan based on the ability of each to reproduce patterns in observed data time series. The methods differed in whether invasive species biomass was forced in the model, the initial level of invasive species biomass at the beginning of time dynamic simulations, and the approach to cause invasive species biomass to increase at the time of invasion. The overall process of species invasion could be reproduced by all methods, but fits to observed time series varied among the methods and models considered. We recommend forcing invasive species biomass when model objectives are to understand ecosystem impacts in the past and when time series of invasive species biomass are available. Among methods where invasive species time series were not forced, mediating the strength of predator–prey interactions performed best for the Lake Huron model, but worse for the Lake Michigan model. Starting invasive species biomass at high values and then artificially removing biomass until the time of invasion performed well for both models, but was more complex than starting invasive species biomass at low values. In general, for understanding the effect of invasive species on future fisheries management actions, we recommend initiating invasive species biomass at low levels based on the greater simplicity and realism of the method compared to others.

  1. Great Plains Drought in Simulations of Twentieth Century

    NASA Astrophysics Data System (ADS)

    McCrary, R. R.; Randall, D. A.

    2008-12-01

    The Great Plains region of the United States was influenced by a number of multi-year droughts during the twentieth century. Most notable were the "Dust Bowl" drought of the 1930s and the 1950s Great Plains drought. In this study we evaluate the ability of three of the Coupled Global Climate Models (CGCMs) used in the Fourth Assessment Report (AR4) of the IPCC to simulate Great Plains drought with the same frequency and intensity as was observed during the twentieth century. The models chosen for this study are: GFDL CM 2.0, NCAR CCSM3, and UKMO HadCM3. We find that the models accurately capture the climatology of the hydrologic cycle of the Great Plains, but that they tend to overestimate the variability in Great Plains precipitation. We also find that in each model simulation at least one long-term drought occurs over the Great Plains region during their representations 20th Century Climate. The multi-year droughts produced by the models exhibit similar magnitudes and spatial scales as was observed during the twentieth century. This study also investigates the relative roles that external forcing from the tropical Pacific and local feedbacks between the land surface and the atmosphere have in the initiation and perpetuation of Great Plains drought in each model. We find that cool, La Nina-like conditions in the tropical pacific are often associated with long-term drought conditions over the Great Plains in GFDL CM 2.0 and UKMO HadCM3, but there appears to be no systematic relationship between tropical Pacific SST variability and Great Plains drought in CCSM3. It is possible the strong coupling between the land surface and the atmosphere in the NCAR model causes precipitation anomalies to lock into phase over the Great Plains thereby perpetuating drought conditions. Results from this study are intended to help assess whether or not these climate models are credible for use in the assessment of future drought over the Great Plains region of the United States.

  2. Investigation of the Great Pyramid of Giza.

    ERIC Educational Resources Information Center

    Peace, Nigel; And Others

    1997-01-01

    Describes an activity in which geometry and trigonometry are studied using pyramids. Identical model pyramids are constructed from card stock, along with pyramids of different proportions and cuboids to use as controls. Also includes an investigation of some apparently non-scientific claims. (DDR)

  3. Animal Models of Congenital Cardiomyopathies Associated With Mutations in Z-Line Proteins.

    PubMed

    Bang, Marie-Louise

    2017-01-01

    The cardiac Z-line at the boundary between sarcomeres is a multiprotein complex connecting the contractile apparatus with the cytoskeleton and the extracellular matrix. The Z-line is important for efficient force generation and transmission as well as the maintenance of structural stability and integrity. Furthermore, it is a nodal point for intracellular signaling, in particular mechanosensing and mechanotransduction. Mutations in various genes encoding Z-line proteins have been associated with different cardiomyopathies, including dilated cardiomyopathy, hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, restrictive cardiomyopathy, and left ventricular noncompaction, and mutations even within the same gene can cause widely different pathologies. Animal models have contributed to a great advancement in the understanding of the physiological function of Z-line proteins and the pathways leading from mutations in Z-line proteins to cardiomyopathy, although genotype-phenotype prediction remains a great challenge. This review presents an overview of the currently available animal models for Z-line and Z-line associated proteins involved in human cardiomyopathies with special emphasis on knock-in and transgenic mouse models recapitulating the clinical phenotypes of human cardiomyopathy patients carrying mutations in Z-line proteins. Pros and cons of mouse models will be discussed and a future outlook will be given. J. Cell. Physiol. 232: 38-52, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Extended MHD modeling of nonlinear instabilities in fusion and space plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germaschewski, Kai

    A number of different sub-projects where pursued within this DOE early career project. The primary focus was on using fully nonlinear, curvilinear, extended MHD simulations of instabilities with applications to fusion and space plasmas. In particular, we performed comprehensive studies of the dynamics of the double tearing mode in different regimes and confi gurations, using Cartesian and cyclindrical geometry and investigating both linear and non-linear dynamics. In addition to traditional extended MHD involving Hall term and electron pressure gradient, we also employed a new multi-fluid moment model, which shows great promise to incorporate kinetic effects, in particular off-diagonal elements ofmore » the pressure tensor, in a fluid model, which is naturally computationally much cheaper than fully kinetic particle or Vlasov simulations. We used our Vlasov code for detailed studies of how weak collisions effect plasma echos. In addition, we have played an important supporting role working with the PPPL theory group around Will Fox and Amitava Bhattacharjee on providing simulation support for HED plasma experiments performed at high-powered laser facilities like OMEGA-EP in Rochester, NY. This project has support a great number of computational advances in our fluid and kinetic plasma models, and has been crucial to winning multiple INCITE computer time awards that supported our computational modeling.« less

  5. General structure of democratic mass matrix of quark sector in E6 model

    NASA Astrophysics Data System (ADS)

    Ciftci, R.; ćiftci, A. K.

    2016-03-01

    An extension of the Standard Model (SM) fermion sector, which is inspired by the E6 Grand Unified Theory (GUT) model, might be a good candidate to explain a number of unanswered questions in SM. Existence of the isosinglet quarks might explain great mass difference of bottom and top quarks. Also, democracy on mass matrix elements is a natural approach in SM. In this study, we have given general structure of Democratic Mass Matrix (DMM) of quark sector in E6 model.

  6. The role of interbasin groundwater transfers in geologically complex terranes, demonstrated by the Great Basin in the western United States

    NASA Astrophysics Data System (ADS)

    Nelson, Stephen T.; Mayo, Alan L.

    2014-06-01

    In the Great Basin, USA, bedrock interbasin flow is conceptualized as the mechanism by which large groundwater fluxes flow through multiple basins and intervening mountains. Interbasin flow is propounded based on: (1) water budget imbalances, (2) potential differences between basins, (3) stable isotope evidence, and (4) modeling studies. However, water budgets are too imprecise to discern interbasin transfers and potential differences may exist with or without interbasin fluxes. Potentiometric maps are dependent on conceptual underpinnings, leading to possible false inferences regarding interbasin transfers. Isotopic evidence is prone to non-unique interpretation and may be confounded by the effects of climate change. Structural and stratigraphic considerations in a geologically complex region like the Great Basin should produce compartmentalization, where increasing aquifer size increases the odds of segmentation along a given flow path. Initial conceptual hypotheses should explain flow with local recharge and short flow paths. Where bedrock interbasin flow is suspected, it is most likely controlled by diversion of water into the damage zones of normal faults, where fault cores act as barriers. Large-scale bedrock interbasin flow where fluxes must transect multiple basins, ranges, and faults at high angles should be the conceptual model of last resort.

  7. Water Budget Estimation by Assimilating Multiple Observations and Hydrological Modeling Using Constrained Ensemble Kalman Filtering

    NASA Astrophysics Data System (ADS)

    Pan, M.; Wood, E. F.

    2004-05-01

    This study explores a method to estimate various components of the water cycle (ET, runoff, land storage, etc.) based on a number of different info sources, including both observations and observation-enhanced model simulations. Different from existing data assimilations, this constrained Kalman filtering approach keeps the water budget perfectly closed while updating the states of the underlying model (VIC model) optimally using observations. Assimilating different data sources in this way has several advantages: (1) physical model is included to make estimation time series smooth, missing-free, and more physically consistent; (2) uncertainties in the model and observations are properly addressed; (3) model is constrained by observation thus to reduce model biases; (4) balance of water is always preserved along the assimilation. Experiments are carried out in Southern Great Plain region where necessary observations have been collected. This method may also be implemented in other applications with physical constraints (e.g. energy cycles) and at different scales.

  8. Modeling brook trout presence and absence from landscape variables using four different analytical methods

    USGS Publications Warehouse

    Steen, Paul J.; Passino-Reader, Dora R.; Wiley, Michael J.

    2006-01-01

    As a part of the Great Lakes Regional Aquatic Gap Analysis Project, we evaluated methodologies for modeling associations between fish species and habitat characteristics at a landscape scale. To do this, we created brook trout Salvelinus fontinalis presence and absence models based on four different techniques: multiple linear regression, logistic regression, neural networks, and classification trees. The models were tested in two ways: by application to an independent validation database and cross-validation using the training data, and by visual comparison of statewide distribution maps with historically recorded occurrences from the Michigan Fish Atlas. Although differences in the accuracy of our models were slight, the logistic regression model predicted with the least error, followed by multiple regression, then classification trees, then the neural networks. These models will provide natural resource managers a way to identify habitats requiring protection for the conservation of fish species.

  9. Finite-difference modeling with variable grid-size and adaptive time-step in porous media

    NASA Astrophysics Data System (ADS)

    Liu, Xinxin; Yin, Xingyao; Wu, Guochen

    2014-04-01

    Forward modeling of elastic wave propagation in porous media has great importance for understanding and interpreting the influences of rock properties on characteristics of seismic wavefield. However, the finite-difference forward-modeling method is usually implemented with global spatial grid-size and time-step; it consumes large amounts of computational cost when small-scaled oil/gas-bearing structures or large velocity-contrast exist underground. To overcome this handicap, combined with variable grid-size and time-step, this paper developed a staggered-grid finite-difference scheme for elastic wave modeling in porous media. Variable finite-difference coefficients and wavefield interpolation were used to realize the transition of wave propagation between regions of different grid-size. The accuracy and efficiency of the algorithm were shown by numerical examples. The proposed method is advanced with low computational cost in elastic wave simulation for heterogeneous oil/gas reservoirs.

  10. Numerical simulation of volume-controlled mechanical ventilated respiratory system with 2 different lungs.

    PubMed

    Shi, Yan; Zhang, Bolun; Cai, Maolin; Zhang, Xiaohua Douglas

    2017-09-01

    Mechanical ventilation is a key therapy for patients who cannot breathe adequately by themselves, and dynamics of mechanical ventilation system is of great significance for life support of patients. Recently, models of mechanical ventilated respiratory system with 1 lung are used to simulate the respiratory system of patients. However, humans have 2 lungs. When the respiratory characteristics of 2 lungs are different, a single-lung model cannot reflect real respiratory system. In this paper, to illustrate dynamic characteristics of mechanical ventilated respiratory system with 2 different lungs, we propose a mathematical model of mechanical ventilated respiratory system with 2 different lungs and conduct experiments to verify the model. Furthermore, we study the dynamics of mechanical ventilated respiratory system with 2 different lungs. This research study can be used for improving the efficiency and safety of volume-controlled mechanical ventilation system. Copyright © 2016 John Wiley & Sons, Ltd.

  11. A 3D quantitative comparison of trapezium and trapezoid relative articular and nonarticular surface areas in modern humans and great apes.

    PubMed

    Tocheri, M W; Razdan, A; Williams, R C; Marzke, M W

    2005-11-01

    The structure and functions of the modern human hand are critical components of what distinguishes Homo sapiens from the great apes (Gorilla, Pan, and Pongo). In this study, attention is focused on the trapezium and trapezoid, the two most lateral bones of the distal carpal row, in the four extant hominid genera, representing the first time they have been quantified and analyzed together as a morphological-functional complex. Our objective is to quantify the relative articular and nonarticular surface areas of these two bones and to test whether modern humans exhibit significant shape differences from the great apes, as predicted by previous qualitative analyses and the functional demands of differing manipulative and locomotor strategies. Modern humans were predicted to show larger relative first metacarpal and scaphoid surfaces on the trapezium because of the regular recruitment of the thumb during manipulative behaviors; alternatively, great apes were predicted to show larger relative second metacarpal and scaphoid surfaces on the trapezoid because of the functional demands on the hands during locomotor behaviors. Modern humans were also expected to exhibit larger relative mutual joint surfaces between the trapezoid and adjacent carpals than do the great apes because of assumed transverse loads generated by the functional demands of the modern human power grip. Using 3D bone models acquired through laser digitizing, the relative articular and nonarticular areas on each bone are quantified and compared. Multivariate analyses of these data clearly distinguish modern humans from the great apes. In total, the observed differences between modern humans and the great apes support morphological predictions based on the fact that this region of the human wrist is no longer involved in weight-bearing during locomotor behavior and is instead recruited solely for manipulative behaviors. The results provide the beginnings of a 3D comparative standard against which further extant and fossil primate wrist bones can be compared within the contexts of manipulative and locomotor behaviors.

  12. Heterogeneous movement of insectivorous Amazonian birds through primary and secondary forest: A case study using multistate models with radiotelemetry data

    Treesearch

    Luke L. Powell; Jared D. Wolfe; Erik I. Johnson; James E. Hines; James D. Nichols; Philip C Stouffer

    2015-01-01

    Given rates of deforestation, disturbance, and secondary forest accumulation in tropical rainforests, there is a great need to quantify habitat use and movement among different habitats. This need is particularly pronounced for animals most sensitive to disturbance, such as insectivorous understory birds. Here we use multistate capture–recapture models with...

  13. The spatial distribution of C3 and C4 grasses in North America through the next century

    NASA Astrophysics Data System (ADS)

    Cotton, J. M.; Mosier, T. M.; Cerling, T. E.; Ehleringer, J. R.; Hoppe, K. A.; Still, C. J.

    2014-12-01

    C4 grasses currently cover ~18% of the earth's surface and are economically important as food sources, but their distributions are likely to change with future climate changes. As a result of the opposing impacts of atmospheric CO2 and temperature on C3 and C4 physiology, future changes to the productivity and distributions of these grasses have remained unclear. We have used past and present tooth enamel, collagen, and bone carbon isotope ratios (δ13C) of Bison and Mammoth grazers to record the δ13C values of their diet, and the abundance of C3 and C4 vegetation in these habitats. Thus, the δ13C values of bison and mammoth tissues serve as a proxy for vegetation composition across North America through time. We combine these isotope data with ensemble CMIP5 climate model outputs, eight different climatic and fire predictor variables and advanced statistical techniques to model the spatial distribution of C3 and C4 grasses up through the year 2100 for two different emissions scenarios. Using the Random Forest algorithm, our model explains 91% of the spatial and temporal isotopic variability in bison and mammoth tissues and infers that mean summer temperature is the strongest predictor of all climate variables. For the emission scenario RCP4.5, in which atmospheric CO2 levels are predicted to rise to ~540 ppm by 2100, we find decreases in the abundance of C4 grasses of up to 30% in the south-central Great Plains and the Florida peninsula, and increases of up to 50% in the northern Great Plains. For the RCP8.5 scenario, in which atmospheric CO2 levels are expected to rise to ~930 ppm by 2100, our model predicts minor decreases in the abundance of C4 grasses in Texas and Oklahoma, but increases of 30-50% over the majority of the Great Plains. The overall effect of these changes is a homogenization of the Great Plains ecoregion in terms of grassland type distributions, and the loss of the highest abundance of C4 ecosystems of the panhandles of Texas, Oklahoma and western Kansas. These results have important implications for future changes to insect and mammalian biodiversity and trophic interactions across the Great Plains of North America.

  14. Bim Orientation: Grades of Generation and Information for Different Type of Analysis and Management Process

    NASA Astrophysics Data System (ADS)

    Banfi, F.

    2017-08-01

    Architecture, Engineering and Construction (AEC) industry is facing a great process re-engineering of the management procedures for new constructions, and recent studies show a significant increase of the benefits obtained through the use of Building Information Modelling (BIM) methodologies. This innovative approach needs new developments for information and communication technologies (ICT) in order to improve cooperation and interoperability among different actors and scientific disciplines. Accordingly, BIM could be described as a new tool capable of collect/analyse a great quantity of information (Big data) and improve the management of building during its life of cycle (LC). The main aim of this research is, in addition to a reduction in production times, reduce physical and financial resources (economic impact), to demonstrate how technology development can support a complex generative process with new digital tools (modelling impact). This paper reviews recent BIMs of different historical Italian buildings such as Basilica of Collemaggio in L'Aquila, Masegra Castle in Sondrio, Basilica of Saint Ambrose in Milan and Visconti Bridge in Lecco and carries out a methodological analysis to optimize output information and results combining different data and modelling techniques into a single hub (cloud service) through the use of new Grade of Generation (GoG) and Information (GoI) (management impact). Finally, this study shows the need to orient GoG and GoI for a different type of analysis, which requires a high Grade of Accuracy (GoA) and an Automatic Verification System (AVS ) at the same time.

  15. Climate change drives a northward expansion of C4 grasses in North America by the end of the century

    NASA Astrophysics Data System (ADS)

    Cotton, J. M.; Mosier, T. M.; Cerling, T. E.; Ehleringer, J. R.; Hoppe, K. A.; Still, C. J.

    2016-12-01

    C4 grasses currently cover 18% of the earth's surface and are critically important as food sources, and account for roughly 25% of terrestrial productivity. Yet in the future these patterns will change as a result of the opposing impacts of atmospheric CO2 and climate on C3 and C4 physiologies. Here, we use the carbon isotope ratio (d13C) of modern and fossil bison and mammoth tissues as a proxy for the abundance of C3 and C4 vegetation across North American habitats. We then combine stable isotope data with CMIP5 climate model simulations, and used eight different climatic predictor variables and advanced statistical techniques to model the spatial distributions of C3 and C4 grasses from today through the year 2100 for two fossil-fuel emissions scenarios. For both scenarios, our vegetation model predicts increases in C4 grass abundance of up to 50% in the northern Great Plains and moderate decreases in C4 grass abundance in the central and southern Great Plains. The overall effect of these C3/C4 distribution changes will be a decreases in the magnitude of the north-south grass gradient in the Great Plains ecoregion with the loss of the highest abundance of C4 ecosystems in the panhandles of Texas, Oklahoma and western Kansas. These results have important implications for future changes in animal and plant biodiversity, agricultural productivity, and C4 grass invasions in North America. Our study suggests that changing climates will likely start to favor C4 crops over C3 crops in the northern Great Plains, potentially influencing the nature of different grain food supplies. Additionally, changes in C3 and C4 grass distributions, including decreases in the abundance of C3 grasses in native grasslands in the northern Great Plains, could have negative effects on the fauna that feed preferentially on those C3 grasses, and may also reduce also the number of unique habitats that currently maintain high biodiversity.

  16. Compilation of watershed models for tributaries to the Great Lakes, United States, as of 2010, and identification of watersheds for future modeling for the Great Lakes Restoration Initiative

    USGS Publications Warehouse

    Coon, William F.; Murphy, Elizabeth A.; Soong, David T.; Sharpe, Jennifer B.

    2011-01-01

    As part of the Great Lakes Restoration Initiative (GLRI) during 2009–10, the U.S. Geological Survey (USGS) compiled a list of existing watershed models that had been created for tributaries within the United States that drain to the Great Lakes. Established Federal programs that are overseen by the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Army Corps of Engineers (USACE) are responsible for most of the existing watershed models for specific tributaries. The NOAA Great Lakes Environmental Research Laboratory (GLERL) uses the Large Basin Runoff Model to provide data for the management of water levels in the Great Lakes by estimating United States and Canadian inflows to the Great Lakes from 121 large watersheds. GLERL also simulates streamflows in 34 U.S. watersheds by a grid-based model, the Distributed Large Basin Runoff Model. The NOAA National Weather Service uses the Sacramento Soil Moisture Accounting model to predict flows at river forecast sites. The USACE created or funded the creation of models for at least 30 tributaries to the Great Lakes to better understand sediment erosion, transport, and aggradation processes that affect Federal navigation channels and harbors. Many of the USACE hydrologic models have been coupled with hydrodynamic and sediment-transport models that simulate the processes in the stream and harbor near the mouth of the modeled tributary. Some models either have been applied or have the capability of being applied across the entire Great Lakes Basin; they are (1) the SPAtially Referenced Regressions On Watershed attributes (SPARROW) model, which was developed by the USGS; (2) the High Impact Targeting (HIT) and Digital Watershed models, which were developed by the Institute of Water Research at Michigan State University; (3) the Long-Term Hydrologic Impact Assessment (L–THIA) model, which was developed by researchers at Purdue University; and (4) the Water Erosion Prediction Project (WEPP) model, which was developed by the National Soil Erosion Research Laboratory of the U.S. Department of Agriculture. During 2010, the USGS used the Precipitation-Runoff Modeling System (PRMS) to create a hydrologic model for the Lake Michigan Basin to assess the probable effects of climate change on future groundwater and surface-water resources. The Water Availability Tool for Environmental Resources (WATER) model and the Analysis of Flows In Networks of CHannels (AFINCH) program also were used to support USGS GLRI projects that required estimates of streamflows throughout the Great Lakes Basin. This information on existing watershed models, along with an assessment of geologic, soils, and land-use data across the Great Lakes Basin and the identification of problems that exist in selected tributary watersheds that could be addressed by a watershed model, was used to identify three watersheds in the Great Lakes Basin for future modeling by the USGS. These watersheds are the Kalamazoo River Basin in Michigan, the Tonawanda Creek Basin in New York, and the Bad River Basin in Wisconsin. These candidate watersheds have hydrogeologic, land-type, and soil characteristics that make them distinct from each other, but that are representative of other tributary watersheds within the Great Lakes Basin. These similarities in the characteristics among nearby watersheds will enhance the usefulness of a model by improving the likelihood that parameter values from a previously modeled watershed could reliably be used in the creation of a model of another watershed in the same region. The software program Hydrological Simulation Program–Fortran (HSPF) was selected to simulate the hydrologic, sedimentary, and water-quality processes in these selected watersheds. HSPF is a versatile, process-based, continuous-simulation model that has been used extensively by the scientific community, has the ongoing technical support of the U.S. Environmental Protection Agency and USGS, and provides a means to evaluate the effects that land-use changes or management practices might have on the simulated processes.

  17. Current advances of murine models for food allergy.

    PubMed

    Liu, Tiange; Navarro, Severine; Lopata, Andreas L

    2016-02-01

    Food allergy affects an increasing population in Western world but also developing countries. Researchers have been taking great efforts in identifying and characterising food allergens using molecular tools. However, there are still many mechanistic hypotheses that need to be tested using an appropriate in vivo experimental platform. To date, a number of mouse models for food allergy have been established and provided valuable insights into food allergenicity, development of therapies and allergic inflammation mechanisms. Nevertheless, a large diversity of protocols have been developed for the establishment of relevant mouse models. As a result, comparisons of outcomes between different models are very difficult to be conducted. The phenotypes of mouse models are greatly influenced by genetic background, gender, route of allergen exposure, the nature and concentration of food allergens, as well as the usage of adjuvants. This review focuses on IgE-mediated food allergy, compares the differential approaches in developing appropriate murine models for food allergy and details specific findings for three major food allergens, peanut, milk and shellfish. Copyright © 2016. Published by Elsevier Ltd.

  18. Experience With Bayesian Image Based Surface Modeling

    NASA Technical Reports Server (NTRS)

    Stutz, John C.

    2005-01-01

    Bayesian surface modeling from images requires modeling both the surface and the image generation process, in order to optimize the models by comparing actual and generated images. Thus it differs greatly, both conceptually and in computational difficulty, from conventional stereo surface recovery techniques. But it offers the possibility of using any number of images, taken under quite different conditions, and by different instruments that provide independent and often complementary information, to generate a single surface model that fuses all available information. I describe an implemented system, with a brief introduction to the underlying mathematical models and the compromises made for computational efficiency. I describe successes and failures achieved on actual imagery, where we went wrong and what we did right, and how our approach could be improved. Lastly I discuss how the same approach can be extended to distinct types of instruments, to achieve true sensor fusion.

  19. A Comprehensive, Model-Based Review of Vaccine and Repeat Infection Trials for Filariasis

    PubMed Central

    Morris, C. Paul; Evans, Holly; Larsen, Sasha E.

    2013-01-01

    SUMMARY Filarial worms cause highly morbid diseases such as elephantiasis and river blindness. Since the 1940s, researchers have conducted vaccine trials in 27 different animal models of filariasis. Although no vaccine trial in a permissive model of filariasis has provided sterilizing immunity, great strides have been made toward developing vaccines that could block transmission, decrease pathological sequelae, or decrease susceptibility to infection. In this review, we have organized, to the best of our ability, all published filaria vaccine trials and reviewed them in the context of the animal models used. Additionally, we provide information on the life cycle, disease phenotype, concomitant immunity, and natural immunity during primary and secondary infections for 24 different filaria models. PMID:23824365

  20. Spherical Viscoelastic Finite Element Model for Cascadia Interseismic Deformation

    NASA Astrophysics Data System (ADS)

    He, J.; Wang, K.; Dragert, H.; Miller, M. M.

    2003-12-01

    We have developed a 3-D spherical viscoelastic finite element model for the Cascadia subduction zone to study temporal and spatial variations of interseismic deformation. Previous 3-D viscoelastic finite element models of subduction zone earthquake cycles all use the Cartesian system, with the surface of the earth map-projected on to a horizontal plane. For earthquakes that rupture very long plate-boundary segments, such as the 1700 Cascadia, 1960 Chile, and 1964 Alaska great earthquakes, the Cartesian approach is inconvenient and less accurate. 3-D analytical solutions take into account the spherical geometry of the earth but have difficulty dealing with realistic plate boundary structure. For the new spherical finite element model, we use 27-node tri-quadratic isoparametric element. The resultant large sparse matrix system is solved by the stabilized bi-conjugate gradient method with ILUT preconditioning of fill-in level 6. Our experience suggests that lower order elements in the spherical system would result in unacceptable numerical errors unless one set of mesh lines is strictly radial. For the great Cascadia earthquake, we employ a smooth coseismic rupture model inferred from thermal data and results of tsunami models of the 1700 event, but we test different slip distances. For interseismic deformation, we use the conventional backslip approach. The contemporary deformation of the Cascadia margin consists of interseismic strain accumulation and a geological secular motion that can be described by a rotation of the forearc relative to North America. To isolate the interseismic deformation, we remove the secular motion from both the model formulation and geodetic data. The model predicts decreasing margin-normal shortening rates throughout the interseismic period as a result of stress relaxation in the viscoelastic mantle. The rate of decrease depends on the assumed mantle viscosity. With a viscosity of 1019 Pa s, model surface deformation at 300 years after the great earthquake agrees with geodetically observed contemporary deformation very well. The model also confirms the previous finding based on a Cartesian model that an inland region continues to move seaward several decades after the great earthquake.

  1. Developing Flexible, Integrated Hydrologic Modeling Systems for Multiscale Analysis in the Midwest and Great Lakes Region

    NASA Astrophysics Data System (ADS)

    Hamlet, A. F.; Chiu, C. M.; Sharma, A.; Byun, K.; Hanson, Z.

    2016-12-01

    Physically based hydrologic modeling of surface and groundwater resources that can be flexibly and efficiently applied to support water resources policy/planning/management decisions at a wide range of spatial and temporal scales are greatly needed in the Midwest, where stakeholder access to such tools is currently a fundamental barrier to basic climate change assessment and adaptation efforts, and also the co-production of useful products to support detailed decision making. Based on earlier pilot studies in the Pacific Northwest Region, we are currently assembling a suite of end-to-end tools and resources to support various kinds of water resources planning and management applications across the region. One of the key aspects of these integrated tools is that the user community can access gridded products at any point along the end-to-end chain of models, looking backwards in time about 100 years (1915-2015), and forwards in time about 85 years using CMIP5 climate model projections. The integrated model is composed of historical and projected future meteorological data based on station observations and statistical and dynamically downscaled climate model output respectively. These gridded meteorological data sets serve as forcing data for the macro-scale VIC hydrologic model implemented over the Midwest at 1/16 degree resolution. High-resolution climate model (4km WRF) output provides inputs for the analyses of urban impacts, hydrologic extremes, agricultural impacts, and impacts to the Great Lakes. Groundwater recharge estimated by the surface water model provides input data for fine-scale and macro-scale groundwater models needed for specific applications. To highlight the multi-scale use of the integrated models in support of co-production of scientific information for decision making, we briefly describe three current case studies addressing different spatial scales of analysis: 1) Effects of climate change on the water balance of the Great Lakes, 2) Future hydropower resources in the St. Joseph River basin, 3) Effects of climate change on carbon cycling in small lakes in the Northern Highland Lakes District.

  2. Natural products for pest control: an analysis of their role, value and future.

    PubMed

    Gerwick, B Clifford; Sparks, Thomas C

    2014-08-01

    Natural products (NPs) have long been used as pesticides and have broadly served as a source of inspiration for a great many commercial synthetic organic fungicides, herbicides and insecticides that are in the market today. In light of the continuing need for new tools to address an ever-changing array of fungal, weed and insect pests, NPs continue to be a source of models and templates for the development of new pest control agents. Interestingly, an examination of the literature suggests that NP models exist for many of the pest control agents that were discovered by other means, suggesting that, had circumstances been different, these NPs could have served as inspiration for the discovery of a great many more of today's pest control agents. Here, an attempt is made to answer questions regarding the existence of an NP model for existing classes of pesticides and what is needed for the discovery of new NPs and NP models for pest control agents. © 2014 Society of Chemical Industry.

  3. A novel cost-effective parallel narrowband ANC system with local secondary-path estimation

    NASA Astrophysics Data System (ADS)

    Delegà, Riccardo; Bernasconi, Giancarlo; Piroddi, Luigi

    2017-08-01

    Many noise reduction applications are targeted at multi-tonal disturbances. Active noise control (ANC) solutions for such problems are generally based on the combination of multiple adaptive notch filters. Both the performance and the computational cost are negatively affected by an increase in the number of controlled frequencies. In this work we study a different modeling approach for the secondary path, based on the estimation of various small local models in adjacent frequency subbands, that greatly reduces the impact of reference-filtering operations in the ANC algorithm. Furthermore, in combination with a frequency-specific step size tuning method it provides a balanced attenuation performance over the whole controlled frequency range (and particularly in the high end of the range). Finally, the use of small local models is greatly beneficial for the reactivity of the online secondary path modeling algorithm when the characteristics of the acoustic channels are time-varying. Several simulations are provided to illustrate the positive features of the proposed method compared to other well-known techniques.

  4. Animal models used for testing hydrogels in cartilage regeneration.

    PubMed

    Zhu, Chuntie; Wu, Qiong; Zhang, Xu; Chen, Fubo; Liu, Xiyang; Yang, Qixiang; Zhu, Lei

    2018-05-14

    Focal cartilage or osteochondral lesions can be painful and detrimental. Besides pain and limited function of joints, cartilage defect is considered as one of the leading extrinsic risk factors for osteoarthritis (OA). Thus, clinicians and scientists have paid great attention to regenerative therapeutic methods for the early treatment of cartilaginous defects. Regenerative medicine, showing great hope for regenerating cartilage tissue, rely on the combination of biodegradable scaffolds and specific biological cues, such as growth factors, adhesive factors and genetic materials. Among all biomaterials, hydrogels have emerged as promising cartilage tissue engineering scaffolds for simultaneous cell growth and drug delivery. A wide range of animal models have been applied in testing repair with hydrogels in cartilage defects. This review summarized the current animal models used to test hydrogels technologies for the regeneration of cartilage. Advantages and disadvantages in the establishment of the cartilage defect animal models among different species were emphasized, as well as feasibility of replication of diseases in animals. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Late Holocene paleoseismology of Shuyak Island, Kodiak Archipelago, Alaska - surface deformation and plate segmentation within the 1964 Alaska M 9.2 earthquake rupture zone

    NASA Astrophysics Data System (ADS)

    Brader, Martin; Shennan, Ian; Barlow, Natasha; Davies, Frank; Longley, Chris; Tunstall, Neil

    2017-04-01

    Recent paleoseismological studies question whether segment boundaries identified for 20th and 21st century great, >M 8, earthquakes persist through multiple earthquake cycles, or whether smaller segments with different boundaries rupture and cause significant hazards. The smaller segments may include some that are currently slipping rather than locked. The 1964 Alaska M 9.2 earthquake was the largest of five earthquakes of >M 7.9 between 1938 and 1965 along the Aleutian chain and coast of southcentral Alaska that helped define models of rupture segments along the Alaska-Aleutian megathrust. The 1964 M 9.2 earthquake ruptured ˜950 km of the megathrust, involving two main asperities focussed on Kodiak Island and Prince William Sound and crossed the Kenai segment, which is currently creeping. Paleoseismic studies of coastal sediments currently provide a long record of previous large earthquakes for the Prince William Sound segment, with widespread evidence of seven great earthquakes in the last 4000 years and more restricted evidence for three earlier ones. Shorter and more fragmentary records from the Kenai Peninsula, Yakataga and Kodiak Archipelago raise the hypothesis of different patterns of surface deformation during past great earthquakes. We present new evidence from coastal wetlands on Shuyak Island, towards the hypothesised north-eastern boundary of the Kodiak segment, to illustrate different detection limits of paleoseismic indicators and how these influence the identification of segment boundaries in late Holocene earthquakes. We compare predictions of co-seismic uplift and subsidence derived from geophysical models of earthquakes with different rupture modes. The spatial patterns of agreement and misfit between model predictions and quantitative reconstructions of co-seismic submergence and emergence suggest that no earthquake within the last 4000 years had the same rupture pattern as the 1964 M 9.2 earthquake.

  6. Non-Darcy flow of water through woodchip media

    USDA-ARS?s Scientific Manuscript database

    A denitrifying bioreactor is a system where a carbon substrate (commonly woodchips) is used to reduce nitrate concentration in water flow. Knowledge of intrinsic permeability of woodchip media in different types of this system is of great importance for design and modeling. For many years, water flo...

  7. The relationship study between image features and detection probability based on psychology experiments

    NASA Astrophysics Data System (ADS)

    Lin, Wei; Chen, Yu-hua; Wang, Ji-yuan; Gao, Hong-sheng; Wang, Ji-jun; Su, Rong-hua; Mao, Wei

    2011-04-01

    Detection probability is an important index to represent and estimate target viability, which provides basis for target recognition and decision-making. But it will expend a mass of time and manpower to obtain detection probability in reality. At the same time, due to the different interpretation of personnel practice knowledge and experience, a great difference will often exist in the datum obtained. By means of studying the relationship between image features and perception quantity based on psychology experiments, the probability model has been established, in which the process is as following.Firstly, four image features have been extracted and quantified, which affect directly detection. Four feature similarity degrees between target and background were defined. Secondly, the relationship between single image feature similarity degree and perception quantity was set up based on psychological principle, and psychological experiments of target interpretation were designed which includes about five hundred people for interpretation and two hundred images. In order to reduce image features correlativity, a lot of artificial synthesis images have been made which include images with single brightness feature difference, images with single chromaticity feature difference, images with single texture feature difference and images with single shape feature difference. By analyzing and fitting a mass of experiments datum, the model quantitys have been determined. Finally, by applying statistical decision theory and experimental results, the relationship between perception quantity with target detection probability has been found. With the verification of a great deal of target interpretation in practice, the target detection probability can be obtained by the model quickly and objectively.

  8. Automatic inference of multicellular regulatory networks using informative priors.

    PubMed

    Sun, Xiaoyun; Hong, Pengyu

    2009-01-01

    To fully understand the mechanisms governing animal development, computational models and algorithms are needed to enable quantitative studies of the underlying regulatory networks. We developed a mathematical model based on dynamic Bayesian networks to model multicellular regulatory networks that govern cell differentiation processes. A machine-learning method was developed to automatically infer such a model from heterogeneous data. We show that the model inference procedure can be greatly improved by incorporating interaction data across species. The proposed approach was applied to C. elegans vulval induction to reconstruct a model capable of simulating C. elegans vulval induction under 73 different genetic conditions.

  9. How do glacier inventory data aid global glacier assessments and projections?

    NASA Astrophysics Data System (ADS)

    Hock, R.

    2017-12-01

    Large-scale glacier modeling relies heavily on datasets that are collected by many individuals across the globe, but managed and maintained in a coordinated fashion by international data centers. The Global Terrestrial Network for Glaciers (GTN-G) provides the framework for coordinating and making available a suite of data sets such as the Randolph Glacier Inventory (RGI), the Glacier Thickness Dataset or the World Glacier Inventory (WGI). These datasets have greatly increased our ability to assess global-scale glacier mass changes. These data have also been vital for projecting the glacier mass changes of all mountain glaciers in the world outside the Greenland and Antarctic ice sheet, a total >200,000 glaciers covering an area of more than 700,000 km2. Using forcing from 8 to 15 GCMs and 4 different emission scenarios, global-scale glacier evolution models project multi-model mean net mass losses of all glaciers between 7 cm and 24 cm sea-level equivalent by the end of the 21st century. Projected mass losses vary greatly depending on the choice of the forcing climate and emission scenario. Insufficiently constrained model parameters likely are an important reason for large differences found among these studies even when forced by the same emission scenario, especially on regional scales.

  10. Impact of measurement invariance on construct correlations, mean differences, and relations with external correlates: an illustrative example using Big Five and RIASEC measures.

    PubMed

    Schmitt, Neal; Golubovich, Juliya; Leong, Frederick T L

    2011-12-01

    The impact of measurement invariance and the provision for partial invariance in confirmatory factor analytic models on factor intercorrelations, latent mean differences, and estimates of relations with external variables is investigated for measures of two sets of widely assessed constructs: Big Five personality and the six Holland interests (RIASEC). In comparing models that include provisions for partial invariance with models that do not, the results indicate quite small differences in parameter estimates involving the relations between factors, one relatively large standardized mean difference in factors between the subgroups compared and relatively small differences in the regression coefficients when the factors are used to predict external variables. The results provide support for the use of partially invariant models, but there does not seem to be a great deal of difference between structural coefficients when the measurement model does or does not include separate estimates of subgroup parameters that differ across subgroups. Future research should include simulations in which the impact of various factors related to invariance is estimated.

  11. Religion, contraception, and method choice of married women in Ghana.

    PubMed

    Gyimah, Stephen Obeng; Adjei, Jones K; Takyi, Baffour K

    2012-12-01

    Using pooled data from the 1998 and 2003 Demographic and Health Surveys, this paper investigates the association between religion and contraceptive behavior of married women in Ghana. Guided by the particularized theology and characteristics hypotheses, multinomial logit and complementary log-log models are used to explore denominational differences in contraceptive adoption among currently married women and assess whether the differences could be explained through other characteristics. We found that while there were no differences between women of different Christian faiths, non-Christian women (Muslim and Traditional) were significantly more likely to have never used contraception compared with Christian women. Similar observations were made on current use of contraception, although the differences were greatly reduced in the multivariate models.

  12. Using Electromagnetic Induction Technique to Detect Hydropedological Dynamics: Principles and Applications

    NASA Astrophysics Data System (ADS)

    Zhu, Qing; Liao, Kaihua; Doolittle, James; Lin, Henry

    2014-05-01

    Hydropedological dynamics including soil moisture variation, subsurface flow, and spatial distributions of different soil properties are important parameters in ecological, environmental, hydrological, and agricultural modeling and applications. However, technical gap exists in mapping these dynamics at intermediate spatial scale (e.g., farm and catchment scales). At intermediate scales, in-situ monitoring provides detailed data, but is restricted in number and spatial coverage; while remote sensing provides more acceptable spatial coverage, but has comparatively low spatial resolution, limited observation depths, and is greatly influenced by the surface condition and climate. As a non-invasive, fast, and convenient geophysical tool, electromagnetic induction (EMI) measures soil apparent electrical conductivity (ECa) and has great potential to bridge this technical gap. In this presentation, principles of different EMI meters are briefly introduced. Then, case studies of using repeated EMI to detect spatial distributions of subsurface convergent flow, soil moisture dynamics, soil types and their transition zones, and different soil properties are presented. The suitability, effectiveness, and accuracy of EMI are evaluated for mapping different hydropedological dynamics. Lastly, contributions of different hydropedological and terrain properties on soil ECa are quantified under different wetness conditions, seasons, and land use types using Classification and Regression Tree model. Trend removal and residual analysis are then used for further mining of EMI survey data. Based on these analyses, proper EMI survey designs and data processing are proposed.

  13. General structure of democratic mass matrix of quark sector in E{sub 6} model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciftci, R., E-mail: rciftci@cern.ch; Çiftci, A. K., E-mail: abbas.kenan.ciftci@cern.ch

    2016-03-25

    An extension of the Standard Model (SM) fermion sector, which is inspired by the E{sub 6} Grand Unified Theory (GUT) model, might be a good candidate to explain a number of unanswered questions in SM. Existence of the isosinglet quarks might explain great mass difference of bottom and top quarks. Also, democracy on mass matrix elements is a natural approach in SM. In this study, we have given general structure of Democratic Mass Matrix (DMM) of quark sector in E6 model.

  14. What is a cooperative?

    Treesearch

    Kimberly Zeuli

    2006-01-01

    Groups of individuals throughout time have worked together in pursuit of common goals. The earliest forms of hunting and agriculture required a great deal of cooperation among humans. Although the word "cooperative" can be applied to many different types of group activities, in this publication it refers to a formal business model. Cooperative businesses are...

  15. Small should be the New Big: High-resolution Models with Small Segments have Big Advantages when Modeling Eutrophication in the Great Lakes

    EPA Science Inventory

    Historical mathematical models, especially Great Lakes eutrophication models, traditionally used course segmentation schemes and relatively simple hydrodynamics to represent system behavior. Although many modelers have claimed success using such models, these representations can ...

  16. Introduction to CAUSES: Description of Weather and Climate Models and Their Near-Surface Temperature Errors in 5 day Hindcasts Near the Southern Great Plains

    DOE PAGES

    Morcrette, C. J.; Van Weverberg, K.; Ma, H. -Y.; ...

    2018-02-16

    We introduce the Clouds Above the United States and Errors at the Surface (CAUSES) project with its aim of better understanding the physical processes leading to warm screen temperature biases over the American Midwest in many numerical models. In this first of four companion papers, 11 different models, from nine institutes, perform a series of 5 day hindcasts, each initialized from reanalyses. After describing the common experimental protocol and detailing each model configuration, a gridded temperature data set is derived from observations and used to show that all the models have a warm bias over parts of the Midwest. Additionally,more » a strong diurnal cycle in the screen temperature bias is found in most models. In some models the bias is largest around midday, while in others it is largest during the night. At the Department of Energy Atmospheric Radiation Measurement Southern Great Plains (SGP) site, the model biases are shown to extend several kilometers into the atmosphere. Finally, to provide context for the companion papers, in which observations from the SGP site are used to evaluate the different processes contributing to errors there, it is shown that there are numerous locations across the Midwest where the diurnal cycle of the error is highly correlated with the diurnal cycle of the error at SGP. This suggests that conclusions drawn from detailed evaluation of models using instruments located at SGP will be representative of errors that are prevalent over a larger spatial scale.« less

  17. Introduction to CAUSES: Description of Weather and Climate Models and Their Near-Surface Temperature Errors in 5 day Hindcasts Near the Southern Great Plains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morcrette, C. J.; Van Weverberg, K.; Ma, H. -Y.

    We introduce the Clouds Above the United States and Errors at the Surface (CAUSES) project with its aim of better understanding the physical processes leading to warm screen temperature biases over the American Midwest in many numerical models. In this first of four companion papers, 11 different models, from nine institutes, perform a series of 5 day hindcasts, each initialized from reanalyses. After describing the common experimental protocol and detailing each model configuration, a gridded temperature data set is derived from observations and used to show that all the models have a warm bias over parts of the Midwest. Additionally,more » a strong diurnal cycle in the screen temperature bias is found in most models. In some models the bias is largest around midday, while in others it is largest during the night. At the Department of Energy Atmospheric Radiation Measurement Southern Great Plains (SGP) site, the model biases are shown to extend several kilometers into the atmosphere. Finally, to provide context for the companion papers, in which observations from the SGP site are used to evaluate the different processes contributing to errors there, it is shown that there are numerous locations across the Midwest where the diurnal cycle of the error is highly correlated with the diurnal cycle of the error at SGP. This suggests that conclusions drawn from detailed evaluation of models using instruments located at SGP will be representative of errors that are prevalent over a larger spatial scale.« less

  18. Introduction to CAUSES: Description of Weather and Climate Models and Their Near-Surface Temperature Errors in 5 day Hindcasts Near the Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Morcrette, C. J.; Van Weverberg, K.; Ma, H.-Y.; Ahlgrimm, M.; Bazile, E.; Berg, L. K.; Cheng, A.; Cheruy, F.; Cole, J.; Forbes, R.; Gustafson, W. I.; Huang, M.; Lee, W.-S.; Liu, Y.; Mellul, L.; Merryfield, W. J.; Qian, Y.; Roehrig, R.; Wang, Y.-C.; Xie, S.; Xu, K.-M.; Zhang, C.; Klein, S.; Petch, J.

    2018-03-01

    We introduce the Clouds Above the United States and Errors at the Surface (CAUSES) project with its aim of better understanding the physical processes leading to warm screen temperature biases over the American Midwest in many numerical models. In this first of four companion papers, 11 different models, from nine institutes, perform a series of 5 day hindcasts, each initialized from reanalyses. After describing the common experimental protocol and detailing each model configuration, a gridded temperature data set is derived from observations and used to show that all the models have a warm bias over parts of the Midwest. Additionally, a strong diurnal cycle in the screen temperature bias is found in most models. In some models the bias is largest around midday, while in others it is largest during the night. At the Department of Energy Atmospheric Radiation Measurement Southern Great Plains (SGP) site, the model biases are shown to extend several kilometers into the atmosphere. Finally, to provide context for the companion papers, in which observations from the SGP site are used to evaluate the different processes contributing to errors there, it is shown that there are numerous locations across the Midwest where the diurnal cycle of the error is highly correlated with the diurnal cycle of the error at SGP. This suggests that conclusions drawn from detailed evaluation of models using instruments located at SGP will be representative of errors that are prevalent over a larger spatial scale.

  19. Representation of the Great Lakes in the Coupled Model Intercomparison Project Version 5

    NASA Astrophysics Data System (ADS)

    Briley, L.; Rood, R. B.

    2017-12-01

    The U.S. Great Lakes play a significant role in modifying regional temperatures and precipitation, and as the lakes change in response to a warming climate (i.e., warmer surface water temperatures, decreased ice cover, etc) lake-land-atmosphere dynamics are affected. Because the lakes modify regional weather and are a driver of regional climate change, understanding how they are represented in climate models is important to the reliability of model based information for the region. As part of the Great Lakes Integrated Sciences + Assessments (GLISA) Ensemble project, a major effort is underway to evaluate the Coupled Model Intercomparison Project version (CMIP) 5 global climate models for how well they physically represent the Great Lakes and lake-effects. The CMIP models were chosen because they are a primary source of information in many products developed for decision making (i.e., National Climate Assessment, downscaled future climate projections, etc.), yet there is very little description of how well they represent the lakes. This presentation will describe the results of our investigation of if and how the Great Lakes are represented in the CMIP5 models.

  20. Confounding by season in ecologic studies of seasonal exposures and outcomes: examples from estimates of mortality due to influenza.

    PubMed

    Jackson, Michael L

    2009-10-01

    Many health outcomes exhibit seasonal variation in incidence, including accidents, suicides, and infections. For seasonal outcomes it can be difficult to distinguish the causal roles played by factors that also vary seasonally, such as weather, air pollution, and pathogen circulation. Various approaches to estimating the association between a seasonal exposure and a seasonal outcome in ecologic studies are reviewed, using studies of influenza-related mortality as an example. Because mortality rates vary seasonally and circulation of other respiratory viruses peaks during influenza season, it is a challenge to estimate which winter deaths were caused by influenza. Results of studies that estimated the contribution of influenza to all-cause mortality using different methods on the same data are compared. Methods for estimating associations between season exposures and outcomes vary greatly in their advantages, disadvantages, and assumptions. Even when applied to identical data, different methods can give greatly different results for the expected contribution of influenza to all-cause mortality. When the association between exposures and outcomes that vary seasonally is estimated, models must be selected carefully, keeping in mind the assumptions inherent in each model.

  1. Capacity of Heterogeneous Mobile Wireless Networks with D-Delay Transmission Strategy.

    PubMed

    Wu, Feng; Zhu, Jiang; Xi, Zhipeng; Gao, Kai

    2016-03-25

    This paper investigates the capacity problem of heterogeneous wireless networks in mobility scenarios. A heterogeneous network model which consists of n normal nodes and m helping nodes is proposed. Moreover, we propose a D-delay transmission strategy to ensure that every packet can be delivered to its destination nodes with limited delay. Different from most existing network schemes, our network model has a novel two-tier architecture. The existence of helping nodes greatly improves the network capacity. Four types of mobile networks are studied in this paper: i.i.d. fast mobility model and slow mobility model in two-dimensional space, i.i.d. fast mobility model and slow mobility model in three-dimensional space. Using the virtual channel model, we present an intuitive analysis of the capacity of two-dimensional mobile networks and three-dimensional mobile networks, respectively. Given a delay constraint D, we derive the asymptotic expressions for the capacity of the four types of mobile networks. Furthermore, the impact of D and m to the capacity of the whole network is analyzed. Our findings provide great guidance for the future design of the next generation of networks.

  2. Computational Modeling of the Dielectric Barrier Discharge (DBD) Device for Aeronautical Applications

    DTIC Science & Technology

    2006-06-01

    electron energy equation are solved semi-implicitly in a sequential manner. Each of the governing equations is solved by casting them onto a tridiagonal ...actuator for different device configurations and operating parameters. This will provide the Air Force with a low cost, quick turn around...Atmosphere (ATM) (20:8). Initially, the applied potential difference on the electrodes must be great enough to initiate gas breakdown. While

  3. Animal models of female pelvic organ prolapse: lessons learned

    PubMed Central

    Couri, Bruna M; Lenis, Andrew T; Borazjani, Ali; Paraiso, Marie Fidela R; Damaser, Margot S

    2012-01-01

    Pelvic organ prolapse is a vaginal protrusion of female pelvic organs. It has high prevalence worldwide and represents a great burden to the economy. The pathophysiology of pelvic organ prolapse is multifactorial and includes genetic predisposition, aberrant connective tissue, obesity, advancing age, vaginal delivery and other risk factors. Owing to the long course prior to patients becoming symptomatic and ethical questions surrounding human studies, animal models are necessary and useful. These models can mimic different human characteristics – histological, anatomical or hormonal, but none present all of the characteristics at the same time. Major animal models include knockout mice, rats, sheep, rabbits and nonhuman primates. In this article we discuss different animal models and their utility for investigating the natural progression of pelvic organ prolapse pathophysiology and novel treatment approaches. PMID:22707980

  4. A robust operational model for predicting where tropical cyclone waves damage coral reefs

    NASA Astrophysics Data System (ADS)

    Puotinen, Marji; Maynard, Jeffrey A.; Beeden, Roger; Radford, Ben; Williams, Gareth J.

    2016-05-01

    Tropical cyclone (TC) waves can severely damage coral reefs. Models that predict where to find such damage (the ‘damage zone’) enable reef managers to: 1) target management responses after major TCs in near-real time to promote recovery at severely damaged sites; and 2) identify spatial patterns in historic TC exposure to explain habitat condition trajectories. For damage models to meet these needs, they must be valid for TCs of varying intensity, circulation size and duration. Here, we map damage zones for 46 TCs that crossed Australia’s Great Barrier Reef from 1985-2015 using three models - including one we develop which extends the capability of the others. We ground truth model performance with field data of wave damage from seven TCs of varying characteristics. The model we develop (4MW) out-performed the other models at capturing all incidences of known damage. The next best performing model (AHF) both under-predicted and over-predicted damage for TCs of various types. 4MW and AHF produce strikingly different spatial and temporal patterns of damage potential when used to reconstruct past TCs from 1985-2015. The 4MW model greatly enhances both of the main capabilities TC damage models provide to managers, and is useful wherever TCs and coral reefs co-occur.

  5. A robust operational model for predicting where tropical cyclone waves damage coral reefs.

    PubMed

    Puotinen, Marji; Maynard, Jeffrey A; Beeden, Roger; Radford, Ben; Williams, Gareth J

    2016-05-17

    Tropical cyclone (TC) waves can severely damage coral reefs. Models that predict where to find such damage (the 'damage zone') enable reef managers to: 1) target management responses after major TCs in near-real time to promote recovery at severely damaged sites; and 2) identify spatial patterns in historic TC exposure to explain habitat condition trajectories. For damage models to meet these needs, they must be valid for TCs of varying intensity, circulation size and duration. Here, we map damage zones for 46 TCs that crossed Australia's Great Barrier Reef from 1985-2015 using three models - including one we develop which extends the capability of the others. We ground truth model performance with field data of wave damage from seven TCs of varying characteristics. The model we develop (4MW) out-performed the other models at capturing all incidences of known damage. The next best performing model (AHF) both under-predicted and over-predicted damage for TCs of various types. 4MW and AHF produce strikingly different spatial and temporal patterns of damage potential when used to reconstruct past TCs from 1985-2015. The 4MW model greatly enhances both of the main capabilities TC damage models provide to managers, and is useful wherever TCs and coral reefs co-occur.

  6. Role of Edges in Complex Network Epidemiology

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Jiang, Zhi-Hong; Wang, Hui; Xie, Fei; Chen, Chao

    2012-09-01

    In complex network epidemiology, diseases spread along contacting edges between individuals and different edges may play different roles in epidemic outbreaks. Quantifying the efficiency of edges is an important step towards arresting epidemics. In this paper, we study the efficiency of edges in general susceptible-infected-recovered models, and introduce the transmission capability to measure the efficiency of edges. Results show that deleting edges with the highest transmission capability will greatly decrease epidemics on scale-free networks. Basing on the message passing approach, we get exact mathematical solution on configuration model networks with edge deletion in the large size limit.

  7. Enhancing thermoelectric properties through a three-terminal benzene molecule

    NASA Astrophysics Data System (ADS)

    Sartipi, Z.; Vahedi, J.

    2018-05-01

    The thermoelectric transport through a benzene molecule with three metallic terminals is discussed. Using general local and non-local transport coefficients, we investigated different conductance and thermopower coefficients within the linear response regime. Based on the Onsager coefficients which depend on the number of terminal efficiencies, efficiency at maximum power is also studied. In the three-terminal setup with tuning temperature differences, a great enhancement of the figure of merit is observed. Results also show that the third terminal model can be useful in improving the efficiency at maximum output power compared to the two-terminal model.

  8. SBML and CellML translation in antimony and JSim.

    PubMed

    Smith, Lucian P; Butterworth, Erik; Bassingthwaighte, James B; Sauro, Herbert M

    2014-04-01

    The creation and exchange of biologically relevant models is of great interest to many researchers. When multiple standards are in use, models are more readily used and re-used if there exist robust translators between the various accepted formats. Antimony 2.4 and JSim 2.10 provide translation capabilities from their own formats to SBML and CellML. All provided unique challenges, stemming from differences in each format's inherent design, in addition to differences in functionality. Both programs are available under BSD licenses; Antimony from http://antimony.sourceforge.net/and JSim from http://physiome.org/jsim/. lpsmith@u.washington.edu.

  9. Proteomic-based comparison between populations of the Great Scallop, Pecten maximus.

    PubMed

    Artigaud, Sébastien; Lavaud, Romain; Thébault, Julien; Jean, Fred; Strand, Oivind; Strohmeier, Tore; Milan, Massimo; Pichereau, Vianney

    2014-06-13

    Comparing populations residing in contrasting environments is an efficient way to decipher how organisms modulate their physiology. Here we present the proteomic signatures of two populations in a non-model marine species, the great scallop Pecten maximus, living in the northern (Hordaland, Norway) and in the center (Brest, France) of this species' latitudinal distribution range. The results showed 38 protein spots significantly differentially accumulated in mantle tissues between the two populations. We could unambiguously identify 11 of the protein spots by Maldi TOF-TOF mass spectrometry. Eight proteins corresponded to different isoforms of actin, two were identified as filamin, another protein related to the cytoskeleton structure, and one was the protease elastase. Our results suggest that scallops from the two populations assayed may modulate their cytoskeleton structures through regulation of intracellular pools of actin and filamin isoforms to better adapt to their environment. Marine mollusks are non-model organisms that have been poorly studied at the proteomic level, and this article is the first studying the great scallop (P. maximus) at this level. Furthermore, it addresses population proteomics, a new promising field, especially in environmental sciences. This article is part of a Special Issue entitled: Proteomics of non-model organisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Estimation method of state-of-charge for lithium-ion battery used in hybrid electric vehicles based on variable structure extended kalman filter

    NASA Astrophysics Data System (ADS)

    Sun, Yong; Ma, Zilin; Tang, Gongyou; Chen, Zheng; Zhang, Nong

    2016-07-01

    Since the main power source of hybrid electric vehicle(HEV) is supplied by the power battery, the predicted performance of power battery, especially the state-of-charge(SOC) estimation has attracted great attention in the area of HEV. However, the value of SOC estimation could not be greatly precise so that the running performance of HEV is greatly affected. A variable structure extended kalman filter(VSEKF)-based estimation method, which could be used to analyze the SOC of lithium-ion battery in the fixed driving condition, is presented. First, the general lower-order battery equivalent circuit model(GLM), which includes column accumulation model, open circuit voltage model and the SOC output model, is established, and the off-line and online model parameters are calculated with hybrid pulse power characteristics(HPPC) test data. Next, a VSEKF estimation method of SOC, which integrates the ampere-hour(Ah) integration method and the extended Kalman filter(EKF) method, is executed with different adaptive weighting coefficients, which are determined according to the different values of open-circuit voltage obtained in the corresponding charging or discharging processes. According to the experimental analysis, the faster convergence speed and more accurate simulating results could be obtained using the VSEKF method in the running performance of HEV. The error rate of SOC estimation with the VSEKF method is focused in the range of 5% to 10% comparing with the range of 20% to 30% using the EKF method and the Ah integration method. In Summary, the accuracy of the SOC estimation in the lithium-ion battery cell and the pack of lithium-ion battery system, which is obtained utilizing the VSEKF method has been significantly improved comparing with the Ah integration method and the EKF method. The VSEKF method utilizing in the SOC estimation in the lithium-ion pack of HEV can be widely used in practical driving conditions.

  11. Deterministic propagation model for RFID using site-specific and FDTD

    NASA Astrophysics Data System (ADS)

    Cunha de Azambuja, Marcelo; Passuelo Hessel, Fabiano; Luís Berz, Everton; Bauermann Porfírio, Leandro; Ruhnke Valério, Paula; De Pieri Baladei, Suely; Jung, Carlos Fernando

    2015-06-01

    The conduction of experiments to evaluate a tag orientation and its readability in a laboratory offers great potential for reducing time and costs for users. This article presents a novel methodology for developing simulation models for RFID (radio-frequency identification) environments. The main challenges in adopting this model are: (1) to find out how the properties of each one of the materials, on which the tag is applied, influence the read range and to determine the necessary power for tag reading and (2) to find out the power of the backscattered signal received by the tag when energised by the RF wave transmitted by the reader. The validation tests, performed in four different kinds of environments, with tags applied to six different kinds of materials, six different distances and with a reader configured with three different powers, showed achievements on the average of 95.3% accuracy in the best scenario and 87.0% in the worst scenario. The methodology can be easily duplicated to generate simulation models to other different RFID environments.

  12. Linking epigenetic function to electrostatics: The DNMT2 structural model example.

    PubMed

    Vieira, Gilberto Cavalheiro; Vieira, Gustavo Fioravanti; Sinigaglia, Marialva; Silva Valente, Vera Lúcia da

    2017-01-01

    The amino acid sequence of DNMT2 is very similar to the catalytic domains of bacterial and eukaryotic proteins. However, there is great variability in the region of recognition of the target sequence. While bacterial DNMT2 acts as a DNA methyltransferase, previous studies have indicated low DNA methylation activity in eukaryotic DNMT2, with preference by tRNA methylation. Drosophilids are known as DNMT2-only species and the DNA methylation phenomenon is a not elucidated case yet, as well as the ontogenetic and physiologic importance of DNMT2 for this species group. In addition, more recently study showed that methylation in the genome in Drosophila melanogaster is independent in relation to DNMT2. Despite these findings, Drosophilidae family has more than 4,200 species with great ecological diversity and historical evolution, thus we, therefore, aimed to examine the drosophilids DNMT2 in order to verify its conservation at the physicochemical and structural levels in a functional context. We examined the twenty-six DNMT2 models generated by molecular modelling and five crystallographic structures deposited in the Protein Data Bank (PDB) using different approaches. Our results showed that despite sequence and structural similarity between species close related, we found outstanding differences when they are analyzed in the context of surface distribution of electrostatic properties. The differences found in the electrostatic potentials may be linked with different affinities and processivity of DNMT2 for its different substrates (DNA, RNA or tRNA) and even for interactions with other proteins involved in the epigenetic mechanisms.

  13. Linking epigenetic function to electrostatics: The DNMT2 structural model example

    PubMed Central

    Vieira, Gustavo Fioravanti; da Silva Valente, Vera Lúcia

    2017-01-01

    The amino acid sequence of DNMT2 is very similar to the catalytic domains of bacterial and eukaryotic proteins. However, there is great variability in the region of recognition of the target sequence. While bacterial DNMT2 acts as a DNA methyltransferase, previous studies have indicated low DNA methylation activity in eukaryotic DNMT2, with preference by tRNA methylation. Drosophilids are known as DNMT2-only species and the DNA methylation phenomenon is a not elucidated case yet, as well as the ontogenetic and physiologic importance of DNMT2 for this species group. In addition, more recently study showed that methylation in the genome in Drosophila melanogaster is independent in relation to DNMT2. Despite these findings, Drosophilidae family has more than 4,200 species with great ecological diversity and historical evolution, thus we, therefore, aimed to examine the drosophilids DNMT2 in order to verify its conservation at the physicochemical and structural levels in a functional context. We examined the twenty-six DNMT2 models generated by molecular modelling and five crystallographic structures deposited in the Protein Data Bank (PDB) using different approaches. Our results showed that despite sequence and structural similarity between species close related, we found outstanding differences when they are analyzed in the context of surface distribution of electrostatic properties. The differences found in the electrostatic potentials may be linked with different affinities and processivity of DNMT2 for its different substrates (DNA, RNA or tRNA) and even for interactions with other proteins involved in the epigenetic mechanisms. PMID:28575027

  14. Stock-specific advection of larval walleye (Sander vitreus) in western Lake Erie: Implications for larval growth, mixing, and stock discrimination

    USGS Publications Warehouse

    Fraker, Michael E.; Anderson, Eric J.; May, Cassandra J.; Chen, Kuan-Yu; Davis, Jeremiah J.; DeVanna, Kristen M.; DuFour, Mark R.; Marschall, Elizabeth A.; Mayer, Christine M.; Miner, Jeffery G.; Pangle, Kevin L.; Pritt, Jeremy J.; Roseman, Edward F.; Tyson, Jeffrey T.; Zhao, Yingming; Ludsin, Stuart A

    2015-01-01

    Physical processes can generate spatiotemporal heterogeneity in habitat quality for fish and also influence the overlap of pre-recruit individuals (e.g., larvae) with high-quality habitat through hydrodynamic advection. In turn, individuals from different stocks that are produced in different spawning locations or at different times may experience dissimilar habitat conditions, which can underlie within- and among-stock variability in larval growth and survival. While such physically-mediated variation has been shown to be important in driving intra- and inter-annual patterns in recruitment in marine ecosystems, its role in governing larval advection, growth, survival, and recruitment has received less attention in large lake ecosystems such as the Laurentian Great Lakes. Herein, we used a hydrodynamic model linked to a larval walleye (Sander vitreus) individual-based model to explore how the timing and location of larval walleye emergence from several spawning sites in western Lake Erie (Maumee, Sandusky, and Detroit rivers; Ohio reef complex) can influence advection pathways and mixing among these local spawning populations (stocks), and how spatiotemporal variation in thermal habitat can influence stock-specific larval growth. While basin-wide advection patterns were fairly similar during 2011 and 2012, smaller scale advection patterns and the degree of stock mixing varied both within and between years. Additionally, differences in larval growth were evident among stocks and among cohorts within stocks which were attributed to spatiotemporal differences in water temperature. Using these findings, we discuss the value of linked physical–biological models for understanding the recruitment process and addressing fisheries management problems in the world's Great Lakes.

  15. Slip Distribution of the 2011 Tohoku-oki Earthquake obtained by Geodetic and Tsunami Data and with a 3-D Finite Element Model

    NASA Astrophysics Data System (ADS)

    Romano, F.; Trasatti, E.; Lorito, S.; Ito, Y.; Piatanesi, A.; Lanucara, P.; Hirata, K.; D'Agostino, N.; Cocco, M.

    2012-12-01

    The rupture process of the Great 2011 Tohoku-oki earthquake has been particularly well studied by using an unprecedented collection of geophysical data. There is a general agreement among the different source models obtained by modeling seismological, geodetic and tsunami data. A slip patch of nearly 40÷50 meters has been imaged and located around and up-dip from the hypocenter by most of published models, while some differences exist in the slip pattern retrieved at shallow depths near the trench, likely due to the different resolving power of distinct data sets and to the adopted fault geometry. It is well known that the modeling of great subduction earthquakes requires the use of 3-D structural models in order to properly account for the effects of topography, bathymetry and the geometrical variations of the plate interface as well as for the effects of elastic contrasts between the subducting plate and the continental lithosphere. In this study we build a 3-D Finite Element (FE) model of the Tohoku-oki area in order to infer the slip distribution of the 2011 earthquake by performing a joint inversion of geodetic (GPS and seafloor observations) and tsunami (ocean bottom pressure sensors, DART and GPS buoys) data. The FE model is used to compute the geodetic and tsunami Green's functions. In order to understand how geometrical and elastic heterogeneities control the inferred slip distribution of the Tohoku-oki earthquake, we compare the slip patterns obtained using both homogeneous and heterogeneous structural models. The goal of this study is to better constrain the slip distribution and the maximum slip amplitudes. In particular, we aim to focus on the rupture process in the shallower part of the fault plane and near the trench, which is crucial to model the tsunami data and to assess the tsunamigenic potential of earthquakes in this region.

  16. Different Trophic Tracers Give Different Answers for the Same Bugs - Comparing a Stable Isotope and Fatty Acid Based Analysis of Resource Utilization in a Marine Isopod

    NASA Astrophysics Data System (ADS)

    Galloway, A. W. E.; Eisenlord, M. E.; Brett, M. T.

    2016-02-01

    Stable isotope (SI) based mixing models are the most common approach used to infer resource pathways in consumers. However, SI based analyses are often underdetermined, and consumer SI fractionation is usually unknown. The use of fatty acid (FA) tracers in mixing models offers an alternative approach that can resolve the underdetermined constraint. A limitation to both methods is the considerable uncertainty about consumer `trophic modification' (TM) of dietary FA or SI, which occurs as consumers transform dietary resources into tissues. We tested the utility of SI and FA approaches for inferring the diets of the marine benthic isopod (Idotea wosnesenskii) fed various marine macroalgae in controlled feeding trials. Our analyses quantified how the accuracy and precision of Bayesian mixing models was influenced by choice of algorithm (SIAR vs MixSIR), fractionation (assumed or known), and whether the model was under or overdetermined (seven sources and two vs 26 tracers) for cases where isopods were fed an exclusive diet of one of the seven different macroalgae. Using the conventional approach (i.e., 2 SI with assumed TM) resulted in average model outputs, i.e., the contribution from the exclusive resource = 0.20 ± 0.23 (0.00-0.79), mean ± SD (95% credible interval), that only differed slightly from the prior assumption. Using the FA based approach with known TM greatly improved model performance, i.e., the contribution from the exclusive resource = 0.91 ± 0.10 (0.58-0.99). The choice of algorithm only made a difference when fractionation was known and the model was overdetermined (FA approach). In this case SIAR and MixSIR had outputs of 0.86 ± 0.11 (0.48-0.96) and 0.96 ± 0.05 (0.79-1.00), respectively. This analysis shows the choice of dietary tracers and the assumption of consumer trophic modification greatly influence the performance of mixing model dietary reconstructions, and ultimately our understanding of what resources actually support aquatic consumers.

  17. Assessing Different Causes of Crown-of-Thorns Starfish Outbreaks and Appropriate Responses for Management on the Great Barrier Reef

    PubMed Central

    Babcock, Russell C.; Dambacher, Jeffrey M.; Morello, Elisabetta B.; Plagányi, Éva E.; Hayes, Keith R.; Sweatman, Hugh P. A.; Pratchett, Morgan S.

    2016-01-01

    The crown-of-thorns starfish Acanthaster planci (COTS) has contributed greatly to declines in coral cover on Australia’s Great Barrier Reef, and remains one of the major acute disturbances on Indo-Pacific coral reefs. Despite uncertainty about the underlying causes of outbreaks and the management responses that might address them, few studies have critically and directly compared competing hypotheses. This study uses qualitative modelling to compare hypotheses relating to outbreak initiation, explicitly considering the potential role of positive feedbacks, elevated nutrients, and removal of starfish predators by fishing. When nutrients and fishing are considered in isolation, the models indicate that a range of alternative hypotheses are capable of explaining outbreak initiation with similar levels of certainty. The models also suggest that outbreaks may be caused by multiple factors operating simultaneously, rather than by single proximal causes. As the complexity and realism of the models increased, the certainty of outcomes decreased, but key areas that require further research to improve the structure of the models were identified. Nutrient additions were likely to result in outbreaks only when COTS larvae alone benefitted from nutrients. Similarly, the effects of fishing on the decline of corals depended on the complexity of interactions among several categories of fishes. Our work suggests that management approaches which seek to be robust to model structure uncertainty should allow for multiple potential causes of outbreaks. Monitoring programs can provide tests of alternative potential causes of outbreaks if they specifically monitor all key taxa at reefs that are exposed to appropriate combinations of potential causal factors. PMID:28036360

  18. Comparison of the Effects of Velocity and Range Triggers on Trajectory Dispersions for the Mars 2020 Mission

    NASA Technical Reports Server (NTRS)

    Dutta, Soumyo; Way, David W.

    2017-01-01

    Mars 2020, the next planned U.S. rover mission to land on Mars, is based on the design of the successful 2012 Mars Science Laboratory (MSL) mission. Mars 2020 retains most of the entry, descent, and landing (EDL) sequences of MSL, including the closed-loop entry guidance scheme based on the Apollo guidance algorithm. However, unlike MSL, Mars 2020 will trigger the parachute deployment and descent sequence on range trigger rather than the previously used velocity trigger. This difference will greatly reduce the landing ellipse sizes. Additionally, the relative contribution of each models to the total ellipse sizes have changed greatly due to the switch to range trigger. This paper considers the effect on trajectory dispersions due to changing the trigger schemes and the contributions of these various models to trajectory and EDL performance.

  19. Focus on health, motivation, and pride: A discussion of three theoretical perspectives on the rehabilitation of sick-listed people.

    PubMed

    Svensson, Tommy; Björklund, Anita

    2010-01-01

    During the last decades sickness absence from work has become a great societal problem. Questions of how rehabilitation processes should become successful and how peoples' ability to work can be improved have become of great public interest. In this paper we discuss three well-known theoretical perspectives regarding their usefulness when it comes to research on rehabilitation for return to work. The three perspectives are: Antonovsky's salutogenic model of health, Kielhofner's model of human occupation and Scheff's sociological theory of "shame and pride". Each of these can be applied to increase understanding and knowledge concerning sickness absence and return to work. We discuss points of affinity among the three perspectives, as well as significant differences, and we propose that a very essential common denominator is the importance of self-experience.

  20. Customizing WRF-Hydro for the Laurentian Great Lakes Basin

    NASA Astrophysics Data System (ADS)

    Gronewold, A.; Pei, L.; Gochis, D.; Mason, L.; Sampson, K. M.; Dugger, A. L.; Read, L.; McCreight, J. L.; Xiao, C.; Lofgren, B. M.; Anderson, E. J.; Chu, P. Y.

    2017-12-01

    To advance the state of the art in regional hydrological forecasting, and to align with operational deployment of the National Water Model, a team of scientists has been customizing WRF-Hydro (the Weather Research and Forecasting model - Hydrological modeling extension package) to the entirety (including binational land and lake surfaces) of the Laurentian Great Lakes basin. Objectives of this customization project include opererational simulation and forecasting of the Great Lakes water balance and, in the short-term, research-oriented insights into modeling one- and two-way coupled lake-atmosphere and near-shore processes. Initial steps in this project have focused on overcoming inconsistencies in land surface hydrographic datasets between the United States and Canada. Improvements in the model's current representation of lake physics and stream routing are also critical components of this effort. Here, we present an update on the status of this project, including a synthesis of offline tests with WRF-Hydro based on the newly developed Great Lakes hydrographic data, and an assessment of the model's ability to simulate seasonal and multi-decadal hydrological response across the Great Lakes.

  1. Friends and Foes in the Lexicon: Homophone Naming in Aphasia

    ERIC Educational Resources Information Center

    Middleton, Erica L.; Chen, Qi; Verkuilen, Jay

    2015-01-01

    The study of homophones--words with different meanings that sound the same--has great potential to inform models of language production. Of particular relevance is a phenomenon termed "frequency" inheritance, where a low-frequency word (e.g., "deer") is produced more fluently than would be expected based on its frequency…

  2. Suicide Rates in the World: 1950-2004

    ERIC Educational Resources Information Center

    Liu, Ka-yuet

    2009-01-01

    The cross-country differences and the trends of suicide rates in 71 countries from 1950 to 2004 are described. The data are from the World Health Organization's Mortality Database. It shows that suicide rates vary greatly across countries, even within the same region or at similar levels of development. Random-effect models were used to examine…

  3. MECHANISTIC ROLES OF SOIL HUMUS AND MINERALS IN THE SORPTION OF NONIONIC ORGANIC COMPOUNDS FROM AQUEOUS AND ORGANIC SOLUTIONS

    EPA Science Inventory

    Mechanistic roles of soil humus and soil minerals and their contributions to soil sorption of nonionic organic compounds from aqueous and organic solutions are illustrated. Parathion and lindane are used as model solutes on two soils that differ greatly in their humic and mineral...

  4. New Employment Forecasts. Hotel and Catering Industry 1988-1993.

    ERIC Educational Resources Information Center

    Measurement for Management Decision, Ltd., London (England).

    Econometric forecasting models were used to forecast employment levels in the hotel and catering industry in Great Britain through 1993 under several different forecasting scenarios. The growth in employment in the hotel and catering industry over the next 5 years is likely to be broadly based, both across income levels of domestic consumers,…

  5. The Ideal and the Reality: Teaching Interpersonal Communication within the Walls.

    ERIC Educational Resources Information Center

    Meussling, Vonne

    Teaching interpersonal values in an "ideal" setting, such as a college classroom, differs greatly from teaching in a "real" setting, in this case a maximum security prison for males. The practice of prison indoctrination dehumanizes inmates, diminishes their self-esteem, and deprives them of positive role models. The nature of the collective…

  6. Principals' Leadership Behaviors in Gang-Impacted High Schools and Their Effects on Pupil Climate.

    ERIC Educational Resources Information Center

    Schwartz, Audrey J.

    Although viable leadership models for schools with differing social contexts are in great demand, empirical studies of high school principals have not produced consistent results. This paper summarizes part of a larger project designed to identify leadership behaviors of principals in "gang-impacted" and other secondary schools. The…

  7. From Research Resources to Learning Objects: Process Model and Virtualization Experiences

    ERIC Educational Resources Information Center

    Sierra, Jose Luis; Fernandez-Valmayor, Alfredo; Guinea, Mercedes; Hernanz, Hector

    2006-01-01

    Typically, most research and academic institutions own and archive a great amount of objects and research related resources that have been produced, used and maintained over long periods of time by different types of "domain experts" (e.g. lecturers and researchers). Although the potential educational value of these resources is very…

  8. Building Models to Predict Hint-or-Attempt Actions of Students

    ERIC Educational Resources Information Center

    Castro, Francisco Enrique Vicente; Adjei, Seth; Colombo, Tyler; Heffernan, Neil

    2015-01-01

    A great deal of research in educational data mining is geared towards predicting student performance. Bayesian Knowledge Tracing, Performance Factors Analysis, and the different variations of these have been introduced and have had some success at predicting student knowledge. It is worth noting, however, that very little has been done to…

  9. OpinionFlow: Visual Analysis of Opinion Diffusion on Social Media.

    PubMed

    Wu, Yingcai; Liu, Shixia; Yan, Kai; Liu, Mengchen; Wu, Fangzhao

    2014-12-01

    It is important for many different applications such as government and business intelligence to analyze and explore the diffusion of public opinions on social media. However, the rapid propagation and great diversity of public opinions on social media pose great challenges to effective analysis of opinion diffusion. In this paper, we introduce a visual analysis system called OpinionFlow to empower analysts to detect opinion propagation patterns and glean insights. Inspired by the information diffusion model and the theory of selective exposure, we develop an opinion diffusion model to approximate opinion propagation among Twitter users. Accordingly, we design an opinion flow visualization that combines a Sankey graph with a tailored density map in one view to visually convey diffusion of opinions among many users. A stacked tree is used to allow analysts to select topics of interest at different levels. The stacked tree is synchronized with the opinion flow visualization to help users examine and compare diffusion patterns across topics. Experiments and case studies on Twitter data demonstrate the effectiveness and usability of OpinionFlow.

  10. From military to civil loadings: Preliminary numerical-based thorax injury criteria investigations.

    PubMed

    Goumtcha, Aristide Awoukeng; Bodo, Michèle; Taddei, Lorenzo; Roth, Sébastien

    2016-03-01

    Effects of the impact of a mechanical structure on the human body are of great interest in the understanding of body trauma. Experimental tests have led to first conclusions about the dangerousness of an impact observing impact forces or displacement time history with PMHS (Post Mortem human Subjects). They have allowed providing interesting data for the development and the validation of numerical biomechanical models. These models, widely used in the framework of automotive crashworthiness, have led to the development of numerical-based injury criteria and tolerance thresholds. The aim of this process is to improve the safety of mechanical structures in interaction with the body. In a military context, investigations both at experimental and numerical level are less successfully completed. For both military and civil frameworks, the literature list a number of numerical analysis trying to propose injury mechanisms, and tolerance thresholds based on biofidelic Finite Element (FE) models of different part of the human body. However the link between both frameworks is not obvious, since lots of parameters are different: great mass impacts at relatively low velocity for civil impacts (falls, automotive crashworthiness) and low mass at very high velocity for military loadings (ballistic, blast). In this study, different accident cases were investigated, and replicated with a previously developed and validated FE model of the human thorax named Hermaphrodite Universal Biomechanical YX model (HUBYX model). These previous validations included replications of standard experimental tests often used to validate models in the context of automotive industry, experimental ballistic tests in high speed dynamic impact and also numerical replication of blast loading test ensuring its biofidelity. In order to extend the use of this model in other frameworks, some real-world accidents were reconstructed, and consequences of these loadings on the FE model were explored. These various numerical replications of accident coming from different contexts raise the question about the ability of a FE model to correctly predict several kinds of trauma, from blast or ballistic impacts to falls, sports or automotive ones in a context of numerical injury mechanisms and tolerance limits investigations. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Preliminary estimates of the direct costs associated with endemic diseases of livestock in Great Britain.

    PubMed

    Bennett, R; Christiansen, K; Clifton-Hadley, R

    1999-04-09

    Many 'economic' studies of livestock diseases in Great Britain have been carried out over time. Most studies have considered just one or two diseases and used a different methodology and valuation base from other studies, hampering any comparative assessment of the economic impact of diseases. A standardized methodology was applied to the estimation of the direct costs to livestock production of some 30 endemic diseases/conditions of farm animals in Great Britain. This involved identification of the livestock populations at risk, estimation of the annual incidence of each disease in these populations, identification of the range and incidence of physical effects of each disease on production, valuation of the physical effects of each disease and estimation of the financial value of output losses/resource wastage due to a disease and the costs of specific treatment and prevention measures. The wider economic impacts of disease (such as the implications for human health, animal welfare and markets) were not included in the assessments. Using this standardized methodology with common financial values, a simple spreadsheet model was constructed for each disease. Given the paucity of appropriate disease data for economic assessment, 'low' and 'high' values were used to reflect uncertainties surrounding key disease parameters. Preliminary estimates of the value of disease output losses/resource wastage, treatment and prevention costs are presented for each disease. Despite the limitations of the spreadsheet models and of the estimates derived from them, we conclude that the models represent a useful start in developing a system for the comparative economic assessment of livestock diseases in Great Britain.

  12. Development of Great Lakes algorithms for the Nimbus-G coastal zone color scanner

    NASA Technical Reports Server (NTRS)

    Tanis, F. J.; Lyzenga, D. R.

    1981-01-01

    A series of experiments in the Great Lakes designed to evaluate the application of the Nimbus G satellite Coastal Zone Color Scanner (CZCS) were conducted. Absorption and scattering measurement data were reduced to obtain a preliminary optical model for the Great Lakes. Available optical models were used in turn to calculate subsurface reflectances for expected concentrations of chlorophyll-a pigment and suspended minerals. Multiple nonlinear regression techniques were used to derive CZCS water quality prediction equations from Great Lakes simulation data. An existing atmospheric model was combined with a water model to provide the necessary simulation data for evaluation of the preliminary CZCS algorithms. A CZCS scanner model was developed which accounts for image distorting scanner and satellite motions. This model was used in turn to generate mapping polynomials that define the transformation from the original image to one configured in a polyconic projection. Four computer programs (FORTRAN IV) for image transformation are presented.

  13. Crustal Density Variation Along the San Andreas Fault Controls Its Secondary Faults Distribution and Dip Direction

    NASA Astrophysics Data System (ADS)

    Yang, H.; Moresi, L. N.

    2017-12-01

    The San Andreas fault forms a dominant component of the transform boundary between the Pacific and the North American plate. The density and strength of the complex accretionary margin is very heterogeneous. Based on the density structure of the lithosphere in the SW United States, we utilize the 3D finite element thermomechanical, viscoplastic model (Underworld2) to simulate deformation in the San Andreas Fault system. The purpose of the model is to examine the role of a big bend in the existing geometry. In particular, the big bend of the fault is an initial condition of in our model. We first test the strength of the fault by comparing the surface principle stresses from our numerical model with the in situ tectonic stress. The best fit model indicates the model with extremely weak fault (friction coefficient < 0.1) is requisite. To the first order, there is significant density difference between the Great Valley and the adjacent Mojave block. The Great Valley block is much colder and of larger density (>200 kg/m3) than surrounding blocks. In contrast, the Mojave block is detected to find that it has lost its mafic lower crust by other geophysical surveys. Our model indicates strong strain localization at the jointer boundary between two blocks, which is an analogue for the Garlock fault. High density lower crust material of the Great Valley tends to under-thrust beneath the Transverse Range near the big bend. This motion is likely to rotate the fault plane from the initial vertical direction to dip to the southwest. For the straight section, north to the big bend, the fault is nearly vertical. The geometry of the fault plane is consistent with field observations.

  14. Systematic approach to verification and validation: High explosive burn models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph; Scovel, Christina A.

    2012-04-16

    Most material models used in numerical simulations are based on heuristics and empirically calibrated to experimental data. For a specific model, key questions are determining its domain of applicability and assessing its relative merits compared to other models. Answering these questions should be a part of model verification and validation (V and V). Here, we focus on V and V of high explosive models. Typically, model developers implemented their model in their own hydro code and use different sets of experiments to calibrate model parameters. Rarely can one find in the literature simulation results for different models of the samemore » experiment. Consequently, it is difficult to assess objectively the relative merits of different models. This situation results in part from the fact that experimental data is scattered through the literature (articles in journals and conference proceedings) and that the printed literature does not allow the reader to obtain data from a figure in electronic form needed to make detailed comparisons among experiments and simulations. In addition, it is very time consuming to set up and run simulations to compare different models over sufficiently many experiments to cover the range of phenomena of interest. The first difficulty could be overcome if the research community were to support an online web based database. The second difficulty can be greatly reduced by automating procedures to set up and run simulations of similar types of experiments. Moreover, automated testing would be greatly facilitated if the data files obtained from a database were in a standard format that contained key experimental parameters as meta-data in a header to the data file. To illustrate our approach to V and V, we have developed a high explosive database (HED) at LANL. It now contains a large number of shock initiation experiments. Utilizing the header information in a data file from HED, we have written scripts to generate an input file for a hydro code, run a simulation, and generate a comparison plot showing simulated and experimental velocity gauge data. These scripts are then applied to several series of experiments and to several HE burn models. The same systematic approach is applicable to other types of material models; for example, equations of state models and material strength models.« less

  15. Downscaling Soil Moisture in the Southern Great Plains Through a Calibrated Multifractal Model for Land Surface Modeling Applications

    NASA Technical Reports Server (NTRS)

    Mascaro, Giuseppe; Vivoni, Enrique R.; Deidda, Roberto

    2010-01-01

    Accounting for small-scale spatial heterogeneity of soil moisture (theta) is required to enhance the predictive skill of land surface models. In this paper, we present the results of the development, calibration, and performance evaluation of a downscaling model based on multifractal theory using aircraft!based (800 m) theta estimates collected during the southern Great Plains experiment in 1997 (SGP97).We first demonstrate the presence of scale invariance and multifractality in theta fields of nine square domains of size 25.6 x 25.6 sq km, approximately a satellite footprint. Then, we estimate the downscaling model parameters and evaluate the model performance using a set of different calibration approaches. Results reveal that small-scale theta distributions are adequately reproduced across the entire region when coarse predictors include a dynamic component (i.e., the spatial mean soil moisture ) and a stationary contribution accounting for static features (i.e., topography, soil texture, vegetation). For wet conditions, we found similar multifractal properties of soil moisture across all domains, which we ascribe to the signature of rainfall spatial variability. For drier states, the theta fields in the northern domains are more intermittent than in southern domains, likely because of differences in the distribution of vegetation coverage. Through our analyses, we propose a regional downscaling relation for coarse, satellite-based soil moisture estimates, based on ancillary information (static and dynamic landscape features), which can be used in the study area to characterize statistical properties of small-scale theta distribution required by land surface models and data assimilation systems.

  16. Models-Based Practice: Great White Hope or White Elephant?

    ERIC Educational Resources Information Center

    Casey, Ashley

    2014-01-01

    Background: Many critical curriculum theorists in physical education have advocated a model- or models-based approach to teaching in the subject. This paper explores the literature base around models-based practice (MBP) and asks if this multi-models approach to curriculum planning has the potential to be the great white hope of pedagogical change…

  17. General linear methods and friends: Toward efficient solutions of multiphysics problems

    NASA Astrophysics Data System (ADS)

    Sandu, Adrian

    2017-07-01

    Time dependent multiphysics partial differential equations are of great practical importance as they model diverse phenomena that appear in mechanical and chemical engineering, aeronautics, astrophysics, meteorology and oceanography, financial modeling, environmental sciences, etc. There is no single best time discretization for the complex multiphysics systems of practical interest. We discuss "multimethod" approaches that combine different time steps and discretizations using the rigourous frameworks provided by Partitioned General Linear Methods and Generalize-structure Additive Runge Kutta Methods..

  18. Fusing MODIS with Landsat 8 data to downscale weekly normalized difference vegetation index estimates for central Great Basin rangelands, USA

    USGS Publications Warehouse

    Boyte, Stephen; Wylie, Bruce K.; Rigge, Matthew B.; Dahal, Devendra

    2018-01-01

    Data fused from distinct but complementary satellite sensors mitigate tradeoffs that researchers make when selecting between spatial and temporal resolutions of remotely sensed data. We integrated data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra satellite and the Operational Land Imager sensor aboard the Landsat 8 satellite into four regression-tree models and applied those data to a mapping application. This application produced downscaled maps that utilize the 30-m spatial resolution of Landsat in conjunction with daily acquisitions of MODIS normalized difference vegetation index (NDVI) that are composited and temporally smoothed. We produced four weekly, atmospherically corrected, and nearly cloud-free, downscaled 30-m synthetic MODIS NDVI predictions (maps) built from these models. Model results were strong with R2 values ranging from 0.74 to 0.85. The correlation coefficients (r ≥ 0.89) were strong for all predictions when compared to corresponding original MODIS NDVI data. Downscaled products incorporated into independently developed sagebrush ecosystem models yielded mixed results. The visual quality of the downscaled 30-m synthetic MODIS NDVI predictions were remarkable when compared to the original 250-m MODIS NDVI. These 30-m maps improve knowledge of dynamic rangeland seasonal processes in the central Great Basin, United States, and provide land managers improved resource maps.

  19. Brood-parasite interactions between great spotted cuckoos and magpies: a model system for studying coevolutionary relationships.

    PubMed

    Soler, Juan; Soler, Manuel

    2000-11-01

    Brood parasitism is one of the systems where coevolutionary processes have received the most research. Here, we review experiments that suggest a coevolutionary process between the great spotted cuckoo (Clamator glandarius) and its magpie (Pica pica) host. We focus on different stages of establishment of the relationship, from cuckoos selecting individual hosts and hosts defending their nests from adult cuckoos, to the ability of magpies to detect cuckoo eggs in their nests. Novel coevolutionary insights emerge from our synthesis of the literature, including how the evolution of "Mafia" behaviour in cuckoos does not necessarily inhibit the evolution of host recognition and rejection of cuckoo offspring, and how different populations of black-billed magpies in Europe have evolved specific host traits (e.g. nest and clutch size) as a result of interactions with the great spotted cuckoo. Finally, the results of the synthesis reveal the importance of using a meta-population approach when studying coevolution. This is especially relevant in those cases where gene flow among populations with different degrees of brood parasitism explains patterns of coexistence between defensive and non-defensive host phenotypes. We propose the use of a meta-population approach to distinguish between the "evolutionary equilibrium" hypothesis and the "evolutionary lag" hypothesis.

  20. Applicability of linear regression equation for prediction of chlorophyll content in rice leaves

    NASA Astrophysics Data System (ADS)

    Li, Yunmei

    2005-09-01

    A modeling approach is used to assess the applicability of the derived equations which are capable to predict chlorophyll content of rice leaves at a given view direction. Two radiative transfer models, including PROSPECT model operated at leaf level and FCR model operated at canopy level, are used in the study. The study is consisted of three steps: (1) Simulation of bidirectional reflectance from canopy with different leaf chlorophyll contents, leaf-area-index (LAI) and under storey configurations; (2) Establishment of prediction relations of chlorophyll content by stepwise regression; and (3) Assessment of the applicability of these relations. The result shows that the accuracy of prediction is affected by different under storey configurations and, however, the accuracy tends to be greatly improved with increase of LAI.

  1. Estimation of whole lemon mass transfer parameters during hot air drying using different modelling methods

    NASA Astrophysics Data System (ADS)

    Torki-Harchegani, Mehdi; Ghanbarian, Davoud; Sadeghi, Morteza

    2015-08-01

    To design new dryers or improve existing drying equipments, accurate values of mass transfer parameters is of great importance. In this study, an experimental and theoretical investigation of drying whole lemons was carried out. The whole lemons were dried in a convective hot air dryer at different air temperatures (50, 60 and 75 °C) and a constant air velocity (1 m s-1). In theoretical consideration, three moisture transfer models including Dincer and Dost model, Bi- G correlation approach and conventional solution of Fick's second law of diffusion were used to determine moisture transfer parameters and predict dimensionless moisture content curves. The predicted results were then compared with the experimental data and the higher degree of prediction accuracy was achieved by the Dincer and Dost model.

  2. Contrasting results from GWAS and QTL mapping on wing length in great reed warblers.

    PubMed

    Hansson, Bengt; Sigeman, Hanna; Stervander, Martin; Tarka, Maja; Ponnikas, Suvi; Strandh, Maria; Westerdahl, Helena; Hasselquist, Dennis

    2018-04-15

    A major goal in evolutionary biology is to understand the genetic basis of adaptive traits. In migratory birds, wing morphology is such a trait. Our previous work on the great reed warbler (Acrocephalus arundinaceus) shows that wing length is highly heritable and under sexually antagonistic selection. Moreover, a quantitative trait locus (QTL) mapping analysis detected a pronounced QTL for wing length on chromosome 2, suggesting that wing morphology is partly controlled by genes with large effects. Here, we re-evaluate the genetic basis of wing length in great reed warblers using a genomewide association study (GWAS) approach based on restriction site-associated DNA sequencing (RADseq) data. We use GWAS models that account for relatedness between individuals and include covariates (sex, age and tarsus length). The resulting association landscape was flat with no peaks on chromosome 2 or elsewhere, which is in line with expectations for polygenic traits. Analysis of the distribution of p-values did not reveal biases, and the inflation factor was low. Effect sizes were however not uniformly distributed on some chromosomes, and the Z chromosome had weaker associations than autosomes. The level of linkage disequilibrium (LD) in the population decayed to background levels within c. 1 kbp. There could be several reasons to why our QTL study and GWAS gave contrasting results including differences in how associations are modelled (cosegregation in pedigree vs. LD associations), how covariates are accounted for in the models, type of marker used (multi- vs. biallelic), difference in power or a combination of these. Our study highlights that the genetic architecture even of highly heritable traits is difficult to characterize in wild populations. © 2018 John Wiley & Sons Ltd.

  3. User Generated Spatial Content Sources for Land Use/Land Cover Validation Purposes: Suitability Analysis and Integration Model

    NASA Astrophysics Data System (ADS)

    Estima, Jacinto Paulo Simoes

    Traditional geographic information has been produced by mapping agencies and corporations, using high skilled people as well as expensive precision equipment and procedures, in a very costly approach. The production of land use and land cover databases are just one example of such traditional approach. On the other side, The amount of Geographic Information created and shared by citizens through the Web has been increasing exponentially during the last decade, resulting from the emergence and popularization of technologies such as the Web 2.0, cloud computing, GPS, smart phones, among others. Such comprehensive amount of free geographic data might have valuable information to extract and thus opening great possibilities to improve significantly the production of land use and land cover databases. In this thesis we explored the feasibility of using geographic data from different user generated spatial content initiatives in the process of land use and land cover database production. Data from Panoramio, Flickr and OpenStreetMap were explored in terms of their spatial and temporal distribution, and their distribution over the different land use and land cover classes. We then proposed a conceptual model to integrate data from suitable user generated spatial content initiatives based on identified dissimilarities among a comprehensive list of initiatives. Finally we developed a prototype implementing the proposed integration model, which was then validated by using the prototype to solve four identified use cases. We concluded that data from user generated spatial content initiatives has great value but should be integrated to increase their potential. The possibility of integrating data from such initiatives in an integration model was proved. Using the developed prototype, the relevance of the integration model was also demonstrated for different use cases. None None None

  4. Resolution and Trade-offs in Finite Fault Inversions for Large Earthquakes Using Teleseismic Signals (Invited)

    NASA Astrophysics Data System (ADS)

    Lay, T.; Ammon, C. J.

    2010-12-01

    An unusually large number of widely distributed great earthquakes have occurred in the past six years, with extensive data sets of teleseismic broadband seismic recordings being available in near-real time for each event. Numerous research groups have implemented finite-fault inversions that utilize the rapidly accessible teleseismic recordings, and slip models are regularly determined and posted on websites for all major events. The source inversion validation project has already demonstrated that for events of all sizes there is often significant variability in models for a given earthquake. Some of these differences can be attributed to variations in data sets and procedures used for including signals with very different bandwidth and signal characteristics into joint inversions. Some differences can also be attributed to choice of velocity structure and data weighting. However, our experience is that some of the primary causes of solution variability involve rupture model parameterization and imposed kinematic constraints such as rupture velocity and subfault source time function description. In some cases it is viable to rapidly perform separate procedures such as teleseismic array back-projection or surface wave directivity analysis to reduce the uncertainties associated with rupture velocity, and it is possible to explore a range of subfault source parameterizations to place some constraints on which model features are robust. In general, many such tests are performed, but not fully described, with single model solutions being posted or published, with limited insight into solution confidence being conveyed. Using signals from recent great earthquakes in the Kuril Islands, Solomon Islands, Peru, Chile and Samoa, we explore issues of uncertainty and robustness of solutions that can be rapidly obtained by inversion of teleseismic signals. Formalizing uncertainty estimates remains a formidable undertaking and some aspects of that challenge will be addressed.

  5. Why Did People Move During the Great Recession?: The Role of Economics in Migration Decisions

    PubMed Central

    Levy, Brian L.; Mouw, Ted; Daniel Perez, Anthony

    2017-01-01

    Labor migration offers an important mechanism to reallocate workers when there are regional differences in employment conditions. Whereas conventional wisdom suggests migration rates should increase during recessions as workers move out of areas that are hit hardest, initial evidence suggested that overall migration rates declined during the Great Recession, despite large regional differences in unemployment and growth rates. In this paper, we use data from the American Community Survey to analyze internal migration trends before and during the economic downturn. First, we find only a modest decline in the odds of adults leaving distressed labor market areas during the recession, which may result in part from challenges related to the housing price crash. Second, we estimate conditional logit models of destination choice for individuals who migrate across labor market areas and find a substantial effect of economic factors such as labor demand, unemployment, and housing values. We also estimate latent class conditional logit models that test whether there is heterogeneity in preferences for destination characteristics among migrants. Over all, the latent class models suggest that roughly equal percentages of migrants were motivated by economic factors before and during the recession. We conclude that fears of dramatic declines in labor migration seem to be unsubstantiated. PMID:28547003

  6. Why Did People Move During the Great Recession?: The Role of Economics in Migration Decisions.

    PubMed

    Levy, Brian L; Mouw, Ted; Daniel Perez, Anthony

    2017-04-01

    Labor migration offers an important mechanism to reallocate workers when there are regional differences in employment conditions. Whereas conventional wisdom suggests migration rates should increase during recessions as workers move out of areas that are hit hardest, initial evidence suggested that overall migration rates declined during the Great Recession, despite large regional differences in unemployment and growth rates. In this paper, we use data from the American Community Survey to analyze internal migration trends before and during the economic downturn. First, we find only a modest decline in the odds of adults leaving distressed labor market areas during the recession, which may result in part from challenges related to the housing price crash. Second, we estimate conditional logit models of destination choice for individuals who migrate across labor market areas and find a substantial effect of economic factors such as labor demand, unemployment, and housing values. We also estimate latent class conditional logit models that test whether there is heterogeneity in preferences for destination characteristics among migrants. Over all, the latent class models suggest that roughly equal percentages of migrants were motivated by economic factors before and during the recession. We conclude that fears of dramatic declines in labor migration seem to be unsubstantiated.

  7. Analyzing Variability in Landscape Nutrient Loading Using Spatially-Explicit Maps in the Great Lakes Basin

    NASA Astrophysics Data System (ADS)

    Hamlin, Q. F.; Kendall, A. D.; Martin, S. L.; Whitenack, H. D.; Roush, J. A.; Hannah, B. A.; Hyndman, D. W.

    2017-12-01

    Excessive loading of nitrogen and phosphorous to the landscape has caused biologically and economically damaging eutrophication and harmful algal blooms in the Great Lakes Basin (GLB) and across the world. We mapped source-specific loads of nitrogen and phosphorous to the landscape using broadly available data across the GLB. SENSMap (Spatially Explicit Nutrient Source Map) is a 30m resolution snapshot of nutrient loads ca. 2010. We use these maps to study variable nutrient loading and provide this information to watershed managers through NOAA's GLB Tipping Points Planner. SENSMap individually maps nutrient point sources and six non-point sources: 1) atmospheric deposition, 2) septic tanks, 3) non-agricultural chemical fertilizer, 4) agricultural chemical fertilizer, 5) manure, and 6) nitrogen fixation from legumes. To model source-specific loads at high resolution, SENSMap synthesizes a wide range of remotely sensed, surveyed, and tabular data. Using these spatially explicit nutrient loading maps, we can better calibrate local land use-based water quality models and provide insight to watershed managers on how to focus nutrient reduction strategies. Here we examine differences in dominant nutrient sources across the GLB, and how those sources vary by land use. SENSMap's high resolution, source-specific approach offers a different lens to understand nutrient loading than traditional semi-distributed or land use based models.

  8. The impacts of data constraints on the predictive performance of a general process-based crop model (PeakN-crop v1.0)

    NASA Astrophysics Data System (ADS)

    Caldararu, Silvia; Purves, Drew W.; Smith, Matthew J.

    2017-04-01

    Improving international food security under a changing climate and increasing human population will be greatly aided by improving our ability to modify, understand and predict crop growth. What we predominantly have at our disposal are either process-based models of crop physiology or statistical analyses of yield datasets, both of which suffer from various sources of error. In this paper, we present a generic process-based crop model (PeakN-crop v1.0) which we parametrise using a Bayesian model-fitting algorithm to three different sources: data-space-based vegetation indices, eddy covariance productivity measurements and regional crop yields. We show that the model parametrised without data, based on prior knowledge of the parameters, can largely capture the observed behaviour but the data-constrained model greatly improves both the model fit and reduces prediction uncertainty. We investigate the extent to which each dataset contributes to the model performance and show that while all data improve on the prior model fit, the satellite-based data and crop yield estimates are particularly important for reducing model error and uncertainty. Despite these improvements, we conclude that there are still significant knowledge gaps, in terms of available data for model parametrisation, but our study can help indicate the necessary data collection to improve our predictions of crop yields and crop responses to environmental changes.

  9. Climate model simulations of the mid-Pliocene: Earth's last great interval of global warmth

    USGS Publications Warehouse

    Dolan, A.M.; Haywood, A.M.; Dowsett, H.J.

    2012-01-01

    Pliocene Model Intercomparison Project Workshop; Reston, Virginia, 2–4 August 2011 The Pliocene Model Intercomparison Project (PlioMIP), supported by the U.S. Geological Survey's (USGS) Pliocene Research, Interpretation and Synoptic Mapping (PRISM) project and Powell Center, is an integral part of a third iteration of the Paleoclimate Modelling Intercomparison Project (PMIP3). PlioMIP's aim is to systematically compare structurally different climate models. This is done in the context of the mid-Pliocene (~3.3–3.0 million years ago), a geological interval when the global annual mean temperature was similar to predictions for the next century.

  10. Time series ARIMA models for daily price of palm oil

    NASA Astrophysics Data System (ADS)

    Ariff, Noratiqah Mohd; Zamhawari, Nor Hashimah; Bakar, Mohd Aftar Abu

    2015-02-01

    Palm oil is deemed as one of the most important commodity that forms the economic backbone of Malaysia. Modeling and forecasting the daily price of palm oil is of great interest for Malaysia's economic growth. In this study, time series ARIMA models are used to fit the daily price of palm oil. The Akaike Infromation Criterion (AIC), Akaike Infromation Criterion with a correction for finite sample sizes (AICc) and Bayesian Information Criterion (BIC) are used to compare between different ARIMA models being considered. It is found that ARIMA(1,2,1) model is suitable for daily price of crude palm oil in Malaysia for the year 2010 to 2012.

  11. Moving target detection method based on improved Gaussian mixture model

    NASA Astrophysics Data System (ADS)

    Ma, J. Y.; Jie, F. R.; Hu, Y. J.

    2017-07-01

    Gaussian Mixture Model is often employed to build background model in background difference methods for moving target detection. This paper puts forward an adaptive moving target detection algorithm based on improved Gaussian Mixture Model. According to the graylevel convergence for each pixel, adaptively choose the number of Gaussian distribution to learn and update background model. Morphological reconstruction method is adopted to eliminate the shadow.. Experiment proved that the proposed method not only has good robustness and detection effect, but also has good adaptability. Even for the special cases when the grayscale changes greatly and so on, the proposed method can also make outstanding performance.

  12. Tsunami Numerical Simulation for Hypothetical Giant or Great Earthquakes along the Izu-Bonin Trench

    NASA Astrophysics Data System (ADS)

    Harada, T.; Ishibashi, K.; Satake, K.

    2013-12-01

    We performed tsunami numerical simulations from various giant/great fault models along the Izu-Bonin trench in order to see the behavior of tsunamis originated in this region and to examine the recurrence pattern of great interplate earthquakes along the Nankai trough off southwest Japan. As a result, large tsunami heights are expected in the Ryukyu Islands and on the Pacific coasts of Kyushu, Shikoku and western Honshu. The computed large tsunami heights support the hypothesis that the 1605 Keicho Nankai earthquake was not a tsunami earthquake along the Nankai trough but a giant or great earthquake along the Izu-Bonin trench (Ishibashi and Harada, 2013, SSJ Fall Meeting abstract). The Izu-Bonin subduction zone has been regarded as so-called 'Mariana-type subduction zone' where M>7 interplate earthquakes do not occur inherently. However, since several M>7 outer-rise earthquakes have occurred in this region and the largest slip of the 2011 Tohoku earthquake (M9.0) took place on the shallow plate interface where the strain accumulation had considered to be a little, a possibility of M>8.5 earthquakes in this region may not be negligible. The latest M 7.4 outer-rise earthquake off the Bonin Islands on Dec. 22, 2010 produced small tsunamis on the Pacific coast of Japan except for the Tohoku and Hokkaido districts and a zone of abnormal seismic intensity in the Kanto and Tohoku districts. Ishibashi and Harada (2013) proposed a working hypothesis that the 1605 Keicho earthquake which is considered a great tsunami earthquake along the Nankai trough was a giant/great earthquake along the Izu-Bonin trench based on the similarity of the distributions of ground shaking and tsunami of this event and the 2010 Bonin earthquake. In this study, in order to examine the behavior of tsunamis from giant/great earthquakes along the Izu-Bonin trench and check the Ishibashi and Harada's hypothesis, we performed tsunami numerical simulations from fault models along the Izu-Bonin trench. Tsunami propagation was computed by the finite-difference method of the non-liner long-wave equations with Corioli's force (Satake, 1995, PAGEOPH) in the area of 130 - 145°E and 25 - 37°N. The 15-seconds gridded bathymetry data are used. The tsunami propagations for eight hours since the faulting of the various fault models were computed. As a result, large tsunamis from assumed giant/great both interplate and outer-rise earthquakes reach the Ryukyu Islands' coasts and the Pacific coasts of Kyushu, Shikoku and western Honshu west of Kanto. Therefore, the tsunami simulations support the Ishibashi and Harada's hypothesis. At the time of writing, the best yet preliminary model to reproduce the 1605 tsunami heights is an outer-rise steep fault model which extends 26.5 - 29.0°N (300 km of length) and with 16.7 m of average slip (Mw 8.6). We will examine tsunami behavior in the Pacific Ocean from this fault model. To examine our results, field investigations of tsunami deposits in the Bonin Islands and discussions on plate dynamics and seismogenic characteristics along the Izu-Bonin trench are necessary.

  13. Promoting Model-based Definition to Establish a Complete Product Definition

    PubMed Central

    Ruemler, Shawn P.; Zimmerman, Kyle E.; Hartman, Nathan W.; Hedberg, Thomas; Feeny, Allison Barnard

    2016-01-01

    The manufacturing industry is evolving and starting to use 3D models as the central knowledge artifact for product data and product definition, or what is known as Model-based Definition (MBD). The Model-based Enterprise (MBE) uses MBD as a way to transition away from using traditional paper-based drawings and documentation. As MBD grows in popularity, it is imperative to understand what information is needed in the transition from drawings to models so that models represent all the relevant information needed for processes to continue efficiently. Finding this information can help define what data is common amongst different models in different stages of the lifecycle, which could help establish a Common Information Model. The Common Information Model is a source that contains common information from domain specific elements amongst different aspects of the lifecycle. To help establish this Common Information Model, information about how models are used in industry within different workflows needs to be understood. To retrieve this information, a survey mechanism was administered to industry professionals from various sectors. Based on the results of the survey a Common Information Model could not be established. However, the results gave great insight that will help in further investigation of the Common Information Model. PMID:28070155

  14. Modelling Psychological Responses to the Great East Japan Earthquake and Nuclear Incident

    PubMed Central

    Goodwin, Robin; Takahashi, Masahito; Sun, Shaojing; Gaines, Stanley O.

    2012-01-01

    The Great East Japan (Tōhoku/Kanto) earthquake of March 2011was followed by a major tsunami and nuclear incident. Several previous studies have suggested a number of psychological responses to such disasters. However, few previous studies have modelled individual differences in the risk perceptions of major events, or the implications of these perceptions for relevant behaviours. We conducted a survey specifically examining responses to the Great Japan earthquake and nuclear incident, with data collected 11–13 weeks following these events. 844 young respondents completed a questionnaire in three regions of Japan; Miyagi (close to the earthquake and leaking nuclear plants), Tokyo/Chiba (approximately 220 km from the nuclear plants), and Western Japan (Yamaguchi and Nagasaki, some 1000 km from the plants). Results indicated significant regional differences in risk perception, with greater concern over earthquake risks in Tokyo than in Miyagi or Western Japan. Structural equation analyses showed that shared normative concerns about earthquake and nuclear risks, conservation values, lack of trust in governmental advice about the nuclear hazard, and poor personal control over the nuclear incident were positively correlated with perceived earthquake and nuclear risks. These risk perceptions further predicted specific outcomes (e.g. modifying homes, avoiding going outside, contemplating leaving Japan). The strength and significance of these pathways varied by region. Mental health and practical implications of these findings are discussed in the light of the continuing uncertainties in Japan following the March 2011 events. PMID:22666380

  15. An efficient sequential strategy for realizing cross-gradient joint inversion: method and its application to 2-D cross borehole seismic traveltime and DC resistivity tomography

    NASA Astrophysics Data System (ADS)

    Gao, Ji; Zhang, Haijiang

    2018-05-01

    Cross-gradient joint inversion that enforces structural similarity between different models has been widely utilized in jointly inverting different geophysical data types. However, it is a challenge to combine different geophysical inversion systems with the cross-gradient structural constraint into one joint inversion system because they may differ greatly in the model representation, forward modelling and inversion algorithm. Here we propose a new joint inversion strategy that can avoid this issue. Different models are separately inverted using the existing inversion packages and model structure similarity is only enforced through cross-gradient minimization between two models after each iteration. Although the data fitting and structural similarity enforcing processes are decoupled, our proposed strategy is still able to choose appropriate models to balance the trade-off between geophysical data fitting and structural similarity. This is realized by using model perturbations from separate data inversions to constrain the cross-gradient minimization process. We have tested this new strategy on 2-D cross borehole synthetic seismic traveltime and DC resistivity data sets. Compared to separate geophysical inversions, our proposed joint inversion strategy fits the separate data sets at comparable levels while at the same time resulting in a higher structural similarity between the velocity and resistivity models.

  16. Relating coupled map lattices to integro-difference equations: dispersal-driven instabilities in coupled map lattices.

    PubMed

    White, Steven M; White, K A Jane

    2005-08-21

    Recently there has been a great deal of interest within the ecological community about the interactions of local populations that are coupled only by dispersal. Models have been developed to consider such scenarios but the theory needed to validate model outcomes has been somewhat lacking. In this paper, we present theory which can be used to understand these types of interaction when population exhibit discrete time dynamics. In particular, we consider a spatial extension to discrete-time models, known as coupled map lattices (CMLs) which are discrete in space. We introduce a general form of the CML and link this to integro-difference equations via a special redistribution kernel. General conditions are then derived for dispersal-driven instabilities. We then apply this theory to two discrete-time models; a predator-prey model and a host-pathogen model.

  17. Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems

    NASA Astrophysics Data System (ADS)

    Andrade, Xavier; Strubbe, David; De Giovannini, Umberto; Larsen, Ask Hjorth; Oliveira, Micael J. T.; Alberdi-Rodriguez, Joseba; Varas, Alejandro; Theophilou, Iris; Helbig, Nicole; Verstraete, Matthieu J.; Stella, Lorenzo; Nogueira, Fernando; Aspuru-Guzik, Alán; Castro, Alberto; Marques, Miguel A. L.; Rubio, Angel

    Real-space grids are a powerful alternative for the simulation of electronic systems. One of the main advantages of the approach is the flexibility and simplicity of working directly in real space where the different fields are discretized on a grid, combined with competitive numerical performance and great potential for parallelization. These properties constitute a great advantage at the time of implementing and testing new physical models. Based on our experience with the Octopus code, in this article we discuss how the real-space approach has allowed for the recent development of new ideas for the simulation of electronic systems. Among these applications are approaches to calculate response properties, modeling of photoemission, optimal control of quantum systems, simulation of plasmonic systems, and the exact solution of the Schr\\"odinger equation for low-dimensionality systems.

  18. Reducing software mass through behavior control. [of planetary roving robots

    NASA Technical Reports Server (NTRS)

    Miller, David P.

    1992-01-01

    Attention is given to the tradeoff between communication and computation as regards a planetary rover (both these subsystems are very power-intensive, and both can be the major driver of the rover's power subsystem, and therefore the minimum mass and size of the rover). Software techniques that can be used to reduce the requirements on both communciation and computation, allowing the overall robot mass to be greatly reduced, are discussed. Novel approaches to autonomous control, called behavior control, employ an entirely different approach, and for many tasks will yield a similar or superior level of autonomy to traditional control techniques, while greatly reducing the computational demand. Traditional systems have several expensive processes that operate serially, while behavior techniques employ robot capabilities that run in parallel. Traditional systems make extensive world models, while behavior control systems use minimal world models or none at all.

  19. Transmission Parameters of the 2001 Foot and Mouth Epidemic in Great Britain

    PubMed Central

    Chis Ster, Irina; Ferguson, Neil M.

    2007-01-01

    Despite intensive ongoing research, key aspects of the spatial-temporal evolution of the 2001 foot and mouth disease (FMD) epidemic in Great Britain (GB) remain unexplained. Here we develop a Markov Chain Monte Carlo (MCMC) method for estimating epidemiological parameters of the 2001 outbreak for a range of simple transmission models. We make the simplifying assumption that infectious farms were completely observed in 2001, equivalent to assuming that farms that were proactively culled but not diagnosed with FMD were not infectious, even if some were infected. We estimate how transmission parameters varied through time, highlighting the impact of the control measures on the progression of the epidemic. We demonstrate statistically significant evidence for assortative contact patterns between animals of the same species. Predictive risk maps of the transmission potential in different geographic areas of GB are presented for the fitted models. PMID:17551582

  20. Maximum Power Point tracking charge controllers for telecom applications -- Analysis and economics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wills, R.H.

    Simple charge controllers connect photovoltaic modules directly to the battery bank resulting in a significant power loss if the battery bank voltage differs greatly from the PV Maximum Power Point (MPP) voltage. Recent modeling work at AES has shown that dc-dc converter type MPP tracking charge controllers can deliver more than 30% more energy from PV modules to the battery when the PV modules are cool and the battery state of charge is low--this is typically both the worst case condition (i.e., winter) and also the design condition that determines the PV array size. Economic modeling, based on typical telecommore » system installed costs shows benefits of more than $3/Wp for MPPT over conventional charge controllers in this application--a value that greatly exceeds the additional cost of the dc-dc converter.« less

  1. Sequential Markov chain Monte Carlo filter with simultaneous model selection for electrocardiogram signal modeling.

    PubMed

    Edla, Shwetha; Kovvali, Narayan; Papandreou-Suppappola, Antonia

    2012-01-01

    Constructing statistical models of electrocardiogram (ECG) signals, whose parameters can be used for automated disease classification, is of great importance in precluding manual annotation and providing prompt diagnosis of cardiac diseases. ECG signals consist of several segments with different morphologies (namely the P wave, QRS complex and the T wave) in a single heart beat, which can vary across individuals and diseases. Also, existing statistical ECG models exhibit a reliance upon obtaining a priori information from the ECG data by using preprocessing algorithms to initialize the filter parameters, or to define the user-specified model parameters. In this paper, we propose an ECG modeling technique using the sequential Markov chain Monte Carlo (SMCMC) filter that can perform simultaneous model selection, by adaptively choosing from different representations depending upon the nature of the data. Our results demonstrate the ability of the algorithm to track various types of ECG morphologies, including intermittently occurring ECG beats. In addition, we use the estimated model parameters as the feature set to classify between ECG signals with normal sinus rhythm and four different types of arrhythmia.

  2. Novel approach for computing photosynthetically active radiation for productivity modeling using remotely sensed images in the Great Plains, United States

    USGS Publications Warehouse

    Singh, Ramesh K.; Liu, Shu-Guang; Tieszen, Larry L.; Suyker, Andrew E.; Verma, Shashi B.

    2012-01-01

    Gross primary production (GPP) is a key indicator of ecosystem performance, and helps in many decision-making processes related to environment. We used the Eddy covariancelight use efficiency (EC-LUE) model for estimating GPP in the Great Plains, United States in order to evaluate the performance of this model. We developed a novel algorithm for computing the photosynthetically active radiation (PAR) based on net radiation. A strong correlation (R2=0.94,N=24) was found between daily PAR and Landsat-based mid-day instantaneous net radiation. Though the Moderate Resolution Spectroradiometer (MODIS) based instantaneous net radiation was in better agreement (R2=0.98,N=24) with the daily measured PAR, there was no statistical significant difference between Landsat based PAR and MODIS based PAR. The EC-LUE model validation also confirms the need to consider biological attributes (C3 versus C4 plants) for potential light use efficiency. A universal potential light use efficiency is unable to capture the spatial variation of GPP. It is necessary to use C3 versus C4 based land use/land cover map for using EC-LUE model for estimating spatiotemporal distribution of GPP.

  3. Selection based on the size of the black tie of the great tit may be reversed in urban habitats.

    PubMed

    Senar, Juan Carlos; Conroy, Michael J; Quesada, Javier; Mateos-Gonzalez, Fernando

    2014-07-01

    A standard approach to model how selection shapes phenotypic traits is the analysis of capture-recapture data relating trait variation to survival. Divergent selection, however, has never been analyzed by the capture-recapture approach. Most reported examples of differences between urban and nonurban animals reflect behavioral plasticity rather than divergent selection. The aim of this paper was to use a capture-recapture approach to test the hypothesis that divergent selection can also drive local adaptation in urban habitats. We focused on the size of the black breast stripe (i.e., tie width) of the great tit (Parus major), a sexual ornament used in mate choice. Urban great tits display smaller tie sizes than forest birds. Because tie size is mostly genetically determined, it could potentially respond to selection. We analyzed capture/recapture data of male great tits in Barcelona city (N = 171) and in a nearby (7 km) forest (N = 324) from 1992 to 2008 using MARK. When modelling recapture rate, we found it to be strongly influenced by tie width, so that both for urban and forest habitats, birds with smaller ties were more trap-shy and more cautious than their larger tied counterparts. When modelling survival, we found that survival prospects in forest great tits increased the larger their tie width (i.e., directional positive selection), but the reverse was found for urban birds, with individuals displaying smaller ties showing higher survival (i.e., directional negative selection). As melanin-based tie size seems to be related to personality, and both are heritable, results may be explained by cautious personalities being favored in urban environments. More importantly, our results show that divergent selection can be an important mechanism in local adaptation to urban habitats and that capture-recapture is a powerful tool to test it.

  4. Evolution of tolerance by magpies to brood parasitism by great spotted cuckoos.

    PubMed

    Soler, J J; Martín-Gálvez, D; Martínez, J G; Soler, M; Canestrari, D; Abad-Gómez, J M; Møller, A P

    2011-07-07

    Hosts may use two different strategies to ameliorate negative effects of a given parasite burden: resistance or tolerance. Although both resistance and tolerance of parasitism should evolve as a consequence of selection pressures owing to parasitism, the study of evolutionary patterns of tolerance has traditionally been neglected by animal biologists. Here, we explore geographical covariation between tolerance of magpies (Pica pica) and brood parasitism by the great spotted cuckoo (Clamator glandarius) in nine different sympatric populations. We estimated tolerance as the slope of the regression of number of magpie fledglings (i.e. host fitness) on number of cuckoo eggs laid in non-depredated nests (which broadly equals parasite burden). We also estimated prevalence of parasitism and level of host resistance (i.e. rejection rates of mimetic model eggs) in these nine populations. In accordance with the hypothetical role of tolerance in the coevolutionary process between magpies and cuckoos we found geographical variation in tolerance estimates that positively covaried with prevalence of parasitism. Levels of resistance and tolerance were not associated, possibly suggesting the lack of a trade-off between the two kinds of defences against great spotted cuckoo parasitism for magpies. We discuss the results in the framework of a mosaic of coevolutionary interactions along the geographical distribution of magpies and great spotted cuckoos for which we found evidence that tolerance plays a major role.

  5. The Great Recession, unemployment and suicide

    PubMed Central

    Norström, Thor; Grönqvist, Hans

    2015-01-01

    Background How have suicide rates responded to the marked increase in unemployment spurred by the Great Recession? Our paper puts this issue into a wider perspective by assessing (1) whether the unemployment-suicide link is modified by the degree of unemployment protection, and (2) whether the effect on suicide of the present crisis differs from the effects of previous economic downturns. Methods We analysed the unemployment-suicide link using time-series data for 30 countries spanning the period 1960–2012. Separate fixed-effects models were estimated for each of five welfare state regimes with different levels of unemployment protection (Eastern, Southern, Anglo-Saxon, Bismarckian and Scandinavian). We included an interaction term to capture the possible excess effect of unemployment during the Great Recession. Results The largest unemployment increases occurred in the welfare state regimes with the least generous unemployment protection. The unemployment effect on male suicides was statistically significant in all welfare regimes, except the Scandinavian one. The effect on female suicides was significant only in the eastern European country group. There was a significant gradient in the effects, being stronger the less generous the unemployment protection. The interaction term capturing the possible excess effect of unemployment during the financial crisis was not significant. Conclusions Our findings suggest that the more generous the unemployment protection the weaker the detrimental impact on suicide of the increasing unemployment during the Great Recession. PMID:25339416

  6. Global stability of a two-mediums rumor spreading model with media coverage

    NASA Astrophysics Data System (ADS)

    Huo, Liang'an; Wang, Li; Song, Guoxiang

    2017-09-01

    Rumor spreading is a typical form of social communication and plays a significant role in social life, and media coverage has a great influence on the spread of rumor. In this paper, we present a new model with two media coverage to investigate the impact of the different mediums on rumor spreading. Then, we calculate the equilibria of the model and construct the reproduction number ℜ0. And we prove the global asymptotic stability of equilibria by using Lyapunov functions. Finally, we can conclude that the transition rate of the ignorants between two mediums has a direct effect on the scale of spreaders, and different media coverage has significant effects on the dynamics behaviors of rumor spreading.

  7. Agent-Based Simulation of Learning Dissemination in a Project-Based Learning Context Considering the Human Aspects

    ERIC Educational Resources Information Center

    Seman, Laio Oriel; Hausmann, Romeu; Bezerra, Eduardo Augusto

    2018-01-01

    Contribution: This paper presents the "PBL classroom model," an agent-based simulation (ABS) that allows testing of several scenarios of a project-based learning (PBL) application by considering different levels of soft-skills, and students' perception of the methodology. Background: While the community has made great advances in…

  8. e-Learning Indicators: A Multi-Dimensional Model for Planning and Evaluating e-Learning Software Solutions

    ERIC Educational Resources Information Center

    Fetaji, Bekim; Fetaji, Majlinda

    2009-01-01

    As a number of recent studies suggest applications of networked computers in education have very inconsistent results ranging from success stories to complete failures. Literally, thousands of e-learning projects have been carried out that greatly differ in their outcomes. Until now, however, there is no systematic or a standardized way of…

  9. Shifts in biomass and productivity for a subtropical dry forest in response to simulated elevated hurricane disturbances

    Treesearch

    Jennifer A Holm; Skip J Van Bloem; Guy R Larocque; Herman H Shugart

    2017-01-01

    Caribbean tropical forests are subject to hurricane disturbances of great variability. In addition to natural storm incongruity, climate change can alter storm formation, duration, frequency, and intensity. This model-based investigation assessed the impacts of multiple storms of different intensities and occurrence frequencies on the long-term dynamics of subtropical...

  10. K-12 Teacher Perceptions Regarding the Flipped Classroom Model for Teaching and Learning

    ERIC Educational Resources Information Center

    Gough, Evan; DeJong, David; Grundmeyer, Trent; Baron, Mark

    2017-01-01

    A great deal of evidence can be cited from higher education literature on the effectiveness of the flipped classroom; however, very little research was discovered on the flipped classroom at the K-12 level. This study examined K-12 teachers' perceptions regarding the flipped classroom and differences in teachers' perceptions based on grade level…

  11. [Delivery of health care for military veterans abroad. The USA and Great Britain models].

    PubMed

    Bolekhan, V N; Ivanov, V V; Ivchenko, E V; Krassiĭ, A B; Morovikova, T V; Nagibovich, O A; Rezvantsev, M V

    2013-03-01

    The present review is dedicated to organization and management of military veteran's health care system of the US and UK. It is shown that despite the differences in health care systems of both countries their veterans receive the stat-of-the-art medical service which is readily available and financially affordable.

  12. Beyond Imitation and Representation: Extended Comprehension of Mimesis in Drama Education

    ERIC Educational Resources Information Center

    Rasmussen, Bjorn

    2008-01-01

    In order to understand the complexity of mimesis and dramatic playing, and to perhaps acknowledge a great variety of play forms and modes in theatre art and drama education, one may look beyond hegemonic and highly restricted understandings of mimesis in arts and society. This article will suggest different models of mimesis that provide possible…

  13. Longevity's Gift: A Second Middle Age.

    ERIC Educational Resources Information Center

    Bronte, Lydia

    1995-01-01

    A study in 1987-92 assessed the effects of changes in life course on work and careers. Interviews with 150 individuals who remained active or continued to work beyond age 65 showed lifetimes differing greatly from the traditional model. The combination of longer lifetimes and postponement of old age has created a new stage in adult life, a second…

  14. Rectification of nanopores in aprotic solvents - transport properties of nanopores with surface dipoles

    NASA Astrophysics Data System (ADS)

    Plett, Timothy; Shi, Wenqing; Zeng, Yuhan; Mann, William; Vlassiouk, Ivan; Baker, Lane A.; Siwy, Zuzanna S.

    2015-11-01

    Nanopores have become a model system to understand transport properties at the nanoscale. We report experiments and modeling of ionic current in aprotic solvents with different dipole moments through conically shaped nanopores in a polycarbonate film and through glass nanopipettes. We focus on solutions of the salt LiClO4, which is of great importance in modeling lithium based batteries. Results presented suggest ion current rectification observed results from two effects: (i) adsorption of Li+ ions to the pore walls, and (ii) a finite dipole moment rendered by adsorbed solvent molecules. Properties of surfaces in various solvents were probed by means of scanning ion conductance microscopy, which confirmed existence of an effectively positive surface potential in aprotic solvents with high dipole moments.Nanopores have become a model system to understand transport properties at the nanoscale. We report experiments and modeling of ionic current in aprotic solvents with different dipole moments through conically shaped nanopores in a polycarbonate film and through glass nanopipettes. We focus on solutions of the salt LiClO4, which is of great importance in modeling lithium based batteries. Results presented suggest ion current rectification observed results from two effects: (i) adsorption of Li+ ions to the pore walls, and (ii) a finite dipole moment rendered by adsorbed solvent molecules. Properties of surfaces in various solvents were probed by means of scanning ion conductance microscopy, which confirmed existence of an effectively positive surface potential in aprotic solvents with high dipole moments. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06340j

  15. The presence and near-shore transport of human fecal pollution in Lake Michigan beaches

    USGS Publications Warehouse

    Molloy, S.L.; Liu, L.B.; Phanikumar, M.S.; Jenkins, T.M.; Wong, M.V.; Rose, J.B.; Whitman, R.L.; Shively, D.A.; Nevers, M.B.

    2005-01-01

    The Great Lakes are a source of water for municipal, agricultural and industrial use, and support significant recreation, commercial and sport fishing industries. Every year millions of people visit the 500 plus recreational beaches in the Great Lakes. An increasing public health risk has been suggested with increased evidence of fecal contamination at the shoreline. To investigate the transport and fate of fecal pollution at Great Lakes beaches and the health risk associated with swimming at these beaches, the near-shore waters of Mt Baldy Beach, Lake Michigan and Trail Creek, a tributary discharging into the lake were examined for fecal pollution indicators. A model of surf zone hydrodynamics coupled with a transport model with first-order inactivation of pollutant was used to understand the relative importance of different processes operating in the surf zone (e.g. physical versus biological processes). The Enterococcus human fecal pollution marker, which targets a putative virulence factor, the enterococcal surface protein (esp) in Enterococcus faecium, was detected in 2/28 samples (7%) from the tributaries draining into Lake Michigan and in 6/30 samples (20%) from Lake Michigan beaches. Preliminary analysis suggests that the majority of fecal indicator bactateria variation and water quality changes at the beaches can be explained by inputs from the influential stream and hydrometeorological conditions. Using modeling methods to predict impaired water quality may help reduce potential health threats to recreational visitors.

  16. Optical-resolution photoacoustic microscopy of the metabolic rate of oxygen in a mouse renal tumor model

    NASA Astrophysics Data System (ADS)

    Yeh, Chenghung; Hu, Song; Liang, Jinyang; Li, Lei; Soetikno, Brian; Lu, Zhi Hong; Sohn, Rebecca E.; Maslov, Konstantin; Arbeit, Jeffrey M.; Wang, Lihong V.

    2015-03-01

    We propose using noninvasive longitudinal optical-resolution photoacoustic microscopy (L-ORPAM) to quantify blood flow flux, oxygen saturation (sO2), and thereby the metabolic rate of oxygen (MRO2), for a renal tumor model in the same mouse over weeks to months. Experiments showed that the sO2 difference between the artery and vein decreased greatly due to the arteriovenous shunting effect during tumor growth. Moreover, hypermetabolism was exhibited by an increase in MRO2.

  17. The medical simulation markup language - simplifying the biomechanical modeling workflow.

    PubMed

    Suwelack, Stefan; Stoll, Markus; Schalck, Sebastian; Schoch, Nicolai; Dillmann, Rüdiger; Bendl, Rolf; Heuveline, Vincent; Speidel, Stefanie

    2014-01-01

    Modeling and simulation of the human body by means of continuum mechanics has become an important tool in diagnostics, computer-assisted interventions and training. This modeling approach seeks to construct patient-specific biomechanical models from tomographic data. Usually many different tools such as segmentation and meshing algorithms are involved in this workflow. In this paper we present a generalized and flexible description for biomechanical models. The unique feature of the new modeling language is that it not only describes the final biomechanical simulation, but also the workflow how the biomechanical model is constructed from tomographic data. In this way, the MSML can act as a middleware between all tools used in the modeling pipeline. The MSML thus greatly facilitates the prototyping of medical simulation workflows for clinical and research purposes. In this paper, we not only detail the XML-based modeling scheme, but also present a concrete implementation. Different examples highlight the flexibility, robustness and ease-of-use of the approach.

  18. Comparative analysis of used car price evaluation models

    NASA Astrophysics Data System (ADS)

    Chen, Chuancan; Hao, Lulu; Xu, Cong

    2017-05-01

    An accurate used car price evaluation is a catalyst for the healthy development of used car market. Data mining has been applied to predict used car price in several articles. However, little is studied on the comparison of using different algorithms in used car price estimation. This paper collects more than 100,000 used car dealing records throughout China to do empirical analysis on a thorough comparison of two algorithms: linear regression and random forest. These two algorithms are used to predict used car price in three different models: model for a certain car make, model for a certain car series and universal model. Results show that random forest has a stable but not ideal effect in price evaluation model for a certain car make, but it shows great advantage in the universal model compared with linear regression. This indicates that random forest is an optimal algorithm when handling complex models with a large number of variables and samples, yet it shows no obvious advantage when coping with simple models with less variables.

  19. Meiosis: An Overview of Key Differences from Mitosis

    PubMed Central

    Ohkura, Hiroyuki

    2015-01-01

    Meiosis is the specialized cell division that generates gametes. In contrast to mitosis, molecular mechanisms and regulation of meiosis are much less understood. Meiosis shares mechanisms and regulation with mitosis in many aspects, but also has critical differences from mitosis. This review highlights these differences between meiosis and mitosis. Recent studies using various model systems revealed differences in a surprisingly wide range of aspects, including cell-cycle regulation, recombination, postrecombination events, spindle assembly, chromosome–spindle interaction, and chromosome segregation. Although a great degree of diversity can be found among organisms, meiosis-specific processes, and regulation are generally conserved. PMID:25605710

  20. Animal Models in Sexual Medicine: The Need and Importance of Studying Sexual Motivation.

    PubMed

    Ventura-Aquino, Elisa; Paredes, Raúl G

    2017-01-01

    Many different animal models of sexual medicine have been developed, demonstrating the complexity of studying the many interactions that influence sexual responses. A great deal of effort has been invested in measuring sexual motivation using different behavioral models mainly because human behavior is more complex than any model can reproduce. To compare different animal models of male and female behaviors that measure sexual motivation as a key element in sexual medicine and focus on models that use a combination of molecular techniques and behavioral measurements. We review the literature to describe models that evaluate different aspects of sexual motivation. No single test is sufficient to evaluate sexual motivation. The best approach is to evaluate animals in different behavioral tests to measure the motivational state of the subject. Different motivated behaviors such as aggression, singing in the case of birds, and sexual behavior, which are crucial for reproduction, are associated with changes in mRNA levels of different receptors in brain areas that are important in the control of reproduction. Research in animal models is crucial to understand the complexity of sexual behavior and all the mechanisms that influence such an important aspect of human well-being to decrease the physiologic and psychological impact of sexual dysfunctions. In other cases, research in different models is necessary to understand and recognize, not cure, the variability of sexuality, such as asexuality, which is another form of sexual orientation. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  1. Open source data assimilation framework for hydrological modeling

    NASA Astrophysics Data System (ADS)

    Ridler, Marc; Hummel, Stef; van Velzen, Nils; Katrine Falk, Anne; Madsen, Henrik

    2013-04-01

    An open-source data assimilation framework is proposed for hydrological modeling. Data assimilation (DA) in hydrodynamic and hydrological forecasting systems has great potential to improve predictions and improve model result. The basic principle is to incorporate measurement information into a model with the aim to improve model results by error minimization. Great strides have been made to assimilate traditional in-situ measurements such as discharge, soil moisture, hydraulic head and snowpack into hydrologic models. More recently, remotely sensed data retrievals of soil moisture, snow water equivalent or snow cover area, surface water elevation, terrestrial water storage and land surface temperature have been successfully assimilated in hydrological models. The assimilation algorithms have become increasingly sophisticated to manage measurement and model bias, non-linear systems, data sparsity (time & space) and undetermined system uncertainty. It is therefore useful to use a pre-existing DA toolbox such as OpenDA. OpenDA is an open interface standard for (and free implementation of) a set of tools to quickly implement DA and calibration for arbitrary numerical models. The basic design philosophy of OpenDA is to breakdown DA into a set of building blocks programmed in object oriented languages. To implement DA, a model must interact with OpenDA to create model instances, propagate the model, get/set variables (or parameters) and free the model once DA is completed. An open-source interface for hydrological models exists capable of all these tasks: OpenMI. OpenMI is an open source standard interface already adopted by key hydrological model providers. It defines a universal approach to interact with hydrological models during simulation to exchange data during runtime, thus facilitating the interactions between models and data sources. The interface is flexible enough so that models can interact even if the model is coded in a different language, represent processes from a different domain or have different spatial and temporal resolutions. An open source framework that bridges OpenMI and OpenDA is presented. The framework provides a generic and easy means for any OpenMI compliant model to assimilate observation measurements. An example test case will be presented using MikeSHE, and OpenMI compliant fully coupled integrated hydrological model that can accurately simulate the feedback dynamics of overland flow, unsaturated zone and saturated zone.

  2. Gender Differences in the Neurobiology of Anxiety: Focus on Adult Hippocampal Neurogenesis

    PubMed Central

    Marques, Alessandra Aparecida; Bevilaqua, Mário Cesar do Nascimento; da Fonseca, Alberto Morais Pinto; Nardi, Antonio Egidio; Thuret, Sandrine; Dias, Gisele Pereira

    2016-01-01

    Although the literature reports a higher incidence of anxiety disorders in women, the majority of basic research has focused on male rodents, thus resulting in a lack of knowledge on the neurobiology of anxiety in females. Bridging this gap is crucial for the design of effective translational interventions in women. One of the key brain mechanisms likely to regulate anxious behavior is adult hippocampal neurogenesis (AHN). This review paper aims to discuss the evidence on the differences between male and female rodents with regard to anxiety-related behavior and physiology, with a special focus on AHN. The differences between male and female physiologies are greatly influenced by hormonal differences. Gonadal hormones and their fluctuations during the estrous cycle have often been identified as agents responsible for sexual dimorphism in behavior and AHN. During sexual maturity, hormone levels fluctuate cyclically in females more than in males, increasing the stress response and the susceptibility to anxiety. It is therefore of great importance that future research investigates anxiety and other neurophysiological aspects in the female model, so that results can be more accurately applicable to the female population. PMID:26885403

  3. A comparative study of diversification events: the early Paleozoic versus the Mesozoic

    NASA Technical Reports Server (NTRS)

    Erwin, D. H.; Valentine, J. W.; Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1987-01-01

    We compare two major long-term diversifications of marine animal families that began during periods of low diversity but produced strikingly different numbers of phyla, classes, and orders. The first is the early-Paleozoic diversification (late Vendian-Ordovician; 182 MY duration) and the other the Mesozoic phase of the post-Paleozoic diversification (183 MY duration). The earlier diversification was associated with a great burst of morphological invention producing many phyla, classes, and orders and displaying high per taxon rates of family origination. The later diversification lacked novel morphologies recognized as phyla and classes, produced fewer orders, and displayed lower per taxon rates of family appearances. The chief difference between the diversifications appears to be that the earlier one proceeded from relatively narrow portions of adaptive space, whereas the latter proceeded from species widely scattered among adaptive zones and representing a variety of body plans. This difference is believed to explain the major differences in the products of these great radiations. Our data support those models that hold that evolutionary opportunity is a major factor in the outcome of evolutionary processes.

  4. Flexible Automatic Discretization for Finite Differences: Eliminating the Human Factor

    NASA Astrophysics Data System (ADS)

    Pranger, Casper

    2017-04-01

    In the geophysical numerical modelling community, finite differences are (in part due to their small footprint) a popular spatial discretization method for PDEs in the regular-shaped continuum that is the earth. However, they rapidly become prone to programming mistakes when physics increase in complexity. To eliminate opportunities for human error, we have designed an automatic discretization algorithm using Wolfram Mathematica, in which the user supplies symbolic PDEs, the number of spatial dimensions, and a choice of symbolic boundary conditions, and the script transforms this information into matrix- and right-hand-side rules ready for use in a C++ code that will accept them. The symbolic PDEs are further used to automatically develop and perform manufactured solution benchmarks, ensuring at all stages physical fidelity while providing pragmatic targets for numerical accuracy. We find that this procedure greatly accelerates code development and provides a great deal of flexibility in ones choice of physics.

  5. The use of process models to inform and improve statistical models of nitrate occurrence, Great Miami River Basin, southwestern Ohio

    USGS Publications Warehouse

    Walter, Donald A.; Starn, J. Jeffrey

    2013-01-01

    Statistical models of nitrate occurrence in the glacial aquifer system of the northern United States, developed by the U.S. Geological Survey, use observed relations between nitrate concentrations and sets of explanatory variables—representing well-construction, environmental, and source characteristics— to predict the probability that nitrate, as nitrogen, will exceed a threshold concentration. However, the models do not explicitly account for the processes that control the transport of nitrogen from surface sources to a pumped well and use area-weighted mean spatial variables computed from within a circular buffer around the well as a simplified source-area conceptualization. The use of models that explicitly represent physical-transport processes can inform and, potentially, improve these statistical models. Specifically, groundwater-flow models simulate advective transport—predominant in many surficial aquifers— and can contribute to the refinement of the statistical models by (1) providing for improved, physically based representations of a source area to a well, and (2) allowing for more detailed estimates of environmental variables. A source area to a well, known as a contributing recharge area, represents the area at the water table that contributes recharge to a pumped well; a well pumped at a volumetric rate equal to the amount of recharge through a circular buffer will result in a contributing recharge area that is the same size as the buffer but has a shape that is a function of the hydrologic setting. These volume-equivalent contributing recharge areas will approximate circular buffers in areas of relatively flat hydraulic gradients, such as near groundwater divides, but in areas with steep hydraulic gradients will be elongated in the upgradient direction and agree less with the corresponding circular buffers. The degree to which process-model-estimated contributing recharge areas, which simulate advective transport and therefore account for local hydrologic settings, would inform and improve the development of statistical models can be implicitly estimated by evaluating the differences between explanatory variables estimated from the contributing recharge areas and the circular buffers used to develop existing statistical models. The larger the difference in estimated variables, the more likely that statistical models would be changed, and presumably improved, if explanatory variables estimated from contributing recharge areas were used in model development. Comparing model predictions from the two sets of estimated variables would further quantify—albeit implicitly—how an improved, physically based estimate of explanatory variables would be reflected in model predictions. Differences between the two sets of estimated explanatory variables and resultant model predictions vary spatially; greater differences are associated with areas of steep hydraulic gradients. A direct comparison, however, would require the development of a separate set of statistical models using explanatory variables from contributing recharge areas. Area-weighted means of three environmental variables—silt content, alfisol content, and depth to water from the U.S. Department of Agriculture State Soil Geographic (STATSGO) data—and one nitrogen-source variable (fertilizer-application rate from county data mapped to Enhanced National Land Cover Data 1992 (NLCDe 92) agricultural land use) can vary substantially between circular buffers and volume-equivalent contributing recharge areas and among contributing recharge areas for different sets of well variables. The differences in estimated explanatory variables are a function of the same factors affecting the contributing recharge areas as well as the spatial resolution and local distribution of the underlying spatial data. As a result, differences in estimated variables between circular buffers and contributing recharge areas are complex and site specific as evidenced by differences in estimated variables for circular buffers and contributing recharge areas of existing public-supply and network wells in the Great Miami River Basin. Large differences in areaweighted mean environmental variables are observed at the basin scale, determined by using the network of uniformly spaced hypothetical wells; the differences have a spatial pattern that generally is similar to spatial patterns in the underlying STATSGO data. Generally, the largest differences were observed for area-weighted nitrogen-application rate from county and national land-use data; the basin-scale differences ranged from -1,600 (indicating a larger value from within the volume-equivalent contributing recharge area) to 1,900 kilograms per year (kg/yr); the range in the underlying spatial data was from 0 to 2,200 kg/yr. Silt content, alfisol content, and nitrogen-application rate are defined by the underlying spatial data and are external to the groundwater system; however, depth to water is an environmental variable that can be estimated in more detail and, presumably, in a more physically based manner using a groundwater-flow model than using the spatial data. Model-calculated depths to water within circular buffers in the Great Miami River Basin differed substantially from values derived from the spatial data and had a much larger range. Differences in estimates of area-weighted spatial variables result in corresponding differences in predictions of nitrate occurrence in the aquifer. In addition to the factors affecting contributing recharge areas and estimated explanatory variables, differences in predictions also are a function of the specific set of explanatory variables used and the fitted slope coefficients in a given model. For models that predicted the probability of exceeding 1 and 4 milligrams per liter as nitrogen (mg/L as N), predicted probabilities using variables estimated from circular buffers and contributing recharge areas generally were correlated but differed significantly at the local and basin scale. The scale and distribution of prediction differences can be explained by the underlying differences in the estimated variables and the relative weight of the variables in the statistical models. Differences in predictions of exceeding 1 mg/L as N, which only includes environmental variables, generally correlated with the underlying differences in STATSGO data, whereas differences in exceeding 4 mg/L as N were more spatially extensive because that model included environmental and nitrogen-source variables. Using depths to water from within circular buffers derived from the spatial data and depths to water within the circular buffers calculated from the groundwater-flow model, restricted to the same range, resulted in large differences in predicted probabilities. The differences in estimated explanatory variables between contributing recharge areas and circular buffers indicate incorporation of physically based contributing recharge area likely would result in a different set of explanatory variables and an improved set of statistical models. The use of a groundwater-flow model to improve representations of source areas or to provide more-detailed estimates of specific explanatory variables includes a number of limitations and technical considerations. An assumption in these analyses is that (1) there is a state of mass balance between recharge and pumping, and (2) transport to a pumped well is under a steady state flow field. Comparison of volumeequivalent contributing recharge areas under steady-state and transient transport conditions at a location in the southeastern part of the basin shows the steady-state contributing recharge area is a reasonable approximation of the transient contributing recharge area after between 10 and 20 years of pumping. The first assumption is a more important consideration for this analysis. A gradient effect refers to a condition where simulated pumping from a well is less than recharge through the corresponding contributing recharge area. This generally takes place in areas with steep hydraulic gradients, such as near discharge locations, and can be mitigated using a finer model discretization. A boundary effect refers to a condition where recharge through the contributing recharge area is less than pumping. This indicates other sources of water to the simulated well and could reflect a real hydrologic process. In the Great Miami River Basin, large gradient and boundary effects—defined as the balance between pumping and recharge being less than half—occurred in 5 and 14 percent of the basin, respectively. The agreement between circular buffers and volume-equivalent contributing recharge areas, differences in estimated variables, and the effect on statisticalmodel predictions between the population of wells with a balance between pumping and recharge within 10 percent and the population of all wells were similar. This indicated process-model limitations did not affect the overall findings in the Great Miami River Basin; however, this would be model specific, and prudent use of a process model needs to entail a limitations analysis and, if necessary, alterations to the model.

  6. A Comparison of Three Programming Models for Adaptive Applications

    NASA Technical Reports Server (NTRS)

    Shan, Hong-Zhang; Singh, Jaswinder Pal; Oliker, Leonid; Biswa, Rupak; Kwak, Dochan (Technical Monitor)

    2000-01-01

    We study the performance and programming effort for two major classes of adaptive applications under three leading parallel programming models. We find that all three models can achieve scalable performance on the state-of-the-art multiprocessor machines. The basic parallel algorithms needed for different programming models to deliver their best performance are similar, but the implementations differ greatly, far beyond the fact of using explicit messages versus implicit loads/stores. Compared with MPI and SHMEM, CC-SAS (cache-coherent shared address space) provides substantial ease of programming at the conceptual and program orchestration level, which often leads to the performance gain. However it may also suffer from the poor spatial locality of physically distributed shared data on large number of processors. Our CC-SAS implementation of the PARMETIS partitioner itself runs faster than in the other two programming models, and generates more balanced result for our application.

  7. Resolving Microzooplankton Functional Groups In A Size-Structured Planktonic Model

    NASA Astrophysics Data System (ADS)

    Taniguchi, D.; Dutkiewicz, S.; Follows, M. J.; Jahn, O.; Menden-Deuer, S.

    2016-02-01

    Microzooplankton are important marine grazers, often consuming a large fraction of primary productivity. They consist of a great diversity of organisms with different behaviors, characteristics, and rates. This functional diversity, and its consequences, are not currently reflected in large-scale ocean ecological simulations. How should these organisms be represented, and what are the implications for their biogeography? We develop a size-structured, trait-based model to characterize a diversity of microzooplankton functional groups. We compile and examine size-based laboratory data on the traits, revealing some patterns with size and functional group that we interpret with mechanistic theory. Fitting the model to the data provides parameterizations of key rates and properties, which we employ in a numerical ocean model. The diversity of grazing preference, rates, and trophic strategies enables the coexistence of different functional groups of micro-grazers under various environmental conditions, and the model produces testable predictions of the biogeography.

  8. The markup is the model: reasoning about systems biology models in the Semantic Web era.

    PubMed

    Kell, Douglas B; Mendes, Pedro

    2008-06-07

    Metabolic control analysis, co-invented by Reinhart Heinrich, is a formalism for the analysis of biochemical networks, and is a highly important intellectual forerunner of modern systems biology. Exchanging ideas and exchanging models are part of the international activities of science and scientists, and the Systems Biology Markup Language (SBML) allows one to perform the latter with great facility. Encoding such models in SBML allows their distributed analysis using loosely coupled workflows, and with the advent of the Internet the various software modules that one might use to analyze biochemical models can reside on entirely different computers and even on different continents. Optimization is at the core of many scientific and biotechnological activities, and Reinhart made many major contributions in this area, stimulating our own activities in the use of the methods of evolutionary computing for optimization.

  9. Regional Climate Models as a Tool for Assessing Changes in the Laurentian Great Lakes Net Basin Supply

    NASA Astrophysics Data System (ADS)

    Music, B.; Mailhot, E.; Nadeau, D.; Irambona, C.; Frigon, A.

    2017-12-01

    Over the last decades, there has been growing concern about the effects of climate change on the Great Lakes water supply. Most of the modelling studies focusing on the Laurentian Great Lakes do not allow two-way exchanges of water and energy between the atmosphere and the underlying surface, and therefore do not account for important feedback mechanisms. Moreover, energy budget constraint at the land surface is not usually taken into account. To address this issue, several recent climate change studies used high resolution Regional Climate Models (RCMs) for evaluating changes in the hydrological regime of the Great Lakes. As RCMs operate on the concept of water and energy conservation, an internal consistency of the simulated energy and water budget components is assured. In this study we explore several recently generated Regional Climate Model (RCM) simulations to investigate the Great Lakes' Net Basin Supply (NBS) in a changing climate. These include simulations of the Canadian Regional Climate Model (CRCM5) supplemented by simulations from several others RCMs participating to the North American CORDEX project (CORDEX-NA). The analysis focuses on the NBS extreme values under nonstationary conditions. The results are expected to provide useful information to the industries in the Great Lakes that all need to include accurate climate change information in their long-term strategy plans to better anticipate impacts of low and/or high water levels.

  10. The risk of disease to great apes: simulating disease spread in orang-utan (Pongo pygmaeus wurmbii) and chimpanzee (Pan troglodytes schweinfurthii) association networks.

    PubMed

    Carne, Charlotte; Semple, Stuart; Morrogh-Bernard, Helen; Zuberbühler, Klaus; Lehmann, Julia

    2014-01-01

    All great ape species are endangered, and infectious diseases are thought to pose a particular threat to their survival. As great ape species vary substantially in social organisation and gregariousness, there are likely to be differences in susceptibility to disease types and spread. Understanding the relation between social variables and disease is therefore crucial for implementing effective conservation measures. Here, we simulate the transmission of a range of diseases in a population of orang-utans in Sabangau Forest (Central Kalimantan) and a community of chimpanzees in Budongo Forest (Uganda), by systematically varying transmission likelihood and probability of subsequent recovery. Both species have fission-fusion social systems, but differ considerably in their level of gregariousness. We used long-term behavioural data to create networks of association patterns on which the spread of different diseases was simulated. We found that chimpanzees were generally far more susceptible to the spread of diseases than orang-utans. When simulating different diseases that varied widely in their probability of transmission and recovery, it was found that the chimpanzee community was widely and strongly affected, while in orang-utans even highly infectious diseases had limited spread. Furthermore, when comparing the observed association network with a mean-field network (equal contact probability between group members), we found no major difference in simulated disease spread, suggesting that patterns of social bonding in orang-utans are not an important determinant of susceptibility to disease. In chimpanzees, the predicted size of the epidemic was smaller on the actual association network than on the mean-field network, indicating that patterns of social bonding have important effects on susceptibility to disease. We conclude that social networks are a potentially powerful tool to model the risk of disease transmission in great apes, and that chimpanzees are particularly threatened by infectious disease outbreaks as a result of their social structure.

  11. The Risk of Disease to Great Apes: Simulating Disease Spread in Orang-Utan (Pongo pygmaeus wurmbii) and Chimpanzee (Pan troglodytes schweinfurthii) Association Networks

    PubMed Central

    Carne, Charlotte; Semple, Stuart; Morrogh-Bernard, Helen; Zuberbühler, Klaus; Lehmann, Julia

    2014-01-01

    All great ape species are endangered, and infectious diseases are thought to pose a particular threat to their survival. As great ape species vary substantially in social organisation and gregariousness, there are likely to be differences in susceptibility to disease types and spread. Understanding the relation between social variables and disease is therefore crucial for implementing effective conservation measures. Here, we simulate the transmission of a range of diseases in a population of orang-utans in Sabangau Forest (Central Kalimantan) and a community of chimpanzees in Budongo Forest (Uganda), by systematically varying transmission likelihood and probability of subsequent recovery. Both species have fission-fusion social systems, but differ considerably in their level of gregariousness. We used long-term behavioural data to create networks of association patterns on which the spread of different diseases was simulated. We found that chimpanzees were generally far more susceptible to the spread of diseases than orang-utans. When simulating different diseases that varied widely in their probability of transmission and recovery, it was found that the chimpanzee community was widely and strongly affected, while in orang-utans even highly infectious diseases had limited spread. Furthermore, when comparing the observed association network with a mean-field network (equal contact probability between group members), we found no major difference in simulated disease spread, suggesting that patterns of social bonding in orang-utans are not an important determinant of susceptibility to disease. In chimpanzees, the predicted size of the epidemic was smaller on the actual association network than on the mean-field network, indicating that patterns of social bonding have important effects on susceptibility to disease. We conclude that social networks are a potentially powerful tool to model the risk of disease transmission in great apes, and that chimpanzees are particularly threatened by infectious disease outbreaks as a result of their social structure. PMID:24740263

  12. Trend time-series modeling and forecasting with neural networks.

    PubMed

    Qi, Min; Zhang, G Peter

    2008-05-01

    Despite its great importance, there has been no general consensus on how to model the trends in time-series data. Compared to traditional approaches, neural networks (NNs) have shown some promise in time-series forecasting. This paper investigates how to best model trend time series using NNs. Four different strategies (raw data, raw data with time index, detrending, and differencing) are used to model various trend patterns (linear, nonlinear, deterministic, stochastic, and breaking trend). We find that with NNs differencing often gives meritorious results regardless of the underlying data generating processes (DGPs). This finding is also confirmed by the real gross national product (GNP) series.

  13. On the study of angular velocity in mass asymmetry nuclei

    NASA Astrophysics Data System (ADS)

    Kaur, Kamaldeep; Kumar, Suneel

    2018-05-01

    Using isospin-dependent quantum molecular dynamics (IQMD) model, the role of angular velocity (Wy) has been explored by changing the mass asymmetric content of the colliding nuclei at the incident energy of 50 MeV/nucleon for centrality 0.25

  14. Periodical cicadas: A minimal automaton model

    NASA Astrophysics Data System (ADS)

    de O. Cardozo, Giovano; de A. M. M. Silvestre, Daniel; Colato, Alexandre

    2007-08-01

    The Magicicada spp. life cycles with its prime periods and highly synchronized emergence have defied reasonable scientific explanation since its discovery. During the last decade several models and explanations for this phenomenon appeared in the literature along with a great deal of discussion. Despite this considerable effort, there is no final conclusion about this long standing biological problem. Here, we construct a minimal automaton model without predation/parasitism which reproduces some of these aspects. Our results point towards competition between different strains with limited dispersal threshold as the main factor leading to the emergence of prime numbered life cycles.

  15. Post-glacial recolonization of the Great Lakes region by the common gartersnake (Thamnophis sirtalis) inferred from mtDNA sequences.

    PubMed

    Placyk, John S; Burghardt, Gordon M; Small, Randall L; King, Richard B; Casper, Gary S; Robinson, Jace W

    2007-05-01

    Pleistocene events played an important role in the differentiation of North American vertebrate populations. Michigan, in particular, and the Great Lakes region, in general, were greatly influenced by the last glaciation. While several hypotheses regarding the recolonization of this region have been advanced, none have been strongly supported. We generated 148 complete ND2 mitochondrial DNA (mtDNA) sequences from common gartersnake (Thamnophis sirtalis) populations throughout the Great Lakes region to evaluate phylogeographic patterns and population structure and to determine whether the distribution of haplotypic variants is related to the post-Pleistocene retreat of the Wisconsinan glacier. The common gartersnake was utilized, as it is believed to have been one of the primary vertebrate invaders of the Great Lakes region following the most recent period of glacial retreat and because it has been a model species for a variety of evolutionary, ecological, behavioral, and physiological studies. Several genetically distinct evolutionary lineages were supported by both genealogical and molecular population genetic analyses, although to different degrees. The geographic distribution of the majority of these lineages is interpreted as reflecting post-glacial recolonization dynamics during the late Pleistocene. These findings generally support previous hypotheses of range expansion in this region.

  16. Estimation of root zone storage capacity at the catchment scale using improved Mass Curve Technique

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Xu, Zongxue; Singh, Vijay P.

    2016-09-01

    The root zone storage capacity (Sr) greatly influences runoff generation, soil water movement, and vegetation growth and is hence an important variable for ecological and hydrological modelling. However, due to the great heterogeneity in soil texture and structure, there seems to be no effective approach to monitor or estimate Sr at the catchment scale presently. To fill the gap, in this study the Mass Curve Technique (MCT) was improved by incorporating a snowmelt module for the estimation of Sr at the catchment scale in different climatic regions. The "range of perturbation" method was also used to generate different scenarios for determining the sensitivity of the improved MCT-derived Sr to its influencing factors after the evaluation of plausibility of Sr derived from the improved MCT. Results can be showed as: (i) Sr estimates of different catchments varied greatly from ∼10 mm to ∼200 mm with the changes of climatic conditions and underlying surface characteristics. (ii) The improved MCT is a simple but powerful tool for the Sr estimation in different climatic regions of China, and incorporation of more catchments into Sr comparisons can further improve our knowledge on the variability of Sr. (iii) Variation of Sr values is an integrated consequence of variations in rainfall, snowmelt water and evapotranspiration. Sr values are most sensitive to variations in evapotranspiration of ecosystems. Besides, Sr values with a longer return period are more stable than those with a shorter return period when affected by fluctuations in its influencing factors.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, Shanique L.; Kim, Myoungwoo; Lin, Peng

    The Great Lakes eco-region is one of the largest sources of fresh water in North America; however it is chronically exposed to heavy metal loadings such as mercury. In this study a comprehensive model evaluation was conducted to determine mercury loadings to the Great Lakes. The study also evaluated the relative impact of anthropogenic mercury emissions from China, regional and global sources on deposition to the Great Lakes. For the 2005 study period, CMAQ 4.7.1 model estimated a total of 6.4 ± 0.5 metric tons of mercury deposited in the Great Lakes. The total deposition breakdown showed a net loadingmore » for Lake Superior of 1906 ± 246 kg/year which is the highest of all the lakes. Lake Michigan followed with 1645 ± 203 kg/year and 1511 ± 107 kg/year in Lake Huron. The lowest total deposition was seen in Lakes Erie and Ontario amassing annual totals of 837 ± 107 kg and 506 ± 63 kg, respectively. Wet and dry deposition of mercury were both significant pathways and exhibited strong seasonal variability with higher deposition occurring in the warmer months (June–November) and the lowest in winter. Wet deposition of RGM significantly influenced the deposition proportions accounting for roughly 90% of all mercury deposited. Of the three emission sources (global background, integrated planning management (IPM) and Chinese), global background concentrations represented the maximum impact to deposition loading in the Great Lakes, except for Lake Erie and parts of Lake Michigan. There was minimal seasonality for the global background, but differences in percentage contribution between dry (28–97%) and wet deposition (43–98%) was predicted. The contributions were seen mainly in the northern sections of the Great Lakes further away from IPM point sources. These findings suggest strong localized impact of IPM sources on the southernmost lakes. Deposition as a result of emissions from China exhibited seasonality in both wet and dry deposition and showed significant contributions ranging from 0.2 to 9%.« less

  18. PDO and ENSO Sea Surface Temperature Anomalies Control Grassland Plant Production across the United States Great Plains

    NASA Astrophysics Data System (ADS)

    Parton, W. J.; Del Grosso, S. J.; Smith, W. K.; Chen, M.

    2017-12-01

    The El Nino Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) are multi-annual to multi-decadal climate patterns defined by ocean temperature anomalies that can strongly modulate climate variability. Here we evaluated the impacts of PDO and ENSO sea surface temperature (SST) anomalies on observed grassland above ground plant production (ANPP; 1940 to 2015), spring (April to July) cumulative actual evapotranspiration (iAET; 1900 to 2015) , and satellite-derived growing season (April to October) cumulative normalized difference vegetation index (iNDVI 1982 to 2015) across the United States Great Plains. The results showed that grassland ANPP is well correlated to iAET (r2=0.69) and iNDVI (r2=0.50 to 0.70) for the Cheyenne Wyoming and Northeastern Colorado long-term ANPP sites. At the site scale, during the negative phase of the PDO, we find ANPP is much lower (25%) and that variability of iAET, iNDVI, and ANPP are much higher (2 to 3 times) compared to the warm phase PDO. Further, we find there is a high frequency of below normal iAET when PDO and ENSO SST's are both negative, while there is a high frequency of above normal iAET when PDO and ENSO values are positive. At the regional scale, iAET, iNDVI, and modeled ANPP data sets show that plant production and iAET values are high in the southern Great Plains and low in the northern Great Plains when spring PDO and ENSO are both in the positive phase, while the opposite pattern is observed when both PDO and ENSO are both in the negative phase. Variability of iAET, iNDVI, and modeled ANPP are much higher in the central Great Plains during the negative phase PDO. We demonstrate clearly that the PDO and ENSO SST anomalies have large impacts on mean and variability of grassland plant production across the Great Plains.

  19. Interactions between social structure, demography, and transmission determine disease persistence in primates.

    PubMed

    Ryan, Sadie J; Jones, James H; Dobson, Andrew P

    2013-01-01

    Catastrophic declines in African great ape populations due to disease outbreaks have been reported in recent years, yet we rarely hear of similar disease impacts for the more solitary Asian great apes, or for smaller primates. We used an age-structured model of different primate social systems to illustrate that interactions between social structure and demography create 'dynamic constraints' on the pathogens that can establish and persist in primate host species with different social systems. We showed that this varies by disease transmission mode. Sexually transmitted infections (STIs) require high rates of transmissibility to persist within a primate population. In particular, for a unimale social system, STIs require extremely high rates of transmissibility for persistence, and remain at extremely low prevalence in small primates, but this is less constrained in longer-lived, larger-bodied primates. In contrast, aerosol transmitted infections (ATIs) spread and persist at high prevalence in medium and large primates with moderate transmissibility;, establishment and persistence in small-bodied primates require higher relative rates of transmissibility. Intragroup contact structure - the social network - creates different constraints for different transmission modes, and our model underscores the importance of intragroup contacts on infection prior to intergroup movement in a structured population. When alpha males dominate sexual encounters, the resulting disease transmission dynamics differ from when social interactions are dominated by mother-infant grooming events, for example. This has important repercussions for pathogen spread across populations. Our framework reveals essential social and demographic characteristics of primates that predispose them to different disease risks that will be important for disease management and conservation planning for protected primate populations.

  20. A probabilistic approach to identify putative drug targets in biochemical networks.

    PubMed

    Murabito, Ettore; Smallbone, Kieran; Swinton, Jonathan; Westerhoff, Hans V; Steuer, Ralf

    2011-06-06

    Network-based drug design holds great promise in clinical research as a way to overcome the limitations of traditional approaches in the development of drugs with high efficacy and low toxicity. This novel strategy aims to study how a biochemical network as a whole, rather than its individual components, responds to specific perturbations in different physiological conditions. Proteins exerting little control over normal cells and larger control over altered cells may be considered as good candidates for drug targets. The application of network-based drug design would greatly benefit from using an explicit computational model describing the dynamics of the system under investigation. However, creating a fully characterized kinetic model is not an easy task, even for relatively small networks, as it is still significantly hampered by the lack of data about kinetic mechanisms and parameters values. Here, we propose a Monte Carlo approach to identify the differences between flux control profiles of a metabolic network in different physiological states, when information about the kinetics of the system is partially or totally missing. Based on experimentally accessible information on metabolic phenotypes, we develop a novel method to determine probabilistic differences in the flux control coefficients between the two observable phenotypes. Knowledge of how differences in flux control are distributed among the different enzymatic steps is exploited to identify points of fragility in one of the phenotypes. Using a prototypical cancerous phenotype as an example, we demonstrate how our approach can assist researchers in developing compounds with high efficacy and low toxicity. © 2010 The Royal Society

  1. Linear finite-difference bond graph model of an ionic polymer actuator

    NASA Astrophysics Data System (ADS)

    Bentefrit, M.; Grondel, S.; Soyer, C.; Fannir, A.; Cattan, E.; Madden, J. D.; Nguyen, T. M. G.; Plesse, C.; Vidal, F.

    2017-09-01

    With the recent growing interest for soft actuation, many new types of ionic polymers working in air have been developed. Due to the interrelated mechanical, electrical, and chemical properties which greatly influence the characteristics of such actuators, their behavior is complex and difficult to understand, predict and optimize. In light of this challenge, an original linear multiphysics finite difference bond graph model was derived to characterize this ionic actuation. This finite difference scheme was divided into two coupled subparts, each related to a specific physical, electrochemical or mechanical domain, and then converted into a bond graph model as this language is particularly suited for systems from multiple energy domains. Simulations were then conducted and a good agreement with the experimental results was obtained. Furthermore, an analysis of the power efficiency of such actuators as a function of space and time was proposed and allowed to evaluate their performance.

  2. Self and Superior Assessment.

    DTIC Science & Technology

    1986-06-01

    model of the self-evaluation process as it differs from the evaluation process used by superiors. Symbolic Interactionism One view of self assessment is...supplied by the symbolic interactionists (Cooley, 1902; Head, 1934), who state that self perceptions are generated largely from individuals...disagreements remained even immediately after an appraisal interview in which a great deal of feedback was given. Research on the symbolic interactionist

  3. Modeling collective cell migration in geometric confinement

    NASA Astrophysics Data System (ADS)

    Tarle, Victoria; Gauquelin, Estelle; Vedula, S. R. K.; D'Alessandro, Joseph; Lim, C. T.; Ladoux, Benoit; Gov, Nir S.

    2017-06-01

    Monolayer expansion has generated great interest as a model system to study collective cell migration. During such an expansion the culture front often develops ‘fingers’, which we have recently modeled using a proposed feedback between the curvature of the monolayer’s leading edge and the outward motility of the edge cells. We show that this model is able to explain the puzzling observed increase of collective cellular migration speed of a monolayer expanding into thin stripes, as well as describe the behavior within different confining geometries that were recently observed in experiments. These comparisons give support to the model and emphasize the role played by the edge cells and the edge shape during collective cell motion.

  4. Computer simulation of the coffee leaf miner using sexual Penna aging model

    NASA Astrophysics Data System (ADS)

    de Oliveira, A. C. S.; Martins, S. G. F.; Zacarias, M. S.

    2008-01-01

    Forecast models based on climatic conditions are of great interest in Integrated Pest Management (IPM) programs. The success of these models depends, among other factors, on the knowledge of the temperature effect on the pests’ population dynamics. In this direction, a computer simulation was made for the population dynamics of the coffee leaf miner, L. coffeella, at different temperatures, considering experimental data relative to the pest. The age structure was inserted into the dynamics through sexual Penna Model. The results obtained, such as life expectancy, growth rate and annual generations’ number, in agreement to those in laboratory and field conditions, show that the simulation can be used as a forecast model for controlling L. coffeella.

  5. Modeling collective cell migration in geometric confinement.

    PubMed

    Tarle, Victoria; Gauquelin, Estelle; Vedula, S R K; D'Alessandro, Joseph; Lim, C T; Ladoux, Benoit; Gov, Nir S

    2017-05-03

    Monolayer expansion has generated great interest as a model system to study collective cell migration. During such an expansion the culture front often develops 'fingers', which we have recently modeled using a proposed feedback between the curvature of the monolayer's leading edge and the outward motility of the edge cells. We show that this model is able to explain the puzzling observed increase of collective cellular migration speed of a monolayer expanding into thin stripes, as well as describe the behavior within different confining geometries that were recently observed in experiments. These comparisons give support to the model and emphasize the role played by the edge cells and the edge shape during collective cell motion.

  6. Predicting the Location and Spatial Extent of Submerged Coral Reef Habitat in the Great Barrier Reef World Heritage Area, Australia

    PubMed Central

    Bridge, Tom; Beaman, Robin; Done, Terry; Webster, Jody

    2012-01-01

    Aim Coral reef communities occurring in deeper waters have received little research effort compared to their shallow-water counterparts, and even such basic information as their location and extent are currently unknown throughout most of the world. Using the Great Barrier Reef as a case study, habitat suitability modelling is used to predict the distribution of deep-water coral reef communities on the Great Barrier Reef, Australia. We test the effectiveness of a range of geophysical and environmental variables for predicting the location of deep-water coral reef communities on the Great Barrier Reef. Location Great Barrier Reef, Australia. Methods Maximum entropy modelling is used to identify the spatial extent of two broad communities of habitat-forming megabenthos phototrophs and heterotrophs. Models were generated using combinations of geophysical substrate properties derived from multibeam bathymetry and environmental data derived from Bio-ORACLE, combined with georeferenced occurrence records of mesophotic coral communities from autonomous underwater vehicle, remotely operated vehicle and SCUBA surveys. Model results are used to estimate the total amount of mesophotic coral reef habitat on the GBR. Results Our models predict extensive but previously undocumented coral communities occurring both along the continental shelf-edge of the Great Barrier Reef and also on submerged reefs inside the lagoon. Habitat suitability for phototrophs is highest on submerged reefs along the outer-shelf and the deeper flanks of emergent reefs inside the GBR lagoon, while suitability for heterotrophs is highest in the deep waters along the shelf-edge. Models using only geophysical variables consistently outperformed models incorporating environmental data for both phototrophs and heterotrophs. Main Conclusion Extensive submerged coral reef communities that are currently undocumented are likely to occur throughout the Great Barrier Reef. High-quality bathymetry data can be used to identify these reefs, which may play an important role in resilience of the GBR ecosystem to climate change. PMID:23118952

  7. VES/TEM 1D joint inversion by using Controlled Random Search (CRS) algorithm

    NASA Astrophysics Data System (ADS)

    Bortolozo, Cassiano Antonio; Porsani, Jorge Luís; Santos, Fernando Acácio Monteiro dos; Almeida, Emerson Rodrigo

    2015-01-01

    Electrical (DC) and Transient Electromagnetic (TEM) soundings are used in a great number of environmental, hydrological, and mining exploration studies. Usually, data interpretation is accomplished by individual 1D models resulting often in ambiguous models. This fact can be explained by the way as the two different methodologies sample the medium beneath surface. Vertical Electrical Sounding (VES) is good in marking resistive structures, while Transient Electromagnetic sounding (TEM) is very sensitive to conductive structures. Another difference is VES is better to detect shallow structures, while TEM soundings can reach deeper layers. A Matlab program for 1D joint inversion of VES and TEM soundings was developed aiming at exploring the best of both methods. The program uses CRS - Controlled Random Search - algorithm for both single and 1D joint inversions. Usually inversion programs use Marquadt type algorithms but for electrical and electromagnetic methods, these algorithms may find a local minimum or not converge. Initially, the algorithm was tested with synthetic data, and then it was used to invert experimental data from two places in Paraná sedimentary basin (Bebedouro and Pirassununga cities), both located in São Paulo State, Brazil. Geoelectric model obtained from VES and TEM data 1D joint inversion is similar to the real geological condition, and ambiguities were minimized. Results with synthetic and real data show that 1D VES/TEM joint inversion better recovers simulated models and shows a great potential in geological studies, especially in hydrogeological studies.

  8. WRF model sensitivity to land surface model and cumulus parameterization under short-term climate extremes over the southern Great Plains of the United States

    Treesearch

    Lisi Pei; Nathan Moore; Shiyuan Zhong; Lifeng Luo; David W. Hyndman; Warren E. Heilman; Zhiqiu Gao

    2014-01-01

    Extreme weather and climate events, especially short-term excessive drought and wet periods over agricultural areas, have received increased attention. The Southern Great Plains (SGP) is one of the largest agricultural regions in North America and features the underlying Ogallala-High Plains Aquifer system worth great economic value in large part due to production...

  9. Three-dimensional P wave velocity model for the San Francisco Bay region, California

    USGS Publications Warehouse

    Thurber, C.H.; Brocher, T.M.; Zhang, H.; Langenheim, V.E.

    2007-01-01

    A new three-dimensional P wave velocity model for the greater San Francisco Bay region has been derived using the double-difference seismic tomography method, using data from about 5,500 chemical explosions or air gun blasts and approximately 6,000 earthquakes. The model region covers 140 km NE-SW by 240 km NW-SE, extending from 20 km south of Monterey to Santa Rosa and reaching from the Pacific coast to the edge of the Great Valley. Our model provides the first regional view of a number of basement highs that are imaged in the uppermost few kilometers of the model, and images a number of velocity anomaly lows associated with known Mesozoic and Cenozoic basins in the study area. High velocity (Vp > 6.5 km/s) features at ???15-km depth beneath part of the edge of the Great Valley and along the San Francisco peninsula are interpreted as ophiolite bodies. The relocated earthquakes provide a clear picture of the geometry of the major faults in the region, illuminating fault dips that are generally consistent with previous studies. Ninety-five percent of the earthquakes have depths between 2.3 and 15.2 km, and the corresponding seismic velocities at the hypocenters range from 4.8 km/s (presumably corresponding to Franciscan basement or Mesozoic sedimentary rocks of the Great Valley Sequence) to 6.8 km/s. The top of the seismogenic zone is thus largely controlled by basement depth, but the base of the seismogenic zone is not restricted to seismic velocities of ???6.3 km/s in this region, as had been previously proposed. Copyright 2007 by the American Geophysical Union.

  10. Adaptive data-driven models for estimating carbon fluxes in the Northern Great Plains

    USGS Publications Warehouse

    Wylie, B.K.; Fosnight, E.A.; Gilmanov, T.G.; Frank, A.B.; Morgan, J.A.; Haferkamp, Marshall R.; Meyers, T.P.

    2007-01-01

    Rangeland carbon fluxes are highly variable in both space and time. Given the expansive areas of rangelands, how rangelands respond to climatic variation, management, and soil potential is important to understanding carbon dynamics. Rangeland carbon fluxes associated with Net Ecosystem Exchange (NEE) were measured from multiple year data sets at five flux tower locations in the Northern Great Plains. These flux tower measurements were combined with 1-km2 spatial data sets of Photosynthetically Active Radiation (PAR), Normalized Difference Vegetation Index (NDVI), temperature, precipitation, seasonal NDVI metrics, and soil characteristics. Flux tower measurements were used to train and select variables for a rule-based piece-wise regression model. The accuracy and stability of the model were assessed through random cross-validation and cross-validation by site and year. Estimates of NEE were produced for each 10-day period during each growing season from 1998 to 2001. Growing season carbon flux estimates were combined with winter flux estimates to derive and map annual estimates of NEE. The rule-based piece-wise regression model is a dynamic, adaptive model that captures the relationships of the spatial data to NEE as conditions evolve throughout the growing season. The carbon dynamics in the Northern Great Plains proved to be in near equilibrium, serving as a small carbon sink in 1999 and as a small carbon source in 1998, 2000, and 2001. Patterns of carbon sinks and sources are very complex, with the carbon dynamics tilting toward sources in the drier west and toward sinks in the east and near the mountains in the extreme west. Significant local variability exists, which initial investigations suggest are likely related to local climate variability, soil properties, and management.

  11. Nanoimprint Lithography on curved surfaces prepared by fused deposition modelling

    NASA Astrophysics Data System (ADS)

    Köpplmayr, Thomas; Häusler, Lukas; Bergmair, Iris; Mühlberger, Michael

    2015-06-01

    Fused deposition modelling (FDM) is an additive manufacturing technology commonly used for modelling, prototyping and production applications. The achievable surface roughness is one of its most limiting aspects. It is however of great interest to create well-defined (nanosized) patterns on the surface for functional applications such as optical effects, electronics or bio-medical devices. We used UV-curable polymers of different viscosities and flexible stamps made of poly(dimethylsiloxane) (PDMS) to perform Nanoimprint Lithography (NIL) on FDM-printed curved parts. Substrates with different roughness and curvature were prepared using a commercially available 3D printer. The nanoimprint results were characterized by optical light microscopy, profilometry and atomic force microscopy (AFM). Our experiments show promising results in creating well-defined microstructures on the 3D-printed parts.

  12. Bioenergetics estimate of the effects of stocking density on hatchery production of smallmouth bass fingerlings

    USGS Publications Warehouse

    Robel, G.L.; Fisher, W.L.

    1999-01-01

    Production of and consumption by hatchery-reared tingerling (age-0) smallmouth bass Micropterus dolomieu at various simulated stocking densities were estimated with a bioenergetics model. Fish growth rates and pond water temperatures during the 1996 growing season at two hatcheries in Oklahoma were used in the model. Fish growth and simulated consumption and production differed greatly between the two hatcheries, probably because of differences in pond fertilization and mortality rates. Our results suggest that appropriate stocking density depends largely on prey availability as affected by pond fertilization and on fingerling mortality rates. The bioenergetics model provided a useful tool for estimating production at various stocking density rates. However, verification of physiological parameters for age-0 fish of hatchery-reared species is needed.

  13. A study on the use of near-infrared spectroscopy for the rapid quantification of major compounds in Tanreqing injection

    NASA Astrophysics Data System (ADS)

    Li, Wenlong; Cheng, Zhiwei; Wang, Yuefei; Qu, Haibin

    2013-01-01

    In this paper we describe the strategy used in the development and validation of a near infrared spectroscopy method for the rapid determination of baicalin, chlorogenic acid, ursodeoxycholic acid (UDCA), chenodeoxycholic acid (CDCA), and the total solid contents (TSCs) in the Tanreqing injection. To increase the representativeness of calibration sample set, a concentrating-diluting method was adopted to artificially prepare samples. Partial least square regression (PLSR) was used to establish calibration models, with which the five quality indicators can be determined with satisfied accuracy and repeatability. In addition, the slope/bias (S/B) method was used for the models transfer between two different types of NIR instruments from the same manufacturer, which is contributing to enlarge the application range of the established models. With the presented method, a great deal of time, effort and money can be saved when large amounts of Tanreqing injection samples need to be analyzed in a relatively short period of time, which is of great significance to the traditional Chinese medicine (TCM) industries.

  14. Accurately modeling Gaussian beam propagation in the context of Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Hokr, Brett H.; Winblad, Aidan; Bixler, Joel N.; Elpers, Gabriel; Zollars, Byron; Scully, Marlan O.; Yakovlev, Vladislav V.; Thomas, Robert J.

    2016-03-01

    Monte Carlo simulations are widely considered to be the gold standard for studying the propagation of light in turbid media. However, traditional Monte Carlo methods fail to account for diffraction because they treat light as a particle. This results in converging beams focusing to a point instead of a diffraction limited spot, greatly effecting the accuracy of Monte Carlo simulations near the focal plane. Here, we present a technique capable of simulating a focusing beam in accordance to the rules of Gaussian optics, resulting in a diffraction limited focal spot. This technique can be easily implemented into any traditional Monte Carlo simulation allowing existing models to be converted to include accurate focusing geometries with minimal effort. We will present results for a focusing beam in a layered tissue model, demonstrating that for different scenarios the region of highest intensity, thus the greatest heating, can change from the surface to the focus. The ability to simulate accurate focusing geometries will greatly enhance the usefulness of Monte Carlo for countless applications, including studying laser tissue interactions in medical applications and light propagation through turbid media.

  15. Is all co-production created equal? Understanding drivers and outcomes across different users and forms of engagement

    NASA Astrophysics Data System (ADS)

    Browne, K.; Lemos, M. C.

    2017-12-01

    Despite a growing recognition of the importance of coproduced information in networks of decision-makers facing climate change, relatively little attention has been paid to how different types of users and forms of engagement (e.g. brokering and bridging of climate information) may yield different coproduction outcomes. In this study, we compare drivers and outcomes of co-production of a large network (twenty-five cases) of users within the scope of the Great Lakes Integrated Sciences and Assessments (GLISA), a boundary organization whose mission is to disseminate climate information in the Great Lakes Region. We focus especially on drivers of co-production within boundary organizations (e.g. embeddness, complementarity, financial and human resources and trust building and legitimacy) to explore different forms of engagement and models of brokering and bridging information. Our case studies span a wide range of users, including cities, businesses, academic and professional organizations and governmental agencies. We find that different kinds of resources and engagement matter in terms of desirable outcomes. In addition, while the supply of resources by boundary organizations is necessary to foster co-production, effective use and stable networks are often not achieved in the absence of sustained engagement and support.

  16. An implementation of cellular automaton model for single-line train working diagram

    NASA Astrophysics Data System (ADS)

    Hua, Wei; Liu, Jun

    2006-04-01

    According to the railway transportation system's characteristics, a new cellular automaton model for the single-line railway system is presented in this paper. Based on this model, several simulations were done to imitate the train operation under three working diagrams. From a different angle the results show how the organization of train operation impacts on the railway carrying capacity. By using the non-parallel train working diagram the influence of fast-train on slow-train is found to be the strongest. Many slow-trains have to wait in-between neighbouring stations to let the fast-train(s) pass through first. So the slow-train will advance like a wave propagating from the departure station to the arrival station. This also resembles the situation of a highway jammed traffic flow. Furthermore, the nonuniformity of travel times between the sections also greatly limits the railway carrying capacity. After converting the nonuniform sections into the sections with uniform travel times while the total travel time is kept unchanged, all three carrying capacities are improved greatly as shown by simulation. It also shows that the cellular automaton model is an effective and feasible way to investigate the railway transportation system.

  17. Sensitivity of Hydrologic Response to Climate Model Debiasing Procedures

    NASA Astrophysics Data System (ADS)

    Channell, K.; Gronewold, A.; Rood, R. B.; Xiao, C.; Lofgren, B. M.; Hunter, T.

    2017-12-01

    Climate change is already having a profound impact on the global hydrologic cycle. In the Laurentian Great Lakes, changes in long-term evaporation and precipitation can lead to rapid water level fluctuations in the lakes, as evidenced by unprecedented change in water levels seen in the last two decades. These fluctuations often have an adverse impact on the region's human, environmental, and economic well-being, making accurate long-term water level projections invaluable to regional water resources management planning. Here we use hydrological components from a downscaled climate model (GFDL-CM3/WRF), to obtain future water supplies for the Great Lakes. We then apply a suite of bias correction procedures before propagating these water supplies through a routing model to produce lake water levels. Results using conventional bias correction methods suggest that water levels will decline by several feet in the coming century. However, methods that reflect the seasonal water cycle and explicitly debias individual hydrological components (overlake precipitation, overlake evaporation, runoff) imply that future water levels may be closer to their historical average. This discrepancy between debiased results indicates that water level forecasts are highly influenced by the bias correction method, a source of sensitivity that is commonly overlooked. Debiasing, however, does not remedy misrepresentation of the underlying physical processes in the climate model that produce these biases and contribute uncertainty to the hydrological projections. This uncertainty coupled with the differences in water level forecasts from varying bias correction methods are important for water management and long term planning in the Great Lakes region.

  18. Exploring the link between urban form and work related transportation using combined satellite image and census information: Case of the Great lakes region

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Guindon, Bert; Sun, Krista

    2016-05-01

    Aspects of urban transportation have significant implications for resource consumption and environmental quality. The level of travel activity, the viability of various modes of transportation and hence the level of transportation-related emissions are influenced by the structure of cities, i.e., their urban forms. While it is widely recognized that satellite remote sensing can provide spatial information on urban land cover and land use, its effective use for understanding impacts of urban form on issues such as transportation requires that this information be integrated with relevant demographic information. A comprehensive bi-national urban database, the Great Lakes Urban Survey (GLUS), comprising all cities with populations in excess of 200,000 has been created from Landsat imagery and national census and transportation survey information from Canada and the United States. A suite of analysis tools are proposed to utilize information sets such as GLUS to investigate the link between urban form and work-related travel. A new indicator, the Employment Deficit Measure (EDM), is proposed to quantify the balance between employment and worker availability at different transit horizons and hence to assess the viability of alternate modes of transportation. It is argued that the high degree of residential and commercial/industrial land uses greatly impact travel to work mode options as well as commute distance. A spatial interaction model is developed and found to accurately predict travel distance aggregated at the census tract level. We argue that this model could also be used to explore the relative levels of travel activity associated with different urban forms.

  19. Great Lakes modeling: Are the mathematics outpacing the data and our understanding of the system?

    EPA Science Inventory

    Mathematical modeling in the Great Lakes has come a long way from the pioneering work done by Manhattan College in the 1970s, when the models operated on coarse computational grids (often lake-wide) and used simple eutrophication formulations. Moving forward 40 years, we are now...

  20. The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism

    NASA Astrophysics Data System (ADS)

    Clark, Martyn P.; Bierkens, Marc F. P.; Samaniego, Luis; Woods, Ross A.; Uijlenhoet, Remko; Bennett, Katrina E.; Pauwels, Valentijn R. N.; Cai, Xitian; Wood, Andrew W.; Peters-Lidard, Christa D.

    2017-07-01

    The diversity in hydrologic models has historically led to great controversy on the correct approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. In this paper, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We illustrate how modeling advances have been made by groups using models of different type and complexity, and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.

  1. The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism

    NASA Astrophysics Data System (ADS)

    Clark, M. P.; Nijssen, B.; Wood, A.; Mizukami, N.; Newman, A. J.

    2017-12-01

    The diversity in hydrologic models has historically led to great controversy on the "correct" approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. In this paper, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We illustrate how modeling advances have been made by groups using models of different type and complexity, and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.

  2. Numerical simulations of debris drift from the Great Japan Tsunami of 2011 and their verification with observational reports.

    PubMed

    Maximenko, Nikolai; Hafner, Jan; Kamachi, Masafumi; MacFadyen, Amy

    2018-05-02

    A suite of five ocean models is used to simulate the movement of floating debris generated by the Great Japan Tsunami of 2011. This debris was subject to differential wind and wave-induced motion relative to the ambient current (often termed "windage") which is a function of the shape, size, and buoyancy of the individual debris items. Model solutions suggest that during the eastward drift across the North Pacific the debris became "stratified" by the wind so that objects with different windages took different paths: high windage items reached North America in large numbers the first year, medium windage items recirculated southwest toward Hawaii and Asia, and low windage items collected in the Subtropical Gyre, primarily in the so-called "garbage patch" area located northeast of Hawaii and known for high concentrations of microplastics. Numerous boats lost during the tsunami were later observed at sea and/or found on the west coast of North America: these observations are used to determine optimal windage values for scaling the model solutions. The initial number of boats set adrift during the tsunami is estimated at about 1000, while about 100 boats are projected to still float in year 2018 with an e-folding decay of 2 to 8 years. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. The Great Recession, unemployment and suicide.

    PubMed

    Norström, Thor; Grönqvist, Hans

    2015-02-01

    How have suicide rates responded to the marked increase in unemployment spurred by the Great Recession? Our paper puts this issue into a wider perspective by assessing (1) whether the unemployment-suicide link is modified by the degree of unemployment protection, and (2) whether the effect on suicide of the present crisis differs from the effects of previous economic downturns. We analysed the unemployment-suicide link using time-series data for 30 countries spanning the period 1960-2012. Separate fixed-effects models were estimated for each of five welfare state regimes with different levels of unemployment protection (Eastern, Southern, Anglo-Saxon, Bismarckian and Scandinavian). We included an interaction term to capture the possible excess effect of unemployment during the Great Recession. The largest unemployment increases occurred in the welfare state regimes with the least generous unemployment protection. The unemployment effect on male suicides was statistically significant in all welfare regimes, except the Scandinavian one. The effect on female suicides was significant only in the eastern European country group. There was a significant gradient in the effects, being stronger the less generous the unemployment protection. The interaction term capturing the possible excess effect of unemployment during the financial crisis was not significant. Our findings suggest that the more generous the unemployment protection the weaker the detrimental impact on suicide of the increasing unemployment during the Great Recession. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. Mathematical modeling of human cardiovascular system for simulation of orthostatic response

    NASA Technical Reports Server (NTRS)

    Melchior, F. M.; Srinivasan, R. S.; Charles, J. B.

    1992-01-01

    This paper deals with the short-term response of the human cardiovascular system to orthostatic stresses in the context of developing a mathematical model of the overall system. It discusses the physiological issues involved and how these issues have been handled in published cardiovascular models for simulation of orthostatic response. Most of the models are stimulus specific with no demonstrated capability for simulating the responses to orthostatic stimuli of different types. A comprehensive model incorporating all known phenomena related to cardiovascular regulation would greatly help to interpret the various orthostatic responses of the system in a consistent manner and to understand the interactions among its elements. This paper provides a framework for future efforts in mathematical modeling of the entire cardiovascular system.

  5. Influence of Implant Positions and Occlusal Forces on Peri-Implant Bone Stress in Mandibular Two-Implant Overdentures: A 3-Dimensional Finite Element Analysis.

    PubMed

    Alvarez-Arenal, Angel; Gonzalez-Gonzalez, Ignacio; deLlanos-Lanchares, Hector; Brizuela-Velasco, Aritza; Dds, Elena Martin-Fernandez; Ellacuria-Echebarria, Joseba

    2017-12-01

    The aim of this study was to evaluate and compare the bone stress around implants in mandibular 2-implant overdentures depending on the implant location and different loading conditions. Four 3-dimensional finite element models simulating a mandibular 2-implant overdenture and a Locator attachment system were designed. The implants were located at the lateral incisor, canine, second premolar, and crossed-implant levels. A 150 N unilateral and bilateral vertical load of different location was applied, as was 40 N when combined with midline load. Data for von Mises stress were produced numerically, color coded, and compared between the models for peri-implant bone and loading conditions. With unilateral loading, in all 4 models much higher peri-implant bone stress values were recorded on the load side compared with the no-load side, while with bilateral occlusal loading, the stress distribution was similar on both sides. In all models, the posterior unilateral load showed the highest stress, which decreased as the load was applied more mesially. In general, the best biomechanical environment in the peri-implant bone was found in the model with implants at premolar level. In the crossed-implant model, the load side greatly altered the biomechanical environment. Overall, the overdenture with implants at second premolar level should be the chosen design, regardless of where the load is applied. The occlusal loading application site influences the bone stress around the implant. Bilateral occlusal loading distributes the peri-implant bone stress symmetrically, while unilateral loading increases it greatly on the load side, no matter where the implants are located.

  6. Radar signatures of snowflake riming: A modeling study.

    PubMed

    Leinonen, Jussi; Szyrmer, Wanda

    2015-08-01

    The capability to detect the state of snowflake riming reliably from remote measurements would greatly expand the understanding of its global role in cloud-precipitation processes. To investigate the ability of multifrequency radars to detect riming, a three-dimensional model of snowflake growth was used to generate simulated aggregate and crystal snowflakes with various degrees of riming. Three different growth scenarios, representing different temporal relationships between aggregation and riming, were formulated. The discrete dipole approximation was then used to compute the radar backscattering properties of the snowflakes at frequencies of 9.7, 13.6, 35.6, and 94 GHz. In two of the three growth scenarios, the rimed snowflakes exhibit large differences between the backscattering cross sections of the detailed three-dimensional models and the equivalent homogeneous spheroidal models, similarly to earlier results for unrimed snowflakes. When three frequencies are used simultaneously, riming appears to be detectable in a robust manner across all three scenarios. In spite of the differences in backscattering cross sections, the triple-frequency signatures of heavily rimed particles resemble those of the homogeneous spheroids, thus explaining earlier observational results that were compatible with such spheroids.

  7. Measuring transferring similarity via local information

    NASA Astrophysics Data System (ADS)

    Yin, Likang; Deng, Yong

    2018-05-01

    Recommender systems have developed along with the web science, and how to measure the similarity between users is crucial for processing collaborative filtering recommendation. Many efficient models have been proposed (i.g., the Pearson coefficient) to measure the direct correlation. However, the direct correlation measures are greatly affected by the sparsity of dataset. In other words, the direct correlation measures would present an inauthentic similarity if two users have a very few commonly selected objects. Transferring similarity overcomes this drawback by considering their common neighbors (i.e., the intermediates). Yet, the transferring similarity also has its drawback since it can only provide the interval of similarity. To break the limitations, we propose the Belief Transferring Similarity (BTS) model. The contributions of BTS model are: (1) BTS model addresses the issue of the sparsity of dataset by considering the high-order similarity. (2) BTS model transforms uncertain interval to a certain state based on fuzzy systems theory. (3) BTS model is able to combine the transferring similarity of different intermediates using information fusion method. Finally, we compare BTS models with nine different link prediction methods in nine different networks, and we also illustrate the convergence property and efficiency of the BTS model.

  8. Aquatic insect ecophysiological traits reveal phylogenetically based differences in dissolved cadmium susceptibility.

    PubMed

    Buchwalter, David B; Cain, Daniel J; Martin, Caitrin A; Xie, Lingtian; Luoma, Samuel N; Garland, Theodore

    2008-06-17

    We used a phylogenetically based comparative approach to evaluate the potential for physiological studies to reveal patterns of diversity in traits related to susceptibility to an environmental stressor, the trace metal cadmium (Cd). Physiological traits related to Cd bioaccumulation, compartmentalization, and ultimately susceptibility were measured in 21 aquatic insect species representing the orders Ephemeroptera, Plecoptera, and Trichoptera. We mapped these experimentally derived physiological traits onto a phylogeny and quantified the tendency for related species to be similar (phylogenetic signal). All traits related to Cd bioaccumulation and susceptibility exhibited statistically significant phylogenetic signal, although the signal strength varied among traits. Conventional and phylogenetically based regression models were compared, revealing great variability within orders but consistent, strong differences among insect families. Uptake and elimination rate constants were positively correlated among species, but only when effects of body size and phylogeny were incorporated in the analysis. Together, uptake and elimination rates predicted dramatic Cd bioaccumulation differences among species that agreed with field-based measurements. We discovered a potential tradeoff between the ability to eliminate Cd and the ability to detoxify it across species, particularly mayflies. The best-fit regression models were driven by phylogenetic parameters (especially differences among families) rather than functional traits, suggesting that it may eventually be possible to predict a taxon's physiological performance based on its phylogenetic position, provided adequate physiological information is available for close relatives. There appears to be great potential for evolutionary physiological approaches to augment our understanding of insect responses to environmental stressors in nature.

  9. Aquatic insect ecophysiological traits reveal phylogenetically based differences in dissolved cadmium susceptibility

    PubMed Central

    Buchwalter, David B.; Cain, Daniel J.; Martin, Caitrin A.; Xie, Lingtian; Luoma, Samuel N.; Garland, Theodore

    2008-01-01

    We used a phylogenetically based comparative approach to evaluate the potential for physiological studies to reveal patterns of diversity in traits related to susceptibility to an environmental stressor, the trace metal cadmium (Cd). Physiological traits related to Cd bioaccumulation, compartmentalization, and ultimately susceptibility were measured in 21 aquatic insect species representing the orders Ephemeroptera, Plecoptera, and Trichoptera. We mapped these experimentally derived physiological traits onto a phylogeny and quantified the tendency for related species to be similar (phylogenetic signal). All traits related to Cd bioaccumulation and susceptibility exhibited statistically significant phylogenetic signal, although the signal strength varied among traits. Conventional and phylogenetically based regression models were compared, revealing great variability within orders but consistent, strong differences among insect families. Uptake and elimination rate constants were positively correlated among species, but only when effects of body size and phylogeny were incorporated in the analysis. Together, uptake and elimination rates predicted dramatic Cd bioaccumulation differences among species that agreed with field-based measurements. We discovered a potential tradeoff between the ability to eliminate Cd and the ability to detoxify it across species, particularly mayflies. The best-fit regression models were driven by phylogenetic parameters (especially differences among families) rather than functional traits, suggesting that it may eventually be possible to predict a taxon's physiological performance based on its phylogenetic position, provided adequate physiological information is available for close relatives. There appears to be great potential for evolutionary physiological approaches to augment our understanding of insect responses to environmental stressors in nature. PMID:18559853

  10. Modeling information diffusion in time-varying community networks

    NASA Astrophysics Data System (ADS)

    Cui, Xuelian; Zhao, Narisa

    2017-12-01

    Social networks are rarely static, and they typically have time-varying network topologies. A great number of studies have modeled temporal networks and explored social contagion processes within these models; however, few of these studies have considered community structure variations. In this paper, we present a study of how the time-varying property of a modular structure influences the information dissemination. First, we propose a continuous-time Markov model of information diffusion where two parameters, mobility rate and community attractiveness, are introduced to address the time-varying nature of the community structure. The basic reproduction number is derived, and the accuracy of this model is evaluated by comparing the simulation and theoretical results. Furthermore, numerical results illustrate that generally both the mobility rate and community attractiveness significantly promote the information diffusion process, especially in the initial outbreak stage. Moreover, the strength of this promotion effect is much stronger when the modularity is higher. Counterintuitively, it is found that when all communities have the same attractiveness, social mobility no longer accelerates the diffusion process. In addition, we show that the local spreading in the advantage group has been greatly enhanced due to the agglomeration effect caused by the social mobility and community attractiveness difference, which thus increases the global spreading.

  11. Graph theory analysis of cortical thickness networks in adolescents with d-transposition of the great arteries.

    PubMed

    Watson, Christopher G; Stopp, Christian; Newburger, Jane W; Rivkin, Michael J

    2018-02-01

    Adolescents with d-transposition of the great arteries (d-TGA) who had the arterial switch operation in infancy have been found to have structural brain differences compared to healthy controls. We used cortical thickness measurements obtained from structural brain MRI to determine group differences in global brain organization using a graph theoretical approach. Ninety-two d-TGA subjects and 49 controls were scanned using one of two identical 1.5-Tesla MRI systems. Mean cortical thickness was obtained from 34 regions per hemisphere using Freesurfer. A linear model was used for each brain region to adjust for subject age, sex, and scanning location. Structural connectivity for each group was inferred based on the presence of high inter-regional correlations of the linear model residuals, and binary connectivity matrices were created by thresholding over a range of correlation values for each group. Graph theory analysis was performed using packages in R. Permutation tests were performed to determine significance of between-group differences in global network measures. Within-group connectivity patterns were qualitatively different between groups. At lower network densities, controls had significantly more long-range connections. The location and number of hub regions differed between groups: controls had a greater number of hubs at most network densities. The control network had a significant rightward asymmetry compared to the d-TGA group at all network densities. Using graph theory analysis of cortical thickness correlations, we found differences in brain structural network organization among d-TGA adolescents compared to controls. These may be related to the white matter and gray matter differences previously found in this cohort, and in turn may be related to the cognitive deficits this cohort presents.

  12. Business Pattern of Distributed Energy in Electric Power System Reformation

    NASA Astrophysics Data System (ADS)

    Liang, YUE; Zhuochu, LIU; Jun, LI; Siwei, LI

    2017-05-01

    Under the trend of the electric power system revolution, the operation mode of micro power grid that including distributed power will be more diversified. User’s demand response and different strategies on electricity all have great influence on the operation of distributed power grid. This paper will not only research sensitive factors of micro power grid operation, but also analyze and calculate the cost and benefit of micro power grid operation upon different types. Then it will build a tech-economic calculation model, which applies to different types of micro power grid under the reformation of electric power system.

  13. Complementarity of no-take marine reserves and individual transferable catch quotas for managing the line fishery of the great barrier reef.

    PubMed

    Little, L R; Grafton, R Q; Kompas, T; Smith, A D M; Punt, A E; Mapstone, B D

    2011-04-01

    Changes in the management of the fin fish fishery of the Great Barrier Reef motivated us to investigate the combined effects on economic returns and fish biomass of no-take areas and regulated total allowable catch allocated in the form of individual transferable quotas (such quotas apportion the total allowable catch as fishing rights and permits the buying and selling of these rights among fishers). We built a spatially explicit biological and economic model of the fishery to analyze the trade-offs between maintaining given levels of fish biomass and the net financial returns from fishing under different management regimes. Results of the scenarios we modeled suggested that a decrease in total allowable catch at high levels of harvest either increased net returns or lowered them only slightly, but increased biomass by up to 10% for a wide range of reserve sizes and an increase in the reserve area from none to 16% did not greatly change net returns at any catch level. Thus, catch shares and no-take reserves can be complementary and when these methods are used jointly they promote lower total allowable catches when harvest is relatively high and encourage larger no-take areas when they are small. ©2010 Society for Conservation Biology.

  14. Mass discharge estimation from contaminated sites: Multi-model solutions for assessment of conceptual uncertainty

    NASA Astrophysics Data System (ADS)

    Thomsen, N. I.; Troldborg, M.; McKnight, U. S.; Binning, P. J.; Bjerg, P. L.

    2012-04-01

    Mass discharge estimates are increasingly being used in the management of contaminated sites. Such estimates have proven useful for supporting decisions related to the prioritization of contaminated sites in a groundwater catchment. Potential management options can be categorised as follows: (1) leave as is, (2) clean up, or (3) further investigation needed. However, mass discharge estimates are often very uncertain, which may hamper the management decisions. If option 1 is incorrectly chosen soil and water quality will decrease, threatening or destroying drinking water resources. The risk of choosing option 2 is to spend money on remediating a site that does not pose a problem. Choosing option 3 will often be safest, but may not be the optimal economic solution. Quantification of the uncertainty in mass discharge estimates can therefore greatly improve the foundation for selecting the appropriate management option. The uncertainty of mass discharge estimates depends greatly on the extent of the site characterization. A good approach for uncertainty estimation will be flexible with respect to the investigation level, and account for both parameter and conceptual model uncertainty. We propose a method for quantifying the uncertainty of dynamic mass discharge estimates from contaminant point sources on the local scale. The method considers both parameter and conceptual uncertainty through a multi-model approach. The multi-model approach evaluates multiple conceptual models for the same site. The different conceptual models consider different source characterizations and hydrogeological descriptions. The idea is to include a set of essentially different conceptual models where each model is believed to be realistic representation of the given site, based on the current level of information. Parameter uncertainty is quantified using Monte Carlo simulations. For each conceptual model we calculate a transient mass discharge estimate with uncertainty bounds resulting from the parametric uncertainty. To quantify the conceptual uncertainty from a given site, we combine the outputs from the different conceptual models using Bayesian model averaging. The weight for each model is obtained by integrating available data and expert knowledge using Bayesian belief networks. The multi-model approach is applied to a contaminated site. At the site a DNAPL (dense non aqueous phase liquid) spill consisting of PCE (perchloroethylene) has contaminated a fractured clay till aquitard overlaying a limestone aquifer. The exact shape and nature of the source is unknown and so is the importance of transport in the fractures. The result of the multi-model approach is a visual representation of the uncertainty of the mass discharge estimates for the site which can be used to support the management options.

  15. Diversity Dynamics in Nymphalidae Butterflies: Effect of Phylogenetic Uncertainty on Diversification Rate Shift Estimates

    PubMed Central

    Peña, Carlos; Espeland, Marianne

    2015-01-01

    The species rich butterfly family Nymphalidae has been used to study evolutionary interactions between plants and insects. Theories of insect-hostplant dynamics predict accelerated diversification due to key innovations. In evolutionary biology, analysis of maximum credibility trees in the software MEDUSA (modelling evolutionary diversity using stepwise AIC) is a popular method for estimation of shifts in diversification rates. We investigated whether phylogenetic uncertainty can produce different results by extending the method across a random sample of trees from the posterior distribution of a Bayesian run. Using the MultiMEDUSA approach, we found that phylogenetic uncertainty greatly affects diversification rate estimates. Different trees produced diversification rates ranging from high values to almost zero for the same clade, and both significant rate increase and decrease in some clades. Only four out of 18 significant shifts found on the maximum clade credibility tree were consistent across most of the sampled trees. Among these, we found accelerated diversification for Ithomiini butterflies. We used the binary speciation and extinction model (BiSSE) and found that a hostplant shift to Solanaceae is correlated with increased net diversification rates in Ithomiini, congruent with the diffuse cospeciation hypothesis. Our results show that taking phylogenetic uncertainty into account when estimating net diversification rate shifts is of great importance, as very different results can be obtained when using the maximum clade credibility tree and other trees from the posterior distribution. PMID:25830910

  16. Diversity dynamics in Nymphalidae butterflies: effect of phylogenetic uncertainty on diversification rate shift estimates.

    PubMed

    Peña, Carlos; Espeland, Marianne

    2015-01-01

    The species rich butterfly family Nymphalidae has been used to study evolutionary interactions between plants and insects. Theories of insect-hostplant dynamics predict accelerated diversification due to key innovations. In evolutionary biology, analysis of maximum credibility trees in the software MEDUSA (modelling evolutionary diversity using stepwise AIC) is a popular method for estimation of shifts in diversification rates. We investigated whether phylogenetic uncertainty can produce different results by extending the method across a random sample of trees from the posterior distribution of a Bayesian run. Using the MultiMEDUSA approach, we found that phylogenetic uncertainty greatly affects diversification rate estimates. Different trees produced diversification rates ranging from high values to almost zero for the same clade, and both significant rate increase and decrease in some clades. Only four out of 18 significant shifts found on the maximum clade credibility tree were consistent across most of the sampled trees. Among these, we found accelerated diversification for Ithomiini butterflies. We used the binary speciation and extinction model (BiSSE) and found that a hostplant shift to Solanaceae is correlated with increased net diversification rates in Ithomiini, congruent with the diffuse cospeciation hypothesis. Our results show that taking phylogenetic uncertainty into account when estimating net diversification rate shifts is of great importance, as very different results can be obtained when using the maximum clade credibility tree and other trees from the posterior distribution.

  17. Dark interactions and cosmological fine-tuning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quartin, Miguel; Calvao, Mauricio O; Joras, Sergio E

    2008-05-15

    Cosmological models involving an interaction between dark matter and dark energy have been proposed in order to solve the so-called coincidence problem. Different forms of coupling have been studied, but there have been claims that observational data seem to narrow (some of) them down to something annoyingly close to the {Lambda}CDM (CDM: cold dark matter) model, thus greatly reducing their ability to deal with the problem in the first place. The smallness problem of the initial energy density of dark energy has also been a target of cosmological models in recent years. Making use of a moderately general coupling scheme,more » this paper aims to unite these different approaches and shed some light on whether this class of models has any true perspective in suppressing the aforementioned issues that plague our current understanding of the universe, in a quantitative and unambiguous way.« less

  18. Dynamic sensing model for accurate delectability of environmental phenomena using event wireless sensor network

    NASA Astrophysics Data System (ADS)

    Missif, Lial Raja; Kadhum, Mohammad M.

    2017-09-01

    Wireless Sensor Network (WSN) has been widely used for monitoring where sensors are deployed to operate independently to sense abnormal phenomena. Most of the proposed environmental monitoring systems are designed based on a predetermined sensing range which does not reflect the sensor reliability, event characteristics, and the environment conditions. Measuring of the capability of a sensor node to accurately detect an event within a sensing field is of great important for monitoring applications. This paper presents an efficient mechanism for even detection based on probabilistic sensing model. Different models have been presented theoretically in this paper to examine their adaptability and applicability to the real environment applications. The numerical results of the experimental evaluation have showed that the probabilistic sensing model provides accurate observation and delectability of an event, and it can be utilized for different environment scenarios.

  19. Physiologically based pharmacokinetic modeling using microsoft excel and visual basic for applications.

    PubMed

    Marino, Dale J

    2005-01-01

    Abstract Physiologically based pharmacokinetic (PBPK) models are mathematical descriptions depicting the relationship between external exposure and internal dose. These models have found great utility for interspecies extrapolation. However, specialized computer software packages, which are not widely distributed, have typically been used for model development and utilization. A few physiological models have been reported using more widely available software packages (e.g., Microsoft Excel), but these tend to include less complex processes and dose metrics. To ascertain the capability of Microsoft Excel and Visual Basis for Applications (VBA) for PBPK modeling, models for styrene, vinyl chloride, and methylene chloride were coded in Advanced Continuous Simulation Language (ACSL), Excel, and VBA, and simulation results were compared. For styrene, differences between ACSL and Excel or VBA compartment concentrations and rates of change were less than +/-7.5E-10 using the same numerical integration technique and time step. Differences using VBA fixed step or ACSL Gear's methods were generally <1.00E-03, although larger differences involving very small values were noted after exposure transitions. For vinyl chloride and methylene chloride, Excel and VBA PBPK model dose metrics differed by no more than -0.013% or -0.23%, respectively, from ACSL results. These differences are likely attributable to different step sizes rather than different numerical integration techniques. These results indicate that Microsoft Excel and VBA can be useful tools for utilizing PBPK models, and given the availability of these software programs, it is hoped that this effort will help facilitate the use and investigation of PBPK modeling.

  20. GLOFRIM - A globally applicable framework for integrated hydrologic-hydrodynamic inundation modelling

    NASA Astrophysics Data System (ADS)

    Hoch, J. M.; Neal, J. C.; Baart, F.; Van Beek, L. P.; Winsemius, H.; Bates, P. D.; Bierkens, M. F.

    2017-12-01

    Currently, many approaches to provide detailed flood hazard and risk estimates are built upon specific hydrologic or hydrodynamic model routines. By applying these routines in stand-alone mode important processes can however not accurately be described. For instance, global hydrologic models run at coarse spatial resolution, not supporting the detailed simulation of flood hazard. Hydrodynamic models excel in the computations of open water flow dynamics, but dependent on specific runoff or observed discharge as input. In most cases hydrodynamic models are forced at the boundaries and thus cannot account for water sources within the model domain, limiting the simulation of inundation dynamics to reaches fed by upstream boundaries. Recently, Hoch et al. (HESS, 2017) coupled PCR-GLOBWB (PCR) with the hydrodynamic model Delft3D Flexible Mesh (DFM). By means of the Basic Model Interface both models were connected on a cell-by-cell basis, allowing for spatially explicit coupling. Model results showed that discharge simulations can profit from model coupling compared to stand-alone runs. As model results of a coupled simulation depend on the quality of the models, it would be worthwhile to allow a suite of models to be coupled. To facilitate this, we present GLOFRIM, a globally applicable framework for integrated hydrologic-hydrodynamic inundation modelling. In the current version coupling between PCR and both DFM and LISFLOOD-FP (LFP) can be established (Hoch et al., GMDD, 2017). First results show that differences between both hydrodynamic models are present in the timing of peak discharge which is most likely due to differences in channel-floodplain interactions and bathymetry processing. Having benchmarked inundation extent, LFP and DFM agree for around half of the inundated area which is attributable to variations in grid size. Results also indicate that, despite using identical boundary conditions and forcing, the schematization itself as well as internal processes can still greatly influence results. In general, the application of GLOFRIM brings several advantages. For example, with PCR being a global model, it is possible to reduce the dependency of observation data for discharge boundaries, and benchmarking of hydrodynamic models is greatly facilitated by employing identical hydrologic forcing.

  1. Offshore Wind Jobs and Economic Development Impacts in the United States: Four Regional Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tegen, S.; Keyser, D.; Flores-Espino, F.

    This report uses the offshore wind Jobs and Economic Development Impacts (JEDI) model and provides four case studies of potential offshore deployment scenarios in different regions of the United States: the Southeast, the Great Lakes, the Gulf Coast, and the Mid-Atlantic. Researchers worked with developers and industry representatives in each region to create potential offshore wind deployment and supply chain growth scenarios, specific to their locations. These scenarios were used as inputs into the offshore JEDI model to estimate jobs and other gross economic impacts in each region.

  2. Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM) III: Scenario analysis

    USGS Publications Warehouse

    Huisman, J.A.; Breuer, L.; Bormann, H.; Bronstert, A.; Croke, B.F.W.; Frede, H.-G.; Graff, T.; Hubrechts, L.; Jakeman, A.J.; Kite, G.; Lanini, J.; Leavesley, G.; Lettenmaier, D.P.; Lindstrom, G.; Seibert, J.; Sivapalan, M.; Viney, N.R.; Willems, P.

    2009-01-01

    An ensemble of 10 hydrological models was applied to the same set of land use change scenarios. There was general agreement about the direction of changes in the mean annual discharge and 90% discharge percentile predicted by the ensemble members, although a considerable range in the magnitude of predictions for the scenarios and catchments under consideration was obvious. Differences in the magnitude of the increase were attributed to the different mean annual actual evapotranspiration rates for each land use type. The ensemble of model runs was further analyzed with deterministic and probabilistic ensemble methods. The deterministic ensemble method based on a trimmed mean resulted in a single somewhat more reliable scenario prediction. The probabilistic reliability ensemble averaging (REA) method allowed a quantification of the model structure uncertainty in the scenario predictions. It was concluded that the use of a model ensemble has greatly increased our confidence in the reliability of the model predictions. ?? 2008 Elsevier Ltd.

  3. Dancing across Disciplines: A 21st Century Model for Educational Reform in the Academy

    ERIC Educational Resources Information Center

    Mantell-Seidel, Andrea

    2007-01-01

    This article describes the Dancing across Disciplines (DAD) project (1998-2002), which the author conceived in the idealism of the potential of dance and music as the great levelers, in the promise of the celebration of difference through rhythm and song, funded by a $225,000, three-year grant from the US Department of Education's Fund for the…

  4. Trends and tips for online recruiting and job hunts.

    PubMed

    Franz, D

    1999-01-01

    The Internet is providing new ways to find a new job or a great job candidate. Online job banks can make searches easy, but it's best to have a sense of what type of job bank will best serve your purposes. This article describes six different business models employed by Internet job banks and outlines their advantages and disadvantages. A list of online resources is included.

  5. Spectral Remote Sensing of Dust Sources on the U.S. Great Plains from 1930s Panchromatic Aerial Phtography

    NASA Astrophysics Data System (ADS)

    Bolles, K.; Forman, S. L.

    2017-12-01

    Understanding the spatiotemporal dynamics of dust sources is essential to accurately quantify the various impacts of dust on the Earth system; however, a persistent deficiency in modeling dust emission is detailed knowledge of surface texture, geomorphology, and location of dust emissive surfaces, which strongly influence the effects of wind erosion. Particle emission is closely linked to both climatic and physical surface factors - interdependent variables that respond to climate nonlinearly and are mitigated by variability in land use or management practice. Recent efforts have focused on development of a preferential dust source (PDS) identification scheme to improve global dust-cycle models, which posits certain surfaces are more likely to emit dust than others, dependent upon associated sediment texture and geomorphological limitations which constrain sediment supply and availability. In this study, we outline an approach to identify and verify the physical properties and distribution of dust emissive surfaces in the U.S. Great Plains from historical aerial imagery in order to establish baseline records of dust sources, associated erodibility, and spatiotemporal variability, prior to the satellite era. We employ a multi-criteria, spatially-explicit model to identify counties that are "representative" of the broader landscape on the Great Plains during the 1930s. Parameters include: percentage of county cultivated and uncultivated per the 1935 Agricultural Census, average soil sand content, mean annual Palmer Drought Severity Index (PDSI), maximum annual temperature and percent difference to the 30-year normal maximum temperature, and annual precipitation and percent difference to the 30-year normal precipitation level. Within these areas we generate random points to select areas for photo reproduction. Selected frames are photogrammetrically scanned at 1200 dpi, radiometrically corrected, mosaicked and georectified to create an IKONOS-equivalent image. Gray-level co-occurrence matrices are calculated in a 3x3 moving window to determine textural properties of the mosaic and delineate bare surfaces of different sedimentological properties. Field stratigraphic assessments and spatially-referenced historical data are integrated within ArcGIS to ground-truth imagery.

  6. Two Simple Macroeconomic Simulations and the Great Depression. Instructor's Notes [and] A Student Guide [and] Basic Program.

    ERIC Educational Resources Information Center

    Schenk, Robert E.

    Intended for use with college students in introductory macroeconomics or American economic history courses, these two computer simulations of two basic macroeconomic models--a simple Keynesian-type model and a quantity-theory-of-money model--present largely incompatible explanations of the Great Depression. Written in Basic, the simulations are…

  7. Modeling and simulation of Charpy impact test of maraging steel 300 using Abaqus

    NASA Astrophysics Data System (ADS)

    Madhusudhan, D.; Chand, Suresh; Ganesh, S.; Saibhargavi, U.

    2018-03-01

    This work emphasizes the modeling and simulation of Charpy impact test to evaluate fracture energy at different pendulum velocities of armor maraging steel 300 using ABAQUS. To evaluate the fracture energy, V-notch specimen is fractured using the Johnson and Cook Damage model. The Charpy impact tests are of great importance related to fracture properties of steels. The objective of this work is to present absorbed energy variation at pendulum velocities of 5 m/sec, 6 m/sec, 7 m/sec and 9 m/sec in addition to stress distribution at v-notch. Finite Element Method of modeling for three dimensional specimens is used for simulation in commercial software of ABAQUS.

  8. Research on Daily Objects Detection Based on Deep Neural Network

    NASA Astrophysics Data System (ADS)

    Ding, Sheng; Zhao, Kun

    2018-03-01

    With the rapid development of deep learning, great breakthroughs have been made in the field of object detection. In this article, the deep learning algorithm is applied to the detection of daily objects, and some progress has been made in this direction. Compared with traditional object detection methods, the daily objects detection method based on deep learning is faster and more accurate. The main research work of this article: 1. collect a small data set of daily objects; 2. in the TensorFlow framework to build different models of object detection, and use this data set training model; 3. the training process and effect of the model are improved by fine-tuning the model parameters.

  9. Physical models of collective cell motility: from cell to tissue

    NASA Astrophysics Data System (ADS)

    Camley, B. A.; Rappel, W.-J.

    2017-03-01

    In this article, we review physics-based models of collective cell motility. We discuss a range of techniques at different scales, ranging from models that represent cells as simple self-propelled particles to phase field models that can represent a cell’s shape and dynamics in great detail. We also extensively review the ways in which cells within a tissue choose their direction, the statistics of cell motion, and some simple examples of how cell-cell signaling can interact with collective cell motility. This review also covers in more detail selected recent works on collective cell motion of small numbers of cells on micropatterns, in wound healing, and the chemotaxis of clusters of cells.

  10. The Effect of Size of Red Cells on the Kinetics of Their Oxygen Uptake

    PubMed Central

    Holland, R. A. B.; Forster, R. E.

    1966-01-01

    Using a double-beam stopped-flow apparatus estimations were made of the velocity constant for the initial uptake of oxygen by fully reduced erythrocytes (k'c). Mammalian cells were studied with volumes varying from 20 µ3 (goat) to 90 µ3 (man), as were bullfrog cells (680 µ3). Measurements were made under physiological conditions of pH, P CO2, and temperature. In man k'c was 80 mM -1 sec-1 and in other species smaller cells generally had a greater value for k'c than did the larger cells. In the goat it was 1.8 times as great as the human value; in the bullfrog it was only one-fifth as great. These differences could not be accounted for by interspecific differences in hemoglobin kinetics. The differences probably represent a true effect of size conferring some biological advantage on the species with the smaller cells. The cell membrane offered resistance to oxygen passage. Using the usual red cell model of an infinite sheet of reduced hemoglobin, membrane permeability appeared to differ among mammals. If, as is likely, the effective cell halfthickness differs among mammals, actual membrane permeability differences may be less. A method for measurement of oxygen saturation of dilute cell suspensions is also described. PMID:5943611

  11. Impact of Social Reward on the Evolution of the Cooperation Behavior in Complex Networks

    NASA Astrophysics Data System (ADS)

    Wu, Yu'E.; Chang, Shuhua; Zhang, Zhipeng; Deng, Zhenghong

    2017-01-01

    Social reward, as a significant mechanism explaining the evolution of cooperation, has attracted great attention both theoretically and experimentally. In this paper, we study the evolution of cooperation by proposing a reward model in network population, where a third strategy, reward, as an independent yet particular type of cooperation is introduced in 2-person evolutionary games. Specifically, a new kind of role corresponding to reward strategy, reward agents, is defined, which is aimed at increasing the income of cooperators by applying to them a social reward. Results from numerical simulations show that consideration of social reward greatly promotes the evolution of cooperation, which is confirmed for different network topologies and two evolutionary games. Moreover, we explore the microscopic mechanisms for the promotion of cooperation in the three-strategy model. As expected, the reward agents play a vital role in the formation of cooperative clusters, thus resisting the aggression of defectors. Our research might provide valuable insights into further exploring the nature of cooperation in the real world.

  12. A revised catalog of CfA galaxy groups in the Virgo/Great Attractor flow field

    NASA Technical Reports Server (NTRS)

    Nolthenius, Richard

    1993-01-01

    A new identification of groups and clusters in the CfAl Catalog of Huchra, et al. (1983) is presented, using a percolation algorithm to identify density enhancements. The procedure differs from that of the original Geller and Huchra (1983; GH) catalog in several important respects; galaxy distances are calculated from the Virgo-Great Attractor flow model of Faber and Burnstein (1988), the adopted distance linkage criteria is only approx. 1/4 as large as in the Geller and Huchra catalog, the sky link relation is taken from Nolthenius and White (1987), correction for interstellar extinction is included, and 'by-hand' adjustments to group memberships are made in the complex regions of Virgo/Coma I/Ursa Major and Coma/A1367 (to allow for varying group velocity dispersions and to trim unphysical 'spider arms'). Since flow model distances are poorly determined in these same regions, available distances from the IR Tully-Fisher planetary nebula luminosity function and surface brightness resolution methods are adopted if possible.

  13. Impact of Social Reward on the Evolution of the Cooperation Behavior in Complex Networks

    PubMed Central

    Wu, Yu’e; Chang, Shuhua; Zhang, Zhipeng; Deng, Zhenghong

    2017-01-01

    Social reward, as a significant mechanism explaining the evolution of cooperation, has attracted great attention both theoretically and experimentally. In this paper, we study the evolution of cooperation by proposing a reward model in network population, where a third strategy, reward, as an independent yet particular type of cooperation is introduced in 2-person evolutionary games. Specifically, a new kind of role corresponding to reward strategy, reward agents, is defined, which is aimed at increasing the income of cooperators by applying to them a social reward. Results from numerical simulations show that consideration of social reward greatly promotes the evolution of cooperation, which is confirmed for different network topologies and two evolutionary games. Moreover, we explore the microscopic mechanisms for the promotion of cooperation in the three-strategy model. As expected, the reward agents play a vital role in the formation of cooperative clusters, thus resisting the aggression of defectors. Our research might provide valuable insights into further exploring the nature of cooperation in the real world. PMID:28112276

  14. Appreciating the difference between design-based and model-based sampling strategies in quantitative morphology of the nervous system.

    PubMed

    Geuna, S

    2000-11-20

    Quantitative morphology of the nervous system has undergone great developments over recent years, and several new technical procedures have been devised and applied successfully to neuromorphological research. However, a lively debate has arisen on some issues, and a great deal of confusion appears to exist that is definitely responsible for the slow spread of the new techniques among scientists. One such element of confusion is related to uncertainty about the meaning, implications, and advantages of the design-based sampling strategy that characterize the new techniques. In this article, to help remove this uncertainty, morphoquantitative methods are described and contrasted on the basis of the inferential paradigm of the sampling strategy: design-based vs model-based. Moreover, some recommendations are made to help scientists judge the appropriateness of a method used for a given study in relation to its specific goals. Finally, the use of the term stereology to label, more or less expressly, only some methods is critically discussed. Copyright 2000 Wiley-Liss, Inc.

  15. The Arctic zone: possibilities and risks of development

    NASA Astrophysics Data System (ADS)

    Sentsov, A.; Bolsunovskaya, Y.; Melnikovich, E.

    2016-09-01

    The authors analyze the Arctic region innovative possibilities from the perspective of political ideology and strategy. The Arctic region with its natural resources and high economic potential attracts many companies and it has become an important area of transnational development. At present, the Arctic region development is of great importance in terms of natural resource management and political system development. However, the most important development issue in the Arctic is a great risk of different countries’ competing interests in economic, political, and legal context. These are challenges for international partnership creating in the Arctic zone, Russian future model developing for the Arctic, and recognition of the Arctic as an important resource for the Russians. The Russian economic, military, and political expansion in the Arctic region has the potential to strengthen the national positions. The authors present interesting options for minimizing and eliminating political risks during the Arctic territories development and define an effective future planning model for the Russian Arctic.

  16. One-dimensional nonlinear instability study of a slightly viscoelastic, perfectly conducting liquid jet under a radial electric field

    NASA Astrophysics Data System (ADS)

    Li, Fang; Yin, Xie-Yuan; Yin, Xie-Zhen

    2016-05-01

    A one-dimensional electrified viscoelastic model is built to study the nonlinear behavior of a slightly viscoelastic, perfectly conducting liquid jet under a radial electric field. The equations are solved numerically using an implicit finite difference scheme together with a boundary element method. The electrified viscoelastic jet is found to evolve into a beads-on-string structure in the presence of the radial electric field. Although the radial electric field greatly enhances the linear instability of the jet, its influence on the decay of the filament thickness is limited during the nonlinear evolution of the jet. On the other hand, the radial electric field induces axial non-uniformity of the first normal stress difference within the filament. The first normal stress difference in the center region of the filament may be greatly decreased by the radial electric field. The regions with/without satellite droplets are illuminated on the χ (the electrical Bond number)-k (the dimensionless wave number) plane. Satellite droplets may be formed for larger wave numbers at larger radial electric fields.

  17. Modelling the diffusion-available pore space of an unaltered granitic rock matrix using a micro-DFN approach

    NASA Astrophysics Data System (ADS)

    Svensson, Urban; Löfgren, Martin; Trinchero, Paolo; Selroos, Jan-Olof

    2018-04-01

    In sparsely fractured rock, the ubiquitous heterogeneity of the matrix, which has been observed in different laboratory and in situ experiments, has been shown to have a significant influence on retardation mechanisms that are of importance for the safety of deep geological repositories for nuclear waste. Here, we propose a conceptualisation of a typical heterogeneous granitic rock matrix based on micro-Discrete Fracture Networks (micro-DFN). Different sets of fractures are used to represent grain-boundary pores as well as micro fractures that transect different mineral grains. The micro-DFN model offers a great flexibility in the way inter- and intra-granular space is represented as the different parameters that characterise each fracture set can be fine tuned to represent samples of different characteristics. Here, the parameters of the model have been calibrated against experimental observations from granitic rock samples taken at Forsmark (Sweden) and different variant cases have been used to illustrate how the model can be tied to rock samples with different attributes. Numerical through-diffusion simulations have been carried out to infer the bulk properties of the model as well as to compare the computed mass flux with the experimental data from an analogous laboratory experiment. The general good agreement between the model results and the experimental observations shows that the model presented here is a reliable tool for the understanding of retardation mechanisms occurring at the mm-scale in the matrix.

  18. On the Use of Biaxial Properties in Modeling Annulus as a Holzapfel–Gasser–Ogden Material

    PubMed Central

    Momeni Shahraki, Narjes; Fatemi, Ali; Goel, Vijay K.; Agarwal, Anand

    2015-01-01

    Besides the biology, stresses and strains within the tissue greatly influence the location of damage initiation and mode of failure in an intervertebral disk. Finite element models of a functional spinal unit (FSU) that incorporate reasonably accurate geometry and appropriate material properties are suitable to investigate such issues. Different material models and techniques have been used to model the anisotropic annulus fibrosus, but the abilities of these models to predict damage initiation in the annulus and to explain clinically observed phenomena are unclear. In this study, a hyperelastic anisotropic material model for the annulus with two different sets of material constants, experimentally determined using uniaxial and biaxial loading conditions, were incorporated in a 3D finite element model of a ligamentous FSU. The purpose of the study was to highlight the biomechanical differences (e.g., intradiscal pressure, motion, forces, stresses, strains, etc.) due to the dissimilarity between the two sets of material properties (uniaxial and biaxial). Based on the analyses, the biaxial constants simulations resulted in better agreements with the in vitro and in vivo data, and thus are more suitable for future damage analysis and failure prediction of the annulus under complex multiaxial loading conditions. PMID:26090359

  19. Rock.XML - Towards a library of rock physics models

    NASA Astrophysics Data System (ADS)

    Jensen, Erling Hugo; Hauge, Ragnar; Ulvmoen, Marit; Johansen, Tor Arne; Drottning, Åsmund

    2016-08-01

    Rock physics modelling provides tools for correlating physical properties of rocks and their constituents to the geophysical observations we measure on a larger scale. Many different theoretical and empirical models exist, to cover the range of different types of rocks. However, upon reviewing these, we see that they are all built around a few main concepts. Based on this observation, we propose a format for digitally storing the specifications for rock physics models which we have named Rock.XML. It does not only contain data about the various constituents, but also the theories and how they are used to combine these building blocks to make a representative model for a particular rock. The format is based on the Extensible Markup Language XML, making it flexible enough to handle complex models as well as scalable towards extending it with new theories and models. This technology has great advantages as far as documenting and exchanging models in an unambiguous way between people and between software. Rock.XML can become a platform for creating a library of rock physics models; making them more accessible to everyone.

  20. Anticoagulant rodenticides in red-tailed hawks, Buteo jamaicensis, and great horned owls, Bubo virginianus, from New Jersey, USA, 2008-2010.

    PubMed

    Stansley, William; Cummings, Margaret; Vudathala, Daljit; Murphy, Lisa A

    2014-01-01

    Liver samples from red-tailed hawks (Buteo jamaicensis) and great horned owls (Bubo virginianus) were analyzed for anticoagulant rodenticides. Residues of one or more second generation anticoagulant rodenticides (SGARs) were detected in 81 % of red-tailed hawks and 82 % of great horned owls. The most frequently detected SGAR was brodifacoum, which was detected in 76 % of red-tailed hawks and 73 % of great horned owls. Bromadiolone was detected in 20 % of red-tailed hawks and 27 % of great horned owls. Difenacoum was detected in one great horned owl. No other ARs were detected. There were no significant differences between species in the frequency of detection or concentration of brodifacoum or bromadiolone. There was a marginally significant difference (p = 0.0497) between total SGAR residues in red-tailed hawks (0.117 mg/kg) and great horned owls (0.070 mg/kg). There were no seasonal differences in the frequency of detection or concentration of brodifacoum in red-tailed hawks. The data suggest that SGARs pose a significant risk of poisoning to predatory birds in New Jersey.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faulds, James

    We conducted a comprehensive analysis of the structural controls of geothermal systems within the Great Basin and adjacent regions. Our main objectives were to: 1) Produce a catalogue of favorable structural environments and models for geothermal systems. 2) Improve site-specific targeting of geothermal resources through detailed studies of representative sites, which included innovative techniques of slip tendency analysis of faults and 3D modeling. 3) Compare and contrast the structural controls and models in different tectonic settings. 4) Synthesize data and develop methodologies for enhancement of exploration strategies for conventional and EGS systems, reduction in the risk of drilling non-productive wells,more » and selecting the best EGS sites.« less

  2. Application of DBNs for concerned internet information detecting

    NASA Astrophysics Data System (ADS)

    Wang, Yanfang; Gao, Song

    2017-03-01

    In recent years, deep learning has achieved great success in many fields, ranging from voice recognition and image classification to computer vision. In this study we apply DBNs to concerned internet information in Chinese detecting problem, since there are inherent differences between English and Chinese. Contrastive divergence (CD) is employed in the DBNs to learn a multi-layer generative model from numerous unlabeled data. The features obtained by this model are used to initialize the feed-forward neural network, which can be fine-tuned with backpropagation. Experiment results indicate that, the model and training method we proposed can be used to detect the concerned internet information effectively and accurately.

  3. A simple branching model that reproduces language family and language population distributions

    NASA Astrophysics Data System (ADS)

    Schwämmle, Veit; de Oliveira, Paulo Murilo Castro

    2009-07-01

    Human history leaves fingerprints in human languages. Little is known about language evolution and its study is of great importance. Here we construct a simple stochastic model and compare its results to statistical data of real languages. The model is based on the recent finding that language changes occur independently of the population size. We find agreement with the data additionally assuming that languages may be distinguished by having at least one among a finite, small number of different features. This finite set is also used in order to define the distance between two languages, similarly to linguistics tradition since Swadesh.

  4. West African Monsoon Decadal Variability and Surface-Related Forcings: Second West African Monsoon Modeling and Evaluation Project Experiment (WAMME II)

    NASA Technical Reports Server (NTRS)

    Xue, Yongkang; De Sales, Fernando; Lau, William K-M; Boone, Aaron; Kim, Kyu-Myong; Mechoso, Carlos R.; Wang, Guiling; Kucharski, Fred; Schiro, Kathleen; Hosaka, Masahiro; hide

    2016-01-01

    The second West African Monsoon Modeling and Evaluation Project Experiment (WAMME II) is designed to improve understanding of the possible roles and feedbacks of sea surface temperature (SST), land use land cover change (LULCC), and aerosols forcings in the Sahel climate system at seasonal to decadal scales. The WAMME II strategy is to apply prescribed observationally based anomaly forcing, i.e., idealized but realistic forcing, in simulations by climate models to test the relative impacts of such forcings in producingamplifying the Sahelian seasonal and decadal climate variability, including the great 20th century drought. This is the first multi-model experiment specifically designed to simultaneously evaluate relative contributions of multiple external forcings to the Sahel decadal precipitation anomalies between the 1980s and the 1950s that is used to characterize the Sahel 1980s drought in this study. The WAMME II models have consistently demonstrated that SST is the major contributor to the 20th century Sahel drought. Under the influence of the maximum possible SST forcing, WAMME II model ensemble mean can produce up to 60 of the precipitation difference between the 1980s and the 1950s. The present paper also delineated the role of SSTs in triggering and maintaining the Sahel drought. The impact of SSTs in individual oceans is also examined and consensus and discrepancies are reported. Among the different ocean basins, the WAMME II models show the consensus that the Indian Ocean SST has the largest impact on the precipitation temporal evolution associated with the ITCZ movement before the WAM onset while the Pacific Ocean SST greatly contributes to the summer WAM drought. This paper also compares the SST effect with the LULCC effect. Results show that with prescribed land forcing the WAMME II model ensemble mean produces about 40 of the precipitation difference between the 1980s and the 1950s, which is less than the SST contribution but still of first order in the Sahel climate system. The role of land surface processes 61 in responding to and amplifying the drought is also identified. The results suggest that catastrophic consequences are likely to occur in the regional Sahel climate when SST anomalies in individual ocean basins and in land conditions combine synergistically to favor drought. These preliminary WAMME results need to be further evaluated with different experimental designs and different models.

  5. A Spatial Modeling Approach to Predicting the Secondary Spread of Invasive Species Due to Ballast Water Discharge

    PubMed Central

    Sieracki, Jennifer L.; Bossenbroek, Jonathan M.; Chadderton, W. Lindsay

    2014-01-01

    Ballast water in ships is an important contributor to the secondary spread of invasive species in the Laurentian Great Lakes. Here, we use a model previously created to determine the role ballast water management has played in the secondary spread of viral hemorrhagic septicemia virus (VHSV) to identify the future spread of one current and two potential invasive species in the Great Lakes, the Eurasian Ruffe (Gymnocephalus cernuus), killer shrimp (Dikerogammarus villosus), and golden mussel (Limnoperna fortunei), respectively. Model predictions for Eurasian Ruffe have been used to direct surveillance efforts within the Great Lakes and DNA evidence of ruffe presence was recently reported from one of three high risk port localities identified by our model. Predictions made for killer shrimp and golden mussel suggest that these two species have the potential to become rapidly widespread if introduced to the Great Lakes, reinforcing the need for proactive ballast water management. The model used here is flexible enough to be applied to any species capable of being spread by ballast water in marine or freshwater ecosystems. PMID:25470822

  6. Great Lakes Water Quality Agreement (GLWQA)

    EPA Pesticide Factsheets

    The Great Lakes Water Quality Agreement between the U.S. and Canada addresses critical environmental health issues in the Great Lakes region. It's a model of binational cooperation to protect water quality. It was first signed in 1972 and amended in 2012.

  7. The strength of great apes and the speed of humans.

    PubMed

    Walker, Alan

    2009-04-01

    Cliff Jolly developed a causal model of human origins in his paper "The Seed-Eaters," published in 1970. He was one of the first to attempt this, and the paper has since become a classic. I do not have such grand goals; instead, I seek to understand a major difference between the living great apes and humans. More than 50 years ago, Maynard Smith and Savage (1956) showed that the musculoskeletal systems of mammals can be adapted for strength at one extreme and speed at the other but not both. Great apes are adapted for strength--chimpanzees have been shown to be about four times as strong as fit young humans when normalized for body size. The corresponding speed that human limb systems gain at the expense of power is critical for effective human activities such as running, throwing, and manipulation, including tool making. The fossil record can shed light on when the change from power to speed occurred. I outline a hypothesis that suggests that the difference in muscular performance between the two species is caused by chimpanzees having many fewer small motor units than humans, which leads them, in turn, to contract more muscle fibers earlier in any particular task. I outline a histological test of this hypothesis.

  8. FOXP2 variation in great ape populations offers insight into the evolution of communication skills.

    PubMed

    Staes, Nicky; Sherwood, Chet C; Wright, Katharine; de Manuel, Marc; Guevara, Elaine E; Marques-Bonet, Tomas; Krützen, Michael; Massiah, Michael; Hopkins, William D; Ely, John J; Bradley, Brenda J

    2017-12-04

    The gene coding for the forkhead box protein P2 (FOXP2) is associated with human language disorders. Evolutionary changes in this gene are hypothesized to have contributed to the emergence of speech and language in the human lineage. Although FOXP2 is highly conserved across most mammals, humans differ at two functional amino acid substitutions from chimpanzees, bonobos and gorillas, with an additional fixed substitution found in orangutans. However, FOXP2 has been characterized in only a small number of apes and no publication to date has examined the degree of natural variation in large samples of unrelated great apes. Here, we analyzed the genetic variation in the FOXP2 coding sequence in 63 chimpanzees, 11 bonobos, 48 gorillas, 37 orangutans and 2 gibbons and observed undescribed variation in great apes. We identified two variable polyglutamine microsatellites in chimpanzees and orangutans and found three nonsynonymous single nucleotide polymorphisms, one in chimpanzees, one in gorillas and one in orangutans with derived allele frequencies of 0.01, 0.26 and 0.29, respectively. Structural and functional protein modeling indicate a biochemical effect of the substitution in orangutans, and because of its presence solely in the Sumatran orangutan species, the mutation may be associated with reported population differences in vocalizations.

  9. Implementing the water framework directive: contract design and the cost of measures to reduce nitrogen pollution from agriculture.

    PubMed

    Bartolini, Fabio; Gallerani, Vittorio; Raggi, Meri; Viaggi, Davide

    2007-10-01

    The performance of different policy design strategies is a key issue in evaluating programmes for water quality improvement under the Water Framework Directive (60/2000). This issue is emphasised by information asymmetries between regulator and agents. Using an economic model under asymmetric information, the aim of this paper is to compare the cost-effectiveness of selected methods of designing payments to farmers in order to reduce nitrogen pollution in agriculture. A principal-agent model is used, based on profit functions generated through farm-level linear programming. This allows a comparison of flat rate payments and a menu of contracts developed through mechanism design. The model is tested in an area of Emilia Romagna (Italy) in two policy contexts: Agenda 2000 and the 2003 Common Agricultural Policy (CAP) reform. The results show that different policy design options lead to differences in policy costs as great as 200-400%, with clear advantages for the menu of contracts. However, different policy scenarios may strongly affect such differences. Hence, the paper calls for greater attention to the interplay between CAP scenarios and water quality measures.

  10. Implementing the Water Framework Directive: Contract Design and the Cost of Measures to Reduce Nitrogen Pollution from Agriculture

    NASA Astrophysics Data System (ADS)

    Bartolini, Fabio; Gallerani, Vittorio; Raggi, Meri; Viaggi, Davide

    2007-10-01

    The performance of different policy design strategies is a key issue in evaluating programmes for water quality improvement under the Water Framework Directive (60/2000). This issue is emphasised by information asymmetries between regulator and agents. Using an economic model under asymmetric information, the aim of this paper is to compare the cost-effectiveness of selected methods of designing payments to farmers in order to reduce nitrogen pollution in agriculture. A principal-agent model is used, based on profit functions generated through farm-level linear programming. This allows a comparison of flat rate payments and a menu of contracts developed through mechanism design. The model is tested in an area of Emilia Romagna (Italy) in two policy contexts: Agenda 2000 and the 2003 Common Agricultural Policy (CAP) reform. The results show that different policy design options lead to differences in policy costs as great as 200-400%, with clear advantages for the menu of contracts. However, different policy scenarios may strongly affect such differences. Hence, the paper calls for greater attention to the interplay between CAP scenarios and water quality measures.

  11. Dynamic habitat selection by two wading bird species with divergent foraging strategies in a seasonally fluctuating wetland

    USGS Publications Warehouse

    Beerens, James M.; Gawlik, Dale E.; Herring, Garth; Cook, Mark I.

    2011-01-01

    Seasonal and annual variation in food availability during the breeding season plays an influential role in the population dynamics of many avian species. In highly dynamic ecosystems like wetlands, finding and exploiting food resources requires a flexible behavioral response that may produce different population trends that vary with a species' foraging strategy. We quantified dynamic foraging-habitat selection by breeding and radiotagged White Ibises (Eudocimus albus) and Great Egrets (Ardea alba) in the Florida Everglades, where fluctuation in food resources is pronounced because of seasonal drying and flooding. The White Ibis is a tactile “searcher” species in population decline that specializes on highly concentrated prey, whereas the Great Egret, in a growing population, is a visual “exploiter” species that requires lower prey concentrations. In a year with high food availability, resource-selection functions for both species included variables that changed over multiannual time scales and were associated with increased prey production. In a year with low food availability, resource-selection functions included short-term variables that concentrated prey (e.g., water recession rates and reversals in drying pattern), which suggests an adaptive response to poor foraging conditions. In both years, the White Ibis was more restricted in its use of habitats than the Great Egret. Real-time species—habitat suitability models were developed to monitor and assess the daily availability and quality of spatially explicit habitat resources for both species. The models, evaluated through hindcasting using independent observations, demonstrated that habitat use of the more specialized White Ibis was more accurately predicted than that of the more generalist Great Egret.

  12. Proteomics and Metabolomics: Two Emerging Areas for Legume Improvement

    PubMed Central

    Ramalingam, Abirami; Kudapa, Himabindu; Pazhamala, Lekha T.; Weckwerth, Wolfram; Varshney, Rajeev K.

    2015-01-01

    The crop legumes such as chickpea, common bean, cowpea, peanut, pigeonpea, soybean, etc. are important sources of nutrition and contribute to a significant amount of biological nitrogen fixation (>20 million tons of fixed nitrogen) in agriculture. However, the production of legumes is constrained due to abiotic and biotic stresses. It is therefore imperative to understand the molecular mechanisms of plant response to different stresses and identify key candidate genes regulating tolerance which can be deployed in breeding programs. The information obtained from transcriptomics has facilitated the identification of candidate genes for the given trait of interest and utilizing them in crop breeding programs to improve stress tolerance. However, the mechanisms of stress tolerance are complex due to the influence of multi-genes and post-transcriptional regulations. Furthermore, stress conditions greatly affect gene expression which in turn causes modifications in the composition of plant proteomes and metabolomes. Therefore, functional genomics involving various proteomics and metabolomics approaches have been obligatory for understanding plant stress tolerance. These approaches have also been found useful to unravel different pathways related to plant and seed development as well as symbiosis. Proteome and metabolome profiling using high-throughput based systems have been extensively applied in the model legume species, Medicago truncatula and Lotus japonicus, as well as in the model crop legume, soybean, to examine stress signaling pathways, cellular and developmental processes and nodule symbiosis. Moreover, the availability of protein reference maps as well as proteomics and metabolomics databases greatly support research and understanding of various biological processes in legumes. Protein-protein interaction techniques, particularly the yeast two-hybrid system have been advantageous for studying symbiosis and stress signaling in legumes. In this review, several studies on proteomics and metabolomics in model and crop legumes have been discussed. Additionally, applications of advanced proteomics and metabolomics approaches have also been included in this review for future applications in legume research. The integration of these “omics” approaches will greatly support the identification of accurate biomarkers in legume smart breeding programs. PMID:26734026

  13. Clinical relevance of rare germline sequence variants in cancer genes: evolution and application of classification models.

    PubMed

    Spurdle, Amanda B

    2010-06-01

    Multifactorial models developed for BRCA1/2 variant classification have proved very useful for delineating BRCA1/2 variants associated with very high risk of cancer, or with little clinical significance. Recent linkage of this quantitative assessment of risk to clinical management guidelines has provided a basis to standardize variant reporting, variant classification and management of families with such variants, and can theoretically be applied to any disease gene. As proof of principle, the multifactorial approach already shows great promise for application to the evaluation of mismatch repair gene variants identified in families with suspected Lynch syndrome. However there is need to be cautious of the noted limitations and caveats of the current model, some of which may be exacerbated by differences in ascertainment and biological pathways to disease for different cancer syndromes.

  14. Optimization as a Tool for Consistency Maintenance in Multi-Resolution Simulation

    NASA Technical Reports Server (NTRS)

    Drewry, Darren T; Reynolds, Jr , Paul F; Emanuel, William R

    2006-01-01

    The need for new approaches to the consistent simulation of related phenomena at multiple levels of resolution is great. While many fields of application would benefit from a complete and approachable solution to this problem, such solutions have proven extremely difficult. We present a multi-resolution simulation methodology that uses numerical optimization as a tool for maintaining external consistency between models of the same phenomena operating at different levels of temporal and/or spatial resolution. Our approach follows from previous work in the disparate fields of inverse modeling and spacetime constraint-based animation. As a case study, our methodology is applied to two environmental models of forest canopy processes that make overlapping predictions under unique sets of operating assumptions, and which execute at different temporal resolutions. Experimental results are presented and future directions are addressed.

  15. Distribution of genome shared identical by descent by two individuals in grandparent-type relationship.

    PubMed Central

    Stefanov, V T

    2000-01-01

    A methodology is introduced for numerical evaluation, with any given accuracy, of the cumulative probabilities of the proportion of genome shared identical by descent (IBD) on chromosome segments by two individuals in a grandparent-type relationship. Programs are provided in the popular software package Maple for rapidly implementing such evaluations in the cases of grandchild-grandparent and great-grandchild-great-grandparent relationships. Our results can be used to identify chromosomal segments that may contain disease genes. Also, exact P values in significance testing for resemblance of either a grandparent with a grandchild or a great-grandparent with a great-grandchild can be calculated. The genomic continuum model, with Haldane's model for the crossover process, is assumed. This is the model that has been used recently in the genetics literature devoted to IBD calculations. Our methodology is based on viewing the model as a special exponential family and elaborating on recent research results for such families. PMID:11063711

  16. Kinetics and the mass transfer mechanism of hydrogen sulfide removal by biochar derived from rice hull.

    PubMed

    Shang, Guofeng; Liu, Liang; Chen, Ping; Shen, Guoqing; Li, Qiwu

    2016-05-01

    The biochar derived from rice hull was evaluated for its abilities to remove hydrogen sulfide (H2S) from gas phase. The surface area and pH of the biochar were compared. The biochar derived from rice hull was evaluated for its abilities to remove hydrogen sulfide (H2S) from gas phase. The surface area and pH of the biochar were compared. The different pyrolysis temperature has great influence on the adsorption of H2S. At the different pyrolysis temperature, the H2S removal efficiency of rice hull-derived biochar was different. The adsorption capacities of biochar were 2.09 mg·g(-1), 2.65 mg·g(-1), 16.30 mg·g(-1), 20.80 mg·g(-1), and 382.70 mg·g(-1), which their pyrolysis temperatures were 100 °C, 200 °C, 300 °C, 400 °C and 500 °C respectively. Based on the Yoon-Nelson model, it analyzed the mass transfer mechanism of hydrogen sulfide adsorption by biochar. The paper focuses on the biochar derived from rice hull-removed hydrogen sulfide (H2S) from gas phase. The surface area and pH of the biochar were compared. The different pyrolysis temperatures have great influence on the adsorption of H2S. At the different pyrolysis temperatures, the H2S removal efficiency of rice hull-derived biohar was different. The adsorption capacities of biochar were 2.09, 2.65, 16.30, 20.80, and 382.70 mg·g(-1), and their pyrolysis temperatures were 100, 200, 300, 400, and 500 °C, respectively. Based on the Yoon-Nelson model, the mass transfer mechanism of hydrogen sulfide adsorption by biochar was analyzed.

  17. Development of a GIS interface for WEPP Model application to Great Lakes forested watersheds

    Treesearch

    J. R. Frankenberger; S. Dun; D. C. Flanagan; J. Q. Wu; W. J. Elliot

    2011-01-01

    This presentation will highlight efforts on development of a new online WEPP GIS interface, targeted toward application in forested regions bordering the Great Lakes. The key components and algorithms of the online GIS system will be outlined. The general procedures used to provide input to the WEPP model and to display model output will be demonstrated.

  18. The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Martyn P.; Bierkens, Marc F. P.; Samaniego, Luis

    The diversity in hydrologic models has historically led to great controversy on the correct approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. Here, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We also illustrate how modeling advances have been made by groups using models of different type and complexity,more » and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.« less

  19. The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism

    DOE PAGES

    Clark, Martyn P.; Bierkens, Marc F. P.; Samaniego, Luis; ...

    2017-07-11

    The diversity in hydrologic models has historically led to great controversy on the correct approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. Here, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We also illustrate how modeling advances have been made by groups using models of different type and complexity,more » and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.« less

  20. Size Scaling in Western North Atlantic Loggerhead Turtles Permits Extrapolation between Regions, but Not Life Stages.

    PubMed

    Marn, Nina; Klanjscek, Tin; Stokes, Lesley; Jusup, Marko

    2015-01-01

    Sea turtles face threats globally and are protected by national and international laws. Allometry and scaling models greatly aid sea turtle conservation and research, and help to better understand the biology of sea turtles. Scaling, however, may differ between regions and/or life stages. We analyze differences between (i) two different regional subsets and (ii) three different life stage subsets of the western North Atlantic loggerhead turtles by comparing the relative growth of body width and depth in relation to body length, and discuss the implications. Results suggest that the differences between scaling relationships of different regional subsets are negligible, and models fitted on data from one region of the western North Atlantic can safely be used on data for the same life stage from another North Atlantic region. On the other hand, using models fitted on data for one life stage to describe other life stages is not recommended if accuracy is of paramount importance. In particular, young loggerhead turtles that have not recruited to neritic habitats should be studied and modeled separately whenever practical, while neritic juveniles and adults can be modeled together as one group. Even though morphometric scaling varies among life stages, a common model for all life stages can be used as a general description of scaling, and assuming isometric growth as a simplification is justified. In addition to linear models traditionally used for scaling on log-log axes, we test the performance of a saturating (curvilinear) model. The saturating model is statistically preferred in some cases, but the accuracy gained by the saturating model is marginal.

  1. The inclusion of capillary distribution in the adiabatic tissue homogeneity model of blood flow

    NASA Astrophysics Data System (ADS)

    Koh, T. S.; Zeman, V.; Darko, J.; Lee, T.-Y.; Milosevic, M. F.; Haider, M.; Warde, P.; Yeung, I. W. T.

    2001-05-01

    We have developed a non-invasive imaging tracer kinetic model for blood flow which takes into account the distribution of capillaries in tissue. Each individual capillary is assumed to follow the adiabatic tissue homogeneity model. The main strength of our new model is in its ability to quantify the functional distribution of capillaries by the standard deviation in the time taken by blood to pass through the tissue. We have applied our model to the human prostate and have tested two different types of distribution functions. Both distribution functions yielded very similar predictions for the various model parameters, and in particular for the standard deviation in transit time. Our motivation for developing this model is the fact that the capillary distribution in cancerous tissue is drastically different from in normal tissue. We believe that there is great potential for our model to be used as a prognostic tool in cancer treatment. For example, an accurate knowledge of the distribution in transit times might result in an accurate estimate of the degree of tumour hypoxia, which is crucial to the success of radiation therapy.

  2. Sex Differences in Animal Models of Decision-Making

    PubMed Central

    Orsini, Caitlin A.; Setlow, Barry

    2016-01-01

    The ability to weigh the costs and benefits of various options in order to make an adaptive decision is critical to an organism’s survival and well-being. Many psychiatric diseases are characterized by maladaptive decision-making, indicating the need to better understand the mechanisms underlying this process and the ways in which it is altered in pathological conditions. Great strides have been made in uncovering these mechanisms, but the majority of what is known comes from studies conducted solely in male subjects. In recent years, decision-making research has begun to include females to determine whether sex differences exist and to identify the mechanisms that contribute to such differences. This review will begin by describing studies that have examined sex differences in animal (largely rodent) models of decision-making. Possible explanations, both theoretical and biological, for such differences in decision- making will then be considered. The review will conclude with a discussion of the implications of sex differences in decision-making for understanding psychiatric conditions. PMID:27870448

  3. Strategies for Large Scale Implementation of a Multiscale, Multiprocess Integrated Hydrologic Model

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Duffy, C.

    2006-05-01

    Distributed models simulate hydrologic state variables in space and time while taking into account the heterogeneities in terrain, surface, subsurface properties and meteorological forcings. Computational cost and complexity associated with these model increases with its tendency to accurately simulate the large number of interacting physical processes at fine spatio-temporal resolution in a large basin. A hydrologic model run on a coarse spatial discretization of the watershed with limited number of physical processes needs lesser computational load. But this negatively affects the accuracy of model results and restricts physical realization of the problem. So it is imperative to have an integrated modeling strategy (a) which can be universally applied at various scales in order to study the tradeoffs between computational complexity (determined by spatio- temporal resolution), accuracy and predictive uncertainty in relation to various approximations of physical processes (b) which can be applied at adaptively different spatial scales in the same domain by taking into account the local heterogeneity of topography and hydrogeologic variables c) which is flexible enough to incorporate different number and approximation of process equations depending on model purpose and computational constraint. An efficient implementation of this strategy becomes all the more important for Great Salt Lake river basin which is relatively large (~89000 sq. km) and complex in terms of hydrologic and geomorphic conditions. Also the types and the time scales of hydrologic processes which are dominant in different parts of basin are different. Part of snow melt runoff generated in the Uinta Mountains infiltrates and contributes as base flow to the Great Salt Lake over a time scale of decades to centuries. The adaptive strategy helps capture the steep topographic and climatic gradient along the Wasatch front. Here we present the aforesaid modeling strategy along with an associated hydrologic modeling framework which facilitates a seamless, computationally efficient and accurate integration of the process model with the data model. The flexibility of this framework leads to implementation of multiscale, multiresolution, adaptive refinement/de-refinement and nested modeling simulations with least computational burden. However, performing these simulations and related calibration of these models over a large basin at higher spatio- temporal resolutions is computationally intensive and requires use of increasing computing power. With the advent of parallel processing architectures, high computing performance can be achieved by parallelization of existing serial integrated-hydrologic-model code. This translates to running the same model simulation on a network of large number of processors thereby reducing the time needed to obtain solution. The paper also discusses the implementation of the integrated model on parallel processors. Also will be discussed the mapping of the problem on multi-processor environment, method to incorporate coupling between hydrologic processes using interprocessor communication models, model data structure and parallel numerical algorithms to obtain high performance.

  4. Parametric Simulations of the Great Dark Spots of Neptune

    NASA Astrophysics Data System (ADS)

    Deng, Xiaolong; Le Beau, R.

    2006-09-01

    Observations by Voyager II and the Hubble Space Telescope of the Great Dark Spots (GDS) of Neptune suggest that large vortices with lifespans of years are not uncommon occurrences in the atmosphere of Neptune. The variability of these features over time, in particular the complex motions of GDS-89, make them challenging candidates to simulate in atmospheric models. Previously, using the Explicit Planetary Isentropic-Coordinate (EPIC) General Circulation Model, LeBeau and Dowling (1998) simulated the GDS-like vortex features. Qualitatively, the drift, oscillation, and tail-like features of GDS-89 were recreated, although precise numerical matches were only achieved for the meridional drift rate. In 2001, Stratman et al. applied EPIC to simulate the formation of bright companion clouds to the Great Dark Spots. In 2006, Dowling et al. presented a new version of EPIC, which includes hybrid vertical coordinate, cloud physics, advanced chemistry, and new turbulence models. With the new version of EPIC, more observation results, and more powerful computers, it is the time to revisit CFD simulations of the Neptune's atmosphere and do more detailed work on GDS-like vortices. In this presentation, we apply the new version of EPIC to simulate GDS-89. We test the influences of different parameters in the EPIC model: potential vorticity gradient, wind profile, initial latitude, vortex shape, and vertical structure. The observed motions, especially the latitudinal drift and oscillations in orientation angle and aspect ratio, are used as diagnostics of these unobserved atmospheric conditions. Increased computing power allows for more refined and longer simulations and greater coverage of the parameter space than previous efforts. Improved quantitative results have been achieved, including voritices with near eight-day oscillations and comparable variations in shape to GDS-89. This research has been supported by Kentucky NASA EPSCoR.

  5. Evaluation of NASA GISS post-CMIP5 single column model simulated clouds and precipitation using ARM Southern Great Plains observations

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Dong, Xiquan; Kennedy, Aaron; Xi, Baike; Li, Zhanqing

    2017-03-01

    The planetary boundary layer turbulence and moist convection parameterizations have been modified recently in the NASA Goddard Institute for Space Studies (GISS) Model E2 atmospheric general circulation model (GCM; post-CMIP5, hereafter P5). In this study, single column model (SCM P5) simulated cloud fractions (CFs), cloud liquid water paths (LWPs) and precipitation were compared with Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) groundbased observations made during the period 2002-08. CMIP5 SCM simulations and GCM outputs over the ARM SGP region were also used in the comparison to identify whether the causes of cloud and precipitation biases resulted from either the physical parameterization or the dynamic scheme. The comparison showed that the CMIP5 SCM has difficulties in simulating the vertical structure and seasonal variation of low-level clouds. The new scheme implemented in the turbulence parameterization led to significantly improved cloud simulations in P5. It was found that the SCM is sensitive to the relaxation time scale. When the relaxation time increased from 3 to 24 h, SCM P5-simulated CFs and LWPs showed a moderate increase (10%-20%) but precipitation increased significantly (56%), which agreed better with observations despite the less accurate atmospheric state. Annual averages among the GCM and SCM simulations were almost the same, but their respective seasonal variations were out of phase. This suggests that the same physical cloud parameterization can generate similar statistical results over a long time period, but different dynamics drive the differences in seasonal variations. This study can potentially provide guidance for the further development of the GISS model.

  6. Development and numerical analysis of low specific speed mixed-flow pump

    NASA Astrophysics Data System (ADS)

    Li, H. F.; Huo, Y. W.; Pan, Z. B.; Zhou, W. C.; He, M. H.

    2012-11-01

    With the development of the city, the market of the mixed flow pump with large flux and high head is prospect. The KSB Shanghai Pump Co., LTD decided to develop low speed specific speed mixed flow pump to meet the market requirements. Based on the centrifugal pump and axial flow pump model, aiming at the characteristics of large flux and high head, a new type of guide vane mixed flow pump was designed. The computational fluid dynamics method was adopted to analyze the internal flow of the new type model and predict its performances. The time-averaged Navier-Stokes equations were closed by SST k-ω turbulent model to adapt internal flow of guide vane with larger curvatures. The multi-reference frame(MRF) method was used to deal with the coupling of rotating impeller and static guide vane, and the SIMPLEC method was adopted to achieve the coupling solution of velocity and pressure. The computational results shows that there is great flow impact on the head of vanes at different working conditions, and there is great flow separation at the tailing of the guide vanes at different working conditions, and all will affect the performance of pump. Based on the computational results, optimizations were carried out to decrease the impact on the head of vanes and flow separation at the tailing of the guide vanes. The optimized model was simulated and its performance was predicted. The computational results show that the impact on the head of vanes and the separation at the tailing of the guide vanes disappeared. The high efficiency of the optimized pump is wide, and it fit the original design destination. The newly designed mixed flow pump is now in modeling and its experimental performance will be getting soon.

  7. Nonlocal thermal transport across embedded few-layer graphene sheets

    DOE PAGES

    Liu, Ying; Huxtable, Scott T.; Yang, Bao; ...

    2014-11-13

    Thermal transport across the interfaces between few-layer graphene sheets and soft materials exhibits intriguing anomalies when interpreted using the classical Kapitza model, e.g., the conductance of the same interface differs greatly for different modes of interfacial thermal transport. Using atomistic simulations, we show that such thermal transport follows a nonlocal flux-temperature drop constitutive law and is characterized jointly by a quasi-local conductance and a nonlocal conductance instead of the classical Kapitza conductance. Lastly, the nonlocal model enables rationalization of many anomalies of the thermal transport across embedded few-layer graphene sheets and should be used in studies of interfacial thermal transportmore » involving few-layer graphene sheets or other ultra-thin layered materials.« less

  8. Creation of lumped parameter thermal model by the use of finite elements

    NASA Technical Reports Server (NTRS)

    1978-01-01

    In the finite difference technique, the thermal network is represented by an analogous electrical network. The development of this network model, which is used to describe a physical system, often requires tedious and mental data preparation and checkout by the analyst which can be greatly reduced through the use of the computer programs to develop automatically the mathematical model and associated input data and graphically display the analytical model to facilitate model verification. Three separate programs are involved which are linked through common mass storage files and data card formats. These programs are SPAR, CINGEN and GEOMPLT, and are used to (1) develop thermal models for the MITAS II thermal analyzer program; (2) produce geometry plots of the thermal network; and (3) produce temperature distribution and time history plots.

  9. A fully dynamic model of a multi-layer piezoelectric actuator incorporating the power amplifier

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Yang, Fufeng; Rui, Xiaoting

    2017-12-01

    The dynamic input-output characteristics of the multi-layer piezoelectric actuator (PA) are intrinsically rate-dependent and hysteresis. Meanwhile, aiming at the strong capacitive impedance of multi-layer PA, the power amplifier of the actuator can greatly affect the dynamic performances of the actuator. In this paper, a novel dynamic model that includes a model of the electric circuit providing voltage to the actuator, an inverse piezoelectric effect model describing the hysteresis and creep behavior of the actuator, and a mechanical model, in which the vibration characteristics of the multi-layer PA is described, is put forward. Validation experimental tests are conducted. Experimental results show that the proposed dynamic model can accurately predict the fully dynamic behavior of the multi-layer PA with different driving power.

  10. Using a time-series statistical framework to quantify trends and abrupt change in US corn, soybean, and wheat yields from 1970-2016

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Ives, A. R.; Turner, M. G.; Kucharik, C. J.

    2017-12-01

    Previous studies have identified global agricultural regions where "stagnation" of long-term crop yield increases has occurred. These studies have used a variety of simple statistical methods that often ignore important aspects of time series regression modeling. These methods can lead to differing and contradictory results, which creates uncertainty regarding food security given rapid global population growth. Here, we present a new statistical framework incorporating time series-based algorithms into standard regression models to quantify spatiotemporal yield trends of US maize, soybean, and winter wheat from 1970-2016. Our primary goal was to quantify spatial differences in yield trends for these three crops using USDA county level data. This information was used to identify regions experiencing the largest changes in the rate of yield increases over time, and to determine whether abrupt shifts in the rate of yield increases have occurred. Although crop yields continue to increase in most maize-, soybean-, and winter wheat-growing areas, yield increases have stagnated in some key agricultural regions during the most recent 15 to 16 years: some maize-growing areas, except for the northern Great Plains, have shown a significant trend towards smaller annual yield increases for maize; soybean has maintained an consistent long-term yield gains in the Northern Great Plains, the Midwest, and southeast US, but has experienced a shift to smaller annual increases in other regions; winter wheat maintained a moderate annual increase in eastern South Dakota and eastern US locations, but showed a decline in the magnitude of annual increases across the central Great Plains and western US regions. Our results suggest that there were abrupt shifts in the rate of annual yield increases in a variety of US regions among the three crops. The framework presented here can be broadly applied to additional yield trend analyses for different crops and regions of the Earth.

  11. Who's afraid of Homo sapiens?

    PubMed

    Preuss, Todd M

    2006-11-29

    Understanding how humans differ from other animals, as well as how we are like them, requires comparative investigations. For the purpose of documenting the distinctive features of humans, the most informative research involves comparing humans to our closest relatives-the chimpanzees and other great apes. Psychology and anthropology have maintained a tradition of empirical comparative research on human specializations of cognition. The neurosciences, by contrast, have been dominated by the model-animal research paradigm, which presupposes the commonality of "basic" features of brain organization across species and discourages serious treatment of species differences. As a result, the neurosciences have made little progress in understanding human brain specializations. Recent developments in neuroimaging, genomics, and other non-invasive techniques make it possible to directly compare humans and nonhuman species at levels of organization that were previously inaccessible, offering the hope of gaining a better understanding of the species-specific features of the human brain. This hope will be dashed, however, if chimpanzees and other great ape species become unavailable for even non-invasive research.

  12. [Adjusted Clinical Groups Method (ACG) to allocate resources according to the disease burden of each health center].

    PubMed

    Santelices C, Emilio; Muñoz P, Fernando; Muñiz, Patricio; Rojas, José

    2016-03-01

    Health care must be provided with strong primary health care models, emphasizing prevention and a continued, integrated and interdisciplinary care. Tools should be used to allow a better planning and more efficient use of resources. To assess risk adjustment methodologies, such as the Adjusted Clinical Groups (ACG) developed by The Johns Hopkins University, to allow the identification of chronic condition patterns and allocate resources accordingly. We report the results obtained applying the ACG methodology in primary care systems of 22 counties for three chronic diseases, namely Diabetes Mellitus, Hypertension and Heart Failure. The outcomes show a great variability in the prevalence of these conditions in the different health centers. There is also a great diversity in the use of resources for a given condition in the different health care centers. This methodology should contribute to a better distribution of health care resources, which should be based on the disease burden of each health care center.

  13. Modification method to reduce the impact of blood vessel on noncontact discrimination of human blood based on ;M+N; theory

    NASA Astrophysics Data System (ADS)

    Zhang, Linna; Ding, Hongyan; Lin, Ling; Wang, Yimin; Guo, Xin

    2018-01-01

    Noncontact discriminating human blood is significantly crucial for import-export ports and inspection and quarantine departments. We had already demonstrated that visible diffuse reflectance spectroscopy combining PLS-DA method can successfully realize noncontact human blood discrimination. However, the circulated blood vessels may be produced with different materials. The use of various kinds of blood tubes may have a negative effect on the discrimination, based on ;M+N; theory (Li et al., 2016). In this research, we explored the impact of different material of blood vessels, such as glass tube and plastic tube, on the prediction ability of the discrimination model. Furthermore, we searched for the modification method to reduce the influence from the blood tubes. Our work indicated that generalized diffuse reflectance method can greatly improve the discrimination accuracy. This research can greatly facilitate the application of noncontact discrimination method based on visible and near-infrared diffuse reflectance spectroscopy.

  14. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model

    NASA Astrophysics Data System (ADS)

    Gebauer, S.; Grenfell, J. L.; Stock, J. W.; Lehmann, R.; Godolt, M.; von Paris, P.; Rauer, H.

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O2, whereas in the upper atmosphere, most O2 is formed abiotically via CO2 photolysis. The O2 bistability found by Goldblatt et al. (2006) is not observed in our calculations likely due to our detailed CH4 oxidation scheme. We calculate increased CH4 with increasing O2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O2 is unique. Mixing, CH4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O2 fluxes. Regarding exoplanets, different "states" of O2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases remove O2 that masks its biosphere over a wide range of conditions).

  15. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model.

    PubMed

    Gebauer, S; Grenfell, J L; Stock, J W; Lehmann, R; Godolt, M; von Paris, P; Rauer, H

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O 2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O 2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O 2 , whereas in the upper atmosphere, most O 2 is formed abiotically via CO 2 photolysis. The O 2 bistability found by Goldblatt et al. ( 2006 ) is not observed in our calculations likely due to our detailed CH 4 oxidation scheme. We calculate increased CH 4 with increasing O 2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O 2 is unique. Mixing, CH 4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O 2 fluxes. Regarding exoplanets, different "states" of O 2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases remove O 2 that masks its biosphere over a wide range of conditions). Key Words: Early Earth-Proterozoic-Archean-Oxygen-Atmosphere-Biogeochemistry-Photochemistry-Biosignatures-Earth-like planets. Astrobiology 16, 27-54.

  16. A variable capacitance based modeling and power capability predicting method for ultracapacitor

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Wang, Yujie; Chen, Zonghai; Ling, Qiang

    2018-01-01

    Methods of accurate modeling and power capability predicting for ultracapacitors are of great significance in management and application of lithium-ion battery/ultracapacitor hybrid energy storage system. To overcome the simulation error coming from constant capacitance model, an improved ultracapacitor model based on variable capacitance is proposed, where the main capacitance varies with voltage according to a piecewise linear function. A novel state-of-charge calculation approach is developed accordingly. After that, a multi-constraint power capability prediction is developed for ultracapacitor, in which a Kalman-filter-based state observer is designed for tracking ultracapacitor's real-time behavior. Finally, experimental results verify the proposed methods. The accuracy of the proposed model is verified by terminal voltage simulating results under different temperatures, and the effectiveness of the designed observer is proved by various test conditions. Additionally, the power capability prediction results of different time scales and temperatures are compared, to study their effects on ultracapacitor's power capability.

  17. Test Cases for Modeling and Validation of Structures with Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Reaves, Mercedes C.; Horta, Lucas G.

    2001-01-01

    A set of benchmark test articles were developed to validate techniques for modeling structures containing piezoelectric actuators using commercially available finite element analysis packages. The paper presents the development, modeling, and testing of two structures: an aluminum plate with surface mounted patch actuators and a composite box beam with surface mounted actuators. Three approaches for modeling structures containing piezoelectric actuators using the commercially available packages: MSC/NASTRAN and ANSYS are presented. The approaches, applications, and limitations are discussed. Data for both test articles are compared in terms of frequency response functions from deflection and strain data to input voltage to the actuator. Frequency response function results using the three different analysis approaches provided comparable test/analysis results. It is shown that global versus local behavior of the analytical model and test article must be considered when comparing different approaches. Also, improper bonding of actuators greatly reduces the electrical to mechanical effectiveness of the actuators producing anti-resonance errors.

  18. Combined DFT and BS study on the exchange coupling of dinuclear sandwich-type POM: comparison of different functionals and reliability of structure modeling.

    PubMed

    Yin, Bing; Xue, GangLin; Li, JianLi; Bai, Lu; Huang, YuanHe; Wen, ZhenYi; Jiang, ZhenYi

    2012-05-01

    The exchange coupling of a group of three dinuclear sandwich-type polyoxomolybdates [MM'(AsMo7O27)2](12-) with MM' = CrCr, FeFe, FeCr are theoretically predicted from combined DFT and broken-symmetry (BS) approach. Eight different XC functionals are utilized to calculate the exchange-coupling constant J from both the full crystalline structures and model structures of smaller size. The comparison between theoretical values and accurate experimental results supports the applicability of DFT-BS method in this new type of sandwich-type dinuclear polyoxomolybdates. However, a careful choice of functionals is necessary to achieve the desired accuracy. The encouraging results obtained from calculations on model structures highlight the great potential of application of structure modeling in theoretical study of POM. Structural modeling may not only reduce the computational cost of large POM species but also be able to take into account the external field effect arising from solvent molecules in solution or counterions in crystal.

  19. A Computational Framework for Realistic Retina Modeling.

    PubMed

    Martínez-Cañada, Pablo; Morillas, Christian; Pino, Begoña; Ros, Eduardo; Pelayo, Francisco

    2016-11-01

    Computational simulations of the retina have led to valuable insights about the biophysics of its neuronal activity and processing principles. A great number of retina models have been proposed to reproduce the behavioral diversity of the different visual processing pathways. While many of these models share common computational stages, previous efforts have been more focused on fitting specific retina functions rather than generalizing them beyond a particular model. Here, we define a set of computational retinal microcircuits that can be used as basic building blocks for the modeling of different retina mechanisms. To validate the hypothesis that similar processing structures may be repeatedly found in different retina functions, we implemented a series of retina models simply by combining these computational retinal microcircuits. Accuracy of the retina models for capturing neural behavior was assessed by fitting published electrophysiological recordings that characterize some of the best-known phenomena observed in the retina: adaptation to the mean light intensity and temporal contrast, and differential motion sensitivity. The retinal microcircuits are part of a new software platform for efficient computational retina modeling from single-cell to large-scale levels. It includes an interface with spiking neural networks that allows simulation of the spiking response of ganglion cells and integration with models of higher visual areas.

  20. Genetic Differences Between Great Apes and Humans: Implications for Human Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varki, Ajit

    2004-03-17

    When considering protein sequences, humans are 99-100% identical to chimpanzees and bonobos, our closest evolutionary relatives. The evolution of humans (and the unique features of our species) from a common ancestor with these great apes involved many steps, influenced by interactions amongst factors of genetic, developmental, ecological, microbial, climatic, behavioral, cultural and social origin. The genetic factors can be approached by direct comparisons of human and great ape genomes, genes and gene products, and by elucidating biochemical and biological consequences of the differences. We have discovered multiple genetic and biochemical differences between humans and great apes, particularly in relationship tomore » a family of cell surface molecules called sialic acids. These differences have implications for the human condition, ranging from susceptibility or resistance to microbial pathogens; effects on endogenous receptors in the immune system; potential effects on placental signaling; the expression of oncofetal antigens in cancers; consequences of dietary intake of animal foods; and the development of the mammalian brain. This talk will provide an overview of these and other genetic differences between humans and great apes, with attention to differences potentially relevant to the evolution of humans.« less

  1. On the objective identification of flood seasons

    NASA Astrophysics Data System (ADS)

    Cunderlik, Juraj M.; Ouarda, Taha B. M. J.; BobéE, Bernard

    2004-01-01

    The determination of seasons of high and low probability of flood occurrence is a task with many practical applications in contemporary hydrology and water resources management. Flood seasons are generally identified subjectively by visually assessing the temporal distribution of flood occurrences and, then at a regional scale, verified by comparing the temporal distribution with distributions obtained at hydrologically similar neighboring sites. This approach is subjective, time consuming, and potentially unreliable. The main objective of this study is therefore to introduce a new, objective, and systematic method for the identification of flood seasons. The proposed method tests the significance of flood seasons by comparing the observed variability of flood occurrences with the theoretical flood variability in a nonseasonal model. The method also addresses the uncertainty resulting from sampling variability by quantifying the probability associated with the identified flood seasons. The performance of the method was tested on an extensive number of samples with different record lengths generated from several theoretical models of flood seasonality. The proposed approach was then applied on real data from a large set of sites with different flood regimes across Great Britain. The results show that the method can efficiently identify flood seasons from both theoretical and observed distributions of flood occurrence. The results were used for the determination of the main flood seasonality types in Great Britain.

  2. Research on the cavitation characteristic of Kaplan turbine under sediment flow condition

    NASA Astrophysics Data System (ADS)

    Weili, L.; Jinling, L.; Xingqi, L.; Yuan, L.

    2010-08-01

    The sediment concentration in many rivers in our world is very high, and the Kaplan turbine running in these rivers are usually seriously abraded. Since the existence of sand, the probability of cavitation is greatly enhanced. Under the joint action and mutual promotion of cavitation and sand erosion, serious abrasion could be made, the hydraulic performance of the Kaplan turbine may be descended, and the safety and stability of turbine are greatly threatened. Therefore, it is very important and significant to investigate the cavitation characteristic of Kaplan turbine under sediment flow condition. In this paper, numerical simulation of cavitation characteristic in pure water and solid-liquid two-phase flow in Kaplan turbine was performed. The solid-liquid two-fluid model were adopted in the numerical simulation, and the pressure, velocity and particle concentration distributive regularity on turbine blade surface under different diameter and concentration was revealed. Particle trajectory model was used to investigate the region and degree of runner blade abrasion in different conditions. The results showed that serious sand abrasion could be found near the blade head and outlet in large flow rate working condition. Relatively slight abrasion may be found near blade flange in small flow rate working condition. The more the sediment concentration and the large the sand diameter, the serious the runner is abraded, and the greater the efficiency is decreased. further analysis of the combined effects of wear and abrasion was performed. The result shows that the cavitation in silt flow is more serious than in pure water. The runner cavitation performance become worse under high sand concentration and large particle diameter, and the efficiency decrease greatly with the increase of sediment concentration.

  3. A framework for plasticity implementation on the SpiNNaker neural architecture.

    PubMed

    Galluppi, Francesco; Lagorce, Xavier; Stromatias, Evangelos; Pfeiffer, Michael; Plana, Luis A; Furber, Steve B; Benosman, Ryad B

    2014-01-01

    Many of the precise biological mechanisms of synaptic plasticity remain elusive, but simulations of neural networks have greatly enhanced our understanding of how specific global functions arise from the massively parallel computation of neurons and local Hebbian or spike-timing dependent plasticity rules. For simulating large portions of neural tissue, this has created an increasingly strong need for large scale simulations of plastic neural networks on special purpose hardware platforms, because synaptic transmissions and updates are badly matched to computing style supported by current architectures. Because of the great diversity of biological plasticity phenomena and the corresponding diversity of models, there is a great need for testing various hypotheses about plasticity before committing to one hardware implementation. Here we present a novel framework for investigating different plasticity approaches on the SpiNNaker distributed digital neural simulation platform. The key innovation of the proposed architecture is to exploit the reconfigurability of the ARM processors inside SpiNNaker, dedicating a subset of them exclusively to process synaptic plasticity updates, while the rest perform the usual neural and synaptic simulations. We demonstrate the flexibility of the proposed approach by showing the implementation of a variety of spike- and rate-based learning rules, including standard Spike-Timing dependent plasticity (STDP), voltage-dependent STDP, and the rate-based BCM rule. We analyze their performance and validate them by running classical learning experiments in real time on a 4-chip SpiNNaker board. The result is an efficient, modular, flexible and scalable framework, which provides a valuable tool for the fast and easy exploration of learning models of very different kinds on the parallel and reconfigurable SpiNNaker system.

  4. Incorporating biodiversity into rangeland health: Plant species richness and diversity in great plains grasslands

    USGS Publications Warehouse

    Symstad, Amy J.; Jonas, Jayne L.

    2011-01-01

    Indicators of rangeland health generally do not include a measure of biodiversity. Increasing attention to maintaining biodiversity in rangelands suggests that this omission should be reconsidered, and plant species richness and diversity are two metrics that may be useful and appropriate. Ideally, their response to a variety of anthropogenic and natural drivers in the ecosystem of interest would be clearly understood, thereby providing a means to diagnose the cause of decline in an ecosystem. Conceptual ecological models based on ecological principles and hypotheses provide a framework for this understanding, but these models must be supported by empirical evidence if they are to be used for decision making. To that end, we synthesize results from published studies regarding the responses of plant species richness and diversity to drivers that are of management concern in Great Plains grasslands, one of North America's most imperiled ecosystems. In the published literature, moderate grazing generally has a positive effect on these metrics in tallgrass prairie and a neutral to negative effect in shortgrass prairie. The largest published effects on richness and diversity were caused by moderate grazing in tallgrass prairies and nitrogen fertilization in shortgrass prairies. Although weather is often cited as the reason for considerable annual fluctuations in richness and diversity, little information about the responses of these metrics to weather is available. Responses of the two metrics often diverged, reflecting differences in their sensitivity to different types of changes in the plant community. Although sufficient information has not yet been published for these metrics to meet all the criteria of a good indicator in Great Plains Grasslands, augmenting current methods of evaluating rangeland health with a measure of plant species richness would reduce these shortcomings and provide information critical to managing for biodiversity.

  5. A framework for plasticity implementation on the SpiNNaker neural architecture

    PubMed Central

    Galluppi, Francesco; Lagorce, Xavier; Stromatias, Evangelos; Pfeiffer, Michael; Plana, Luis A.; Furber, Steve B.; Benosman, Ryad B.

    2015-01-01

    Many of the precise biological mechanisms of synaptic plasticity remain elusive, but simulations of neural networks have greatly enhanced our understanding of how specific global functions arise from the massively parallel computation of neurons and local Hebbian or spike-timing dependent plasticity rules. For simulating large portions of neural tissue, this has created an increasingly strong need for large scale simulations of plastic neural networks on special purpose hardware platforms, because synaptic transmissions and updates are badly matched to computing style supported by current architectures. Because of the great diversity of biological plasticity phenomena and the corresponding diversity of models, there is a great need for testing various hypotheses about plasticity before committing to one hardware implementation. Here we present a novel framework for investigating different plasticity approaches on the SpiNNaker distributed digital neural simulation platform. The key innovation of the proposed architecture is to exploit the reconfigurability of the ARM processors inside SpiNNaker, dedicating a subset of them exclusively to process synaptic plasticity updates, while the rest perform the usual neural and synaptic simulations. We demonstrate the flexibility of the proposed approach by showing the implementation of a variety of spike- and rate-based learning rules, including standard Spike-Timing dependent plasticity (STDP), voltage-dependent STDP, and the rate-based BCM rule. We analyze their performance and validate them by running classical learning experiments in real time on a 4-chip SpiNNaker board. The result is an efficient, modular, flexible and scalable framework, which provides a valuable tool for the fast and easy exploration of learning models of very different kinds on the parallel and reconfigurable SpiNNaker system. PMID:25653580

  6. Instability analysis of a model pump-turbine in vaneless space with different openings of guide vanes

    NASA Astrophysics Data System (ADS)

    Liu, J.; Liu, S.; Zuo, Z.; Wu, Y.

    2014-03-01

    Pump-turbines were always running at partial condition with the power grid changing. Flow separations and stall phenomena were obvious in the pump-turbine. Most of the RANS turbulence models solved the shear stress by linear difference scheme and they were isotropous, so they couldn't capture all kinds of vortexes in the pump-turbine well. At present, Partially-Averaged Navier-Stokes (PANS) has been found better than LES in simulating flow regions especially those with poor near-wall resolution. In this paper, a new nonlinear PANS turbulence model was proposed, which was modified from RNG k-ε turbulence model and the shear stresses were solved by Ehrhard's nonlinear methods. The nonlinear PANS model was used to study the instability of "S" region of a model pump-turbine with misaligned guide vanes (MGV). The opening of pre-opened guide vanes had great influence on the "S" characteristics. Pressure fluctuations in the vaneless space for different opening of pre-opened guide vanes were analyzed. It is found that the "S" characteristics and instability can be improved when the relative pre-opening of MGV is 50%.

  7. A conceptual model to facilitate amphibian conservation in the northern Great Plains

    USGS Publications Warehouse

    Mushnet, David M.; Euliss, Ned H.; Stockwell, Craig A.

    2012-01-01

    As pressures on agricultural landscapes to meet worldwide resource needs increase, amphibian populations face numerous threats including habitat destruction, chemical contaminants, disease outbreaks, wetland sedimentation, and synergistic effects of these perturbations. To facilitate conservation planning, we developed a conceptual model depicting elements critical for amphibian conservation in the northern Great Plains. First, we linked upland, wetland, and landscape features to specific ecological attributes. Ecological attributes included adult survival; reproduction and survival to metamorphosis; and successful dispersal and recolonization. Second, we linked ecosystem drivers, ecosystem stressors, and ecological effects of the region to each ecological attribute. Lastly, we summarized information on these ecological attributes and the drivers, stressors, and effects that work in concert to influence the maintenance of viable and genetically diverse amphibian populations in the northern Great Plains. While our focus was on the northern Great Plains, our conceptual model can be tailored to other geographic regions and taxa.

  8. Statistical analysis of simulated global soil moisture and its memory in an ensemble of CMIP5 general circulation models

    NASA Astrophysics Data System (ADS)

    Wiß, Felix; Stacke, Tobias; Hagemann, Stefan

    2014-05-01

    Soil moisture and its memory can have a strong impact on near surface temperature and precipitation and have the potential to promote severe heat waves, dry spells and floods. To analyze how soil moisture is simulated in recent general circulation models (GCMs), soil moisture data from a 23 model ensemble of Atmospheric Model Intercomparison Project (AMIP) type simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are examined for the period 1979 to 2008 with regard to parameterization and statistical characteristics. With respect to soil moisture processes, the models vary in their maximum soil and root depth, the number of soil layers, the water-holding capacity, and the ability to simulate freezing which all together leads to very different soil moisture characteristics. Differences in the water-holding capacity are resulting in deviations in the global median soil moisture of more than one order of magnitude between the models. In contrast, the variance shows similar absolute values when comparing the models to each other. Thus, the input and output rates by precipitation and evapotranspiration, which are computed by the atmospheric component of the models, have to be in the same range. Most models simulate great variances in the monsoon areas of the tropics and north western U.S., intermediate variances in Europe and eastern U.S., and low variances in the Sahara, continental Asia, and central and western Australia. In general, the variance decreases with latitude over the high northern latitudes. As soil moisture trends in the models were found to be negligible, the soil moisture anomalies were calculated by subtracting the 30 year monthly climatology from the data. The length of the memory is determined from the soil moisture anomalies by calculating the first insignificant autocorrelation for ascending monthly lags (insignificant autocorrelation folding time). The models show a great spread of autocorrelation length from a few months in the tropics, north western Canada, eastern U.S. and northern Europe up to few years in the Sahara, the Arabian Peninsula, continental Eurasia and central U.S. Some models simulate very long memory all over the globe. This behavior is associated with differences between the models in the maximum root and soil depth. Models with shallow roots and deep soils exhibit longer memories than models with similar soil and root depths. Further analysis will be conducted to clearly divide models into groups based on their inter-model spatial correlation of simulated soil moisture characteristics.

  9. Potential Effects of Drought on Tree Dieback in Great Britain and Implications for Forest Management in Adaptation to Climate Change

    NASA Astrophysics Data System (ADS)

    Yu, Jianjun; Berry, Pam

    2017-04-01

    The drought and heat stress has alerted the composition, structure and biogeography of forests globally, whilst the projected severe and widespread droughts are potentially increasing. This challenges the sustainable forest management to better cope with future climate and maintain the forest ecosystem functions and services. Many studies have investigated the climate change impacts on forest ecosystem but less considered the climate extremes like drought. In this study, we implement a dynamic ecosystem model based on a version of LPJ-GUESS parameterized with European tree species and apply to Great Britain at a finer spatial resolution of 5*5 km. The model runs for the baseline from 1961 to 2011 and projects to the latter 21st century using 100 climate scenarios generated from MaRIUS project to tackle the climate model uncertainty. We will show the potential impacts of climate change on forest ecosystem and vegetation transition in Great Britain by comparing the modelled conditions in the 2030s and the 2080s relative to the baseline. In particular, by analyzing the modelled tree mortality, we will show the tree dieback patterns in response to drought for various species, and assess their drought vulnerability across Great Britain. We also use species distribution modelling to project the suitable climate space for selected tree species using the same climate scenarios. Aided by these two modelling approaches and based on the corresponding modelling results, we will discuss the implications for adaptation strategy for forest management, especially in extreme drought conditions. The gained knowledge and lessons for Great Britain are considered to be transferable in many other regions.

  10. Structure-function relationships in highly modified shoots of cactaceae.

    PubMed

    Mauseth, James D

    2006-11-01

    Cacti are extremely diverse structurally and ecologically, and so modified as to be intimidating to many biologists. Yet all have the same organization as most dicots, none differs fundamentally from Arabidopsis or other model plants. This review explains cactus shoot structure, discusses relationships between structure, ecology, development and evolution, and indicates areas where research on cacti is necessary to test general theories of morphogenesis. Cactus leaves are diverse; all cacti have foliage leaves; many intermediate stages in evolutionary reduction of leaves are still present; floral shoots often have large, complex leaves whereas vegetative shoots have microscopic leaves. Spines are modified bud scales, some secrete sugar as extra-floral nectaries. Many cacti have juvenile/adult phases in which the flowering adult phase (a cephalium) differs greatly from the juvenile; in some, one side of a shoot becomes adult, all other sides continue to grow as the juvenile phase. Flowers are inverted: the exterior of a cactus 'flower' is a hollow vegetative shoot with internodes, nodes, leaves and spines, whereas floral organs occur inside, with petals physically above stamens. Many cacti have cortical bundles vascularizing the cortex, however broad it evolves to be, thus keeping surface tissues alive. Great width results in great weight of weak parenchymatous shoots, correlated with reduced branching. Reduced numbers of shoot apices is compensated by great increases in number of meristematic cells within individual SAMs. Ribs and tubercles allow shoots to swell without tearing during wet seasons. Shoot epidermis and cortex cells live and function for decades then convert to cork cambium. Many modifications permit water storage within cactus wood itself, adjacent to vessels.

  11. Modeled summer background concentration nutrients and suspended sediment in the mid-continent (USA) great rivers

    EPA Science Inventory

    We used regression models to predict background concentration of four water quality indictors: total nitrogen (N), total phosphorus (P), chloride, and total suspended solids (TSS), in the mid-continent (USA) great rivers, the Upper Mississippi, the Lower Missouri, and the Ohio. F...

  12. Three-dimensional numerical modeling of full-space transient electromagnetic responses of water in goaf

    NASA Astrophysics Data System (ADS)

    Chang, Jiang-Hao; Yu, Jing-Cun; Liu, Zhi-Xin

    2016-09-01

    The full-space transient electromagnetic response of water-filled goaves in coal mines were numerically modeled. Traditional numerical modeling methods cannot be used to simulate the underground full-space transient electromagnetic field. We used multiple transmitting loops instead of the traditional single transmitting loop to load the transmitting loop into Cartesian grids. We improved the method for calculating the z-component of the magnetic field based on the characteristics of full space. Then, we established the fullspace 3D geoelectrical model using geological data for coalmines. In addition, the transient electromagnetic responses of water-filled goaves of variable shape at different locations were simulated by using the finite-difference time-domain (FDTD) method. Moreover, we evaluated the apparent resistivity results. The numerical modeling results suggested that the resistivity differences between the coal seam and its roof and floor greatly affect the distribution of apparent resistivity, resulting in nearly circular contours with the roadway head at the center. The actual distribution of apparent resistivity for different geoelectrical models of water in goaves was consistent with the models. However, when the goaf water was located in one side, a false low-resistivity anomaly would appear on the other side owing to the full-space effect but the response was much weaker. Finally, the modeling results were subsequently confirmed by drilling, suggesting that the proposed method was effective.

  13. Genetic risk prediction using a spatial autoregressive model with adaptive lasso.

    PubMed

    Wen, Yalu; Shen, Xiaoxi; Lu, Qing

    2018-05-31

    With rapidly evolving high-throughput technologies, studies are being initiated to accelerate the process toward precision medicine. The collection of the vast amounts of sequencing data provides us with great opportunities to systematically study the role of a deep catalog of sequencing variants in risk prediction. Nevertheless, the massive amount of noise signals and low frequencies of rare variants in sequencing data pose great analytical challenges on risk prediction modeling. Motivated by the development in spatial statistics, we propose a spatial autoregressive model with adaptive lasso (SARAL) for risk prediction modeling using high-dimensional sequencing data. The SARAL is a set-based approach, and thus, it reduces the data dimension and accumulates genetic effects within a single-nucleotide variant (SNV) set. Moreover, it allows different SNV sets having various magnitudes and directions of effect sizes, which reflects the nature of complex diseases. With the adaptive lasso implemented, SARAL can shrink the effects of noise SNV sets to be zero and, thus, further improve prediction accuracy. Through simulation studies, we demonstrate that, overall, SARAL is comparable to, if not better than, the genomic best linear unbiased prediction method. The method is further illustrated by an application to the sequencing data from the Alzheimer's Disease Neuroimaging Initiative. Copyright © 2018 John Wiley & Sons, Ltd.

  14. Gene order and recombination rate in homologous chromosome regions of the chicken and a passerine bird.

    PubMed

    Dawson, Deborah A; Akesson, Mikael; Burke, Terry; Pemberton, Josephine M; Slate, Jon; Hansson, Bengt

    2007-07-01

    Genome structure has been found to be highly conserved between distantly related birds and recent data for a limited part of the genome suggest that this is true also for the gene order (synteny) within chromosomes. Here, we confirm that synteny is maintained for large chromosomal regions in chicken and a passerine bird, the great reed warbler Acrocephalus arundinaceus, with few rearrangements, but in contrast show that the recombination-based linkage map distances differ substantially between these species. We assigned a chromosomal location based on sequence similarity to the chicken genome sequence to a set of microsatellite loci mapped in a pedigree of great reed warblers. We detected homologous loci on 14 different chromosomes corresponding to chicken chromosomes Gga1-5, 7-9, 13, 19, 20, 24, 25, and Z. It is known that 2 passerine macrochromosomes correspond to the chicken chromosome Gga1. Homology of 2 different great reed warbler linkage groups (LG13 and LG5) to Gga1 allowed us to locate the split to a position between 20.8 and 84.8 Mb on Gga1. Data from the 5 chromosomal regions (on Gga1, 2, 3, 5, and Z) with 3 or more homologous loci showed that synteny was conserved with the exception of 2 large previously unreported inversions on Gga1/LG5 and Gga2/LG3, respectively. Recombination data from the 9 chromosomal regions in which we identified 2 or more homologous loci (accounting for the inversions) showed that the linkage map distances in great reed warblers were only 6.3% and 13.3% of those in chickens for males and females, respectively. This is likely to reflect the true interspecific difference in recombination rate because our markers were not located in potentially low-recombining regions: several linkage groups covered a substantial part of their corresponding chicken chromosomes and were not restricted to centromeres. We conclude that recombination rates may differ strongly between bird species with highly conserved genome structure and synteny and that the chicken linkage map may not be suitable, in terms of genetic distances, as a model for all bird species.

  15. Accounting for inter-annual and seasonal variability in regionalization of hydrologic response in the Great Lakes basin

    NASA Astrophysics Data System (ADS)

    Kult, J. M.; Fry, L. M.; Gronewold, A. D.

    2012-12-01

    Methods for predicting streamflow in areas with limited or nonexistent measures of hydrologic response typically invoke the concept of regionalization, whereby knowledge pertaining to gauged catchments is transferred to ungauged catchments. In this study, we identify watershed physical characteristics acting as primary drivers of hydrologic response throughout the US portion of the Great Lakes basin. Relationships between watershed physical characteristics and hydrologic response are generated from 166 catchments spanning a variety of climate, soil, land cover, and land form regimes through regression tree analysis, leading to a grouping of watersheds exhibiting similar hydrologic response characteristics. These groupings are then used to predict response in ungauged watersheds in an uncertainty framework. Results from this method are assessed alongside one historical regionalization approach which, while simple, has served as a cornerstone of Great Lakes regional hydrologic research for several decades. Our approach expands upon previous research by considering multiple temporal characterizations of hydrologic response. Due to the substantial inter-annual and seasonal variability in hydrologic response observed over the Great Lakes basin, results from the regression tree analysis differ considerably depending on the level of temporal aggregation used to define the response. Specifically, higher levels of temporal aggregation for the response metric (for example, indices derived from long-term means of climate and streamflow observations) lead to improved watershed groupings with lower within-group variance. However, this perceived improvement in model skill occurs at the cost of understated uncertainty when applying the regression to time series simulations or as a basis for model calibration. In such cases, our results indicate that predictions based on long-term characterizations of hydrologic response can produce misleading conclusions when applied at shorter time steps. This study suggests that measures of hydrologic response quantified at these shorter time steps may provide a more robust basis for making predictions in applications of water resource management, model calibration and simulations, and human health and safety.

  16. Method for assessing coal-floor water-inrush risk based on the variable-weight model and unascertained measure theory

    NASA Astrophysics Data System (ADS)

    Wu, Qiang; Zhao, Dekang; Wang, Yang; Shen, Jianjun; Mu, Wenping; Liu, Honglei

    2017-11-01

    Water inrush from coal-seam floors greatly threatens mining safety in North China and is a complex process controlled by multiple factors. This study presents a mathematical assessment system for coal-floor water-inrush risk based on the variable-weight model (VWM) and unascertained measure theory (UMT). In contrast to the traditional constant-weight model (CWM), which assigns a fixed weight to each factor, the VWM varies with the factor-state value. The UMT employs the confidence principle, which is more effective in ordered partition problems than the maximum membership principle adopted in the former mathematical theory. The method is applied to the Datang Tashan Coal Mine in North China. First, eight main controlling factors are selected to construct the comprehensive evaluation index system. Subsequently, an incentive-penalty variable-weight model is built to calculate the variable weights of each factor. Then, the VWM-UMT model is established using the quantitative risk-grade divide of each factor according to the UMT. On this basis, the risk of coal-floor water inrush in Tashan Mine No. 8 is divided into five grades. For comparison, the CWM is also adopted for the risk assessment, and a differences distribution map is obtained between the two methods. Finally, the verification of water-inrush points indicates that the VWM-UMT model is powerful and more feasible and reasonable. The model has great potential and practical significance in future engineering applications.

  17. A cultural diversity seen in Croatian family medicine: a lady from Janjevo.

    PubMed

    Pavlov, Renata

    2014-12-01

    The role of cultural diversities in doctor's everyday work is going more and more important in globalised world, therefore it draws lots of attention in literature. Cultural differences that exist between people, such as language, dress and traditions, are usually distinguished from the term cultural diversity which is mainly understood as having different cultures respect each other's differences. The great effort is made to educate culturally competent practitioners, nurses or doctors. The presented case of lady from Janjevo was a good role model for work with all patients with culturally different background coming to family practice. This lady example could also help to other colleagues to learn from experience on systematic way.

  18. Wind Factor Simulation Model: User’s Manual.

    DTIC Science & Technology

    1980-04-01

    computer program documentation; com- puterized simulation; equivalent headwind technique; great circle; great circle distance; great circle equation ; great... equation of a great circle. Program listing and flow chart are included. iv UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE(WIh.n Date EnItrd) USER’S...THE EQUATOR . 336 C 337 NTRIFG = 0 338 C 339 C END OF FUNCTION ICONV I 1. RETURN TO MAIN PROGRAM . 340 C 42 341 RETURN 34? C 343 C 344 C 345 C * PART II

  19. The value of a statistical life: a meta-analysis with a mixed effects regression model.

    PubMed

    Bellavance, François; Dionne, Georges; Lebeau, Martin

    2009-03-01

    The value of a statistical life (VSL) is a very controversial topic, but one which is essential to the optimization of governmental decisions. We see a great variability in the values obtained from different studies. The source of this variability needs to be understood, in order to offer public decision-makers better guidance in choosing a value and to set clearer guidelines for future research on the topic. This article presents a meta-analysis based on 39 observations obtained from 37 studies (from nine different countries) which all use a hedonic wage method to calculate the VSL. Our meta-analysis is innovative in that it is the first to use the mixed effects regression model [Raudenbush, S.W., 1994. Random effects models. In: Cooper, H., Hedges, L.V. (Eds.), The Handbook of Research Synthesis. Russel Sage Foundation, New York] to analyze studies on the value of a statistical life. We conclude that the variability found in the values studied stems in large part from differences in methodologies.

  20. A world in one dimension: Linus Pauling, Francis Crick and the central dogma of molecular biology.

    PubMed

    Strasser, Bruno J

    2006-01-01

    In 1957, Francis Crick outlined a startling vision of life in which the great diversity of forms and shapes of macromolecules was encoded in the one-dimensional sequence of nucleic acids. This paper situates Crick's new vision in the debates of the 1950s about protein synthesis and gene action. After exploring the reception of Crick's ideas, it shows how they differed radically from a different model of protein synthesis which enjoyed wide currency in that decade. In this alternative model, advocated by Linus Pauling and other luminaries, three-dimensional templates directed the folding of proteins. Even though it was always considered somewhat speculative, this theory was supported by a number of empirical results originating in different experimental systems. It was eventually replaced by a model in which the forms and shapes of macromolecules resulted solely from their amino acid sequence, dramatically simplifying the problem of protein synthesis which Crick was attempting to solve in 1957.

  1. Course for undergraduate students: analysis of the retinal image quality of a human eye model

    NASA Astrophysics Data System (ADS)

    del Mar Pérez, Maria; Yebra, Ana; Fernández-Oliveras, Alicia; Ghinea, Razvan; Ionescu, Ana M.; Cardona, Juan C.

    2014-07-01

    In teaching of Vision Physics or Physiological Optics, the knowledge and analysis of the aberration that the human eye presents are of great interest, since this information allows a proper evaluation of the quality of the retinal image. The objective of the present work is that the students acquire the required competencies which will allow them to evaluate the optical quality of the human visual system for emmetropic and ammetropic eye, both with and without the optical compensation. For this purpose, an optical system corresponding to the Navarro-Escudero eye model, which allows calculating and evaluating the aberration of this eye model in different ammetropic conditions, was developed employing the OSLO LT software. The optical quality of the visual system will be assessed through determinations of the third and fifth order aberration coefficients, the impact diagram, wavefront analysis, calculation of the Point Spread Function and the Modulation Transfer Function for ammetropic individuals, with myopia or hyperopia, both with or without the optical compensation. This course is expected to be of great interest for student of Optics and Optometry Sciences, last courses of Physics or medical sciences related with human vision.

  2. Interconnecting heterogeneous database management systems

    NASA Technical Reports Server (NTRS)

    Gligor, V. D.; Luckenbaugh, G. L.

    1984-01-01

    It is pointed out that there is still a great need for the development of improved communication between remote, heterogeneous database management systems (DBMS). Problems regarding the effective communication between distributed DBMSs are primarily related to significant differences between local data managers, local data models and representations, and local transaction managers. A system of interconnected DBMSs which exhibit such differences is called a network of distributed, heterogeneous DBMSs. In order to achieve effective interconnection of remote, heterogeneous DBMSs, the users must have uniform, integrated access to the different DBMs. The present investigation is mainly concerned with an analysis of the existing approaches to interconnecting heterogeneous DBMSs, taking into account four experimental DBMS projects.

  3. A Hybrid Demand Response Simulator Version 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2012-05-02

    A hybrid demand response simulator is developed to test different control algorithms for centralized and distributed demand response (DR) programs in a small distribution power grid. The HDRS is designed to model a wide variety of DR services such as peak having, load shifting, arbitrage, spinning reserves, load following, regulation, emergency load shedding, etc. The HDRS does not model the dynamic behaviors of the loads, rather, it simulates the load scheduling and dispatch process. The load models include TCAs (water heaters, air conditioners, refrigerators, freezers, etc) and non-TCAs (lighting, washer, dishwasher, etc.) The ambient temperature changes, thermal resistance, capacitance, andmore » the unit control logics can be modeled for TCA loads. The use patterns of the non-TCA can be modeled by probability of use and probabilistic durations. Some of the communication network characteristics, such as delays and errors, can also be modeled. Most importantly, because the simulator is modular and greatly simplified the thermal models for TCA loads, it is very easy and fast to be used to test and validate different control algorithms in a simulated environment.« less

  4. A novel 2.5D finite difference scheme for simulations of resistivity logging in anisotropic media

    NASA Astrophysics Data System (ADS)

    Zeng, Shubin; Chen, Fangzhou; Li, Dawei; Chen, Ji; Chen, Jiefu

    2018-03-01

    The objective of this study is to develop a method to model 3D resistivity well logging problems in 2D formation with anisotropy, known as 2.5D modeling. The traditional 1D forward modeling extensively used in practice lacks the capability of modeling 2D formation. A 2.5D finite difference method (FDM) solving all the electric and magnetic field components simultaneously is proposed. Compared to other previous 2.5D FDM schemes, this method is more straightforward in modeling fully anisotropic media and easy to be implemented. Fourier transform is essential to this FDM scheme, and by employing Gauss-Legendre (GL) quadrature rule the computational time of this step can be greatly reduced. In the numerical examples, we first demonstrate the validity of the FDM scheme with GL rule by comparing with 1D forward modeling for layered anisotropic problems, and then we model a complicated 2D formation case and find that the proposed 2.5D FD scheme is much more efficient than 3D numerical methods.

  5. Tsunami Simulations in the Western Makran Using Hypothetical Heterogeneous Source Models from World's Great Earthquakes

    NASA Astrophysics Data System (ADS)

    Rashidi, Amin; Shomali, Zaher Hossein; Keshavarz Farajkhah, Nasser

    2018-03-01

    The western segment of Makran subduction zone is characterized with almost no major seismicity and no large earthquake for several centuries. A possible episode for this behavior is that this segment is currently locked accumulating energy to generate possible great future earthquakes. Taking into account this assumption, a hypothetical rupture area is considered in the western Makran to set different tsunamigenic scenarios. Slip distribution models of four recent tsunamigenic earthquakes, i.e. 2015 Chile M w 8.3, 2011 Tohoku-Oki M w 9.0 (using two different scenarios) and 2006 Kuril Islands M w 8.3, are scaled into the rupture area in the western Makran zone. The numerical modeling is performed to evaluate near-field and far-field tsunami hazards. Heterogeneity in slip distribution results in higher tsunami amplitudes. However, its effect reduces from local tsunamis to regional and distant tsunamis. Among all considered scenarios for the western Makran, only a similar tsunamigenic earthquake to the 2011 Tohoku-Oki event can re-produce a significant far-field tsunami and is considered as the worst case scenario. The potential of a tsunamigenic source is dominated by the degree of slip heterogeneity and the location of greatest slip on the rupture area. For the scenarios with similar slip patterns, the mean slip controls their relative power. Our conclusions also indicate that along the entire Makran coasts, the southeastern coast of Iran is the most vulnerable area subjected to tsunami hazard.

  6. Research on compressive sensing reconstruction algorithm based on total variation model

    NASA Astrophysics Data System (ADS)

    Gao, Yu-xuan; Sun, Huayan; Zhang, Tinghua; Du, Lin

    2017-12-01

    Compressed sensing for breakthrough Nyquist sampling theorem provides a strong theoretical , making compressive sampling for image signals be carried out simultaneously. In traditional imaging procedures using compressed sensing theory, not only can it reduces the storage space, but also can reduce the demand for detector resolution greatly. Using the sparsity of image signal, by solving the mathematical model of inverse reconfiguration, realize the super-resolution imaging. Reconstruction algorithm is the most critical part of compression perception, to a large extent determine the accuracy of the reconstruction of the image.The reconstruction algorithm based on the total variation (TV) model is more suitable for the compression reconstruction of the two-dimensional image, and the better edge information can be obtained. In order to verify the performance of the algorithm, Simulation Analysis the reconstruction result in different coding mode of the reconstruction algorithm based on the TV reconstruction algorithm. The reconstruction effect of the reconfigurable algorithm based on TV based on the different coding methods is analyzed to verify the stability of the algorithm. This paper compares and analyzes the typical reconstruction algorithm in the same coding mode. On the basis of the minimum total variation algorithm, the Augmented Lagrangian function term is added and the optimal value is solved by the alternating direction method.Experimental results show that the reconstruction algorithm is compared with the traditional classical algorithm based on TV has great advantages, under the low measurement rate can be quickly and accurately recovers target image.

  7. Modeling and in situ measurements of biometeorological conditions in microenvironments within the Athens University Campus, Greece

    NASA Astrophysics Data System (ADS)

    Nastos, Panagiotis T.; Polychroni, Iliana D.

    2016-10-01

    The objective of this research is to assess and analyze the biometeorological perception in complex microenvironments in the Athens University Campus (AUC) using urban micromodels, such as RayMan. The human thermal sensation in such a place was considered of great significance due to the great gathering of student body and staff of the University. The quantification of the biometeorological conditions was succeeded by the estimation of the physiologically equivalent temperature (PET), which is a biometeorological index based on the human energy balance. We carried out, on one hand, field measurements of air temperature, relative humidity, wind speed, and global solar irradiance for different sites (building atrium, open area, and green atrium) of the examined microurban environment in order to calculate PET during January-July 2013. Additionally, on the other hand, PET modeling was performed using different sky-view factors and was compared to a reference site (meteorological station of Laboratory of Climatology and Atmospheric Environment, University of Athens). The global radiation was transferred to the examined sites with the RayMan model, which considers the sky-view factors for the adaptation of the radiation fluxes to simple and complex environments. The results of this study reveal the crucial importance of the existence of trees and green cover in a complex environment, as a factor that could be the solution to the efforts of stake holders in order to mitigate strong heat stress and improve people's living quality in urban areas.

  8. Tsunami Simulations in the Western Makran Using Hypothetical Heterogeneous Source Models from World's Great Earthquakes

    NASA Astrophysics Data System (ADS)

    Rashidi, Amin; Shomali, Zaher Hossein; Keshavarz Farajkhah, Nasser

    2018-04-01

    The western segment of Makran subduction zone is characterized with almost no major seismicity and no large earthquake for several centuries. A possible episode for this behavior is that this segment is currently locked accumulating energy to generate possible great future earthquakes. Taking into account this assumption, a hypothetical rupture area is considered in the western Makran to set different tsunamigenic scenarios. Slip distribution models of four recent tsunamigenic earthquakes, i.e. 2015 Chile M w 8.3, 2011 Tohoku-Oki M w 9.0 (using two different scenarios) and 2006 Kuril Islands M w 8.3, are scaled into the rupture area in the western Makran zone. The numerical modeling is performed to evaluate near-field and far-field tsunami hazards. Heterogeneity in slip distribution results in higher tsunami amplitudes. However, its effect reduces from local tsunamis to regional and distant tsunamis. Among all considered scenarios for the western Makran, only a similar tsunamigenic earthquake to the 2011 Tohoku-Oki event can re-produce a significant far-field tsunami and is considered as the worst case scenario. The potential of a tsunamigenic source is dominated by the degree of slip heterogeneity and the location of greatest slip on the rupture area. For the scenarios with similar slip patterns, the mean slip controls their relative power. Our conclusions also indicate that along the entire Makran coasts, the southeastern coast of Iran is the most vulnerable area subjected to tsunami hazard.

  9. Modeling and in situ measurements of biometeorological conditions in microenvironments within the Athens University Campus, Greece.

    PubMed

    Nastos, Panagiotis T; Polychroni, Iliana D

    2016-10-01

    The objective of this research is to assess and analyze the biometeorological perception in complex microenvironments in the Athens University Campus (AUC) using urban micromodels, such as RayMan. The human thermal sensation in such a place was considered of great significance due to the great gathering of student body and staff of the University. The quantification of the biometeorological conditions was succeeded by the estimation of the physiologically equivalent temperature (PET), which is a biometeorological index based on the human energy balance. We carried out, on one hand, field measurements of air temperature, relative humidity, wind speed, and global solar irradiance for different sites (building atrium, open area, and green atrium) of the examined microurban environment in order to calculate PET during January-July 2013. Additionally, on the other hand, PET modeling was performed using different sky-view factors and was compared to a reference site (meteorological station of Laboratory of Climatology and Atmospheric Environment, University of Athens). The global radiation was transferred to the examined sites with the RayMan model, which considers the sky-view factors for the adaptation of the radiation fluxes to simple and complex environments. The results of this study reveal the crucial importance of the existence of trees and green cover in a complex environment, as a factor that could be the solution to the efforts of stake holders in order to mitigate strong heat stress and improve people's living quality in urban areas.

  10. Great Thermal Conductivity Enhancement of Silicone Composite with Ultra-Long Copper Nanowires.

    PubMed

    Zhang, Liye; Yin, Junshan; Yu, Wei; Wang, Mingzhu; Xie, Huaqing

    2017-12-01

    In this paper, ultra-long copper nanowires (CuNWs) were successfully synthesized at a large scale by hydrothermal reduction of divalent copper ion using oleylamine and oleic acid as dual ligands. The characteristic of CuNWs is hard and linear, which is clearly different from graphene nanoplatelets (GNPs) and multi-wall carbon nanotubes (MWCNTs). The thermal properties and models of silicone composites with three nanomaterials have been mainly researched. The maximum of thermal conductivity enhancement is up to 215% with only 1.0 vol.% CuNW loading, which is much higher than GNPs and MWCNTs. It is due to the ultra-long CuNWs with a length of more than 100 μm, which facilitates the formation of effective thermal-conductive networks, resulting in great enhancement of thermal conductivity.

  11. Great Thermal Conductivity Enhancement of Silicone Composite with Ultra-Long Copper Nanowires

    NASA Astrophysics Data System (ADS)

    Zhang, Liye; Yin, Junshan; Yu, Wei; Wang, Mingzhu; Xie, Huaqing

    2017-07-01

    In this paper, ultra-long copper nanowires (CuNWs) were successfully synthesized at a large scale by hydrothermal reduction of divalent copper ion using oleylamine and oleic acid as dual ligands. The characteristic of CuNWs is hard and linear, which is clearly different from graphene nanoplatelets (GNPs) and multi-wall carbon nanotubes (MWCNTs). The thermal properties and models of silicone composites with three nanomaterials have been mainly researched. The maximum of thermal conductivity enhancement is up to 215% with only 1.0 vol.% CuNW loading, which is much higher than GNPs and MWCNTs. It is due to the ultra-long CuNWs with a length of more than 100 μm, which facilitates the formation of effective thermal-conductive networks, resulting in great enhancement of thermal conductivity.

  12. Dynamics of information diffusion and its applications on complex networks

    NASA Astrophysics Data System (ADS)

    Zhang, Zi-Ke; Liu, Chuang; Zhan, Xiu-Xiu; Lu, Xin; Zhang, Chu-Xu; Zhang, Yi-Cheng

    2016-09-01

    The ongoing rapid expansion of the Word Wide Web (WWW) greatly increases the information of effective transmission from heterogeneous individuals to various systems. Extensive research for information diffusion is introduced by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and empirical studies, unification and comparison of different theories and approaches are lacking, which impedes further advances. In this article, we review recent developments in information diffusion and discuss the major challenges. We compare and evaluate available models and algorithms to respectively investigate their physical roles and optimization designs. Potential impacts and future directions are discussed. We emphasize that information diffusion has great scientific depth and combines diverse research fields which makes it interesting for physicists as well as interdisciplinary researchers.

  13. Aquatic insect ecophysiological traits reveal phylogenetically based differences in dissolved cadmium susceptibility

    USGS Publications Warehouse

    Buchwalter, D.B.; Cain, D.J.; Martin, C.A.; Xie, Lingtian; Luoma, S.N.; Garland, T.

    2008-01-01

    We used a phylogenetically based comparative approach to evaluate the potential for physiological studies to reveal patterns of diversity in traits related to susceptibility to an environmental stressor, the trace metal cadmium (Cd). Physiological traits related to Cd bioaccumulation, compartmentalization, and ultimately susceptibility were measured in 21 aquatic insect species representing the orders Ephemeroptera, Plecoptera, and Trichoptera. We mapped these experimentally derived physiological traits onto a phylogeny and quantified the tendency for related species to be similar (phylogenetic signal). All traits related to Cd bioaccumulation and susceptibility exhibited statistically significant phylogenetic signal, although the signal strength varied among traits. Conventional and phylogenetically based regression models were compared, revealing great variability within orders but consistent, strong differences among insect families. Uptake and elimination rate constants were positively correlated among species, but only when effects of body size and phylogeny were incorporated in the analysis. Together, uptake and elimination rates predicted dramatic Cd bioaccumulation differences among species that agreed with field-based measurements. We discovered a potential tradeoff between the ability to eliminate Cd and the ability to detoxify it across species, particularly mayflies. The best-fit regression models were driven by phylogenetic parameters (especially differences among families) rather than functional traits, suggesting that it may eventually be possible to predict a taxon's physiological performance based on its phylogenetic position, provided adequate physiological information is available for close relatives. There appears to be great potential for evolutionary physiological approaches to augment our understanding of insect responses to environmental stressors in nature. ?? 2008 by The National Academy of Sciences of the USA.

  14. Application of oil-water discrimination technology in fractured reservoirs using the differences between fast and slow shear-waves

    NASA Astrophysics Data System (ADS)

    Luo, Cong; Li, Xiangyang; Huang, Guangtan

    2017-08-01

    Oil-water discrimination is of great significance in the design and adjustment of development projects in oil fields. For fractured reservoirs, based on anisotropic S-wave splitting information, it becomes possible to effectively solve such problems which are difficult to deal with in traditional longitudinal wave exploration, due to the similar bulk modulus and density of these two fluids. In this paper, by analyzing the anisotropic character of the Chapman model (2009 Geophysics 74 97-103), the velocity and reflection coefficient differences between the fast and slow S-wave caused by fluid substitution have been verified. Then, through a wave field response analysis of the theoretical model, we found that water saturation causes a longer time delay, a larger time delay gradient and a lower amplitude difference between the fast and slow S-wave, while the oil case corresponds to a lower time delay, a lower gradient and a higher amplitude difference. Therefore, a new class attribute has been proposed regarding the amplitude energy of the fast and slow shear wave, used for oil-water distinction. This new attribute, as well as that of the time delay gradient, were both applied to the 3D3C seismic data of carbonate fractured reservoirs in the Luojia area of the Shengli oil field in China. The results show that the predictions of the energy attributes are more consistent with the well information than the time delay gradient attribute, hence demonstrating the great advantages and potential of this new attribute in oil-water recognition.

  15. Dynamical and Mechanistic Reconstructive Approaches of T Lymphocyte Dynamics: Using Visual Modeling Languages to Bridge the Gap between Immunologists, Theoreticians, and Programmers

    PubMed Central

    Thomas-Vaslin, Véronique; Six, Adrien; Ganascia, Jean-Gabriel; Bersini, Hugues

    2013-01-01

    Dynamic modeling of lymphocyte behavior has primarily been based on populations based differential equations or on cellular agents moving in space and interacting each other. The final steps of this modeling effort are expressed in a code written in a programing language. On account of the complete lack of standardization of the different steps to proceed, we have to deplore poor communication and sharing between experimentalists, theoreticians and programmers. The adoption of diagrammatic visual computer language should however greatly help the immunologists to better communicate, to more easily identify the models similarities and facilitate the reuse and extension of existing software models. Since immunologists often conceptualize the dynamical evolution of immune systems in terms of “state-transitions” of biological objects, we promote the use of unified modeling language (UML) state-transition diagram. To demonstrate the feasibility of this approach, we present a UML refactoring of two published models on thymocyte differentiation. Originally built with different modeling strategies, a mathematical ordinary differential equation-based model and a cellular automata model, the two models are now in the same visual formalism and can be compared. PMID:24101919

  16. Introduction to CAUSES: Description of Weather and Climate Models and Their Near-Surface Temperature Errors in 5 day Hindcasts Near the Southern Great Plains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morcrette, C. J.; Van Weverberg, K.; Ma, H. -Y.

    The Clouds Above the United States and Errors at the Surface (CAUSES) project is aimed at gaining a better understanding of the physical processes that are leading to the creation of warm screen-temperature biases over the American Midwest, which are seen in many numerical models. Here in Part 1, a series of 5-day hindcasts, each initialised from re-analyses and performed by 11 different models, are evaluated against screen-temperature observations. All the models have a warm bias over parts of the Midwest. Several ways of quantifying the impact of the initial conditions on the evolution of the simulations are presented, showingmore » that within a day or so all models have produced a warm bias that is representative of their bias after 5 days, and not closely tied to the conditions at the initial time. Although the surface temperature biases sometimes coincide with locations where the re-analyses themselves have a bias, there are many regions in each of the models where biases grow over the course of 5 days or are larger than the biases present in the reanalyses. At the Southern Great Plains site, the model biases are shown to not be confined to the surface, but extend several kilometres into the atmosphere. In most of the models, there is a strong diurnal cycle in the screen-temperature bias and in some models the biases are largest around midday, while in the others it is largest during the night. While the different physical processes that are contributing to a given model having a screen-temperature error will be discussed in more detail in the companion papers (Parts 2 and 3) the fact that there is a spatial coherence in the phase of the diurnal cycle of the error across wide regions and that there are numerous locations across the Midwest where the diurnal cycle of the error is highly correlated with the diurnal cycle of the error at SGP suggest that the detailed evaluations of the role of different processes in contributing to errors at SGP will be representative of errors that are prevalent over a much larger spatial scale.« less

  17. Introduction to CAUSES: Description of weather and climate models and their near-surface temperature errors in 5-day hindcasts near the Southern Great Plains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morcrette, Cyril J.; Van Weverberg, Kwinten; Ma, H

    2018-02-16

    The Clouds Above the United States and Errors at the Surface (CAUSES) project is aimed at gaining a better understanding of the physical processes that are leading to the creation of warm screen-temperature biases over the American Midwest, which are seen in many numerical models. Here in Part 1, a series of 5-day hindcasts, each initialised from re-analyses and performed by 11 different models, are evaluated against screen-temperature observations. All the models have a warm bias over parts of the Midwest. Several ways of quantifying the impact of the initial conditions on the evolution of the simulations are presented, showingmore » that within a day or so all models have produced a warm bias that is representative of their bias after 5 days, and not closely tied to the conditions at the initial time. Although the surface temperature biases sometimes coincide with locations where the re-analyses themselves have a bias, there are many regions in each of the models where biases grow over the course of 5 days or are larger than the biases present in the reanalyses. At the Southern Great Plains site, the model biases are shown to not be confined to the surface, but extend several kilometres into the atmosphere. In most of the models, there is a strong diurnal cycle in the screen-temperature bias and in some models the biases are largest around midday, while in the others it is largest during the night. While the different physical processes that are contributing to a given model having a screen-temperature error will be discussed in more detail in the companion papers (Parts 2 and 3) the fact that there is a spatial coherence in the phase of the diurnal cycle of the error across wide regions and that there are numerous locations across the Midwest where the diurnal cycle of the error is highly correlated with the diurnal cycle of the error at SGP suggest that the detailed evaluations of the role of different processes in contributing to errors at SGP will be representative of errors that are prevalent over a much larger spatial scale.« less

  18. A least-effort principle based model for heterogeneous pedestrian flow considering overtaking behavior

    NASA Astrophysics Data System (ADS)

    Liu, Chi; Ye, Rui; Lian, Liping; Song, Weiguo; Zhang, Jun; Lo, Siuming

    2018-05-01

    In the context of global aging, how to design traffic facilities for a population with a different age composition is of high importance. For this purpose, we propose a model based on the least effort principle to simulate heterogeneous pedestrian flow. In the model, the pedestrian is represented by a three-disc shaped agent. We add a new parameter to realize pedestrians' preference to avoid changing their direction of movement too quickly. The model is validated with numerous experimental data on unidirectional pedestrian flow. In addition, we investigate the influence of corridor width and velocity distribution of crowds on unidirectional heterogeneous pedestrian flow. The simulation results reflect that widening corridors could increase the specific flow for the crowd composed of two kinds of pedestrians with significantly different free velocities. Moreover, compared with a unified crowd, the crowd composed of pedestrians with great mobility differences requires a wider corridor to attain the same traffic efficiency. This study could be beneficial in providing a better understanding of heterogeneous pedestrian flow, and quantified outcomes could be applied in traffic facility design.

  19. 3D-QSAR studies of some reversible Acetyl cholinesterase inhibitors based on CoMFA and ligand protein interaction fingerprints using PC-LS-SVM and PLS-LS-SVM.

    PubMed

    Ghafouri, Hamidreza; Ranjbar, Mohsen; Sakhteman, Amirhossein

    2017-08-01

    A great challenge in medicinal chemistry is to develop different methods for structural design based on the pattern of the previously synthesized compounds. In this study two different QSAR methods were established and compared for a series of piperidine acetylcholinesterase inhibitors. In one novel approach, PC-LS-SVM and PLS-LS-SVM was used for modeling 3D interaction descriptors, and in the other method the same nonlinear techniques were used to build QSAR equations based on field descriptors. Different validation methods were used to evaluate the models and the results revealed the more applicability and predictive ability of the model generated by field descriptors (Q 2 LOO-CV =1, R 2 ext =0.97). External validation criteria revealed that both methods can be used in generating reasonable QSAR models. It was concluded that due to ability of interaction descriptors in prediction of binding mode, using this approach can be implemented in future 3D-QSAR softwares. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Comparative isotope ecology of African great apes.

    PubMed

    Oelze, Vicky M; Fahy, Geraldine; Hohmann, Gottfried; Robbins, Martha M; Leinert, Vera; Lee, Kevin; Eshuis, Henk; Seiler, Nicole; Wessling, Erin G; Head, Josephine; Boesch, Christophe; Kühl, Hjalmar S

    2016-12-01

    The isotope ecology of great apes is a useful reference for palaeodietary reconstructions in fossil hominins. As extant apes live in C 3 -dominated habitats, variation in isotope signatures is assumed to be low compared to hominoids exploiting C 4 -plant resources. However, isotopic differences between sites and between and within individuals are poorly understood due to the lack of vegetation baseline data. In this comparative study, we included all species of free-ranging African great apes (Pan troglodytes, Pan paniscus, Gorilla sp.). First, we explore differences in isotope baselines across different habitats and whether isotopic signatures in apes can be related to feeding niches (faunivory and folivory). Secondly, we illustrate how stable isotopic variations within African ape populations compare to other extant and extinct primates and discuss possible implications for dietary flexibility. Using 701 carbon and nitrogen isotope data points resulting from 148 sectioned hair samples and an additional collection of 189 fruit samples, we compare six different great ape sites. We investigate the relationship between vegetation baselines and climatic variables, and subsequently correct great ape isotope data to a standardized plant baseline from the respective sites. We obtained temporal isotopic profiles of individual animals by sectioning hair along its growth trajectory. Isotopic signatures of great apes differed between sites, mainly as vegetation isotope baselines were correlated with site-specific climatic conditions. We show that controlling for plant isotopic characteristics at a given site is essential for faunal data interpretation. While accounting for plant baseline effects, we found distinct isotopic profiles for each great ape population. Based on evidence from habituated groups and sympatric great ape species, these differences could possibly be related to faunivory and folivory. Dietary flexibility in apes varied, but temporal variation was overall lower than in fossil hominins and extant baboons, shifting from C 3 to C 4 -resources, providing new perspectives on comparisons between extinct and extant primates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Evaluating hourly rainfall characteristics over the U.S. Great Plains in dynamically downscaled climate model simulations using NASA-Unified WRF

    NASA Astrophysics Data System (ADS)

    Lee, Huikyo; Waliser, Duane E.; Ferraro, Robert; Iguchi, Takamichi; Peters-Lidard, Christa D.; Tian, Baijun; Loikith, Paul C.; Wright, Daniel B.

    2017-07-01

    Accurate simulation of extreme precipitation events remains a challenge in climate models. This study utilizes hourly precipitation data from ground stations and satellite instruments to evaluate rainfall characteristics simulated by the NASA-Unified Weather Research and Forecasting (NU-WRF) regional climate model at horizontal resolutions of 4, 12, and 24 km over the Great Plains of the United States. We also examined the sensitivity of the simulated precipitation to different spectral nudging approaches and the cumulus parameterizations. The rainfall characteristics in the observations and simulations were defined as an hourly diurnal cycle of precipitation and a joint probability distribution function (JPDF) between duration and peak intensity of precipitation events over the Great Plains in summer. We calculated a JPDF for each data set and the overlapping area between observed and simulated JPDFs to measure the similarity between the two JPDFs. Comparison of the diurnal precipitation cycles between observations and simulations does not reveal the added value of high-resolution simulations. However, the performance of NU-WRF simulations measured by the JPDF metric strongly depends on horizontal resolution. The simulation with the highest resolution of 4 km shows the best agreement with the observations in simulating duration and intensity of wet spells. Spectral nudging does not affect the JPDF significantly. The effect of cumulus parameterizations on the JPDFs is considerable but smaller than that of horizontal resolution. The simulations with lower resolutions of 12 and 24 km show reasonable agreement but only with the high-resolution observational data that are aggregated into coarse resolution and spatially averaged.

  2. Soil erosion under climate change in Great Britain: long-term simulations using high-resolution regional models

    NASA Astrophysics Data System (ADS)

    Ciampalini, Rossano; Kendon, Elizabeth; Constantine, José Antonio; Schindewolf, Marcus; Hall, Ian

    2016-04-01

    Twenty-first century climate change simulations for Great Britain reveal an increase in heavy precipitation that may lead to widespread soil loss and reduced soil carbon stores by increasing the likelihood of surface runoff. We find the quality and resolution of the simulated rainfall used to drive soil loss variation can widely influence the results. Hourly high definition rainfall simulations from a 1.5km resolution regional climate model are used to examine the soil erosion response in two UK catchments. The catchments have different sensitivity to soil erosion. "Rother" in West Sussex, England, reports some of the most erosive events that have been observed during the last 50 years in the UK. "Conwy" in North Wales, is resilient to soil erosion because of the abundant natural vegetation cover and very limited agricultural practises. We modelled with Erosion3D to check variations in soil erosion as influenced by climate variations for the periods 1996-2009 and 2086-2099. Our results indicate the Rother catchment is the most erosive, while the Conwy catchment is confirmed as the more resilient to soil erosion. The values of the reference-base period are consistent with the values of those locally observed in the previous decades. A soil erosion comparison for the two periods shows an increasing of sediment production (off-site erosion) for the end of the century at about 27% in the Rother catchment and about 50% for the Conwy catchment. The results, thanks to high-definition rainfall predictions, throw some light on the effect of climatic change effects in Great Britain.

  3. Historical and Future Projected Hydrologic Extremes over the Midwest and Great Lakes Region

    NASA Astrophysics Data System (ADS)

    Byun, K.; Hamlet, A. F.; Chiu, C. M.

    2016-12-01

    There is an increasing body of evidence from observed data that climate variability combined with regional climate change has had a significant impact on hydrologic cycles, including both seasonal patterns of runoff and altered hydrologic extremes (e.g. floods and extreme stormwater events). To better understand changing patterns of extreme high flows in Midwest and Great Lakes region, we analyzed long-term historical observations of peak streamflow at different gaging stations. We also conducted hydrologic model experiments using the Variable Infiltration Capacity (VIC) at 1/16 degree resolution in order to explore sensitivity of annual peak streamflow, both historically and under temperature and precipitation changes for several future periods. For future projections, the Hybrid Delta statistical downscaling approach applied to the Coupled Model Inter-comparison, Phase5 (CMIP5) Global Climate Model (GCM) scenarios was used to produce driving data for the VIC hydrologic model. Preliminary results for several test basins in the Midwest support the hypothesis that there are consistent and statistically significant changes in the mean annual flood starting before and after about 1975. Future projections using hydrologic model simulations support the hypothesis of higher peak flows due to warming and increasing precipitation projected for the 21st century. We will extend this preliminary analysis using observed data and simulations from 40 river basins in the Midwest to further test these hypotheses.

  4. Multi-model assessment of the impact of soil moisture initialization on mid-latitude summer predictability

    NASA Astrophysics Data System (ADS)

    Ardilouze, Constantin; Batté, L.; Bunzel, F.; Decremer, D.; Déqué, M.; Doblas-Reyes, F. J.; Douville, H.; Fereday, D.; Guemas, V.; MacLachlan, C.; Müller, W.; Prodhomme, C.

    2017-12-01

    Land surface initial conditions have been recognized as a potential source of predictability in sub-seasonal to seasonal forecast systems, at least for near-surface air temperature prediction over the mid-latitude continents. Yet, few studies have systematically explored such an influence over a sufficient hindcast period and in a multi-model framework to produce a robust quantitative assessment. Here, a dedicated set of twin experiments has been carried out with boreal summer retrospective forecasts over the 1992-2010 period performed by five different global coupled ocean-atmosphere models. The impact of a realistic versus climatological soil moisture initialization is assessed in two regions with high potential previously identified as hotspots of land-atmosphere coupling, namely the North American Great Plains and South-Eastern Europe. Over the latter region, temperature predictions show a significant improvement, especially over the Balkans. Forecast systems better simulate the warmest summers if they follow pronounced dry initial anomalies. It is hypothesized that models manage to capture a positive feedback between high temperature and low soil moisture content prone to dominate over other processes during the warmest summers in this region. Over the Great Plains, however, improving the soil moisture initialization does not lead to any robust gain of forecast quality for near-surface temperature. It is suggested that models biases prevent the forecast systems from making the most of the improved initial conditions.

  5. Computer modeling of gastric parietal cell: significance of canalicular space, gland lumen, and variable canalicular [K+].

    PubMed

    Crothers, James M; Forte, John G; Machen, Terry E

    2016-05-01

    A computer model, constructed for evaluation of integrated functioning of cellular components involved in acid secretion by the gastric parietal cell, has provided new interpretations of older experimental evidence, showing the functional significance of a canalicular space separated from a mucosal bath by a gland lumen and also shedding light on basolateral Cl(-) transport. The model shows 1) changes in levels of parietal cell secretion (with stimulation or H-K-ATPase inhibitors) result mainly from changes in electrochemical driving forces for apical K(+) and Cl(-) efflux, as canalicular [K(+)] ([K(+)]can) increases or decreases with changes in apical H(+)/K(+) exchange rate; 2) H-K-ATPase inhibition in frog gastric mucosa would increase [K(+)]can similarly with low or high mucosal [K(+)], depolarizing apical membrane voltage similarly, so electrogenic H(+) pumping is not indicated by inhibition causing similar increase in transepithelial potential difference (Vt) with 4 and 80 mM mucosal K(+); 3) decreased H(+) secretion during strongly mucosal-positive voltage clamping is consistent with an electroneutral H-K-ATPase being inhibited by greatly decreased [K(+)]can (Michaelis-Menten mechanism); 4) slow initial change ("long time-constant transient") in current or Vt with clamping of Vt or current involves slow change in [K(+)]can; 5) the Na(+)-K(+)-2Cl(-) symporter (NKCC) is likely to have a significant role in Cl(-) influx, despite evidence that it is not necessary for acid secretion; and 6) relative contributions of Cl(-)/HCO3 (-) exchanger (AE2) and NKCC to Cl(-) influx would differ greatly between resting and stimulated states, possibly explaining reported differences in physiological characteristics of stimulated open-circuit Cl(-) secretion (≈H(+)) and resting short-circuit Cl(-) secretion (>H(+)). Copyright © 2016 the American Physiological Society.

  6. Modeling Potential Climatic Treeline of Great Basin Bristlecone Pine in the Snake Mountain Range, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Bruening, J. M.; Tran, T. J.; Bunn, A. G.; Salzer, M. W.; Weiss, S. B.

    2015-12-01

    Great Basin bristlecone pine (Pinus longaeva) is a valuable paleoclimate resource due to the climatic sensitivity of its annually-resolved rings. Recent work has shown that low growing season temperatures limit tree growth at the upper treeline ecotone. The presence of precisely dated remnant wood above modern treeline shows that this ecotone shifts at centennial timescales; in some areas during the Holocene climatic optimum treeline was 100 m higher than at present. A recent model from Paulsen and Körner (2014, doi:10.1007/s00035-014-0124-0) predicts global potential treeline position as a function of climate. The model develops three parameters necessary to sustain a temperature-limited treeline; a growing season longer than 94 days, defined by all days with a mean temperature >0.9 °C, and a mean temperature of 6.4 °C across the entire growing season. While maintaining impressive global accuracy in treeline prediction, these parameters are not specific to the semi-arid Great Basin bristlecone pine treelines in Nevada. In this study, we used 49 temperature sensors arrayed across approximately one square kilometer of complex terrain at treeline on Mount Washington to model temperatures using topographic indices. Results show relatively accurate prediction throughout the growing season (e.g., July average daily temperatures were modeled with an R2 of 0.80 and an RMSE of 0.29 °C). The modeled temperatures enabled calibration of a regional treeline model, yielding different parameters needed to predict potential treeline than the global model. Preliminary results indicate that modern Bristlecone pine treeline on and around Mount Washington occurs in areas with a longer growing season length (~160 days defined by all days with a mean temperature >0.9 °C) and a warmer seasonal mean temperature (~9 °C) than the global average. This work will provide a baseline data set on treeline position in the Snake Range derived only from parameters physiologically relevant to demography, and may assist in understanding climate refugia for this species.

  7. Numerical Solution of a 3-D Advection-Dispersion Model for Dissolved Oxygen Distribution in Facultative Ponds

    NASA Astrophysics Data System (ADS)

    Sunarsih; Sasongko, Dwi P.; Sutrisno

    2018-02-01

    This paper describes a mathematical model for the dissolved oxygen distribution in the plane of a facultative pond with a certain depth. The purpose of this paper is to determine the variation of dissolved oxygen concentration in facultative ponds. The 3-dimensional advection-diffusion equation is solved using the finite difference method Forward Time Central Space (FTCS). Numerical results show that the aerator greatly affects the occurrence of oxygen concentration variations in the facultative pond in the certain depth. The concentration of dissolved oxygen decreases as the depth of the pond increases.

  8. Experimente ueber den Einflusse von Metabolites und Antimetaboliten am Modell von Trichomonas Vaginalis. III. Mitteilung: Experimente mit Essentiellen Fettsaeuren (Experiments on the Influence of Metabolites and Antimetabolites on the Model of Trichomonas Vaginalis. III. Communication: Experiments with Essential Fatty Acids),

    DTIC Science & Technology

    The relationship between the double and trifold unsaturated fatty acids and Trichomonas vaginalis was tested. The experiments aimed at testing the...influence of vitamin F, linolic and linoleic acid upon multiplication of Trichomonas vaginalis . Vitamin F exerts trichomonacidal effect upon... Trichomonas vaginalis cultures. Linolic acid alone does not yet show great differences at concentrations of 0,01 to 0.05 mg/ml, as compared to the controls. At

  9. Replenishment policy for an inventory model under inflation

    NASA Astrophysics Data System (ADS)

    Singh, Vikramjeet; Saxena, Seema; Singh, Pushpinder; Mishra, Nitin Kumar

    2017-07-01

    The purpose of replenishment is to keep the flow of inventory in the system. To determine an optimal replenishment policy is a great challenge in developing an inventory model. Inflation is defined as the rate at which the prices of goods and services are rising over a time period. The cost parameters are affected by the rate of inflation. High rate of inflation affects the organizations financial conditions. Based on the above backdrop the present paper proposes the retailers replenishment policy for deteriorating items with different cycle lengths under inflation. The shortages are partially backlogged. At last numerical examples validate the results.

  10. Radiative Properties of Carriers in Cdse-Cds Core-Shell Heterostructured Nanocrystals of Various Geometries

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Dong, L.; Popov, S.; Friberg, A. T.

    2013-07-01

    We report a model on core-shell heterostructured nanocrystals with CdSe as the core and CdS as the shell. The model is based on one-band Schrödinger equation. Three different geometries, nanodot, nanorod, and nanobone, are implemented. The carrier localization regimes with these structures are simulated, compared, and analyzed. Based on the electron and hole wave functions, the carrier overlap integral that has a great impact on stimulated emission is further investigated numerically by a novel approach. Furthermore, the relation between the nanocrystal size and electron-hole recombination energy is also examined.

  11. Small scale rainfall simulators: Challenges for a future use in soil erosion research

    NASA Astrophysics Data System (ADS)

    Ries, Johannes B.; Iserloh, Thomas; Seeger, Manuel

    2013-04-01

    Rainfall simulation on micro-plot scale is a method used worldwide to assess the generation of overland flow, soil erosion, infiltration and interrelated processes such as soil sealing, crusting, splash and redistribution of solids and solutes. The produced data are of great significance not only for the analysis of the simulated processes, but also as a source of input-data for soil erosion modelling. The reliability of the data is therefore of paramount importance, and quality management of rainfall simulation procedure a general responsibility of the rainfall simulation community. This was an accepted outcome at the "International Rainfall Simulator Workshop 2011" at Trier University. The challenges of the present and near future use of small scale rainfall simulations concern the comparability of results and scales, the quality of the data for soil erosion modelling, and further technical developments to overcome physical limitations and constraints. Regarding the high number of research questions, different fields of application, and due to the great technical creativity of researchers, a large number of different types of rainfall simulators is available. But each of the devices produces a different rainfall, leading to different kinetic energy values influencing soil surface and erosion processes. Plot sizes are also variable, as well as the experimental simulation procedures. As a consequence, differing runoff and erosion results are produced. The presentation summarises the three important aspects of rainfall simulations, following a processual order: 1. Input-factor "rain" and its calibration 2. Surface-factor "plot" and its documentation 3. Output-factors "runoff" and "sediment concentration" Finally, general considerations about the limitations and challenges for further developments and applications of rainfall simulation data are presented.

  12. Species extinction thresholds in the face of spatially correlated periodic disturbance.

    PubMed

    Liao, Jinbao; Ying, Zhixia; Hiebeler, David E; Wang, Yeqiao; Takada, Takenori; Nijs, Ivan

    2015-10-20

    The spatial correlation of disturbance is gaining attention in landscape ecology, but knowledge is still lacking on how species traits determine extinction thresholds under spatially correlated disturbance regimes. Here we develop a pair approximation model to explore species extinction risk in a lattice-structured landscape subject to aggregated periodic disturbance. Increasing disturbance extent and frequency accelerated population extinction irrespective of whether dispersal was local or global. Spatial correlation of disturbance likewise increased species extinction risk, but only for local dispersers. This indicates that models based on randomly simulated disturbances (e.g., mean-field or non-spatial models) may underestimate real extinction rates. Compared to local dispersal, species with global dispersal tolerated more severe disturbance, suggesting that the spatial correlation of disturbance favors long-range dispersal from an evolutionary perspective. Following disturbance, intraspecific competition greatly enhanced the extinction risk of distance-limited dispersers, while it surprisingly did not influence the extinction thresholds of global dispersers, apart from decreasing population density to some degree. As species respond differently to disturbance regimes with different spatiotemporal properties, different regimes may accommodate different species.

  13. Convective heat transfer and pressure drop of aqua based TiO2 nanofluids at different diameters of nanoparticles: Data analysis and modeling with artificial neural network

    NASA Astrophysics Data System (ADS)

    Hemmat Esfe, Mohammad; Nadooshan, Afshin Ahmadi; Arshi, Ali; Alirezaie, Ali

    2018-03-01

    In this study, experimental data related to the Nusselt number and pressure drop of aqueous nanofluids of Titania is modeled and estimated by using ANN with 2 hidden layers and 8 neurons in each layer. Also in this study the effect of various effective variables in the Nusselt number and pressure drop is surveyed. This study indicated that the neural network modeling has been able to model experimental data with great accuracy. The modeling regression coefficient for the data of Nusselt number and relative pressure drop is 99.94% and 99.97% respectively. Besides, it represented that the increment of the Reynolds number and concentration made the increment of Nusselt number and pressure drop of aqueous nanofluid.

  14. Computer modeling in developmental biology: growing today, essential tomorrow.

    PubMed

    Sharpe, James

    2017-12-01

    D'Arcy Thompson was a true pioneer, applying mathematical concepts and analyses to the question of morphogenesis over 100 years ago. The centenary of his famous book, On Growth and Form , is therefore a great occasion on which to review the types of computer modeling now being pursued to understand the development of organs and organisms. Here, I present some of the latest modeling projects in the field, covering a wide range of developmental biology concepts, from molecular patterning to tissue morphogenesis. Rather than classifying them according to scientific question, or scale of problem, I focus instead on the different ways that modeling contributes to the scientific process and discuss the likely future of modeling in developmental biology. © 2017. Published by The Company of Biologists Ltd.

  15. Integrating observational and modelling systems for the management of the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Baird, M. E.; Jones, E. M.; Margvelashvili, N.; Mongin, M.; Rizwi, F.; Robson, B.; Schroeder, T.; Skerratt, J.; Steven, A. D.; Wild-Allen, K.

    2016-02-01

    Observational and modelling systems provide two sources of knowledge that must be combined to provide a more complete view than either observations or models alone can provide. Here we describe the eReefs coupled hydrodynamic, sediment and biogeochemical model that has been developed for the Great Barrier Reef; and the multiple observations that are used to constrain the model. Two contrasting examples of model - observational integration are highlighted. First we explore the carbon chemistry of the waters above the reef, for which observations are accurate, but expensive and therefore sparse, while model behaviour is highly skilful. For carbon chemistry, observations are used to constrain model parameterisation and quantify model error, with the model output itself providing the most useable knowledge for management purposes. In contrast, ocean colour provides inaccurate, but cheap and spatially and temporally extensive observations. Thus observations are best combined with the model in a data assimilating framework, where a custom-designed optical model has been developed for the purposes of incorporating ocean colour observations. The future management of Great Barrier Reef water quality will be based on an integration of observing and modelling systems, providing the most robust information available.

  16. Structural design models for tunnels in soft soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duddeck, H.; Erdmann, J.

    In 1982 the ITA (International Tunnelling Association) working group on structural design models for tunnelling published the answers to a questionnaire in the form of a synopsis. As a continuation of that work, results of an investigation on design models for soft ground tunnels are presented and a comparative review of the progress to date in this field is given. The main differences in the assumptions entering the different models are stated. Diagrams for the hoop forces, bending moments and radial displacements shows the differences in the design values evaluated for three different models: (1) the continuum models; (2) themore » design model by Muir Wood; and (3) the bedded beam model without bedding at the crown region. Because a comparison with free parameters necessitates analytical solutions, only circular cross-sections were investigated. Nevertheless the results of the investigation also may be valid to a great extent for noncircular cross-sections and a more refined numerical analyses. It can be shown that there is a trend toward agreement on the proper assumptions and on the design models applied either for shallow or for deep tunnels. As should be expected, the bending moments are sensitive with regard to the model chosen, whereas the hoop forces in the tunnel ring are rather unaffected by the change of ground and lining properties. The significance of the nonlinearity due to geometrical deformations or to plastic behavior is demonstrated from specific examples.« less

  17. The Effect of Lake Temperatures and Emissions on Ozone Exposure in the Western Great Lakes Region

    Treesearch

    Jerome D. Fast; Warren E. Heilman

    2003-01-01

    A meteorological-chemical model with a 12-km horizontal grid spacing was used to simulate the evolution of ozone over the western Great Lakes region during a 30-day period in the summer of 1999. Lake temperatures in the model were based on analyses derived from daily satellite measurements. The model performance was evaluated using operational surface and upper-air...

  18. The adventures of climate science in the sweet land of idle arguments

    NASA Astrophysics Data System (ADS)

    Winsberg, Eric; Goodwin, William Mark

    2016-05-01

    In a recent series of papers Roman Frigg, Leonard Smith, and several coauthors have developed a general epistemological argument designed to cast doubt on the capacity of a broad range of mathematical models to generate "decision relevant predictions." The presumptive targets of their argument are at least some of the modeling projects undertaken in contemporary climate science. In this paper, we trace and contrast two very different readings of the scope of their argument. We do this by considering the very different implications for climate science that these interpretations would have. Then, we lay out the structure of their argument-an argument by analogy-with an eye to identifying points at which certain epistemically significant distinctions might limit the force of the analogy. Finally, some of these epistemically significant distinctions are introduced and defended as relevant to a great many of the predictive mathematical modeling projects employed in contemporary climate science.

  19. Prediction of normalized biodiesel properties by simulation of multiple feedstock blends.

    PubMed

    García, Manuel; Gonzalo, Alberto; Sánchez, José Luis; Arauzo, Jesús; Peña, José Angel

    2010-06-01

    A continuous process for biodiesel production has been simulated using Aspen HYSYS V7.0 software. As fresh feed, feedstocks with a mild acid content have been used. The process flowsheet follows a traditional alkaline transesterification scheme constituted by esterification, transesterification and purification stages. Kinetic models taking into account the concentration of the different species have been employed in order to simulate the behavior of the CSTR reactors and the product distribution within the process. The comparison between experimental data found in literature and the predicted normalized properties, has been discussed. Additionally, a comparison between different thermodynamic packages has been performed. NRTL activity model has been selected as the most reliable of them. The combination of these models allows the prediction of 13 out of 25 parameters included in standard EN-14214:2003, and confers simulators a great value as predictive as well as optimization tool. (c) 2010 Elsevier Ltd. All rights reserved.

  20. A transfer learning approach for classification of clinical significant prostate cancers from mpMRI scans

    NASA Astrophysics Data System (ADS)

    Chen, Quan; Xu, Xiang; Hu, Shiliang; Li, Xiao; Zou, Qing; Li, Yunpeng

    2017-03-01

    Deep learning has shown a great potential in computer aided diagnosis. However, in many applications, large dataset is not available. This makes the training of a sophisticated deep learning neural network (DNN) difficult. In this study, we demonstrated that with transfer learning, we can quickly retrain start-of-the-art DNN models with limited data provided by the prostateX challenge. The training data consists of 330 lesions, only 78 were clinical significant. Efforts were made to balance the data during training. We used ImageNet pre-trained inceptionV3 and Vgg-16 model and obtained AUC of 0.81 and 0.83 respectively on the prostateX test data, good for a 4th place finish. We noticed that models trained for different prostate zone has different sensitivity. Applying scaling factors before merging the result improves the AUC for the final result.

  1. Fuzzy Neural Network-Based Interacting Multiple Model for Multi-Node Target Tracking Algorithm

    PubMed Central

    Sun, Baoliang; Jiang, Chunlan; Li, Ming

    2016-01-01

    An interacting multiple model for multi-node target tracking algorithm was proposed based on a fuzzy neural network (FNN) to solve the multi-node target tracking problem of wireless sensor networks (WSNs). Measured error variance was adaptively adjusted during the multiple model interacting output stage using the difference between the theoretical and estimated values of the measured error covariance matrix. The FNN fusion system was established during multi-node fusion to integrate with the target state estimated data from different nodes and consequently obtain network target state estimation. The feasibility of the algorithm was verified based on a network of nine detection nodes. Experimental results indicated that the proposed algorithm could trace the maneuvering target effectively under sensor failure and unknown system measurement errors. The proposed algorithm exhibited great practicability in the multi-node target tracking of WSNs. PMID:27809271

  2. Determination of adsorption parameters in numerical simulation for polymer flooding

    NASA Astrophysics Data System (ADS)

    Bao, Pengyu; Li, Aifen; Luo, Shuai; Dang, Xu

    2018-02-01

    A study on the determination of adsorption parameters for polymer flooding simulation was carried out. The study mainly includes polymer static adsorption and dynamic adsorption. The law of adsorption amount changing with polymer concentration and core permeability was presented, and the one-dimensional numerical model of CMG was established under the support of a large number of experimental data. The adsorption laws of adsorption experiments were applied to the one-dimensional numerical model to compare the influence of two adsorption laws on the historical matching results. The results show that the static adsorption and dynamic adsorption abide by different rules, and differ greatly in adsorption. If the static adsorption results were directly applied to the numerical model, the difficulty of the historical matching will increase. Therefore, dynamic adsorption tests in the porous medium are necessary before the process of parameter adjustment in order to achieve the ideal history matching result.

  3. [Modeling the ammonia volatilization from common urea and controlled releasing urea fertilizers in paddy soil of Taihui region of China by Jayaweera-Mikkelsen model].

    PubMed

    Li, Hui-lin; Han, Yong; Cai, Zu-cong

    2008-04-01

    The ammonia volatilization on the Typic Gleyi-stagnic Anthrosol with application of common urea and controlled release urea (LP-S100) fertilizers in the rice seasons in paddy soil of Taihui region of China was modeled by Jayaweera-Mikkelsen model. Results showed great difference of ammonia volatilization from two type fertilizers was detected with lysimeter experiment in the rice season. Nitrogen loss via ammonia volatilization after common urea application with conventional ways was 29%-35%, while only 5% of controlled release urea-N was volatilized. The Jayaweera-Mikkelsen model was over estimated the total amount of ammonia volatilization in the whole season, and great deviation from the measured data was obvious for the higher volatilization from common urea fertilizer. The estimated data were 2.95-4.19 times of the measures one for common urea treatments, while they were 1.19-1.40 times of those measured for LP-S100 treatments. The order of magnitude quotient was one of the indicators to evaluate the model estimation. The value of it was 0.8, which indicated the estimation of the model need improvement. Though sensitive analysis for the five parameters in the model was tested and amended the parameter of the concentration of NH4+ -N, a limited term was inducted in the model operation. The amended model got better results as the ratio of estimation to measured data was decreased to 1.12-1.28. The alga activity in the paddy field influenced ammonia volatilization and might make the failure of the model estimation of the original model.

  4. Culturally competent care: emphasis on understanding the people of Afghanistan, Afghanistan Americans, and Islamic culture and religion.

    PubMed

    Giger, J Newman; Davidhizar, R

    2002-06-01

    Since the attacks in New York and Washington, DC, in September 2001, increased racial and religious animosity has left Arabs, other Middle Easterners, Muslims, and those who bear physical resemblance to members of these groups, fearful. This article provides information about the people of Afghanistan, Afghanistan Americans, and Islamic culture and religion, which can greatly assist the nurse who is confronted with persons from diverse cultures during the provision of care. The Giger & Davidhizar Transcultural Assessment Model was first published in the International Nursing Review in 1990. This model is now used worldwide and provides an assessment model to assist in understanding cultural phenomena and individuals from different cultures.

  5. Modeling BAS Dysregulation in Bipolar Disorder.

    PubMed

    Hamaker, Ellen L; Grasman, Raoul P P P; Kamphuis, Jan Henk

    2016-08-01

    Time series analysis is a technique that can be used to analyze the data from a single subject and has great potential to investigate clinically relevant processes like affect regulation. This article uses time series models to investigate the assumed dysregulation of affect that is associated with bipolar disorder. By formulating a number of alternative models that capture different kinds of theoretically predicted dysregulation, and by comparing these in both bipolar patients and controls, we aim to illustrate the heuristic potential this method of analysis has for clinical psychology. We argue that, not only can time series analysis elucidate specific maladaptive dynamics associated with psychopathology, it may also be clinically applied in symptom monitoring and the evaluation of therapeutic interventions.

  6. Polarimetric SAR image classification based on discriminative dictionary learning model

    NASA Astrophysics Data System (ADS)

    Sang, Cheng Wei; Sun, Hong

    2018-03-01

    Polarimetric SAR (PolSAR) image classification is one of the important applications of PolSAR remote sensing. It is a difficult high-dimension nonlinear mapping problem, the sparse representations based on learning overcomplete dictionary have shown great potential to solve such problem. The overcomplete dictionary plays an important role in PolSAR image classification, however for PolSAR image complex scenes, features shared by different classes will weaken the discrimination of learned dictionary, so as to degrade classification performance. In this paper, we propose a novel overcomplete dictionary learning model to enhance the discrimination of dictionary. The learned overcomplete dictionary by the proposed model is more discriminative and very suitable for PolSAR classification.

  7. Final Report to the Office of Naval Research

    DTIC Science & Technology

    1991-10-18

    microparticles suspended in the water. The main objective of the research was to develop, and experimentally verify, a theoretical model for the Laser Doppler (LD...components). This design allows great flexibility for positioning and scanning the laser beam in the water. (2) Special polystyrene microparticles were used...in the experiments. These microparticles were very uniform in shape (spherical) and size. Three different sizes were used - 0.1pm, lpm and 10pm radius

  8. Exploiting Spatial Channel Occupancy Information in WLANs

    DTIC Science & Technology

    2014-05-15

    transmit signal UDP user datagram protocol WLAN wireless local area network ix Acknowledgements I owe a great debt of gratitude to my advisor, Professor...information. Unlike in wired networks , each node in a wireless network observes a different medium depending on its location. As a result, standard local... wireless LANs [15, 23, 29]. In [23], Li et. al. model the throughput of an 802.11 network using full spatial information. Their approach is from a

  9. Priority setting for invasive species management: risk assessment of Ponto-Caspian invasive species into Great Britain.

    PubMed

    Gallardo, Belinda; Aldridge, David C

    2013-03-01

    Invasive species drive important ecological and economic losses across wide geographies, with some regions supporting especially large numbers of nonnative species and consequently suffering relatively high impacts. For this reason, integrated risk assessments able to screen a suite of multiple invaders over large geographic areas are needed for prioritizing the allocation of limited resources. A total of 16 Ponto-Caspian aquatic species (10 gammarids, one isopod, two mysids, and three fishes) have been short-listed as recent or potential future invaders of British waters, whose introduction and spread is of high concern. In this study, we use multiple modeling techniques to assess their risk of establishment and spread into Great Britain. Climate suitability maps for these 16 species differed depending on the eastern and western distribution of species in continental Europe, which was related to their respective migration corridor: southern (Danube-Rhine rivers), and northern (Don and Volga rivers and Baltic lakes). Species whose suitability was high across large parts of Great Britain included four gammarids (Cheliorophium robustum, Dikerogammarus bispinosus, D. villosus, and Echinogammarus trichiatus) and a mysid (Hemimysis anomala). A climatic "heat map" combining the results of all 16 species together pointed to the southeast of England as the area most vulnerable to multiple invasions, particularly the Thames, Anglian, Severn, and Humber river basin districts. Regression models further suggested that alkalinity concentration > 120 mg/L in southeast England may favor the establishment of Ponto-Caspian invaders. The production of integrated risk maps for future invaders provides a means for the scientifically informed prioritization of resources toward particular species and geographic regions. Such tools have great utility in helping environmental managers focus efforts on the most effective prevention, management, and monitoring programs.

  10. The use of karst geomorphology for planning, hazard avoidance and development in Great Britain

    NASA Astrophysics Data System (ADS)

    Cooper, Anthony H.; Farrant, Andrew R.; Price, Simon J.

    2011-11-01

    Within Great Britain five main types of karstic rocks - dolomite, limestone, chalk, gypsum and salt - are present. Each presents a different type and severity of karstic geohazard which are related to the rock solubility and geological setting. Typical karstic features associated with these rocks have been databased by the British Geological Survey (BGS) with records of sinkholes, cave entrances, stream sinks, resurgences and building damage; data for more than half of the country has been gathered. BGS has manipulated digital map data, for bedrock and superficial deposits, with digital elevation slope models, superficial deposit thickness models, the karst data and expertly interpreted areas, to generate a derived dataset assessing the likelihood of subsidence due to karst collapse. This dataset is informed and verified by the karst database and marketed as part of the BGS GeoSure suite. It is currently used by environmental regulators, the insurance and construction industries, and the BGS semi-automated enquiry system. The database and derived datasets can be further combined and manipulated using GIS to provide other datasets that deal with specific problems. Sustainable drainage systems, some of which use soak-aways into the ground, are being encouraged in Great Britain, but in karst areas they can cause ground stability problems. Similarly, open loop ground source heat or cooling pump systems may induce subsidence if installed in certain types of karstic environments such as in chalk with overlying sand deposits. Groundwater abstraction also has the potential to trigger subsidence in karst areas. GIS manipulation of the karst information is allowing Great Britain to be zoned into areas suitable, or unsuitable, for such uses; it has the potential to become part of a suite of planning management tools for local and National Government to assess the long term sustainable use of the ground.

  11. The role of grazer predation strategies in the dynamics of consumer-resource based ecological models

    NASA Astrophysics Data System (ADS)

    Cropp, Roger; Moroz, Irene; Norbury, John

    2017-07-01

    We analyse a simple plankton system to provide a heuristic for more complex models such as Dynamic Green Ocean Models (DGOMs). Zooplankton foraging is either by generalist grazers that consume whatever they bump into or specialist grazers that actively seek particular prey. The zooplankton may further be classified as either facultative grazers that can survive on any of their prey or obligate grazers that depend on the presence of specific prey. A key result is that different prey dependencies can result in dramatically different impacts of grazing strategies on system outcomes. The grazing strategy can determine whether a system with obligate grazers will be stable, have regular, predictable cycles or be chaotic. Conversely, whether facultative zooplankton functioned as specialist or generalist grazers makes no qualitative difference to the dynamics of the system. These results demonstrate that the effect of different grazing strategies can be critically dependent on the grazer's dependency on specific prey. Great care must be taken when choosing functional forms for population interactions in DGOMs, particularly in scenarios such as climate change where parameters such as mortality and growth coefficients may change. A robust theoretical framework supporting model development and analysis is key to understanding how such choices can affect model properties and hence predictions.

  12. Direct Comparisons of Ice Cloud Microphysical Properties Simulated by the Community Atmosphere Model CAM5 with ARM SPartICus Observations

    NASA Astrophysics Data System (ADS)

    Wu, C.; Liu, X.; Zhang, K.; Diao, M.; Gettelman, A.

    2016-12-01

    Cirrus clouds in the upper troposphere play a key role in the Earth radiation budget, and their radiative forcing depends strongly on number concentration and size distribution of ice particles. In this study we evaluate the cloud microphysical properties simulated by the Community Atmosphere Model version 5.4 (CAM5) against the Small Particles in Cirrus (SPartICus) observations over the ARM South Great Plain (SGP) site between January and June 2010. Model simulation is performed using specific dynamics to preserve prognostic meteorology (U, V, and T) close to GEOS-5 analysis. Model results collocated with SPartICus flight tracks spatially and temporally are directly compared with the observations. We compare CAM5 simulated ice crystal number concentration (Ni), ice particle size distribution, ice water content (IWC), and Ni co-variances with temperature and vertical velocity with the statistics from SPartICus observations. All analyses are restricted to T ≤ -40°C and in a 6°×6° area centered at SGP. Model sensitivity tests are performed with different ice nucleation mechanisms and with the effects of pre-existing ice crystals to reflect the uncertainties in cirrus parameterizations. In addition, different threshold size for autoconversion of cloud ice to snow (Dcs) is also tested. We find that (1) a distinctly high Ni (100-1000 L-1) often occurred in the observations but is significantly underestimated in the model, which may be due to the smaller relative humidity with respect to ice (RHi) in the simulation that could suppress the homogeneous nucleation, (2) a positive correlation exists between Ni and vertical velocity variance (σw) at horizontal scales up to 50 km in the observation, and the model can reproduce this relationship but tends to underestimate Ni when σw is relatively small, (3) simulated Ni differs greatly among the sensitive experiments, and simulated IWC is also sensitive to the cirrus parameterizations but to a lesser extent. Moreover, the model produces much better ice particle sizes in terms of number-mean diameter (Dnm) but significantly underestimate Ni and IWC for all the designed sensitive experiments. Our results suggest that better representation of environmental conditions (e.g., RHi and water vapor) is needed to improve the formation and evolution of ice clouds in the model.

  13. Biotic immigration events, speciation, and the accumulation of biodiversity in the fossil record

    NASA Astrophysics Data System (ADS)

    Stigall, Alycia L.; Bauer, Jennifer E.; Lam, Adriane R.; Wright, David F.

    2017-01-01

    Biotic Immigration Events (BIMEs) record the large-scale dispersal of taxa from one biogeographic area to another and have significantly impacted biodiversity throughout geologic time. BIMEs associated with biodiversity increases have been linked to ecologic and evolutionary processes including niche partitioning, species packing, and higher speciation rates. Yet substantial biodiversity decline has also been documented following BIMEs due to elevated extinction and/or reduced speciation rates. In this review, we develop a conceptual model for biodiversity accumulation that links BIMEs and geographic isolation with local (α) diversity, regional (β) diversity, and global (γ) diversity metrics. Within the model, BIME intervals are characterized by colonization of existing species within new geographic regions and a lack of successful speciation events. Thus, there is no change in γ-diversity, and α-diversity increases at the cost of β-diversity. An interval of regional isolation follows in which lineage splitting results in successful speciation events and diversity increases across all three metrics. Alternation of these two regimes can result in substantial biodiversity accumulation. We tested this conceptual model using a series of case studies from the paleontological record. We primarily focus on two intervals during the Middle through Late Ordovician Period (470-458 Ma): the globally pervasive BIMEs during the Great Ordovician Biodiversification Event (GOBE) and a regional BIME, the Richmondian Invasion. We further test the conceptual model by examining the Great Devonian Interchange, Neogene mollusk migrations and diversification, and the Great American Biotic Interchange. Paleontological data accord well with model predictions. Constraining the mechanisms of biodiversity accumulation provides context for conservation biology. Because α-, β-, and γ-diversity are semi-independent, different techniques should be considered for sustaining various diversity partitions. Maintaining natural migration routes and population sizes among isolated regions are vital to preserving both extant biodiversity and biogeographic pathways requisite for future diversity generation.

  14. Spatial phylogenetics of the native California flora.

    PubMed

    Thornhill, Andrew H; Baldwin, Bruce G; Freyman, William A; Nosratinia, Sonia; Kling, Matthew M; Morueta-Holme, Naia; Madsen, Thomas P; Ackerly, David D; Mishler, Brent D

    2017-10-26

    California is a world floristic biodiversity hotspot where the terms neo- and paleo-endemism were first applied. Using spatial phylogenetics, it is now possible to evaluate biodiversity from an evolutionary standpoint, including discovering significant areas of neo- and paleo-endemism, by combining spatial information from museum collections and DNA-based phylogenies. Here we used a distributional dataset of 1.39 million herbarium specimens, a phylogeny of 1083 operational taxonomic units (OTUs) and 9 genes, and a spatial randomization test to identify regions of significant phylogenetic diversity, relative phylogenetic diversity, and phylogenetic endemism (PE), as well as to conduct a categorical analysis of neo- and paleo-endemism (CANAPE). We found (1) extensive phylogenetic clustering in the South Coast Ranges, southern Great Valley, and deserts of California; (2) significant concentrations of short branches in the Mojave and Great Basin Deserts and the South Coast Ranges and long branches in the northern Great Valley, Sierra Nevada foothills, and the northwestern and southwestern parts of the state; (3) significant concentrations of paleo-endemism in Northwestern California, the northern Great Valley, and western Sonoran Desert, and neo-endemism in the White-Inyo Range, northern Mojave Desert, and southern Channel Islands. Multiple analyses were run to observe the effects on significance patterns of using different phylogenetic tree topologies (uncalibrated trees versus time-calibrated ultrametric trees) and using different representations of OTU ranges (herbarium specimen locations versus species distribution models). These analyses showed that examining the geographic distributions of branch lengths in a statistical framework adds a new dimension to California floristics that, in comparison with climatic data, helps to illuminate causes of endemism. In particular, the concentration of significant PE in more arid regions of California extends previous ideas about aridity as an evolutionary stimulus. The patterns seen are largely robust to phylogenetic uncertainty and time calibration but are sensitive to the use of occurrence data versus modeled ranges, indicating that special attention toward improving geographic distributional data should be top priority in the future for advancing understanding of spatial patterns of biodiversity.

  15. Evaluating the behavior of polychlorinated biphenyl compounds in Lake Superior using a dynamic multimedia model

    NASA Astrophysics Data System (ADS)

    Khan, T.; Perlinger, J. A.; Urban, N. R.

    2017-12-01

    Certain toxic, persistent, bioaccumulative, and semivolatile compounds known as atmosphere-surface exchangeable pollutants or ASEPs are emitted into the environment by primary sources, are transported, deposited to water surfaces, and can be later re-emitted causing the water to act as a secondary source. Polychlorinated biphenyl (PCB) compounds, a class of ASEPs, are of major concern in the Laurentian Great Lakes because of their historical use primarily as additives to oils and industrial fluids, and discharge from industrial sources. Following the ban on production in the U.S. in 1979, atmospheric concentrations of PCBs in the Lake Superior region decreased rapidly. Subsequently, PCB concentrations in the lake surface water also reached near equilibrium as the atmospheric levels of PCBs declined. However, previous studies on long-term PCB levels and trends in lake trout and walleye suggested that the initial rate of decline of PCB concentrations in fish has leveled off in Lake Superior. In this study, a dynamic multimedia flux model was developed with the objective to investigate the observed levelling off of PCB concentrations in Lake Superior fish. The model structure consists of two water layers (the epilimnion and the hypolimnion), and the surface mixed sediment layer, while atmospheric deposition is the primary external pathway of PCB inputs to the lake. The model was applied for different PCB congeners having a range of hydrophobicity and volatility. Using this model, we compare the long-term trends in predicted PCB concentrations in different environmental media with relevant available measurements for Lake Superior. We examine the seasonal depositional and exchange patterns, the relative importance of different process terms, and provide the most probable source of the current observed PCB levels in Lake Superior fish. In addition, we evaluate the role of current atmospheric PCB levels in sustaining the observed fish concentrations and appraise the need for continuous atmospheric PCB monitoring by the Great Lakes Integrated Atmospheric Deposition Network. By combining the modeled lake and biota response times resulting from atmospheric PCB inputs, we predict the time scale for safe fish consumption in Lake Superior.

  16. Observations, models, and mechanisms of failure of surface rocks surrounding planetary surface loads

    NASA Technical Reports Server (NTRS)

    Schultz, R. A.; Zuber, M. T.

    1994-01-01

    Geophysical models of flexural stresses in an elastic lithosphere due to an axisymmetric surface load typically predict a transition with increased distance from the center of the load of radial thrust faults to strike-slip faults to concentric normal faults. These model predictions are in conflict with the absence of annular zones of strike-slip faults around prominent loads such as lunar maria, Martian volcanoes, and the Martian Tharsis rise. We suggest that this paradox arises from difficulties in relating failure criteria for brittle rocks to the stress models. Indications that model stresses are inappropriate for use in fault-type prediction include (1) tensile principal stresses larger than realistic values of rock tensile strength, and/or (2) stress differences significantly larger than those allowed by rock-strength criteria. Predictions of surface faulting that are consistent with observations can be obtained instead by using tensile and shear failure criteria, along with calculated stress differences and trajectories, with model stress states not greatly in excess of the maximum allowed by rock fracture criteria.

  17. Optimizing Blasting’s Air Overpressure Prediction Model using Swarm Intelligence

    NASA Astrophysics Data System (ADS)

    Nur Asmawisham Alel, Mohd; Ruben Anak Upom, Mark; Asnida Abdullah, Rini; Hazreek Zainal Abidin, Mohd

    2018-04-01

    Air overpressure (AOp) resulting from blasting can cause damage and nuisance to nearby civilians. Thus, it is important to be able to predict AOp accurately. In this study, 8 different Artificial Neural Network (ANN) were developed for the purpose of prediction of AOp. The ANN models were trained using different variants of Particle Swarm Optimization (PSO) algorithm. AOp predictions were also made using an empirical equation, as suggested by United States Bureau of Mines (USBM), to serve as a benchmark. In order to develop the models, 76 blasting operations in Hulu Langat were investigated. All the ANN models were found to outperform the USBM equation in three performance metrics; root mean square error (RMSE), mean absolute percentage error (MAPE) and coefficient of determination (R2). Using a performance ranking method, MSO-Rand-Mut was determined to be the best prediction model for AOp with a performance metric of RMSE=2.18, MAPE=1.73% and R2=0.97. The result shows that ANN models trained using PSO are capable of predicting AOp with great accuracy.

  18. A novel visual saliency analysis model based on dynamic multiple feature combination strategy

    NASA Astrophysics Data System (ADS)

    Lv, Jing; Ye, Qi; Lv, Wen; Zhang, Libao

    2017-06-01

    The human visual system can quickly focus on a small number of salient objects. This process was known as visual saliency analysis and these salient objects are called focus of attention (FOA). The visual saliency analysis mechanism can be used to extract the salient regions and analyze saliency of object in an image, which is time-saving and can avoid unnecessary costs of computing resources. In this paper, a novel visual saliency analysis model based on dynamic multiple feature combination strategy is introduced. In the proposed model, we first generate multi-scale feature maps of intensity, color and orientation features using Gaussian pyramids and the center-surround difference. Then, we evaluate the contribution of all feature maps to the saliency map according to the area of salient regions and their average intensity, and attach different weights to different features according to their importance. Finally, we choose the largest salient region generated by the region growing method to perform the evaluation. Experimental results show that the proposed model cannot only achieve higher accuracy in saliency map computation compared with other traditional saliency analysis models, but also extract salient regions with arbitrary shapes, which is of great value for the image analysis and understanding.

  19. Sensitivity analysis of key components in large-scale hydroeconomic models

    NASA Astrophysics Data System (ADS)

    Medellin-Azuara, J.; Connell, C. R.; Lund, J. R.; Howitt, R. E.

    2008-12-01

    This paper explores the likely impact of different estimation methods in key components of hydro-economic models such as hydrology and economic costs or benefits, using the CALVIN hydro-economic optimization for water supply in California. In perform our analysis using two climate scenarios: historical and warm-dry. The components compared were perturbed hydrology using six versus eighteen basins, highly-elastic urban water demands, and different valuation of agricultural water scarcity. Results indicate that large scale hydroeconomic hydro-economic models are often rather robust to a variety of estimation methods of ancillary models and components. Increasing the level of detail in the hydrologic representation of this system might not greatly affect overall estimates of climate and its effects and adaptations for California's water supply. More price responsive urban water demands will have a limited role in allocating water optimally among competing uses. Different estimation methods for the economic value of water and scarcity in agriculture may influence economically optimal water allocation; however land conversion patterns may have a stronger influence in this allocation. Overall optimization results of large-scale hydro-economic models remain useful for a wide range of assumptions in eliciting promising water management alternatives.

  20. A supply chain model to improve the beef quality distribution using investment analysis: A case study

    NASA Astrophysics Data System (ADS)

    Lupita, Alessandra; Rangkuti, Sabrina Heriza; Sutopo, Wahyudi; Hisjam, Muh.

    2017-11-01

    There are significant differences related to the quality and price of the beef commodity in traditional market and modern market in Indonesia. Those are caused by very different treatments of the commodity. The different treatments are in the slaughter lines, the transportation from the abattoir to the outlet, the display system, and the control system. If the problem is not solved by the Government, the gap will result a great loss of the consumer regarding to the quality and sustainability of traditional traders business because of the declining interest in purchasing beef in the traditional markets. This article aims to improve the quality of beef in traditional markets. This study proposed A Supply Chain Model that involves the schemes of investment and government incentive for improving the distribution system. The supply chain model is can be formulated using the Mix Integer Linear Programming (MILP) and solved using the IBM®ILOG®CPLEX software. The results show that the proposed model can be used to determine the priority of programs for improving the quality and sustainability business of traditional beef merchants. By using the models, The Government can make a decision to consider incentives for improving the condition.

  1. Lessons Learned from Stakeholder-Driven Modeling in the Western Lake Erie Basin

    NASA Astrophysics Data System (ADS)

    Muenich, R. L.; Read, J.; Vaccaro, L.; Kalcic, M. M.; Scavia, D.

    2017-12-01

    Lake Erie's history includes a great environmental success story. Recognizing the impact of high phosphorus loads from point sources, the United States and Canada 1972 Great Lakes Water Quality Agreement set load reduction targets to reduce algae blooms and hypoxia. The Lake responded quickly to those reductions and it was declared a success. However, since the mid-1990s, Lake Erie's algal blooms and hypoxia have returned, and this time with a dominant algae species that produces toxins. Return of the algal blooms and hypoxia is again driven by phosphorus loads, but this time a major source is the agriculturally-dominated Maumee River watershed that covers NW Ohio, NE Indiana, and SE Michigan, and the hypoxic extent has been shown to be driven by Maumee River loads plus those from the bi-national and multiple land-use St. Clair - Detroit River system. Stakeholders in the Lake Erie watershed have a long history of engagement with environmental policy, including modeling and monitoring efforts. This talk will focus on the application of interdisciplinary, stakeholder-driven modeling efforts aimed at understanding the primary phosphorus sources and potential pathways to reduce these sources and the resulting algal blooms and hypoxia in Lake Erie. We will discuss the challenges, such as engaging users with different goals, benefits to modeling, such as improvements in modeling data, and new research questions emerging from these modeling efforts that are driven by end-user needs.

  2. Psychiatry and fads: why is this field different from all other fields?

    PubMed

    Shorter, Edward

    2013-10-01

    Fads in psychiatry are little more than bad ideas with short half-lives. They have arisen because of the great discontinuities that have swept psychiatry unlike other specialties in the 20th century: the transition in the 1920s from asylum-based biological psychiatry to psychoanalysis, and the transition in the 1960s from psychoanalysis to a biological model based on psychopharmacology. In no other medical specialty has the knowledge base been scrapped and rebuilt, and then again scrapped and rebuilt. In these great transitions, when psychiatry each time has had to reconstruct from scratch, bad ideas have crept in with good. Psychiatry, in its heavy use of consensus conferences, is often unable to employ science as a means of discarding fads, which, once installed, are often difficult to remove. Each of the great paradigms of psychiatry in the last hundred years has given rise to fads, and psychopharmacology is no exception, with faddish uses of neurotransmitter doctrine claiming centre stage. Only when psychiatry becomes firmly linked to the neurosciences will its subjugation to the turbulence of faddism be moderated.

  3. A carbon balance model for the great dismal swamp ecosystem

    USGS Publications Warehouse

    Sleeter, Rachel; Sleeter, Benjamin M.; Williams, Brianna; Hogan, Dianna; Hawbaker, Todd J.; Zhu, Zhiliang

    2017-01-01

    BackgroundCarbon storage potential has become an important consideration for land management and planning in the United States. The ability to assess ecosystem carbon balance can help land managers understand the benefits and tradeoffs between different management strategies. This paper demonstrates an application of the Land Use and Carbon Scenario Simulator (LUCAS) model developed for local-scale land management at the Great Dismal Swamp National Wildlife Refuge. We estimate the net ecosystem carbon balance by considering past ecosystem disturbances resulting from storm damage, fire, and land management actions including hydrologic inundation, vegetation clearing, and replanting.ResultsWe modeled the annual ecosystem carbon stock and flow rates for the 30-year historic time period of 1985–2015, using age-structured forest growth curves and known data for disturbance events and management activities. The 30-year total net ecosystem production was estimated to be a net sink of 0.97 Tg C. When a hurricane and six historic fire events were considered in the simulation, the Great Dismal Swamp became a net source of 0.89 Tg C. The cumulative above and below-ground carbon loss estimated from the South One and Lateral West fire events totaled 1.70 Tg C, while management activities removed an additional 0.01 Tg C. The carbon loss in below-ground biomass alone totaled 1.38 Tg C, with the balance (0.31 Tg C) coming from above-ground biomass and detritus.ConclusionsNatural disturbances substantially impact net ecosystem carbon balance in the Great Dismal Swamp. Through alternative management actions such as re-wetting, below-ground biomass loss may have been avoided, resulting in the added carbon storage capacity of 1.38 Tg. Based on two model assumptions used to simulate the peat system, (a burn scar totaling 70 cm in depth, and the soil carbon accumulation rate of 0.36 t C/ha−1/year−1 for Atlantic white cedar), the total soil carbon loss from the South One and Lateral West fires would take approximately 1740 years to re-amass. Due to the impractical time horizon this presents for land managers, this particular loss is considered permanent. Going forward, the baseline carbon stock and flow parameters presented here will be used as reference conditions to model future scenarios of land management and disturbance.

  4. A carbon balance model for the great dismal swamp ecosystem.

    PubMed

    Sleeter, Rachel; Sleeter, Benjamin M; Williams, Brianna; Hogan, Dianna; Hawbaker, Todd; Zhu, Zhiliang

    2017-12-01

    Carbon storage potential has become an important consideration for land management and planning in the United States. The ability to assess ecosystem carbon balance can help land managers understand the benefits and tradeoffs between different management strategies. This paper demonstrates an application of the Land Use and Carbon Scenario Simulator (LUCAS) model developed for local-scale land management at the Great Dismal Swamp National Wildlife Refuge. We estimate the net ecosystem carbon balance by considering past ecosystem disturbances resulting from storm damage, fire, and land management actions including hydrologic inundation, vegetation clearing, and replanting. We modeled the annual ecosystem carbon stock and flow rates for the 30-year historic time period of 1985-2015, using age-structured forest growth curves and known data for disturbance events and management activities. The 30-year total net ecosystem production was estimated to be a net sink of 0.97 Tg C. When a hurricane and six historic fire events were considered in the simulation, the Great Dismal Swamp became a net source of 0.89 Tg C. The cumulative above and below-ground carbon loss estimated from the South One and Lateral West fire events totaled 1.70 Tg C, while management activities removed an additional 0.01 Tg C. The carbon loss in below-ground biomass alone totaled 1.38 Tg C, with the balance (0.31 Tg C) coming from above-ground biomass and detritus. Natural disturbances substantially impact net ecosystem carbon balance in the Great Dismal Swamp. Through alternative management actions such as re-wetting, below-ground biomass loss may have been avoided, resulting in the added carbon storage capacity of 1.38 Tg. Based on two model assumptions used to simulate the peat system, (a burn scar totaling 70 cm in depth, and the soil carbon accumulation rate of 0.36 t C/ha -1 /year -1 for Atlantic white cedar), the total soil carbon loss from the South One and Lateral West fires would take approximately 1740 years to re-amass. Due to the impractical time horizon this presents for land managers, this particular loss is considered permanent. Going forward, the baseline carbon stock and flow parameters presented here will be used as reference conditions to model future scenarios of land management and disturbance.

  5. Fine-scale modeling of bristlecone pine treeline position in the Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Bruening, Jamis M.; Tran, Tyler J.; Bunn, Andrew G.; Weiss, Stuart B.; Salzer, Matthew W.

    2017-01-01

    Great Basin bristlecone pine (Pinus longaeva) and foxtail pine (Pinus balfouriana) are valuable paleoclimate resources due to their longevity and climatic sensitivity of their annually-resolved rings. Treeline research has shown that growing season temperatures limit tree growth at and just below the upper treeline. In the Great Basin, the presence of precisely dated remnant wood above modern treeline shows that the treeline ecotone shifts at centennial timescales tracking long-term changes in climate; in some areas during the Holocene climatic optimum treeline was 100 meters higher than at present. Regional treeline position models built exclusively from climate data may identify characteristics specific to Great Basin treelines and inform future physiological studies, providing a measure of climate sensitivity specific to bristlecone and foxtail pine treelines. This study implements a topoclimatic analysis—using topographic variables to explain patterns in surface temperatures across diverse mountainous terrain—to model the treeline position of three semi-arid bristlecone and/or foxtail pine treelines in the Great Basin as a function of growing season length and mean temperature calculated from in situ measurements. Results indicate: (1) the treeline sites used in this study are similar to other treelines globally, and require a growing season length of between 147-153 days and average temperature ranging from 5.5°C-7.2°C, (2) site-specific treeline position models may be improved through topoclimatic analysis and (3) treeline position in the Great Basin is likely out of equilibrium with the current climate, indicating a possible future upslope shift in treeline position.

  6. On the representation of aerosol activation and its influence on model-derived estimates of the aerosol indirect effect

    NASA Astrophysics Data System (ADS)

    Rothenberg, Daniel; Avramov, Alexander; Wang, Chien

    2018-06-01

    Interactions between aerosol particles and clouds contribute a great deal of uncertainty to the scientific community's understanding of anthropogenic climate forcing. Aerosol particles serve as the nucleation sites for cloud droplets, establishing a direct linkage between anthropogenic particulate emissions and clouds in the climate system. To resolve this linkage, the community has developed parameterizations of aerosol activation which can be used in global climate models to interactively predict cloud droplet number concentrations (CDNCs). However, different activation schemes can exhibit different sensitivities to aerosol perturbations in different meteorological or pollution regimes. To assess the impact these different sensitivities have on climate forcing, we have coupled three different core activation schemes and variants with the CESM-MARC (two-Moment, Multi-Modal, Mixing-state-resolving Aerosol model for Research of Climate (MARC) coupled with the National Center for Atmospheric Research's (NCAR) Community Earth System Model (CESM; version 1.2)). Although the model produces a reasonable present-day CDNC climatology when compared with observations regardless of the scheme used, ΔCDNCs between the present and preindustrial era regionally increase by over 100 % in zonal mean when using the most sensitive parameterization. These differences in activation sensitivity may lead to a different evolution of the model meteorology, and ultimately to a spread of over 0.8 W m-2 in global average shortwave indirect effect (AIE) diagnosed from the model, a range which is as large as the inter-model spread from the AeroCom intercomparison. Model-derived AIE strongly scales with the simulated preindustrial CDNC burden, and those models with the greatest preindustrial CDNC tend to have the smallest AIE, regardless of their ΔCDNC. This suggests that present-day evaluations of aerosol-climate models may not provide useful constraints on the magnitude of the AIE, which will arise from differences in model estimates of the preindustrial aerosol and cloud climatology.

  7. Animal models of non-alcoholic fatty liver disease: current perspectives and recent advances.

    PubMed

    Lau, Jennie Ka Ching; Zhang, Xiang; Yu, Jun

    2017-01-01

    Non-alcoholic fatty liver disease (NAFLD) is a continuous spectrum of diseases characterized by excessive lipid accumulation in hepatocytes. NAFLD progresses from simple liver steatosis to non-alcoholic steatohepatitis and, in more severe cases, to liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Because of its growing worldwide prevalence, various animal models that mirror both the histopathology and the pathophysiology of each stage of human NAFLD have been developed. The selection of appropriate animal models continues to be one of the key questions faced in this field. This review presents a critical analysis of the histopathology and pathogenesis of NAFLD, the most frequently used and recently developed animal models for each stage of NAFLD and NAFLD-induced HCC, the main mechanisms involved in the experimental pathogenesis of NAFLD in different animal models, and a brief summary of recent therapeutic targets found by the use of animal models. Integrating the data from human disease with those from animal studies indicates that, although current animal models provide critical guidance in understanding specific stages of NAFLD pathogenesis and progression, further research is necessary to develop more accurate models that better mimic the disease spectrum, in order to provide both increased mechanistic understanding and identification/testing of novel therapeutic approaches. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

  8. Sensitivity of U.S. summer precipitation to model resolution and convective parameterizations across gray zone resolutions

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Leung, L. Ruby; Zhao, Chun; Hagos, Samson

    2017-03-01

    Simulating summer precipitation is a significant challenge for climate models that rely on cumulus parameterizations to represent moist convection processes. Motivated by recent advances in computing that support very high-resolution modeling, this study aims to systematically evaluate the effects of model resolution and convective parameterizations across the gray zone resolutions. Simulations using the Weather Research and Forecasting model were conducted at grid spacings of 36 km, 12 km, and 4 km for two summers over the conterminous U.S. The convection-permitting simulations at 4 km grid spacing are most skillful in reproducing the observed precipitation spatial distributions and diurnal variability. Notable differences are found between simulations with the traditional Kain-Fritsch (KF) and the scale-aware Grell-Freitas (GF) convection schemes, with the latter more skillful in capturing the nocturnal timing in the Great Plains and North American monsoon regions. The GF scheme also simulates a smoother transition from convective to large-scale precipitation as resolution increases, resulting in reduced sensitivity to model resolution compared to the KF scheme. Nonhydrostatic dynamics has a positive impact on precipitation over complex terrain even at 12 km and 36 km grid spacings. With nudging of the winds toward observations, we show that the conspicuous warm biases in the Southern Great Plains are related to precipitation biases induced by large-scale circulation biases, which are insensitive to model resolution. Overall, notable improvements in simulating summer rainfall and its diurnal variability through convection-permitting modeling and scale-aware parameterizations suggest promising venues for improving climate simulations of water cycle processes.

  9. Sensitivity of Great Lakes Ice Cover to Air Temperature

    NASA Astrophysics Data System (ADS)

    Austin, J. A.; Titze, D.

    2016-12-01

    Ice cover is shown to exhibit a strong linear sensitivity to air temperature. Upwards of 70% of ice cover variability on all of the Great Lakes can be explained in terms of air temperature, alone, and nearly 90% of ice cover variability can be explained in some lakes. Ice cover sensitivity to air temperature is high, and a difference in seasonally-averaged (Dec-May) air temperature on the order of 1°C to 2°C can be the difference between a low-ice year and a moderate- to high- ice year. The total amount of seasonal ice cover is most influenced by air temperatures during the meteorological winter, contemporaneous with the time of ice formation. Air temperature conditions during the pre-winter conditioning period and during the spring melting period were found to have less of an impact on seasonal ice cover. This is likely due to the fact that there is a negative feedback mechanism when heat loss goes toward cooling the lake, but a positive feedback mechanism when heat loss goes toward ice formation. Ice cover sensitivity relationships were compared between shallow coastal regions of the Great Lakes and similarly shallow smaller, inland lakes. It was found that the sensitivity to air temperature is similar between these coastal regions and smaller lakes, but that the absolute amount of ice that forms varies significantly between small lakes and the Great Lakes, and amongst the Great Lakes themselves. The Lake Superior application of the ROMS three-dimensional hydrodynamic numerical model verifies a deterministic linear relationship between air temperature and ice cover, which is also strongest around the period of ice formation. When the Lake Superior bathymetry is experimentally adjusted by a constant vertical multiplier, average lake depth is shown to have a nonlinear relationship with seasonal ice cover, and this nonlinearity may be associated with a nonlinear increase in the lake-wide volume of the surface mixed layer.

  10. Reusable launch vehicle model uncertainties impact analysis

    NASA Astrophysics Data System (ADS)

    Chen, Jiaye; Mu, Rongjun; Zhang, Xin; Deng, Yanpeng

    2018-03-01

    Reusable launch vehicle(RLV) has the typical characteristics of complex aerodynamic shape and propulsion system coupling, and the flight environment is highly complicated and intensely changeable. So its model has large uncertainty, which makes the nominal system quite different from the real system. Therefore, studying the influences caused by the uncertainties on the stability of the control system is of great significance for the controller design. In order to improve the performance of RLV, this paper proposes the approach of analyzing the influence of the model uncertainties. According to the typical RLV, the coupling dynamic and kinematics models are built. Then different factors that cause uncertainties during building the model are analyzed and summed up. After that, the model uncertainties are expressed according to the additive uncertainty model. Choosing the uncertainties matrix's maximum singular values as the boundary model, and selecting the uncertainties matrix's norm to show t how much the uncertainty factors influence is on the stability of the control system . The simulation results illustrate that the inertial factors have the largest influence on the stability of the system, and it is necessary and important to take the model uncertainties into consideration before the designing the controller of this kind of aircraft( like RLV, etc).

  11. Determination of key diffusion and partition parameters and their use in migration modelling of benzophenone from low-density polyethylene (LDPE) into different foodstuffs.

    PubMed

    Maia, Joaquim; Rodríguez-Bernaldo de Quirós, Ana; Sendón, Raquel; Cruz, José Manuel; Seiler, Annika; Franz, Roland; Simoneau, Catherine; Castle, Laurence; Driffield, Malcolm; Mercea, Peter; Oldring, Peter; Tosa, Valer; Paseiro, Perfecto

    2016-01-01

    The mass transport process (migration) of a model substance, benzophenone (BZP), from LDPE into selected foodstuffs at three temperatures was studied. A mathematical model based on Fick's Second Law of Diffusion was used to simulate the migration process and a good correlation between experimental and predicted values was found. The acquired results contribute to a better understanding of this phenomenon and the parameters so-derived were incorporated into the migration module of the recently launched FACET tool (Flavourings, Additives and Food Contact Materials Exposure Tool). The migration tests were carried out at different time-temperature conditions, and BZP was extracted from LDPE and analysed by HPLC-DAD. With all data, the parameters for migration modelling (diffusion and partition coefficients) were calculated. Results showed that the diffusion coefficients (within both the polymer and the foodstuff) are greatly affected by the temperature and food's physical state, whereas the partition coefficient was affected significantly only by food characteristics, particularly fat content.

  12. Situation models and retrieval interference: pictures and words.

    PubMed

    Radvansky, Gabriel A; Copeland, David E

    2006-07-01

    Previous studies have found that interference in long-term memory retrieval occurs when information cannot be integrated into a single situation model, but this interference is greatly reduced or absent when the information can be so integrated. The current study looked at the influence of presentation format-sentences or pictures-on this observed pattern. When sentences were used at memorisation and recognition, a spatial organisation was observed. In contrast, when pictures were used, a different pattern of results was observed. Specifically, there was an overall speed-up in response times, and consistent evidence of interference. Possible explanations for this difference were examined in a third experiment using pictures during learning, but sentences during recognition. The results from Experiment 3 were consistent with the organisation of information into situation models in long-term memory, even from pictures. This suggests that people do create situation models when learning pictures, but their recognition memory may be oriented around more "verbatim", surface-form memories of the pictures.

  13. Macrocell path loss prediction using artificial intelligence techniques

    NASA Astrophysics Data System (ADS)

    Usman, Abraham U.; Okereke, Okpo U.; Omizegba, Elijah E.

    2014-04-01

    The prediction of propagation loss is a practical non-linear function approximation problem which linear regression or auto-regression models are limited in their ability to handle. However, some computational Intelligence techniques such as artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFISs) have been shown to have great ability to handle non-linear function approximation and prediction problems. In this study, the multiple layer perceptron neural network (MLP-NN), radial basis function neural network (RBF-NN) and an ANFIS network were trained using actual signal strength measurement taken at certain suburban areas of Bauchi metropolis, Nigeria. The trained networks were then used to predict propagation losses at the stated areas under differing conditions. The predictions were compared with the prediction accuracy of the popular Hata model. It was observed that ANFIS model gave a better fit in all cases having higher R2 values in each case and on average is more robust than MLP and RBF models as it generalises better to a different data.

  14. Population modelling to describe pharmacokinetics of amiodarone in rats: relevance of plasma protein and tissue depot binding.

    PubMed

    Campos Moreno, Eduardo; Merino Sanjuán, Matilde; Merino, Virginia; Nácher, Amparo; Martín Algarra, Rafael V; Casabó, Vicente G

    2007-02-01

    The objective of this paper was to characterize the disposition phase of AM in rats, after different high doses and modalities of i.v. administration. Three fitting programs, WINNONLIN, ADAPT II and NONMEM were employed. The two-stage fitting methods led to different results, none of which can adequately explain amiodarone's behaviour, although a great amount of data per subject is available. The non-linear mixed effect modelling approach allows satisfactory estimation of population pharmacokinetic parameters, and their respective variability. The best model to define the AM pharmacokinetic profile is a two-compartment model, with saturable and dynamic plasma protein binding and linear tissular depot dynamic binding. These results indicate that peripheral tissues act as depots, causing an important fall in AM plasma levels in the first moment after dosing. Later, the return of the drug from these depots causes a slow increase in serum concentration whenever the dose is reduced.

  15. [Three-dimensional Finite Element Analysis to T-shaped Fracture of Pelvis in Sitting Position].

    PubMed

    Fan, Yanping; Lei, Jianyin; Liu, Haibo; Li, Zhiqiang; Cai, Xianhua; Chen, Weiyi

    2015-10-01

    We developed a three-dimensional finite element model of the pelvis. According to Letournel methods, we established a pelvis model of T-shaped fracture with its three different fixation systems, i. e. double column reconstruction plates, anterior column plate combined with posterior column screws and anterior column plate combined with quadrilateral area screws. It was found that the pelvic model was effective and could be used to simulate the mechanical behavior of the pelvis. Three fixation systems had great therapeutic effect on the T-shaped fracture. All fixation systems could increase the stiffness of the model, decrease the stress concentration level and decrease the displacement difference along the fracture line. The quadrilateral area screws, which were drilled into cortical bone, could generate beneficial effect on the T-type fracture. Therefore, the third fixation system mentioned above (i. e. the anterior column plate combined with quadrilateral area screws) has the best biomechanical stability to the T-type fracture.

  16. Parametric study of different contributors to tumor thermal profile

    NASA Astrophysics Data System (ADS)

    Tepper, Michal; Gannot, Israel

    2014-03-01

    Treating cancer is one of the major challenges of modern medicine. There is great interest in assessing tumor development in in vivo animal and human models, as well as in in vitro experiments. Existing methods are either limited by cost and availability or by their low accuracy and reproducibility. Thermography holds the potential of being a noninvasive, low-cost, irradiative and easy-to-use method for tumor monitoring. Tumors can be detected in thermal images due to their relatively higher or lower temperature compared to the temperature of the healthy skin surrounding them. Extensive research is performed to show the validity of thermography as an efficient method for tumor detection and the possibility of extracting tumor properties from thermal images, showing promising results. However, deducing from one type of experiment to others is difficult due to the differences in tumor properties, especially between different types of tumors or different species. There is a need in a research linking different types of tumor experiments. In this research, parametric analysis of possible contributors to tumor thermal profiles was performed. The effect of tumor geometric, physical and thermal properties was studied, both independently and together, in phantom model experiments and computer simulations. Theoretical and experimental results were cross-correlated to validate the models used and increase the accuracy of simulated complex tumor models. The contribution of different parameters in various tumor scenarios was estimated and the implication of these differences on the observed thermal profiles was studied. The correlation between animal and human models is discussed.

  17. Conceptual ecological models to guide integrated landscape monitoring of the Great Basin

    USGS Publications Warehouse

    Miller, D.M.; Finn, S.P.; Woodward, Andrea; Torregrosa, Alicia; Miller, M.E.; Bedford, D.R.; Brasher, A.M.

    2010-01-01

    The Great Basin Integrated Landscape Monitoring Pilot Project was developed in response to the need for a monitoring and predictive capability that addresses changes in broad landscapes and waterscapes. Human communities and needs are nested within landscapes formed by interactions among the hydrosphere, geosphere, and biosphere. Understanding the complex processes that shape landscapes and deriving ways to manage them sustainably while meeting human needs require sophisticated modeling and monitoring. This document summarizes current understanding of ecosystem structure and function for many of the ecosystems within the Great Basin using conceptual models. The conceptual ecosystem models identify key ecological components and processes, identify external drivers, develop a hierarchical set of models that address both site and landscape attributes, inform regional monitoring strategy, and identify critical gaps in our knowledge of ecosystem function. The report also illustrates an approach for temporal and spatial scaling from site-specific models to landscape models and for understanding cumulative effects. Eventually, conceptual models can provide a structure for designing monitoring programs, interpreting monitoring and other data, and assessing the accuracy of our understanding of ecosystem functions and processes.

  18. A fast mass spring model solver for high-resolution elastic objects

    NASA Astrophysics Data System (ADS)

    Zheng, Mianlun; Yuan, Zhiyong; Zhu, Weixu; Zhang, Guian

    2017-03-01

    Real-time simulation of elastic objects is of great importance for computer graphics and virtual reality applications. The fast mass spring model solver can achieve visually realistic simulation in an efficient way. Unfortunately, this method suffers from resolution limitations and lack of mechanical realism for a surface geometry model, which greatly restricts its application. To tackle these problems, in this paper we propose a fast mass spring model solver for high-resolution elastic objects. First, we project the complex surface geometry model into a set of uniform grid cells as cages through *cages mean value coordinate method to reflect its internal structure and mechanics properties. Then, we replace the original Cholesky decomposition method in the fast mass spring model solver with a conjugate gradient method, which can make the fast mass spring model solver more efficient for detailed surface geometry models. Finally, we propose a graphics processing unit accelerated parallel algorithm for the conjugate gradient method. Experimental results show that our method can realize efficient deformation simulation of 3D elastic objects with visual reality and physical fidelity, which has a great potential for applications in computer animation.

  19. Generation of Cardiomyocytes from Pluripotent Stem Cells.

    PubMed

    Nakahama, Hiroko; Di Pasquale, Elisa

    2016-01-01

    The advent of pluripotent stem cells (PSCs) enabled a multitude of studies for modeling the development of diseases and testing pharmaceutical therapeutic potential in vitro. These PSCs have been differentiated to multiple cell types to demonstrate its pluripotent potential, including cardiomyocytes (CMs). However, the efficiency and efficacy of differentiation vary greatly between different cell lines and methods. Here, we describe two different methods for acquiring CMs from human pluripotent lines. One method involves the generation of embryoid bodies, which emulates the natural developmental process, while the other method chemically activates the canonical Wnt signaling pathway to induce a monolayer of cardiac differentiation.

  20. The role of guessing and boundaries on date estimation biases.

    PubMed

    Lee, Peter James; Brown, Norman R

    2004-08-01

    This study investigates the causes of event-dating biases. Two hundred participants provided knowledge ratings and date estimates for 64 news events. Four independent groups dated the same events under different boundary constraints. Analysis across all responses showed that forward telescoping decreased with boundary age, concurring with the boundary-effects model. With guesses removed from the data set, backward telescoping was greatly reduced, but forward telescoping was unaffected by boundaries. This dissociation indicates that multiple factors (e.g., guessing and reconstructive strategies) are responsible for different dating biases and argue against a boundary explanation of forward telescoping.

  1. Attenuation of landscape signals through the coastal zone: A basin-wide analysis for the US Great Lakes shoreline, circa 2002-2010

    EPA Science Inventory

    We compare statistical models developed to describe a) the relationship between watershed properties and Great Lakes coastal wetlands with b) the relationship developed between watershed properties and the Great Lakes nearshore. Using landscape metrics from the GLEI project (Dan...

  2. Long-term hydrometeorological trends in the Midwest region based on a century long gridded hydrometeorological dataset and simulations from a macro-scale hydrology model

    NASA Astrophysics Data System (ADS)

    Chiu, C. M.; Hamlet, A. F.

    2014-12-01

    Climate change is likely to impact the Great Lakes region and Midwest region via changes in Great Lakes water levels, agricultural impacts, river flooding, urban stormwater impacts, drought, water temperature, and impacts to terrestrial and aquatic ecosystems. Self-consistent and temporally homogeneous long-term data sets of precipitation and temperature over the entire Great Lakes region and Midwest regions are needed to provide inputs to hydrologic models, assess historical trends in hydroclimatic variables, and downscale global and regional-scale climate models. To support these needs a new hybrid gridded meteorological forcing dataset at 1/16 degree resolution based on data from co-op station records, the U. S Historical Climatology Network (HCN) , the Historical Canadian Climate Database (HCCD), and Precipitation Regression on Independent Slopes Method (PRISM) has been assembled over the Great Lakes and Midwest region from 1915-2012 at daily time step. These data were then used as inputs to the macro-scale Variable Infiltration Capacity (VIC) hydrology model, implemented over the Midwest and Great Lakes region at 1/16 degree resolution, to produce simulated hydrologic variables that are amenable to long-term trend analysis. Trends in precipitation and temperature from the new meteorological driving data sets, as well as simulated hydrometeorological variables such as snowpack, soil moisture, runoff, and evaporation over the 20th century are presented and discussed.

  3. TESTING TREE-CLASSIFIER VARIANTS AND ALTERNATE MODELING METHODOLOGIES IN THE EAST GREAT BASIN MAPPING UNIT OF THE SOUTHWEST REGIONAL GAP ANALYSIS PROJECT (SW REGAP)

    EPA Science Inventory

    We tested two methods for dataset generation and model construction, and three tree-classifier variants to identify the most parsimonious and thematically accurate mapping methodology for the SW ReGAP project. Competing methodologies were tested in the East Great Basin mapping un...

  4. Interpreting the cross-sectional flow field in a river bank based on a genetic-algorithm two-dimensional heat-transport method (GA-VS2DH)

    NASA Astrophysics Data System (ADS)

    Su, Xiaoru; Shu, Longcang; Chen, Xunhong; Lu, Chengpeng; Wen, Zhonghui

    2016-12-01

    Interactions between surface waters and groundwater are of great significance for evaluating water resources and protecting ecosystem health. Heat as a tracer method is widely used in determination of the interactive exchange with high precision, low cost and great convenience. The flow in a river-bank cross-section occurs in vertical and lateral directions. In order to depict the flow path and its spatial distribution in bank areas, a genetic algorithm (GA) two-dimensional (2-D) heat-transport nested-loop method for variably saturated sediments, GA-VS2DH, was developed based on Microsoft Visual Basic 6.0. VS2DH was applied to model a 2-D bank-water flow field and GA was used to calibrate the model automatically by minimizing the difference between observed and simulated temperatures in bank areas. A hypothetical model was developed to assess the reliability of GA-VS2DH in inverse modeling in a river-bank system. Some benchmark tests were conducted to recognize the capability of GA-VS2DH. The results indicated that the simulated seepage velocity and parameters associated with GA-VS2DH were acceptable and reliable. Then GA-VS2DH was applied to two field sites in China with different sedimentary materials, to verify the reliability of the method. GA-VS2DH could be applied in interpreting the cross-sectional 2-D water flow field. The estimates of horizontal hydraulic conductivity at the Dawen River and Qinhuai River sites are 1.317 and 0.015 m/day, which correspond to sand and clay sediment in the two sites, respectively.

  5. Inventory and transport of plastic debris in the Laurentian Great Lakes.

    PubMed

    Hoffman, Matthew J; Hittinger, Eric

    2017-02-15

    Plastic pollution in the world's oceans has received much attention, but there has been increasing concern about the high concentrations of plastic debris in the Laurentian Great Lakes. Using census data and methodologies used to study ocean debris we derive a first estimate of 9887 metric tonnes per year of plastic debris entering the Great Lakes. These estimates are translated into population-dependent particle inputs which are advected using currents from a hydrodynamic model to map the spatial distribution of plastic debris in the Great Lakes. Model results compare favorably with previously published sampling data. The samples are used to calibrate the model to derive surface microplastic mass estimates of 0.0211 metric tonnes in Lake Superior, 1.44 metric tonnes in Huron, and 4.41 metric tonnes in Erie. These results have many applications, including informing cleanup efforts, helping target pollution prevention, and understanding the inter-state or international flows of plastic pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Application of adaptive Kalman filter in vehicle laser Doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Fan, Zhe; Sun, Qiao; Du, Lei; Bai, Jie; Liu, Jingyun

    2018-03-01

    Due to the variation of road conditions and motor characteristics of vehicle, great root-mean-square (rms) error and outliers would be caused. Application of Kalman filter in laser Doppler velocimetry(LDV) is important to improve the velocity measurement accuracy. In this paper, the state-space model is built by using current statistical model. A strategy containing two steps is adopted to make the filter adaptive and robust. First, the acceleration variance is adaptively adjusted by using the difference of predictive observation and measured observation. Second, the outliers would be identified and the measured noise variance would be adjusted according to the orthogonal property of innovation to reduce the impaction of outliers. The laboratory rotating table experiments show that adaptive Kalman filter greatly reduces the rms error from 0.59 cm/s to 0.22 cm/s and has eliminated all the outliers. Road experiments compared with a microwave radar show that the rms error of LDV is 0.0218 m/s, and it proves that the adaptive Kalman filtering is suitable for vehicle speed signal processing.

  7. Genetic and morphological characterisation of the Ankole Longhorn cattle in the African Great Lakes region.

    PubMed

    Ndumu, Deo B; Baumung, Roswitha; Hanotte, Olivier; Wurzinger, Maria; Okeyo, Mwai A; Jianlin, Han; Kibogo, Harrison; Sölkner, Johann

    2008-01-01

    The study investigated the population structure, diversity and differentiation of almost all of the ecotypes representing the African Ankole Longhorn cattle breed on the basis of morphometric (shape and size), genotypic and spatial distance data. Twentyone morphometric measurements were used to describe the morphology of 439 individuals from 11 sub-populations located in five countries around the Great Lakes region of central and eastern Africa. Additionally, 472 individuals were genotyped using 15 DNA microsatellites. Femoral length, horn length, horn circumference, rump height, body length and fore-limb circumference showed the largest differences between regions. An overall FST index indicated that 2.7% of the total genetic variation was present among sub-populations. The least differentiation was observed between the two sub-populations of Mbarara south and Luwero in Uganda, while the highest level of differentiation was observed between the Mugamba in Burundi and Malagarasi in Tanzania. An estimated membership of four for the inferred clusters from a model-based Bayesian approach was obtained. Both analyses on distance-based and model-based methods consistently isolated the Mugamba sub-population in Burundi from the others.

  8. Comparison of radio frequency energy absorption in ear and eye region of children and adults at 900, 1800 and 2450 MHz.

    PubMed

    Keshvari, J; Lang, S

    2005-09-21

    The increasing use of mobile communication devices, especially mobile phones by children, has triggered discussions on whether there is a larger radio frequency (RF) energy absorption in the heads of children compared to that of adults. The objective of this study was to clarify possible differences in RF energy absorption in the head region of children and adults using computational techniques. Using the finite-difference time-domain (FDTD) computational method, a set of specific absorption rate (SAR) calculations were performed for anatomically correct adult and child head models. A half-wave dipole was used as an exposure source at 900, 1800 and 2450 MHz frequencies. The ear and eye regions were studied representing realistic exposure scenarios to current and upcoming mobile wireless communication devices. The differences in absorption were compared with the maximum energy absorption of the head model. Four magnetic resonance imaging (MRI) based head models, one female, one adult, two child head models, aged 3 and 7 years, were used. The head models greatly differ from each other in terms of size, external shape and the internal anatomy. The same tissue dielectric parameters were applied for all models. The analyses suggest that the SAR difference between adults and children is more likely caused by the general differences in the head anatomy and geometry of the individuals rather than age. It seems that the external shape of the head and the distribution of different tissues within the head play a significant role in the RF energy absorption.

  9. The influence of land cover on surface energy partitioning and evaporative fraction regimes in the U.S. Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Bagley, Justin E.; Kueppers, Lara M.; Billesbach, Dave P.; Williams, Ian N.; Biraud, Sébastien C.; Torn, Margaret S.

    2017-06-01

    Land-atmosphere interactions are important to climate prediction, but the underlying effects of surface forcing of the atmosphere are not well understood. In the U.S. Southern Great Plains, grassland/pasture and winter wheat are the dominant land covers but have distinct growing periods that may differently influence land-atmosphere coupling during spring and summer. Variables that influence surface flux partitioning can change seasonally, depending on the state of local vegetation. Here we use surface observations from multiple sites in the U.S. Department of Energy Atmospheric Radiation Measurement Southern Great Plains Climate Research Facility and statistical modeling at a paired grassland/agricultural site within this facility to quantify land cover influence on surface energy balance and variables controlling evaporative fraction (latent heat flux normalized by the sum of sensible and latent heat fluxes). We demonstrate that the radiative balance and evaporative fraction are closely related to green leaf area at both winter wheat and grassland/pasture sites and that the early summer harvest of winter wheat abruptly shifts the relationship between evaporative fraction and surface state variables. Prior to harvest, evaporative fraction of winter wheat is strongly influenced by leaf area and soil-atmosphere temperature differences. After harvest, variations in soil moisture have a stronger effect on evaporative fraction. This is in contrast with grassland/pasture sites, where variation in green leaf area has a large influence on evaporative fraction throughout spring and summer, and changes in soil-atmosphere temperature difference and soil moisture are of relatively minor importance.

  10. Patterns of craniofacial integration in extant Homo, Pan, and Gorilla.

    PubMed

    Polanski, Joshua M; Franciscus, Robert G

    2006-09-01

    Brain size increased greatly during Pleistocene human evolution, while overall facial and dentognathic size decreased markedly. This mosaic pattern is due to either selective forces that acted uniquely on each functional unit in a modularized, developmentally uncoupled craniofacial complex, or alternatively, selection that acted primarily on one unit, with the other responding passively as part of a coevolved set of ontogenetically and evolutionarily integrated structures. Using conditional independence modeling on homologous linear measurements of the height, breadth, and depth of the cranium in Pan (n = 95), Gorilla (n = 102), and recent Homo (n = 120), we reject the null hypothesis of equal levels of overall cranial integration. While all three groups share the pattern of greater neurocranial integration with distinct separation between the face and neurocranium (modularization), family differences do exist. The apes are more integrated in their entire crania, but display a particularly strong pattern of integration within the facial complex related to prognathism. Modern humans display virtually no facial integration, a pattern which is likely related to their markedly decreased facial projection. Modern humans also differ from their great ape counterparts in being more integrated within the breadth dimension of the cranial vault, likely tied to the increase in brain size and eventual globularity seen in human evolution. That the modern human integration pattern differs from the ancestral African great ape pattern along the inverse neurocranial-facial trend seen in human evolution indicates that this shift in the pattern of integration is evolutionarily significant, and may help to clarify aspects of the current debate over defining modern humans. 2006 Wiley-Liss, Inc.

  11. Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations

    NASA Astrophysics Data System (ADS)

    Miguez-Macho, Gonzalo; Stenchikov, Georgiy L.; Robock, Alan

    2004-07-01

    It is well known that regional climate simulations are sensitive to the size and position of the domain chosen for calculations. Here we study the physical mechanisms of this sensitivity. We conducted simulations with the Regional Atmospheric Modeling System (RAMS) for June 2000 over North America at 50 km horizontal resolution using a 7500 km × 5400 km grid and NCEP/NCAR reanalysis as boundary conditions. The position of the domain was displaced in several directions, always maintaining the U.S. in the interior, out of the buffer zone along the lateral boundaries. Circulation biases developed a large scale structure, organized by the Rocky Mountains, resulting from a systematic shifting of the synoptic wave trains that crossed the domain. The distortion of the large-scale circulation was produced by interaction of the modeled flow with the lateral boundaries of the nested domain and varied when the position of the grid was altered. This changed the large-scale environment among the different simulations and translated into diverse conditions for the development of the mesoscale processes that produce most of precipitation for the Great Plains in the summer season. As a consequence, precipitation results varied, sometimes greatly, among the experiments with the different grid positions. To eliminate the dependence of results on the position of the domain, we used spectral nudging of waves longer than 2500 km above the boundary layer. Moisture was not nudged at any level. This constrained the synoptic scales to follow reanalysis while allowing the model to develop the small-scale dynamics responsible for the rainfall. Nudging of the large scales successfully eliminated the variation of precipitation results when the grid was moved. We suggest that this technique is necessary for all downscaling studies with regional models with domain sizes of a few thousand kilometers and larger embedded in global models.

  12. Cultural Consumption of the Overseas Chinese Garden in the Process of Cross-cultural Communication

    NASA Astrophysics Data System (ADS)

    Zhai, L.

    2015-08-01

    When referring to the tangible cultural heritage, people tend to concern more about the conservation and research of the entity of the tangible heritage than the cross-cultural communication of the cultural heritage which is also one of the most important components of the preservation of the cultural heritage. As an exotic new born of the cultural heritage, the entity born from the cross-cultural communication inherits the properties of the cultural heritage on the one hand, and on the other hand generates diversities as a result of the differences based on social, cultural and environment. And the business model is one of the most important reasons for the production of diversities. There's no doubt that a good form of business model makes great significance to the cross-cultural communication. Therefore, the study of the business model of cultural heritage in the process of cross-cultural communication will not only contributes to the deeper understanding towards the phenomenon of the cultural heritage's cross-cultural communication, but also leads to the introspection to the tangible cultural heritage itself. In this way, a new kind of conservative notion could take form, and the goal of protecting cultural heritage could be achieved. Thus the Chinese Garden is a typical representation of the cultural heritage which makes great sense in the cross-cultural communication. As a kind of tangible cultural heritage, the Chinese gardens are well preserved in different regions in China. While the spirits of the Chinese garden carry forward through the construction of the Chinese gardens abroad during the cross-cultural communication. As a new kind of form of the cross-cultural communication of the cultural heritage, on the one hand, the Chinese gardens overseas built ever since China's Reform and Opening express creatively of the materialist and the spirituality of the traditional Chinese Garden, and on the other hand, those Chinese gardens overseas face all kinds of tough issued such as investment, business model and management. The exploration of the reasons for these tough issues makes a great sense of the study towards the cross-cultural communication and preservation of the cultural heritage. In this paper, the development of the whole overseas gardens and the cultural consumption of the Chinese gardens in Europe is generalized, then two typical cases are selected from those two categories mentioned above. By way of field study and interviews, it shows different strategies towards cultural consumption and provides constructive advice for the survival and development of overseas Chinese gardens.

  13. Online Estimation of Model Parameters of Lithium-Ion Battery Using the Cubature Kalman Filter

    NASA Astrophysics Data System (ADS)

    Tian, Yong; Yan, Rusheng; Tian, Jindong; Zhou, Shijie; Hu, Chao

    2017-11-01

    Online estimation of state variables, including state-of-charge (SOC), state-of-energy (SOE) and state-of-health (SOH) is greatly crucial for the operation safety of lithium-ion battery. In order to improve estimation accuracy of these state variables, a precise battery model needs to be established. As the lithium-ion battery is a nonlinear time-varying system, the model parameters significantly vary with many factors, such as ambient temperature, discharge rate and depth of discharge, etc. This paper presents an online estimation method of model parameters for lithium-ion battery based on the cubature Kalman filter. The commonly used first-order resistor-capacitor equivalent circuit model is selected as the battery model, based on which the model parameters are estimated online. Experimental results show that the presented method can accurately track the parameters variation at different scenarios.

  14. Empirical radio propagation model for DTV applied to non-homogeneous paths and different climates using machine learning techniques.

    PubMed

    Gomes, Igor Ruiz; Gomes, Cristiane Ruiz; Gomes, Herminio Simões; Cavalcante, Gervásio Protásio Dos Santos

    2018-01-01

    The establishment and improvement of transmission systems rely on models that take into account, (among other factors), the geographical features of the region, as these can lead to signal degradation. This is particularly important in Brazil, where there is a great diversity of scenery and climates. This article proposes an outdoor empirical radio propagation model for Ultra High Frequency (UHF) band, that estimates received power values that can be applied to non-homogeneous paths and different climates, this last being of an innovative character for the UHF band. Different artificial intelligence techniques were chosen on a theoretical and computational basis and made it possible to introduce, organize and describe quantitative and qualitative data quickly and efficiently, and thus determine the received power in a wide range of settings and climates. The proposed model was applied to a city in the Amazon region with heterogeneous paths, wooded urban areas and fractions of freshwater among other factors. Measurement campaigns were conducted to obtain data signals from two digital TV stations in the metropolitan area of the city of Belém, in the State of Pará, to design, compare and validate the model. The results are consistent since the model shows a clear difference between the two seasons of the studied year and small RMS errors in all the cases studied.

  15. Empirical radio propagation model for DTV applied to non-homogeneous paths and different climates using machine learning techniques

    PubMed Central

    Gomes, Herminio Simões; Cavalcante, Gervásio Protásio dos Santos

    2018-01-01

    The establishment and improvement of transmission systems rely on models that take into account, (among other factors), the geographical features of the region, as these can lead to signal degradation. This is particularly important in Brazil, where there is a great diversity of scenery and climates. This article proposes an outdoor empirical radio propagation model for Ultra High Frequency (UHF) band, that estimates received power values that can be applied to non-homogeneous paths and different climates, this last being of an innovative character for the UHF band. Different artificial intelligence techniques were chosen on a theoretical and computational basis and made it possible to introduce, organize and describe quantitative and qualitative data quickly and efficiently, and thus determine the received power in a wide range of settings and climates. The proposed model was applied to a city in the Amazon region with heterogeneous paths, wooded urban areas and fractions of freshwater among other factors. Measurement campaigns were conducted to obtain data signals from two digital TV stations in the metropolitan area of the city of Belém, in the State of Pará, to design, compare and validate the model. The results are consistent since the model shows a clear difference between the two seasons of the studied year and small RMS errors in all the cases studied. PMID:29596503

  16. Human Exposure Assessment for Air Pollution.

    PubMed

    Han, Bin; Hu, Li-Wen; Bai, Zhipeng

    2017-01-01

    Assessment of human exposure to air pollution is a fundamental part of the more general process of health risk assessment. The measurement methods for exposure assessment now include personal exposure monitoring, indoor-outdoor sampling, mobile monitoring, and exposure assessment modeling (such as proximity models, interpolation model, air dispersion models, and land-use regression (LUR) models). Among these methods, personal exposure measurement is considered to be the most accurate method of pollutant exposure assessment until now, since it can better quantify observed differences and better reflect exposure among smaller groups of people at ground level. And since the great differences of geographical environment, source distribution, pollution characteristics, economic conditions, and living habits, there is a wide range of differences between indoor, outdoor, and individual air pollution exposure in different regions of China. In general, the indoor particles in most Chinese families comprise infiltrated outdoor particles, particles generated indoors, and a few secondary organic aerosol particles, and in most cases, outdoor particle pollution concentrations are a major contributor to indoor concentrations in China. Furthermore, since the time, energy, and expense are limited, it is difficult to measure the concentration of pollutants for each individual. In recent years, obtaining the concentration of air pollutants by using a variety of exposure assessment models is becoming a main method which could solve the problem of the increasing number of individuals in epidemiology studies.

  17. Heterogeneous Deformable Modeling of Bio-Tissues and Haptic Force Rendering for Bio-Object Modeling

    NASA Astrophysics Data System (ADS)

    Lin, Shiyong; Lee, Yuan-Shin; Narayan, Roger J.

    This paper presents a novel technique for modeling soft biological tissues as well as the development of an innovative interface for bio-manufacturing and medical applications. Heterogeneous deformable models may be used to represent the actual internal structures of deformable biological objects, which possess multiple components and nonuniform material properties. Both heterogeneous deformable object modeling and accurate haptic rendering can greatly enhance the realism and fidelity of virtual reality environments. In this paper, a tri-ray node snapping algorithm is proposed to generate a volumetric heterogeneous deformable model from a set of object interface surfaces between different materials. A constrained local static integration method is presented for simulating deformation and accurate force feedback based on the material properties of a heterogeneous structure. Biological soft tissue modeling is used as an example to demonstrate the proposed techniques. By integrating the heterogeneous deformable model into a virtual environment, users can both observe different materials inside a deformable object as well as interact with it by touching the deformable object using a haptic device. The presented techniques can be used for surgical simulation, bio-product design, bio-manufacturing, and medical applications.

  18. [A simulation study with finite element model on the unequal loss of peripheral vision caused by acceleration].

    PubMed

    Geng, Xiaoqi; Liu, Xiaoyu; Liu, Songyang; Xu, Yan; Zhao, Xianliang; Wang, Jie; Fan, Yubo

    2017-04-01

    An unequal loss of peripheral vision may happen with high sustaining multi-axis acceleration, leading to a great potential flight safety hazard. In the present research, finite element method was used to study the mechanism of unequal loss of peripheral vision. Firstly, a 3D geometric model of skull was developed based on the adult computer tomography (CT) images. The model of double eyes was created by mirroring with the previous right eye model. Then, the double-eye model was matched to the skull model, and fat was filled between eyeballs and skull. Acceleration loads of head-to-foot (G z ), right-to-left (G y ), chest-to-back (G x ) and multi-axis directions were applied to the current model to simulate dynamic response of retina by explicit dynamics solution. The results showed that the relative strain of double eyes was 25.7% under multi-axis acceleration load. Moreover, the strain distributions showed a significant difference among acceleration loaded in different directions. It indicated that a finite element model of double eyes was an effective means to study the mechanism of an unequal loss of peripheral vision at sustaining high multi-axis acceleration.

  19. Structure–Function Relationships in Highly Modified Shoots of Cactaceae

    PubMed Central

    MAUSETH, JAMES D.

    2006-01-01

    • Background and Aims Cacti are extremely diverse structurally and ecologically, and so modified as to be intimidating to many biologists. Yet all have the same organization as most dicots, none differs fundamentally from Arabidopsis or other model plants. This review explains cactus shoot structure, discusses relationships between structure, ecology, development and evolution, and indicates areas where research on cacti is necessary to test general theories of morphogenesis. • Scope Cactus leaves are diverse; all cacti have foliage leaves; many intermediate stages in evolutionary reduction of leaves are still present; floral shoots often have large, complex leaves whereas vegetative shoots have microscopic leaves. Spines are modified bud scales, some secrete sugar as extra-floral nectaries. Many cacti have juvenile/adult phases in which the flowering adult phase (a cephalium) differs greatly from the juvenile; in some, one side of a shoot becomes adult, all other sides continue to grow as the juvenile phase. Flowers are inverted: the exterior of a cactus ‘flower’ is a hollow vegetative shoot with internodes, nodes, leaves and spines, whereas floral organs occur inside, with petals physically above stamens. Many cacti have cortical bundles vascularizing the cortex, however broad it evolves to be, thus keeping surface tissues alive. Great width results in great weight of weak parenchymatous shoots, correlated with reduced branching. Reduced numbers of shoot apices is compensated by great increases in number of meristematic cells within individual SAMs. Ribs and tubercles allow shoots to swell without tearing during wet seasons. Shoot epidermis and cortex cells live and function for decades then convert to cork cambium. Many modifications permit water storage within cactus wood itself, adjacent to vessels. PMID:16820405

  20. Factors affecting interactions between sulphonate-terminated dendrimers and proteins: A three case study.

    PubMed

    González-García, Estefanía; Maly, Marek; de la Mata, Francisco Javier; Gómez, Rafael; Marina, María Luisa; García, María Concepción

    2017-01-01

    This work proposes a deep study on the interactions between sulphonate-terminated carbosilane dendrimers and proteins. Three different proteins with different molecular weights and isoelectric points were employed and different pHs, dendrimer concentrations and generations were tested. Variations in fluorescence intensity and emission wavelength were used as protein-dendrimer interaction probes. Interaction between dendrimers and proteins greatly depended on the protein itself and pH. Other important issues were the dendrimer concentration and generation. Protein-dendrimer interactions were favored under acidic working conditions when proteins were positively charged. Moreover, in general, high dendrimer generations promoted these interactions. Modeling of protein-dendrimer interactions allowed to understand the different behaviors observed for every protein. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Visual Working Memory Capacity: From Psychophysics and Neurobiology to Individual Differences

    PubMed Central

    Luck, Steven J.; Vogel, Edward K.

    2013-01-01

    Visual working memory capacity is of great interest because it is strongly correlated with overall cognitive ability, can be understood at the level of neural circuits, and is easily measured. Recent studies have shown that capacity influences tasks ranging from saccade targeting to analogical reasoning. A debate has arisen over whether capacity is constrained by a limited number of discrete representations or by an infinitely divisible resource, but the empirical evidence and neural network models currently favor a discrete item limit. Capacity differs markedly across individuals and groups, and recent research indicates that some of these differences reflect true differences in storage capacity whereas others reflect variations in the ability to use memory capacity efficiently. PMID:23850263

  2. Complete description of the optical path difference of a novel spectral zooming imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Li, Jie; Wu, Haiying; Qi, Chun

    2018-03-01

    A complete description of the optical path difference of a novel spectral zooming imaging spectrometer (SZIS) is presented. SZIS is designed based on two identical Wollaston prisms with an adjustable air gap. Thus, interferogram with arbitrary spectral resolution and great reduction of spectral image size can be conveniently formed to adapt to different application requirements. Ray tracing modeling in arbitrary incidence with a quasi-parallel-plate approximation scheme is proposed to analyze the optical path difference of SZIS. In order to know the characteristics of the apparatus, exact calculations of the corresponding spectral resolution and field of view are both derived and analyzed in detail. We also present a comparison of calculation and experiment to prove the validity of the theory.

  3. Can the super model (SUMO) method improve hydrological simulations? Exploratory tests with the GR hydrological models

    NASA Astrophysics Data System (ADS)

    Santos, Léonard; Thirel, Guillaume; Perrin, Charles

    2017-04-01

    Errors made by hydrological models may come from a problem in parameter estimation, uncertainty on observed measurements, numerical problems and from the model conceptualization that simplifies the reality. Here we focus on this last issue of hydrological modeling. One of the solutions to reduce structural uncertainty is to use a multimodel method, taking advantage of the great number and the variability of existing hydrological models. In particular, because different models are not similarly good in all situations, using multimodel approaches can improve the robustness of modeled outputs. Traditionally, in hydrology, multimodel methods are based on the output of the model (the simulated flow series). The aim of this poster is to introduce a different approach based on the internal variables of the models. The method is inspired by the SUper MOdel (SUMO, van den Berge et al., 2011) developed for climatology. The idea of the SUMO method is to correct the internal variables of a model taking into account the values of the internal variables of (an)other model(s). This correction is made bilaterally between the different models. The ensemble of the different models constitutes a super model in which all the models exchange information on their internal variables with each other at each time step. Due to this continuity in the exchanges, this multimodel algorithm is more dynamic than traditional multimodel methods. The method will be first tested using two GR4J models (in a state-space representation) with different parameterizations. The results will be presented and compared to traditional multimodel methods that will serve as benchmarks. In the future, other rainfall-runoff models will be used in the super model. References van den Berge, L. A., Selten, F. M., Wiegerinck, W., and Duane, G. S. (2011). A multi-model ensemble method that combines imperfect models through learning. Earth System Dynamics, 2(1) :161-177.

  4. Describing different brain computer interface systems through a unique model: a UML implementation.

    PubMed

    Quitadamo, Lucia Rita; Marciani, Maria Grazia; Cardarilli, Gian Carlo; Bianchi, Luigi

    2008-01-01

    All the protocols currently implemented in brain computer interface (BCI) experiments are characterized by different structural and temporal entities. Moreover, due to the lack of a unique descriptive model for BCI systems, there is not a standard way to define the structure and the timing of a BCI experimental session among different research groups and there is also great discordance on the meaning of the most common terms dealing with BCI, such as trial, run and session. The aim of this paper is to provide a unified modeling language (UML) implementation of BCI systems through a unique dynamic model which is able to describe the main protocols defined in the literature (P300, mu-rhythms, SCP, SSVEP, fMRI) and demonstrates to be reasonable and adjustable according to different requirements. This model includes a set of definitions of the typical entities encountered in a BCI, diagrams which explain the structural correlations among them and a detailed description of the timing of a trial. This last represents an innovation with respect to the models already proposed in the literature. The UML documentation and the possibility of adapting this model to the different BCI systems built to date, make it a basis for the implementation of new systems and a mean for the unification and dissemination of resources. The model with all the diagrams and definitions reported in the paper are the core of the body language framework, a free set of routines and tools for the implementation, optimization and delivery of cross-platform BCI systems.

  5. Modeling Seismic Cycles of Great Megathrust Earthquakes Across the Scales With Focus at Postseismic Phase

    NASA Astrophysics Data System (ADS)

    Sobolev, Stephan V.; Muldashev, Iskander A.

    2017-12-01

    Subduction is substantially multiscale process where the stresses are built by long-term tectonic motions, modified by sudden jerky deformations during earthquakes, and then restored by following multiple relaxation processes. Here we develop a cross-scale thermomechanical model aimed to simulate the subduction process from 1 min to million years' time scale. The model employs elasticity, nonlinear transient viscous rheology, and rate-and-state friction. It generates spontaneous earthquake sequences and by using an adaptive time step algorithm, recreates the deformation process as observed naturally during the seismic cycle and multiple seismic cycles. The model predicts that viscosity in the mantle wedge drops by more than three orders of magnitude during the great earthquake with a magnitude above 9. As a result, the surface velocities just an hour or day after the earthquake are controlled by viscoelastic relaxation in the several hundred km of mantle landward of the trench and not by the afterslip localized at the fault as is currently believed. Our model replicates centuries-long seismic cycles exhibited by the greatest earthquakes and is consistent with the postseismic surface displacements recorded after the Great Tohoku Earthquake. We demonstrate that there is no contradiction between extremely low mechanical coupling at the subduction megathrust in South Chile inferred from long-term geodynamic models and appearance of the largest earthquakes, like the Great Chile 1960 Earthquake.

  6. Hierarchical Context Modeling for Video Event Recognition.

    PubMed

    Wang, Xiaoyang; Ji, Qiang

    2016-10-11

    Current video event recognition research remains largely target-centered. For real-world surveillance videos, targetcentered event recognition faces great challenges due to large intra-class target variation, limited image resolution, and poor detection and tracking results. To mitigate these challenges, we introduced a context-augmented video event recognition approach. Specifically, we explicitly capture different types of contexts from three levels including image level, semantic level, and prior level. At the image level, we introduce two types of contextual features including the appearance context features and interaction context features to capture the appearance of context objects and their interactions with the target objects. At the semantic level, we propose a deep model based on deep Boltzmann machine to learn event object representations and their interactions. At the prior level, we utilize two types of prior-level contexts including scene priming and dynamic cueing. Finally, we introduce a hierarchical context model that systematically integrates the contextual information at different levels. Through the hierarchical context model, contexts at different levels jointly contribute to the event recognition. We evaluate the hierarchical context model for event recognition on benchmark surveillance video datasets. Results show that incorporating contexts in each level can improve event recognition performance, and jointly integrating three levels of contexts through our hierarchical model achieves the best performance.

  7. Influence of the volume and density functions within geometric models for estimating trunk inertial parameters.

    PubMed

    Wicke, Jason; Dumas, Genevieve A

    2010-02-01

    The geometric method combines a volume and a density function to estimate body segment parameters and has the best opportunity for developing the most accurate models. In the trunk, there are many different tissues that greatly differ in density (e.g., bone versus lung). Thus, the density function for the trunk must be particularly sensitive to capture this diversity, such that accurate inertial estimates are possible. Three different models were used to test this hypothesis by estimating trunk inertial parameters of 25 female and 24 male college-aged participants. The outcome of this study indicates that the inertial estimates for the upper and lower trunk are most sensitive to the volume function and not very sensitive to the density function. Although it appears that the uniform density function has a greater influence on inertial estimates in the lower trunk region than in the upper trunk region, this is likely due to the (overestimated) density value used. When geometric models are used to estimate body segment parameters, care must be taken in choosing a model that can accurately estimate segment volumes. Researchers wanting to develop accurate geometric models should focus on the volume function, especially in unique populations (e.g., pregnant or obese individuals).

  8. A model of the extent and distribution of woody linear features in rural Great Britain.

    PubMed

    Scholefield, Paul; Morton, Dan; Rowland, Clare; Henrys, Peter; Howard, David; Norton, Lisa

    2016-12-01

    Hedges and lines of trees (woody linear features) are important boundaries that connect and enclose habitats, buffer the effects of land management, and enhance biodiversity in increasingly impoverished landscapes. Despite their acknowledged importance in the wider countryside, they are usually not considered in models of landscape function due to their linear nature and the difficulties of acquiring relevant data about their character, extent, and location. We present a model which uses national datasets to describe the distribution of woody linear features along boundaries in Great Britain. The method can be applied for other boundary types and in other locations around the world across a range of spatial scales where different types of linear feature can be separated using characteristics such as height or width. Satellite-derived Land Cover Map 2007 (LCM2007) provided the spatial framework for locating linear features and was used to screen out areas unsuitable for their occurrence, that is, offshore, urban, and forest areas. Similarly, Ordnance Survey Land-Form PANORAMA®, a digital terrain model, was used to screen out where they do not occur. The presence of woody linear features on boundaries was modelled using attributes from a canopy height dataset obtained by subtracting a digital terrain map (DTM) from a digital surface model (DSM). The performance of the model was evaluated against existing woody linear feature data in Countryside Survey across a range of scales. The results indicate that, despite some underestimation, this simple approach may provide valuable information on the extents and locations of woody linear features in the countryside at both local and national scales.

  9. Global modeling of the low- and middle-latitude ionospheric D and lower E regions and implications for HF radio wave absorption

    NASA Astrophysics Data System (ADS)

    Siskind, David E.; Zawdie, K. A.; Sassi, F.; Drob, D.; Friedrich, M.

    2017-01-01

    We compare D and lower E region ionospheric model calculations driven by the Whole Atmosphere Community Climate Model (WACCM) with a selection of electron density profiles made by sounding rockets over the past 50 years. The WACCM model, in turn, is nudged by winds and temperatures from the Navy Operational Global Atmospheric Prediction System-Advanced Level Physics High Altitude (NOGAPS-ALPHA). This nudging has been shown to greatly improve the representation of key neutral constituents, such as nitric oxide (NO), that are used as inputs to the ionospheric model. We show that with this improved representation, we greatly improve the comparison between calculated and observed electron densities relative to older studies. At midlatitudes, for both winter and equinoctal conditions, the model agrees well with the data. At tropical latitudes, our results confirm a previous suggestion that there is a model deficit in the calculated electron density in the lowermost D region. We then apply the calculated electron densities to examine the variation of HF absorption with altitude, latitude, and season and from 2008 to 2009. For low latitudes, our results agree with recent studies showing a primary peak absorption in the lower E region with a secondary peak below 75 km. For midlatitude to high latitude, the absorption contains a significant contribution from the middle D region where ionization of NO drives the ion chemistry. The difference in middle- to high-latitude absorption from 2008 to 2009 is due to changes in the NO abundance near 80 km from changes in the wintertime mesospheric residual circulation.

  10. A population model for a long-lived, resprouting chaparral shrub: Adenostoma fasciculatum

    USGS Publications Warehouse

    Stohlgren, Thomas J.; Rundel, Philip W.

    1986-01-01

    Extensive stands of Adenostoma fasciculatum H.&A. (chamise) in the chaparral of California are periodically rejuvenated by fire. A population model based on size-specific demographic characteristics (thinning and fire-caused mortality) was developed to generate probable age distributions within size classes and survivorship curves for typical stands. The model was modified to assess the long term effects of different mortality rates on age distributions. Under observed mean mortality rates (28.7%), model output suggests some shrubs can survive more than 23 fires. A 10% increase in mortality rate by size class slightly shortened the survivorship curve, while a 10% decrease in mortality rate by size class greatly elongated the curve. This approach may be applicable to other long-lived plant species with complex life histories.

  11. Simulation of growth of Adirondack conifers in relation to global climate change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Y.; Raynal, D.J.

    1993-06-01

    Several conifer species grown in plantations in the southeastern Adirondack mountains of New York were chosen to model tree growth. In the models, annual xylem growth was decomposed into several components that reflect various intrinsic or extrinsic factors. Growth signals indicative of climatic effects were used to construct response functions using both multivariate analysis and Kalman filter methods. Two models were used to simulate tree growth response to future CO[sub 2]-induced climate change projected by GCMs. The comparable results of both models indicate that different conifer species have individualistic growth responses to future climatic change. The response behaviors of treesmore » are affected greatly by local stand conditions. The results suggest possible changes in future growth and distributions of naturally occurring conifers in this region.« less

  12. Tailored Codes for Small Quantum Memories

    NASA Astrophysics Data System (ADS)

    Robertson, Alan; Granade, Christopher; Bartlett, Stephen D.; Flammia, Steven T.

    2017-12-01

    We demonstrate that small quantum memories, realized via quantum error correction in multiqubit devices, can benefit substantially by choosing a quantum code that is tailored to the relevant error model of the system. For a biased noise model, with independent bit and phase flips occurring at different rates, we show that a single code greatly outperforms the well-studied Steane code across the full range of parameters of the noise model, including for unbiased noise. In fact, this tailored code performs almost optimally when compared with 10 000 randomly selected stabilizer codes of comparable experimental complexity. Tailored codes can even outperform the Steane code with realistic experimental noise, and without any increase in the experimental complexity, as we demonstrate by comparison in the observed error model in a recent seven-qubit trapped ion experiment.

  13. Tides at the east coast of Lanzarote Island

    NASA Astrophysics Data System (ADS)

    Benavent, M.; Arnoso, J.; Vélez, E. J.

    2012-04-01

    The main goal of this work is the study of the ocean tides at the east coast of Lanzarote (Canary Islands). We have analyzed time series of tide gauge and bottom pressure observations available in the region and we have made a further comparative validation with recent global and local ocean tide models. Lanzarote island shows singular features, with regard its volcanic structure and geomorphological properties and, also, concerning the characteristics of the ocean tides in the surrounding waters. For this reason, this region experiences a great interest in Geodesy and Geodynamics. Particularly, an accurate modelization of the ocean tides is of great importance to correct with high accuracy the effect of the ocean over the multiple geodetic measurements that are being carried out in the Geodynamic Laboratory of Lanzarote, LGL (Vieira et al., 1991; 2006). Furthermore, the analysis of tide gauge and bottom pressure records in this area is of great importance to investigate sea level variations, to evaluate and quantify the causes of these changes and the possible correlation with vertical movements of the Earth's crust. The time series of sea level and bottom pressure data considered in this work are obtained at two different locations of the island and, in each of them, using several sensors at different periods of time. First location is Jameos del Agua (JA) station, which belongs to the LGL. This station is placed in the open ocean, 200 meters distant from the northeastern coast of the island and at 8 meters depth. The observations have been carried out using 3 bottom pressure sensors (Aanderaa WLR7, SAIV TD301A and Aqualogger 210PT) at different periods of time (spanning a total of six years). Second location is Arrecife (AR) station, which is 23 km south of JA station. In this case, the sea level data come from a float tide gauge belonging to the Instituto Español de Oceanografía, installed at the beginning of the loading bay, and a radar tide gauge from the REDMAR network of Puertos del Estado placed at the end of the same loading bay. Results obtained from the time series analysis at both locations, amplitude and phase of the main diurnal and semi-diurnal tidal waves, are compared with the most recent global ocean tide models, as TPXO7.2, EOT11a, HAMTIDE, FES2004, GOT4.7 and AG2006, and also with the high resolution regional ocean tide model for the Canaries CIAM2 (Arnoso et al., 2006, Benavent, 2011). Comparison of simulated harmonic constant (from global and local ocean tide model) with those obtained from tidal stations is done by means of the direct comparison between amplitudes and phase for each tidal wave and the root mean square (rms) of the differences in the complex plane. Finally the root sum square (rss) of residuals over all harmonic constituents considered is calculated.

  14. Re‐estimated effects of deep episodic slip on the occurrence and probability of great earthquakes in Cascadia

    USGS Publications Warehouse

    Beeler, Nicholas M.; Roeloffs, Evelyn A.; McCausland, Wendy

    2013-01-01

    Mazzotti and Adams (2004) estimated that rapid deep slip during typically two week long episodes beneath northern Washington and southern British Columbia increases the probability of a great Cascadia earthquake by 30–100 times relative to the probability during the ∼58 weeks between slip events. Because the corresponding absolute probability remains very low at ∼0.03% per week, their conclusion is that though it is more likely that a great earthquake will occur during a rapid slip event than during other times, a great earthquake is unlikely to occur during any particular rapid slip event. This previous estimate used a failure model in which great earthquakes initiate instantaneously at a stress threshold. We refine the estimate, assuming a delayed failure model that is based on laboratory‐observed earthquake initiation. Laboratory tests show that failure of intact rock in shear and the onset of rapid slip on pre‐existing faults do not occur at a threshold stress. Instead, slip onset is gradual and shows a damped response to stress and loading rate changes. The characteristic time of failure depends on loading rate and effective normal stress. Using this model, the probability enhancement during the period of rapid slip in Cascadia is negligible (<10%) for effective normal stresses of 10 MPa or more and only increases by 1.5 times for an effective normal stress of 1 MPa. We present arguments that the hypocentral effective normal stress exceeds 1 MPa. In addition, the probability enhancement due to rapid slip extends into the interevent period. With this delayed failure model for effective normal stresses greater than or equal to 50 kPa, it is more likely that a great earthquake will occur between the periods of rapid deep slip than during them. Our conclusion is that great earthquake occurrence is not significantly enhanced by episodic deep slip events.

  15. Gridding Cloud and Irradiance to Quantify Variability at the ARM Southern Great Plains Site

    NASA Astrophysics Data System (ADS)

    Riihimaki, L.; Long, C. N.; Gaustad, K.

    2017-12-01

    Ground-based radiometers provide the most accurate measurements of surface irradiance. However, geometry differences between surface point measurements and large area climate model grid boxes or satellite-based footprints can cause systematic differences in surface irradiance comparisons. In this work, irradiance measurements from a network of ground stations around Kansas and Oklahoma at the US Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains facility are examined. Upwelling and downwelling broadband shortwave and longwave radiometer measurements are available at each site as well as surface meteorological measurements. In addition to the measured irradiances, clear sky irradiance and cloud fraction estimates are analyzed using well established methods based on empirical fits to measured clear sky irradiances. Measurements are interpolated onto a 0.25 degree latitude and longitude grid using a Gaussian weight scheme in order to provide a more accurate statistical comparison between ground measurements and a larger area such as that used in climate models, plane parallel radiative transfer calculations, and other statistical and climatological research. Validation of the gridded product will be shown, as well as analysis that quantifies the impact of site location, cloud type, and other factors on the resulting surface irradiance estimates. The results of this work are being incorporated into the Surface Cloud Grid operational data product produced by ARM, and will be made publicly available for use by others.

  16. Great Taste, Less Waste: A cluster-randomized trial using a communications campaign to improve the quality of foods brought from home to school by elementary school children

    PubMed Central

    Goldberg, Jeanne P.; Folta, Sara C.; Eliasziw, Misha; Koch-Weser, Susan; Economos, Christina D.; Hubbard, Kristie L.; Peterson, Lindsay A.; Wright, Catherine M.; Must, Aviva

    2015-01-01

    Objective Great Taste, Less Waste (GTLW), a communications campaign, capitalized on the synergy between healthy eating and eco-friendly behaviors to motivate children to bring more fruits and vegetables and fewer sugar-sweetened beverages (SSBs) to school. Methods A cluster-randomized trial in Eastern Massachusetts elementary schools in 2011–2012 tested the hypothesis that GTLW would improve the quality of foods from home more than a nutrition-only campaign – Foods 2 Choose (F2C) – or control. Lunch and snack items from home were measured at baseline and 7 months later using digital photography. Mixed linear models compared change in mean servings of fruits, vegetables, and SSBs among groups, and change in mean prevalence of packaging type. Change in prevalence of food items of interest was compared among groups using generalized linear models. Results 582 third and fourth graders from 82 classrooms in 12 schools participated. At follow-up, no significant differences were observed between groups in change in mean servings or change in prevalence of items of interest. No packaging differences were observed. Conclusion GTLW was well-received but no significant changes were observed in the quality of food brought to school. Whether classrooms are an effective environment for change remains to be explored. PMID:25735605

  17. Estimation of groundwater use for a groundwater-flow model of the Lake Michigan Basin and adjacent areas, 1864-2005

    USGS Publications Warehouse

    Buchwald, Cheryl A.; Luukkonen, Carol L.; Rachol, Cynthia M.

    2010-01-01

    The U.S. Geological Survey, at the request of Congress, is assessing the availability and use of the Nation's water resources to help characterize how much water is available now, how water availability is changing, and how much water can be expected to be available in the future. The Great Lakes Basin Pilot project of the U.S. Geological Survey national assessment of water availability and use focused on the Great Lakes Basin and included detailed studies of the processes governing water availability in the Great Lakes Basin. One of these studies included the development of a groundwater-flow model of the Lake Michigan Basin. This report describes the compilation and estimation of the groundwater withdrawals in those areas in Wisconsin, Michigan, Indiana, and Illinois that were needed for the Lake Michigan Basin study groundwater-flow model. These data were aggregated for 12 model time intervals spanning 1864 to 2005 and were summarized by model area, model subregion, category of water use, aquifer system, aquifer type, and hydrogeologic unit model layer. The types and availability of information on groundwater withdrawals vary considerably among states because water-use programs often differ in the types of data collected and in the methods and frequency of data collection. As a consequence, the methods used to estimate and verify the data also vary. Additionally, because of the different sources of data and different terminologies applied for the purposes of this report, the water-use data published in this report may differ from water-use data presented in other reports. These data represent only a partial estimate of groundwater use in each state because estimates were compiled only for areas in Wisconsin, Michigan, Indiana, and Illinois within the Lake Michigan Basin model area. Groundwater-withdrawal data were compiled for both nearfield and farfield model areas in Wisconsin and Illinois, whereas these data were compiled primarily for the nearfield model area in Michigan and Indiana. Overall water use for the selected areas in Wisconsin, Michigan, Indiana, and Illinois was less during early time intervals than during more recent intervals, with large increases beginning around the 1960s. Total estimated groundwater withdrawals for model input range from 18.01 million gallons per day (Mgal/d) for interval 1 (1864-1900) to 1,280.25 Mgal/d for interval 12 (2001-5). Withdrawals for the public-supply category make up the majority of the withdrawals in each of the four states. In Wisconsin and Michigan, the second largest withdrawals are for the irrigation category; in Indiana and Illinois, industrial withdrawals account for the second largest withdrawal amounts. The smallest withdrawals are for miscellaneous uses in Wisconsin and irrigation uses in Indiana and Illinois. Estimated groundwater withdrawals in the Southern Lower Peninsula of Michigan, Northeastern Illinois, and the farfield model area are generally larger than in the other model subregions. Withdrawals in Michigan and Indiana are predominantly from the Quaternary aquifer system, whereas withdrawals in Illinois are predominantly from the Cambrian-Ordovician aquifer systems. Withdrawals in Wisconsin are about equal from the Quaternary and Cambrian-Ordovician aquifer systems. Estimated groundwater withdrawals in Michigan and Indiana are predominantly from the unconfined unconsolidated aquifer type. Withdrawals in Illinois are largely from the deep confined bedrock aquifer type, although they decreased considerably in more recent time intervals. Wisconsin withdrawals are about equal from unconfined unconsolidated and deep confined bedrock aquifer types. Groundwater-withdrawal estimates in Wisconsin were compiled for the 47 easternmost counties within the boundary of the Lake Michigan Basin model, of which 32 counties, though not entirely contained, are at least partly within the Lake Michigan Basin. Overall, 6,457 withdrawal locations were estima

  18. Phase 2 development of Great Lakes algorithms for Nimbus-7 coastal zone color scanner

    NASA Technical Reports Server (NTRS)

    Tanis, Fred J.

    1984-01-01

    A series of experiments have been conducted in the Great Lakes designed to evaluate the application of the NIMBUS-7 Coastal Zone Color Scanner (CZCS). Atmospheric and water optical models were used to relate surface and subsurface measurements to satellite measured radiances. Absorption and scattering measurements were reduced to obtain a preliminary optical model for the Great Lakes. Algorithms were developed for geometric correction, correction for Rayleigh and aerosol path radiance, and prediction of chlorophyll-a pigment and suspended mineral concentrations. The atmospheric algorithm developed compared favorably with existing algorithms and was the only algorithm found to adequately predict the radiance variations in the 670 nm band. The atmospheric correction algorithm developed was designed to extract needed algorithm parameters from the CZCS radiance values. The Gordon/NOAA ocean algorithms could not be demonstrated to work for Great Lakes waters. Predicted values of chlorophyll-a concentration compared favorably with expected and measured data for several areas of the Great Lakes.

  19. Evolutionary signals of selection on cognition from the great tit genome and methylome

    PubMed Central

    Laine, Veronika N.; Gossmann, Toni I.; Schachtschneider, Kyle M.; Garroway, Colin J.; Madsen, Ole; Verhoeven, Koen J. F.; de Jager, Victor; Megens, Hendrik-Jan; Warren, Wesley C.; Minx, Patrick; Crooijmans, Richard P. M. A.; Corcoran, Pádraic; Adriaensen, Frank; Belda, Eduardo; Bushuev, Andrey; Cichon, Mariusz; Charmantier, Anne; Dingemanse, Niels; Doligez, Blandine; Eeva, Tapio; Erikstad, Kjell Einar; Fedorov, Slava; Hau, Michaela; Hille, Sabine; Hinde, Camilla; Kempenaers, Bart; Kerimov, Anvar; Krist, Milos; Mand, Raivo; Matthysen, Erik; Nager, Reudi; Norte, Claudia; Orell, Markku; Richner, Heinz; Slagsvold, Tore; Tilgar, Vallo; Tinbergen, Joost; Torok, Janos; Tschirren, Barbara; Yuta, Tera; Sheldon, Ben C.; Slate, Jon; Zeng, Kai; van Oers, Kees; Visser, Marcel E.; Groenen, Martien A. M.

    2016-01-01

    For over 50 years, the great tit (Parus major) has been a model species for research in evolutionary, ecological and behavioural research; in particular, learning and cognition have been intensively studied. Here, to provide further insight into the molecular mechanisms behind these important traits, we de novo assemble a great tit reference genome and whole-genome re-sequence another 29 individuals from across Europe. We show an overrepresentation of genes related to neuronal functions, learning and cognition in regions under positive selection, as well as increased CpG methylation in these regions. In addition, great tit neuronal non-CpG methylation patterns are very similar to those observed in mammals, suggesting a universal role in neuronal epigenetic regulation which can affect learning-, memory- and experience-induced plasticity. The high-quality great tit genome assembly will play an instrumental role in furthering the integration of ecological, evolutionary, behavioural and genomic approaches in this model species. PMID:26805030

  20. Water quality modelling of Jadro spring.

    PubMed

    Margeta, J; Fistanic, I

    2004-01-01

    Management of water quality in karst is a specific problem. Water generally moves very fast by infiltration processes but far more by concentrated flows through fissures and openings in karst. This enables the entire surface pollution to be transferred fast and without filtration into groundwater springs. A typical example is the Jadro spring. Changes in water quality at the spring are sudden, but short. Turbidity as a major water quality problem for the karst springs regularly exceeds allowable standards. Former practice in problem solving has been reduced to intensive water disinfection in periods of great turbidity without analyses of disinfection by-products risks for water users. The main prerequisite for water quality control and an optimization of water disinfection is the knowledge of raw water quality and nature of occurrence. The analysis of monitoring data and their functional relationship with hydrological parameters enables establishment of a stochastic model that will help obtain better information on turbidity in different periods of the year. Using the model a great number of average monthly and extreme daily values are generated. By statistical analyses of these data possibility of occurrence of high turbidity in certain months is obtained. This information can be used for designing expert system for water quality management of karst springs. Thus, the time series model becomes a valuable tool in management of drinking water quality of the Jadro spring.

  1. Seeking Sustainable Public Universities: The Legacy of the Great Recession. Research & Occasional Paper Series: CSHE.10.11

    ERIC Educational Resources Information Center

    Lyall, Katharine

    2011-01-01

    The business models under which most public universities in the U.S. operate have become unsustainable. They were put in place when state economies were stronger and there were fewer programs making competing claims on state funds. The current Great Recession has made things worse, but the unsustainability of current business models derives from…

  2. Simulating the dynamics of linear forests in great plains agroecosystems under changing climates

    Treesearch

    Qinfeng Guo; J. Brandle; Michele Schoeneberger; D. Buettner

    2004-01-01

    Most forest growth models are not suitable for the highly fragmented, linear (or linearly shaped) forests in the Great Plains agroecosystems (e.g., windbreaks, riparian forest buffers), where such forests are a minor but ecologically important component of the land mosaics. This study used SEEI)SCAPE, a recently modified gap model designed for cultivated land mosaics...

  3. A Deep-Structured Conditional Random Field Model for Object Silhouette Tracking

    PubMed Central

    Shafiee, Mohammad Javad; Azimifar, Zohreh; Wong, Alexander

    2015-01-01

    In this work, we introduce a deep-structured conditional random field (DS-CRF) model for the purpose of state-based object silhouette tracking. The proposed DS-CRF model consists of a series of state layers, where each state layer spatially characterizes the object silhouette at a particular point in time. The interactions between adjacent state layers are established by inter-layer connectivity dynamically determined based on inter-frame optical flow. By incorporate both spatial and temporal context in a dynamic fashion within such a deep-structured probabilistic graphical model, the proposed DS-CRF model allows us to develop a framework that can accurately and efficiently track object silhouettes that can change greatly over time, as well as under different situations such as occlusion and multiple targets within the scene. Experiment results using video surveillance datasets containing different scenarios such as occlusion and multiple targets showed that the proposed DS-CRF approach provides strong object silhouette tracking performance when compared to baseline methods such as mean-shift tracking, as well as state-of-the-art methods such as context tracking and boosted particle filtering. PMID:26313943

  4. Real-world datasets for portfolio selection and solutions of some stochastic dominance portfolio models.

    PubMed

    Bruni, Renato; Cesarone, Francesco; Scozzari, Andrea; Tardella, Fabio

    2016-09-01

    A large number of portfolio selection models have appeared in the literature since the pioneering work of Markowitz. However, even when computational and empirical results are described, they are often hard to replicate and compare due to the unavailability of the datasets used in the experiments. We provide here several datasets for portfolio selection generated using real-world price values from several major stock markets. The datasets contain weekly return values, adjusted for dividends and for stock splits, which are cleaned from errors as much as possible. The datasets are available in different formats, and can be used as benchmarks for testing the performances of portfolio selection models and for comparing the efficiency of the algorithms used to solve them. We also provide, for these datasets, the portfolios obtained by several selection strategies based on Stochastic Dominance models (see "On Exact and Approximate Stochastic Dominance Strategies for Portfolio Selection" (Bruni et al. [2])). We believe that testing portfolio models on publicly available datasets greatly simplifies the comparison of the different portfolio selection strategies.

  5. A new approach to treat discontinuities in multi-layered soils

    NASA Astrophysics Data System (ADS)

    Berardi, Marco; Difonzo, Fabio; Caputo, Maria; Vurro, Michele; Lopez, Luciano

    2017-04-01

    The water infiltration into two (or more) layered soils can give rise to preferential flow paths at the interface between different soils. The deep understanding of this phenomenon can be of great interest in modeling different environmental problems in geosciences and hydrology. Flow through layered soils arises naturally in agriculture, and layered soils are also engineered as cover liners for landfills. In particular, the treatment of the soil discontinuity is of great interest from the modeling and the numerical point of view, and is still an open problem.% (see, for example, te{Matthews_et_al,Zha_vzj_2013,DeLuca_Cepeda_ASCE_2016}). Assuming to approximate the soils with different porous media, the governing equation for this phenomenon is Richards' equation, in the following form: {eq:different_Richards_1} C_1(ψ) partial ψ/partial t = partial /partial z [ K_1(ψ) ( partial ψ/partial z - 1 ) ], \\quad if \\quad z < \\overline{z}, C_2(ψ) partial ψ/partial t = partial /partial z [ K_2(ψ) ( partial ψ/partial z - 1 ) ], \\quad if \\quad z > \\overline{z}, where \\overline{z} is the spatial threshold that identifies the change in soil structure, and C1 C_2, K_1, K_2, the hydraulic functions that describe the upper and the lower soil, respectively. The ψ-based form is used, in this work. Here we have used the Filippov's theory in order to deal with discontinuous differential systems, and we handled opportunely the numerical discretization in order to treat the abovementioned system by means of this theory, letting the discontinuity depend on the state variable. The advantage of this technique is a better insight on the solution behavior on the discontinuity surface, and the no-need to average the hydraulic conductivity field on the threshold itself, as in the existing literature.

  6. Genome, transcriptome and methylome sequencing of a primitively eusocial wasp reveal a greatly reduced DNA methylation system in a social insect.

    PubMed

    Standage, Daniel S; Berens, Ali J; Glastad, Karl M; Severin, Andrew J; Brendel, Volker P; Toth, Amy L

    2016-04-01

    Comparative genomics of social insects has been intensely pursued in recent years with the goal of providing insights into the evolution of social behaviour and its underlying genomic and epigenomic basis. However, the comparative approach has been hampered by a paucity of data on some of the most informative social forms (e.g. incipiently and primitively social) and taxa (especially members of the wasp family Vespidae) for studying social evolution. Here, we provide a draft genome of the primitively eusocial model insect Polistes dominula, accompanied by analysis of caste-related transcriptome and methylome sequence data for adult queens and workers. Polistes dominula possesses a fairly typical hymenopteran genome, but shows very low genomewide GC content and some evidence of reduced genome size. We found numerous caste-related differences in gene expression, with evidence that both conserved and novel genes are related to caste differences. Most strikingly, these -omics data reveal a major reduction in one of the major epigenetic mechanisms that has been previously suggested to be important for caste differences in social insects: DNA methylation. Along with a conspicuous loss of a key gene associated with environmentally responsive DNA methylation (the de novo DNA methyltransferase Dnmt3), these wasps have greatly reduced genomewide methylation to almost zero. In addition to providing a valuable resource for comparative analysis of social insect evolution, our integrative -omics data for this important behavioural and evolutionary model system call into question the general importance of DNA methylation in caste differences and evolution in social insects. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  7. Wavelength-dependent ability of solar-induced chlorophyll fluorescence to estimate GPP

    NASA Astrophysics Data System (ADS)

    Liu, L.

    2017-12-01

    Recent studies have demonstrated that solar-induced chlorophyll fluorescence (SIF) can offer a new way for directly estimating the terrestrial gross primary production (GPP). In this paper, the wavelength-dependent ability of SIF to estimate GPP was investigated using both simulations by SCOPE model (Soil Canopy Observation, Photochemistry and Energy fluxes) and observations at the canopy level. Firstly, the response of the remotely sensed SIF at the canopy level to the absorbed photosynthetically active radiation (APAR ) was investigated. Both the simulations and observations confirm a linear relationship between canopy SIF and APAR, while it is species-specific and affected by biochemical components and canopy structure. The ratio of SIF to APAR varies greatly for different vegetation types, which is significant larger for canopy with horizontal structure than it with vertical structure. At red band, the ratio also decreases noticeable when chlorophyll content increases. Then, the performance of SIF to estimate GPP was investigated using diurnal observations of winter wheat at different grow stages. The results showed that the diurnal GPP could be robustly estimated from the SIF spectra for winter wheat at each growth stage, while the correlation weakened greatly at red band if all the observations made at different growth stages or all simulations with different LAI values were pooled together - a situation which did not occur at the far-red band. Finally, the SIF-based GPP models derived from the 2016 observations on winter wheat were well validated using the dataset from 2015, which give better performance for SIF at far-red band than that at red band. Therefore, it is very important to correct for reabsorption and scattering of the SIF radiative transfer from the photosystem to the canopy level before the remotely sensed SIF is linked to the GPP, especially at red band.

  8. A Dynamical Downscaling study over the Great Lakes Region Using WRF-Lake: Historical Simulation

    NASA Astrophysics Data System (ADS)

    Xiao, C.; Lofgren, B. M.

    2014-12-01

    As the largest group of fresh water bodies on Earth, the Laurentian Great Lakes have significant influence on local and regional weather and climate through their unique physical features compared with the surrounding land. Due to the limited spatial resolution and computational efficiency of general circulation models (GCMs), the Great Lakes are geometrically ignored or idealized into several grid cells in GCMs. Thus, the nested regional climate modeling (RCM) technique, known as dynamical downscaling, serves as a feasible solution to fill the gap. The latest Weather Research and Forecasting model (WRF) is employed to dynamically downscale the historical simulation produced by the Geophysical Fluid Dynamics Laboratory-Coupled Model (GFDL-CM3) from 1970-2005. An updated lake scheme originated from the Community Land Model is implemented in the latest WRF version 3.6. It is a one-dimensional mass and energy balance scheme with 20-25 model layers, including up to 5 snow layers on the lake ice, 10 water layers, and 10 soil layers on the lake bottom. The lake scheme is used with actual lake points and lake depth. The preliminary results show that WRF-Lake model, with a fine horizontal resolution and realistic lake representation, provides significantly improved hydroclimates, in terms of lake surface temperature, annual cycle of precipitation, ice content, and lake-effect snowfall. Those improvements suggest that better resolution of the lakes and the mesoscale process of lake-atmosphere interaction are crucial to understanding the climate and climate change in the Great Lakes region.

  9. The Importance of Distance to Resources in the Spatial Modelling of Bat Foraging Habitat

    PubMed Central

    Rainho, Ana; Palmeirim, Jorge M.

    2011-01-01

    Many bats are threatened by habitat loss, but opportunities to manage their habitats are now increasing. Success of management depends greatly on the capacity to determine where and how interventions should take place, so models predicting how animals use landscapes are important to plan them. Bats are quite distinctive in the way they use space for foraging because (i) most are colonial central-place foragers and (ii) exploit scattered and distant resources, although this increases flying costs. To evaluate how important distances to resources are in modelling foraging bat habitat suitability, we radio-tracked two cave-dwelling species of conservation concern (Rhinolophus mehelyi and Miniopterus schreibersii) in a Mediterranean landscape. Habitat and distance variables were evaluated using logistic regression modelling. Distance variables greatly increased the performance of models, and distance to roost and to drinking water could alone explain 86 and 73% of the use of space by M. schreibersii and R. mehelyi, respectively. Land-cover and soil productivity also provided a significant contribution to the final models. Habitat suitability maps generated by models with and without distance variables differed substantially, confirming the shortcomings of maps generated without distance variables. Indeed, areas shown as highly suitable in maps generated without distance variables proved poorly suitable when distance variables were also considered. We concluded that distances to resources are determinant in the way bats forage across the landscape, and that using distance variables substantially improves the accuracy of suitability maps generated with spatially explicit models. Consequently, modelling with these variables is important to guide habitat management in bats and similarly mobile animals, particularly if they are central-place foragers or depend on spatially scarce resources. PMID:21547076

  10. Forecasting future phosphorus export to the Laurentian Great Lakes from land-derived nutrient inputs

    NASA Astrophysics Data System (ADS)

    LaBeau, M. B.; Robertson, D. M.; Mayer, A. S.; Pijanowski, B. C.

    2011-12-01

    Anthropogenic use of the land through agricultural and urban activities has significantly increased phosphorus loading to rivers that flow to the Great Lakes. Phosphorus (P) is a critical element in the eutrophication of the freshwater ecosystems, most notably the Great Lakes. To better understand factors influencing phosphorus delivery to aquatic systems and thus their potential harmful effects to lake ecosystems, models that predict P export should incorporate account for changing changes in anthropogenic activities. Land-derived P from high yielding sources, such as agriculture and urban areas, affect eutrophication at various scales (e.g. specific bays to all of Lake Erie). SPARROW (SPAtially Referenced Regression On Watershed attributes) is a spatially explicit watershed model that has been used to understand linkages between land-derived sources and nutrient transport to the Great Lakes. The Great Lakes region is expected to experience a doubling of urbanized areas along with a ten percent increase in agricultural use over the next 40 years, which is likely to increase P loading. To determine how these changes will impact P loading, SPARROW have been developed that relate changes in land use to changes in nutrient sources, including relationships between row crop acreage and fertilizer intensity and urban land use and point source intensity. We used land use projections from the Land Transformation Model, a, spatially explicit, neural-net based land change model. Land use patterns from current to 2040 were used as input into HydroSPARROW, a forecasting tool that enables SPARROW to simulate the effects of various land-use and climate scenarios. Consequently, this work is focusing on understanding the effects of how specific agriculture and urbanization activities affect P loading in the watersheds of the Laurentian Great Lakes to potentially find strategies to reduce the extent and severity of future eutrophication.

  11. Modeling the North American vertical datum of 1988 errors in the conterminous United States

    NASA Astrophysics Data System (ADS)

    Li, X.

    2018-02-01

    A large systematic difference (ranging from -20 cm to +130 cm) was found between NAVD 88 (North AmericanVertical Datum of 1988) and the pure gravimetric geoid models. This difference not only makes it very difficult to augment the local geoid model by directly using the vast NAVD 88 network with state-of-the-art technologies recently developed in geodesy, but also limits the ability of researchers to effectively demonstrate the geoid model improvements on the NAVD 88 network. Here, both conventional regression analyses based on various predefined basis functions such as polynomials, B-splines, and Legendre functions and the Latent Variable Analysis (LVA) such as the Factor Analysis (FA) are used to analyze the systematic difference. Besides giving a mathematical model, the regression results do not reveal a great deal about the physical reasons that caused the large differences in NAVD 88, which may be of interest to various researchers. Furthermore, there is still a significant amount of no-Gaussian signals left in the residuals of the conventional regression models. On the other side, the FA method not only provides a better not of the data, but also offers possible explanations of the error sources. Without requiring extra hypothesis tests on the model coefficients, the results from FA are more efficient in terms of capturing the systematic difference. Furthermore, without using a covariance model, a novel interpolating method based on the relationship between the loading matrix and the factor scores is developed for predictive purposes. The prediction error analysis shows that about 3-7 cm precision is expected in NAVD 88 after removing the systematic difference.

  12. Enhancing Earth Observation and Modeling for Tsunami Disaster Response and Management

    NASA Astrophysics Data System (ADS)

    Koshimura, Shunichi; Post, Joachim

    2017-04-01

    In the aftermath of catastrophic natural disasters, such as earthquakes and tsunamis, our society has experienced significant difficulties in assessing disaster impact in the limited amount of time. In recent years, the quality of satellite sensors and access to and use of satellite imagery and services has greatly improved. More and more space agencies have embraced data-sharing policies that facilitate access to archived and up-to-date imagery. Tremendous progress has been achieved through the continuous development of powerful algorithms and software packages to manage and process geospatial data and to disseminate imagery and geospatial datasets in near-real time via geo-web-services, which can be used in disaster-risk management and emergency response efforts. Satellite Earth observations now offer consistent coverage and scope to provide a synoptic overview of large areas, repeated regularly. These can be used to compare risk across different countries, day and night, in all weather conditions, and in trans-boundary areas. On the other hand, with use of modern computing power and advanced sensor networks, the great advances of real-time simulation have been achieved. The data and information derived from satellite Earth observations, integrated with in situ information and simulation modeling provides unique value and the necessary complement to socio-economic data. Emphasis also needs to be placed on ensuring space-based data and information are used in existing and planned national and local disaster risk management systems, together with other data and information sources as a way to strengthen the resilience of communities. Through the case studies of the 2011 Great East Japan earthquake and tsunami disaster, we aim to discuss how earth observations and modeling, in combination with local, in situ data and information sources, can support the decision-making process before, during and after a disaster strikes.

  13. Avian response to fire in pine–oak forests of Great Smoky Mountains National Park following decades of fire suppression

    USGS Publications Warehouse

    Rose, Eli T.; Simons, Theodore R.

    2016-01-01

    Fire suppression in southern Appalachian pine–oak forests during the past century dramatically altered the bird community. Fire return intervals decreased, resulting in local extirpation or population declines of many bird species adapted to post-fire plant communities. Within Great Smoky Mountains National Park, declines have been strongest for birds inhabiting xeric pine–oak forests that depend on frequent fire. The buildup of fuels after decades of fire suppression led to changes in the 1996 Great Smoky Mountains Fire Management Plan. Although fire return intervals remain well below historic levels, management changes have helped increase the amount of fire within the park over the past 20 years, providing an opportunity to study patterns of fire severity, time since burn, and bird occurrence. We combined avian point counts in burned and unburned areas with remote sensing indices of fire severity to infer temporal changes in bird occurrence for up to 28 years following fire. Using hierarchical linear models that account for the possibility of a species presence at a site when no individuals are detected, we developed occurrence models for 24 species: 13 occurred more frequently in burned areas, 2 occurred less frequently, and 9 showed no significant difference between burned and unburned areas. Within burned areas, the top models for each species included fire severity, time since burn, or both, suggesting that fire influenced patterns of species occurrence for all 24 species. Our findings suggest that no single fire management strategy will suit all species. To capture peak occupancy for the entire bird community within xeric pine–oak forests, at least 3 fire regimes may be necessary; one applying frequent low severity fire, another using infrequent low severity fire, and a third using infrequently applied high severity fire.

  14. Comparative analysis of gene expression level by quantitative real-time PCR has limited application in objects with different morphology.

    PubMed

    Demidenko, Natalia V; Penin, Aleksey A

    2012-01-01

    qRT-PCR is a generally acknowledged method for gene expression analysis due to its precision and reproducibility. However, it is well known that the accuracy of qRT-PCR data varies greatly depending on the experimental design and data analysis. Recently, a set of guidelines has been proposed that aims to improve the reliability of qRT-PCR. However, there are additional factors that have not been taken into consideration in these guidelines that can seriously affect the data obtained using this method. In this study, we report the influence that object morphology can have on qRT-PCR data. We have used a number of Arabidopsis thaliana mutants with altered floral morphology as models for this study. These mutants have been well characterised (including in terms of gene expression levels and patterns) by other techniques. This allows us to compare the results from the qRT-PCR with the results inferred from other methods. We demonstrate that the comparison of gene expression levels in objects that differ greatly in their morphology can lead to erroneous results.

  15. Long-term changes in river system hydrology in Texas

    NASA Astrophysics Data System (ADS)

    Zhang, Yiwen; Wurbs, Ralph

    2018-06-01

    Climate change and human actives are recognized as a topical issue that change long-term water budget, flow-frequency, and storage-frequency characteristics of different river systems. Texas is characterized by extreme hydrologic variability both spatially and temporally. Meanwhile, population and economic growth and accompanying water resources development projects have greatly impacted river flows throughout Texas. The relative effects of climate change, water resources development, water use, and other factors on long-term changes in river flow, reservoir storage, evaporation, water use, and other components of the water budgets of different river basins of Texas have been simulated in this research using the monthly version of the Water Rights Analysis Package (WRAP) modelling system with input databases sets from the Texas Commission on Environmental Quality (TCEQ) and Texas Water Development Board (TWDB). The results show that long-term changes are minimal from analysis monthly precipitation depths. Evaporation rates vary greatly seasonally and for much of the state appear to have a gradually upward trend. River/reservoir system water budgets and river flow characteristics have changed significantly during the past 75 years in response to water resources development and use.

  16. Analyzing pedestrian crash injury severity under different weather conditions.

    PubMed

    Li, Duo; Ranjitkar, Prakash; Zhao, Yifei; Yi, Hui; Rashidi, Soroush

    2017-05-19

    Pedestrians are the most vulnerable road users due to the lack of mass, speed, and protection compared to other types of road users. Adverse weather conditions may reduce road friction and visibility and thus increase crash risk. There is limited evidence and considerable discrepancy with regard to impacts of weather conditions on injury severity in the literature. This article investigated factors affecting pedestrian injury severity level under different weather conditions based on a publicly available accident database in Great Britain. Accident data from Great Britain that are publicly available through the STATS19 database were analyzed. Factors associated with pedestrian, driver, and environment were investigated using a novel approach that combines a classification and regression tree with random forest approach. Significant severity predictors under fine weather conditions from the models included speed limits, pedestrian age, light conditions, and vehicle maneuver. Under adverse weather conditions, the significant predictors were pedestrian age, vehicle maneuver, and speed limit. Elderly pedestrians are associated with higher pedestrian injury severities. Higher speed limits increase pedestrian injury severity. Based on the research findings, recommendations are provided to improve pedestrian safety.

  17. Influence of Different Diffuser Angle on Sedan's Aerodynamic Characteristics

    NASA Astrophysics Data System (ADS)

    Hu, Xingjun; Zhang, Rui; Ye, Jian; Yan, Xu; Zhao, Zhiming

    The aerodynamic characteristics have a great influence on the fuel economics and the steering stability of a high speed vehicle. The underbody rear diffuser is one of important aerodynamic add-on devices. The parameters of the diffuser, including the diffuser angle, the number and the shape of separators, the shape of the end plate and etc, will affect the underbody flow and the wake. Here, just the influence of the diffuser angle was investigated without separator and the end plate. The method of Computational Fluid Dynamics was adopted to study the aerodynamic characteristics of a simplified sedan with a different diffuser angle respectively. The diffuser angle was set to 0°, 3°, 6°, 9.8° and 12° respectively. The diffuser angle of the original model is 9.8°. The conclusions were drawn that when the diffuser angle increases, the underbody flow and especially the wake change greatly and the pressure change correspondingly; as a result, the total aerodynamic drag coefficients of car first decrease and then increases, while the total aerodynamic lift coefficients decrease.

  18. A study of ground motion attenuation in the Southern Great Basin, Nevada-California, using several techniques for estimates of Qs , log A 0, and coda Q

    NASA Astrophysics Data System (ADS)

    Rogers, A. M.; Harmsen, S. C.; Herrmann, R. B.; Meremonte, M. E.

    1987-04-01

    As a first step in the assessment of the earthquake hazard in the southern Great Basin of Nevada-California, this study evaluates the attenuation of peak vertical ground motions using a number of different regression models applied to unfiltered and band-pass-filtered ground motion data. These data are concentrated in the distance range 10-250 km. The regression models include parameters to account for geometric spreading, anelastic attenuation with a power law frequency dependence, source size, and station site effects. We find that the data are most consistent with an essentially frequency-independent Q and a geometric spreading coefficient less than 1.0. Regressions are also performed on vertical component peak amplitudes reexpressed as pseudo-Wood-Anderson peak amplitude estimates (PWA), permitting comparison with earlier work that used Wood-Anderson (WA) data from California. Both of these results show that Q values in this region are high relative to California, having values in the range 700-900 over the frequency band 1-10 Hz. Comparison of ML magnitudes from stations BRK and PAS for earthquakes in the southern Great Basin shows that these two stations report magnitudes with differences that are distance dependent. This bias suggests that the Richter log A0 curve appropriate to California is too steep for earthquakes occurring in southern Nevada, a result implicitly supporting our finding that Q values are higher than those in California. The PWA attenuation functions derived from our data also indicate that local magnitudes reported by California observatories for earthquakes in this region may be overestimated by as much as 0.8 magnitude units in some cases. Both of these results will have an effect on the assessment of the earthquake hazard in this region. The robustness of our regression technique to extract the correct geometric spreading coefficient n and anelastic attenuation Q is tested by applying the technique to simulated data computed with given n and Q values. Using a stochastic modeling technique, we generate suites of seismograms for the distance range 10-200 km and for both WA and short-period vertical component seismometers. Regressions on the peak amplitudes from these records show that our regression model extracts values of n and Q approximately equal to the input values for either low-Q California attenuation or high-Q southern Nevada attenuation. Regressions on stochastically modeled WA and PWA amplitudes also provides a method of evaluating differences in magnitudes from WA and PWA amplitudes due to recording instrument response characteristics alone. These results indicate a difference between MLWA and MLPWA equal to 0.15 magnitude units, which we term the residual instrument correction. In contrast to the peak amplitude results, coda Q determinations using the single scatterer theory indicate that Qc values are dependent on source type and are proportional to ƒp, where p = 0.8 to 1.0. This result suggests that a difference exists between attenuation mechanisms for direct waves and backscattered waves in this region.

  19. Predicting the Accuracy of Protein–Ligand Docking on Homology Models

    PubMed Central

    BORDOGNA, ANNALISA; PANDINI, ALESSANDRO; BONATI, LAURA

    2011-01-01

    Ligand–protein docking is increasingly used in Drug Discovery. The initial limitations imposed by a reduced availability of target protein structures have been overcome by the use of theoretical models, especially those derived by homology modeling techniques. While this greatly extended the use of docking simulations, it also introduced the need for general and robust criteria to estimate the reliability of docking results given the model quality. To this end, a large-scale experiment was performed on a diverse set including experimental structures and homology models for a group of representative ligand–protein complexes. A wide spectrum of model quality was sampled using templates at different evolutionary distances and different strategies for target–template alignment and modeling. The obtained models were scored by a selection of the most used model quality indices. The binding geometries were generated using AutoDock, one of the most common docking programs. An important result of this study is that indeed quantitative and robust correlations exist between the accuracy of docking results and the model quality, especially in the binding site. Moreover, state-of-the-art indices for model quality assessment are already an effective tool for an a priori prediction of the accuracy of docking experiments in the context of groups of proteins with conserved structural characteristics. PMID:20607693

  20. Predicting nitrogen loading with land-cover composition: how can watershed size affect model performance?

    PubMed

    Zhang, Tao; Yang, Xiaojun

    2013-01-01

    Watershed-wide land-cover proportions can be used to predict the in-stream non-point source pollutant loadings through regression modeling. However, the model performance can vary greatly across different study sites and among various watersheds. Existing literature has shown that this type of regression modeling tends to perform better for large watersheds than for small ones, and that such a performance variation has been largely linked with different interwatershed landscape heterogeneity levels. The purpose of this study is to further examine the previously mentioned empirical observation based on a set of watersheds in the northern part of Georgia (USA) to explore the underlying causes of the variation in model performance. Through the combined use of the neutral landscape modeling approach and a spatially explicit nutrient loading model, we tested whether the regression model performance variation over the watershed groups ranging in size is due to the different watershed landscape heterogeneity levels. We adopted three neutral landscape modeling criteria that were tied with different similarity levels in watershed landscape properties and used the nutrient loading model to estimate the nitrogen loads for these neutral watersheds. Then we compared the regression model performance for the real and neutral landscape scenarios, respectively. We found that watershed size can affect the regression model performance both directly and indirectly. Along with the indirect effect through interwatershed heterogeneity, watershed size can directly affect the model performance over the watersheds varying in size. We also found that the regression model performance can be more significantly affected by other physiographic properties shaping nitrogen delivery effectiveness than the watershed land-cover heterogeneity. This study contrasts with many existing studies because it goes beyond hypothesis formulation based on empirical observations and into hypothesis testing to explore the fundamental mechanism.

  1. Learning in Stochastic Bit Stream Neural Networks.

    PubMed

    van Daalen, Max; Shawe-Taylor, John; Zhao, Jieyu

    1996-08-01

    This paper presents learning techniques for a novel feedforward stochastic neural network. The model uses stochastic weights and the "bit stream" data representation. It has a clean analysable functionality and is very attractive with its great potential to be implemented in hardware using standard digital VLSI technology. The design allows simulation at three different levels and learning techniques are described for each level. The lowest level corresponds to on-chip learning. Simulation results on three benchmark MONK's problems and handwritten digit recognition with a clean set of 500 16 x 16 pixel digits demonstrate that the new model is powerful enough for the real world applications. Copyright 1996 Elsevier Science Ltd

  2. Directed transport as a mechanism for protein folding in vivo.

    PubMed

    González-Candela, Ernesto; Romero-Rochín, Víctor

    2010-01-21

    We propose a model for protein folding in vivo based on a Brownian ratchet mechanism in the multidimensional energy landscape space. The device is able to produce directed transport taking advantage of the assumed intrinsic asymmetric properties of the proteins and employing the consumption of energy provided by an external source. Through such a directed transport phenomenon, the polypeptide finds the native state starting from any initial state in the energy landscape with great efficacy and robustness, even in the presence of different types of obstacles. This model solves Levinthal's paradox without requiring biased transition probabilities but at the expense of opening the system to an external field.

  3. A model for a spatially structured metapopulation accounting for within patch dynamics.

    PubMed

    Smith, Andrew G; McVinish, Ross; Pollett, Philip K

    2014-01-01

    We develop a stochastic metapopulation model that accounts for spatial structure as well as within patch dynamics. Using a deterministic approximation derived from a functional law of large numbers, we develop conditions for extinction and persistence of the metapopulation in terms of the birth, death and migration parameters. Interestingly, we observe the Allee effect in a metapopulation comprising two patches of greatly different sizes, despite there being decreasing patch specific per-capita birth rates. We show that the Allee effect is due to the way the migration rates depend on the population density of the patches. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Recent Upgrades to NASA SPoRT Initialization Datasets for the Environmental Modeling System

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Lafontaine, Frank J.; Molthan, Andrew L.; Zavodsky, Bradley T.; Rozumalski, Robert A.

    2012-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed several products for its NOAA/National Weather Service (NWS) partners that can initialize specific fields for local model runs within the NOAA/NWS Science and Training Resource Center Environmental Modeling System (EMS). The suite of SPoRT products for use in the EMS consists of a Sea Surface Temperature (SST) composite that includes a Lake Surface Temperature (LST) analysis over the Great Lakes, a Great Lakes sea-ice extent within the SST composite, a real-time Green Vegetation Fraction (GVF) composite, and NASA Land Information System (LIS) gridded output. This paper and companion poster describe each dataset and provide recent upgrades made to the SST, Great Lakes LST, GVF composites, and the real-time LIS runs.

  5. Application of the GREAT-ER model for environmental risk assessment of nonylphenol and nonylphenol ethoxylates in China.

    PubMed

    Zhang, Lai; Cao, Yan; Hao, Xuewen; Zhang, Yongyong; Liu, Jianguo

    2015-12-01

    The environmental risk presented by "down-the-drain" chemicals to receiving rivers in large urban areas has received increasing attention in recent years. Geo-referenced Regional Environmental Assessment Tool for European Rivers (GREAT-ER) is a typical river catchment model that has been specifically developed for the risk assessment of these chemicals and applied in many European rivers. By utilizing the new version of the model, GREAT-ER 3.0, which is the first completely open source software for worldwide application, this study represents the first attempt to conduct an application of GREAT-ER in the Wenyu River of China. Aquatic exposure simulation and an environmental risk assessment of nonylphenol (NP) and its environmental precursor nonylphenol ethoxylates (NPEOs) were conducted effectively by GREAT-ER model, since NP is one of typical endocrine disrupting chemicals (EDCs) and its environmental precursor NPEOs as a "down-the-drain" chemical are extensively used in China. In the result, the predicted environmental concentrations (PECs) of NP and NPEOs in the water of Wenyu River were 538 and 4320 ng/L, respectively, at the regional scale, and 1210 and 8990 ng/L, respectively, at the local scale. From the results profile of the RCR, the combination of high emissions from large STPs with insufficient dilution of the river caused the high RCR. The PECs of NP in the sediment were in the range of 216.8-8218.3 ng/g (dry weight), which was consistent with the available monitoring data. The study showed the worldwide applicability and reliability of GREAT-ER as a river catchment model for the risk assessment of these chemicals and also revealed the general environmental risks presented by NP and NPEOs in the Wenyu River catchment in Beijing due to the extensive use of these chemicals. The results suggest that specific control or treatment measures are probably warranted for these chemicals to reduce their discharge in major cities.

  6. Comparison of oral health behavior among dental students, students of other disciplines, and fashion models in Switzerland.

    PubMed

    Kirchhoff, Julien; Filippi, Andreas

    Self-reliant oral health behavior exert great influence on the oral health of our society. The aim of the present study was to find out whether there is an occupation-related difference in the oral health behavior between dental students, students of other disciplines, and fashion models in German-speaking Switzerland. The survey comprised 19 questions which were asked using a web-based anonymous questionnaire. The investigation particularly inquired about employed auxiliaries and their application for an improvement of oral hygiene. In addition, the satisfaction with the own teeth and smile as well as the influence of the occupation or the study on oral hygiene were examined. Included in this evaluation were 204 dental students, 257 students of other disciplines, and 117 fashion models aged between 21 and 25 years. The evaluation reveals that the state of knowledge and the professional relationship affect the practice of oral hygiene, in particular among dental students. Fashion models, however, are most intensively concerned with body care and oral hygiene. Their attention is directed particularly to means supposed to improve the smile as well as to ensure fresh breath. Dental students and fashion models constitute a selected minority clearly demarcated from students of other disciplines regarding a higher awareness of self-reliant oral hygiene. The comparatively minor rating of oral health in a group of basically well-trained individuals suggests great need of educational work in the general population.

  7. Estimation of potential evapotranspiration from extraterrestrial radiation, air temperature and humidity to assess future climate change effects on the vegetation of the Northern Great Plains, USA

    USGS Publications Warehouse

    King, David A.; Bachelet, Dominique M.; Symstad, Amy J.; Ferschweiler, Ken; Hobbins, Michael

    2014-01-01

    The potential evapotranspiration (PET) that would occur with unlimited plant access to water is a central driver of simulated plant growth in many ecological models. PET is influenced by solar and longwave radiation, temperature, wind speed, and humidity, but it is often modeled as a function of temperature alone. This approach can cause biases in projections of future climate impacts in part because it confounds the effects of warming due to increased greenhouse gases with that which would be caused by increased radiation from the sun. We developed an algorithm for linking PET to extraterrestrial solar radiation (incoming top-of atmosphere solar radiation), as well as temperature and atmospheric water vapor pressure, and incorporated this algorithm into the dynamic global vegetation model MC1. We tested the new algorithm for the Northern Great Plains, USA, whose remaining grasslands are threatened by continuing woody encroachment. Both the new and the standard temperature-dependent MC1 algorithm adequately simulated current PET, as compared to the more rigorous PenPan model of Rotstayn et al. (2006). However, compared to the standard algorithm, the new algorithm projected a much more gradual increase in PET over the 21st century for three contrasting future climates. This difference led to lower simulated drought effects and hence greater woody encroachment with the new algorithm, illustrating the importance of more rigorous calculations of PET in ecological models dealing with climate change.

  8. Contingency planning for a deliberate release of smallpox in Great Britain--the role of geographical scale and contact structure.

    PubMed

    House, Thomas; Hall, Ian; Danon, Leon; Keeling, Matt J

    2010-02-14

    In the event of a release of a pathogen such as smallpox, which is human-to-human transmissible and has high associated mortality, a key question is how best to deploy containment and control strategies. Given the general uncertainty surrounding this issue, mathematical modelling has played an important role in informing the likely optimal response, in particular defining the conditions under which mass-vaccination would be appropriate. In this paper, we consider two key questions currently unanswered in the literature: firstly, what is the optimal spatial scale for intervention; and secondly, how sensitive are results to the modelling assumptions made about the pattern of human contacts? Here we develop a novel mathematical model for smallpox that incorporates both information on individual contact structure (which is important if the effects of contact tracing are to be captured accurately) and large-scale patterns of movement across a range of spatial scales in Great Britain. Analysis of this model confirms previous work suggesting that a locally targeted 'ring' vaccination strategy is optimal, and that this conclusion is actually quite robust for different socio-demographic and epidemiological assumptions. Our method allows for intuitive understanding of the reasons why national mass vaccination is typically predicted to be suboptimal. As such, we present a general framework for fast calculation of expected outcomes during the attempted control of diverse emerging infections; this is particularly important given that parameters would need to be interactively estimated and modelled in any release scenario.

  9. Trace Gas/Aerosol Interactions and GMI Modeling Support

    NASA Technical Reports Server (NTRS)

    Penner, Joyce E.; Liu, Xiaohong; Das, Bigyani; Bergmann, Dan; Rodriquez, Jose M.; Strahan, Susan; Wang, Minghuai; Feng, Yan

    2005-01-01

    Current global aerosol models use different physical and chemical schemes and parameters, different meteorological fields, and often different emission sources. Since the physical and chemical parameterization schemes are often tuned to obtain results that are consistent with observations, it is difficult to assess the true uncertainty due to meteorology alone. Under the framework of the NASA global modeling initiative (GMI), the differences and uncertainties in aerosol simulations (for sulfate, organic carbon, black carbon, dust and sea salt) solely due to different meteorological fields are analyzed and quantified. Three meteorological datasets available from the NASA DAO GCM, the GISS-II' GCM, and the NASA finite volume GCM (FVGCM) are used to drive the same aerosol model. The global sulfate and mineral dust burdens with FVGCM fields are 40% and 20% less than those with DAO and GISS fields, respectively due to its heavier rainfall. Meanwhile, the sea salt burden predicted with FVGCM fields is 56% and 43% higher than those with DAO and GISS, respectively, due to its stronger convection especially over the Southern Hemispheric Ocean. Sulfate concentrations at the surface in the Northern Hemisphere extratropics and in the middle to upper troposphere differ by more than a factor of 3 between the three meteorological datasets. The agreement between model calculated and observed aerosol concentrations in the industrial regions (e.g., North America and Europe) is quite similar for all three meteorological datasets. Away from the source regions, however, the comparisons with observations differ greatly for DAO, FVGCM and GISS, and the performance of the model using different datasets varies largely depending on sites and species. Global annual average aerosol optical depth at 550 nm is 0.120-0.131 for the three meteorological datasets.

  10. a Discrete Mathematical Model to Simulate Malware Spreading

    NASA Astrophysics Data System (ADS)

    Del Rey, A. Martin; Sánchez, G. Rodriguez

    2012-10-01

    With the advent and worldwide development of Internet, the study and control of malware spreading has become very important. In this sense, some mathematical models to simulate malware propagation have been proposed in the scientific literature, and usually they are based on differential equations exploiting the similarities with mathematical epidemiology. The great majority of these models study the behavior of a particular type of malware called computer worms; indeed, to the best of our knowledge, no model has been proposed to simulate the spreading of a computer virus (the traditional type of malware which differs from computer worms in several aspects). In this sense, the purpose of this work is to introduce a new mathematical model not based on continuous mathematics tools but on discrete ones, to analyze and study the epidemic behavior of computer virus. Specifically, cellular automata are used in order to design such model.

  11. Development of a State-Wide 3-D Seismic Tomography Velocity Model for California

    NASA Astrophysics Data System (ADS)

    Thurber, C. H.; Lin, G.; Zhang, H.; Hauksson, E.; Shearer, P.; Waldhauser, F.; Hardebeck, J.; Brocher, T.

    2007-12-01

    We report on progress towards the development of a state-wide tomographic model of the P-wave velocity for the crust and uppermost mantle of California. The dataset combines first arrival times from earthquakes and quarry blasts recorded on regional network stations and travel times of first arrivals from explosions and airguns recorded on profile receivers and network stations. The principal active-source datasets are Geysers-San Pablo Bay, Imperial Valley, Livermore, W. Mojave, Gilroy-Coyote Lake, Shasta region, Great Valley, Morro Bay, Mono Craters-Long Valley, PACE, S. Sierras, LARSE 1 and 2, Loma Prieta, BASIX, San Francisco Peninsula and Parkfield. Our beta-version model is coarse (uniform 30 km horizontal and variable vertical gridding) but is able to image the principal features in previous separate regional models for northern and southern California, such as the high-velocity subducting Gorda Plate, upper to middle crustal velocity highs beneath the Sierra Nevada and much of the Coast Ranges, the deep low-velocity basins of the Great Valley, Ventura, and Los Angeles, and a high- velocity body in the lower crust underlying the Great Valley. The new state-wide model has improved areal coverage compared to the previous models, and extends to greater depth due to the data at large epicentral distances. We plan a series of steps to improve the model. We are enlarging and calibrating the active-source dataset as we obtain additional picks from investigators and perform quality control analyses on the existing and new picks. We will also be adding data from more quarry blasts, mainly in northern California, following an identification and calibration procedure similar to Lin et al. (2006). Composite event construction (Lin et al., in press) will be carried out for northern California for use in conventional tomography. A major contribution of the state-wide model is the identification of earthquakes yielding arrival times at both the Northern California Seismic Network and the Southern California Seismic Network. These events are critical to the determination of the seismic velocity model in central California, in the former `no-mans-land' between the Northern and Southern California networks. Ultimately, a combination of active-source datasets, composite events, original catalog picks, and differential times from both waveform cross-correlation and catalog picks will be used in a double-difference tomography inversion.

  12. On the Use and Validation of Mosaic Heterogeneity in Atmospheric Numerical Models

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Atlas, Robert M. (Technical Monitor)

    2001-01-01

    The mosaic land modeling approach allows for the representation of multiple surface types in a single atmospheric general circulation model grid box. Each surface type, collectively called 'tiles' correspond to different sets of surface characteristics (e.g. for grass, crop or forest). Typically, the tile space data is averaged to grid space by weighting the tiles with their fractional cover. While grid space data is routinely evaluated, little attention has been given to the tile space data. The present paper explores uses of the tile space surface data in validation with station observations. The results indicate the limitations that the mosaic heterogeneity parameterization has in reproducing variations observed between stations at the Atmospheric Radiation Measurement Southern Great Plains field site.

  13. Prediction of the effect of temperature on impact damage in carbon/epoxy laminates

    NASA Astrophysics Data System (ADS)

    Gómez del Río, T.; Zaera, R.; Navarro, C.

    2003-09-01

    The effect of temperature on impact damage in Carbon Fiber Reinforced Plastic (CFRP) tape laminates produced by low velocity impact was studied by numerical simulations made to model drop weight tower impact tests on carbon/epoxy laminate composites. The damage model was implemented into a user subroutine of the finite element code ABAQUS. The model takes into account the thermal stresses resulting form the different thermal expansion coefficients in each ply of the laminate. The tests and simulations show how temperature affects the propagation of each damage mode. Matrix cracking and delamination are greatly affected by low temperature, white matrix crushing and fibre failure appear only in a small region at all the impact energies and test temperatures.

  14. A Symmetric Two-Locus Fertility Model

    PubMed Central

    Feldman, Marcus W.; Liberman, Uri

    1985-01-01

    A model in which selection is mediated by differential fertilities among the genotypes at two diallelic loci is proposed. Fertility depends only on the number of heterozygous loci participating in the mating. Classes analogous to symmetric equilibria in symmetric viability models are determined explicitly and shown to exhibit stability behavior very different from the viability results. Linkage equilibrium is shown to occur in a relatively asymmetric fashion and to overlap in stability with linkage disequilibrium. In many cases single-locus or two-locus polymorphism is shown to be stable simultaneously with chromosome fixation even under very tight linkage. It is suggested that historical effects may be of great significance in the evolution of systems in which fertility is the primary agent of natural selection. PMID:3967817

  15. Study of Flexible Load Dispatch to Improve the Capacity of Wind Power Absorption

    NASA Astrophysics Data System (ADS)

    Yunlei, Yang; Shifeng, Zhang; Xiao, Chang; Da, Lei; Min, Zhang; Jinhao, Wang; Shengwen, Li; Huipeng, Li

    2017-05-01

    The dispatch method which track the trend of load demand by arranging the generation scheme of controllable hydro or thermal units faces great difficulties and challenges. With the increase of renewable energy sources such as wind power and photovoltaic power introduced to grid, system has to arrange much more spinning reserve units to compensate the unbalanced power. How to exploit the peak-shaving potential of flexible load which can be shifted with time or storage energy has become many scholars’ research direction. However, the modelling of different kinds of load and control strategy is considerably difficult, this paper choose the Air Conditioner with compressor which can storage energy in fact to study. The equivalent thermal parameters of Air Conditioner has been established. And with the use of “loop control” strategies, we can predict the regulated power of Air Conditioner. Then we established the Gen-Load optimal scheduling model including flexible load based on traditional optimal scheduling model. At last, an improved IEEE-30 case is used to verify. The result of simulation shows that flexible load can fast-track renewable power changes. More than that, with flexible load and reasonable incentive method to consumers, the operating cost of the system can be greatly cut down.

  16. Land Use Effects on Net Greenhouse Gas Fluxes in the US Great Plains: Historical Trends and Model Projections

    NASA Astrophysics Data System (ADS)

    Del Grosso, S. J.; Parton, W. J.; Ojima, D. S.; Mosier, A. R.; Mosier, A. R.; Paustian, K.; Peterson, G. A.

    2001-12-01

    We present maps showing regional patterns of land use change and soil C levels in the US Great Plains during the 20th century and time series of net greenhouse gas fluxes associated with different land uses. Net greenhouse gas fluxes were calculated by accounting for soil CO2 fluxes, the CO2 equivalents of N2O emissions and CH4 uptake, and the CO2 costs of N fertilizer production. Both historical and modern agriculture in this region have been net sources of greenhouse gases. The primary reason for this, prior to 1950, is that agriculture mined soil C and resulted in net CO2 emissions. When chemical N fertilizer became widely used in the 1950's agricultural soils began to sequester CO2-C but these soils were still net greenhouse gas sources if the effects of increased N2O emissions and decreased CH4 uptake are included. The sensitivity of net greenhouse gas fluxes to conventional and alternative land uses was explored using the DAYCENT ecosystem model. Model projections suggest that conversion to no-till, reduction of the fallow period, and use of nitrification inhibitors can significantly decrease net greenhouse gas emissions in dryland and irrigated systems, while maintaining or increasing crop yields.

  17. Calculating salt loads to Great Salt Lake and the associated uncertainties for water year 2013; updating a 48 year old standard

    USGS Publications Warehouse

    Shope, Christopher L.; Angeroth, Cory E.

    2015-01-01

    Effective management of surface waters requires a robust understanding of spatiotemporal constituent loadings from upstream sources and the uncertainty associated with these estimates. We compared the total dissolved solids loading into the Great Salt Lake (GSL) for water year 2013 with estimates of previously sampled periods in the early 1960s.We also provide updated results on GSL loading, quantitatively bounded by sampling uncertainties, which are useful for current and future management efforts. Our statistical loading results were more accurate than those from simple regression models. Our results indicate that TDS loading to the GSL in water year 2013 was 14.6 million metric tons with uncertainty ranging from 2.8 to 46.3 million metric tons, which varies greatly from previous regression estimates for water year 1964 of 2.7 million metric tons. Results also indicate that locations with increased sampling frequency are correlated with decreasing confidence intervals. Because time is incorporated into the LOADEST models, discrepancies are largely expected to be a function of temporally lagged salt storage delivery to the GSL associated with terrestrial and in-stream processes. By incorporating temporally variable estimates and statistically derived uncertainty of these estimates,we have provided quantifiable variability in the annual estimates of dissolved solids loading into the GSL. Further, our results support the need for increased monitoring of dissolved solids loading into saline lakes like the GSL by demonstrating the uncertainty associated with different levels of sampling frequency.

  18. PREFACE: Stellar Atmospheres in the Gaia Era - Preface

    NASA Astrophysics Data System (ADS)

    Lobel, Alex; De Greve, Jean-Pierre; Van Rensbergen, Walter

    2011-12-01

    Volume 328 (2011) of the Journal of Physics: Conference Series provides a record of the invited and contributed talks, and of the posters presented at the GREAT-ESF workshop entitled `Stellar Atmospheres in the Gaia Era: Quantitative Spectroscopy and Comparative Spectrum Modelling' (http://great-esf.oma.be and mirrored at http://spectri.freeshell.org/great-esf). The conference was held on 23-24 June 2011 at the Vrije Universiteit Brussel, Belgium. 47 scientists from 11 countries around the world attended the workshop. The ESA-Gaia satellite (launch mid 2013) will observe a billion stellar objects in the Galaxy and provide spectrophotometric and high-resolution spectra of an unprecedented number of stars observed with a space-based instrument. The confrontation of these data with theoretical models will significantly advance our understanding of the physics of stellar atmospheres. New stellar populations such as previously unknown emission line stars will be discovered, and fundamental questions such as the basic scenarios of stellar evolution will be addressed with Gaia data. The 33 presentations and 4 main discussion sessions at the workshop addressed important topics in spectrum synthesis methods and detailed line profile calculations urgently needed for accurate modelling of stellar spectra. It brought together leading scientists and students of the stellar physics communities investigating hot and cool star spectra. The scientific programme of the workshop consisted of 23 oral (6 invited) and 10 poster presentations about cool stars (first day; Comparative Spectrum Modelling and Quantitative Spectroscopy of Cool Stars), and hot stars (second day; Quantitative Spectroscopy of Hot Stars). The hot and cool stars communities use different spectrum modelling codes for determining basic parameters such as the effective temperature, surface gravity, iron abundance, and the chemical composition of stellar atmospheres. The chaired sessions of the first day highlighted new research results with spectral synthesis codes developed for cool stars, while the second day focused on codes applied for modeling the spectra of hot stars. The workshop addressed five major topics in stellar atmospheres research: Spectrum synthesis codes Radiation hydrodynamics codes Atmospheric parameters, abundance, metallicity, and chemical tagging studies Large spectroscopic surveys New atomic database The workshop presentations discussed various important scientific issues by comparing detailed model spectra to identify differences that can influence and bias the resulting atmospheric parameters. Theoretical line-blanketed model spectra were compared in detail to high-resolution spectroscopic observations. Stellar spectra computed (i.e., in the Gaia Radial Velocity Spectrometer wavelength range) with 1-D model atmosphere structures were mutually compared, but also to 3-D models from advanced radiation hydrodynamics codes. Atmospheric parameters derived from spectrum synthesis calculations assuming Local Thermodynamic Equilibrium (LTE) were evaluated against more sophisticated non-LTE models of metal-poor stars and the extended atmospheres of giants and supergiants. The workshop presented an overview of high-resolution synthetic spectral libraries of model spectra computed with the synthesis codes. The spectral model grids will be utilized to derive stellar parameters with the Discrete Source Classifier Algorithms currently under development in the Gaia DPAC consortium (http://www.rssd.esa.int/index.php?project=GAIA&page=DPAC_Introduction). They are implemented for training Gaia data analysis algorithms for the classification of a wide variety of hot and cool star types; FGK and M stars, OB stars, white dwarfs, red supergiants, peculiar A and B stars, carbon stars, ultra cool dwarfs, various types of emission line stars, Be stars, Wolf-Rayet stars, etc. A substantial number of oral and poster presentations discussed different techniques for measuring the abundance of various chemical elements from stellar spectra. The presented methods utilize spectra observed with large spectral dispersion, for example for accurately measuring iron, carbon, and nitrogen abundances. These methods are important for ongoing development and testing of automated and supervised algorithms for determining detailed chemical composition in tagging studies of large (chemo-dynamical) spectroscopic surveys planned to complement the Gaia (astrometric and kinematic) census of the Galaxy. The complete scientific programme is available here. The workshop website also offers the presentation viewgraphs (in PDF format) and some nice photographs of the talks and poster breaks http://great-esf.oma.be/program.php.

  19. In vivo and in vitro phenotypic differences between Great Lakes VHSV genotype IVb isolates with sequence types vcG001 and vcG002

    PubMed Central

    Imanse, Sierra M.; Cornwell, Emily R.; Getchell, Rodman G.; Kurath, Gael; Bowser, Paul R.

    2014-01-01

    Viral hemorrhagic septicemia virus (VHSV) is an aquatic rhabdovirus first recognized in farmed rainbow trout in Denmark. In the past decade, a new genotype of this virus, IVb was discovered in the Laurentian Great Lakes basin and has caused several massive die-offs in some of the 28 species of susceptible North American freshwater fishes. Since its colonization of the Great Lakes, several closely related sequence types within genotype IVb have been reported, the two most common of which are vcG001 and vcG002. These sequence types have different spatial distributions in the Great Lakes. The aim of this study was to determine whether the genotypic differences between representative vcG001 (isolate MI03) and vcG002 (isolate 2010-030 #91) isolates correspond to phenotypic differences in terms of virulence using both an in vitro and in vivo approach. In vitro infection of epithelioma papulosum cyprini (EPC), bluegill fry (BF-2), and Chinook salmon embryo (CHSE) cells demonstrated some differences in onset and rate of growth in EPC and BF-2 cells, without any difference in the quantity of RNA produced. In vivo infection of round gobies (Neogobius melanostomus) via immersion exposure to different concentrations of vcG001 or vcG002 caused a significantly greater mortality in round gobies exposed to 102 plaque forming units ml−1 of vcG001. These experiments suggest that there are phenotypic differences between Great Lakes isolates of VHSV genotype IVb. PMID:25722533

  20. In vivo and in vitro phenotypic differences between Great Lakes VHSV genotype IVb isolates with sequence types vcG001 and vcG002

    USGS Publications Warehouse

    Imanse, Sierra M.; Cornwell, Emily R.; Getchell, Rodman G.; Kurath, Gael; Bowser, Paul R.

    2014-01-01

    Viral hemorrhagic septicemia virus (VHSV) is an aquatic rhabdovirus first recognized in farmed rainbow trout in Denmark. In the past decade, a new genotype of this virus, IVb was discovered in the Laurentian Great Lakes basin and has caused several massive die-offs in some of the 28 species of susceptible North American freshwater fishes. Since its colonization of the Great Lakes, several closely related sequence types within genotype IVb have been reported, the two most common of which are vcG001 and vcG002. These sequence types have different spatial distributions in the Great Lakes. The aim of this study was to determine whether the genotypic differences between representative vcG001 (isolate MI03) and vcG002 (isolate 2010-030 #91) isolates correspond to phenotypic differences in terms of virulence using both in vitro and in vivo approaches. In vitro infection of epithelioma papulosum cyprini (EPC), bluegill fry (BF-2), and Chinook salmon embryo (CHSE) cells demonstrated some differences in onset and rate of growth in EPC and BF-2 cells, without any difference in the quantity of RNA produced. In vivo infection of round gobies (Neogobius melanostomus) via immersion exposure to different concentrations of vcG001 or vcG002 caused a significantly greater mortality in round gobies exposed to 102 plaque forming units ml− 1 of vcG001. These experiments suggest that there are phenotypic differences between Great Lakes isolates of VHSV genotype IVb.

Top