Sample records for models genetic

  1. Evaluation of an ensemble of genetic models for prediction of a quantitative trait.

    PubMed

    Milton, Jacqueline N; Steinberg, Martin H; Sebastiani, Paola

    2014-01-01

    Many genetic markers have been shown to be associated with common quantitative traits in genome-wide association studies. Typically these associated genetic markers have small to modest effect sizes and individually they explain only a small amount of the variability of the phenotype. In order to build a genetic prediction model without fitting a multiple linear regression model with possibly hundreds of genetic markers as predictors, researchers often summarize the joint effect of risk alleles into a genetic score that is used as a covariate in the genetic prediction model. However, the prediction accuracy can be highly variable and selecting the optimal number of markers to be included in the genetic score is challenging. In this manuscript we present a strategy to build an ensemble of genetic prediction models from data and we show that the ensemble-based method makes the challenge of choosing the number of genetic markers more amenable. Using simulated data with varying heritability and number of genetic markers, we compare the predictive accuracy and inclusion of true positive and false positive markers of a single genetic prediction model and our proposed ensemble method. The results show that the ensemble of genetic models tends to include a larger number of genetic variants than a single genetic model and it is more likely to include all of the true genetic markers. This increased sensitivity is obtained at the price of a lower specificity that appears to minimally affect the predictive accuracy of the ensemble.

  2. Estimating Additive and Non-Additive Genetic Variances and Predicting Genetic Merits Using Genome-Wide Dense Single Nucleotide Polymorphism Markers

    PubMed Central

    Su, Guosheng; Christensen, Ole F.; Ostersen, Tage; Henryon, Mark; Lund, Mogens S.

    2012-01-01

    Non-additive genetic variation is usually ignored when genome-wide markers are used to study the genetic architecture and genomic prediction of complex traits in human, wild life, model organisms or farm animals. However, non-additive genetic effects may have an important contribution to total genetic variation of complex traits. This study presented a genomic BLUP model including additive and non-additive genetic effects, in which additive and non-additive genetic relation matrices were constructed from information of genome-wide dense single nucleotide polymorphism (SNP) markers. In addition, this study for the first time proposed a method to construct dominance relationship matrix using SNP markers and demonstrated it in detail. The proposed model was implemented to investigate the amounts of additive genetic, dominance and epistatic variations, and assessed the accuracy and unbiasedness of genomic predictions for daily gain in pigs. In the analysis of daily gain, four linear models were used: 1) a simple additive genetic model (MA), 2) a model including both additive and additive by additive epistatic genetic effects (MAE), 3) a model including both additive and dominance genetic effects (MAD), and 4) a full model including all three genetic components (MAED). Estimates of narrow-sense heritability were 0.397, 0.373, 0.379 and 0.357 for models MA, MAE, MAD and MAED, respectively. Estimated dominance variance and additive by additive epistatic variance accounted for 5.6% and 9.5% of the total phenotypic variance, respectively. Based on model MAED, the estimate of broad-sense heritability was 0.506. Reliabilities of genomic predicted breeding values for the animals without performance records were 28.5%, 28.8%, 29.2% and 29.5% for models MA, MAE, MAD and MAED, respectively. In addition, models including non-additive genetic effects improved unbiasedness of genomic predictions. PMID:23028912

  3. Stakeholder perspectives on decision-analytic modeling frameworks to assess genetic services policy.

    PubMed

    Guzauskas, Gregory F; Garrison, Louis P; Stock, Jacquie; Au, Sylvia; Doyle, Debra Lochner; Veenstra, David L

    2013-01-01

    Genetic services policymakers and insurers often make coverage decisions in the absence of complete evidence of clinical utility and under budget constraints. We evaluated genetic services stakeholder opinions on the potential usefulness of decision-analytic modeling to inform coverage decisions, and asked them to identify genetic tests for decision-analytic modeling studies. We presented an overview of decision-analytic modeling to members of the Western States Genetic Services Collaborative Reimbursement Work Group and state Medicaid representatives and conducted directed content analysis and an anonymous survey to gauge their attitudes toward decision-analytic modeling. Participants also identified and prioritized genetic services for prospective decision-analytic evaluation. Participants expressed dissatisfaction with current processes for evaluating insurance coverage of genetic services. Some participants expressed uncertainty about their comprehension of decision-analytic modeling techniques. All stakeholders reported openness to using decision-analytic modeling for genetic services assessments. Participants were most interested in application of decision-analytic concepts to multiple-disorder testing platforms, such as next-generation sequencing and chromosomal microarray. Decision-analytic modeling approaches may provide a useful decision tool to genetic services stakeholders and Medicaid decision-makers.

  4. Exploring Middle School Students' Understanding of Three Conceptual Models in Genetics

    NASA Astrophysics Data System (ADS)

    Bresler Freidenreich, Hava; Golan Duncan, Ravit; Shea, Nicole

    2011-11-01

    Genetics is the cornerstone of modern biology and a critical aspect of scientific literacy. Research has shown, however, that many high school graduates lack fundamental understandings in genetics necessary to make informed decisions about issues and emerging technologies in this domain, such as genetic screening, genetically modified foods, etc. Genetic literacy entails understanding three interrelated models: a genetic model that describes patterns of genetic inheritance, a meiotic model that describes the process by which genes are segregated into sex cells, and a molecular model that describes the mechanisms that link genotypes to phenotypes within an individual. Currently, much of genetics instruction, especially in terms of the molecular model, occurs at the high school level, and we know little about the ways in which middle school students can reason about these models. Furthermore, we do not know the extent to which carefully designed instruction can help younger students develop coherent and interrelated understandings in genetics. In this paper, we discuss a research study aimed at elucidating middle school students' abilities to reason about the three genetic models. As part of our research, we designed an eight-week inquiry unit that was implemented in a combined sixth- to eighth-grade science classroom. We describe our instructional design and report results based on an analysis of written assessments, clinical interviews, and artifacts of the unit. Our findings suggest that middle school students are able to successfully reason about all three genetic models.

  5. [The emphases and basic procedures of genetic counseling in psychotherapeutic model].

    PubMed

    Zhang, Yuan-Zhi; Zhong, Nanbert

    2006-11-01

    The emphases and basic procedures of genetic counseling are all different with those in old models. In the psychotherapeutic model, genetic counseling will not only focus on counselees' genetic disorders and birth defects, but also their psychological problems. "Client-centered therapy" termed by Carl Rogers plays an important role in genetic counseling process. The basic procedures of psychotherapeutic model of genetic counseling include 7 steps: initial contact, introduction, agendas, inquiry of family history, presenting information, closing the session and follow-up.

  6. How Surrogate and Chemical Genetics in Model Organisms Can Suggest Therapies for Human Genetic Diseases.

    PubMed

    Strynatka, Katherine A; Gurrola-Gal, Michelle C; Berman, Jason N; McMaster, Christopher R

    2018-03-01

    Genetic diseases are both inherited and acquired. Many genetic diseases fall under the paradigm of orphan diseases, a disease found in < 1 in 2000 persons. With rapid and cost-effective genome sequencing becoming the norm, many causal mutations for genetic diseases are being rapidly determined. In this regard, model organisms are playing an important role in validating if specific mutations identified in patients drive the observed phenotype. An emerging challenge for model organism researchers is the application of genetic and chemical genetic platforms to discover drug targets and drugs/drug-like molecules for potential treatment options for patients with genetic disease. This review provides an overview of how model organisms have contributed to our understanding of genetic disease, with a focus on the roles of yeast and zebrafish in gene discovery and the identification of compounds that could potentially treat human genetic diseases. Copyright © 2018 by the Genetics Society of America.

  7. Imaging genetics approach to predict progression of Parkinson's diseases.

    PubMed

    Mansu Kim; Seong-Jin Son; Hyunjin Park

    2017-07-01

    Imaging genetics is a tool to extract genetic variants associated with both clinical phenotypes and imaging information. The approach can extract additional genetic variants compared to conventional approaches to better investigate various diseased conditions. Here, we applied imaging genetics to study Parkinson's disease (PD). We aimed to extract significant features derived from imaging genetics and neuroimaging. We built a regression model based on extracted significant features combining genetics and neuroimaging to better predict clinical scores of PD progression (i.e. MDS-UPDRS). Our model yielded high correlation (r = 0.697, p <; 0.001) and low root mean squared error (8.36) between predicted and actual MDS-UPDRS scores. Neuroimaging (from 123 I-Ioflupane SPECT) predictors of regression model were computed from independent component analysis approach. Genetic features were computed using image genetics approach based on identified neuroimaging features as intermediate phenotypes. Joint modeling of neuroimaging and genetics could provide complementary information and thus have the potential to provide further insight into the pathophysiology of PD. Our model included newly found neuroimaging features and genetic variants which need further investigation.

  8. How Surrogate and Chemical Genetics in Model Organisms Can Suggest Therapies for Human Genetic Diseases

    PubMed Central

    Strynatka, Katherine A.; Gurrola-Gal, Michelle C.; Berman, Jason N.; McMaster, Christopher R.

    2018-01-01

    Genetic diseases are both inherited and acquired. Many genetic diseases fall under the paradigm of orphan diseases, a disease found in < 1 in 2000 persons. With rapid and cost-effective genome sequencing becoming the norm, many causal mutations for genetic diseases are being rapidly determined. In this regard, model organisms are playing an important role in validating if specific mutations identified in patients drive the observed phenotype. An emerging challenge for model organism researchers is the application of genetic and chemical genetic platforms to discover drug targets and drugs/drug-like molecules for potential treatment options for patients with genetic disease. This review provides an overview of how model organisms have contributed to our understanding of genetic disease, with a focus on the roles of yeast and zebrafish in gene discovery and the identification of compounds that could potentially treat human genetic diseases. PMID:29487144

  9. Estimation of genetic variance for macro- and micro-environmental sensitivity using double hierarchical generalized linear models.

    PubMed

    Mulder, Han A; Rönnegård, Lars; Fikse, W Freddy; Veerkamp, Roel F; Strandberg, Erling

    2013-07-04

    Genetic variation for environmental sensitivity indicates that animals are genetically different in their response to environmental factors. Environmental factors are either identifiable (e.g. temperature) and called macro-environmental or unknown and called micro-environmental. The objectives of this study were to develop a statistical method to estimate genetic parameters for macro- and micro-environmental sensitivities simultaneously, to investigate bias and precision of resulting estimates of genetic parameters and to develop and evaluate use of Akaike's information criterion using h-likelihood to select the best fitting model. We assumed that genetic variation in macro- and micro-environmental sensitivities is expressed as genetic variance in the slope of a linear reaction norm and environmental variance, respectively. A reaction norm model to estimate genetic variance for macro-environmental sensitivity was combined with a structural model for residual variance to estimate genetic variance for micro-environmental sensitivity using a double hierarchical generalized linear model in ASReml. Akaike's information criterion was constructed as model selection criterion using approximated h-likelihood. Populations of sires with large half-sib offspring groups were simulated to investigate bias and precision of estimated genetic parameters. Designs with 100 sires, each with at least 100 offspring, are required to have standard deviations of estimated variances lower than 50% of the true value. When the number of offspring increased, standard deviations of estimates across replicates decreased substantially, especially for genetic variances of macro- and micro-environmental sensitivities. Standard deviations of estimated genetic correlations across replicates were quite large (between 0.1 and 0.4), especially when sires had few offspring. Practically, no bias was observed for estimates of any of the parameters. Using Akaike's information criterion the true genetic model was selected as the best statistical model in at least 90% of 100 replicates when the number of offspring per sire was 100. Application of the model to lactation milk yield in dairy cattle showed that genetic variance for micro- and macro-environmental sensitivities existed. The algorithm and model selection criterion presented here can contribute to better understand genetic control of macro- and micro-environmental sensitivities. Designs or datasets should have at least 100 sires each with 100 offspring.

  10. Exploring the possibility of modeling a genetic counseling guideline using agile methodology.

    PubMed

    Choi, Jeeyae

    2013-01-01

    Increased demand of genetic counseling services heightened the necessity of a computerized genetic counseling decision support system. In order to develop an effective and efficient computerized system, modeling of genetic counseling guideline is an essential step. Throughout this pilot study, Agile methodology with United Modeling Language (UML) was utilized to model a guideline. 13 tasks and 14 associated elements were extracted. Successfully constructed conceptual class and activity diagrams revealed that Agile methodology with UML was a suitable tool to modeling a genetic counseling guideline.

  11. Latent spatial models and sampling design for landscape genetics

    USGS Publications Warehouse

    Hanks, Ephraim M.; Hooten, Mevin B.; Knick, Steven T.; Oyler-McCance, Sara J.; Fike, Jennifer A.; Cross, Todd B.; Schwartz, Michael K.

    2016-01-01

    We propose a spatially-explicit approach for modeling genetic variation across space and illustrate how this approach can be used to optimize spatial prediction and sampling design for landscape genetic data. We propose a multinomial data model for categorical microsatellite allele data commonly used in landscape genetic studies, and introduce a latent spatial random effect to allow for spatial correlation between genetic observations. We illustrate how modern dimension reduction approaches to spatial statistics can allow for efficient computation in landscape genetic statistical models covering large spatial domains. We apply our approach to propose a retrospective spatial sampling design for greater sage-grouse (Centrocercus urophasianus) population genetics in the western United States.

  12. Teaching Human Genetics with Mustard: Rapid Cycling "Brassica rapa" (Fast Plants Type) as a Model for Human Genetics in the Classroom Laboratory

    ERIC Educational Resources Information Center

    Wendell, Douglas L.; Pickard, Dawn

    2007-01-01

    We have developed experiments and materials to model human genetics using rapid cycling "Brassica rapa", also known as Fast Plants. Because of their self-incompatibility for pollination and the genetic diversity within strains, "B. rapa" can serve as a relevant model for human genetics in teaching laboratory experiments. The experiment presented…

  13. Testing the Structure of Hydrological Models using Genetic Programming

    NASA Astrophysics Data System (ADS)

    Selle, B.; Muttil, N.

    2009-04-01

    Genetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that genetic programming can be used to test the structure hydrological models and to identify dominant processes in hydrological systems. To test this, genetic programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, water table depths and water ponding times during surface irrigation. Using genetic programming, a simple model of deep percolation was consistently evolved in multiple model runs. This simple and interpretable model confirmed the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that genetic programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.

  14. Learning Gene Expression through Modelling and Argumentation: A Case Study Exploring the Connections between the Worlds of Knowledge

    ERIC Educational Resources Information Center

    Puig, Blanca; Ageitos, Noa; Jiménez-Aleixandre, María Pilar

    2017-01-01

    There is emerging interest on the interactions between modelling and argumentation in specific contexts, such as genetics learning. It has been suggested that modelling might help students understand and argue on genetics. We propose modelling gene expression as a way to learn molecular genetics and diseases with a genetic component. The study is…

  15. Testing the structure of a hydrological model using Genetic Programming

    NASA Astrophysics Data System (ADS)

    Selle, Benny; Muttil, Nitin

    2011-01-01

    SummaryGenetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that Genetic Programming can be used to test the structure of hydrological models and to identify dominant processes in hydrological systems. To test this, Genetic Programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, watertable depths and water ponding times during surface irrigation. Using Genetic Programming, a simple model of deep percolation was recurrently evolved in multiple Genetic Programming runs. This simple and interpretable model supported the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that Genetic Programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.

  16. Genetic Algorithms and Local Search

    NASA Technical Reports Server (NTRS)

    Whitley, Darrell

    1996-01-01

    The first part of this presentation is a tutorial level introduction to the principles of genetic search and models of simple genetic algorithms. The second half covers the combination of genetic algorithms with local search methods to produce hybrid genetic algorithms. Hybrid algorithms can be modeled within the existing theoretical framework developed for simple genetic algorithms. An application of a hybrid to geometric model matching is given. The hybrid algorithm yields results that improve on the current state-of-the-art for this problem.

  17. Optimality models in the age of experimental evolution and genomics.

    PubMed

    Bull, J J; Wang, I-N

    2010-09-01

    Optimality models have been used to predict evolution of many properties of organisms. They typically neglect genetic details, whether by necessity or design. This omission is a common source of criticism, and although this limitation of optimality is widely acknowledged, it has mostly been defended rather than evaluated for its impact. Experimental adaptation of model organisms provides a new arena for testing optimality models and for simultaneously integrating genetics. First, an experimental context with a well-researched organism allows dissection of the evolutionary process to identify causes of model failure--whether the model is wrong about genetics or selection. Second, optimality models provide a meaningful context for the process and mechanics of evolution, and thus may be used to elicit realistic genetic bases of adaptation--an especially useful augmentation to well-researched genetic systems. A few studies of microbes have begun to pioneer this new direction. Incompatibility between the assumed and actual genetics has been demonstrated to be the cause of model failure in some cases. More interestingly, evolution at the phenotypic level has sometimes matched prediction even though the adaptive mutations defy mechanisms established by decades of classic genetic studies. Integration of experimental evolutionary tests with genetics heralds a new wave for optimality models and their extensions that does not merely emphasize the forces driving evolution.

  18. Form Follows Function: A Model for Clinical Supervision of Genetic Counseling Students.

    PubMed

    Wherley, Colleen; Veach, Patricia McCarthy; Martyr, Meredith A; LeRoy, Bonnie S

    2015-10-01

    Supervision plays a vital role in genetic counselor training, yet models describing genetic counseling supervision processes and outcomes are lacking. This paper describes a proposed supervision model intended to provide a framework to promote comprehensive and consistent clinical supervision training for genetic counseling students. Based on the principle "form follows function," the model reflects and reinforces McCarthy Veach et al.'s empirically derived model of genetic counseling practice - the "Reciprocal Engagement Model" (REM). The REM consists of mutually interactive educational, relational, and psychosocial components. The Reciprocal Engagement Model of Supervision (REM-S) has similar components and corresponding tenets, goals, and outcomes. The 5 REM-S tenets are: Learning and applying genetic information are key; Relationship is integral to genetic counseling supervision; Student autonomy must be supported; Students are capable; and Student emotions matter. The REM-S outcomes are: Student understands and applies information to independently provide effective services, develop professionally, and engage in self-reflective practice. The 16 REM-S goals are informed by the REM of genetic counseling practice and supported by prior literature. A review of models in medicine and psychology confirms the REM-S contains supervision elements common in healthcare fields, while remaining unique to genetic counseling. The REM-S shows promise for enhancing genetic counselor supervision training and practice and for promoting research on clinical supervision. The REM-S is presented in detail along with specific examples and training and research suggestions.

  19. Toward an Integration of Cognitive and Genetic Models of Risk for Depression

    PubMed Central

    Gibb, Brandon E.; Beevers, Christopher G.; McGeary, John E.

    2012-01-01

    There is growing interest in integrating cognitive and genetic models of depression risk. We review two ways in which these models can be meaningfully integrated. First, information-processing biases may represent intermediate phenotypes for specific genetic influences. These genetic influences may represent main effects on specific cognitive processes or may moderate the impact of environmental influences on information-processing biases. Second, cognitive and genetic influences may combine to increase reactivity to environmental stressors, increasing risk for depression in a gene × cognition × environment model of risk. There is now growing support for both of these ways of integrating cognitive and genetic models of depression risk. Specifically, there is support for genetic influences on information-processing biases, particularly the link between 5-HTTLPR and attentional biases, from both genetic association and gene × environment (G × E) studies. There is also initial support for gene × cognition × environment models of risk in which specific genetic influences contribute to increased reactivity to environmental influences. We review this research and discuss important areas of future research, particularly the need for larger samples that allow for a broader examination of genetic and epigenetic influences as well as the combined influence of variability across a number of genes. PMID:22920216

  20. Guess LOD approach: sufficient conditions for robustness.

    PubMed

    Williamson, J A; Amos, C I

    1995-01-01

    Analysis of genetic linkage between a disease and a marker locus requires specifying a genetic model describing both the inheritance pattern and the gene frequencies of the marker and trait loci. Misspecification of the genetic model is likely for etiologically complex diseases. In previous work we have shown through analytic studies that misspecifying the genetic model for disease inheritance does not lead to excess false-positive evidence for genetic linkage provided the genetic marker alleles of all pedigree members are known, or can be inferred without bias from the data. Here, under various selection or ascertainment schemes we extend these previous results to situations in which the genetic model for the marker locus may be incorrect. We provide sufficient conditions for the asymptotic unbiased estimation of the recombination fraction under the null hypothesis of no linkage, and also conditions for the limiting distribution of the likelihood ratio test for no linkage to be chi-squared. Through simulation studies we document some situations under which asymptotic bias can result when the genetic model is misspecified. Among those situations under which an excess of false-positive evidence for genetic linkage can be generated, the most common is failure to provide accurate estimates of the marker allele frequencies. We show that in most cases false-positive evidence for genetic linkage is unlikely to result solely from the misspecification of the genetic model for disease or trait inheritance.

  1. Estimation of genetic variance for macro- and micro-environmental sensitivity using double hierarchical generalized linear models

    PubMed Central

    2013-01-01

    Background Genetic variation for environmental sensitivity indicates that animals are genetically different in their response to environmental factors. Environmental factors are either identifiable (e.g. temperature) and called macro-environmental or unknown and called micro-environmental. The objectives of this study were to develop a statistical method to estimate genetic parameters for macro- and micro-environmental sensitivities simultaneously, to investigate bias and precision of resulting estimates of genetic parameters and to develop and evaluate use of Akaike’s information criterion using h-likelihood to select the best fitting model. Methods We assumed that genetic variation in macro- and micro-environmental sensitivities is expressed as genetic variance in the slope of a linear reaction norm and environmental variance, respectively. A reaction norm model to estimate genetic variance for macro-environmental sensitivity was combined with a structural model for residual variance to estimate genetic variance for micro-environmental sensitivity using a double hierarchical generalized linear model in ASReml. Akaike’s information criterion was constructed as model selection criterion using approximated h-likelihood. Populations of sires with large half-sib offspring groups were simulated to investigate bias and precision of estimated genetic parameters. Results Designs with 100 sires, each with at least 100 offspring, are required to have standard deviations of estimated variances lower than 50% of the true value. When the number of offspring increased, standard deviations of estimates across replicates decreased substantially, especially for genetic variances of macro- and micro-environmental sensitivities. Standard deviations of estimated genetic correlations across replicates were quite large (between 0.1 and 0.4), especially when sires had few offspring. Practically, no bias was observed for estimates of any of the parameters. Using Akaike’s information criterion the true genetic model was selected as the best statistical model in at least 90% of 100 replicates when the number of offspring per sire was 100. Application of the model to lactation milk yield in dairy cattle showed that genetic variance for micro- and macro-environmental sensitivities existed. Conclusion The algorithm and model selection criterion presented here can contribute to better understand genetic control of macro- and micro-environmental sensitivities. Designs or datasets should have at least 100 sires each with 100 offspring. PMID:23827014

  2. A Model of Compound Heterozygous, Loss-of-Function Alleles Is Broadly Consistent with Observations from Complex-Disease GWAS Datasets

    PubMed Central

    Sanjak, Jaleal S.; Long, Anthony D.; Thornton, Kevin R.

    2017-01-01

    The genetic component of complex disease risk in humans remains largely unexplained. A corollary is that the allelic spectrum of genetic variants contributing to complex disease risk is unknown. Theoretical models that relate population genetic processes to the maintenance of genetic variation for quantitative traits may suggest profitable avenues for future experimental design. Here we use forward simulation to model a genomic region evolving under a balance between recurrent deleterious mutation and Gaussian stabilizing selection. We consider multiple genetic and demographic models, and several different methods for identifying genomic regions harboring variants associated with complex disease risk. We demonstrate that the model of gene action, relating genotype to phenotype, has a qualitative effect on several relevant aspects of the population genetic architecture of a complex trait. In particular, the genetic model impacts genetic variance component partitioning across the allele frequency spectrum and the power of statistical tests. Models with partial recessivity closely match the minor allele frequency distribution of significant hits from empirical genome-wide association studies without requiring homozygous effect sizes to be small. We highlight a particular gene-based model of incomplete recessivity that is appealing from first principles. Under that model, deleterious mutations in a genomic region partially fail to complement one another. This model of gene-based recessivity predicts the empirically observed inconsistency between twin and SNP based estimated of dominance heritability. Furthermore, this model predicts considerable levels of unexplained variance associated with intralocus epistasis. Our results suggest a need for improved statistical tools for region based genetic association and heritability estimation. PMID:28103232

  3. Latent spatial models and sampling design for landscape genetics

    Treesearch

    Ephraim M. Hanks; Melvin B. Hooten; Steven T. Knick; Sara J. Oyler-McCance; Jennifer A. Fike; Todd B. Cross; Michael K. Schwartz

    2016-01-01

    We propose a spatially-explicit approach for modeling genetic variation across space and illustrate how this approach can be used to optimize spatial prediction and sampling design for landscape genetic data. We propose a multinomial data model for categorical microsatellite allele data commonly used in landscape genetic studies, and introduce a latent spatial...

  4. Genetic evaluation and selection response for growth in meat-type quail through random regression models using B-spline functions and Legendre polynomials.

    PubMed

    Mota, L F M; Martins, P G M A; Littiere, T O; Abreu, L R A; Silva, M A; Bonafé, C M

    2018-04-01

    The objective was to estimate (co)variance functions using random regression models (RRM) with Legendre polynomials, B-spline function and multi-trait models aimed at evaluating genetic parameters of growth traits in meat-type quail. A database containing the complete pedigree information of 7000 meat-type quail was utilized. The models included the fixed effects of contemporary group and generation. Direct additive genetic and permanent environmental effects, considered as random, were modeled using B-spline functions considering quadratic and cubic polynomials for each individual segment, and Legendre polynomials for age. Residual variances were grouped in four age classes. Direct additive genetic and permanent environmental effects were modeled using 2 to 4 segments and were modeled by Legendre polynomial with orders of fit ranging from 2 to 4. The model with quadratic B-spline adjustment, using four segments for direct additive genetic and permanent environmental effects, was the most appropriate and parsimonious to describe the covariance structure of the data. The RRM using Legendre polynomials presented an underestimation of the residual variance. Lesser heritability estimates were observed for multi-trait models in comparison with RRM for the evaluated ages. In general, the genetic correlations between measures of BW from hatching to 35 days of age decreased as the range between the evaluated ages increased. Genetic trend for BW was positive and significant along the selection generations. The genetic response to selection for BW in the evaluated ages presented greater values for RRM compared with multi-trait models. In summary, RRM using B-spline functions with four residual variance classes and segments were the best fit for genetic evaluation of growth traits in meat-type quail. In conclusion, RRM should be considered in genetic evaluation of breeding programs.

  5. Short communication: Genetic lag represents commercial herd genetic merit more accurately than the 4-path selection model.

    PubMed

    Dechow, C D; Rogers, G W

    2018-05-01

    Expectation of genetic merit in commercial dairy herds is routinely estimated using a 4-path genetic selection model that was derived for a closed population, but commercial herds using artificial insemination sires are not closed. The 4-path model also predicts a higher rate of genetic progress in elite herds that provide artificial insemination sires than in commercial herds that use such sires, which counters other theoretical assumptions and observations of realized genetic responses. The aim of this work is to clarify whether genetic merit in commercial herds is more accurately reflected under the assumptions of the 4-path genetic response formula or by a genetic lag formula. We demonstrate by tracing the transmission of genetic merit from parents to offspring that the rate of genetic progress in commercial dairy farms is expected to be the same as that in the genetic nucleus. The lag in genetic merit between the nucleus and commercial farms is a function of sire and dam generation interval, the rate of genetic progress in elite artificial insemination herds, and genetic merit of sires and dams. To predict how strategies such as the use of young versus daughter-proven sires, culling heifers following genomic testing, or selective use of sexed semen will alter genetic merit in commercial herds, genetic merit expectations for commercial herds should be modeled using genetic lag expectations. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Analysis of genetic effects of nuclear-cytoplasmic interaction on quantitative traits: genetic model for diploid plants.

    PubMed

    Han, Lide; Yang, Jian; Zhu, Jun

    2007-06-01

    A genetic model was proposed for simultaneously analyzing genetic effects of nuclear, cytoplasm, and nuclear-cytoplasmic interaction (NCI) as well as their genotype by environment (GE) interaction for quantitative traits of diploid plants. In the model, the NCI effects were further partitioned into additive and dominance nuclear-cytoplasmic interaction components. Mixed linear model approaches were used for statistical analysis. On the basis of diallel cross designs, Monte Carlo simulations showed that the genetic model was robust for estimating variance components under several situations without specific effects. Random genetic effects were predicted by an adjusted unbiased prediction (AUP) method. Data on four quantitative traits (boll number, lint percentage, fiber length, and micronaire) in Upland cotton (Gossypium hirsutum L.) were analyzed as a worked example to show the effectiveness of the model.

  7. CRISPR: a Versatile Tool for Both Forward and Reverse Genetics Research

    PubMed Central

    Gurumurthy, Channabasavaiah B.; Grati, M'hamed; Ohtsuka, Masato; Schilit, Samantha L.P.; Quadros, Rolen M.; Liu, Xue Zhong

    2016-01-01

    Human genetics research employs the two opposing approaches of forward and reverse genetics. While forward genetics identifies and links a mutation to an observed disease etiology, reverse genetics induces mutations in model organisms to study their role in disease. In most cases, causality for mutations identified by forward genetics is confirmed by reverse genetics through the development of genetically engineered animal models and an assessment of whether the model can recapitulate the disease. While many technological advances have helped improve these approaches, some gaps still remain. CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) system, which has emerged as a revolutionary genetic engineering tool, holds great promise for closing such gaps. By combining the benefits of forward and reverse genetics, it has dramatically expedited human genetics research. We provide a perspective on the power of CRISPR-based forward and reverse genetics tools in human genetics and discuss its applications using some disease examples. PMID:27384229

  8. Response to Selection in Finite Locus Models with Nonadditive Effects.

    PubMed

    Esfandyari, Hadi; Henryon, Mark; Berg, Peer; Thomasen, Jørn Rind; Bijma, Piter; Sørensen, Anders Christian

    2017-05-01

    Under the finite-locus model in the absence of mutation, the additive genetic variation is expected to decrease when directional selection is acting on a population, according to quantitative-genetic theory. However, some theoretical studies of selection suggest that the level of additive variance can be sustained or even increased when nonadditive genetic effects are present. We tested the hypothesis that finite-locus models with both additive and nonadditive genetic effects maintain more additive genetic variance (VA) and realize larger medium- to long-term genetic gains than models with only additive effects when the trait under selection is subject to truncation selection. Four genetic models that included additive, dominance, and additive-by-additive epistatic effects were simulated. The simulated genome for individuals consisted of 25 chromosomes, each with a length of 1 M. One hundred bi-allelic QTL, 4 on each chromosome, were considered. In each generation, 100 sires and 100 dams were mated, producing 5 progeny per mating. The population was selected for a single trait (h2 = 0.1) for 100 discrete generations with selection on phenotype or BLUP-EBV. VA decreased with directional truncation selection even in presence of nonadditive genetic effects. Nonadditive effects influenced long-term response to selection and among genetic models additive gene action had highest response to selection. In addition, in all genetic models, BLUP-EBV resulted in a greater fixation of favorable and unfavorable alleles and higher response than phenotypic selection. In conclusion, for the schemes we simulated, the presence of nonadditive genetic effects had little effect in changes of additive variance and VA decreased by directional selection. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Multivariate modelling of endophenotypes associated with the metabolic syndrome in Chinese twins.

    PubMed

    Pang, Z; Zhang, D; Li, S; Duan, H; Hjelmborg, J; Kruse, T A; Kyvik, K O; Christensen, K; Tan, Q

    2010-12-01

    The common genetic and environmental effects on endophenotypes related to the metabolic syndrome have been investigated using bivariate and multivariate twin models. This paper extends the pairwise analysis approach by introducing independent and common pathway models to Chinese twin data. The aim was to explore the common genetic architecture in the development of these phenotypes in the Chinese population. Three multivariate models including the full saturated Cholesky decomposition model, the common factor independent pathway model and the common factor common pathway model were fitted to 695 pairs of Chinese twins representing six phenotypes including BMI, total cholesterol, total triacylglycerol, fasting glucose, HDL and LDL. Performances of the nested models were compared with that of the full Cholesky model. Cross-phenotype correlation coefficients gave clear indication of common genetic or environmental backgrounds in the phenotypes. Decomposition of phenotypic correlation by the Cholesky model revealed that the observed phenotypic correlation among lipid phenotypes had genetic and unique environmental backgrounds. Both pathway models suggest a common genetic architecture for lipid phenotypes, which is distinct from that of the non-lipid phenotypes. The declining performance with model restriction indicates biological heterogeneity in development among some of these phenotypes. Our multivariate analyses revealed common genetic and environmental backgrounds for the studied lipid phenotypes in Chinese twins. Model performance showed that physiologically distinct endophenotypes may follow different genetic regulations.

  10. Eco-genetic modeling of contemporary life-history evolution.

    PubMed

    Dunlop, Erin S; Heino, Mikko; Dieckmann, Ulf

    2009-10-01

    We present eco-genetic modeling as a flexible tool for exploring the course and rates of multi-trait life-history evolution in natural populations. We build on existing modeling approaches by combining features that facilitate studying the ecological and evolutionary dynamics of realistically structured populations. In particular, the joint consideration of age and size structure enables the analysis of phenotypically plastic populations with more than a single growth trajectory, and ecological feedback is readily included in the form of density dependence and frequency dependence. Stochasticity and life-history trade-offs can also be implemented. Critically, eco-genetic models permit the incorporation of salient genetic detail such as a population's genetic variances and covariances and the corresponding heritabilities, as well as the probabilistic inheritance and phenotypic expression of quantitative traits. These inclusions are crucial for predicting rates of evolutionary change on both contemporary and longer timescales. An eco-genetic model can be tightly coupled with empirical data and therefore may have considerable practical relevance, in terms of generating testable predictions and evaluating alternative management measures. To illustrate the utility of these models, we present as an example an eco-genetic model used to study harvest-induced evolution of multiple traits in Atlantic cod. The predictions of our model (most notably that harvesting induces a genetic reduction in age and size at maturation, an increase or decrease in growth capacity depending on the minimum-length limit, and an increase in reproductive investment) are corroborated by patterns observed in wild populations. The predicted genetic changes occur together with plastic changes that could phenotypically mask the former. Importantly, our analysis predicts that evolutionary changes show little signs of reversal following a harvest moratorium. This illustrates how predictions offered by eco-genetic models can enable and guide evolutionarily sustainable resource management.

  11. Simulating the spread of selection-driven genotypes using landscape resistance models for desert bighorn sheep.

    PubMed

    Creech, Tyler G; Epps, Clinton W; Landguth, Erin L; Wehausen, John D; Crowhurst, Rachel S; Holton, Brandon; Monello, Ryan J

    2017-01-01

    Landscape genetic studies based on neutral genetic markers have contributed to our understanding of the influence of landscape composition and configuration on gene flow and genetic variation. However, the potential for species to adapt to changing landscapes will depend on how natural selection influences adaptive genetic variation. We demonstrate how landscape resistance models can be combined with genetic simulations incorporating natural selection to explore how the spread of adaptive variation is affected by landscape characteristics, using desert bighorn sheep (Ovis canadensis nelsoni) in three differing regions of the southwestern United States as an example. We conducted genetic sampling and least-cost path modeling to optimize landscape resistance models independently for each region, and then simulated the spread of an adaptive allele favored by selection across each region. Optimized landscape resistance models differed between regions with respect to landscape variables included and their relationships to resistance, but the slope of terrain and the presence of water barriers and major roads had the greatest impacts on gene flow. Genetic simulations showed that differences among landscapes strongly influenced spread of adaptive genetic variation, with faster spread (1) in landscapes with more continuously distributed habitat and (2) when a pre-existing allele (i.e., standing genetic variation) rather than a novel allele (i.e., mutation) served as the source of adaptive genetic variation. The combination of landscape resistance models and genetic simulations has broad conservation applications and can facilitate comparisons of adaptive potential within and between landscapes.

  12. Simulating the spread of selection-driven genotypes using landscape resistance models for desert bighorn sheep

    PubMed Central

    Epps, Clinton W.; Landguth, Erin L.; Wehausen, John D.; Crowhurst, Rachel S.; Holton, Brandon; Monello, Ryan J.

    2017-01-01

    Landscape genetic studies based on neutral genetic markers have contributed to our understanding of the influence of landscape composition and configuration on gene flow and genetic variation. However, the potential for species to adapt to changing landscapes will depend on how natural selection influences adaptive genetic variation. We demonstrate how landscape resistance models can be combined with genetic simulations incorporating natural selection to explore how the spread of adaptive variation is affected by landscape characteristics, using desert bighorn sheep (Ovis canadensis nelsoni) in three differing regions of the southwestern United States as an example. We conducted genetic sampling and least-cost path modeling to optimize landscape resistance models independently for each region, and then simulated the spread of an adaptive allele favored by selection across each region. Optimized landscape resistance models differed between regions with respect to landscape variables included and their relationships to resistance, but the slope of terrain and the presence of water barriers and major roads had the greatest impacts on gene flow. Genetic simulations showed that differences among landscapes strongly influenced spread of adaptive genetic variation, with faster spread (1) in landscapes with more continuously distributed habitat and (2) when a pre-existing allele (i.e., standing genetic variation) rather than a novel allele (i.e., mutation) served as the source of adaptive genetic variation. The combination of landscape resistance models and genetic simulations has broad conservation applications and can facilitate comparisons of adaptive potential within and between landscapes. PMID:28464013

  13. [A Study of the Relationship Among Genetic Distances, NIR Spectra Distances, and NIR-Based Identification Model Performance of the Seeds of Maize Iinbred Lines].

    PubMed

    Liu, Xu; Jia, Shi-qiang; Wang, Chun-ying; Liu, Zhe; Gu, Jian-cheng; Zhai, Wei; Li, Shao-ming; Zhang, Xiao-dong; Zhu, De-hai; Huang, Hua-jun; An, Dong

    2015-09-01

    This paper explored the relationship among genetic distances, NIR spectra distances and NIR-based identification model performance of the seeds of maize inbred lines. Using 3 groups (total 15 pairs) of maize inbred lines whose genetic distaches are different as experimental materials, we calculates the genetic distance between these seeds with SSR markers and uses Euclidean distance between distributed center points of maize NIR spectrum in the PCA space as the distances of NIR spectrum. BPR method is used to build identification model of inbred lines and the identification accuracy is used as a measure of model identification performance. The results showed that, the correlation of genetic distance and spectra distancesis 0.9868, and it has a correlation of 0.9110 with the identification accuracy, which is highly correlated. This means near-Infrared spectrum of seedscan reflect genetic relationship of maize inbred lines. The smaller the genetic distance, the smaller the distance of spectrum, the poorer ability of model to identify. In practical application, near infrared spectrum analysis technology has the potential to be used to analyze maize inbred genetic relations, contributing much to genetic breeding, identification of species, purity sorting and so on. What's more, when creating a NIR-based identification model, the impact of the maize inbred lines which have closer genetic relationship should be fully considered.

  14. Genetic change and rates of cladogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avise, J.C.; Ayala, F.J.

    1975-12-01

    Models are introduced which predict ratios of mean levels of genetic divergence in species-rich versus species-poor phylads under two competing assumptions: (1) genetic differentiation is a function of time, unrelated to the number of cladogenetic events and (2) genetic differentiation is proportional to the number of speciation events in the group. The models are simple, general, and biologically real, but not precise. They lead to qualitatively distinct predictions about levels of genetic divergence depending upon the relationship between rates of speciation and amount of genetic change. When genetic distance between species is a function of time, mean genetic distances inmore » speciose and depauperate phylads of equal evolutionary age are very similar. On the contrary, when genetic distance is a function of the number of speciations in the history of a phylad, the ratio of mean genetic distances separating species in speciose versus depauperate phylads is greater than one, and increases rapidly as the frequency of speciations in one group relative to the other increases. The models may be tested with data from natural populations to assess (1) possible correlations between rates of anagenesis and cladogenesis and (2) the amount of genetic differentiation accompanying the speciation process. The data collected in electrophoretic surveys and other kinds of studies can be used to test the predictions of the models. For this purpose genetic distances need to be measured in speciose and depauperate phylads of equal evolutionary age. The limited information presently available agrees better with the model predicting that genetic change is primarily a function of time, and is not correlated with rates of speciation. Further testing of the models is, however, required before firm conclusions can be drawn. (auth)« less

  15. The historical role of species from the Solanaceae plant family in genetic research.

    PubMed

    Gebhardt, Christiane

    2016-12-01

    This article evaluates the main contributions of tomato, tobacco, petunia, potato, pepper and eggplant to classical and molecular plant genetics and genomics since the beginning of the twentieth century. Species from the Solanaceae family form integral parts of human civilizations as food sources and drugs since thousands of years, and, more recently, as ornamentals. Some Solanaceous species were subjects of classical and molecular genetic research over the last 100 years. The tomato was one of the principal models in twentieth century classical genetics and a pacemaker of genome analysis in plants including molecular linkage maps, positional cloning of disease resistance genes and quantitative trait loci (QTL). Besides that, tomato is the model for the genetics of fruit development and composition. Tobacco was the major model used to establish the principals and methods of plant somatic cell genetics including in vitro propagation of cells and tissues, totipotency of somatic cells, doubled haploid production and genetic transformation. Petunia was a model for elucidating the biochemical and genetic basis of flower color and development. The cultivated potato is the economically most important Solanaceous plant and ranks third after wheat and rice as one of the world's great food crops. Potato is the model for studying the genetic basis of tuber development. Molecular genetics and genomics of potato, in particular association genetics, made valuable contributions to the genetic dissection of complex agronomic traits and the development of diagnostic markers for breeding applications. Pepper and eggplant are horticultural crops of worldwide relevance. Genetic and genomic research in pepper and eggplant mostly followed the tomato model. Comparative genome analysis of tomato, potato, pepper and eggplant contributed to the understanding of plant genome evolution.

  16. Estimating the actual subject-specific genetic correlations in behavior genetics.

    PubMed

    Molenaar, Peter C M

    2012-10-01

    Generalization of the standard behavior longitudinal genetic factor model for the analysis of interindividual phenotypic variation to a genetic state space model for the analysis of intraindividual variation enables the possibility to estimate subject-specific heritabilities.

  17. Different concepts and models of information for family-relevant genetic findings: comparison and ethical analysis.

    PubMed

    Lenk, Christian; Frommeld, Debora

    2015-08-01

    Genetic predispositions often concern not only individual persons, but also other family members. Advances in the development of genetic tests lead to a growing number of genetic diagnoses in medical practice and to an increasing importance of genetic counseling. In the present article, a number of ethical foundations and preconditions for this issue are discussed. Four different models for the handling of genetic information are presented and analyzed including a discussion of practical implications. The different models' ranges of content reach from a strictly autonomous position over self-governed arrangements in the practice of genetic counseling up to the involvement of official bodies and committees. The different models show a number of elements which seem to be very useful for the handling of genetic data in families from an ethical perspective. In contrast, the limitations of the standard medical attempt regarding confidentiality and personal autonomy in the context of genetic information in the family are described. Finally, recommendations for further ethical research and the development of genetic counseling in families are given.

  18. The "GeneTrustee": a universal identification system that ensures privacy and confidentiality for human genetic databases.

    PubMed

    Burnett, Leslie; Barlow-Stewart, Kris; Proos, Anné L; Aizenberg, Harry

    2003-05-01

    This article describes a generic model for access to samples and information in human genetic databases. The model utilises a "GeneTrustee", a third-party intermediary independent of the subjects and of the investigators or database custodians. The GeneTrustee model has been implemented successfully in various community genetics screening programs and has facilitated research access to genetic databases while protecting the privacy and confidentiality of research subjects. The GeneTrustee model could also be applied to various types of non-conventional genetic databases, including neonatal screening Guthrie card collections, and to forensic DNA samples.

  19. Modeling the Diagnostic Criteria for Alcohol Dependence with Genetic Animal Models

    PubMed Central

    Kendler, Kenneth S.; Hitzemann, Robert J.

    2012-01-01

    A diagnosis of alcohol dependence (AD) using the DSM-IV-R is categorical, based on an individual’s manifestation of three or more symptoms from a list of seven. AD risk can be traced to both genetic and environmental sources. Most genetic studies of AD risk implicitly assume that an AD diagnosis represents a single underlying genetic factor. We recently found that the criteria for an AD diagnosis represent three somewhat distinct genetic paths to individual risk. Specifically, heavy use and tolerance versus withdrawal and continued use despite problems reflected separate genetic factors. However, some data suggest that genetic risk for AD is adequately described with a single underlying genetic risk factor. Rodent animal models for alcohol-related phenotypes typically target discrete aspects of the complex human AD diagnosis. Here, we review the literature derived from genetic animal models in an attempt to determine whether they support a single-factor or multiple-factor genetic structure. We conclude that there is modest support in the animal literature that alcohol tolerance and withdrawal reflect distinct genetic risk factors, in agreement with our human data. We suggest areas where more research could clarify this attempt to align the rodent and human data. PMID:21910077

  20. Murine genetically engineered and human xenograft models of chronic lymphocytic leukemia.

    PubMed

    Chen, Shih-Shih; Chiorazzi, Nicholas

    2014-07-01

    Chronic lymphocytic leukemia (CLL) is a genetically complex disease, with multiple factors having an impact on onset, progression, and response to therapy. Genetic differences/abnormalities have been found in hematopoietic stem cells from patients, as well as in B lymphocytes of individuals with monoclonal B-cell lymphocytosis who may develop the disease. Furthermore, after the onset of CLL, additional genetic alterations occur over time, often causing disease worsening and altering patient outcomes. Therefore, being able to genetically engineer mouse models that mimic CLL or at least certain aspects of the disease will help us understand disease mechanisms and improve treatments. This notwithstanding, because neither the genetic aberrations responsible for leukemogenesis and progression nor the promoting factors that support these are likely identical in character or influences for all patients, genetically engineered mouse models will only completely mimic CLL when all of these factors are precisely defined. In addition, multiple genetically engineered models may be required because of the heterogeneity in susceptibility genes among patients that can have an effect on genetic and environmental characteristics influencing disease development and outcome. For these reasons, we review the major murine genetically engineered and human xenograft models in use at the present time, aiming to report the advantages and disadvantages of each. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Routine Discovery of Complex Genetic Models using Genetic Algorithms

    PubMed Central

    Moore, Jason H.; Hahn, Lance W.; Ritchie, Marylyn D.; Thornton, Tricia A.; White, Bill C.

    2010-01-01

    Simulation studies are useful in various disciplines for a number of reasons including the development and evaluation of new computational and statistical methods. This is particularly true in human genetics and genetic epidemiology where new analytical methods are needed for the detection and characterization of disease susceptibility genes whose effects are complex, nonlinear, and partially or solely dependent on the effects of other genes (i.e. epistasis or gene-gene interaction). Despite this need, the development of complex genetic models that can be used to simulate data is not always intuitive. In fact, only a few such models have been published. We have previously developed a genetic algorithm approach to discovering complex genetic models in which two single nucleotide polymorphisms (SNPs) influence disease risk solely through nonlinear interactions. In this paper, we extend this approach for the discovery of high-order epistasis models involving three to five SNPs. We demonstrate that the genetic algorithm is capable of routinely discovering interesting high-order epistasis models in which each SNP influences risk of disease only through interactions with the other SNPs in the model. This study opens the door for routine simulation of complex gene-gene interactions among SNPs for the development and evaluation of new statistical and computational approaches for identifying common, complex multifactorial disease susceptibility genes. PMID:20948983

  2. Comparing estimates of genetic variance across different relationship models.

    PubMed

    Legarra, Andres

    2016-02-01

    Use of relationships between individuals to estimate genetic variances and heritabilities via mixed models is standard practice in human, plant and livestock genetics. Different models or information for relationships may give different estimates of genetic variances. However, comparing these estimates across different relationship models is not straightforward as the implied base populations differ between relationship models. In this work, I present a method to compare estimates of variance components across different relationship models. I suggest referring genetic variances obtained using different relationship models to the same reference population, usually a set of individuals in the population. Expected genetic variance of this population is the estimated variance component from the mixed model times a statistic, Dk, which is the average self-relationship minus the average (self- and across-) relationship. For most typical models of relationships, Dk is close to 1. However, this is not true for very deep pedigrees, for identity-by-state relationships, or for non-parametric kernels, which tend to overestimate the genetic variance and the heritability. Using mice data, I show that heritabilities from identity-by-state and kernel-based relationships are overestimated. Weighting these estimates by Dk scales them to a base comparable to genomic or pedigree relationships, avoiding wrong comparisons, for instance, "missing heritabilities". Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Evolving hard problems: Generating human genetics datasets with a complex etiology.

    PubMed

    Himmelstein, Daniel S; Greene, Casey S; Moore, Jason H

    2011-07-07

    A goal of human genetics is to discover genetic factors that influence individuals' susceptibility to common diseases. Most common diseases are thought to result from the joint failure of two or more interacting components instead of single component failures. This greatly complicates both the task of selecting informative genetic variants and the task of modeling interactions between them. We and others have previously developed algorithms to detect and model the relationships between these genetic factors and disease. Previously these methods have been evaluated with datasets simulated according to pre-defined genetic models. Here we develop and evaluate a model free evolution strategy to generate datasets which display a complex relationship between individual genotype and disease susceptibility. We show that this model free approach is capable of generating a diverse array of datasets with distinct gene-disease relationships for an arbitrary interaction order and sample size. We specifically generate eight-hundred Pareto fronts; one for each independent run of our algorithm. In each run the predictiveness of single genetic variation and pairs of genetic variants have been minimized, while the predictiveness of third, fourth, or fifth-order combinations is maximized. Two hundred runs of the algorithm are further dedicated to creating datasets with predictive four or five order interactions and minimized lower-level effects. This method and the resulting datasets will allow the capabilities of novel methods to be tested without pre-specified genetic models. This allows researchers to evaluate which methods will succeed on human genetics problems where the model is not known in advance. We further make freely available to the community the entire Pareto-optimal front of datasets from each run so that novel methods may be rigorously evaluated. These 76,600 datasets are available from http://discovery.dartmouth.edu/model_free_data/.

  4. Genetically engineered mouse models of melanoma.

    PubMed

    Pérez-Guijarro, Eva; Day, Chi-Ping; Merlino, Glenn; Zaidi, M Raza

    2017-06-01

    Melanoma is a complex disease that exhibits highly heterogeneous etiological, histopathological, and genetic features, as well as therapeutic responses. Genetically engineered mouse (GEM) models provide powerful tools to unravel the molecular mechanisms critical for melanoma development and drug resistance. Here, we expound briefly the basis of the mouse modeling design, the available technology for genetic engineering, and the aspects influencing the use of GEMs to model melanoma. Furthermore, we describe in detail the currently available GEM models of melanoma. Cancer 2017;123:2089-103. © 2017 American Cancer Society. © 2017 American Cancer Society.

  5. New insights into the endophenotypic status of cognition in bipolar disorder: genetic modelling study of twins and siblings.

    PubMed

    Georgiades, Anna; Rijsdijk, Fruhling; Kane, Fergus; Rebollo-Mesa, Irene; Kalidindi, Sridevi; Schulze, Katja K; Stahl, Daniel; Walshe, Muriel; Sahakian, Barbara J; McDonald, Colm; Hall, Mei-Hua; Murray, Robin M; Kravariti, Eugenia

    2016-06-01

    Twin studies have lacked statistical power to apply advanced genetic modelling techniques to the search for cognitive endophenotypes for bipolar disorder. To quantify the shared genetic variability between bipolar disorder and cognitive measures. Structural equation modelling was performed on cognitive data collected from 331 twins/siblings of varying genetic relatedness, disease status and concordance for bipolar disorder. Using a parsimonious AE model, verbal episodic and spatial working memory showed statistically significant genetic correlations with bipolar disorder (rg = |0.23|-|0.27|), which lost statistical significance after covarying for affective symptoms. Using an ACE model, IQ and visual-spatial learning showed statistically significant genetic correlations with bipolar disorder (rg = |0.51|-|1.00|), which remained significant after covarying for affective symptoms. Verbal episodic and spatial working memory capture a modest fraction of the bipolar diathesis. IQ and visual-spatial learning may tap into genetic substrates of non-affective symptomatology in bipolar disorder. © The Royal College of Psychiatrists 2016.

  6. Multi-scale genetic dynamic modelling I : an algorithm to compute generators.

    PubMed

    Kirkilionis, Markus; Janus, Ulrich; Sbano, Luca

    2011-09-01

    We present a new approach or framework to model dynamic regulatory genetic activity. The framework is using a multi-scale analysis based upon generic assumptions on the relative time scales attached to the different transitions of molecular states defining the genetic system. At micro-level such systems are regulated by the interaction of two kinds of molecular players: macro-molecules like DNA or polymerases, and smaller molecules acting as transcription factors. The proposed genetic model then represents the larger less abundant molecules with a finite discrete state space, for example describing different conformations of these molecules. This is in contrast to the representations of the transcription factors which are-like in classical reaction kinetics-represented by their particle number only. We illustrate the method by considering the genetic activity associated to certain configurations of interacting genes that are fundamental to modelling (synthetic) genetic clocks. A largely unknown question is how different molecular details incorporated via this more realistic modelling approach lead to different macroscopic regulatory genetic models which dynamical behaviour might-in general-be different for different model choices. The theory will be applied to a real synthetic clock in a second accompanying article (Kirkilioniset al., Theory Biosci, 2011).

  7. Implementation of the Realized Genomic Relationship Matrix to Open-Pollinated White Spruce Family Testing for Disentangling Additive from Nonadditive Genetic Effects

    PubMed Central

    Gamal El-Dien, Omnia; Ratcliffe, Blaise; Klápště, Jaroslav; Porth, Ilga; Chen, Charles; El-Kassaby, Yousry A.

    2016-01-01

    The open-pollinated (OP) family testing combines the simplest known progeny evaluation and quantitative genetics analyses as candidates’ offspring are assumed to represent independent half-sib families. The accuracy of genetic parameter estimates is often questioned as the assumption of “half-sibling” in OP families may often be violated. We compared the pedigree- vs. marker-based genetic models by analysing 22-yr height and 30-yr wood density for 214 white spruce [Picea glauca (Moench) Voss] OP families represented by 1694 individuals growing on one site in Quebec, Canada. Assuming half-sibling, the pedigree-based model was limited to estimating the additive genetic variances which, in turn, were grossly overestimated as they were confounded by very minor dominance and major additive-by-additive epistatic genetic variances. In contrast, the implemented genomic pairwise realized relationship models allowed the disentanglement of additive from all nonadditive factors through genetic variance decomposition. The marker-based models produced more realistic narrow-sense heritability estimates and, for the first time, allowed estimating the dominance and epistatic genetic variances from OP testing. In addition, the genomic models showed better prediction accuracies compared to pedigree models and were able to predict individual breeding values for new individuals from untested families, which was not possible using the pedigree-based model. Clearly, the use of marker-based relationship approach is effective in estimating the quantitative genetic parameters of complex traits even under simple and shallow pedigree structure. PMID:26801647

  8. Genetic algorithm dynamics on a rugged landscape

    NASA Astrophysics Data System (ADS)

    Bornholdt, Stefan

    1998-04-01

    The genetic algorithm is an optimization procedure motivated by biological evolution and is successfully applied to optimization problems in different areas. A statistical mechanics model for its dynamics is proposed based on the parent-child fitness correlation of the genetic operators, making it applicable to general fitness landscapes. It is compared to a recent model based on a maximum entropy ansatz. Finally it is applied to modeling the dynamics of a genetic algorithm on the rugged fitness landscape of the NK model.

  9. Improved performance of epidemiologic and genetic risk models for rheumatoid arthritis serologic phenotypes using family history

    PubMed Central

    Sparks, Jeffrey A.; Chen, Chia-Yen; Jiang, Xia; Askling, Johan; Hiraki, Linda T.; Malspeis, Susan; Klareskog, Lars; Alfredsson, Lars; Costenbader, Karen H.; Karlson, Elizabeth W.

    2014-01-01

    Objective To develop and validate rheumatoid arthritis (RA) risk models based on family history, epidemiologic factors, and known genetic risk factors. Methods We developed and validated models for RA based on known RA risk factors, among women in two cohorts: the Nurses’ Health Study (NHS, 381 RA cases and 410 controls) and the Epidemiological Investigation of RA (EIRA, 1244 RA cases and 971 controls). Model discrimination was evaluated using the area under the receiver operating characteristic curve (AUC) in logistic regression models for the study population and for those with positive family history. The joint effect of family history with genetics, smoking, and body mass index (BMI) was evaluated using logistic regression models to estimate odds ratios (OR) for RA. Results The complete model including family history, epidemiologic risk factors, and genetics demonstrated AUCs of 0.74 for seropositive RA in NHS and 0.77 for anti-citrullinated protein antibody (ACPA)-positive RA in EIRA. Among women with positive family history, discrimination was excellent for complete models for seropositive RA in NHS (AUC 0.82) and ACPA-positive RA in EIRA (AUC 0.83). Positive family history, high genetic susceptibility, smoking, and increased BMI had an OR of 21.73 for ACPA-positive RA. Conclusions We developed models for seropositive and seronegative RA phenotypes based on family history, epidemiologic and genetic factors. Among those with positive family history, models utilizing epidemiologic and genetic factors were highly discriminatory for seropositive and seronegative RA. Assessing epidemiological and genetic factors among those with positive family history may identify individuals suitable for RA prevention strategies. PMID:24685909

  10. Multi-gene genetic programming based predictive models for municipal solid waste gasification in a fluidized bed gasifier.

    PubMed

    Pandey, Daya Shankar; Pan, Indranil; Das, Saptarshi; Leahy, James J; Kwapinski, Witold

    2015-03-01

    A multi-gene genetic programming technique is proposed as a new method to predict syngas yield production and the lower heating value for municipal solid waste gasification in a fluidized bed gasifier. The study shows that the predicted outputs of the municipal solid waste gasification process are in good agreement with the experimental dataset and also generalise well to validation (untrained) data. Published experimental datasets are used for model training and validation purposes. The results show the effectiveness of the genetic programming technique for solving complex nonlinear regression problems. The multi-gene genetic programming are also compared with a single-gene genetic programming model to show the relative merits and demerits of the technique. This study demonstrates that the genetic programming based data-driven modelling strategy can be a good candidate for developing models for other types of fuels as well. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. A Developmental-Genetic Model of Alcoholism: Implications for Genetic Research.

    ERIC Educational Resources Information Center

    Devor, Eric J.

    1994-01-01

    Research for biological-genetic markers of alcoholism is discussed in context of a multifactorial, heterogeneous, developmental model. Suggested that strategies used in linkage and association studies will require modification. Also suggested several extant associations of genetic markers represent true secondary interactive phenomena that alter…

  12. Genetic and Environmental Influences on Behavior: Capturing All the Interplay

    ERIC Educational Resources Information Center

    Johnson, Wendy

    2007-01-01

    Basic quantitative genetic models of human behavioral variation have made clear that individual differences in behavior cannot be understood without acknowledging the importance of genetic influences. Yet these basic models estimate average, population-level genetic and environmental influences, obscuring differences that might exist within the…

  13. Estimation and interpretation of genetic effects with epistasis using the NOIA model.

    PubMed

    Alvarez-Castro, José M; Carlborg, Orjan; Rönnegård, Lars

    2012-01-01

    We introduce this communication with a brief outline of the historical landmarks in genetic modeling, especially concerning epistasis. Then, we present methods for the use of genetic modeling in QTL analyses. In particular, we summarize the essential expressions of the natural and orthogonal interactions (NOIA) model of genetic effects. Our motivation for reviewing that theory here is twofold. First, this review presents a digest of the expressions for the application of the NOIA model, which are often mixed with intermediate and additional formulae in the original articles. Second, we make the required theory handy for the reader to relate the genetic concepts to the particular mathematical expressions underlying them. We illustrate those relations by providing graphical interpretations and a diagram summarizing the key features for applying genetic modeling with epistasis in comprehensive QTL analyses. Finally, we briefly review some examples of the application of NOIA to real data and the way it improves the interpretability of the results.

  14. Including non-additive genetic effects in Bayesian methods for the prediction of genetic values based on genome-wide markers

    PubMed Central

    2011-01-01

    Background Molecular marker information is a common source to draw inferences about the relationship between genetic and phenotypic variation. Genetic effects are often modelled as additively acting marker allele effects. The true mode of biological action can, of course, be different from this plain assumption. One possibility to better understand the genetic architecture of complex traits is to include intra-locus (dominance) and inter-locus (epistasis) interaction of alleles as well as the additive genetic effects when fitting a model to a trait. Several Bayesian MCMC approaches exist for the genome-wide estimation of genetic effects with high accuracy of genetic value prediction. Including pairwise interaction for thousands of loci would probably go beyond the scope of such a sampling algorithm because then millions of effects are to be estimated simultaneously leading to months of computation time. Alternative solving strategies are required when epistasis is studied. Methods We extended a fast Bayesian method (fBayesB), which was previously proposed for a purely additive model, to include non-additive effects. The fBayesB approach was used to estimate genetic effects on the basis of simulated datasets. Different scenarios were simulated to study the loss of accuracy of prediction, if epistatic effects were not simulated but modelled and vice versa. Results If 23 QTL were simulated to cause additive and dominance effects, both fBayesB and a conventional MCMC sampler BayesB yielded similar results in terms of accuracy of genetic value prediction and bias of variance component estimation based on a model including additive and dominance effects. Applying fBayesB to data with epistasis, accuracy could be improved by 5% when all pairwise interactions were modelled as well. The accuracy decreased more than 20% if genetic variation was spread over 230 QTL. In this scenario, accuracy based on modelling only additive and dominance effects was generally superior to that of the complex model including epistatic effects. Conclusions This simulation study showed that the fBayesB approach is convenient for genetic value prediction. Jointly estimating additive and non-additive effects (especially dominance) has reasonable impact on the accuracy of prediction and the proportion of genetic variation assigned to the additive genetic source. PMID:21867519

  15. Genetically Engineered Pig Models for Human Diseases

    PubMed Central

    Prather, Randall S.; Lorson, Monique; Ross, Jason W.; Whyte, Jeffrey J.; Walters, Eric

    2015-01-01

    Although pigs are used widely as models of human disease, their utility as models has been enhanced by genetic engineering. Initially, transgenes were added randomly to the genome, but with the application of homologous recombination, zinc finger nucleases, and transcription activator-like effector nuclease (TALEN) technologies, now most any genetic change that can be envisioned can be completed. To date these genetic modifications have resulted in animals that have the potential to provide new insights into human diseases for which a good animal model did not exist previously. These new animal models should provide the preclinical data for treatments that are developed for diseases such as Alzheimer's disease, cystic fibrosis, retinitis pigmentosa, spinal muscular atrophy, diabetes, and organ failure. These new models will help to uncover aspects and treatments of these diseases that were otherwise unattainable. The focus of this review is to describe genetically engineered pigs that have resulted in models of human diseases. PMID:25387017

  16. Application of a single-objective, hybrid genetic algorithm approach to pharmacokinetic model building.

    PubMed

    Sherer, Eric A; Sale, Mark E; Pollock, Bruce G; Belani, Chandra P; Egorin, Merrill J; Ivy, Percy S; Lieberman, Jeffrey A; Manuck, Stephen B; Marder, Stephen R; Muldoon, Matthew F; Scher, Howard I; Solit, David B; Bies, Robert R

    2012-08-01

    A limitation in traditional stepwise population pharmacokinetic model building is the difficulty in handling interactions between model components. To address this issue, a method was previously introduced which couples NONMEM parameter estimation and model fitness evaluation to a single-objective, hybrid genetic algorithm for global optimization of the model structure. In this study, the generalizability of this approach for pharmacokinetic model building is evaluated by comparing (1) correct and spurious covariate relationships in a simulated dataset resulting from automated stepwise covariate modeling, Lasso methods, and single-objective hybrid genetic algorithm approaches to covariate identification and (2) information criteria values, model structures, convergence, and model parameter values resulting from manual stepwise versus single-objective, hybrid genetic algorithm approaches to model building for seven compounds. Both manual stepwise and single-objective, hybrid genetic algorithm approaches to model building were applied, blinded to the results of the other approach, for selection of the compartment structure as well as inclusion and model form of inter-individual and inter-occasion variability, residual error, and covariates from a common set of model options. For the simulated dataset, stepwise covariate modeling identified three of four true covariates and two spurious covariates; Lasso identified two of four true and 0 spurious covariates; and the single-objective, hybrid genetic algorithm identified three of four true covariates and one spurious covariate. For the clinical datasets, the Akaike information criterion was a median of 22.3 points lower (range of 470.5 point decrease to 0.1 point decrease) for the best single-objective hybrid genetic-algorithm candidate model versus the final manual stepwise model: the Akaike information criterion was lower by greater than 10 points for four compounds and differed by less than 10 points for three compounds. The root mean squared error and absolute mean prediction error of the best single-objective hybrid genetic algorithm candidates were a median of 0.2 points higher (range of 38.9 point decrease to 27.3 point increase) and 0.02 points lower (range of 0.98 point decrease to 0.74 point increase), respectively, than that of the final stepwise models. In addition, the best single-objective, hybrid genetic algorithm candidate models had successful convergence and covariance steps for each compound, used the same compartment structure as the manual stepwise approach for 6 of 7 (86 %) compounds, and identified 54 % (7 of 13) of covariates included by the manual stepwise approach and 16 covariate relationships not included by manual stepwise models. The model parameter values between the final manual stepwise and best single-objective, hybrid genetic algorithm models differed by a median of 26.7 % (q₁ = 4.9 % and q₃ = 57.1 %). Finally, the single-objective, hybrid genetic algorithm approach was able to identify models capable of estimating absorption rate parameters for four compounds that the manual stepwise approach did not identify. The single-objective, hybrid genetic algorithm represents a general pharmacokinetic model building methodology whose ability to rapidly search the feasible solution space leads to nearly equivalent or superior model fits to pharmacokinetic data.

  17. Genetic parameters for direct and maternal calving ease in Walloon dairy cattle based on linear and threshold models.

    PubMed

    Vanderick, S; Troch, T; Gillon, A; Glorieux, G; Gengler, N

    2014-12-01

    Calving ease scores from Holstein dairy cattle in the Walloon Region of Belgium were analysed using univariate linear and threshold animal models. Variance components and derived genetic parameters were estimated from a data set including 33,155 calving records. Included in the models were season, herd and sex of calf × age of dam classes × group of calvings interaction as fixed effects, herd × year of calving, maternal permanent environment and animal direct and maternal additive genetic as random effects. Models were fitted with the genetic correlation between direct and maternal additive genetic effects either estimated or constrained to zero. Direct heritability for calving ease was approximately 8% with linear models and approximately 12% with threshold models. Maternal heritabilities were approximately 2 and 4%, respectively. Genetic correlation between direct and maternal additive effects was found to be not significantly different from zero. Models were compared in terms of goodness of fit and predictive ability. Criteria of comparison such as mean squared error, correlation between observed and predicted calving ease scores as well as between estimated breeding values were estimated from 85,118 calving records. The results provided few differences between linear and threshold models even though correlations between estimated breeding values from subsets of data for sires with progeny from linear model were 17 and 23% greater for direct and maternal genetic effects, respectively, than from threshold model. For the purpose of genetic evaluation for calving ease in Walloon Holstein dairy cattle, the linear animal model without covariance between direct and maternal additive effects was found to be the best choice. © 2014 Blackwell Verlag GmbH.

  18. Genetic structured antedependence and random regression models applied to the longitudinal feed conversion ratio in growing Large White pigs.

    PubMed

    Huynh-Tran, V H; Gilbert, H; David, I

    2017-11-01

    The objective of the present study was to compare a random regression model, usually used in genetic analyses of longitudinal data, with the structured antedependence (SAD) model to study the longitudinal feed conversion ratio (FCR) in growing Large White pigs and to propose criteria for animal selection when used for genetic evaluation. The study was based on data from 11,790 weekly FCR measures collected on 1,186 Large White male growing pigs. Random regression (RR) using orthogonal polynomial Legendre and SAD models was used to estimate genetic parameters and predict FCR-based EBV for each of the 10 wk of the test. The results demonstrated that the best SAD model (1 order of antedependence of degree 2 and a polynomial of degree 2 for the innovation variance for the genetic and permanent environmental effects, i.e., 12 parameters) provided a better fit for the data than RR with a quadratic function for the genetic and permanent environmental effects (13 parameters), with Bayesian information criteria values of -10,060 and -9,838, respectively. Heritabilities with the SAD model were higher than those of RR over the first 7 wk of the test. Genetic correlations between weeks were higher than 0.68 for short intervals between weeks and decreased to 0.08 for the SAD model and -0.39 for RR for the longest intervals. These differences in genetic parameters showed that, contrary to the RR approach, the SAD model does not suffer from border effect problems and can handle genetic correlations that tend to 0. Summarized breeding values were proposed for each approach as linear combinations of the individual weekly EBV weighted by the coefficients of the first or second eigenvector computed from the genetic covariance matrix of the additive genetic effects. These summarized breeding values isolated EBV trajectories over time, capturing either the average general value or the slope of the trajectory. Finally, applying the SAD model over a reduced period of time suggested that similar selection choices would result from the use of the records from the first 8 wk of the test. To conclude, the SAD model performed well for the genetic evaluation of longitudinal phenotypes.

  19. Modelling the co-evolution of indirect genetic effects and inherited variability.

    PubMed

    Marjanovic, Jovana; Mulder, Han A; Rönnegård, Lars; Bijma, Piter

    2018-03-28

    When individuals interact, their phenotypes may be affected not only by their own genes but also by genes in their social partners. This phenomenon is known as Indirect Genetic Effects (IGEs). In aquaculture species and some plants, however, competition not only affects trait levels of individuals, but also inflates variability of trait values among individuals. In the field of quantitative genetics, the variability of trait values has been studied as a quantitative trait in itself, and is often referred to as inherited variability. Such studies, however, consider only the genetic effect of the focal individual on trait variability and do not make a connection to competition. Although the observed phenotypic relationship between competition and variability suggests an underlying genetic relationship, the current quantitative genetic models of IGE and inherited variability do not allow for such a relationship. The lack of quantitative genetic models that connect IGEs to inherited variability limits our understanding of the potential of variability to respond to selection, both in nature and agriculture. Models of trait levels, for example, show that IGEs may considerably change heritable variation in trait values. Currently, we lack the tools to investigate whether this result extends to variability of trait values. Here we present a model that integrates IGEs and inherited variability. In this model, the target phenotype, say growth rate, is a function of the genetic and environmental effects of the focal individual and of the difference in trait value between the social partner and the focal individual, multiplied by a regression coefficient. The regression coefficient is a genetic trait, which is a measure of cooperation; a negative value indicates competition, a positive value cooperation, and an increasing value due to selection indicates the evolution of cooperation. In contrast to the existing quantitative genetic models, our model allows for co-evolution of IGEs and variability, as the regression coefficient can respond to selection. Our simulations show that the model results in increased variability of body weight with increasing competition. When competition decreases, i.e., cooperation evolves, variability becomes significantly smaller. Hence, our model facilitates quantitative genetic studies on the relationship between IGEs and inherited variability. Moreover, our findings suggest that we may have been overlooking an entire level of genetic variation in variability, the one due to IGEs.

  20. A Tri-part Model for Genetics Literacy: Exploring Undergraduate Student Reasoning About Authentic Genetics Dilemmas

    NASA Astrophysics Data System (ADS)

    Shea, Nicole A.; Duncan, Ravit Golan; Stephenson, Celeste

    2015-08-01

    Genetics literacy is becoming increasingly important as advancements in our application of genetic technologies such as stem cell research, cloning, and genetic screening become more prevalent. Very few studies examine how genetics literacy is applied when reasoning about authentic genetic dilemmas. However, there is evidence that situational features of a reasoning task may influence how students apply content knowledge as they generate and support arguments. Understanding how students apply content knowledge to reason about authentic and complex issues is important for considering instructional practices that best support student thinking and reasoning. In this conceptual report, we present a tri-part model for genetics literacy that embodies the relationships between content knowledge use, argumentation quality, and the role of situational features in reasoning to support genetics literacy. Using illustrative examples from an interview study with early career undergraduate students majoring in the biological sciences and late career undergraduate students majoring in genetics, we provide insights into undergraduate student reasoning about complex genetics issues and discuss implications for teaching and learning. We further discuss the need for research about how the tri-part model of genetics literacy can be used to explore students' thinking and reasoning abilities in genetics.

  1. Genetic scores of smoking behaviour in a Chinese population.

    PubMed

    Yang, Shanshan; He, Yao; Wang, Jianhua; Wang, Yiyan; Wu, Lei; Zeng, Jing; Liu, Miao; Zhang, Di; Jiang, Bin; Li, Xiaoying

    2016-03-07

    This study sought to structure a genetic score for smoking behaviour in a Chinese population. Single-nucleotide polymorphisms (SNPs) from genome-wide association studies (GWAS) were evaluated in a community-representative sample (N = 3,553) of Beijing, China. The candidate SNPs were tested in four genetic models (dominance model, recessive model, heterogeneous codominant model and additive model), and 7 SNPs were selected to structure a genetic score. A total of 3,553 participants (1,477 males and 2,076 females) completed the survey. Using the unweighted score, we found that participants with a high genetic score had a 34% higher risk of trying smoking and a 43% higher risk of SI at ≤ 18 years of age after adjusting for age, gender, education, occupation, ethnicity, body mass index (BMI) and sports activity time. The unweighted genetic scores were chosen to best extrapolate and understand these results. Importantly, genetic score was significantly associated with smoking behaviour (smoking status and SI at ≤ 18 years of age). These results have the potential to guide relevant health education for individuals with high genetic scores and promote the process of smoking control to improve the health of the population.

  2. Shared additive genetic influences on DSM-IV criteria for alcohol dependence in subjects of European ancestry.

    PubMed

    Palmer, Rohan H C; McGeary, John E; Heath, Andrew C; Keller, Matthew C; Brick, Leslie A; Knopik, Valerie S

    2015-12-01

    Genetic studies of alcohol dependence (AD) have identified several candidate loci and genes, but most observed effects are small and difficult to reproduce. A plausible explanation for inconsistent findings may be a violation of the assumption that genetic factors contributing to each of the seven DSM-IV criteria point to a single underlying dimension of risk. Given that recent twin studies suggest that the genetic architecture of AD is complex and probably involves multiple discrete genetic factors, the current study employed common single nucleotide polymorphisms in two multivariate genetic models to examine the assumption that the genetic risk underlying DSM-IV AD is unitary. AD symptoms and genome-wide single nucleotide polymorphism (SNP) data from 2596 individuals of European descent from the Study of Addiction: Genetics and Environment were analyzed using genomic-relatedness-matrix restricted maximum likelihood. DSM-IV AD symptom covariance was described using two multivariate genetic factor models. Common SNPs explained 30% (standard error=0.136, P=0.012) of the variance in AD diagnosis. Additive genetic effects varied across AD symptoms. The common pathway model approach suggested that symptoms could be described by a single latent variable that had a SNP heritability of 31% (0.130, P=0.008). Similarly, the exploratory genetic factor model approach suggested that the genetic variance/covariance across symptoms could be represented by a single genetic factor that accounted for at least 60% of the genetic variance in any one symptom. Additive genetic effects on DSM-IV alcohol dependence criteria overlap. The assumption of common genetic effects across alcohol dependence symptoms appears to be a valid assumption. © 2015 Society for the Study of Addiction.

  3. Is my study system good enough? A case study for identifying maternal effects.

    PubMed

    Holand, Anna Marie; Steinsland, Ingelin

    2016-06-01

    In this paper, we demonstrate how simulation studies can be used to answer questions about identifiability and consequences of omitting effects from a model. The methodology is presented through a case study where identifiability of genetic and/or individual (environmental) maternal effects is explored. Our study system is a wild house sparrow ( Passer domesticus ) population with known pedigree. We fit pedigree-based (generalized) linear mixed models (animal models), with and without additive genetic and individual maternal effects, and use deviance information criterion (DIC) for choosing between these models. Pedigree and R-code for simulations are available. For this study system, the simulation studies show that only large maternal effects can be identified. The genetic maternal effect (and similar for individual maternal effect) has to be at least half of the total genetic variance to be identified. The consequences of omitting a maternal effect when it is present are explored. Our results indicate that the total (genetic and individual) variance are accounted for. When an individual (environmental) maternal effect is omitted from the model, this only influences the estimated (direct) individual (environmental) variance. When a genetic maternal effect is omitted from the model, both (direct) genetic and (direct) individual variance estimates are overestimated.

  4. Random regression models using Legendre orthogonal polynomials to evaluate the milk production of Alpine goats.

    PubMed

    Silva, F G; Torres, R A; Brito, L F; Euclydes, R F; Melo, A L P; Souza, N O; Ribeiro, J I; Rodrigues, M T

    2013-12-11

    The objective of this study was to identify the best random regression model using Legendre orthogonal polynomials to evaluate Alpine goats genetically and to estimate the parameters for test day milk yield. On the test day, we analyzed 20,710 records of milk yield of 667 goats from the Goat Sector of the Universidade Federal de Viçosa. The evaluated models had combinations of distinct fitting orders for polynomials (2-5), random genetic (1-7), and permanent environmental (1-7) fixed curves and a number of classes for residual variance (2, 4, 5, and 6). WOMBAT software was used for all genetic analyses. A random regression model using the best Legendre orthogonal polynomial for genetic evaluation of milk yield on the test day of Alpine goats considered a fixed curve of order 4, curve of genetic additive effects of order 2, curve of permanent environmental effects of order 7, and a minimum of 5 classes of residual variance because it was the most economical model among those that were equivalent to the complete model by the likelihood ratio test. Phenotypic variance and heritability were higher at the end of the lactation period, indicating that the length of lactation has more genetic components in relation to the production peak and persistence. It is very important that the evaluation utilizes the best combination of fixed, genetic additive and permanent environmental regressions, and number of classes of heterogeneous residual variance for genetic evaluation using random regression models, thereby enhancing the precision and accuracy of the estimates of parameters and prediction of genetic values.

  5. Novel Genetic Models to Study the Role of Inflammation in Brain Injury-Induced Alzheimer’s Pathology

    DTIC Science & Technology

    2014-12-01

    AD_________________ Award Number: W81XWH-12-1-0629 TITLE: Novel Genetic Models to Study the Role...CONTRACT NUMBER Novel Genetic Models to Study the Role of Inflammation in Brain Injury-Induced Alzheimer’s Pathology 5b. GRANT NUMBER W81XWH-12-1...However, our laboratories have recently performed pioneering studies using genetic labels regulated by these chemokine-receptor promoters to show

  6. A simulations approach for meta-analysis of genetic association studies based on additive genetic model.

    PubMed

    John, Majnu; Lencz, Todd; Malhotra, Anil K; Correll, Christoph U; Zhang, Jian-Ping

    2018-06-01

    Meta-analysis of genetic association studies is being increasingly used to assess phenotypic differences between genotype groups. When the underlying genetic model is assumed to be dominant or recessive, assessing the phenotype differences based on summary statistics, reported for individual studies in a meta-analysis, is a valid strategy. However, when the genetic model is additive, a similar strategy based on summary statistics will lead to biased results. This fact about the additive model is one of the things that we establish in this paper, using simulations. The main goal of this paper is to present an alternate strategy for the additive model based on simulating data for the individual studies. We show that the alternate strategy is far superior to the strategy based on summary statistics.

  7. Terminology, concepts, and models in genetic epidemiology.

    PubMed

    Teare, M Dawn; Koref, Mauro F Santibàñez

    2011-01-01

    Genetic epidemiology brings together approaches and techniques developed in mathematical genetics and statistics, medical genetics, quantitative genetics, and epidemiology. In the 1980s, the focus was on the mapping and identification of genes where defects had large effects at the individual level. More recently, statistical and experimental advances have made possible to identify and characterise genes associated with small effects at the individual level. In this chapter, we provide a brief outline of the models, concepts, and terminology used in genetic epidemiology.

  8. [Advances in understanding Drosophila salivary gland polytene chromosome and its applications in genetics teaching].

    PubMed

    Li, Gang; Chen, Fan-guo

    2015-06-01

    Drosophila salivary gland polytene chromosome, one of the three classical chromosomes with remarkable characteristics, has been used as an outstanding model for a variety of genetic studies since 1934. The greatest contribution of this model to genetics has been providing extraordinary angle of view in studying interphase chromosome structure and gene expression regulation. Additionally, it has been extensively used to understand some special genetic phenomena, such as dosage compensation and position-effect variegation. In this paper, we briefly review the advances in the study of Drosophila salivary gland chromosome, and try to systematically and effectively introduce this model system into genetics teaching practice in order to steer and inspire students' interest in genetics.

  9. Improved performance of epidemiologic and genetic risk models for rheumatoid arthritis serologic phenotypes using family history.

    PubMed

    Sparks, Jeffrey A; Chen, Chia-Yen; Jiang, Xia; Askling, Johan; Hiraki, Linda T; Malspeis, Susan; Klareskog, Lars; Alfredsson, Lars; Costenbader, Karen H; Karlson, Elizabeth W

    2015-08-01

    To develop and validate rheumatoid arthritis (RA) risk models based on family history, epidemiologic factors and known genetic risk factors. We developed and validated models for RA based on known RA risk factors, among women in two cohorts: the Nurses' Health Study (NHS, 381 RA cases and 410 controls) and the Epidemiological Investigation of RA (EIRA, 1244 RA cases and 971 controls). Model discrimination was evaluated using the area under the receiver operating characteristic curve (AUC) in logistic regression models for the study population and for those with positive family history. The joint effect of family history with genetics, smoking and body mass index (BMI) was evaluated using logistic regression models to estimate ORs for RA. The complete model including family history, epidemiologic risk factors and genetics demonstrated AUCs of 0.74 for seropositive RA in NHS and 0.77 for anti-citrullinated protein antibody (ACPA)-positive RA in EIRA. Among women with positive family history, discrimination was excellent for complete models for seropositive RA in NHS (AUC 0.82) and ACPA-positive RA in EIRA (AUC 0.83). Positive family history, high genetic susceptibility, smoking and increased BMI had an OR of 21.73 for ACPA-positive RA. We developed models for seropositive and seronegative RA phenotypes based on family history, epidemiological and genetic factors. Among those with positive family history, models using epidemiologic and genetic factors were highly discriminatory for seropositive and seronegative RA. Assessing epidemiological and genetic factors among those with positive family history may identify individuals suitable for RA prevention strategies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. [The practice and discussion of the physical knowledge stepping into genetics teaching].

    PubMed

    Luo, Shen; Luo, Peigao

    2014-09-01

    Genetics, one of the core courses of biological field, play a key role in biology teaching and research. In fact, there exists high similarity between many genetic knowledge and physical knowledge. Due to strong abstract of genetic contents and the weak basis of genetics, some students lack of interests to study genetics. How to apply the strong physical knowledge which students had been learned in the middle school in genetics teaching is worthwhile for genetics teachers. In this paper, we would like to introduce an infiltrative teaching model on applying physical knowledge into genetic contents by establishing the intrinsic logistic relationship between physical knowledge and genetic knowledge. This teaching model could help students more deeply understand genetic knowledge and enhance students' self-studying ability as well as creating ability.

  11. A model for family-based case-control studies of genetic imprinting and epistasis.

    PubMed

    Li, Xin; Sui, Yihan; Liu, Tian; Wang, Jianxin; Li, Yongci; Lin, Zhenwu; Hegarty, John; Koltun, Walter A; Wang, Zuoheng; Wu, Rongling

    2014-11-01

    Genetic imprinting, or called the parent-of-origin effect, has been recognized to play an important role in the formation and pathogenesis of human diseases. Although the epigenetic mechanisms that establish genetic imprinting have been a focus of many genetic studies, our knowledge about the number of imprinting genes and their chromosomal locations and interactions with other genes is still scarce, limiting precise inference of the genetic architecture of complex diseases. In this article, we present a statistical model for testing and estimating the effects of genetic imprinting on complex diseases using a commonly used case-control design with family structure. For each subject sampled from a case and control population, we not only genotype its own single nucleotide polymorphisms (SNPs) but also collect its parents' genotypes. By tracing the transmission pattern of SNP alleles from parental to offspring generation, the model allows the characterization of genetic imprinting effects based on Pearson tests of a 2 × 2 contingency table. The model is expanded to test the interactions between imprinting effects and additive, dominant and epistatic effects in a complex web of genetic interactions. Statistical properties of the model are investigated, and its practical usefulness is validated by a real data analysis. The model will provide a useful tool for genome-wide association studies aimed to elucidate the picture of genetic control over complex human diseases. © The Author 2013. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  12. TALENs and CRISPR/Cas9 fuel genetically engineered clinically relevant Xenopus tropicalis tumor models.

    PubMed

    Naert, Thomas; Van Nieuwenhuysen, Tom; Vleminckx, Kris

    2017-01-01

    The targeted nuclease revolution (TALENs, CRISPR/Cas9) now allows Xenopus researchers to rapidly generate custom on-demand genetic knockout models. These novel methods to perform reverse genetics are unprecedented and are fueling a wide array of human disease models within the aquatic diploid model organism Xenopus tropicalis (X. tropicalis). This emerging technology review focuses on the tools to rapidly generate genetically engineered X. tropicalis models (GEXM), with a focus on establishment of genuine genetic and clinically relevant cancer models. We believe that due to particular advantageous characteristics, outlined within this review, GEXM will become a valuable alternative animal model for modeling human cancer. Furthermore, we provide perspectives of how GEXM will be used as a platform for elucidation of novel therapeutic targets and for preclinical drug validation. Finally, we also discuss some future prospects on how the recent expansions and adaptations of the CRISPR/Cas9 toolbox might influence and push forward X. tropicalis cancer research. © 2017 Wiley Periodicals, Inc.

  13. The power and robustness of maximum LOD score statistics.

    PubMed

    Yoo, Y J; Mendell, N R

    2008-07-01

    The maximum LOD score statistic is extremely powerful for gene mapping when calculated using the correct genetic parameter value. When the mode of genetic transmission is unknown, the maximum of the LOD scores obtained using several genetic parameter values is reported. This latter statistic requires higher critical value than the maximum LOD score statistic calculated from a single genetic parameter value. In this paper, we compare the power of maximum LOD scores based on three fixed sets of genetic parameter values with the power of the LOD score obtained after maximizing over the entire range of genetic parameter values. We simulate family data under nine generating models. For generating models with non-zero phenocopy rates, LOD scores maximized over the entire range of genetic parameters yielded greater power than maximum LOD scores for fixed sets of parameter values with zero phenocopy rates. No maximum LOD score was consistently more powerful than the others for generating models with a zero phenocopy rate. The power loss of the LOD score maximized over the entire range of genetic parameters, relative to the maximum LOD score calculated using the correct genetic parameter value, appeared to be robust to the generating models.

  14. Pancreatic cancer cell lines as patient-derived avatars: genetic characterisation and functional utility.

    PubMed

    Knudsen, Erik S; Balaji, Uthra; Mannakee, Brian; Vail, Paris; Eslinger, Cody; Moxom, Christopher; Mansour, John; Witkiewicz, Agnieszka K

    2018-03-01

    Pancreatic ductal adenocarcinoma (PDAC) is a therapy recalcitrant disease with the worst survival rate of common solid tumours. Preclinical models that accurately reflect the genetic and biological diversity of PDAC will be important for delineating features of tumour biology and therapeutic vulnerabilities. 27 primary PDAC tumours were employed for genetic analysis and development of tumour models. Tumour tissue was used for derivation of xenografts and cell lines. Exome sequencing was performed on the originating tumour and developed models. RNA sequencing, histological and functional analyses were employed to determine the relationship of the patient-derived models to clinical presentation of PDAC. The cohort employed captured the genetic diversity of PDAC. From most cases, both cell lines and xenograft models were developed. Exome sequencing confirmed preservation of the primary tumour mutations in developed cell lines, which remained stable with extended passaging. The level of genetic conservation in the cell lines was comparable to that observed with patient-derived xenograft (PDX) models. Unlike historically established PDAC cancer cell lines, patient-derived models recapitulated the histological architecture of the primary tumour and exhibited metastatic spread similar to that observed clinically. Detailed genetic analyses of tumours and derived models revealed features of ex vivo evolution and the clonal architecture of PDAC. Functional analysis was used to elucidate therapeutic vulnerabilities of relevance to treatment of PDAC. These data illustrate that with the appropriate methods it is possible to develop cell lines that maintain genetic features of PDAC. Such models serve as important substrates for analysing the significance of genetic variants and create a unique biorepository of annotated cell lines and xenografts that were established simultaneously from same primary tumour. These models can be used to infer genetic and empirically determined therapeutic sensitivities that would be germane to the patient. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  15. Analysis of conditional genetic effects and variance components in developmental genetics.

    PubMed

    Zhu, J

    1995-12-01

    A genetic model with additive-dominance effects and genotype x environment interactions is presented for quantitative traits with time-dependent measures. The genetic model for phenotypic means at time t conditional on phenotypic means measured at previous time (t-1) is defined. Statistical methods are proposed for analyzing conditional genetic effects and conditional genetic variance components. Conditional variances can be estimated by minimum norm quadratic unbiased estimation (MINQUE) method. An adjusted unbiased prediction (AUP) procedure is suggested for predicting conditional genetic effects. A worked example from cotton fruiting data is given for comparison of unconditional and conditional genetic variances and additive effects.

  16. Analysis of Conditional Genetic Effects and Variance Components in Developmental Genetics

    PubMed Central

    Zhu, J.

    1995-01-01

    A genetic model with additive-dominance effects and genotype X environment interactions is presented for quantitative traits with time-dependent measures. The genetic model for phenotypic means at time t conditional on phenotypic means measured at previous time (t - 1) is defined. Statistical methods are proposed for analyzing conditional genetic effects and conditional genetic variance components. Conditional variances can be estimated by minimum norm quadratic unbiased estimation (MINQUE) method. An adjusted unbiased prediction (AUP) procedure is suggested for predicting conditional genetic effects. A worked example from cotton fruiting data is given for comparison of unconditional and conditional genetic variances and additive effects. PMID:8601500

  17. Genetic Simulation Tools for Post-Genome Wide Association Studies of Complex Diseases

    PubMed Central

    Amos, Christopher I.; Bafna, Vineet; Hauser, Elizabeth R.; Hernandez, Ryan D.; Li, Chun; Liberles, David A.; McAllister, Kimberly; Moore, Jason H.; Paltoo, Dina N.; Papanicolaou, George J.; Peng, Bo; Ritchie, Marylyn D.; Rosenfeld, Gabriel; Witte, John S.

    2014-01-01

    Genetic simulation programs are used to model data under specified assumptions to facilitate the understanding and study of complex genetic systems. Standardized data sets generated using genetic simulation are essential for the development and application of novel analytical tools in genetic epidemiology studies. With continuing advances in high-throughput genomic technologies and generation and analysis of larger, more complex data sets, there is a need for updating current approaches in genetic simulation modeling. To provide a forum to address current and emerging challenges in this area, the National Cancer Institute (NCI) sponsored a workshop, entitled “Genetic Simulation Tools for Post-Genome Wide Association Studies of Complex Diseases” at the National Institutes of Health (NIH) in Bethesda, Maryland on March 11-12, 2014. The goals of the workshop were to: (i) identify opportunities, challenges and resource needs for the development and application of genetic simulation models; (ii) improve the integration of tools for modeling and analysis of simulated data; and (iii) foster collaborations to facilitate development and applications of genetic simulation. During the course of the meeting the group identified challenges and opportunities for the science of simulation, software and methods development, and collaboration. This paper summarizes key discussions at the meeting, and highlights important challenges and opportunities to advance the field of genetic simulation. PMID:25371374

  18. When three traits make a line: evolution of phenotypic plasticity and genetic assimilation through linear reaction norms in stochastic environments.

    PubMed

    Ergon, T; Ergon, R

    2017-03-01

    Genetic assimilation emerges from selection on phenotypic plasticity. Yet, commonly used quantitative genetics models of linear reaction norms considering intercept and slope as traits do not mimic the full process of genetic assimilation. We argue that intercept-slope reaction norm models are insufficient representations of genetic effects on linear reaction norms and that considering reaction norm intercept as a trait is unfortunate because the definition of this trait relates to a specific environmental value (zero) and confounds genetic effects on reaction norm elevation with genetic effects on environmental perception. Instead, we suggest a model with three traits representing genetic effects that, respectively, (i) are independent of the environment, (ii) alter the sensitivity of the phenotype to the environment and (iii) determine how the organism perceives the environment. The model predicts that, given sufficient additive genetic variation in environmental perception, the environmental value at which reaction norms tend to cross will respond rapidly to selection after an abrupt environmental change, and eventually becomes equal to the new mean environment. This readjustment of the zone of canalization becomes completed without changes in genetic correlations, genetic drift or imposing any fitness costs of maintaining plasticity. The asymptotic evolutionary outcome of this three-trait linear reaction norm generally entails a lower degree of phenotypic plasticity than the two-trait model, and maximum expected fitness does not occur at the mean trait values in the population. © 2016 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology.

  19. Genetic Programming as Alternative for Predicting Development Effort of Individual Software Projects

    PubMed Central

    Chavoya, Arturo; Lopez-Martin, Cuauhtemoc; Andalon-Garcia, Irma R.; Meda-Campaña, M. E.

    2012-01-01

    Statistical and genetic programming techniques have been used to predict the software development effort of large software projects. In this paper, a genetic programming model was used for predicting the effort required in individually developed projects. Accuracy obtained from a genetic programming model was compared against one generated from the application of a statistical regression model. A sample of 219 projects developed by 71 practitioners was used for generating the two models, whereas another sample of 130 projects developed by 38 practitioners was used for validating them. The models used two kinds of lines of code as well as programming language experience as independent variables. Accuracy results from the model obtained with genetic programming suggest that it could be used to predict the software development effort of individual projects when these projects have been developed in a disciplined manner within a development-controlled environment. PMID:23226305

  20. Bayes factors based on robust TDT-type tests for family trio design.

    PubMed

    Yuan, Min; Pan, Xiaoqing; Yang, Yaning

    2015-06-01

    Adaptive transmission disequilibrium test (aTDT) and MAX3 test are two robust-efficient association tests for case-parent family trio data. Both tests incorporate information of common genetic models including recessive, additive and dominant models and are efficient in power and robust to genetic model specifications. The aTDT uses information of departure from Hardy-Weinberg disequilibrium to identify the potential genetic model underlying the data and then applies the corresponding TDT-type test, and the MAX3 test is defined as the maximum of the absolute value of three TDT-type tests under the three common genetic models. In this article, we propose three robust Bayes procedures, the aTDT based Bayes factor, MAX3 based Bayes factor and Bayes model averaging (BMA), for association analysis with case-parent trio design. The asymptotic distributions of aTDT under the null and alternative hypothesis are derived in order to calculate its Bayes factor. Extensive simulations show that the Bayes factors and the p-values of the corresponding tests are generally consistent and these Bayes factors are robust to genetic model specifications, especially so when the priors on the genetic models are equal. When equal priors are used for the underlying genetic models, the Bayes factor method based on aTDT is more powerful than those based on MAX3 and Bayes model averaging. When the prior placed a small (large) probability on the true model, the Bayes factor based on aTDT (BMA) is more powerful. Analysis of a simulation data about RA from GAW15 is presented to illustrate applications of the proposed methods.

  1. High school students' understanding and problem solving in population genetics

    NASA Astrophysics Data System (ADS)

    Soderberg, Patti D.

    This study is an investigation of student understanding of population genetics and how students developed, used and revised conceptual models to solve problems. The students in this study participated in three rounds of problem solving. The first round involved the use of a population genetics model to predict the number of carriers in a population. The second round required them to revise their model of simple dominance population genetics to make inferences about populations containing three phenotype variations. The third round of problem solving required the students to revise their model of population genetics to explain anomalous data where the proportions of males and females with a trait varied significantly. As the students solved problems, they were involved in basic scientific processes as they observed population phenomena, constructed explanatory models to explain the data they observed, and attempted to persuade their peers as to the adequacy of their models. In this study, the students produced new knowledge about the genetics of a trait in a population through the revision and use of explanatory population genetics models using reasoning that was similar to what scientists do. The students learned, used and revised a model of Hardy-Weinberg equilibrium to generate and test hypotheses about the genetics of phenotypes given only population data. Students were also interviewed prior to and following instruction. This study suggests that a commonly held intuitive belief about the predominance of a dominant variation in populations is resistant to change, despite instruction and interferes with a student's ability to understand Hardy-Weinberg equilibrium and microevolution.

  2. Monogenic Mouse Models of Autism Spectrum Disorders: Common Mechanisms and Missing Links

    PubMed Central

    Hulbert, Samuel W.; Jiang, Yong-hui

    2016-01-01

    Autism Spectrum Disorders (ASDs) present unique challenges in the fields of genetics and neurobiology because of the clinical and molecular heterogeneity underlying these disorders. Genetic mutations found in ASD patients provide opportunities to dissect the molecular and circuit mechanisms underlying autistic behaviors using animal models. Ongoing studies of genetically modified models have offered critical insight into possible common mechanisms arising from different mutations, but links between molecular abnormalities and behavioral phenotypes remain elusive. The challenges encountered in modeling autism in mice demand a new analytic paradigm that integrates behavioral analysis with circuit-level analysis in genetically modified models with strong construct validity. PMID:26733386

  3. Comparison of factor-analytic and reduced rank models for test-day milk yield in Gyr dairy cattle (Bos indicus).

    PubMed

    Pereira, R J; Ayres, D R; El Faro, L; Verneque, R S; Vercesi Filho, A E; Albuquerque, L G

    2013-09-27

    We analyzed 46,161 monthly test-day records of milk production from 7453 first lactations of crossbred dairy Gyr (Bos indicus) x Holstein cows. The following seven models were compared: standard multivariate model (M10), three reduced rank models fitting the first 2, 3, or 4 genetic principal components, and three models considering a 2-, 3-, or 4-factor structure for the genetic covariance matrix. Full rank residual covariance matrices were considered for all models. The model fitting the first two principal components (PC2) was the best according to the model selection criteria. Similar phenotypic, genetic, and residual variances were obtained with models M10 and PC2. The heritability estimates ranged from 0.14 to 0.21 and from 0.13 to 0.21 for models M10 and PC2, respectively. The genetic correlations obtained with model PC2 were slightly higher than those estimated with model M10. PC2 markedly reduced the number of parameters estimated and the time spent to reach convergence. We concluded that two principal components are sufficient to model the structure of genetic covariances between test-day milk yields.

  4. CDPOP: A spatially explicit cost distance population genetics program

    Treesearch

    Erin L. Landguth; S. A. Cushman

    2010-01-01

    Spatially explicit simulation of gene flow in complex landscapes is essential to explain observed population responses and provide a foundation for landscape genetics. To address this need, we wrote a spatially explicit, individual-based population genetics model (CDPOP). The model implements individual-based population modelling with Mendelian inheritance and k-allele...

  5. Combining quantitative trait loci analysis with physiological models to predict genotype-specific transpiration rates.

    PubMed

    Reuning, Gretchen A; Bauerle, William L; Mullen, Jack L; McKay, John K

    2015-04-01

    Transpiration is controlled by evaporative demand and stomatal conductance (gs ), and there can be substantial genetic variation in gs . A key parameter in empirical models of transpiration is minimum stomatal conductance (g0 ), a trait that can be measured and has a large effect on gs and transpiration. In Arabidopsis thaliana, g0 exhibits both environmental and genetic variation, and quantitative trait loci (QTL) have been mapped. We used this information to create a genetically parameterized empirical model to predict transpiration of genotypes. For the parental lines, this worked well. However, in a recombinant inbred population, the predictions proved less accurate. When based only upon their genotype at a single g0 QTL, genotypes were less distinct than our model predicted. Follow-up experiments indicated that both genotype by environment interaction and a polygenic inheritance complicate the application of genetic effects into physiological models. The use of ecophysiological or 'crop' models for predicting transpiration of novel genetic lines will benefit from incorporating further knowledge of the genetic control and degree of independence of core traits/parameters underlying gs variation. © 2014 John Wiley & Sons Ltd.

  6. Relationships between migration rates and landscape resistance assessed using individual-based simulations

    Treesearch

    E. L. Landguth; S. A. Cushman; M. A. Murphy; G. Luikart

    2010-01-01

    Linking landscape effects on gene flow to processes such as dispersal and mating is essential to provide a conceptual foundation for landscape genetics. It is particularly important to determine how classical population genetic models relate to recent individual-based landscape genetic models when assessing individual movement and its influence on population genetic...

  7. The long-term evolution of multilocus traits under frequency-dependent disruptive selection.

    PubMed

    van Doorn, G Sander; Dieckmann, Ulf

    2006-11-01

    Frequency-dependent disruptive selection is widely recognized as an important source of genetic variation. Its evolutionary consequences have been extensively studied using phenotypic evolutionary models, based on quantitative genetics, game theory, or adaptive dynamics. However, the genetic assumptions underlying these approaches are highly idealized and, even worse, predict different consequences of frequency-dependent disruptive selection. Population genetic models, by contrast, enable genotypic evolutionary models, but traditionally assume constant fitness values. Only a minority of these models thus addresses frequency-dependent selection, and only a few of these do so in a multilocus context. An inherent limitation of these remaining studies is that they only investigate the short-term maintenance of genetic variation. Consequently, the long-term evolution of multilocus characters under frequency-dependent disruptive selection remains poorly understood. We aim to bridge this gap between phenotypic and genotypic models by studying a multilocus version of Levene's soft-selection model. Individual-based simulations and deterministic approximations based on adaptive dynamics theory provide insights into the underlying evolutionary dynamics. Our analysis uncovers a general pattern of polymorphism formation and collapse, likely to apply to a wide variety of genetic systems: after convergence to a fitness minimum and the subsequent establishment of genetic polymorphism at multiple loci, genetic variation becomes increasingly concentrated on a few loci, until eventually only a single polymorphic locus remains. This evolutionary process combines features observed in quantitative genetics and adaptive dynamics models, and it can be explained as a consequence of changes in the selection regime that are inherent to frequency-dependent disruptive selection. Our findings demonstrate that the potential of frequency-dependent disruptive selection to maintain polygenic variation is considerably smaller than previously expected.

  8. Comparing GWAS Results of Complex Traits Using Full Genetic Model and Additive Models for Revealing Genetic Architecture

    PubMed Central

    Monir, Md. Mamun; Zhu, Jun

    2017-01-01

    Most of the genome-wide association studies (GWASs) for human complex diseases have ignored dominance, epistasis and ethnic interactions. We conducted comparative GWASs for total cholesterol using full model and additive models, which illustrate the impacts of the ignoring genetic variants on analysis results and demonstrate how genetic effects of multiple loci could differ across different ethnic groups. There were 15 quantitative trait loci with 13 individual loci and 3 pairs of epistasis loci identified by full model, whereas only 14 loci (9 common loci and 5 different loci) identified by multi-loci additive model. Again, 4 full model detected loci were not detected using multi-loci additive model. PLINK-analysis identified two loci and GCTA-analysis detected only one locus with genome-wide significance. Full model identified three previously reported genes as well as several new genes. Bioinformatics analysis showed some new genes are related with cholesterol related chemicals and/or diseases. Analyses of cholesterol data and simulation studies revealed that the full model performs were better than the additive-model performs in terms of detecting power and unbiased estimations of genetic variants of complex traits. PMID:28079101

  9. Genetic Model Fitting in IQ, Assortative Mating & Components of IQ Variance.

    ERIC Educational Resources Information Center

    Capron, Christiane; Vetta, Adrian R.; Vetta, Atam

    1998-01-01

    The biometrical school of scientists who fit models to IQ data traces their intellectual ancestry to R. Fisher (1918), but their genetic models have no predictive value. Fisher himself was critical of the concept of heritability, because assortative mating, such as for IQ, introduces complexities into the study of a genetic trait. (SLD)

  10. Achieving World-Class Schools: Mastering School Improvement Using a Genetic Model.

    ERIC Educational Resources Information Center

    Kimmelman, Paul L.; Kroeze, David J.

    In providing its program for education reform, this book uses, as an analogy, the genetic model taken from the Human Genome project. In the first part, "Theoretical Underpinnings," the book explains why a genetic model can be used to improve school systems; describes the critical components of a world-class school system; and details the…

  11. Comparing Mammography Abnormality Features and Genetic Variants in the Prediction of Breast Cancer in Women Recommended for Breast Biopsy

    PubMed Central

    Burnside, Elizabeth S.; Liu, Jie; Wu, Yirong; Onitilo, Adedayo A.; McCarty, Catherine; Page, C. David; Peissig, Peggy; Trentham-Dietz, Amy; Kitchner, Terrie; Fan, Jun; Yuan, Ming

    2015-01-01

    Rationale and Objectives The discovery of germline genetic variants associated with breast cancer has engendered interest in risk stratification for improved, targeted detection and diagnosis. However, there has yet to be a comparison of the predictive ability of these genetic variants with mammography abnormality descriptors. Materials and Methods Our IRB-approved, HIPAA-compliant study utilized a personalized medicine registry in which participants consented to provide a DNA sample and participate in longitudinal follow-up. In our retrospective, age-matched, case-controlled study of 373 cases and 395 controls who underwent breast biopsy, we collected risk factors selected a priori based on the literature including: demographic variables based on the Gail model, common germline genetic variants, and diagnostic mammography findings according to BI-RADS. We developed predictive models using logistic regression to determine the predictive ability of: 1) demographic variables, 2) 10 selected genetic variants, or 3) mammography BI-RADS features. We evaluated each model in turn by calculating a risk score for each patient using 10-fold cross validation; used this risk estimate to construct ROC curves; and compared the AUC of each using the DeLong method. Results The performance of the regression model using demographic risk factors was not statistically different from the model using genetic variants (p=0.9). The model using mammography features (AUC = 0.689) was superior to both the demographic model (AUC = .598; p<0.001) and the genetic model (AUC = .601; p<0.001). Conclusion BI-RADS features exceeded the ability of demographic and 10 selected germline genetic variants to predict breast cancer in women recommended for biopsy. PMID:26514439

  12. Explanatory Models of Genetics and Genetic Risk among a Selected Group of Students.

    PubMed

    Goltz, Heather Honoré; Bergman, Margo; Goodson, Patricia

    2016-01-01

    This exploratory qualitative study focuses on how college students conceptualize genetics and genetic risk, concepts essential for genetic literacy (GL) and genetic numeracy (GN), components of overall health literacy (HL). HL is dependent on both the background knowledge and culture of a patient, and lower HL is linked to increased morbidity and mortality for a number of chronic health conditions (e.g., diabetes and cancer). A purposive sample of 86 students from three Southwestern universities participated in eight focus groups. The sample ranged in age from 18 to 54 years, and comprised primarily of female (67.4%), single (74.4%), and non-White (57%) participants, none of whom were genetics/biology majors. A holistic-content approach revealed broad categories concerning participants' explanatory models (EMs) of genetics and genetic risk. Participants' EMs were grounded in highly contextualized narratives that only partially overlapped with biomedical models. While higher education levels should be associated with predominately knowledge-based EM of genetic risk, this study shows that even in well-educated populations cultural factors can dominate. Study findings reveal gaps in how this sample of young adults obtains, processes, and understands genetic/genomic concepts. Future studies should assess how individuals with low GL and GN obtain and process genetics and genetic risk information and incorporate this information into health decision making. Future work should also address the interaction of communication between health educators, providers, and genetic counselors, to increase patient understanding of genetic risk.

  13. The contributions of admixture and genetic drift to diversity among post-contact populations in the Americas.

    PubMed

    Koehl, Anthony J; Long, Jeffrey C

    2018-02-01

    We present a model that partitions Nei's minimum genetic distance between admixed populations into components of admixture and genetic drift. We applied this model to 17 admixed populations in the Americas to examine how admixture and drift have contributed to the patterns of genetic diversity. We analyzed 618 short tandem repeat loci in 949 individuals from 49 population samples. Thirty-two samples serve as proxies for continental ancestors. Seventeen samples represent admixed populations: (4) African-American and (13) Latin American. We partition genetic distance, and then calculate fixation indices and principal coordinates to interpret our results. A computer simulation confirms that our method correctly estimates drift and admixture components of genetic distance when the assumptions of the model are met. The partition of genetic distance shows that both admixture and genetic drift contribute to patterns of genetic diversity. The admixture component of genetic distance provides evidence for two distinct axes of continental ancestry. However, the genetic distances show that ancestry contributes to only one axis of genetic differentiation. The genetic distances among the 13 Latin American populations in this analysis show contributions from both differences in ancestry and differences in genetic drift. By contrast, the genetic distances among the four African American populations in this analysis owe mostly to genetic drift because these groups have similar fractions of European and African ancestry. The genetic structure of admixed populations in the Americas reflects more than admixture. We show that the history of serial founder effects constrains the impact of admixture on allele frequencies to a single dimension. Genetic drift in the admixed populations imposed a new level of genetic structure onto that created by admixture. © 2017 Wiley Periodicals, Inc.

  14. [The discussion of the infiltrative model of chemical knowledge stepping into genetics teaching in agricultural institute or university].

    PubMed

    Zou, Ping; Luo, Pei-Gao

    2010-05-01

    Chemistry is an important group of basic courses, while genetics is one of the important major-basic courses in curriculum of many majors in agricultural institutes or universities. In order to establish the linkage between the major course and the basic course, the ability of application of the chemical knowledge previously learned in understanding genetic knowledge in genetics teaching is worthy of discussion for genetics teachers. In this paper, the authors advocate to apply some chemical knowledge previously learned to understand genetic knowledge in genetics teaching with infiltrative model, which could help students learn and understand genetic knowledge more deeply. Analysis of the intrinsic logistic relationship among the knowledge of different courses and construction of the integral knowledge network are useful for students to improve their analytic, comprehensive and logistic abilities. By this way, we could explore a new teaching model to develop the talents with new ideas and comprehensive competence in agricultural fields.

  15. Study of parameter identification using hybrid neural-genetic algorithm in electro-hydraulic servo system

    NASA Astrophysics Data System (ADS)

    Moon, Byung-Young

    2005-12-01

    The hybrid neural-genetic multi-model parameter estimation algorithm was demonstrated. This method can be applied to structured system identification of electro-hydraulic servo system. This algorithms consist of a recurrent incremental credit assignment(ICRA) neural network and a genetic algorithm. The ICRA neural network evaluates each member of a generation of model and genetic algorithm produces new generation of model. To evaluate the proposed method, electro-hydraulic servo system was designed and manufactured. The experiment was carried out to figure out the hybrid neural-genetic multi-model parameter estimation algorithm. As a result, the dynamic characteristics were obtained such as the parameters(mass, damping coefficient, bulk modulus, spring coefficient), which minimize total square error. The result of this study can be applied to hydraulic systems in industrial fields.

  16. Using Genetic Mouse Models to Gain Insight into Glaucoma: Past Results and Future Possibilities

    PubMed Central

    Fernandes, Kimberly A.; Harder, Jeffrey M.; Williams, Pete A.; Rausch, Rebecca L.; Kiernan, Amy E.; Nair, K. Saidas; Anderson, Michael G.; John, Simon W.; Howell, Gareth R.; Libby, Richard T.

    2015-01-01

    While all forms of glaucoma are characterized by a specific pattern of retinal ganglion cell death, they are clinically divided into several distinct subclasses, including normal tension glaucoma, primary open angle glaucoma, congenital glaucoma, and secondary glaucoma. For each type of glaucoma there are likely numerous molecular pathways that control susceptibility to the disease. Given this complexity, a single animal model will never precisely model all aspects of all the different types of human glaucoma. Therefore, multiple animal models have been utilized to study glaucoma but more are needed. Because of the powerful genetic tools available to use in the laboratory mouse, it has proven to be a highly useful mammalian system for studying the pathophysiology of human disease. The similarity between human and mouse eyes coupled with the ability to use a combination of advanced cell biological and genetic tools in mice have led to a large increase in the number of studies using mice to model specific glaucoma phenotypes. Over the last decade, numerous new mouse models and genetic tools have emerged, providing important insight into the cell biology and genetics of glaucoma. In this review, we describe available mouse genetic models that can be used to study glaucoma-relevant disease/pathobiology. Furthermore, we discuss how these models have been used to gain insights into ocular hypertension (a major risk factor for glaucoma) and glaucomatous retinal ganglion cell death. Finally, the potential for developing new mouse models and using advanced genetic tools and resources for studying glaucoma are discussed. PMID:26116903

  17. Myeloproliferative Neoplasm Animal Models

    PubMed Central

    Mullally, Ann; Lane, Steven W.; Brumme, Kristina; Ebert, Benjamin L.

    2012-01-01

    Synopsis Myeloproliferative neoplasm (MPN) animal models accurately re-capitulate human disease in mice and have been an important tool for the study of MPN biology and therapy. Transplantation of BCR-ABL transduced bone marrow cells into irradiated syngeneic mice established the field of MPN animal modeling and the retroviral bone marrow transplantation (BMT) assay has been used extensively since. Genetically engineered MPN animal models have enabled detailed characterization of the effects of specific MPN associated genetic abnormalities on the hematopoietic stem and progenitor cell (HSPC) compartment and xenograft models have allowed the study of primary human MPN-propagating cells in vivo. All models have facilitated the pre-clinical development of MPN therapies. JAK2V617F, the most common molecular abnormality in BCR-ABL negative MPN, has been extensively studied using retroviral, transgenic, knock-in and xenograft models. MPN animal models have also been used to investigate additional genetic lesions found in human MPN and to evaluate the bone marrow microenvironment in these diseases. Finally, several genetic lesions, although not common, somatically mutated drivers of MPN in humans induce a MPN phenotype in mice. Future uses for MPN animal models will include modeling compound genetic lesions in MPN and studying myelofibrotic transformation. PMID:23009938

  18. Deriving estimates of individual variability in genetic potentials of performance traits for 3 dairy breeds, using a model of lifetime nutrient partitioning.

    PubMed

    Phuong, H N; Martin, O; de Boer, I J M; Ingvartsen, K L; Schmidely, Ph; Friggens, N C

    2015-01-01

    This study explored the ability of an existing lifetime nutrient partitioning model for simulating individual variability in genetic potentials of dairy cows. Generally, the model assumes a universal trajectory of dynamic partitioning of priority between life functions and genetic scaling parameters are then incorporated to simulate individual difference in performance. Data of 102 cows including 180 lactations of 3 breeds: Danish Red, Danish Holstein, and Jersey, which were completely independent from those used previously for model development, were used. Individual cow performance records through sequential lactations were used to derive genetic scaling parameters for each animal by calibrating the model to achieve best fit, cow by cow. The model was able to fit individual curves of body weight, and milk fat, milk protein, and milk lactose concentrations with a high degree of accuracy. Daily milk yield and dry matter intake were satisfactorily predicted in early and mid lactation, but underpredictions were found in late lactation. Breeds and parities did not significantly affect the prediction accuracy. The means of genetic scaling parameters between Danish Red and Danish Holstein were similar but significantly different from those of Jersey. The extent of correlations between the genetic scaling parameters was consistent with that reported in the literature. In conclusion, this model is of value as a tool to derive estimates of genetic potentials of milk yield, milk composition, body reserve usage, and growth for different genotypes of cow. Moreover, it can be used to separate genetic variability in performance between individual cows from environmental noise. The model enables simulation of the effects of a genetic selection strategy on lifetime efficiency of individual cows, which has a main advantage of including the rearing costs, and thus, can be used to explore the impact of future selection on animal performance and efficiency. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Stochastic models for regulatory networks of the genetic toggle switch.

    PubMed

    Tian, Tianhai; Burrage, Kevin

    2006-05-30

    Bistability arises within a wide range of biological systems from the lambda phage switch in bacteria to cellular signal transduction pathways in mammalian cells. Changes in regulatory mechanisms may result in genetic switching in a bistable system. Recently, more and more experimental evidence in the form of bimodal population distributions indicates that noise plays a very important role in the switching of bistable systems. Although deterministic models have been used for studying the existence of bistability properties under various system conditions, these models cannot realize cell-to-cell fluctuations in genetic switching. However, there is a lag in the development of stochastic models for studying the impact of noise in bistable systems because of the lack of detailed knowledge of biochemical reactions, kinetic rates, and molecular numbers. In this work, we develop a previously undescribed general technique for developing quantitative stochastic models for large-scale genetic regulatory networks by introducing Poisson random variables into deterministic models described by ordinary differential equations. Two stochastic models have been proposed for the genetic toggle switch interfaced with either the SOS signaling pathway or a quorum-sensing signaling pathway, and we have successfully realized experimental results showing bimodal population distributions. Because the introduced stochastic models are based on widely used ordinary differential equation models, the success of this work suggests that this approach is a very promising one for studying noise in large-scale genetic regulatory networks.

  20. Stochastic models for regulatory networks of the genetic toggle switch

    PubMed Central

    Tian, Tianhai; Burrage, Kevin

    2006-01-01

    Bistability arises within a wide range of biological systems from the λ phage switch in bacteria to cellular signal transduction pathways in mammalian cells. Changes in regulatory mechanisms may result in genetic switching in a bistable system. Recently, more and more experimental evidence in the form of bimodal population distributions indicates that noise plays a very important role in the switching of bistable systems. Although deterministic models have been used for studying the existence of bistability properties under various system conditions, these models cannot realize cell-to-cell fluctuations in genetic switching. However, there is a lag in the development of stochastic models for studying the impact of noise in bistable systems because of the lack of detailed knowledge of biochemical reactions, kinetic rates, and molecular numbers. In this work, we develop a previously undescribed general technique for developing quantitative stochastic models for large-scale genetic regulatory networks by introducing Poisson random variables into deterministic models described by ordinary differential equations. Two stochastic models have been proposed for the genetic toggle switch interfaced with either the SOS signaling pathway or a quorum-sensing signaling pathway, and we have successfully realized experimental results showing bimodal population distributions. Because the introduced stochastic models are based on widely used ordinary differential equation models, the success of this work suggests that this approach is a very promising one for studying noise in large-scale genetic regulatory networks. PMID:16714385

  1. Adaptive transmission disequilibrium test for family trio design.

    PubMed

    Yuan, Min; Tian, Xin; Zheng, Gang; Yang, Yaning

    2009-01-01

    The transmission disequilibrium test (TDT) is a standard method to detect association using family trio design. It is optimal for an additive genetic model. Other TDT-type tests optimal for recessive and dominant models have also been developed. Association tests using family data, including the TDT-type statistics, have been unified to a class of more comprehensive and flexable family-based association tests (FBAT). TDT-type tests have high efficiency when the genetic model is known or correctly specified, but may lose power if the model is mis-specified. Hence tests that are robust to genetic model mis-specification yet efficient are preferred. Constrained likelihood ratio test (CLRT) and MAX-type test have been shown to be efficiency robust. In this paper we propose a new efficiency robust procedure, referred to as adaptive TDT (aTDT). It uses the Hardy-Weinberg disequilibrium coefficient to identify the potential genetic model underlying the data and then applies the TDT-type test (or FBAT for general applications) corresponding to the selected model. Simulation demonstrates that aTDT is efficiency robust to model mis-specifications and generally outperforms the MAX test and CLRT in terms of power. We also show that aTDT has power close to, but much more robust, than the optimal TDT-type test based on a single genetic model. Applications to real and simulated data from Genetic Analysis Workshop (GAW) illustrate the use of our adaptive TDT.

  2. Genetically Engineered Mouse Models for Studying Inflammatory Bowel Disease

    PubMed Central

    Mizoguchi, Atsushi; Takeuchi, Takahito; Himuro, Hidetomo; Okada, Toshiyuki; Mizoguchi, Emiko

    2015-01-01

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that is mediated by very complex mechanisms controlled by genetic, immune, and environmental factors. More than 74 kinds of genetically engineered mouse strains have been established since 1993 for studying IBD. Although mouse models cannot fully reflect human IBD, they have provided significant contributions for not only understanding the mechanism, but also developing new therapeutic means for IBD. Indeed, 20 kinds of genetically engineered mouse models carry the susceptibility genes identified in human IBD, and the functions of some other IBD susceptibility genes have also been dissected out using mouse models. Cutting-edge technologies such as cell-specific and inducible knockout systems, which were recently employed to mouse IBD models, have further enhanced the ability of investigators to provide important and unexpected rationales for developing new therapeutic strategies for IBD. In this review article, we briefly introduce 74 kinds of genetically engineered mouse models that spontaneously develop intestinal inflammation. PMID:26387641

  3. Genetic-based prediction of disease traits: prediction is very difficult, especially about the future†

    PubMed Central

    Schrodi, Steven J.; Mukherjee, Shubhabrata; Shan, Ying; Tromp, Gerard; Sninsky, John J.; Callear, Amy P.; Carter, Tonia C.; Ye, Zhan; Haines, Jonathan L.; Brilliant, Murray H.; Crane, Paul K.; Smelser, Diane T.; Elston, Robert C.; Weeks, Daniel E.

    2014-01-01

    Translation of results from genetic findings to inform medical practice is a highly anticipated goal of human genetics. The aim of this paper is to review and discuss the role of genetics in medically-relevant prediction. Germline genetics presages disease onset and therefore can contribute prognostic signals that augment laboratory tests and clinical features. As such, the impact of genetic-based predictive models on clinical decisions and therapy choice could be profound. However, given that (i) medical traits result from a complex interplay between genetic and environmental factors, (ii) the underlying genetic architectures for susceptibility to common diseases are not well-understood, and (iii) replicable susceptibility alleles, in combination, account for only a moderate amount of disease heritability, there are substantial challenges to constructing and implementing genetic risk prediction models with high utility. In spite of these challenges, concerted progress has continued in this area with an ongoing accumulation of studies that identify disease predisposing genotypes. Several statistical approaches with the aim of predicting disease have been published. Here we summarize the current state of disease susceptibility mapping and pharmacogenetics efforts for risk prediction, describe methods used to construct and evaluate genetic-based predictive models, and discuss applications. PMID:24917882

  4. [The discussion of the infiltrative model of mathematical knowledge to genetics teaching].

    PubMed

    Liu, Jun; Luo, Pei-Gao

    2011-11-01

    Genetics, the core course of biological field, is an importance major-basic course in curriculum of many majors related with biology. Due to strong theoretical and practical as well as abstract of genetics, it is too difficult to study on genetics for many students. At the same time, mathematics is one of the basic courses in curriculum of the major related natural science, which has close relationship with the establishment, development and modification of genetics. In this paper, to establish the intrinsic logistic relationship and construct the integral knowledge network and to help students improving the analytic, comprehensive and logistic abilities, we applied some mathematical infiltrative model genetic knowledge in genetics teaching, which could help students more deeply learn and understand genetic knowledge.

  5. Genetically Engineered Humanized Mouse Models for Preclinical Antibody Studies

    PubMed Central

    Proetzel, Gabriele; Wiles, Michael V.; Roopenian, Derry C.

    2015-01-01

    The use of genetic engineering has vastly improved our capabilities to create animal models relevant in preclinical research. With the recent advances in gene-editing technologies, it is now possible to very rapidly create highly tunable mouse models as needs arise. Here, we provide an overview of genetic engineering methods, as well as the development of humanized neonatal Fc receptor (FcRn) models and their use for monoclonal antibody in vivo studies. PMID:24150980

  6. Effect of genetic polymorphisms on development of gout.

    PubMed

    Urano, Wako; Taniguchi, Atsuo; Inoue, Eisuke; Sekita, Chieko; Ichikawa, Naomi; Koseki, Yumi; Kamatani, Naoyuki; Yamanaka, Hisashi

    2013-08-01

    To validate the association between genetic polymorphisms and gout in Japanese patients, and to investigate the cumulative effects of multiple genetic factors on the development of gout. Subjects were 153 Japanese male patients with gout and 532 male controls. The genotypes of 11 polymorphisms in the 10 genes that have been indicated to be associated with serum uric acid levels or gout were determined. The cumulative effects of the genetic polymorphisms were investigated using a weighted genotype risk score (wGRS) based on the number of risk alleles and the OR for gout. A model to discriminate between patients with gout and controls was constructed by incorporating the wGRS and clinical factors. C statistics method was applied to evaluate the capability of the model to discriminate gout patients from controls. Seven polymorphisms were shown to be associated with gout. The mean wGRS was significantly higher in patients with gout (15.2 ± 2.01) compared to controls (13.4 ± 2.10; p < 0.0001). The C statistic for the model using genetic information alone was 0.72, while the C statistic was 0.81 for the full model that incorporated all genetic and clinical factors. Accumulation of multiple genetic factors is associated with the development of gout. A prediction model for gout that incorporates genetic and clinical factors may be useful for identifying individuals who are at risk of gout.

  7. Quantitative genetic properties of four measures of deformity in yellowtail kingfish Seriola lalandi Valenciennes, 1833.

    PubMed

    Nguyen, N H; Whatmore, P; Miller, A; Knibb, W

    2016-02-01

    The main aim of this study was to estimate the heritability for four measures of deformity and their genetic associations with growth (body weight and length), carcass (fillet weight and yield) and flesh-quality (fillet fat content) traits in yellowtail kingfish Seriola lalandi. The observed major deformities included lower jaw, nasal erosion, deformed operculum and skinny fish on 480 individuals from 22 families at Clean Seas Tuna Ltd. They were typically recorded as binary traits (presence or absence) and were analysed separately by both threshold generalized models and standard animal mixed models. Consistency of the models was evaluated by calculating simple Pearson correlation of breeding values of full-sib families for jaw deformity. Genetic and phenotypic correlations among traits were estimated using a multitrait linear mixed model in ASReml. Both threshold and linear mixed model analysis showed that there is additive genetic variation in the four measures of deformity, with the estimates of heritability obtained from the former (threshold) models on liability scale ranging from 0.14 to 0.66 (SE 0.32-0.56) and from the latter (linear animal and sire) models on original (observed) scale, 0.01-0.23 (SE 0.03-0.16). When the estimates on the underlying liability were transformed to the observed scale (0, 1), they were generally consistent between threshold and linear mixed models. Phenotypic correlations among deformity traits were weak (close to zero). The genetic correlations among deformity traits were not significantly different from zero. Body weight and fillet carcass showed significant positive genetic correlations with jaw deformity (0.75 and 0.95, respectively). Genetic correlation between body weight and operculum was negative (-0.51, P < 0.05). The genetic correlations' estimates of body and carcass traits with other deformity were not significant due to their relatively high standard errors. Our results showed that there are prospects for genetic selection to improve deformity in yellowtail kingfish and that measures of deformity should be included in the recording scheme, breeding objectives and selection index in practical selective breeding programmes due to the antagonistic genetic correlations of deformed jaws with body and carcass performance. © 2015 John Wiley & Sons Ltd.

  8. Learning Gene Expression Through Modelling and Argumentation. A Case Study Exploring the Connections Between the Worlds of Knowledge

    NASA Astrophysics Data System (ADS)

    Puig, Blanca; Ageitos, Noa; Jiménez-Aleixandre, María Pilar

    2017-12-01

    There is emerging interest on the interactions between modelling and argumentation in specific contexts, such as genetics learning. It has been suggested that modelling might help students understand and argue on genetics. We propose modelling gene expression as a way to learn molecular genetics and diseases with a genetic component. The study is framed in Tiberghien's (2000) two worlds of knowledge, the world of "theories & models" and the world of "objects & events", adding a third component, the world of representations. We seek to examine how modelling and argumentation interact and connect the three worlds of knowledge while modelling gene expression. It is a case study of 10th graders learning about diseases with a genetic component. The research questions are as follows: (1) What argumentative and modelling operations do students enact in the process of modelling gene expression? Specifically, which operations allow connecting the three worlds of knowledge? (2) What are the interactions between modelling and argumentation in modelling gene expression? To what extent do these interactions help students connect the three worlds of knowledge and modelling gene expression? The argumentative operation of using evidence helps students to relate the three worlds of knowledge, enacted in all the connections. It seems to be a relationship among the number of interactions between modelling and argumentation, the connections between world of knowledge and students' capacity to develop a more sophisticated representation. Despite this is a case study, this approach of analysis reveals potentialities for a deeper understanding of learning genetics though scientific practices.

  9. Testing the Role of p21 Activated Kinases in Schwannoma Formation Using a Novel Genetically Engineered Murine Model that Closely Phenocopies Human NF2 Disease

    DTIC Science & Technology

    2017-06-01

    Kinases in Schwannoma Formation Using a Novel Genetically Engineered Murine Model that Closely Phenocopies Human NF2 Disease The views, opinions and...Role of p21 Activated Kinases in Schwannoma Formation Using a Novel Genetically Engineered Murine Model that Closely Phenocopies Human NF2 Disease Form...NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. The major goal of this research project was to genetically and pharmacologically test the requirement of PAK

  10. Connecting the dots between genes, biochemistry, and disease susceptibility: systems biology modeling in human genetics.

    PubMed

    Moore, Jason H; Boczko, Erik M; Summar, Marshall L

    2005-02-01

    Understanding how DNA sequence variations impact human health through a hierarchy of biochemical and physiological systems is expected to improve the diagnosis, prevention, and treatment of common, complex human diseases. We have previously developed a hierarchical dynamic systems approach based on Petri nets for generating biochemical network models that are consistent with genetic models of disease susceptibility. This modeling approach uses an evolutionary computation approach called grammatical evolution as a search strategy for optimal Petri net models. We have previously demonstrated that this approach routinely identifies biochemical network models that are consistent with a variety of genetic models in which disease susceptibility is determined by nonlinear interactions between two or more DNA sequence variations. We review here this approach and then discuss how it can be used to model biochemical and metabolic data in the context of genetic studies of human disease susceptibility.

  11. Alternate Service Delivery Models in Cancer Genetic Counseling: A Mini-Review.

    PubMed

    Buchanan, Adam Hudson; Rahm, Alanna Kulchak; Williams, Janet L

    2016-01-01

    Demand for cancer genetic counseling has grown rapidly in recent years as germline genomic information has become increasingly incorporated into cancer care, and the field has entered the public consciousness through high-profile celebrity publications. Increased demand and existing variability in the availability of trained cancer genetics clinicians place a priority on developing and evaluating alternate service delivery models for genetic counseling. This mini-review summarizes the state of science regarding service delivery models, such as telephone counseling, telegenetics, and group counseling. Research on comparative effectiveness of these models in traditional individual, in-person genetic counseling has been promising for improving access to care in a manner acceptable to patients. Yet, it has not fully evaluated the short- and long-term patient- and system-level outcomes that will help answer the question of whether these models achieve the same beneficial psychosocial and behavioral outcomes as traditional cancer genetic counseling. We propose a research agenda focused on comparative effectiveness of available service delivery models and how to match models to patients and practice settings. Only through this rigorous research can clinicians and systems find the optimal balance of clinical quality, ready and secure access to care, and financial sustainability. Such research will be integral to achieving the promise of genomic medicine in oncology.

  12. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters.

    PubMed

    Hadfield, J D; Nakagawa, S

    2010-03-01

    Although many of the statistical techniques used in comparative biology were originally developed in quantitative genetics, subsequent development of comparative techniques has progressed in relative isolation. Consequently, many of the new and planned developments in comparative analysis already have well-tested solutions in quantitative genetics. In this paper, we take three recent publications that develop phylogenetic meta-analysis, either implicitly or explicitly, and show how they can be considered as quantitative genetic models. We highlight some of the difficulties with the proposed solutions, and demonstrate that standard quantitative genetic theory and software offer solutions. We also show how results from Bayesian quantitative genetics can be used to create efficient Markov chain Monte Carlo algorithms for phylogenetic mixed models, thereby extending their generality to non-Gaussian data. Of particular utility is the development of multinomial models for analysing the evolution of discrete traits, and the development of multi-trait models in which traits can follow different distributions. Meta-analyses often include a nonrandom collection of species for which the full phylogenetic tree has only been partly resolved. Using missing data theory, we show how the presented models can be used to correct for nonrandom sampling and show how taxonomies and phylogenies can be combined to give a flexible framework with which to model dependence.

  13. Genetic evaluation of weekly body weight in Japanese quail using random regression models.

    PubMed

    Karami, K; Zerehdaran, S; Tahmoorespur, M; Barzanooni, B; Lotfi, E

    2017-02-01

    1. A total of 11 826 records from 2489 quails, hatched between 2012 and 2013, were used to estimate genetic parameters for BW (body weight) of Japanese quail using random regression models. Weekly BW was measured from hatch until 49 d of age. WOMBAT software (University of New England, Australia) was used for estimating genetic and phenotypic parameters. 2. Nineteen models were evaluated to identify the best orders of Legendre polynomials. A model with Legendre polynomial of order 3 for additive genetic effect, order 3 for permanent environmental effects and order 1 for maternal permanent environmental effects was chosen as the best model. 3. According to the best model, phenotypic and genetic variances were higher at the end of the rearing period. Although direct heritability for BW reduced from 0.18 at hatch to 0.12 at 7 d of age, it gradually increased to 0.42 at 49 d of age. It indicates that BW at older ages is more controlled by genetic components in Japanese quail. 4. Phenotypic and genetic correlations between adjacent periods except hatching weight were more closely correlated than remote periods. The present results suggested that BW at earlier ages, especially at hatch, are different traits compared to BW at older ages. Therefore, BW at earlier ages could not be used as a selection criterion for improving BW at slaughter age.

  14. A Tri-Part Model for Genetics Literacy: Exploring Undergraduate Student Reasoning about Authentic Genetics Dilemmas

    ERIC Educational Resources Information Center

    Shea, Nicole A.; Duncan, Ravit Golan; Stephenson, Celeste

    2015-01-01

    Genetics literacy is becoming increasingly important as advancements in our application of genetic technologies such as stem cell research, cloning, and genetic screening become more prevalent. Very few studies examine how genetics literacy is applied when reasoning about authentic genetic dilemmas. However, there is evidence that situational…

  15. Genetics and child psychiatry: I Advances in quantitative and molecular genetics.

    PubMed

    Rutter, M; Silberg, J; O'Connor, T; Simonoff, E

    1999-01-01

    Advances in quantitative psychiatric genetics as a whole are reviewed with respect to conceptual and methodological issues in relation to statistical model fitting, new genetic designs, twin and adoptee studies, definition of the phenotype, pervasiveness of genetic influences, pervasiveness of environmental influences, shared and nonshared environmental effects, and nature-nurture interplay. Advances in molecular genetics are discussed in relation to the shifts in research strategies to investigate multifactorial disorders (affected relative linkage designs, association strategies, and quantitative trait loci studies); new techniques and identified genetic mechanisms (expansion of trinucleotide repeats, genomic imprinting, mitochondrial DNA, fluorescent in-situ hybridisation, behavioural phenotypes, and animal models); and the successful localisation of genes.

  16. Simulating natural selection in landscape genetics

    Treesearch

    E. L. Landguth; S. A. Cushman; N. Johnson

    2012-01-01

    Linking landscape effects to key evolutionary processes through individual organism movement and natural selection is essential to provide a foundation for evolutionary landscape genetics. Of particular importance is determining how spatially- explicit, individual-based models differ from classic population genetics and evolutionary ecology models based on ideal...

  17. A genome-wide survey of transgenerational genetic effects in autism.

    PubMed

    Tsang, Kathryn M; Croen, Lisa A; Torres, Anthony R; Kharrazi, Martin; Delorenze, Gerald N; Windham, Gayle C; Yoshida, Cathleen K; Zerbo, Ousseny; Weiss, Lauren A

    2013-01-01

    Effects of parental genotype or parent-offspring genetic interaction are well established in model organisms for a variety of traits. However, these transgenerational genetic models are rarely studied in humans. We have utilized an autism case-control study with 735 mother-child pairs to perform genome-wide screening for maternal genetic effects and maternal-offspring genetic interaction. We used simple models of single locus parent-child interaction and identified suggestive results (P<10(-4)) that cannot be explained by main effects, but no genome-wide significant signals. Some of these maternal and maternal-child associations were in or adjacent to autism candidate genes including: PCDH9, FOXP1, GABRB3, NRXN1, RELN, MACROD2, FHIT, RORA, CNTN4, CNTNAP2, FAM135B, LAMA1, NFIA, NLGN4X, RAPGEF4, and SDK1. We attempted validation of potential autism association under maternal-specific models using maternal-paternal comparison in family-based GWAS datasets. Our results suggest that further study of parental genetic effects and parent-child interaction in autism is warranted.

  18. Indirect Genetic Effects and the Spread of Infectious Disease: Are We Capturing the Full Heritable Variation Underlying Disease Prevalence?

    PubMed Central

    Lipschutz-Powell, Debby; Woolliams, John A.; Bijma, Piter; Doeschl-Wilson, Andrea B.

    2012-01-01

    Reducing disease prevalence through selection for host resistance offers a desirable alternative to chemical treatment. Selection for host resistance has proven difficult, however, due to low heritability estimates. These low estimates may be caused by a failure to capture all the relevant genetic variance in disease resistance, as genetic analysis currently is not taylored to estimate genetic variation in infectivity. Host infectivity is the propensity of transmitting infection upon contact with a susceptible individual, and can be regarded as an indirect effect to disease status. It may be caused by a combination of physiological and behavioural traits. Though genetic variation in infectivity is difficult to measure directly, Indirect Genetic Effect (IGE) models, also referred to as associative effects or social interaction models, allow the estimation of this variance from more readily available binary disease data (infected/non-infected). We therefore generated binary disease data from simulated populations with known amounts of variation in susceptibility and infectivity to test the adequacy of traditional and IGE models. Our results show that a conventional model fails to capture the genetic variation in infectivity inherent in populations with simulated infectivity. An IGE model, on the other hand, does capture some of the variation in infectivity. Comparison with expected genetic variance suggests that there is scope for further methodological improvement, and that potential responses to selection may be greater than values presented here. Nonetheless, selection using an index of estimated direct and indirect breeding values was shown to have a greater genetic selection differential and reduced future disease risk than traditional selection for resistance only. These findings suggest that if genetic variation in infectivity substantially contributes to disease transmission, then breeding designs which explicitly incorporate IGEs might help reduce disease prevalence. PMID:22768088

  19. Ontology driven modeling for the knowledge of genetic susceptibility to disease.

    PubMed

    Lin, Yu; Sakamoto, Norihiro

    2009-05-12

    For the machine helped exploring the relationships between genetic factors and complex diseases, a well-structured conceptual framework of the background knowledge is needed. However, because of the complexity of determining a genetic susceptibility factor, there is no formalization for the knowledge of genetic susceptibility to disease, which makes the interoperability between systems impossible. Thus, the ontology modeling language OWL was used for formalization in this paper. After introducing the Semantic Web and OWL language propagated by W3C, we applied text mining technology combined with competency questions to specify the classes of the ontology. Then, an N-ary pattern was adopted to describe the relationships among these defined classes. Based on the former work of OGSF-DM (Ontology of Genetic Susceptibility Factors to Diabetes Mellitus), we formalized the definition of "Genetic Susceptibility", "Genetic Susceptibility Factor" and other classes by using OWL-DL modeling language; and a reasoner automatically performed the classification of the class "Genetic Susceptibility Factor". The ontology driven modeling is used for formalization the knowledge of genetic susceptibility to complex diseases. More importantly, when a class has been completely formalized in an ontology, the OWL reasoning can automatically compute the classification of the class, in our case, the class of "Genetic Susceptibility Factors". With more types of genetic susceptibility factors obtained from the laboratory research, our ontologies always needs to be refined, and many new classes must be taken into account to harmonize with the ontologies. Using the ontologies to develop the semantic web needs to be applied in the future.

  20. Broad Bandwidth or High Fidelity? Evidence from the Structure of Genetic and Environmental Effects on the Facets of the Five Factor Model

    PubMed Central

    Briley, Daniel A.; Tucker-Drob, Elliot M.

    2017-01-01

    The Five Factor Model (FFM) of personality is well-established at the phenotypic level, but much less is known about the coherence of the genetic and environmental influences within each personality domain. Univariate behavioral genetic analyses have consistently found the influence of additive genes and nonshared environment on multiple personality facets, but the extent to which genetic and environmental influences on specific facets reflect more general influences on higher order factors is less clear. We applied a multivariate quantitative-genetic approach to scores on the CPI-Big Five facets for 490 monozygotic and 317 dizygotic twins who took part in the National Merit Twin Study. Our results revealed a complex genetic structure for facets composing all five factors, with both domain-general and facet-specific genetic and environmental influences. Models that required common genetic and environmental influences on each facet to occur by way of effects on a higher order trait did not fit as well as models allowing for common genetic and environmental effects to act directly on the facets for three of the Big Five domains. These results add to the growing body of literature indicating that important variation in personality occurs at the facet level which may be overshadowed by aggregating to the trait level. Research at the facet level, rather than the factor level, is likely to have pragmatic advantages in future research on the genetics of personality. PMID:22695681

  1. Inferring Causalities in Landscape Genetics: An Extension of Wright's Causal Modeling to Distance Matrices.

    PubMed

    Fourtune, Lisa; Prunier, Jérôme G; Paz-Vinas, Ivan; Loot, Géraldine; Veyssière, Charlotte; Blanchet, Simon

    2018-04-01

    Identifying landscape features that affect functional connectivity among populations is a major challenge in fundamental and applied sciences. Landscape genetics combines landscape and genetic data to address this issue, with the main objective of disentangling direct and indirect relationships among an intricate set of variables. Causal modeling has strong potential to address the complex nature of landscape genetic data sets. However, this statistical approach was not initially developed to address the pairwise distance matrices commonly used in landscape genetics. Here, we aimed to extend the applicability of two causal modeling methods-that is, maximum-likelihood path analysis and the directional separation test-by developing statistical approaches aimed at handling distance matrices and improving functional connectivity inference. Using simulations, we showed that these approaches greatly improved the robustness of the absolute (using a frequentist approach) and relative (using an information-theoretic approach) fits of the tested models. We used an empirical data set combining genetic information on a freshwater fish species (Gobio occitaniae) and detailed landscape descriptors to demonstrate the usefulness of causal modeling to identify functional connectivity in wild populations. Specifically, we demonstrated how direct and indirect relationships involving altitude, temperature, and oxygen concentration influenced within- and between-population genetic diversity of G. occitaniae.

  2. Genetic parameter estimation for pre- and post-weaning traits in Brahman cattle in Brazil.

    PubMed

    Vargas, Giovana; Buzanskas, Marcos Eli; Guidolin, Diego Gomes Freire; Grossi, Daniela do Amaral; Bonifácio, Alexandre da Silva; Lôbo, Raysildo Barbosa; da Fonseca, Ricardo; Oliveira, João Ademir de; Munari, Danísio Prado

    2014-10-01

    Beef cattle producers in Brazil use body weight traits as breeding program selection criteria due to their great economic importance. The objectives of this study were to evaluate different animal models, estimate genetic parameters, and define the most fitting model for Brahman cattle body weight standardized at 120 (BW120), 210 (BW210), 365 (BW365), 450 (BW450), and 550 (BW550) days of age. To estimate genetic parameters, single-, two-, and multi-trait analyses were performed using the animal model. The likelihood ratio test was verified between all models. For BW120 and BW210, additive direct genetic, maternal genetic, maternal permanent environment, and residual effects were considered, while for BW365 and BW450, additive direct genetic, maternal genetic, and residual effects were considered. Finally, for BW550, additive direct genetic and residual effects were considered. Estimates of direct heritability for BW120 were similar in all analyses; however, for the other traits, multi-trait analysis resulted in higher estimates. The maternal heritability and proportion of maternal permanent environmental variance to total variance were minimal in multi-trait analyses. Genetic, environmental, and phenotypic correlations were of high magnitude between all traits. Multi-trait analyses would aid in the parameter estimation for body weight at older ages because they are usually affected by a lower number of animals with phenotypic information due to culling and mortality.

  3. Population genetics of Setaria viridis, a new model system.

    PubMed

    Huang, Pu; Feldman, Maximilian; Schroder, Stephan; Bahri, Bochra A; Diao, Xianmin; Zhi, Hui; Estep, Matt; Baxter, Ivan; Devos, Katrien M; Kellogg, Elizabeth A

    2014-10-01

    An extensive survey of the standing genetic variation in natural populations is among the priority steps in developing a species into a model system. In recent years, green foxtail (Setaria viridis), along with its domesticated form foxtail millet (S. italica), has rapidly become a promising new model system for C4 grasses and bioenergy crops, due to its rapid life cycle, large amount of seed production and small diploid genome, among other characters. However, remarkably little is known about the genetic diversity in natural populations of this species. In this study, we survey the genetic diversity of a worldwide sample of more than 200 S. viridis accessions, using the genotyping-by-sequencing technique. Two distinct genetic groups in S. viridis and a third group resembling S. italica were identified, with considerable admixture among the three groups. We find the genetic variation of North American S. viridis correlates with both geography and climate and is representative of the total genetic diversity in this species. This pattern may reflect several introduction/dispersal events of S. viridis into North America. We also modelled demographic history and show signal of recent population decline in one subgroup. Finally, we show linkage disequilibrium decay is rapid (<45 kb) in our total sample and slow in genetic subgroups. These results together provide an in-depth understanding of the pattern of genetic diversity of this new model species on a broad geographic scale. They also provide key guidelines for on-going and future work including germplasm preservation, local adaptation, crossing designs and genomewide association studies. © 2014 John Wiley & Sons Ltd.

  4. New Genetics

    MedlinePlus

    ... Century-Old Evolutionary Puzzle Computing Genetics Model Organisms RNA Interference The New Genetics is a science education ... the basics of DNA and its molecular cousin RNA, and new directions in genetic research. The New ...

  5. Identifying future models for delivering genetic services: a nominal group study in primary care

    PubMed Central

    Elwyn, Glyn; Edwards, Adrian; Iredale, Rachel; Davies, Peter; Gray, Jonathon

    2005-01-01

    Background To enable primary care medical practitioners to generate a range of possible service delivery models for genetic counselling services and critically assess their suitability. Methods Modified nominal group technique using in primary care professional development workshops. Results 37 general practitioners in Wales, United Kingdom too part in the nominal group process. The practitioners who attended did not believe current systems were sufficient to meet anticipated demand for genetic services. A wide range of different service models was proposed, although no single option emerged as a clear preference. No argument was put forward for genetic assessment and counselling being central to family practice, neither was there a voice for the view that the family doctor should become skilled at advising patients about predictive genetic testing and be able to counsel patients about the wider implications of genetic testing for patients and their family members, even for areas such as common cancers. Nevertheless, all the preferred models put a high priority on providing the service in the community, and often co-located in primary care, by clinicians who had developed expertise. Conclusion There is a need for a wider debate about how healthcare systems address individual concerns about genetic concerns and risk, especially given the increasing commercial marketing of genetic tests. PMID:15831099

  6. Genetic and linguistic coevolution in Northern Island Melanesia.

    PubMed

    Hunley, Keith; Dunn, Michael; Lindström, Eva; Reesink, Ger; Terrill, Angela; Healy, Meghan E; Koki, George; Friedlaender, Françoise R; Friedlaender, Jonathan S

    2008-10-01

    Recent studies have detailed a remarkable degree of genetic and linguistic diversity in Northern Island Melanesia. Here we utilize that diversity to examine two models of genetic and linguistic coevolution. The first model predicts that genetic and linguistic correspondences formed following population splits and isolation at the time of early range expansions into the region. The second is analogous to the genetic model of isolation by distance, and it predicts that genetic and linguistic correspondences formed through continuing genetic and linguistic exchange between neighboring populations. We tested the predictions of the two models by comparing observed and simulated patterns of genetic variation, genetic and linguistic trees, and matrices of genetic, linguistic, and geographic distances. The data consist of 751 autosomal microsatellites and 108 structural linguistic features collected from 33 Northern Island Melanesian populations. The results of the tests indicate that linguistic and genetic exchange have erased any evidence of a splitting and isolation process that might have occurred early in the settlement history of the region. The correlation patterns are also inconsistent with the predictions of the isolation by distance coevolutionary process in the larger Northern Island Melanesian region, but there is strong evidence for the process in the rugged interior of the largest island in the region (New Britain). There we found some of the strongest recorded correlations between genetic, linguistic, and geographic distances. We also found that, throughout the region, linguistic features have generally been less likely to diffuse across population boundaries than genes. The results from our study, based on exceptionally fine-grained data, show that local genetic and linguistic exchange are likely to obscure evidence of the early history of a region, and that language barriers do not particularly hinder genetic exchange. In contrast, global patterns may emphasize more ancient demographic events, including population splits associated with the early colonization of major world regions.

  7. Genetic and Linguistic Coevolution in Northern Island Melanesia

    PubMed Central

    Hunley, Keith; Dunn, Michael; Lindström, Eva; Reesink, Ger; Terrill, Angela; Healy, Meghan E.; Koki, George; Friedlaender, Françoise R.; Friedlaender, Jonathan S.

    2008-01-01

    Recent studies have detailed a remarkable degree of genetic and linguistic diversity in Northern Island Melanesia. Here we utilize that diversity to examine two models of genetic and linguistic coevolution. The first model predicts that genetic and linguistic correspondences formed following population splits and isolation at the time of early range expansions into the region. The second is analogous to the genetic model of isolation by distance, and it predicts that genetic and linguistic correspondences formed through continuing genetic and linguistic exchange between neighboring populations. We tested the predictions of the two models by comparing observed and simulated patterns of genetic variation, genetic and linguistic trees, and matrices of genetic, linguistic, and geographic distances. The data consist of 751 autosomal microsatellites and 108 structural linguistic features collected from 33 Northern Island Melanesian populations. The results of the tests indicate that linguistic and genetic exchange have erased any evidence of a splitting and isolation process that might have occurred early in the settlement history of the region. The correlation patterns are also inconsistent with the predictions of the isolation by distance coevolutionary process in the larger Northern Island Melanesian region, but there is strong evidence for the process in the rugged interior of the largest island in the region (New Britain). There we found some of the strongest recorded correlations between genetic, linguistic, and geographic distances. We also found that, throughout the region, linguistic features have generally been less likely to diffuse across population boundaries than genes. The results from our study, based on exceptionally fine-grained data, show that local genetic and linguistic exchange are likely to obscure evidence of the early history of a region, and that language barriers do not particularly hinder genetic exchange. In contrast, global patterns may emphasize more ancient demographic events, including population splits associated with the early colonization of major world regions. PMID:18974871

  8. Progress and Prospects for Genetic Modification of Nonhuman Primate Models in Biomedical Research

    PubMed Central

    Chan, Anthony W. S.

    2013-01-01

    The growing interest of modeling human diseases using genetically modified (transgenic) nonhuman primates (NHPs) is a direct result of NHPs (rhesus macaque, etc.) close relation to humans. NHPs share similar developmental paths with humans in their anatomy, physiology, genetics, and neural functions; and in their cognition, emotion, and social behavior. The NHP model within biomedical research has played an important role in the development of vaccines, assisted reproductive technologies, and new therapies for many diseases. Biomedical research has not been the primary role of NHPs. They have mainly been used for safety evaluation and pharmacokinetics studies, rather than determining therapeutic efficacy. The development of the first transgenic rhesus macaque (2001) revolutionized the role of NHP models in biomedicine. Development of the transgenic NHP model of Huntington's disease (2008), with distinctive clinical features, further suggested the uniqueness of the model system; and the potential role of the NHP model for human genetic disorders. Modeling human genetic diseases using NHPs will continue to thrive because of the latest advances in molecular, genetic, and embryo technologies. NHPs rising role in biomedical research, specifically pre-clinical studies, is foreseeable. The path toward the development of transgenic NHPs and the prospect of transgenic NHPs in their new role in future biomedicine needs to be reviewed. This article will focus on the advancement of transgenic NHPs in the past decade, including transgenic technologies and disease modeling. It will outline new technologies that may have significant impact in future NHP modeling and will conclude with a discussion of the future prospects of the transgenic NHP model. PMID:24174443

  9. Considering dominance in reduced single-step genomic evaluations.

    PubMed

    Ertl, J; Edel, C; Pimentel, E C G; Emmerling, R; Götz, K-U

    2018-06-01

    Single-step models including dominance can be an enormous computational task and can even be prohibitive for practical application. In this study, we try to answer the question whether a reduced single-step model is able to estimate breeding values of bulls and breeding values, dominance deviations and total genetic values of cows with acceptable quality. Genetic values and phenotypes were simulated (500 repetitions) for a small Fleckvieh pedigree consisting of 371 bulls (180 thereof genotyped) and 553 cows (40 thereof genotyped). This pedigree was virtually extended for 2,407 non-genotyped daughters. Genetic values were estimated with the single-step model and with different reduced single-step models. Including more relatives of genotyped cows in the reduced single-step model resulted in a better agreement of results with the single-step model. Accuracies of genetic values were largest with single-step and smallest with reduced single-step when only the cows genotyped were modelled. The results indicate that a reduced single-step model is suitable to estimate breeding values of bulls and breeding values, dominance deviations and total genetic values of cows with acceptable quality. © 2018 Blackwell Verlag GmbH.

  10. [An ADAA model and its analysis method for agronomic traits based on the double-cross mating design].

    PubMed

    Xu, Z C; Zhu, J

    2000-01-01

    According to the double-cross mating design and using principles of Cockerham's general genetic model, a genetic model with additive, dominance and epistatic effects (ADAA model) was proposed for the analysis of agronomic traits. Components of genetic effects were derived for different generations. Monte Carlo simulation was conducted for analyzing the ADAA model and its reduced AD model by using different generations. It was indicated that genetic variance components could be estimated without bias by MINQUE(1) method and genetic effects could be predicted effectively by AUP method; at least three generations (including parent, F1 of single cross and F1 of double-cross) were necessary for analyzing the ADAA model and only two generations (including parent and F1 of double-cross) were enough for the reduced AD model. When epistatic effects were taken into account, a new approach for predicting the heterosis of agronomic traits of double-crosses was given on the basis of unbiased prediction of genotypic merits of parents and their crosses. In addition, genotype x environment interaction effects and interaction heterosis due to G x E interaction were discussed briefly.

  11. Computer Center: BASIC String Models of Genetic Information Transfer.

    ERIC Educational Resources Information Center

    Spain, James D., Ed.

    1984-01-01

    Discusses some of the major genetic information processes which may be modeled by computer program string manipulation, focusing on replication and transcription. Also discusses instructional applications of using string models. (JN)

  12. Genetic heterogeneity in autism: From single gene to a pathway perspective.

    PubMed

    An, Joon Yong; Claudianos, Charles

    2016-09-01

    The extreme genetic heterogeneity of autism spectrum disorder (ASD) represents a major challenge. Recent advances in genetic screening and systems biology approaches have extended our knowledge of the genetic etiology of ASD. In this review, we discuss the paradigm shift from a single gene causation model to pathway perturbation model as a guide to better understand the pathophysiology of ASD. We discuss recent genetic findings obtained through next-generation sequencing (NGS) and examine various integrative analyses using systems biology and complex networks approaches that identify convergent patterns of genetic elements associated with ASD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Direct and indirect genetic and fine-scale location effects on breeding date in song sparrows.

    PubMed

    Germain, Ryan R; Wolak, Matthew E; Arcese, Peter; Losdat, Sylvain; Reid, Jane M

    2016-11-01

    Quantifying direct and indirect genetic effects of interacting females and males on variation in jointly expressed life-history traits is central to predicting microevolutionary dynamics. However, accurately estimating sex-specific additive genetic variances in such traits remains difficult in wild populations, especially if related individuals inhabit similar fine-scale environments. Breeding date is a key life-history trait that responds to environmental phenology and mediates individual and population responses to environmental change. However, no studies have estimated female (direct) and male (indirect) additive genetic and inbreeding effects on breeding date, and estimated the cross-sex genetic correlation, while simultaneously accounting for fine-scale environmental effects of breeding locations, impeding prediction of microevolutionary dynamics. We fitted animal models to 38 years of song sparrow (Melospiza melodia) phenology and pedigree data to estimate sex-specific additive genetic variances in breeding date, and the cross-sex genetic correlation, thereby estimating the total additive genetic variance while simultaneously estimating sex-specific inbreeding depression. We further fitted three forms of spatial animal model to explicitly estimate variance in breeding date attributable to breeding location, overlap among breeding locations and spatial autocorrelation. We thereby quantified fine-scale location variances in breeding date and quantified the degree to which estimating such variances affected the estimated additive genetic variances. The non-spatial animal model estimated nonzero female and male additive genetic variances in breeding date (sex-specific heritabilities: 0·07 and 0·02, respectively) and a strong, positive cross-sex genetic correlation (0·99), creating substantial total additive genetic variance (0·18). Breeding date varied with female, but not male inbreeding coefficient, revealing direct, but not indirect, inbreeding depression. All three spatial animal models estimated small location variance in breeding date, but because relatedness and breeding location were virtually uncorrelated, modelling location variance did not alter the estimated additive genetic variances. Our results show that sex-specific additive genetic effects on breeding date can be strongly positively correlated, which would affect any predicted rates of microevolutionary change in response to sexually antagonistic or congruent selection. Further, we show that inbreeding effects on breeding date can also be sex specific and that genetic effects can exceed phenotypic variation stemming from fine-scale location-based variation within a wild population. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  14. Methods in Molecular Biology Mouse Genetics: Methods and Protocols | Center for Cancer Research

    Cancer.gov

    Mouse Genetics: Methods and Protocols provides selected mouse genetic techniques and their application in modeling varieties of human diseases. The chapters are mainly focused on the generation of different transgenic mice to accomplish the manipulation of genes of interest, tracing cell lineages, and modeling human diseases.

  15. Genetic Stability of Cognitive Development from Childhood to Adulthood.

    ERIC Educational Resources Information Center

    DeFries, J. C.; And Others

    1987-01-01

    A path model of genetic and family environmental transmission was fitted to published twin correlations and to general cognitive ability data from adoptive and nonadoptive families in which children were tested yearly through the fourth year. Longitudinal genetic correlations from infancy to adulthood were modeled explicitly, as were effects of…

  16. Learning Molecular Genetics in Teacher-Led Outreach Laboratories

    ERIC Educational Resources Information Center

    Ben-Nun, Michal Stolarsky; Yarden, Anat

    2009-01-01

    Learning modern genetics is challenging and students have difficulty acquiring a coherent cognitive mental model of abstract concepts such as DNA, bacteria and enzymes. Here we investigated students' mental models of genetics through analysis and interpretation of the discourse that took place while high-school students practised hands-on…

  17. Effect of genetic architecture on the prediction accuracy of quantitative traits in samples of unrelated individuals.

    PubMed

    Morgante, Fabio; Huang, Wen; Maltecca, Christian; Mackay, Trudy F C

    2018-06-01

    Predicting complex phenotypes from genomic data is a fundamental aim of animal and plant breeding, where we wish to predict genetic merits of selection candidates; and of human genetics, where we wish to predict disease risk. While genomic prediction models work well with populations of related individuals and high linkage disequilibrium (LD) (e.g., livestock), comparable models perform poorly for populations of unrelated individuals and low LD (e.g., humans). We hypothesized that low prediction accuracies in the latter situation may occur when the genetics architecture of the trait departs from the infinitesimal and additive architecture assumed by most prediction models. We used simulated data for 10,000 lines based on sequence data from a population of unrelated, inbred Drosophila melanogaster lines to evaluate this hypothesis. We show that, even in very simplified scenarios meant as a stress test of the commonly used Genomic Best Linear Unbiased Predictor (G-BLUP) method, using all common variants yields low prediction accuracy regardless of the trait genetic architecture. However, prediction accuracy increases when predictions are informed by the genetic architecture inferred from mapping the top variants affecting main effects and interactions in the training data, provided there is sufficient power for mapping. When the true genetic architecture is largely or partially due to epistatic interactions, the additive model may not perform well, while models that account explicitly for interactions generally increase prediction accuracy. Our results indicate that accounting for genetic architecture can improve prediction accuracy for quantitative traits.

  18. Complex Genotype by Environment interactions and changing genetic architectures across thermal environments in the Australian field cricket, Teleogryllus oceanicus

    PubMed Central

    2011-01-01

    Background Biologists studying adaptation under sexual selection have spent considerable effort assessing the relative importance of two groups of models, which hinge on the idea that females gain indirect benefits via mate discrimination. These are the good genes and genetic compatibility models. Quantitative genetic studies have advanced our understanding of these models by enabling assessment of whether the genetic architectures underlying focal phenotypes are congruent with either model. In this context, good genes models require underlying additive genetic variance, while compatibility models require non-additive variance. Currently, we know very little about how the expression of genotypes comprised of distinct parental haplotypes, or how levels and types of genetic variance underlying key phenotypes, change across environments. Such knowledge is important, however, because genotype-environment interactions can have major implications on the potential for evolutionary responses to selection. Results We used a full diallel breeding design to screen for complex genotype-environment interactions, and genetic architectures underlying key morphological traits, across two thermal environments (the lab standard 27°C, and the cooler 23°C) in the Australian field cricket, Teleogryllus oceanicus. In males, complex three-way interactions between sire and dam parental haplotypes and the rearing environment accounted for up to 23 per cent of the scaled phenotypic variance in the traits we measured (body mass, pronotum width and testes mass), and each trait harboured significant additive genetic variance in the standard temperature (27°C) only. In females, these three-way interactions were less important, with interactions between the paternal haplotype and rearing environment accounting for about ten per cent of the phenotypic variance (in body mass, pronotum width and ovary mass). Of the female traits measured, only ovary mass for crickets reared at the cooler temperature (23°C), exhibited significant levels of additive genetic variance. Conclusions Our results show that the genetics underlying phenotypic expression can be complex, context-dependent and different in each of the sexes. We discuss the implications of these results, particularly in terms of the evolutionary processes that hinge on good and compatible genes models. PMID:21791118

  19. A New Look at Genetic and Environmental Architecture on Lipids Using Non-Normal Structural Equation Modeling in Male Twins: The NHLBI Twin Study.

    PubMed

    Wu, Sheng-Hui; Ozaki, Koken; Reed, Terry; Krasnow, Ruth E; Dai, Jun

    2017-07-01

    This study examined genetic and environmental influences on the lipid concentrations of 1028 male twins using the novel univariate non-normal structural equation modeling (nnSEM) ADCE and ACE models. In the best fitting nnSEM ADCE model that was also better than the nnSEM ACE model, additive genetic factors (A) explained 4%, dominant genetic factors (D) explained 17%, and common (C) and unique (E) environmental factors explained 47% and 33% of the total variance of high-density lipoprotein cholesterol (HDL-C). The percentage of variation explained for other lipids was 0% (A), 30% (D), 34% (C) and 37% (E) for low-density lipoprotein cholesterol (LDL-C); 30, 0, 31 and 39% for total cholesterol; and 0, 31, 12 and 57% for triglycerides. It was concluded that additive and dominant genetic factors simultaneously affected HDL-C concentrations but not other lipids. Common and unique environmental factors influenced concentrations of all lipids.

  20. Evaluating alternate models to estimate genetic parameters of calving traits in United Kingdom Holstein-Friesian dairy cattle.

    PubMed

    Eaglen, Sophie A E; Coffey, Mike P; Woolliams, John A; Wall, Eileen

    2012-07-28

    The focus in dairy cattle breeding is gradually shifting from production to functional traits and genetic parameters of calving traits are estimated more frequently. However, across countries, various statistical models are used to estimate these parameters. This study evaluates different models for calving ease and stillbirth in United Kingdom Holstein-Friesian cattle. Data from first and later parity records were used. Genetic parameters for calving ease, stillbirth and gestation length were estimated using the restricted maximum likelihood method, considering different models i.e. sire (-maternal grandsire), animal, univariate and bivariate models. Gestation length was fitted as a correlated indicator trait and, for all three traits, genetic correlations between first and later parities were estimated. Potential bias in estimates was avoided by acknowledging a possible environmental direct-maternal covariance. The total heritable variance was estimated for each trait to discuss its theoretical importance and practical value. Prediction error variances and accuracies were calculated to compare the models. On average, direct and maternal heritabilities for calving traits were low, except for direct gestation length. Calving ease in first parity had a significant and negative direct-maternal genetic correlation. Gestation length was maternally correlated to stillbirth in first parity and directly correlated to calving ease in later parities. Multi-trait models had a slightly greater predictive ability than univariate models, especially for the lowly heritable traits. The computation time needed for sire (-maternal grandsire) models was much smaller than for animal models with only small differences in accuracy. The sire (-maternal grandsire) model was robust when additional genetic components were estimated, while the equivalent animal model had difficulties reaching convergence. For the evaluation of calving traits, multi-trait models show a slight advantage over univariate models. Extended sire models (-maternal grandsire) are more practical and robust than animal models. Estimated genetic parameters for calving traits of UK Holstein cattle are consistent with literature. Calculating an aggregate estimated breeding value including direct and maternal values should encourage breeders to consider both direct and maternal effects in selection decisions.

  1. Evaluating alternate models to estimate genetic parameters of calving traits in United Kingdom Holstein-Friesian dairy cattle

    PubMed Central

    2012-01-01

    Background The focus in dairy cattle breeding is gradually shifting from production to functional traits and genetic parameters of calving traits are estimated more frequently. However, across countries, various statistical models are used to estimate these parameters. This study evaluates different models for calving ease and stillbirth in United Kingdom Holstein-Friesian cattle. Methods Data from first and later parity records were used. Genetic parameters for calving ease, stillbirth and gestation length were estimated using the restricted maximum likelihood method, considering different models i.e. sire (−maternal grandsire), animal, univariate and bivariate models. Gestation length was fitted as a correlated indicator trait and, for all three traits, genetic correlations between first and later parities were estimated. Potential bias in estimates was avoided by acknowledging a possible environmental direct-maternal covariance. The total heritable variance was estimated for each trait to discuss its theoretical importance and practical value. Prediction error variances and accuracies were calculated to compare the models. Results and discussion On average, direct and maternal heritabilities for calving traits were low, except for direct gestation length. Calving ease in first parity had a significant and negative direct-maternal genetic correlation. Gestation length was maternally correlated to stillbirth in first parity and directly correlated to calving ease in later parities. Multi-trait models had a slightly greater predictive ability than univariate models, especially for the lowly heritable traits. The computation time needed for sire (−maternal grandsire) models was much smaller than for animal models with only small differences in accuracy. The sire (−maternal grandsire) model was robust when additional genetic components were estimated, while the equivalent animal model had difficulties reaching convergence. Conclusions For the evaluation of calving traits, multi-trait models show a slight advantage over univariate models. Extended sire models (−maternal grandsire) are more practical and robust than animal models. Estimated genetic parameters for calving traits of UK Holstein cattle are consistent with literature. Calculating an aggregate estimated breeding value including direct and maternal values should encourage breeders to consider both direct and maternal effects in selection decisions. PMID:22839757

  2. Portfolio optimization by using linear programing models based on genetic algorithm

    NASA Astrophysics Data System (ADS)

    Sukono; Hidayat, Y.; Lesmana, E.; Putra, A. S.; Napitupulu, H.; Supian, S.

    2018-01-01

    In this paper, we discussed the investment portfolio optimization using linear programming model based on genetic algorithms. It is assumed that the portfolio risk is measured by absolute standard deviation, and each investor has a risk tolerance on the investment portfolio. To complete the investment portfolio optimization problem, the issue is arranged into a linear programming model. Furthermore, determination of the optimum solution for linear programming is done by using a genetic algorithm. As a numerical illustration, we analyze some of the stocks traded on the capital market in Indonesia. Based on the analysis, it is shown that the portfolio optimization performed by genetic algorithm approach produces more optimal efficient portfolio, compared to the portfolio optimization performed by a linear programming algorithm approach. Therefore, genetic algorithms can be considered as an alternative on determining the investment portfolio optimization, particularly using linear programming models.

  3. Genetic Algorithm Calibration of Probabilistic Cellular Automata for Modeling Mining Permit Activity

    USGS Publications Warehouse

    Louis, S.J.; Raines, G.L.

    2003-01-01

    We use a genetic algorithm to calibrate a spatially and temporally resolved cellular automata to model mining activity on public land in Idaho and western Montana. The genetic algorithm searches through a space of transition rule parameters of a two dimensional cellular automata model to find rule parameters that fit observed mining activity data. Previous work by one of the authors in calibrating the cellular automaton took weeks - the genetic algorithm takes a day and produces rules leading to about the same (or better) fit to observed data. These preliminary results indicate that genetic algorithms are a viable tool in calibrating cellular automata for this application. Experience gained during the calibration of this cellular automata suggests that mineral resource information is a critical factor in the quality of the results. With automated calibration, further refinements of how the mineral-resource information is provided to the cellular automaton will probably improve our model.

  4. Genetically engineered mouse models for studying inflammatory bowel disease.

    PubMed

    Mizoguchi, Atsushi; Takeuchi, Takahito; Himuro, Hidetomo; Okada, Toshiyuki; Mizoguchi, Emiko

    2016-01-01

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that is mediated by very complex mechanisms controlled by genetic, immune, and environmental factors. More than 74 kinds of genetically engineered mouse strains have been established since 1993 for studying IBD. Although mouse models cannot fully reflect human IBD, they have provided significant contributions for not only understanding the mechanism, but also developing new therapeutic means for IBD. Indeed, 20 kinds of genetically engineered mouse models carry the susceptibility genes identified in human IBD, and the functions of some other IBD susceptibility genes have also been dissected out using mouse models. Cutting-edge technologies such as cell-specific and inducible knockout systems, which were recently employed to mouse IBD models, have further enhanced the ability of investigators to provide important and unexpected rationales for developing new therapeutic strategies for IBD. In this review article, we briefly introduce 74 kinds of genetically engineered mouse models that spontaneously develop intestinal inflammation. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  5. Quantitative genetic methods depending on the nature of the phenotypic trait.

    PubMed

    de Villemereuil, Pierre

    2018-01-24

    A consequence of the assumptions of the infinitesimal model, one of the most important theoretical foundations of quantitative genetics, is that phenotypic traits are predicted to be most often normally distributed (so-called Gaussian traits). But phenotypic traits, especially those interesting for evolutionary biology, might be shaped according to very diverse distributions. Here, I show how quantitative genetics tools have been extended to account for a wider diversity of phenotypic traits using first the threshold model and then more recently using generalized linear mixed models. I explore the assumptions behind these models and how they can be used to study the genetics of non-Gaussian complex traits. I also comment on three recent methodological advances in quantitative genetics that widen our ability to study new kinds of traits: the use of "modular" hierarchical modeling (e.g., to study survival in the context of capture-recapture approaches for wild populations); the use of aster models to study a set of traits with conditional relationships (e.g., life-history traits); and, finally, the study of high-dimensional traits, such as gene expression. © 2018 New York Academy of Sciences.

  6. Landscape genetics of a pollinator longhorn beetle [Typocerus v. velutinus (Olivier)] on a continuous habitat surface.

    PubMed

    Abdel Moniem, H E M; Schemerhorn, B J; DeWoody, J A; Holland, J D

    2016-10-01

    Landscape connectivity, the degree to which the landscape structure facilitates or impedes organismal movement and gene flow, is increasingly important to conservationists and land managers. Metrics for describing the undulating shape of continuous habitat surfaces can expand the usefulness of continuous gradient surfaces that describe habitat and predict the flow of organisms and genes. We adopted a landscape gradient model of habitat and used surface metrics of connectivity to model the genetic continuity between populations of the banded longhorn beetle [Typocerus v. velutinus (Olivier)] collected at 17 sites across a fragmentation gradient in Indiana, USA. We tested the hypothesis that greater habitat connectivity facilitates gene flow between beetle populations against a null model of isolation by distance (IBD). We used next-generation sequencing to develop 10 polymorphic microsatellite loci and genotype the individual beetles to assess the population genetic structure. Isolation by distance did not explain the population genetic structure. The surface metrics model of habitat connectivity explained the variance in genetic dissimilarities 30 times better than the IBD model. We conclude that surface metrology of habitat maps is a powerful extension of landscape genetics in heterogeneous landscapes. © 2016 John Wiley & Sons Ltd.

  7. Genetic variance of tolerance and the toxicant threshold model.

    PubMed

    Tanaka, Yoshinari; Mano, Hiroyuki; Tatsuta, Haruki

    2012-04-01

    A statistical genetics method is presented for estimating the genetic variance (heritability) of tolerance to pollutants on the basis of a standard acute toxicity test conducted on several isofemale lines of cladoceran species. To analyze the genetic variance of tolerance in the case when the response is measured as a few discrete states (quantal endpoints), the authors attempted to apply the threshold character model in quantitative genetics to the threshold model separately developed in ecotoxicology. The integrated threshold model (toxicant threshold model) assumes that the response of a particular individual occurs at a threshold toxicant concentration and that the individual tolerance characterized by the individual's threshold value is determined by genetic and environmental factors. As a case study, the heritability of tolerance to p-nonylphenol in the cladoceran species Daphnia galeata was estimated by using the maximum likelihood method and nested analysis of variance (ANOVA). Broad-sense heritability was estimated to be 0.199 ± 0.112 by the maximum likelihood method and 0.184 ± 0.089 by ANOVA; both results implied that the species examined had the potential to acquire tolerance to this substance by evolutionary change. Copyright © 2012 SETAC.

  8. Genetic and environmental influences on the relationships between family connectedness, school connectedness, and adolescent depressed mood: sex differences.

    PubMed

    Jacobson, K C; Rowe, D C

    1999-07-01

    This study investigated (a) genetic and environmental contributions to the relationship between family and school environment and depressed mood and (b) potential sex differences in genetic and environmental contributions to both variation in and covariation between family connectedness, school connectedness, and adolescent depressed mood. Data are from 2,302 adolescent sibling pairs (mean age = 16 years) who were part of the National Longitudinal Study of Adolescent Health. Although genetic factors appeared to be important overall, model-fitting analyses revealed that the best-fitting model was a model that allowed for different parameters for male and female adolescents. Genetic contributions to variation in all 3 variables were greater among female adolescents than male adolescents, especially for depressed mood. Genetic factors also contributed to the correlations between family and school environment and adolescent depressed mood, although, again, these factors were stronger for female than for male adolescents.

  9. The quantitative genetics of maximal and basal rates of oxygen consumption in mice.

    PubMed Central

    Dohm, M R; Hayes, J P; Garland, T

    2001-01-01

    A positive genetic correlation between basal metabolic rate (BMR) and maximal (VO(2)max) rate of oxygen consumption is a key assumption of the aerobic capacity model for the evolution of endothermy. We estimated the genetic (V(A), additive, and V(D), dominance), prenatal (V(N)), and postnatal common environmental (V(C)) contributions to individual differences in metabolic rates and body mass for a genetically heterogeneous laboratory strain of house mice (Mus domesticus). Our breeding design did not allow the simultaneous estimation of V(D) and V(N). Regardless of whether V(D) or V(N) was assumed, estimates of V(A) were negative under the full models. Hence, we fitted reduced models (e.g., V(A) + V(N) + V(E) or V(A) + V(E)) and obtained new variance estimates. For reduced models, narrow-sense heritability (h(2)(N)) for BMR was <0.1, but estimates of h(2)(N) for VO(2)max were higher. When estimated with the V(A) + V(E) model, the additive genetic covariance between VO(2)max and BMR was positive and statistically different from zero. This result offers tentative support for the aerobic capacity model for the evolution of vertebrate energetics. However, constraints imposed on the genetic model may cause our estimates of additive variance and covariance to be biased, so our results should be interpreted with caution and tested via selection experiments. PMID:11560903

  10. Estimation of genetic parameters for milk yield in Murrah buffaloes by Bayesian inference.

    PubMed

    Breda, F C; Albuquerque, L G; Euclydes, R F; Bignardi, A B; Baldi, F; Torres, R A; Barbosa, L; Tonhati, H

    2010-02-01

    Random regression models were used to estimate genetic parameters for test-day milk yield in Murrah buffaloes using Bayesian inference. Data comprised 17,935 test-day milk records from 1,433 buffaloes. Twelve models were tested using different combinations of third-, fourth-, fifth-, sixth-, and seventh-order orthogonal polynomials of weeks of lactation for additive genetic and permanent environmental effects. All models included the fixed effects of contemporary group, number of daily milkings and age of cow at calving as covariate (linear and quadratic effect). In addition, residual variances were considered to be heterogeneous with 6 classes of variance. Models were selected based on the residual mean square error, weighted average of residual variance estimates, and estimates of variance components, heritabilities, correlations, eigenvalues, and eigenfunctions. Results indicated that changes in the order of fit for additive genetic and permanent environmental random effects influenced the estimation of genetic parameters. Heritability estimates ranged from 0.19 to 0.31. Genetic correlation estimates were close to unity between adjacent test-day records, but decreased gradually as the interval between test-days increased. Results from mean squared error and weighted averages of residual variance estimates suggested that a model considering sixth- and seventh-order Legendre polynomials for additive and permanent environmental effects, respectively, and 6 classes for residual variances, provided the best fit. Nevertheless, this model presented the largest degree of complexity. A more parsimonious model, with fourth- and sixth-order polynomials, respectively, for these same effects, yielded very similar genetic parameter estimates. Therefore, this last model is recommended for routine applications. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Genetic Analysis of Milk Yield in First-Lactation Holstein Friesian in Ethiopia: A Lactation Average vs Random Regression Test-Day Model Analysis

    PubMed Central

    Meseret, S.; Tamir, B.; Gebreyohannes, G.; Lidauer, M.; Negussie, E.

    2015-01-01

    The development of effective genetic evaluations and selection of sires requires accurate estimates of genetic parameters for all economically important traits in the breeding goal. The main objective of this study was to assess the relative performance of the traditional lactation average model (LAM) against the random regression test-day model (RRM) in the estimation of genetic parameters and prediction of breeding values for Holstein Friesian herds in Ethiopia. The data used consisted of 6,500 test-day (TD) records from 800 first-lactation Holstein Friesian cows that calved between 1997 and 2013. Co-variance components were estimated using the average information restricted maximum likelihood method under single trait animal model. The estimate of heritability for first-lactation milk yield was 0.30 from LAM whilst estimates from the RRM model ranged from 0.17 to 0.29 for the different stages of lactation. Genetic correlations between different TDs in first-lactation Holstein Friesian ranged from 0.37 to 0.99. The observed genetic correlation was less than unity between milk yields at different TDs, which indicated that the assumption of LAM may not be optimal for accurate evaluation of the genetic merit of animals. A close look at estimated breeding values from both models showed that RRM had higher standard deviation compared to LAM indicating that the TD model makes efficient utilization of TD information. Correlations of breeding values between models ranged from 0.90 to 0.96 for different group of sires and cows and marked re-rankings were observed in top sires and cows in moving from the traditional LAM to RRM evaluations. PMID:26194217

  12. Unleashing the power of human genetic variation knowledge: New Zealand stakeholder perspectives.

    PubMed

    Gu, Yulong; Warren, James Roy; Day, Karen Jean

    2011-01-01

    This study aimed to characterize the challenges in using genetic information in health care and to identify opportunities for improvement. Taking a grounded theory approach, semistructured interviews were conducted with 48 participants to collect multiple stakeholder perspectives on genetic services in New Zealand. Three themes emerged from the data: (1) four service delivery models were identified in operation, including both those expected models involving genetic counselors and variations that do not route through the formal genetic service program; (2) multiple barriers to sharing and using genetic information were perceived, including technological, organizational, institutional, legal, ethical, and social issues; and (3) impediments to wider use of genetic testing technology, including variable understanding of genetic test utilities among clinicians and the limited capacity of clinical genetic services. Targeting these problems, information technologies and knowledge management tools have the potential to support key tasks in genetic services delivery, improve knowledge processes, and enhance knowledge networks. Because of the effect of issues in genetic information and knowledge management, the potential of human genetic variation knowledge to enhance health care delivery has been put on a "leash."

  13. A longitudinal twin study of callous-unemotional traits during childhood.

    PubMed

    Henry, Jeffrey; Dionne, Ginette; Viding, Essi; Petitclerc, Amélie; Feng, Bei; Vitaro, Frank; Brendgen, Mara; Tremblay, Richard E; Boivin, Michel

    2018-05-01

    Previous research indicates that genetic factors largely account for the stability of callous-unemotional (CU) traits in adolescence. However, the genetic-environmental etiology of the development of CU traits has not been extensively investigated in childhood, despite work showing the reliable measurement and stability of CU traits from a young age. The aim of this study was to investigate the temporal pattern of genetic and environmental etiology of CU traits across primary school, from school entry (7 years) to middle (9 and 10 years) and late childhood (12 years). Data were collected in a population sample of twins composed of 662 twin pairs (Quebec Newborn Twin Study). CU traits were reported by teachers and analyzed using a biometric latent growth curve model and a Cholesky decomposition model. Latent growth curve analyses revealed that genetic factors explain most of the variance in the intercept of CU traits. Individual differences in change over time were not significant. The Cholesky model revealed that genetic factors at 7 years had enduring contributions to CU traits at 9, 10, and 12 years. New, modest genetic contributions appeared at 9 and 10 years. Nonshared environmental contributions were generally age-specific. No shared environmental contributions were detected. In sum, both modeling approaches showed that genetic factors underlie CU traits during childhood. Initial and new genetic contributions arise during this period. Environments have substantial contributions, over and above genetic factors. Future research should investigate the source of genetic risk associated with CU traits. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  14. Short communication: Genetic variation of saturated fatty acids in Holsteins in the Walloon region of Belgium.

    PubMed

    Arnould, V M-R; Hammami, H; Soyeurt, H; Gengler, N

    2010-09-01

    Random regression test-day models using Legendre polynomials are commonly used for the estimation of genetic parameters and genetic evaluation for test-day milk production traits. However, some researchers have reported that these models present some undesirable properties such as the overestimation of variances at the edges of lactation. Describing genetic variation of saturated fatty acids expressed in milk fat might require the testing of different models. Therefore, 3 different functions were used and compared to take into account the lactation curve: (1) Legendre polynomials with the same order as currently applied for genetic model for production traits; 2) linear splines with 10 knots; and 3) linear splines with the same 10 knots reduced to 3 parameters. The criteria used were Akaike's information and Bayesian information criteria, percentage square biases, and log-likelihood function. These criteria indentified Legendre polynomials and linear splines with 10 knots reduced to 3 parameters models as the most useful. Reducing more complex models using eigenvalues seemed appealing because the resulting models are less time demanding and can reduce convergence difficulties, because convergence properties also seemed to be improved. Finally, the results showed that the reduced spline model was very similar to the Legendre polynomials model. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Reframed Genome-Scale Metabolic Model to Facilitate Genetic Design and Integration with Expression Data.

    PubMed

    Gu, Deqing; Jian, Xingxing; Zhang, Cheng; Hua, Qiang

    2017-01-01

    Genome-scale metabolic network models (GEMs) have played important roles in the design of genetically engineered strains and helped biologists to decipher metabolism. However, due to the complex gene-reaction relationships that exist in model systems, most algorithms have limited capabilities with respect to directly predicting accurate genetic design for metabolic engineering. In particular, methods that predict reaction knockout strategies leading to overproduction are often impractical in terms of gene manipulations. Recently, we proposed a method named logical transformation of model (LTM) to simplify the gene-reaction associations by introducing intermediate pseudo reactions, which makes it possible to generate genetic design. Here, we propose an alternative method to relieve researchers from deciphering complex gene-reactions by adding pseudo gene controlling reactions. In comparison to LTM, this new method introduces fewer pseudo reactions and generates a much smaller model system named as gModel. We showed that gModel allows two seldom reported applications: identification of minimal genomes and design of minimal cell factories within a modified OptKnock framework. In addition, gModel could be used to integrate expression data directly and improve the performance of the E-Fmin method for predicting fluxes. In conclusion, the model transformation procedure will facilitate genetic research based on GEMs, extending their applications.

  16. Family history in primary care: understanding GPs' resistance to clinical genetics--qualitative study.

    PubMed

    Mathers, Jonathan; Greenfield, Sheila; Metcalfe, Alison; Cole, Trevor; Flanagan, Sarah; Wilson, Sue

    2010-05-01

    National and local evaluations of clinical genetics service pilots have experienced difficulty in engaging with GPs. To understand GPs' reluctance to engage with clinical genetics service developments, via an examination of the role of family history in general practice. Qualitative study using semi-structured one-to-one interviews. The West Midlands, UK. Interviews with 21 GPs working in 15 practices, based on a stratified random sample from the Midlands Research Practices Consortium database. Thematic analysis proceeded alongside data generation. Framework grids were constructed for comparative analytical questioning. Interpretation was framed by two explanatory models: a knowledge deficit model, and practice and professional identity model. There is a clear distinction between the routine use and function of family history in GPs' clinical decision making, and contrasting conceptualisations of genetics and 'genetic conditions'. Although genetics is clearly a part of current GP practice, with acknowledgement of genetic components to multifactorial disease, this is distinguished from 'genetic conditions' which are seen as rare, complex single-gene disorders. Importantly, family history takes its place within a broader notion of the 'family doctor' that interviewees identified as a key aspect of their role. In contrast, clinical genetics was not identified as a core component of generalist practice. The likely effectiveness of educational policy interventions aimed at GPs that focus solely on knowledge deficit models, is questionable. There is a need to acknowledge how appropriate practice is constructed by GPs, within the context of accepted generalist roles and related identities.

  17. [Analytic methods for seed models with genotype x environment interactions].

    PubMed

    Zhu, J

    1996-01-01

    Genetic models with genotype effect (G) and genotype x environment interaction effect (GE) are proposed for analyzing generation means of seed quantitative traits in crops. The total genetic effect (G) is partitioned into seed direct genetic effect (G0), cytoplasm genetic of effect (C), and maternal plant genetic effect (Gm). Seed direct genetic effect (G0) can be further partitioned into direct additive (A) and direct dominance (D) genetic components. Maternal genetic effect (Gm) can also be partitioned into maternal additive (Am) and maternal dominance (Dm) genetic components. The total genotype x environment interaction effect (GE) can also be partitioned into direct genetic by environment interaction effect (G0E), cytoplasm genetic by environment interaction effect (CE), and maternal genetic by environment interaction effect (GmE). G0E can be partitioned into direct additive by environment interaction (AE) and direct dominance by environment interaction (DE) genetic components. GmE can also be partitioned into maternal additive by environment interaction (AmE) and maternal dominance by environment interaction (DmE) genetic components. Partitions of genetic components are listed for parent, F1, F2 and backcrosses. A set of parents, their reciprocal F1 and F2 seeds is applicable for efficient analysis of seed quantitative traits. MINQUE(0/1) method can be used for estimating variance and covariance components. Unbiased estimation for covariance components between two traits can also be obtained by the MINQUE(0/1) method. Random genetic effects in seed models are predictable by the Adjusted Unbiased Prediction (AUP) approach with MINQUE(0/1) method. The jackknife procedure is suggested for estimation of sampling variances of estimated variance and covariance components and of predicted genetic effects, which can be further used in a t-test for parameter. Unbiasedness and efficiency for estimating variance components and predicting genetic effects are tested by Monte Carlo simulations.

  18. Evaluating methods to visualize patterns of genetic differentiation on a landscape.

    PubMed

    House, Geoffrey L; Hahn, Matthew W

    2018-05-01

    With advances in sequencing technology, research in the field of landscape genetics can now be conducted at unprecedented spatial and genomic scales. This has been especially evident when using sequence data to visualize patterns of genetic differentiation across a landscape due to demographic history, including changes in migration. Two recent model-based visualization methods that can highlight unusual patterns of genetic differentiation across a landscape, SpaceMix and EEMS, are increasingly used. While SpaceMix's model can infer long-distance migration, EEMS' model is more sensitive to short-distance changes in genetic differentiation, and it is unclear how these differences may affect their results in various situations. Here, we compare SpaceMix and EEMS side by side using landscape genetics simulations representing different migration scenarios. While both methods excel when patterns of simulated migration closely match their underlying models, they can produce either un-intuitive or misleading results when the simulated migration patterns match their models less well, and this may be difficult to assess in empirical data sets. We also introduce unbundled principal components (un-PC), a fast, model-free method to visualize patterns of genetic differentiation by combining principal components analysis (PCA), which is already used in many landscape genetics studies, with the locations of sampled individuals. Un-PC has characteristics of both SpaceMix and EEMS and works well with simulated and empirical data. Finally, we introduce msLandscape, a collection of tools that streamline the creation of customizable landscape-scale simulations using the popular coalescent simulator ms and conversion of the simulated data for use with un-PC, SpaceMix and EEMS. © 2017 John Wiley & Sons Ltd.

  19. FITPOP, a heuristic simulation model of population dynamics and genetics with special reference to fisheries

    USGS Publications Warehouse

    McKenna, James E.

    2000-01-01

    Although, perceiving genetic differences and their effects on fish population dynamics is difficult, simulation models offer a means to explore and illustrate these effects. I partitioned the intrinsic rate of increase parameter of a simple logistic-competition model into three components, allowing specification of effects of relative differences in fitness and mortality, as well as finite rate of increase. This model was placed into an interactive, stochastic environment to allow easy manipulation of model parameters (FITPOP). Simulation results illustrated the effects of subtle differences in genetic and population parameters on total population size, overall fitness, and sensitivity of the system to variability. Several consequences of mixing genetically distinct populations were illustrated. For example, behaviors such as depression of population size after initial introgression and extirpation of native stocks due to continuous stocking of genetically inferior fish were reproduced. It also was shown that carrying capacity relative to the amount of stocking had an important influence on population dynamics. Uncertainty associated with parameter estimates reduced confidence in model projections. The FITPOP model provided a simple tool to explore population dynamics, which may assist in formulating management strategies and identifying research needs.

  20. CMCpy: Genetic Code-Message Coevolution Models in Python

    PubMed Central

    Becich, Peter J.; Stark, Brian P.; Bhat, Harish S.; Ardell, David H.

    2013-01-01

    Code-message coevolution (CMC) models represent coevolution of a genetic code and a population of protein-coding genes (“messages”). Formally, CMC models are sets of quasispecies coupled together for fitness through a shared genetic code. Although CMC models display plausible explanations for the origin of multiple genetic code traits by natural selection, useful modern implementations of CMC models are not currently available. To meet this need we present CMCpy, an object-oriented Python API and command-line executable front-end that can reproduce all published results of CMC models. CMCpy implements multiple solvers for leading eigenpairs of quasispecies models. We also present novel analytical results that extend and generalize applications of perturbation theory to quasispecies models and pioneer the application of a homotopy method for quasispecies with non-unique maximally fit genotypes. Our results therefore facilitate the computational and analytical study of a variety of evolutionary systems. CMCpy is free open-source software available from http://pypi.python.org/pypi/CMCpy/. PMID:23532367

  1. Heuristic Identification of Biological Architectures for Simulating Complex Hierarchical Genetic Interactions

    PubMed Central

    Moore, Jason H; Amos, Ryan; Kiralis, Jeff; Andrews, Peter C

    2015-01-01

    Simulation plays an essential role in the development of new computational and statistical methods for the genetic analysis of complex traits. Most simulations start with a statistical model using methods such as linear or logistic regression that specify the relationship between genotype and phenotype. This is appealing due to its simplicity and because these statistical methods are commonly used in genetic analysis. It is our working hypothesis that simulations need to move beyond simple statistical models to more realistically represent the biological complexity of genetic architecture. The goal of the present study was to develop a prototype genotype–phenotype simulation method and software that are capable of simulating complex genetic effects within the context of a hierarchical biology-based framework. Specifically, our goal is to simulate multilocus epistasis or gene–gene interaction where the genetic variants are organized within the framework of one or more genes, their regulatory regions and other regulatory loci. We introduce here the Heuristic Identification of Biological Architectures for simulating Complex Hierarchical Interactions (HIBACHI) method and prototype software for simulating data in this manner. This approach combines a biological hierarchy, a flexible mathematical framework, a liability threshold model for defining disease endpoints, and a heuristic search strategy for identifying high-order epistatic models of disease susceptibility. We provide several simulation examples using genetic models exhibiting independent main effects and three-way epistatic effects. PMID:25395175

  2. Genetic and environmental melanoma models in fish

    PubMed Central

    Patton, E Elizabeth; Mitchell, David L; Nairn, Rodney S

    2010-01-01

    Experimental animal models are extremely valuable for the study of human diseases, especially those with underlying genetic components. The exploitation of various animal models, from fruitflies to mice, has led to major advances in our understanding of the etiologies of many diseases, including cancer. Cutaneous malignant melanoma is a form of cancer for which both environmental insult (i.e., UV) and hereditary predisposition are major causative factors. Fish melanoma models have been used in studies of both spontaneous and induced melanoma formation. Genetic hybrids between platyfish and swordtails, different species of the genus Xiphophorus, have been studied since the 1920s to identify genetic determinants of pigmentation and melanoma formation. Recently, transgenesis has been used to develop zebrafish and medaka models for melanoma research. This review will provide a historical perspective on the use of fish models in melanoma research, and an updated summary of current and prospective studies using these unique experimental systems. PMID:20230482

  3. A Genetically Engineered Mouse Model of Neuroblastoma Driven by Mutated ALK and MYCN

    DTIC Science & Technology

    2014-09-01

    AWARD NUMBER: W81XWH-13-1-0220 TITLE: A Genetically Engineered Mouse Model of Neuroblastoma ...CONTRACT NUMBER A Genetically Engineered Mouse Model of Neuroblastoma Driven by Mutated ALK and MYCN 5b. GRANT NUMBER W81XWH-13-1-0220 5c...common ALK mutations in neuroblastoma , F1174L and R1275Q. We have determined that in tumors cells expressing mutated ALK, different downstream

  4. Developing Novel Therapeutic Approaches in Small Cell Lung Carcinoma Using Genetically Engineered Mouse Models and Human Circulating Tumor Cells

    DTIC Science & Technology

    2014-10-01

    AD_________________ Award Number: W81XWH-13-1-0325 TITLE: Developing Novel Therapeutic Approaches in Small Cell Lung Carcinoma Using ...Genetically Engineered Mouse Models and Human Circulating Tumor Cells PRINCIPAL INVESTIGATOR: Jeffrey Engelman MD PhD CONTRACTING ORGANIZATION ...Novel Therapeutic Approaches in Small Cell Lung 5a. CONTRACT NUMBER W81XWH-13-1-0325 Carcinoma Using Genetically Engineered Mouse Models and 5b

  5. Multi-scale genetic dynamic modelling II: application to synthetic biology: an algorithmic Markov chain based approach.

    PubMed

    Kirkilionis, Markus; Janus, Ulrich; Sbano, Luca

    2011-09-01

    We model in detail a simple synthetic genetic clock that was engineered in Atkinson et al. (Cell 113(5):597-607, 2003) using Escherichia coli as a host organism. Based on this engineered clock its theoretical description uses the modelling framework presented in Kirkilionis et al. (Theory Biosci. doi: 10.1007/s12064-011-0125-0 , 2011, this volume). The main goal of this accompanying article was to illustrate that parts of the modelling process can be algorithmically automatised once the model framework we called 'average dynamics' is accepted (Sbano and Kirkilionis, WMI Preprint 7/2007, 2008c; Kirkilionis and Sbano, Adv Complex Syst 13(3):293-326, 2010). The advantage of the 'average dynamics' framework is that system components (especially in genetics) can be easier represented in the model. In particular, if once discovered and characterised, specific molecular players together with their function can be incorporated. This means that, for example, the 'gene' concept becomes more clear, for example, in the way the genetic component would react under different regulatory conditions. Using the framework it has become a realistic aim to link mathematical modelling to novel tools of bioinformatics in the future, at least if the number of regulatory units can be estimated. This should hold in any case in synthetic environments due to the fact that the different synthetic genetic components are simply known (Elowitz and Leibler, Nature 403(6767):335-338, 2000; Gardner et al., Nature 403(6767):339-342, 2000; Hasty et al., Nature 420(6912):224-230, 2002). The paper illustrates therefore as a necessary first step how a detailed modelling of molecular interactions with known molecular components leads to a dynamic mathematical model that can be compared to experimental results on various levels or scales. The different genetic modules or components are represented in different detail by model variants. We explain how the framework can be used for investigating other more complex genetic systems in terms of regulation and feedback.

  6. Genetic Parameters for Milk Yield and Lactation Persistency Using Random Regression Models in Girolando Cattle

    PubMed Central

    Canaza-Cayo, Ali William; Lopes, Paulo Sávio; da Silva, Marcos Vinicius Gualberto Barbosa; de Almeida Torres, Robledo; Martins, Marta Fonseca; Arbex, Wagner Antonio; Cobuci, Jaime Araujo

    2015-01-01

    A total of 32,817 test-day milk yield (TDMY) records of the first lactation of 4,056 Girolando cows daughters of 276 sires, collected from 118 herds between 2000 and 2011 were utilized to estimate the genetic parameters for TDMY via random regression models (RRM) using Legendre’s polynomial functions whose orders varied from 3 to 5. In addition, nine measures of persistency in milk yield (PSi) and the genetic trend of 305-day milk yield (305MY) were evaluated. The fit quality criteria used indicated RRM employing the Legendre’s polynomial of orders 3 and 5 for fitting the genetic additive and permanent environment effects, respectively, as the best model. The heritability and genetic correlation for TDMY throughout the lactation, obtained with the best model, varied from 0.18 to 0.23 and from −0.03 to 1.00, respectively. The heritability and genetic correlation for persistency and 305MY varied from 0.10 to 0.33 and from −0.98 to 1.00, respectively. The use of PS7 would be the most suitable option for the evaluation of Girolando cattle. The estimated breeding values for 305MY of sires and cows showed significant and positive genetic trends. Thus, the use of selection indices would be indicated in the genetic evaluation of Girolando cattle for both traits. PMID:26323397

  7. [Analysis of genetico-demographic structure of rural populations living near the Semipalatinsk nuclear test site].

    PubMed

    Sviatova, G S; Berezina, G M; Abil'dinova, G Zh

    2001-12-01

    Rural populations neighboring the Semipalatinsk nuclear test site were used as a model to develop and test an integrated population-genetic approach to analysis of the medical genetic situation and environmental conditions in the areas studied. The contributions of individual factors of population dynamics into the formation of the genetic load were also assessed. The informative values of some genetic markers were estimated. Based on these estimates, a mathematical model was constructed that makes it possible to calculate numerical scores for analysis of the genetic loads in populations differing in environmental exposure.

  8. Island-Model Genomic Selection for Long-Term Genetic Improvement of Autogamous Crops.

    PubMed

    Yabe, Shiori; Yamasaki, Masanori; Ebana, Kaworu; Hayashi, Takeshi; Iwata, Hiroyoshi

    2016-01-01

    Acceleration of genetic improvement of autogamous crops such as wheat and rice is necessary to increase cereal production in response to the global food crisis. Population and pedigree methods of breeding, which are based on inbred line selection, are used commonly in the genetic improvement of autogamous crops. These methods, however, produce a few novel combinations of genes in a breeding population. Recurrent selection promotes recombination among genes and produces novel combinations of genes in a breeding population, but it requires inaccurate single-plant evaluation for selection. Genomic selection (GS), which can predict genetic potential of individuals based on their marker genotype, might have high reliability of single-plant evaluation and might be effective in recurrent selection. To evaluate the efficiency of recurrent selection with GS, we conducted simulations using real marker genotype data of rice cultivars. Additionally, we introduced the concept of an "island model" inspired by evolutionary algorithms that might be useful to maintain genetic variation through the breeding process. We conducted GS simulations using real marker genotype data of rice cultivars to evaluate the efficiency of recurrent selection and the island model in an autogamous species. Results demonstrated the importance of producing novel combinations of genes through recurrent selection. An initial population derived from admixture of multiple bi-parental crosses showed larger genetic gains than a population derived from a single bi-parental cross in whole cycles, suggesting the importance of genetic variation in an initial population. The island-model GS better maintained genetic improvement in later generations than the other GS methods, suggesting that the island-model GS can utilize genetic variation in breeding and can retain alleles with small effects in the breeding population. The island-model GS will become a new breeding method that enhances the potential of genomic selection in autogamous crops, especially bringing long-term improvement.

  9. Utility of genetic and non-genetic risk factors in predicting coronary heart disease in Singaporean Chinese.

    PubMed

    Chang, Xuling; Salim, Agus; Dorajoo, Rajkumar; Han, Yi; Khor, Chiea-Chuen; van Dam, Rob M; Yuan, Jian-Min; Koh, Woon-Puay; Liu, Jianjun; Goh, Daniel Yt; Wang, Xu; Teo, Yik-Ying; Friedlander, Yechiel; Heng, Chew-Kiat

    2017-01-01

    Background Although numerous phenotype based equations for predicting risk of 'hard' coronary heart disease are available, data on the utility of genetic information for such risk prediction is lacking in Chinese populations. Design Case-control study nested within the Singapore Chinese Health Study. Methods A total of 1306 subjects comprising 836 men (267 incident cases and 569 controls) and 470 women (128 incident cases and 342 controls) were included. A Genetic Risk Score comprising 156 single nucleotide polymorphisms that have been robustly associated with coronary heart disease or its risk factors ( p < 5 × 10 -8 ) in at least two independent cohorts of genome-wide association studies was built. For each gender, three base models were used: recalibrated Adult Treatment Panel III (ATPIII) Model (M 1 ); ATP III model fitted using Singapore Chinese Health Study data (M 2 ) and M 3 : M 2 + C-reactive protein + creatinine. Results The Genetic Risk Score was significantly associated with incident 'hard' coronary heart disease ( p for men: 1.70 × 10 -10 -1.73 × 10 -9 ; p for women: 0.001). The inclusion of the Genetic Risk Score in the prediction models improved discrimination in both genders (c-statistics: 0.706-0.722 vs. 0.663-0.695 from base models for men; 0.788-0.790 vs. 0.765-0.773 for women). In addition, the inclusion of the Genetic Risk Score also improved risk classification with a net gain of cases being reclassified to higher risk categories (men: 12.4%-16.5%; women: 10.2% (M 3 )), while not significantly reducing the classification accuracy in controls. Conclusions The Genetic Risk Score is an independent predictor for incident 'hard' coronary heart disease in our ethnic Chinese population. Inclusion of genetic factors into coronary heart disease prediction models could significantly improve risk prediction performance.

  10. A Spatial Statistical Model for Landscape Genetics

    PubMed Central

    Guillot, Gilles; Estoup, Arnaud; Mortier, Frédéric; Cosson, Jean François

    2005-01-01

    Landscape genetics is a new discipline that aims to provide information on how landscape and environmental features influence population genetic structure. The first key step of landscape genetics is the spatial detection and location of genetic discontinuities between populations. However, efficient methods for achieving this task are lacking. In this article, we first clarify what is conceptually involved in the spatial modeling of genetic data. Then we describe a Bayesian model implemented in a Markov chain Monte Carlo scheme that allows inference of the location of such genetic discontinuities from individual geo-referenced multilocus genotypes, without a priori knowledge on populational units and limits. In this method, the global set of sampled individuals is modeled as a spatial mixture of panmictic populations, and the spatial organization of populations is modeled through the colored Voronoi tessellation. In addition to spatially locating genetic discontinuities, the method quantifies the amount of spatial dependence in the data set, estimates the number of populations in the studied area, assigns individuals to their population of origin, and detects individual migrants between populations, while taking into account uncertainty on the location of sampled individuals. The performance of the method is evaluated through the analysis of simulated data sets. Results show good performances for standard data sets (e.g., 100 individuals genotyped at 10 loci with 10 alleles per locus), with high but also low levels of population differentiation (e.g., FST < 0.05). The method is then applied to a set of 88 individuals of wolverines (Gulo gulo) sampled in the northwestern United States and genotyped at 10 microsatellites. PMID:15520263

  11. Developing a Model of Advanced Training to Promote Career Advancement for Certified Genetic Counselors: An Investigation of Expanded Skills, Advanced Training Paths, and Professional Opportunities.

    PubMed

    Baty, Bonnie J; Trepanier, Angela; Bennett, Robin L; Davis, Claire; Erby, Lori; Hippman, Catriona; Lerner, Barbara; Matthews, Anne; Myers, Melanie F; Robbins, Carol B; Singletary, Claire N

    2016-08-01

    There are currently multiple paths through which genetic counselors can acquire advanced knowledge and skills. However, outside of continuing education opportunities, there are few formal training programs designed specifically for the advanced training of genetic counselors. In the genetic counseling profession, there is currently considerable debate about the paths that should be available to attain advanced skills, as well as the skills that might be needed for practice in the future. The Association of Genetic Counseling Program Directors (AGCPD) convened a national committee, the Committee on Advanced Training for Certified Genetic Counselors (CATCGC), to investigate varied paths to post-master's training and career development. The committee began its work by developing three related grids that view career advancement from the viewpoints of the skills needed to advance (skills), ways to obtain these skills (paths), and existing genetic counselor positions that offer career change or advancement (positions). Here we describe previous work related to genetic counselor career advancement, the charge of the CATCGC, our preliminary work in developing a model through which to view genetic counselor advanced training and career advancement opportunities, and our next steps in further developing and disseminating the model.

  12. Geographical distance and local environmental conditions drive the genetic population structure of a freshwater microalga (Bathycoccaceae; Chlorophyta) in Patagonian lakes.

    PubMed

    Fernández, Leonardo D; Hernández, Cristián E; Schiaffino, M Romina; Izaguirre, Irina; Lara, Enrique

    2017-10-01

    The patterns and mechanisms underlying the genetic structure of microbial populations remain unresolved. Herein we investigated the role played by two non-mutually exclusive models (i.e. isolation by distance and isolation by environment) in shaping the genetic structure of lacustrine populations of a microalga (a freshwater Bathycoccaceae) in the Argentinean Patagonia. To our knowledge, this was the first study to investigate the genetic population structure in a South American microorganism. Population-level analyses based on ITS1-5.8S-ITS2 sequences revealed high levels of nucleotide and haplotype diversity within and among populations. Fixation index and a spatially explicit Bayesian analysis confirmed the occurrence of genetically distinct microalga populations in Patagonia. Isolation by distance and isolation by environment accounted for 38.5% and 17.7% of the genetic structure observed, respectively, whereas together these models accounted for 41% of the genetic differentiation. While our results highlighted isolation by distance and isolation by environment as important mechanisms in driving the genetic population structure of the microalga studied, none of these models (either alone or together) could explain the entire genetic differentiation observed. The unexplained variation in the genetic differentiation observed could be the result of founder events combined with rapid local adaptations, as proposed by the monopolisation hypothesis. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Genetic parameters for body condition score, body weight, milk yield, and fertility estimated using random regression models.

    PubMed

    Berry, D P; Buckley, F; Dillon, P; Evans, R D; Rath, M; Veerkamp, R F

    2003-11-01

    Genetic (co)variances between body condition score (BCS), body weight (BW), milk yield, and fertility were estimated using a random regression animal model extended to multivariate analysis. The data analyzed included 81,313 BCS observations, 91,937 BW observations, and 100,458 milk test-day yields from 8725 multiparous Holstein-Friesian cows. A cubic random regression was sufficient to model the changing genetic variances for BCS, BW, and milk across different days in milk. The genetic correlations between BCS and fertility changed little over the lactation; genetic correlations between BCS and interval to first service and between BCS and pregnancy rate to first service varied from -0.47 to -0.31, and from 0.15 to 0.38, respectively. This suggests that maximum genetic gain in fertility from indirect selection on BCS should be based on measurements taken in midlactation when the genetic variance for BCS is largest. Selection for increased BW resulted in shorter intervals to first service, but more services and poorer pregnancy rates; genetic correlations between BW and pregnancy rate to first service varied from -0.52 to -0.45. Genetic selection for higher lactation milk yield alone through selection on increased milk yield in early lactation is likely to have a more deleterious effect on genetic merit for fertility than selection on higher milk yield in late lactation.

  14. Visualizing spatial population structure with estimated effective migration surfaces

    PubMed Central

    Petkova, Desislava; Novembre, John; Stephens, Matthew

    2015-01-01

    Genetic data often exhibit patterns broadly consistent with “isolation by distance” – a phenomenon where genetic similarity decays with geographic distance. In a heterogeneous habitat this may occur more quickly in some regions than others: for example, barriers to gene flow can accelerate differentiation between neighboring groups. We use the concept of “effective migration” to model the relationship between genetics and geography: in this paradigm, effective migration is low in regions where genetic similarity decays quickly. We present a method to visualize variation in effective migration across the habitat from geographically indexed genetic data. Our approach uses a population genetic model to relate effective migration rates to expected genetic dissimilarities. We illustrate its potential and limitations using simulations and data from elephant, human and A. thaliana populations. The resulting visualizations highlight important spatial features of population structure that are difficult to discern using existing methods for summarizing genetic variation. PMID:26642242

  15. Applied genetic evaluations for production and functional traits in dairy cattle.

    PubMed

    Mark, T

    2004-08-01

    The objective of this study was to review the current status of genetic evaluation systems for production and functional traits as practiced in different Interbull member countries and to discuss that status in relation to research results and potential improvements. Thirty-one countries provided information. Substantial variation was evident for number of traits considered per country, trait definition, genetic evaluation procedure within trait, effects included, and how these were treated in genetic evaluation models. All countries lacked genetic evaluations for one or more economically important traits. Improvement in the genetic evaluation models, especially for many functional traits, could be achieved by closing the gaps between research and practice. More detailed and up to date information about national genetic evaluation systems for traits in different countries is available at www.interbull.org. Female fertility and workability traits were considered in many countries and could be next in line for international genetic evaluations.

  16. Genetic and environmental influences on female sexual orientation, childhood gender typicality and adult gender identity.

    PubMed

    Burri, Andrea; Cherkas, Lynn; Spector, Timothy; Rahman, Qazi

    2011-01-01

    Human sexual orientation is influenced by genetic and non-shared environmental factors as are two important psychological correlates--childhood gender typicality (CGT) and adult gender identity (AGI). However, researchers have been unable to resolve the genetic and non-genetic components that contribute to the covariation between these traits, particularly in women. Here we performed a multivariate genetic analysis in a large sample of British female twins (N = 4,426) who completed a questionnaire assessing sexual attraction, CGT and AGI. Univariate genetic models indicated modest genetic influences on sexual attraction (25%), AGI (11%) and CGT (31%). For the multivariate analyses, a common pathway model best fitted the data. This indicated that a single latent variable influenced by a genetic component and common non-shared environmental component explained the association between the three traits but there was substantial measurement error. These findings highlight common developmental factors affecting differences in sexual orientation.

  17. Learning genetic inquiry through the use, revision, and justification of explanatory models

    NASA Astrophysics Data System (ADS)

    Cartier, Jennifer Lorraine

    Central to the process of inquiry in science is the construction and assessment of models that can be used to explain (and in some cases, predict) natural phenomena. This dissertation is a qualitative study of student learning in a high school biology course that was designed to give students opportunities to learn about genetic inquiry in part by providing them with authentic experiences doing inquiry in the discipline. With the aid of a computer program that generates populations of "fruit flies", the students in this class worked in groups structured like scientific communities to build, revise, and defend explanatory models for various inheritance phenomena. Analysis of the ways in which the first cohort of students assessed their inheritance models revealed that all students assessed models based upon empirical fit (data/model match). However, in contrast to the practice of scientists and despite explicit instruction, students did not consistently apply conceptual assessment criteria to their models. That is, they didn't seek consistency between underlying concepts or processes in their models and those of other important genetic models, such as meiosis. This is perhaps in part because they lacked an understanding of models as conceptual rather than physical entities. Subsequently, the genetics curriculum was altered in order to create more opportunities for students to address epistemological issues associated with model assessment throughout the course. The second cohort of students' understanding of models changed over the nine-week period: initially the majority of students equated scientific models with "proof" (generally physical) of "theories"; at the end of the course, most students demonstrated understanding of the conceptual nature of scientific models and the need to justify such knowledge according to both its empirical utility and conceptual consistency. Through model construction and assessment (i.e. scientific inquiry), students were able to come to a rich understanding of both the central concepts of transmission genetics and important epistemological aspects of genetic practice.

  18. Genetics of Attention Deficit Hyperactivity Disorder: A Current Review and Future Prospects

    ERIC Educational Resources Information Center

    Levy, Florence; Hay, David A.; Bennett, Kellie S.

    2006-01-01

    While there have been significant advances in both the behaviour genetics and molecular genetics of Attention Deficit Hyperactivity Disorder (ADHD), researchers are now beginning to develop hypotheses about relationships between phenotypes and genetic mechanisms. Twin studies are able to model genetic, shared environmental and non-shared…

  19. Development of a tiered and binned genetic counseling model for informed consent in the era of multiplex testing for cancer susceptibility.

    PubMed

    Bradbury, Angela R; Patrick-Miller, Linda; Long, Jessica; Powers, Jacquelyn; Stopfer, Jill; Forman, Andrea; Rybak, Christina; Mattie, Kristin; Brandt, Amanda; Chambers, Rachelle; Chung, Wendy K; Churpek, Jane; Daly, Mary B; Digiovanni, Laura; Farengo-Clark, Dana; Fetzer, Dominique; Ganschow, Pamela; Grana, Generosa; Gulden, Cassandra; Hall, Michael; Kohler, Lynne; Maxwell, Kara; Merrill, Shana; Montgomery, Susan; Mueller, Rebecca; Nielsen, Sarah; Olopade, Olufunmilayo; Rainey, Kimberly; Seelaus, Christina; Nathanson, Katherine L; Domchek, Susan M

    2015-06-01

    Multiplex genetic testing, including both moderate- and high-penetrance genes for cancer susceptibility, is associated with greater uncertainty than traditional testing, presenting challenges to informed consent and genetic counseling. We sought to develop a new model for informed consent and genetic counseling for four ongoing studies. Drawing from professional guidelines, literature, conceptual frameworks, and clinical experience, a multidisciplinary group developed a tiered-binned genetic counseling approach proposed to facilitate informed consent and improve outcomes of cancer susceptibility multiplex testing. In this model, tier 1 "indispensable" information is presented to all patients. More specific tier 2 information is provided to support variable informational needs among diverse patient populations. Clinically relevant information is "binned" into groups to minimize information overload, support informed decision making, and facilitate adaptive responses to testing. Seven essential elements of informed consent are provided to address the unique limitations, risks, and uncertainties of multiplex testing. A tiered-binned model for informed consent and genetic counseling has the potential to address the challenges of multiplex testing for cancer susceptibility and to support informed decision making and adaptive responses to testing. Future prospective studies including patient-reported outcomes are needed to inform how to best incorporate multiplex testing for cancer susceptibility into clinical practice.Genet Med 17 6, 485-492.

  20. Demographic and genetic connectivity: the role and consequences of reproduction, dispersal and recruitment in seagrasses.

    PubMed

    Kendrick, Gary A; Orth, Robert J; Statton, John; Hovey, Renae; Ruiz Montoya, Leonardo; Lowe, Ryan J; Krauss, Siegfried L; Sinclair, Elizabeth A

    2017-05-01

    Accurate estimation of connectivity among populations is fundamental for determining the drivers of population resilience, genetic diversity, adaptation and speciation. However the separation and quantification of contemporary versus historical connectivity remains a major challenge. This review focuses on marine angiosperms, seagrasses, that are fundamental to the health and productivity of temperate and tropical coastal marine environments globally. Our objective is to understand better the role of sexual reproduction and recruitment in influencing demographic and genetic connectivity among seagrass populations through an integrated multidisciplinary assessment of our present ecological, genetic, and demographic understanding, with hydrodynamic modelling of transport. We investigate (i) the demographic consequences of sexual reproduction, dispersal and recruitment in seagrasses, (ii) contemporary transport of seagrass pollen, fruits and seed, and vegetative fragments with a focus on hydrodynamic and particle transport models, and (iii) contemporary genetic connectivity among seagrass meadows as inferred through the application of genetic markers. New approaches are reviewed, followed by a summary outlining future directions for research: integrating seascape genetic approaches; incorporating hydrodynamic modelling for dispersal of pollen, seeds and vegetative fragments; integrating studies across broader geographic ranges; and incorporating non-equilibrium modelling. These approaches will lead to a more integrated understanding of the role of contemporary dispersal and recruitment in the persistence and evolution of seagrasses. © 2016 Cambridge Philosophical Society.

  1. Genetic and non-genetic animal models for autism spectrum disorders (ASD).

    PubMed

    Ergaz, Zivanit; Weinstein-Fudim, Liza; Ornoy, Asher

    2016-09-01

    Autism spectrum disorder (ASD) is associated, in addition to complex genetic factors, with a variety of prenatal, perinatal and postnatal etiologies. We discuss the known animal models, mostly in mice and rats, of ASD that helps us to understand the etiology, pathogenesis and treatment of human ASD. We describe only models where behavioral testing has shown autistic like behaviors. Some genetic models mimic known human syndromes like fragile X where ASD is part of the clinical picture, and others are without defined human syndromes. Among the environmentally induced ASD models in rodents, the most common model is the one induced by valproic acid (VPA) either prenatally or early postnatally. VPA induces autism-like behaviors following single exposure during different phases of brain development, implying that the mechanism of action is via a general biological mechanism like epigenetic changes. Maternal infection and inflammation are also associated with ASD in man and animal models. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Increased prediction accuracy in wheat breeding trials using a marker x environment interaction genomic selection model

    USDA-ARS?s Scientific Manuscript database

    Genomic selection (GS) models use genome-wide genetic information to predict genetic values of candidates for selection. Originally these models were developed without considering genotype ' environment interaction (GE). Several authors have proposed extensions of the cannonical GS model that accomm...

  3. Supporting Students' Knowledge Transfer in Modeling Activities

    ERIC Educational Resources Information Center

    Piksööt, Jaanika; Sarapuu, Tago

    2014-01-01

    This study investigates ways to enhance secondary school students' knowledge transfer in complex science domains by implementing question prompts. Two samples of students applied two web-based models to study molecular genetics--the model of genetic code (n = 258) and translation (n = 245). For each model, the samples were randomly divided into…

  4. Neural Correlates of the Y Chromosome in Autism: XYY Syndrome as a Genetic Model

    DTIC Science & Technology

    2017-09-01

    AWARD NUMBER: W81XWH-15-1-0355 TITLE: Neural Correlates of the Y Chromosome in Autism: XYY Syndrome as a Genetic Model PRINCIPAL INVESTIGATOR...SUBJECT TERMS Autism spectrum disorder, ASD; 47,XYY syndrome (XYY); neuroimaging; MRI; MEG; Comorbid behaviors 15T 6. SECURITY CLASSIFICATION OF...by ANSI Std. Z39.18 Neural Correlates of the Y Chromosome in Autism: XYY Syndrome as a Genetic Model Table of Contents Page 1. Introduction

  5. Application of genetic algorithm in modeling on-wafer inductors for up to 110 Ghz

    NASA Astrophysics Data System (ADS)

    Liu, Nianhong; Fu, Jun; Liu, Hui; Cui, Wenpu; Liu, Zhihong; Liu, Linlin; Zhou, Wei; Wang, Quan; Guo, Ao

    2018-05-01

    In this work, the genetic algorithm has been introducted into parameter extraction for on-wafer inductors for up to 110 GHz millimeter-wave operations, and nine independent parameters of the equivalent circuit model are optimized together. With the genetic algorithm, the model with the optimized parameters gives a better fitting accuracy than the preliminary parameters without optimization. Especially, the fitting accuracy of the Q value achieves a significant improvement after the optimization.

  6. Concise Review: Cardiac Disease Modeling Using Induced Pluripotent Stem Cells.

    PubMed

    Yang, Chunbo; Al-Aama, Jumana; Stojkovic, Miodrag; Keavney, Bernard; Trafford, Andrew; Lako, Majlinda; Armstrong, Lyle

    2015-09-01

    Genetic cardiac diseases are major causes of morbidity and mortality. Although animal models have been created to provide some useful insights into the pathogenesis of genetic cardiac diseases, the significant species differences and the lack of genetic information for complex genetic diseases markedly attenuate the application values of such data. Generation of induced pluripotent stem cells (iPSCs) from patient-specific specimens and subsequent derivation of cardiomyocytes offer novel avenues to study the mechanisms underlying cardiac diseases, to identify new causative genes, and to provide insights into the disease aetiology. In recent years, the list of human iPSC-based models for genetic cardiac diseases has been expanding rapidly, although there are still remaining concerns on the level of functionality of iPSC-derived cardiomyocytes and their ability to be used for modeling complex cardiac diseases in adults. This review focuses on the development of cardiomyocyte induction from pluripotent stem cells, the recent progress in heart disease modeling using iPSC-derived cardiomyocytes, and the challenges associated with understanding complex genetic diseases. To address these issues, we examine the similarity between iPSC-derived cardiomyocytes and their ex vivo counterparts and how this relates to the method used to differentiate the pluripotent stem cells into a cardiomyocyte phenotype. We progress to examine categories of congenital cardiac abnormalities that are suitable for iPSC-based disease modeling. © AlphaMed Press.

  7. Gene-Based Association Analysis for Censored Traits Via Fixed Effect Functional Regressions.

    PubMed

    Fan, Ruzong; Wang, Yifan; Yan, Qi; Ding, Ying; Weeks, Daniel E; Lu, Zhaohui; Ren, Haobo; Cook, Richard J; Xiong, Momiao; Swaroop, Anand; Chew, Emily Y; Chen, Wei

    2016-02-01

    Genetic studies of survival outcomes have been proposed and conducted recently, but statistical methods for identifying genetic variants that affect disease progression are rarely developed. Motivated by our ongoing real studies, here we develop Cox proportional hazard models using functional regression (FR) to perform gene-based association analysis of survival traits while adjusting for covariates. The proposed Cox models are fixed effect models where the genetic effects of multiple genetic variants are assumed to be fixed. We introduce likelihood ratio test (LRT) statistics to test for associations between the survival traits and multiple genetic variants in a genetic region. Extensive simulation studies demonstrate that the proposed Cox RF LRT statistics have well-controlled type I error rates. To evaluate power, we compare the Cox FR LRT with the previously developed burden test (BT) in a Cox model and sequence kernel association test (SKAT), which is based on mixed effect Cox models. The Cox FR LRT statistics have higher power than or similar power as Cox SKAT LRT except when 50%/50% causal variants had negative/positive effects and all causal variants are rare. In addition, the Cox FR LRT statistics have higher power than Cox BT LRT. The models and related test statistics can be useful in the whole genome and whole exome association studies. An age-related macular degeneration dataset was analyzed as an example. © 2016 WILEY PERIODICALS, INC.

  8. Gene-based Association Analysis for Censored Traits Via Fixed Effect Functional Regressions

    PubMed Central

    Fan, Ruzong; Wang, Yifan; Yan, Qi; Ding, Ying; Weeks, Daniel E.; Lu, Zhaohui; Ren, Haobo; Cook, Richard J; Xiong, Momiao; Swaroop, Anand; Chew, Emily Y.; Chen, Wei

    2015-01-01

    Summary Genetic studies of survival outcomes have been proposed and conducted recently, but statistical methods for identifying genetic variants that affect disease progression are rarely developed. Motivated by our ongoing real studies, we develop here Cox proportional hazard models using functional regression (FR) to perform gene-based association analysis of survival traits while adjusting for covariates. The proposed Cox models are fixed effect models where the genetic effects of multiple genetic variants are assumed to be fixed. We introduce likelihood ratio test (LRT) statistics to test for associations between the survival traits and multiple genetic variants in a genetic region. Extensive simulation studies demonstrate that the proposed Cox RF LRT statistics have well-controlled type I error rates. To evaluate power, we compare the Cox FR LRT with the previously developed burden test (BT) in a Cox model and sequence kernel association test (SKAT) which is based on mixed effect Cox models. The Cox FR LRT statistics have higher power than or similar power as Cox SKAT LRT except when 50%/50% causal variants had negative/positive effects and all causal variants are rare. In addition, the Cox FR LRT statistics have higher power than Cox BT LRT. The models and related test statistics can be useful in the whole genome and whole exome association studies. An age-related macular degeneration dataset was analyzed as an example. PMID:26782979

  9. Simulating pattern-process relationships to validate landscape genetic models

    Treesearch

    A. J. Shirk; S. A. Cushman; E. L. Landguth

    2012-01-01

    Landscapes may resist gene flow and thereby give rise to a pattern of genetic isolation within a population. The mechanism by which a landscape resists gene flow can be inferred by evaluating the relationship between landscape models and an observed pattern of genetic isolation. This approach risks false inferences because researchers can never feasibly test all...

  10. Translating genome wide association study results to associations among common diseases: in silico study with an electronic medical record.

    PubMed

    Anand, Vibha; Rosenman, Marc B; Downs, Stephen M

    2013-09-01

    To develop a map of disease associations exclusively using two publicly available genetic sources: the catalog of single nucleotide polymorphisms (SNPs) from the HapMap, and the catalog of Genome Wide Association Studies (GWAS) from the NHGRI, and to evaluate it with a large, long-standing electronic medical record (EMR). A computational model, In Silico Bayesian Integration of GWAS (IsBIG), was developed to learn associations among diseases using a Bayesian network (BN) framework, using only genetic data. The IsBIG model (I-Model) was re-trained using data from our EMR (M-Model). Separately, another clinical model (C-Model) was learned from this training dataset. The I-Model was compared with both the M-Model and the C-Model for power to discriminate a disease given other diseases using a test dataset from our EMR. Area under receiver operator characteristics curve was used as a performance measure. Direct associations between diseases in the I-Model were also searched in the PubMed database and in classes of the Human Disease Network (HDN). On the basis of genetic information alone, the I-Model linked a third of diseases from our EMR. When compared to the M-Model, the I-Model predicted diseases given other diseases with 94% specificity, 33% sensitivity, and 80% positive predictive value. The I-Model contained 117 direct associations between diseases. Of those associations, 20 (17%) were absent from the searches of the PubMed database; one of these was present in the C-Model. Of the direct associations in the I-Model, 7 (35%) were absent from disease classes of HDN. Using only publicly available genetic sources we have mapped associations in GWAS to a human disease map using an in silico approach. Furthermore, we have validated this disease map using phenotypic data from our EMR. Models predicting disease associations on the basis of known genetic associations alone are specific but not sensitive. Genetic data, as it currently exists, can only explain a fraction of the risk of a disease. Our approach makes a quantitative statement about disease variation that can be explained in an EMR on the basis of genetic associations described in the GWAS. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Accuracy of whole-genome prediction using a genetic architecture-enhanced variance-covariance matrix.

    PubMed

    Zhang, Zhe; Erbe, Malena; He, Jinlong; Ober, Ulrike; Gao, Ning; Zhang, Hao; Simianer, Henner; Li, Jiaqi

    2015-02-09

    Obtaining accurate predictions of unobserved genetic or phenotypic values for complex traits in animal, plant, and human populations is possible through whole-genome prediction (WGP), a combined analysis of genotypic and phenotypic data. Because the underlying genetic architecture of the trait of interest is an important factor affecting model selection, we propose a new strategy, termed BLUP|GA (BLUP-given genetic architecture), which can use genetic architecture information within the dataset at hand rather than from public sources. This is achieved by using a trait-specific covariance matrix ( T: ), which is a weighted sum of a genetic architecture part ( S: matrix) and the realized relationship matrix ( G: ). The algorithm of BLUP|GA (BLUP-given genetic architecture) is provided and illustrated with real and simulated datasets. Predictive ability of BLUP|GA was validated with three model traits in a dairy cattle dataset and 11 traits in three public datasets with a variety of genetic architectures and compared with GBLUP and other approaches. Results show that BLUP|GA outperformed GBLUP in 20 of 21 scenarios in the dairy cattle dataset and outperformed GBLUP, BayesA, and BayesB in 12 of 13 traits in the analyzed public datasets. Further analyses showed that the difference of accuracies for BLUP|GA and GBLUP significantly correlate with the distance between the T: and G: matrices. The new strategy applied in BLUP|GA is a favorable and flexible alternative to the standard GBLUP model, allowing to account for the genetic architecture of the quantitative trait under consideration when necessary. This feature is mainly due to the increased similarity between the trait-specific relationship matrix ( T: matrix) and the genetic relationship matrix at unobserved causal loci. Applying BLUP|GA in WGP would ease the burden of model selection. Copyright © 2015 Zhang et al.

  12. Fire alters patterns of genetic diversity among 3 lizard species in Florida Scrub habitat.

    PubMed

    Schrey, Aaron W; Ashton, Kyle G; Heath, Stacy; McCoy, Earl D; Mushinsky, Henry R

    2011-01-01

    The Florida Sand Skink (Plestiodon reynoldsi), the Florida Scrub Lizard (Sceloporus woodi), and the Six-lined Racerunner (Aspidoscelis sexlineata) occur in the threatened and fire-maintained Florida scrub habitat. Fire may have different consequences to local genetic diversity of these species because they each have different microhabitat preference. We collected tissue samples of each species from 3 sites with different time-since-fire: Florida Sand Skink n = 73, Florida Scrub Lizard n = 70, and Six-lined Racerunner n = 66. We compared the effect of fire on genetic diversity at microsatellite loci for each species. We screened 8 loci for the Florida Sand Skink, 6 loci for the Florida Scrub Lizard, and 6 loci for the Six-lined Racerunner. We also tested 2 potential driving mechanisms for the observed change in genetic diversity, a metapopulation source/sink model and a local demographic model. Genetic diversity varied with fire history, and significant genetic differentiation occurred among sites. The Florida Scrub Lizard had highest genetic variation at more recently burned sites, whereas the Florida Sand Skink and the Six-lined Racerunner had highest genetic variation at less recently burned sites. Habitat preferences of the Florida Sand Skink and the Florida Scrub Lizard may explain their discordant results, and the Six-lined Racerunner may have a more complicated genetic response to fire or is acted on at a different geographic scale than we have investigated. Our results indicate that these species may respond to fire in a more complicated manner than predicted by our metapopulation model or local demographic model. Our results show that the population-level responses in genetic diversity to fire are species-specific mandating conservation management of habitat diversity through a mosaic of burn frequencies.

  13. The infinitesimal model: Definition, derivation, and implications.

    PubMed

    Barton, N H; Etheridge, A M; Véber, A

    2017-12-01

    Our focus here is on the infinitesimal model. In this model, one or several quantitative traits are described as the sum of a genetic and a non-genetic component, the first being distributed within families as a normal random variable centred at the average of the parental genetic components, and with a variance independent of the parental traits. Thus, the variance that segregates within families is not perturbed by selection, and can be predicted from the variance components. This does not necessarily imply that the trait distribution across the whole population should be Gaussian, and indeed selection or population structure may have a substantial effect on the overall trait distribution. One of our main aims is to identify some general conditions on the allelic effects for the infinitesimal model to be accurate. We first review the long history of the infinitesimal model in quantitative genetics. Then we formulate the model at the phenotypic level in terms of individual trait values and relationships between individuals, but including different evolutionary processes: genetic drift, recombination, selection, mutation, population structure, …. We give a range of examples of its application to evolutionary questions related to stabilising selection, assortative mating, effective population size and response to selection, habitat preference and speciation. We provide a mathematical justification of the model as the limit as the number M of underlying loci tends to infinity of a model with Mendelian inheritance, mutation and environmental noise, when the genetic component of the trait is purely additive. We also show how the model generalises to include epistatic effects. We prove in particular that, within each family, the genetic components of the individual trait values in the current generation are indeed normally distributed with a variance independent of ancestral traits, up to an error of order 1∕M. Simulations suggest that in some cases the convergence may be as fast as 1∕M. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Cross-validation analysis for genetic evaluation models for ranking in endurance horses.

    PubMed

    García-Ballesteros, S; Varona, L; Valera, M; Gutiérrez, J P; Cervantes, I

    2018-01-01

    Ranking trait was used as a selection criterion for competition horses to estimate racing performance. In the literature the most common approaches to estimate breeding values are the linear or threshold statistical models. However, recent studies have shown that a Thurstonian approach was able to fix the race effect (competitive level of the horses that participate in the same race), thus suggesting a better prediction accuracy of breeding values for ranking trait. The aim of this study was to compare the predictability of linear, threshold and Thurstonian approaches for genetic evaluation of ranking in endurance horses. For this purpose, eight genetic models were used for each approach with different combinations of random effects: rider, rider-horse interaction and environmental permanent effect. All genetic models included gender, age and race as systematic effects. The database that was used contained 4065 ranking records from 966 horses and that for the pedigree contained 8733 animals (47% Arabian horses), with an estimated heritability around 0.10 for the ranking trait. The prediction ability of the models for racing performance was evaluated using a cross-validation approach. The average correlation between real and predicted performances across genetic models was around 0.25 for threshold, 0.58 for linear and 0.60 for Thurstonian approaches. Although no significant differences were found between models within approaches, the best genetic model included: the rider and rider-horse random effects for threshold, only rider and environmental permanent effects for linear approach and all random effects for Thurstonian approach. The absolute correlations of predicted breeding values among models were higher between threshold and Thurstonian: 0.90, 0.91 and 0.88 for all animals, top 20% and top 5% best animals. For rank correlations these figures were 0.85, 0.84 and 0.86. The lower values were those between linear and threshold approaches (0.65, 0.62 and 0.51). In conclusion, the Thurstonian approach is recommended for the routine genetic evaluations for ranking in endurance horses.

  15. Genetic evaluation of calf and heifer survival in Iranian Holstein cattle using linear and threshold models.

    PubMed

    Forutan, M; Ansari Mahyari, S; Sargolzaei, M

    2015-02-01

    Calf and heifer survival are important traits in dairy cattle affecting profitability. This study was carried out to estimate genetic parameters of survival traits in female calves at different age periods, until nearly the first calving. Records of 49,583 female calves born during 1998 and 2009 were considered in five age periods as days 1-30, 31-180, 181-365, 366-760 and full period (day 1-760). Genetic components were estimated based on linear and threshold sire models and linear animal models. The models included both fixed effects (month of birth, dam's parity number, calving ease and twin/single) and random effects (herd-year, genetic effect of sire or animal and residual). Rates of death were 2.21, 3.37, 1.97, 4.14 and 12.4% for the above periods, respectively. Heritability estimates were very low ranging from 0.48 to 3.04, 0.62 to 3.51 and 0.50 to 4.24% for linear sire model, animal model and threshold sire model, respectively. Rank correlations between random effects of sires obtained with linear and threshold sire models and with linear animal and sire models were 0.82-0.95 and 0.61-0.83, respectively. The estimated genetic correlations between the five different periods were moderate and only significant for 31-180 and 181-365 (r(g) = 0.59), 31-180 and 366-760 (r(g) = 0.52), and 181-365 and 366-760 (r(g) = 0.42). The low genetic correlations in current study would suggest that survival at different periods may be affected by the same genes with different expression or by different genes. Even though the additive genetic variations of survival traits were small, it might be possible to improve these traits by traditional or genomic selection. © 2014 Blackwell Verlag GmbH.

  16. Using an Adoption Design to Separate Genetic, Prenatal, and Temperament Influences on Toddler Executive Function

    PubMed Central

    Leve, Leslie D.; DeGarmo, David S.; Bridgett, David J.; Neiderhiser, Jenae M.; Shaw, Daniel S.; Harold, Gordon T.; Natsuaki, Misaki N.; Reiss, David

    2012-01-01

    Poor executive functioning has been implicated in children’s concurrent and future behavioral difficulties, making work aimed at understanding processes related to the development of early executive function (EF) critical for models of developmental psychopathology. Deficits in EF have been associated with adverse prenatal experiences, genetic influences, and temperament characteristics. However, our ability to disentangle the predictive and independent effects of these influences has been limited by a dearth of genetically-informed research designs that also consider prenatal influences. The present study examined EF and language development in a sample of 361 toddlers who were adopted at birth and reared in non-relative adoptive families. Predictors included genetic influences (as inherited from birth mothers), prenatal risk, and growth in child negative emotionality. Structural equation modeling indicated that the effect of prenatal risk on toddler effortful attention at age 27 months became nonsignificant once genetic influences were considered in the model. In addition, genetic influences had unique effects on toddler effortful attention. Latent growth modeling indicated that increases in toddler negative emotionality from 9 to 27 months were associated with poorer delay of gratification and poorer language development. Similar results were obtained in models incorporating birth father data. Mechanisms of intergenerational transmission of EF deficits are discussed. PMID:22799580

  17. Using an adoption design to separate genetic, prenatal, and temperament influences on toddler executive function.

    PubMed

    Leve, Leslie D; DeGarmo, David S; Bridgett, David J; Neiderhiser, Jenae M; Shaw, Daniel S; Harold, Gordon T; Natsuaki, Misaki N; Reiss, David

    2013-06-01

    Poor executive functioning has been implicated in children's concurrent and future behavioral difficulties, making work aimed at understanding processes related to the development of early executive function (EF) critical for models of developmental psychopathology. Deficits in EF have been associated with adverse prenatal experiences, genetic influences, and temperament characteristics. However, our ability to disentangle the predictive and independent effects of these influences has been limited by a dearth of genetically informed research designs that also consider prenatal influences. The present study examined EF and language development in a sample of 361 toddlers who were adopted at birth and reared in nonrelative adoptive families. Predictors included genetic influences (as inherited from birth mothers), prenatal risk, and growth in child negative emotionality. Structural equation modeling indicated that the effect of prenatal risk on toddler effortful attention at age 27 months became nonsignificant once genetic influences were considered in the model. In addition, genetic influences had unique effects on toddler effortful attention. Latent growth modeling indicated that increases in toddler negative emotionality from 9 to 27 months were associated with poorer delay of gratification and poorer language development. Similar results were obtained in models incorporating birth father data. Mechanisms of intergenerational transmission of EF deficits are discussed. PsycINFO Database Record (c) 2013 APA, all rights reserved

  18. Identification of landscape features influencing gene flow: How useful are habitat selection models?

    USGS Publications Warehouse

    Roffler, Gretchen H.; Schwartz, Michael K.; Pilgrim, Kristy L.; Talbot, Sandra L.; Sage, Kevin; Adams, Layne G.; Luikart, Gordon

    2016-01-01

    Understanding how dispersal patterns are influenced by landscape heterogeneity is critical for modeling species connectivity. Resource selection function (RSF) models are increasingly used in landscape genetics approaches. However, because the ecological factors that drive habitat selection may be different from those influencing dispersal and gene flow, it is important to consider explicit assumptions and spatial scales of measurement. We calculated pairwise genetic distance among 301 Dall's sheep (Ovis dalli dalli) in southcentral Alaska using an intensive noninvasive sampling effort and 15 microsatellite loci. We used multiple regression of distance matrices to assess the correlation of pairwise genetic distance and landscape resistance derived from an RSF, and combinations of landscape features hypothesized to influence dispersal. Dall's sheep gene flow was positively correlated with steep slopes, moderate peak normalized difference vegetation indices (NDVI), and open land cover. Whereas RSF covariates were significant in predicting genetic distance, the RSF model itself was not significantly correlated with Dall's sheep gene flow, suggesting that certain habitat features important during summer (rugged terrain, mid-range elevation) were not influential to effective dispersal. This work underscores that consideration of both habitat selection and landscape genetics models may be useful in developing management strategies to both meet the immediate survival of a species and allow for long-term genetic connectivity.

  19. Systems Genetics as a Tool to Identify Master Genetic Regulators in Complex Disease.

    PubMed

    Moreno-Moral, Aida; Pesce, Francesco; Behmoaras, Jacques; Petretto, Enrico

    2017-01-01

    Systems genetics stems from systems biology and similarly employs integrative modeling approaches to describe the perturbations and phenotypic effects observed in a complex system. However, in the case of systems genetics the main source of perturbation is naturally occurring genetic variation, which can be analyzed at the systems-level to explain the observed variation in phenotypic traits. In contrast with conventional single-variant association approaches, the success of systems genetics has been in the identification of gene networks and molecular pathways that underlie complex disease. In addition, systems genetics has proven useful in the discovery of master trans-acting genetic regulators of functional networks and pathways, which in many cases revealed unexpected gene targets for disease. Here we detail the central components of a fully integrated systems genetics approach to complex disease, starting from assessment of genetic and gene expression variation, linking DNA sequence variation to mRNA (expression QTL mapping), gene regulatory network analysis and mapping the genetic control of regulatory networks. By summarizing a few illustrative (and successful) examples, we highlight how different data-modeling strategies can be effectively integrated in a systems genetics study.

  20. A 100-Year Review: Methods and impact of genetic selection in dairy cattle-From daughter-dam comparisons to deep learning algorithms.

    PubMed

    Weigel, K A; VanRaden, P M; Norman, H D; Grosu, H

    2017-12-01

    In the early 1900s, breed society herdbooks had been established and milk-recording programs were in their infancy. Farmers wanted to improve the productivity of their cattle, but the foundations of population genetics, quantitative genetics, and animal breeding had not been laid. Early animal breeders struggled to identify genetically superior families using performance records that were influenced by local environmental conditions and herd-specific management practices. Daughter-dam comparisons were used for more than 30 yr and, although genetic progress was minimal, the attention given to performance recording, genetic theory, and statistical methods paid off in future years. Contemporary (herdmate) comparison methods allowed more accurate accounting for environmental factors and genetic progress began to accelerate when these methods were coupled with artificial insemination and progeny testing. Advances in computing facilitated the implementation of mixed linear models that used pedigree and performance data optimally and enabled accurate selection decisions. Sequencing of the bovine genome led to a revolution in dairy cattle breeding, and the pace of scientific discovery and genetic progress accelerated rapidly. Pedigree-based models have given way to whole-genome prediction, and Bayesian regression models and machine learning algorithms have joined mixed linear models in the toolbox of modern animal breeders. Future developments will likely include elucidation of the mechanisms of genetic inheritance and epigenetic modification in key biological pathways, and genomic data will be used with data from on-farm sensors to facilitate precision management on modern dairy farms. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Definition of Historical Models of Gene Function and Their Relation to Students' Understanding of Genetics

    ERIC Educational Resources Information Center

    Gericke, Niklas Markus; Hagberg, Mariana

    2007-01-01

    Models are often used when teaching science. In this paper historical models and students' ideas about genetics are compared. The historical development of the scientific idea of the gene and its function is described and categorized into five historical models of gene function. Differences and similarities between these historical models are made…

  2. Gene × Environment Interactions in Schizophrenia: Evidence from Genetic Mouse Models

    PubMed Central

    Marr, Julia; Bock, Gavin; Desbonnet, Lieve; Waddington, John

    2016-01-01

    The study of gene × environment, as well as epistatic interactions in schizophrenia, has provided important insight into the complex etiopathologic basis of schizophrenia. It has also increased our understanding of the role of susceptibility genes in the disorder and is an important consideration as we seek to translate genetic advances into novel antipsychotic treatment targets. This review summarises data arising from research involving the modelling of gene × environment interactions in schizophrenia using preclinical genetic models. Evidence for synergistic effects on the expression of schizophrenia-relevant endophenotypes will be discussed. It is proposed that valid and multifactorial preclinical models are important tools for identifying critical areas, as well as underlying mechanisms, of convergence of genetic and environmental risk factors, and their interaction in schizophrenia. PMID:27725886

  3. Genetics of SLE: evidence from mouse models.

    PubMed

    Morel, Laurence

    2010-06-01

    Great progress has been made in the field of lupus genetics in the past few years, notably with the publication of genome-wide association studies in humans and the identification of susceptibility genes (including Fcgr2b, Ly108, Kallikrein genes and Coronin-1A) in mouse models of spontaneous lupus. This influx of new information has revealed an ever-increasing interdependence between the mouse and human systems for unraveling the genetic basis of lupus susceptibility. Studies in the 1980s and 1990s established that mice prone to spontaneous lupus constitute excellent models of the genetic architecture of human systemic lupus erythematosus (SLE). This notion has been greatly strengthened by the convergence of the functional pathways that are defective in both human and murine lupus. Within these pathways, variants in a number of genes have now been shown to be directly associated with lupus in both species. Consequently, mouse models will continue to serve a pre-eminent role in lupus genetics research, with an increased emphasis on mechanistic and molecular studies of human susceptibility alleles.

  4. Pathway redundancy and protein essentiality revealed in the Saccharomyces cerevisiae interaction networks

    PubMed Central

    Ulitsky, Igor; Shamir, Ron

    2007-01-01

    The biological interpretation of genetic interactions is a major challenge. Recently, Kelley and Ideker proposed a method to analyze together genetic and physical networks, which explains many of the known genetic interactions as linking different pathways in the physical network. Here, we extend this method and devise novel analytic tools for interpreting genetic interactions in a physical context. Applying these tools on a large-scale Saccharomyces cerevisiae data set, our analysis reveals 140 between-pathway models that explain 3765 genetic interactions, roughly doubling those that were previously explained. Model genes tend to have short mRNA half-lives and many phosphorylation sites, suggesting that their stringent regulation is linked to pathway redundancy. We also identify ‘pivot' proteins that have many physical interactions with both pathways in our models, and show that pivots tend to be essential and highly conserved. Our analysis of models and pivots sheds light on the organization of the cellular machinery as well as on the roles of individual proteins. PMID:17437029

  5. Unraveling additive from nonadditive effects using genomic relationship matrices.

    PubMed

    Muñoz, Patricio R; Resende, Marcio F R; Gezan, Salvador A; Resende, Marcos Deon Vilela; de Los Campos, Gustavo; Kirst, Matias; Huber, Dudley; Peter, Gary F

    2014-12-01

    The application of quantitative genetics in plant and animal breeding has largely focused on additive models, which may also capture dominance and epistatic effects. Partitioning genetic variance into its additive and nonadditive components using pedigree-based models (P-genomic best linear unbiased predictor) (P-BLUP) is difficult with most commonly available family structures. However, the availability of dense panels of molecular markers makes possible the use of additive- and dominance-realized genomic relationships for the estimation of variance components and the prediction of genetic values (G-BLUP). We evaluated height data from a multifamily population of the tree species Pinus taeda with a systematic series of models accounting for additive, dominance, and first-order epistatic interactions (additive by additive, dominance by dominance, and additive by dominance), using either pedigree- or marker-based information. We show that, compared with the pedigree, use of realized genomic relationships in marker-based models yields a substantially more precise separation of additive and nonadditive components of genetic variance. We conclude that the marker-based relationship matrices in a model including additive and nonadditive effects performed better, improving breeding value prediction. Moreover, our results suggest that, for tree height in this population, the additive and nonadditive components of genetic variance are similar in magnitude. This novel result improves our current understanding of the genetic control and architecture of a quantitative trait and should be considered when developing breeding strategies. Copyright © 2014 by the Genetics Society of America.

  6. The zebrafish eye—a paradigm for investigating human ocular genetics

    PubMed Central

    Richardson, R; Tracey-White, D; Webster, A; Moosajee, M

    2017-01-01

    Although human epidemiological and genetic studies are essential to elucidate the aetiology of normal and aberrant ocular development, animal models have provided us with an understanding of the pathogenesis of multiple developmental ocular malformations. Zebrafish eye development displays in depth molecular complexity and stringent spatiotemporal regulation that incorporates developmental contributions of the surface ectoderm, neuroectoderm and head mesenchyme, similar to that seen in humans. For this reason, and due to its genetic tractability, external fertilisation, and early optical clarity, the zebrafish has become an invaluable vertebrate system to investigate human ocular development and disease. Recently, zebrafish have been at the leading edge of preclinical therapy development, with their amenability to genetic manipulation facilitating the generation of robust ocular disease models required for large-scale genetic and drug screening programmes. This review presents an overview of human and zebrafish ocular development, genetic methodologies employed for zebrafish mutagenesis, relevant models of ocular disease, and finally therapeutic approaches, which may have translational leads in the future. PMID:27612182

  7. Entering the second century of maize quantitative genetics

    USDA-ARS?s Scientific Manuscript database

    Maize is the most widely grown cereal in the world. In addition to its role in global agriculture, it has also long served as a model organism for genetic research. Maize stands at a genetic crossroads, as it has access to all the tools available for plant genetics but exhibits a genetic architectur...

  8. Exploring Middle School Students' Understanding of Three Conceptual Models in Genetics

    ERIC Educational Resources Information Center

    Freidenreich, Hava Bresler; Duncan, Ravit Golan; Shea, Nicole

    2011-01-01

    Genetics is the cornerstone of modern biology and a critical aspect of scientific literacy. Research has shown, however, that many high school graduates lack fundamental understandings in genetics necessary to make informed decisions about issues and emerging technologies in this domain, such as genetic screening, genetically modified foods, etc.…

  9. Genetic Diseases and Genetic Determinism Models in French Secondary School Biology Textbooks

    ERIC Educational Resources Information Center

    Castera, Jeremy; Bruguiere, Catherine; Clement, Pierre

    2008-01-01

    The presentation of genetic diseases in French secondary school biology textbooks is analysed to determine the major conceptions taught in the field of human genetics. References to genetic diseases, and the processes by which they are explained (monogeny, polygeny, chromosomal anomaly and environmental influence) are studied in recent French…

  10. Modeling the Normal and Neoplastic Cell Cycle with 'Realistic Boolean Genetic Networks': Their Application for Understanding Carcinogenesis and Assessing Therapeutic Strategies

    NASA Technical Reports Server (NTRS)

    Szallasi, Zoltan; Liang, Shoudan

    2000-01-01

    In this paper we show how Boolean genetic networks could be used to address complex problems in cancer biology. First, we describe a general strategy to generate Boolean genetic networks that incorporate all relevant biochemical and physiological parameters and cover all of their regulatory interactions in a deterministic manner. Second, we introduce 'realistic Boolean genetic networks' that produce time series measurements very similar to those detected in actual biological systems. Third, we outline a series of essential questions related to cancer biology and cancer therapy that could be addressed by the use of 'realistic Boolean genetic network' modeling.

  11. Boiler-turbine control system design using a genetic algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimeo, R.; Lee, K.Y.

    1995-12-01

    This paper discusses the application of a genetic algorithm to control system design for a boiler-turbine plant. In particular the authors study the ability of the genetic algorithm to develop a proportional-integral (PI) controller and a state feedback controller for a non-linear multi-input/multi-output (MIMO) plant model. The plant model is presented along with a discussion of the inherent difficulties in such controller development. A sketch of the genetic algorithm (GA) is presented and its strategy as a method of control system design is discussed. Results are presented for two different control systems that have been designed with the genetic algorithm.

  12. ENU mutagenesis to generate genetically modified rat models.

    PubMed

    van Boxtel, Ruben; Gould, Michael N; Cuppen, Edwin; Smits, Bart M G

    2010-01-01

    The rat is one of the most preferred model organisms in biomedical research and has been extremely useful for linking physiology and pathology to the genome. However, approaches to genetically modify specific genes in the rat germ line remain relatively scarce. To date, the most efficient approach for generating genetically modified rats has been the target-selected N-ethyl-N-nitrosourea (ENU) mutagenesis-based technology. Here, we describe the detailed protocols for ENU mutagenesis and mutant retrieval in the rat model organism.

  13. Neural Correlates of the Y Chromosome in Autism: XYY Syndrome as a Genetic Model

    DTIC Science & Technology

    2016-09-01

    AWARD NUMBER: W81XWH-15-1-0355 TITLE: Neural Correlates of the Y Chromosome in Autism: XYY Syndrome as a Genetic Model PRINCIPAL INVESTIGATOR...14 Aug 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 15T 15T Neural Correlates of the Y Chromosome in Autism: XYY Syndrome as a Genetic Model 5b...this award. 15T 5. SUBJECT TERMS Autism spectrum disorder, ASD; 47,XYY syndrome (XYY); neuroimaging; MRI; MEG; Comorbid behaviors 15T 6. SECURITY

  14. Neural Correlates of the Y Chromosome in Autism: XYY Syndrome as a Genetic Model

    DTIC Science & Technology

    2017-09-01

    AWARD NUMBER: W81XWH-15-1-0354 TITLE: Neural correlates of the Y chromosome in autism: XYY Syndrome as Genetic Model PRINCIPAL INVESTIGATOR...0354 XYY Syndrome as a Genetic Model 5b. GRANT NUMBER 15T c. PROGRAM ELEMENT NUMBER 15T6. AUTHOR(S) Timothy Roberts 15T d. PROJECT NUMBER Judith...remaining 12 months of this award. 15T 5. SUBJECT TERMS Autism spectrum disorder, ASD; 47,XYY syndrome (XYY); neuroimaging; MRI; MEG; Comorbid behaviors

  15. Mitochondrial genetics in Bakers' yeast: a molecular mechanism for recombinational polarity and suppressiveness.

    PubMed

    Perlman, P S; Birky, C W

    1974-11-01

    Recombinational polarity and suppressiveness are two well-known but puzzling cytoplasmic genetic phenomena in bakers' yeast, Saccharomyces cerevisiae. Little progress has been made in characterizing the underlying molecular mechanisms of these phenomena. In this paper we describe a molecular model for recombinational polarity that is compatible with the available genetic evidence. The model stresses the role of small deletions and excision/repair processes in otherwise canonical recombinational events. According to the model, both phenomena require recombination and may share mechanistic elements.

  16. Tests of species-specific models reveal the importance of drought in postglacial range shifts of a Mediterranean-climate tree: insights from integrative distributional, demographic and coalescent modelling and ABC model selection.

    PubMed

    Bemmels, Jordan B; Title, Pascal O; Ortego, Joaquín; Knowles, L Lacey

    2016-10-01

    Past climate change has caused shifts in species distributions and undoubtedly impacted patterns of genetic variation, but the biological processes mediating responses to climate change, and their genetic signatures, are often poorly understood. We test six species-specific biologically informed hypotheses about such processes in canyon live oak (Quercus chrysolepis) from the California Floristic Province. These hypotheses encompass the potential roles of climatic niche, niche multidimensionality, physiological trade-offs in functional traits, and local-scale factors (microsites and local adaptation within ecoregions) in structuring genetic variation. Specifically, we use ecological niche models (ENMs) to construct temporally dynamic landscapes where the processes invoked by each hypothesis are reflected by differences in local habitat suitabilities. These landscapes are used to simulate expected patterns of genetic variation under each model and evaluate the fit of empirical data from 13 microsatellite loci genotyped in 226 individuals from across the species range. Using approximate Bayesian computation (ABC), we obtain very strong support for two statistically indistinguishable models: a trade-off model in which growth rate and drought tolerance drive habitat suitability and genetic structure, and a model based on the climatic niche estimated from a generic ENM, in which the variables found to make the most important contribution to the ENM have strong conceptual links to drought stress. The two most probable models for explaining the patterns of genetic variation thus share a common component, highlighting the potential importance of seasonal drought in driving historical range shifts in a temperate tree from a Mediterranean climate where summer drought is common. © 2016 John Wiley & Sons Ltd.

  17. Genetics and recent human evolution.

    PubMed

    Templeton, Alan R

    2007-07-01

    Starting with "mitochondrial Eve" in 1987, genetics has played an increasingly important role in studies of the last two million years of human evolution. It initially appeared that genetic data resolved the basic models of recent human evolution in favor of the "out-of-Africa replacement" hypothesis in which anatomically modern humans evolved in Africa about 150,000 years ago, started to spread throughout the world about 100,000 years ago, and subsequently drove to complete genetic extinction (replacement) all other human populations in Eurasia. Unfortunately, many of the genetic studies on recent human evolution have suffered from scientific flaws, including misrepresenting the models of recent human evolution, focusing upon hypothesis compatibility rather than hypothesis testing, committing the ecological fallacy, and failing to consider a broader array of alternative hypotheses. Once these flaws are corrected, there is actually little genetic support for the out-of-Africa replacement hypothesis. Indeed, when genetic data are used in a hypothesis-testing framework, the out-of-Africa replacement hypothesis is strongly rejected. The model of recent human evolution that emerges from a statistical hypothesis-testing framework does not correspond to any of the traditional models of human evolution, but it is compatible with fossil and archaeological data. These studies also reveal that any one gene or DNA region captures only a small part of human evolutionary history, so multilocus studies are essential. As more and more loci became available, genetics will undoubtedly offer additional insights and resolutions of human evolution.

  18. Scientific reporting is suboptimal for aspects that characterize genetic risk prediction studies: a review of published articles based on the Genetic RIsk Prediction Studies statement.

    PubMed

    Iglesias, Adriana I; Mihaescu, Raluca; Ioannidis, John P A; Khoury, Muin J; Little, Julian; van Duijn, Cornelia M; Janssens, A Cecile J W

    2014-05-01

    Our main objective was to raise awareness of the areas that need improvements in the reporting of genetic risk prediction articles for future publications, based on the Genetic RIsk Prediction Studies (GRIPS) statement. We evaluated studies that developed or validated a prediction model based on multiple DNA variants, using empirical data, and were published in 2010. A data extraction form based on the 25 items of the GRIPS statement was created and piloted. Forty-two studies met our inclusion criteria. Overall, more than half of the evaluated items (34 of 62) were reported in at least 85% of included articles. Seventy-seven percentage of the articles were identified as genetic risk prediction studies through title assessment, but only 31% used the keywords recommended by GRIPS in the title or abstract. Seventy-four percentage mentioned which allele was the risk variant. Overall, only 10% of the articles reported all essential items needed to perform external validation of the risk model. Completeness of reporting in genetic risk prediction studies is adequate for general elements of study design but is suboptimal for several aspects that characterize genetic risk prediction studies such as description of the model construction. Improvements in the transparency of reporting of these aspects would facilitate the identification, replication, and application of genetic risk prediction models. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Flexible Space-Filling Designs for Complex System Simulations

    DTIC Science & Technology

    2013-06-01

    interior of the experimental region and cannot fit higher-order models. We present a genetic algorithm that constructs space-filling designs with...Computer Experiments, Design of Experiments, Genetic Algorithm , Latin Hypercube, Response Surface Methodology, Nearly Orthogonal 15. NUMBER OF PAGES 147...experimental region and cannot fit higher-order models. We present a genetic algorithm that constructs space-filling designs with minimal correlations

  20. The Effect of Different Molecular Models on High School Students' Conceptions of Molecular Genetics

    ERIC Educational Resources Information Center

    Rotbain, Yosi; Stavy, Ruth; Marbach-Ad, Gili

    2008-01-01

    Our main goal in this study was to explore whether the use of models in high school molecular genetics instruction can contribute to students' understanding of concepts and processes in genetics. Three hundred and nineteen students from four comparable groups of 11th- and 12th-grade students participated. The control group (116 students) was…

  1. Effect of Bead and Illustrations Models on High School Students' Achievement in Molecular Genetics

    ERIC Educational Resources Information Center

    Rotbain, Yosi; Marbach-Ad, Gili; Stavy, Ruth

    2006-01-01

    Our main goal in this study was to explore whether the use of models in molecular genetics instruction in high school can contribute to students' understanding of concepts and processes in genetics. Three comparable groups of 11th and 12th graders participated: The control group (116 students) was taught in the traditional lecture format, while…

  2. Convergence Properties of a Class of Probabilistic Adaptive Schemes Called Sequential Reproductive Plans. Psychology and Education Series, Technical Report No. 210.

    ERIC Educational Resources Information Center

    Martin, Nancy

    Presented is a technical report concerning the use of a mathematical model describing certain aspects of the duplication and selection processes in natural genetic adaptation. This reproductive plan/model occurs in artificial genetics (the use of ideas from genetics to develop general problem solving techniques for computers). The reproductive…

  3. Genetically engineered mouse models for epithelial ovarian cancer: are we there yet?

    PubMed

    Howell, Viive M

    2014-03-01

    The development of preclinical spontaneous genetically engineered mouse models (GEMMs) requires an understanding of the genetic basis of the human disease. Such robust models have proven invaluable for increasing understanding of human malignancies as well as identifying new biomarkers and testing new therapies for these diseases. While GEMMs have been reported for ovarian cancer, the majority have proven disappointing overall in their recapitulation of paired genetic and histological features especially for serous ovarian epithelial cancer. This review describes GEMMs for ovarian cancer, in particular, high grade serous ovarian cancer and assesses these in light of recent changes in our understanding of the human malignancy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Effect of Inherited Genetic Information on Stochastic Predator-Prey Model

    NASA Astrophysics Data System (ADS)

    Duda, Artur; Dyś, Paweł; Nowicka, Alekandra; Dudek, Mirosław R.

    We discuss the Lotka-Volterra dynamics of two populations, preys and predators, in the case when the predators posses a genetic information. The genetic information is inherited according to the rules of the Penna model of genetic evolution. Each individual of the predator population is uniquely determined by sex, genotype and phenotype. In our case, the genes are represented by 8-bit integers and the phenotypes are defined with the help of the 8-state Potts model Hamiltonian. We showed that during time evolution, the population of the predators can experience a series of dynamical phase transitions which are connected with the different types of the dominant phenotypes present in the population.

  5. Genetic parameters of egg quality traits in long-term pedigree recorded Japanese quail.

    PubMed

    Sari, M; Tilki, M; Saatci, M

    2016-08-01

    This study was conducted to determine the genetic parameters of internal and external quality traits of Japanese quail eggs. Two statistical models were used in the calculation of genetic parameters and variance components. While 286 eggs were used based on model 1, 1,524 eggs were used based on model 2. Genetic parameters of the first eggs were calculated with direct genetic effect included in the analysis as random factors by using model 1. Model 2 was used for all eggs (5 to 6 eggs from each hen for six rearing groups). As different from model 1, their permanent environmental effects were also included in the model 2. Heritability of egg weight, egg length, egg width, shape index, shell weight, shell thickness, and shell ratio among the external quality traits of the eggs was respectively found to be 0.44, 0.53, 0.51, 0.70, 0.19, 0.16, and 0.05, respectively, according to model 1. These values were found to be 0.46, 0.40, 0.74, 0.48, 0.60, 0.28, and 0.21, respectively, according to model 2. Yolk weight, yolk diameter, yolk height, yolk index, yolk ratio, albumen weight, albumen height, albumen ratio, and Haugh unit values among the internal quality traits of the egg were found to be 0.22, 0.32, 0.02, 0.16, 0.19, 0.34, 0.19, 0.17, and 0.17, respectively, according to model 1. These internal quality traits were found to be 0.27, 0.18, 0.38, 0.06, 0.20, 0.41, 0.15, 0.15, and 0.12, respectively, according to model 2. Consequently, in this study, strong genetic correlations were detected between albumen height and Haugh unit, and also between albumen height and albumen weight. Additionally, a high and positive correlation was observed between some yolk traits (yolk weight and diameter) and albumen traits (weight and height). All these genetic correlations can be used to improve egg quality with a selection according to albumen weight. © 2016 Poultry Science Association Inc.

  6. Exploring Genetic Numeracy Skills in a Sample of U.S. University Students

    PubMed Central

    Bergman, Margo W.; Goodson, Patricia; Goltz, Heather Honoré

    2017-01-01

    Misconceptions concerning numerical genetic risk exist even within educated populations. To more fully characterize and understand the extent of these risk misunderstandings, which have large potential impact on clinical care, we analyzed the responses from 2,576 students enrolled at 2 Southwestern universities using the PGRID tool, a 138-item web-based survey comprising measures of understanding of genetics, genetic disease, and genetic risk. The primary purpose of this study was to characterize the intersection of risk perception and knowledge, termed genetic numeracy (GN). Additionally, we identify sociodemographic factors that might shape varying levels of GN skills within the study sample and explore the impact of GN on genetic testing intentions using both the Marascuilo procedure and logistic regression analysis. Despite having some college coursework or at least one college degree, most respondents lacked high-level aptitude in understanding genetic inheritance risk, especially with respect to recessive disorders. Prior education about genetics and biology, as well as exposure to biomedical models of genetics, was associated with higher GN levels; exposure to popular media models of genetics was inversely associated with higher GN levels. Differing GN levels affects genetic testing intentions. GN will become more relevant as genetic testing is increasingly incorporated into general clinical care. PMID:28900615

  7. Exploring Genetic Numeracy Skills in a Sample of U.S. University Students.

    PubMed

    Bergman, Margo W; Goodson, Patricia; Goltz, Heather Honoré

    2017-01-01

    Misconceptions concerning numerical genetic risk exist even within educated populations. To more fully characterize and understand the extent of these risk misunderstandings, which have large potential impact on clinical care, we analyzed the responses from 2,576 students enrolled at 2 Southwestern universities using the PGRID tool, a 138-item web-based survey comprising measures of understanding of genetics, genetic disease, and genetic risk. The primary purpose of this study was to characterize the intersection of risk perception and knowledge, termed genetic numeracy (GN). Additionally, we identify sociodemographic factors that might shape varying levels of GN skills within the study sample and explore the impact of GN on genetic testing intentions using both the Marascuilo procedure and logistic regression analysis. Despite having some college coursework or at least one college degree, most respondents lacked high-level aptitude in understanding genetic inheritance risk, especially with respect to recessive disorders. Prior education about genetics and biology, as well as exposure to biomedical models of genetics, was associated with higher GN levels; exposure to popular media models of genetics was inversely associated with higher GN levels. Differing GN levels affects genetic testing intentions. GN will become more relevant as genetic testing is increasingly incorporated into general clinical care.

  8. Fast forward to new genes in mammalian reproduction.

    PubMed

    Furnes, Bjarte; Schimenti, John

    2007-01-01

    The study of reproductive genetics in mammals has lagged behind that of simpler and more tractable model organisms, such as D. melanogaster, C. elegans and various yeast models. Although much valuable information has been generated using these organisms, they do not model the genetic and biological complexity of mammalian reproduction. Thus, the majority of genes required for gametogenesis in mammals remain unidentified. To expand on the existing knowledge of mammalian reproductive genetics, we have carried out forward genetic screens in mice to identify infertility mutants and the underlying mutant genes. Two different approaches were used: mutagenesis of the germline in whole mice, and mutagenesis of embryonic stem cells. This was followed by two- or three-generation breeding schemes to identify pedigrees segregating infertility mutations, which were then phenotypically characterized, genetically mapped, and in some cases, positionally cloned. This whole-genome approach has generated a wide collection of mutants with defects ranging from problems with germ cell development to abnormal sperm morphology. These models have allowed us to study the genetics, as well as the physiology, of reproduction in mammals. This review focuses on describing some of the genes identified in these screens and the ongoing effort to characterize additional mutants.

  9. Fast forward to new genes in mammalian reproduction

    PubMed Central

    Furnes, Bjarte; Schimenti, John

    2007-01-01

    The study of reproductive genetics in mammals has lagged behind that of simpler and more tractable model organisms, such as D. melanogaster, C. elegans and various yeast models. Although much valuable information has been generated using these organisms, they do not model the genetic and biological complexity of mammalian reproduction. Thus, the majority of genes required for gametogenesis in mammals remain unidentified. To expand on the existing knowledge of mammalian reproductive genetics, we have carried out forward genetic screens in mice to identify infertility mutants and the underlying mutant genes. Two different approaches were used: mutagenesis of the germline in whole mice, and mutagenesis of embryonic stem cells. This was followed by two- or three-generation breeding schemes to identify pedigrees segregating infertility mutations, which were then phenotypically characterized, genetically mapped, and in some cases, positionally cloned. This whole-genome approach has generated a wide collection of mutants with defects ranging from problems with germ cell development to abnormal sperm morphology. These models have allowed us to study the genetics, as well as the physiology, of reproduction in mammals. This review focuses on describing some of the genes identified in these screens and the ongoing effort to characterize additional mutants. PMID:16973708

  10. An Underlying Common Factor, Influenced by Genetics and Unique Environment, Explains the Covariation Between Major Depressive Disorder, Generalized Anxiety Disorder, and Burnout: A Swedish Twin Study.

    PubMed

    Mather, Lisa; Blom, Victoria; Bergström, Gunnar; Svedberg, Pia

    2016-12-01

    Depression and anxiety are highly comorbid due to shared genetic risk factors, but less is known about whether burnout shares these risk factors. We aimed to examine whether the covariation between major depressive disorder (MDD), generalized anxiety disorder (GAD), and burnout is explained by common genetic and/or environmental factors. This cross-sectional study included 25,378 Swedish twins responding to a survey in 2005-2006. Structural equation models were used to analyze whether the trait variances and covariances were due to additive genetics, non-additive genetics, shared environment, and unique environment. Univariate analyses tested sex limitation models and multivariate analysis tested Cholesky, independent pathway, and common pathway models. The phenotypic correlations were 0.71 (0.69-0.74) between MDD and GAD, 0.58 (0.56-0.60) between MDD and burnout, and 0.53 (0.50-0.56) between GAD and burnout. Heritabilities were 45% for MDD, 49% for GAD, and 38% for burnout; no statistically significant sex differences were found. A common pathway model was chosen as the final model. The common factor was influenced by genetics (58%) and unique environment (42%), and explained 77% of the variation in MDD, 69% in GAD, and 44% in burnout. GAD and burnout had additive genetic factors unique to the phenotypes (11% each), while MDD did not. Unique environment explained 23% of the variability in MDD, 20% in GAD, and 45% in burnout. In conclusion, the covariation was explained by an underlying common factor, largely influenced by genetics. Burnout was to a large degree influenced by unique environmental factors not shared with MDD and GAD.

  11. DIFFERENTIAL SUSCEPTIBILITY TO CONTEXT: A PROMISING MODEL OF THE INTERPLAY OF GENES AND THE SOCIAL ENVIRONMENT

    PubMed Central

    Simons, Ronald L.; Beach, Steven R. H.; Barr, Ashley B.

    2013-01-01

    The goal of this chapter is to demonstrate the importance of incorporating gene by environment (GxE) interactions into behavioral science theory and research. In pursuit of this aim, the chapter is organized in the following way. First, we provide a brief critique of the behavioral genetics paradigm, noting why one should be skeptical of its suggestion that genes exert large main effects, and only main effects, on social behavior. Second, we describe how the recent mapping of the human genome has facilitated molecular genetic research and the emergence of the new epigenetic paradigm that has begun to supplement and replace the simpler model of genetic determinism. Third, we turn our focus to the explosion of GxE research that has occurred in the wake of this paradigmatic shift. These studies find that genetic variation often interacts with environmental context to influence the probability of various behaviors. Importantly, in many, and perhaps most, of these studies the genetic variable, unlike the environmental variable, has little if any main effect on the outcome of interest. Rather, the influence of the genetic variable is limited to its moderation of the effect of the environmental construct. Such research does not undermine the importance of environmental factors; rather it shows how social scientific explanations of human behavior might be made more precise by incorporating genetic information. Finally, we consider various models of gene - environment interplay, paying particular attention to the differential susceptibility to context perspective. This model of GxE posits that a substantial proportion of the population is genetically predisposed to be more susceptible than others to environment influence. We argue that this model of GxE is particularly relevant to sociologists and psychologists. PMID:24379521

  12. NON-HOMOGENEOUS POISSON PROCESS MODEL FOR GENETIC CROSSOVER INTERFERENCE.

    PubMed

    Leu, Szu-Yun; Sen, Pranab K

    2014-01-01

    The genetic crossover interference is usually modeled with a stationary renewal process to construct the genetic map. We propose two non-homogeneous, also dependent, Poisson process models applied to the known physical map. The crossover process is assumed to start from an origin and to occur sequentially along the chromosome. The increment rate depends on the position of the markers and the number of crossover events occurring between the origin and the markers. We show how to obtain parameter estimates for the process and use simulation studies and real Drosophila data to examine the performance of the proposed models.

  13. Genetic parameters for body weight from birth to calving and associations between weights with test-day, health, and female fertility traits.

    PubMed

    Yin, Tong; König, Sven

    2018-03-01

    A data set including 57,868 records for calf birth weight (CABW) and 9,462 records for weight at first insemination (IBW) were used for the estimation of direct and maternal genetic effects in Holstein Friesian dairy cattle. Furthermore, CABW and IBW were correlated with test-day production records and health traits in first-lactation cows, and with nonreturn rates in heifers. Health traits considered overall disease categories from the International Committee for Animal Recording diagnosis key, including the general disease status, diarrhea, respiratory diseases, mastitis, claw disorders, female fertility disorders, and metabolic disorders. For single-trait measurements of CABW and IBW, animal models with maternal genetic effects were applied. The direct heritability was 0.47 for CABW and 0.20 for IBW, and the direct genetic correlation between CABW and IBW was 0.31. A moderate maternal heritability (0.19) was identified for CABW, but the maternal genetic effect was close to zero for IBW. The correlation between direct and maternal genetic effects was antagonistic for CABW (-0.39) and for IBW (-0.24). In bivariate animal models, only weak genetic and phenotypic correlations were identified between CABW and IBW with either test-day production or health traits in early lactation. Apart from metabolic disorders, there was a general tendency for increasing disease susceptibilities with increasing CABW. The genetic correlation between IBW and nonreturn rates in heifers after 56 d and after 90 d was slightly positive (0.18), but close to zero when correlating nonreturn rates with CABW. For the longitudinal BW structure from birth to the age of 24 mo, random regression models with the time-dependent covariate "age in months" were applied. Evaluation criteria (Bayesian information criterion and residual variances) suggested Legendre polynomials of order 3 to modeling the longitudinal body weight (BW) structure. Direct heritabilities around birth and insemination dates were slightly larger than estimates for CABW and IBW from the single-trait models, but maternal heritabilities were exactly the same from both models. Genetic correlations between BW were close to 1 for neighboring age classes, but decreased with increasing time spans. The genetic correlation between BW at d 0 (birth date) and at 24 mo was even negative (-0.20). Random regression model estimates confirmed the antagonistic relationship between direct and maternal genetic effects, especially during calfhood. This study based on a large data set in dairy cattle confirmed genetic parameters and (co)variance components for BW as identified in beef cattle populations. However, BW records from an early stage of life were inappropriate early predictors for dairy cow health and productivity. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Practical implications for genetic modeling in the genomics era

    USDA-ARS?s Scientific Manuscript database

    Genetic models convert data into estimated breeding values and other information useful to breeders. The goal is to provide accurate and timely predictions of the future performance for each animal (or embryo). Modeling involves defining traits, editing raw data, removing environmental effects, incl...

  15. Recent developments in computer modeling add ecological realism to landscape genetics

    EPA Science Inventory

    Background / Question / Methods A factor limiting the rate of progress in landscape genetics has been the shortage of spatial models capable of linking life history attributes such as dispersal behavior to complex dynamic landscape features. The recent development of new models...

  16. Scale-dependent genetic structure of the Idaho giant salamander (Dicamptodon aterrimus) in stream networks.

    PubMed

    Mullen, Lindy B; Arthur Woods, H; Schwartz, Michael K; Sepulveda, Adam J; Lowe, Winsor H

    2010-03-01

    The network architecture of streams and rivers constrains evolutionary, demographic and ecological processes of freshwater organisms. This consistent architecture also makes stream networks useful for testing general models of population genetic structure and the scaling of gene flow. We examined genetic structure and gene flow in the facultatively paedomorphic Idaho giant salamander, Dicamptodon aterrimus, in stream networks of Idaho and Montana, USA. We used microsatellite data to test population structure models by (i) examining hierarchical partitioning of genetic variation in stream networks; and (ii) testing for genetic isolation by distance along stream corridors vs. overland pathways. Replicated sampling of streams within catchments within three river basins revealed that hierarchical scale had strong effects on genetic structure and gene flow. amova identified significant structure at all hierarchical scales (among streams, among catchments, among basins), but divergence among catchments had the greatest structural influence. Isolation by distance was detected within catchments, and in-stream distance was a strong predictor of genetic divergence. Patterns of genetic divergence suggest that differentiation among streams within catchments was driven by limited migration, consistent with a stream hierarchy model of population structure. However, there was no evidence of migration among catchments within basins, or among basins, indicating that gene flow only counters the effects of genetic drift at smaller scales (within rather than among catchments). These results show the strong influence of stream networks on population structure and genetic divergence of a salamander, with contrasting effects at different hierarchical scales.

  17. Genetic Complexity of Episodic Memory: A Twin Approach to Studies of Aging

    PubMed Central

    Kremen, William S.; Spoon, Kelly M.; Jacobson, Kristen C.; Vasilopoulos, Terrie; McCaffery, Jeanne M.; Panizzon, Matthew S.; Franz, Carol E.; Vuoksimaa, Eero; Xian, Hong; Rana, Brinda K.; Toomey, Rosemary; McKenzie, Ruth; Lyons, Michael J.

    2016-01-01

    Episodic memory change is a central issue in cognitive aging, and understanding that process will require elucidation of its genetic underpinnings. A key limiting factor in genetically informed research on memory has been lack of attention to genetic and phenotypic complexity, as if “memory is memory” and all well-validated assessments are essentially equivalent. Here we applied multivariate twin models to data from late-middle-aged participants in the Vietnam Era Twin Study of Aging to examine the genetic architecture of 6 measures from 3 standard neuropsychological tests: the California Verbal Learning Test-2, and Wechsler Memory Scale-III Logical Memory (LM) and Visual Reproductions (VR). An advantage of the twin method is that it can estimate the extent to which latent genetic influences are shared or independent across different measures before knowing which specific genes are involved. The best-fitting model was a higher order common pathways model with a heritable higher order general episodic memory factor and three test-specific subfactors. More importantly, substantial genetic variance was accounted for by genetic influences that were specific to the latent LM and VR subfactors (28% and 30%, respectively) and independent of the general factor. Such unique genetic influences could partially account for replication failures. Moreover, if different genes influence different memory phenotypes, they could well have different age-related trajectories. This approach represents an important step toward providing critical information for all types of genetically informative studies of aging and memory. PMID:24956007

  18. Genetic evidence and the modern human origins debate.

    PubMed

    Relethford, J H

    2008-06-01

    A continued debate in anthropology concerns the evolutionary origin of 'anatomically modern humans' (Homo sapiens sapiens). Different models have been proposed to examine the related questions of (1) where and when anatomically modern humans first appeared and (2) the genetic and evolutionary relationship between modern humans and earlier human populations. Genetic data have been increasingly used to address these questions. Genetic data on living human populations have been used to reconstruct the evolutionary history of the human species by considering how global patterns of human variation could be produced given different evolutionary scenarios. Of particular interest are gene trees that reconstruct the time and place of the most recent common ancestor of humanity for a given haplotype and the analysis of regional differences in genetic diversity. Ancient DNA has also allowed a direct assessment of genetic variation in European Neandertals. Together with the fossil record, genetic data provide insight into the origin of modern humans. The evidence points to an African origin of modern humans dating back to 200,000 years followed by later expansions of moderns out of Africa across the Old World. What is less clear is what happened when these early modern humans met preexisting 'archaic human' populations outside of Africa. At present, it is difficult to distinguish between a model of total genetic replacement and a model that includes some degree of genetic mixture.

  19. Challenges and Advances for Genetic Engineering of Non-model Bacteria and Uses in Consolidated Bioprocessing

    PubMed Central

    Yan, Qiang; Fong, Stephen S.

    2017-01-01

    Metabolic diversity in microorganisms can provide the basis for creating novel biochemical products. However, most metabolic engineering projects utilize a handful of established model organisms and thus, a challenge for harnessing the potential of novel microbial functions is the ability to either heterologously express novel genes or directly utilize non-model organisms. Genetic manipulation of non-model microorganisms is still challenging due to organism-specific nuances that hinder universal molecular genetic tools and translatable knowledge of intracellular biochemical pathways and regulatory mechanisms. However, in the past several years, unprecedented progress has been made in synthetic biology, molecular genetics tools development, applications of omics data techniques, and computational tools that can aid in developing non-model hosts in a systematic manner. In this review, we focus on concerns and approaches related to working with non-model microorganisms including developing molecular genetics tools such as shuttle vectors, selectable markers, and expression systems. In addition, we will discuss: (1) current techniques in controlling gene expression (transcriptional/translational level), (2) advances in site-specific genome engineering tools [homologous recombination (HR) and clustered regularly interspaced short palindromic repeats (CRISPR)], and (3) advances in genome-scale metabolic models (GSMMs) in guiding design of non-model species. Application of these principles to metabolic engineering strategies for consolidated bioprocessing (CBP) will be discussed along with some brief comments on foreseeable future prospects. PMID:29123506

  20. Metabolomics and In-Silico Analysis Reveal Critical Energy Deregulations in Animal Models of Parkinson’s Disease

    PubMed Central

    Poliquin, Pierre O.; Chen, Jingkui; Cloutier, Mathieu; Trudeau, Louis-Éric; Jolicoeur, Mario

    2013-01-01

    Parkinson’s disease (PD) is a multifactorial disease known to result from a variety of factors. Although age is the principal risk factor, other etiological mechanisms have been identified, including gene mutations and exposure to toxins. Deregulation of energy metabolism, mostly through the loss of complex I efficiency, is involved in disease progression in both the genetic and sporadic forms of the disease. In this study, we investigated energy deregulation in the cerebral tissue of animal models (genetic and toxin induced) of PD using an approach that combines metabolomics and mathematical modelling. In a first step, quantitative measurements of energy-related metabolites in mouse brain slices revealed most affected pathways. A genetic model of PD, the Park2 knockout, was compared to the effect of CCCP, a complex I blocker. Model simulated and experimental results revealed a significant and sustained decrease in ATP after CCCP exposure, but not in the genetic mice model. In support to data analysis, a mathematical model of the relevant metabolic pathways was developed and calibrated onto experimental data. In this work, we show that a short-term stress response in nucleotide scavenging is most probably induced by the toxin exposure. In turn, the robustness of energy-related pathways in the model explains how genetic perturbations, at least in young animals, are not sufficient to induce significant changes at the metabolite level. PMID:23935941

  1. Stochastic modelling of shifts in allele frequencies reveals a strongly polygynous mating system in the re-introduced Asiatic wild ass.

    PubMed

    Renan, Sharon; Greenbaum, Gili; Shahar, Naama; Templeton, Alan R; Bouskila, Amos; Bar-David, Shirli

    2015-04-01

    Small populations are prone to loss of genetic variation and hence to a reduction in their evolutionary potential. Therefore, studying the mating system of small populations and its potential effects on genetic drift and genetic diversity is of high importance for their viability assessments. The traditional method for studying genetic mating systems is paternity analysis. Yet, as small populations are often rare and elusive, the genetic data required for paternity analysis are frequently unavailable. The endangered Asiatic wild ass (Equus hemionus), like all equids, displays a behaviourally polygynous mating system; however, the level of polygyny has never been measured genetically in wild equids. Combining noninvasive genetic data with stochastic modelling of shifts in allele frequencies, we developed an alternative approach to paternity analysis for studying the genetic mating system of the re-introduced Asiatic wild ass in the Negev Desert, Israel. We compared the shifts in allele frequencies (as a measure of genetic drift) that have occurred in the wild ass population since re-introduction onset to simulated scenarios under different proportions of mating males. We revealed a strongly polygynous mating system in which less than 25% of all males participate in the mating process each generation. This strongly polygynous mating system and its potential effect on the re-introduced population's genetic diversity could have significant consequences for the long-term persistence of the population in the Negev. The stochastic modelling approach and the use of allele-frequency shifts can be further applied to systems that are affected by genetic drift and for which genetic data are limited. © 2015 John Wiley & Sons Ltd.

  2. Genetic counselor perceptions of genetic counseling session goals: a validation study of the reciprocal-engagement model.

    PubMed

    Hartmann, Julianne E; Veach, Patricia McCarthy; MacFarlane, Ian M; LeRoy, Bonnie S

    2015-04-01

    Although some researchers have attempted to define genetic counseling practice goals, no study has obtained consensus about the goals from a large sample of genetic counselors. The Reciprocal-Engagement Model (REM; McCarthy Veach, Bartels & LeRoy, 2007) articulates 17 goals of genetic counseling practice. The present study investigated whether these goals could be generalized as a model of practice, as determined by a larger group of clinical genetic counselors. Accordingly, 194 genetic counselors were surveyed regarding their opinions about the importance of each goal and their perceptions of how frequently they achieve each goal. Mean importance ratings suggest they viewed every goal as important. Factor analysis of the 17 goals yielded four factors: Understanding and Appreciation, Support and Guidance, Facilitative Decision-Making, and Patient-Centered Education. Patient-Centered Education and Facilitative Decision-Making goals received the highest mean importance ratings. Mean frequency ratings were consistently lower than importance ratings, suggesting genetic counseling goals may be difficult to achieve and/or not applicable in all situations. A number of respondents provided comments about the REM goals that offer insight into factors related to implementing the goals in clinical practice. This study presents preliminary evidence concerning the validity of the goals component of the REM.

  3. Genetic parameters for first lactation test-day milk flow in Holstein cows.

    PubMed

    Laureano, M M M; Bignardi, A B; El Faro, L; Cardoso, V L; Albuquerque, L G

    2012-01-01

    Genetic parameters for test-day milk flow (TDMF) of 2175 first lactations of Holstein cows were estimated using multiple-trait and repeatability models. The models included the direct additive genetic effect as a random effect and contemporary group (defined as the year and month of test) and age of cow at calving (linear and quadratic effect) as fixed effects. For the repeatability model, in addition to the effects cited, the permanent environmental effect of the animal was also included as a random effect. Variance components were estimated using the restricted maximum likelihood method in single- and multiple-trait and repeatability analyses. The heritability estimates for TDMF ranged from 0.23 (TDMF 6) to 0.32 (TDMF 2 and TDMF 4) in single-trait analysis and from 0.28 (TDMF 7 and TDMF 10) to 0.37 (TDMF 4) in multiple-trait analysis. In general, higher heritabilities were observed at the beginning of lactation until the fourth month. Heritability estimated with the repeatability model was 0.27 and the coefficient of repeatability for first lactation TDMF was 0.66. The genetic correlations were positive and ranged from 0.72 (TDMF 1 and 10) to 0.97 (TDMF 4 and 5). The results indicate that milk flow should respond satisfactorily to selection, promoting rapid genetic gains because the estimated heritabilities were moderate to high. Higher genetic gains might be obtained if selection was performed in the TDMF 4. Both the repeatability model and the multiple-trait model are adequate for the genetic evaluation of animals in terms of milk flow, but the latter provides more accurate estimates of breeding values.

  4. Can genetics help psychometrics? Improving dimensionality assessment through genetic factor modeling.

    PubMed

    Franić, Sanja; Dolan, Conor V; Borsboom, Denny; Hudziak, James J; van Beijsterveldt, Catherina E M; Boomsma, Dorret I

    2013-09-01

    In the present article, we discuss the role that quantitative genetic methodology may play in assessing and understanding the dimensionality of psychological (psychometric) instruments. Specifically, we study the relationship between the observed covariance structures, on the one hand, and the underlying genetic and environmental influences giving rise to such structures, on the other. We note that this relationship may be such that it hampers obtaining a clear estimate of dimensionality using standard tools for dimensionality assessment alone. One situation in which dimensionality assessment may be impeded is that in which genetic and environmental influences, of which the observed covariance structure is a function, differ from each other in structure and dimensionality. We demonstrate that in such situations settling dimensionality issues may be problematic, and propose using quantitative genetic modeling to uncover the (possibly different) dimensionalities of the underlying genetic and environmental structures. We illustrate using simulations and an empirical example on childhood internalizing problems.

  5. Genetic variants in Alzheimer disease – molecular and brain network approaches

    PubMed Central

    Gaiteri, Chris; Mostafavi, Sara; Honey, Christopher; De Jager, Philip L.; Bennett, David A.

    2016-01-01

    Genetic studies in late-onset Alzheimer disease (LOAD) are aimed at identifying core disease mechanisms and providing potential biomarkers and drug candidates to improve clinical care for AD. However, due to the complexity of LOAD, including pathological heterogeneity and disease polygenicity, extracting actionable guidance from LOAD genetics has been challenging. Past attempts to summarize the effects of LOAD-associated genetic variants have used pathway analysis and collections of small-scale experiments to hypothesize functional convergence across several variants. In this review, we discuss how the study of molecular, cellular and brain networks provides additional information on the effect of LOAD-associated genetic variants. We then discuss emerging combinations of omic data types in multiscale models, which provide a more comprehensive representation of the effect of LOAD-associated genetic variants at multiple biophysical scales. Further, we highlight the clinical potential of mechanistically coupling genetic variants and disease phenotypes with multiscale brain models. PMID:27282653

  6. Introduction to focus issue: quantitative approaches to genetic networks.

    PubMed

    Albert, Réka; Collins, James J; Glass, Leon

    2013-06-01

    All cells of living organisms contain similar genetic instructions encoded in the organism's DNA. In any particular cell, the control of the expression of each different gene is regulated, in part, by binding of molecular complexes to specific regions of the DNA. The molecular complexes are composed of protein molecules, called transcription factors, combined with various other molecules such as hormones and drugs. Since transcription factors are coded by genes, cellular function is partially determined by genetic networks. Recent research is making large strides to understand both the structure and the function of these networks. Further, the emerging discipline of synthetic biology is engineering novel gene circuits with specific dynamic properties to advance both basic science and potential practical applications. Although there is not yet a universally accepted mathematical framework for studying the properties of genetic networks, the strong analogies between the activation and inhibition of gene expression and electric circuits suggest frameworks based on logical switching circuits. This focus issue provides a selection of papers reflecting current research directions in the quantitative analysis of genetic networks. The work extends from molecular models for the binding of proteins, to realistic detailed models of cellular metabolism. Between these extremes are simplified models in which genetic dynamics are modeled using classical methods of systems engineering, Boolean switching networks, differential equations that are continuous analogues of Boolean switching networks, and differential equations in which control is based on power law functions. The mathematical techniques are applied to study: (i) naturally occurring gene networks in living organisms including: cyanobacteria, Mycoplasma genitalium, fruit flies, immune cells in mammals; (ii) synthetic gene circuits in Escherichia coli and yeast; and (iii) electronic circuits modeling genetic networks using field-programmable gate arrays. Mathematical analyses will be essential for understanding naturally occurring genetic networks in diverse organisms and for providing a foundation for the improved development of synthetic genetic networks.

  7. Genetic analysis of milk production traits of Tunisian Holsteins using random regression test-day model with Legendre polynomials

    PubMed Central

    2018-01-01

    Objective The objective of this study was to estimate genetic parameters of milk, fat, and protein yields within and across lactations in Tunisian Holsteins using a random regression test-day (TD) model. Methods A random regression multiple trait multiple lactation TD model was used to estimate genetic parameters in the Tunisian dairy cattle population. Data were TD yields of milk, fat, and protein from the first three lactations. Random regressions were modeled with third-order Legendre polynomials for the additive genetic, and permanent environment effects. Heritabilities, and genetic correlations were estimated by Bayesian techniques using the Gibbs sampler. Results All variance components tended to be high in the beginning and the end of lactations. Additive genetic variances for milk, fat, and protein yields were the lowest and were the least variable compared to permanent variances. Heritability values tended to increase with parity. Estimates of heritabilities for 305-d yield-traits were low to moderate, 0.14 to 0.2, 0.12 to 0.17, and 0.13 to 0.18 for milk, fat, and protein yields, respectively. Within-parity, genetic correlations among traits were up to 0.74. Genetic correlations among lactations for the yield traits were relatively high and ranged from 0.78±0.01 to 0.82±0.03, between the first and second parities, from 0.73±0.03 to 0.8±0.04 between the first and third parities, and from 0.82±0.02 to 0.84±0.04 between the second and third parities. Conclusion These results are comparable to previously reported estimates on the same population, indicating that the adoption of a random regression TD model as the official genetic evaluation for production traits in Tunisia, as developed by most Interbull countries, is possible in the Tunisian Holsteins. PMID:28823122

  8. Genetic analysis of milk production traits of Tunisian Holsteins using random regression test-day model with Legendre polynomials.

    PubMed

    Ben Zaabza, Hafedh; Ben Gara, Abderrahmen; Rekik, Boulbaba

    2018-05-01

    The objective of this study was to estimate genetic parameters of milk, fat, and protein yields within and across lactations in Tunisian Holsteins using a random regression test-day (TD) model. A random regression multiple trait multiple lactation TD model was used to estimate genetic parameters in the Tunisian dairy cattle population. Data were TD yields of milk, fat, and protein from the first three lactations. Random regressions were modeled with third-order Legendre polynomials for the additive genetic, and permanent environment effects. Heritabilities, and genetic correlations were estimated by Bayesian techniques using the Gibbs sampler. All variance components tended to be high in the beginning and the end of lactations. Additive genetic variances for milk, fat, and protein yields were the lowest and were the least variable compared to permanent variances. Heritability values tended to increase with parity. Estimates of heritabilities for 305-d yield-traits were low to moderate, 0.14 to 0.2, 0.12 to 0.17, and 0.13 to 0.18 for milk, fat, and protein yields, respectively. Within-parity, genetic correlations among traits were up to 0.74. Genetic correlations among lactations for the yield traits were relatively high and ranged from 0.78±0.01 to 0.82±0.03, between the first and second parities, from 0.73±0.03 to 0.8±0.04 between the first and third parities, and from 0.82±0.02 to 0.84±0.04 between the second and third parities. These results are comparable to previously reported estimates on the same population, indicating that the adoption of a random regression TD model as the official genetic evaluation for production traits in Tunisia, as developed by most Interbull countries, is possible in the Tunisian Holsteins.

  9. Island-Model Genomic Selection for Long-Term Genetic Improvement of Autogamous Crops

    PubMed Central

    Yabe, Shiori; Yamasaki, Masanori; Ebana, Kaworu; Hayashi, Takeshi; Iwata, Hiroyoshi

    2016-01-01

    Acceleration of genetic improvement of autogamous crops such as wheat and rice is necessary to increase cereal production in response to the global food crisis. Population and pedigree methods of breeding, which are based on inbred line selection, are used commonly in the genetic improvement of autogamous crops. These methods, however, produce a few novel combinations of genes in a breeding population. Recurrent selection promotes recombination among genes and produces novel combinations of genes in a breeding population, but it requires inaccurate single-plant evaluation for selection. Genomic selection (GS), which can predict genetic potential of individuals based on their marker genotype, might have high reliability of single-plant evaluation and might be effective in recurrent selection. To evaluate the efficiency of recurrent selection with GS, we conducted simulations using real marker genotype data of rice cultivars. Additionally, we introduced the concept of an “island model” inspired by evolutionary algorithms that might be useful to maintain genetic variation through the breeding process. We conducted GS simulations using real marker genotype data of rice cultivars to evaluate the efficiency of recurrent selection and the island model in an autogamous species. Results demonstrated the importance of producing novel combinations of genes through recurrent selection. An initial population derived from admixture of multiple bi-parental crosses showed larger genetic gains than a population derived from a single bi-parental cross in whole cycles, suggesting the importance of genetic variation in an initial population. The island-model GS better maintained genetic improvement in later generations than the other GS methods, suggesting that the island-model GS can utilize genetic variation in breeding and can retain alleles with small effects in the breeding population. The island-model GS will become a new breeding method that enhances the potential of genomic selection in autogamous crops, especially bringing long-term improvement. PMID:27115872

  10. Introduction to Focus Issue: Quantitative Approaches to Genetic Networks

    NASA Astrophysics Data System (ADS)

    Albert, Réka; Collins, James J.; Glass, Leon

    2013-06-01

    All cells of living organisms contain similar genetic instructions encoded in the organism's DNA. In any particular cell, the control of the expression of each different gene is regulated, in part, by binding of molecular complexes to specific regions of the DNA. The molecular complexes are composed of protein molecules, called transcription factors, combined with various other molecules such as hormones and drugs. Since transcription factors are coded by genes, cellular function is partially determined by genetic networks. Recent research is making large strides to understand both the structure and the function of these networks. Further, the emerging discipline of synthetic biology is engineering novel gene circuits with specific dynamic properties to advance both basic science and potential practical applications. Although there is not yet a universally accepted mathematical framework for studying the properties of genetic networks, the strong analogies between the activation and inhibition of gene expression and electric circuits suggest frameworks based on logical switching circuits. This focus issue provides a selection of papers reflecting current research directions in the quantitative analysis of genetic networks. The work extends from molecular models for the binding of proteins, to realistic detailed models of cellular metabolism. Between these extremes are simplified models in which genetic dynamics are modeled using classical methods of systems engineering, Boolean switching networks, differential equations that are continuous analogues of Boolean switching networks, and differential equations in which control is based on power law functions. The mathematical techniques are applied to study: (i) naturally occurring gene networks in living organisms including: cyanobacteria, Mycoplasma genitalium, fruit flies, immune cells in mammals; (ii) synthetic gene circuits in Escherichia coli and yeast; and (iii) electronic circuits modeling genetic networks using field-programmable gate arrays. Mathematical analyses will be essential for understanding naturally occurring genetic networks in diverse organisms and for providing a foundation for the improved development of synthetic genetic networks.

  11. Random Regression Models Using Legendre Polynomials to Estimate Genetic Parameters for Test-day Milk Protein Yields in Iranian Holstein Dairy Cattle.

    PubMed

    Naserkheil, Masoumeh; Miraie-Ashtiani, Seyed Reza; Nejati-Javaremi, Ardeshir; Son, Jihyun; Lee, Deukhwan

    2016-12-01

    The objective of this study was to estimate the genetic parameters of milk protein yields in Iranian Holstein dairy cattle. A total of 1,112,082 test-day milk protein yield records of 167,269 first lactation Holstein cows, calved from 1990 to 2010, were analyzed. Estimates of the variance components, heritability, and genetic correlations for milk protein yields were obtained using a random regression test-day model. Milking times, herd, age of recording, year, and month of recording were included as fixed effects in the model. Additive genetic and permanent environmental random effects for the lactation curve were taken into account by applying orthogonal Legendre polynomials of the fourth order in the model. The lowest and highest additive genetic variances were estimated at the beginning and end of lactation, respectively. Permanent environmental variance was higher at both extremes. Residual variance was lowest at the middle of the lactation and contrarily, heritability increased during this period. Maximum heritability was found during the 12th lactation stage (0.213±0.007). Genetic, permanent, and phenotypic correlations among test-days decreased as the interval between consecutive test-days increased. A relatively large data set was used in this study; therefore, the estimated (co)variance components for random regression coefficients could be used for national genetic evaluation of dairy cattle in Iran.

  12. Random Regression Models Using Legendre Polynomials to Estimate Genetic Parameters for Test-day Milk Protein Yields in Iranian Holstein Dairy Cattle

    PubMed Central

    Naserkheil, Masoumeh; Miraie-Ashtiani, Seyed Reza; Nejati-Javaremi, Ardeshir; Son, Jihyun; Lee, Deukhwan

    2016-01-01

    The objective of this study was to estimate the genetic parameters of milk protein yields in Iranian Holstein dairy cattle. A total of 1,112,082 test-day milk protein yield records of 167,269 first lactation Holstein cows, calved from 1990 to 2010, were analyzed. Estimates of the variance components, heritability, and genetic correlations for milk protein yields were obtained using a random regression test-day model. Milking times, herd, age of recording, year, and month of recording were included as fixed effects in the model. Additive genetic and permanent environmental random effects for the lactation curve were taken into account by applying orthogonal Legendre polynomials of the fourth order in the model. The lowest and highest additive genetic variances were estimated at the beginning and end of lactation, respectively. Permanent environmental variance was higher at both extremes. Residual variance was lowest at the middle of the lactation and contrarily, heritability increased during this period. Maximum heritability was found during the 12th lactation stage (0.213±0.007). Genetic, permanent, and phenotypic correlations among test-days decreased as the interval between consecutive test-days increased. A relatively large data set was used in this study; therefore, the estimated (co)variance components for random regression coefficients could be used for national genetic evaluation of dairy cattle in Iran. PMID:26954192

  13. In situ genetic association for serotiny, a fire-related trait, in Mediterranean maritime pine (Pinus pinaster).

    PubMed

    Budde, Katharina B; Heuertz, Myriam; Hernández-Serrano, Ana; Pausas, Juli G; Vendramin, Giovanni G; Verdú, Miguel; González-Martínez, Santiago C

    2014-01-01

    Wildfire is a major ecological driver of plant evolution. Understanding the genetic basis of plant adaptation to wildfire is crucial, because impending climate change will involve fire regime changes worldwide. We studied the molecular genetic basis of serotiny, a fire-related trait, in Mediterranean maritime pine using association genetics. A single nucleotide polymorphism (SNP) set was used to identify genotype : phenotype associations in situ in an unstructured natural population of maritime pine (eastern Iberian Peninsula) under a mixed-effects model framework. RR-BLUP was used to build predictive models for serotiny in this region. Model prediction power outside the focal region was tested using independent range-wide serotiny data. Seventeen SNPs were potentially associated with serotiny, explaining approximately 29% of the trait phenotypic variation in the eastern Iberian Peninsula. Similar prediction power was found for nearby geographical regions from the same maternal lineage, but not for other genetic lineages. Association genetics for ecologically relevant traits evaluated in situ is an attractive approach for forest trees provided that traits are under strong genetic control and populations are unstructured, with large phenotypic variability. This will help to extend the research focus to ecological keystone non-model species in their natural environments, where polymorphisms acquired their adaptive value. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  14. Genetic models of homosexuality: generating testable predictions

    PubMed Central

    Gavrilets, Sergey; Rice, William R

    2006-01-01

    Homosexuality is a common occurrence in humans and other species, yet its genetic and evolutionary basis is poorly understood. Here, we formulate and study a series of simple mathematical models for the purpose of predicting empirical patterns that can be used to determine the form of selection that leads to polymorphism of genes influencing homosexuality. Specifically, we develop theory to make contrasting predictions about the genetic characteristics of genes influencing homosexuality including: (i) chromosomal location, (ii) dominance among segregating alleles and (iii) effect sizes that distinguish between the two major models for their polymorphism: the overdominance and sexual antagonism models. We conclude that the measurement of the genetic characteristics of quantitative trait loci (QTLs) found in genomic screens for genes influencing homosexuality can be highly informative in resolving the form of natural selection maintaining their polymorphism. PMID:17015344

  15. Learning to Fish with Genetics: A Primer on the Vertebrate Model Danio rerio

    PubMed Central

    Holtzman, Nathalia G.; Iovine, M. Kathryn; Liang, Jennifer O.; Morris, Jacqueline

    2016-01-01

    In the last 30 years, the zebrafish has become a widely used model organism for research on vertebrate development and disease. Through a powerful combination of genetics and experimental embryology, significant inroads have been made into the regulation of embryonic axis formation, organogenesis, and the development of neural networks. Research with this model has also expanded into other areas, including the genetic regulation of aging, regeneration, and animal behavior. Zebrafish are a popular model because of the ease with which they can be maintained, their small size and low cost, the ability to obtain hundreds of embryos on a daily basis, and the accessibility, translucency, and rapidity of early developmental stages. This primer describes the swift progress of genetic approaches in zebrafish and highlights recent advances that have led to new insights into vertebrate biology. PMID:27384027

  16. Genetics of human hydrocephalus

    PubMed Central

    Williams, Michael A.; Rigamonti, Daniele

    2006-01-01

    Human hydrocephalus is a common medical condition that is characterized by abnormalities in the flow or resorption of cerebrospinal fluid (CSF), resulting in ventricular dilatation. Human hydrocephalus can be classified into two clinical forms, congenital and acquired. Hydrocephalus is one of the complex and multifactorial neurological disorders. A growing body of evidence indicates that genetic factors play a major role in the pathogenesis of hydrocephalus. An understanding of the genetic components and mechanism of this complex disorder may offer us significant insights into the molecular etiology of impaired brain development and an accumulation of the cerebrospinal fluid in cerebral compartments during the pathogenesis of hydrocephalus. Genetic studies in animal models have started to open the way for understanding the underlying pathology of hydrocephalus. At least 43 mutants/loci linked to hereditary hydrocephalus have been identified in animal models and humans. Up to date, 9 genes associated with hydrocephalus have been identified in animal models. In contrast, only one such gene has been identified in humans. Most of known hydrocephalus gene products are the important cytokines, growth factors or related molecules in the cellular signal pathways during early brain development. The current molecular genetic evidence from animal models indicate that in the early development stage, impaired and abnormal brain development caused by abnormal cellular signaling and functioning, all these cellular and developmental events would eventually lead to the congenital hydrocephalus. Owing to our very primitive knowledge of the genetics and molecular pathogenesis of human hydrocephalus, it is difficult to evaluate whether data gained from animal models can be extrapolated to humans. Initiation of a large population genetics study in humans will certainly provide invaluable information about the molecular and cellular etiology and the developmental mechanisms of human hydrocephalus. This review summarizes the recent findings on this issue among human and animal models, especially with reference to the molecular genetics, pathological, physiological and cellular studies, and identifies future research directions. PMID:16773266

  17. Initial assessment of a model relating intratumoral genetic heterogeneity to radiological morphology

    PubMed Central

    Noterdaeme, O; Kelly, M; Friend, P; Soonowalla, Z; Steers, G; Brady, M

    2010-01-01

    Tumour heterogeneity has major implications for tumour development and response to therapy. Tumour heterogeneity results from mutations in the genes responsible for mismatch repair or maintenance of chromosomal stability. Cells with different genetic properties may grow at different rates and exhibit different resistance to therapeutic interventions. To date, there exists no approach to non-invasively assess tumour heterogeneity. Here we present a biologically inspired model of tumour growth, which relates intratumoral genetic heterogeneity to gross morphology visible on radiological images. The model represents the development of a tumour as a set of expanding spheres, each sphere representing a distinct clonal centre, with the sprouting of new spheres corresponding to new clonal centres. Each clonal centre may possess different characteristics relating to genetic composition, growth rate and response to treatment. We present a clinical example for which the model accurately tracks tumour growth and shows the correspondence to genetic variation (as determined by array comparative genomic hybridisation). One clinical implication of our work is that the assessment of heterogeneous tumours using Response Evaluation Criteria In Solid Tumours (RECIST) or volume measurements may not accurately reflect tumour growth, stability or the response to treatment. We believe that this is the first model linking the macro-scale appearance of tumours to their genetic composition. We anticipate that our model will provide a more informative way to assess the response of heterogeneous tumours to treatment, which is of increasing importance with the development of novel targeted anti-cancer treatments. PMID:19690073

  18. A comparison of regression methods for model selection in individual-based landscape genetic analysis.

    PubMed

    Shirk, Andrew J; Landguth, Erin L; Cushman, Samuel A

    2018-01-01

    Anthropogenic migration barriers fragment many populations and limit the ability of species to respond to climate-induced biome shifts. Conservation actions designed to conserve habitat connectivity and mitigate barriers are needed to unite fragmented populations into larger, more viable metapopulations, and to allow species to track their climate envelope over time. Landscape genetic analysis provides an empirical means to infer landscape factors influencing gene flow and thereby inform such conservation actions. However, there are currently many methods available for model selection in landscape genetics, and considerable uncertainty as to which provide the greatest accuracy in identifying the true landscape model influencing gene flow among competing alternative hypotheses. In this study, we used population genetic simulations to evaluate the performance of seven regression-based model selection methods on a broad array of landscapes that varied by the number and type of variables contributing to resistance, the magnitude and cohesion of resistance, as well as the functional relationship between variables and resistance. We also assessed the effect of transformations designed to linearize the relationship between genetic and landscape distances. We found that linear mixed effects models had the highest accuracy in every way we evaluated model performance; however, other methods also performed well in many circumstances, particularly when landscape resistance was high and the correlation among competing hypotheses was limited. Our results provide guidance for which regression-based model selection methods provide the most accurate inferences in landscape genetic analysis and thereby best inform connectivity conservation actions. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  19. The Causal Meaning of Genomic Predictors and How It Affects Construction and Comparison of Genome-Enabled Selection Models

    PubMed Central

    Valente, Bruno D.; Morota, Gota; Peñagaricano, Francisco; Gianola, Daniel; Weigel, Kent; Rosa, Guilherme J. M.

    2015-01-01

    The term “effect” in additive genetic effect suggests a causal meaning. However, inferences of such quantities for selection purposes are typically viewed and conducted as a prediction task. Predictive ability as tested by cross-validation is currently the most acceptable criterion for comparing models and evaluating new methodologies. Nevertheless, it does not directly indicate if predictors reflect causal effects. Such evaluations would require causal inference methods that are not typical in genomic prediction for selection. This suggests that the usual approach to infer genetic effects contradicts the label of the quantity inferred. Here we investigate if genomic predictors for selection should be treated as standard predictors or if they must reflect a causal effect to be useful, requiring causal inference methods. Conducting the analysis as a prediction or as a causal inference task affects, for example, how covariates of the regression model are chosen, which may heavily affect the magnitude of genomic predictors and therefore selection decisions. We demonstrate that selection requires learning causal genetic effects. However, genomic predictors from some models might capture noncausal signal, providing good predictive ability but poorly representing true genetic effects. Simulated examples are used to show that aiming for predictive ability may lead to poor modeling decisions, while causal inference approaches may guide the construction of regression models that better infer the target genetic effect even when they underperform in cross-validation tests. In conclusion, genomic selection models should be constructed to aim primarily for identifiability of causal genetic effects, not for predictive ability. PMID:25908318

  20. Automated design of genetic toggle switches with predetermined bistability.

    PubMed

    Chen, Shuobing; Zhang, Haoqian; Shi, Handuo; Ji, Weiyue; Feng, Jingchen; Gong, Yan; Yang, Zhenglin; Ouyang, Qi

    2012-07-20

    Synthetic biology aims to rationally construct biological devices with required functionalities. Methods that automate the design of genetic devices without post-hoc adjustment are therefore highly desired. Here we provide a method to predictably design genetic toggle switches with predetermined bistability. To accomplish this task, a biophysical model that links ribosome binding site (RBS) DNA sequence to toggle switch bistability was first developed by integrating a stochastic model with RBS design method. Then, to parametrize the model, a library of genetic toggle switch mutants was experimentally built, followed by establishing the equivalence between RBS DNA sequences and switch bistability. To test this equivalence, RBS nucleotide sequences for different specified bistabilities were in silico designed and experimentally verified. Results show that the deciphered equivalence is highly predictive for the toggle switch design with predetermined bistability. This method can be generalized to quantitative design of other probabilistic genetic devices in synthetic biology.

  1. Neural-genetic synthesis for state-space controllers based on linear quadratic regulator design for eigenstructure assignment.

    PubMed

    da Fonseca Neto, João Viana; Abreu, Ivanildo Silva; da Silva, Fábio Nogueira

    2010-04-01

    Toward the synthesis of state-space controllers, a neural-genetic model based on the linear quadratic regulator design for the eigenstructure assignment of multivariable dynamic systems is presented. The neural-genetic model represents a fusion of a genetic algorithm and a recurrent neural network (RNN) to perform the selection of the weighting matrices and the algebraic Riccati equation solution, respectively. A fourth-order electric circuit model is used to evaluate the convergence of the computational intelligence paradigms and the control design method performance. The genetic search convergence evaluation is performed in terms of the fitness function statistics and the RNN convergence, which is evaluated by landscapes of the energy and norm, as a function of the parameter deviations. The control problem solution is evaluated in the time and frequency domains by the impulse response, singular values, and modal analysis.

  2. An integrated approach to characterize genetic interaction networks in yeast metabolism

    PubMed Central

    Szappanos, Balázs; Kovács, Károly; Szamecz, Béla; Honti, Frantisek; Costanzo, Michael; Baryshnikova, Anastasia; Gelius-Dietrich, Gabriel; Lercher, Martin J.; Jelasity, Márk; Myers, Chad L.; Andrews, Brenda J.; Boone, Charles; Oliver, Stephen G.; Pál, Csaba; Papp, Balázs

    2011-01-01

    Intense experimental and theoretical efforts have been made to globally map genetic interactions, yet we still do not understand how gene-gene interactions arise from the operation of biomolecular networks. To bridge the gap between empirical and computational studies, we: i) quantitatively measure genetic interactions between ~185,000 metabolic gene pairs in Saccharomyces cerevisiae, ii) superpose the data on a detailed systems biology model of metabolism, and iii) introduce a machine-learning method to reconcile empirical interaction data with model predictions. We systematically investigate the relative impacts of functional modularity and metabolic flux coupling on the distribution of negative and positive genetic interactions. We also provide a mechanistic explanation for the link between the degree of genetic interaction, pleiotropy, and gene dispensability. Last, we demonstrate the feasibility of automated metabolic model refinement by correcting misannotations in NAD biosynthesis and confirming them by in vivo experiments. PMID:21623372

  3. Mining disease fingerprints from within genetic pathways.

    PubMed

    Nabhan, Ahmed Ragab; Sarkar, Indra Neil

    2012-01-01

    Mining biological networks can be an effective means to uncover system level knowledge out of micro level associations, such as encapsulated in genetic pathways. Analysis of human disease genetic pathways can lead to the identification of major mechanisms that may underlie disorders at an abstract functional level. The focus of this study was to develop an approach for structural pattern analysis and classification of genetic pathways of diseases. A probabilistic model was developed to capture characteristic components ('fingerprints') of functionally annotated pathways. A probability estimation procedure of this model searched for fingerprints in each disease pathway while improving probability estimates of model parameters. The approach was evaluated on data from the Kyoto Encyclopedia of Genes and Genomes (consisting of 56 pathways across seven disease categories). Based on the achieved average classification accuracy of up to ~77%, the findings suggest that these fingerprints may be used for classification and discovery of genetic pathways.

  4. Mining Disease Fingerprints From Within Genetic Pathways

    PubMed Central

    Nabhan, Ahmed Ragab; Sarkar, Indra Neil

    2012-01-01

    Mining biological networks can be an effective means to uncover system level knowledge out of micro level associations, such as encapsulated in genetic pathways. Analysis of human disease genetic pathways can lead to the identification of major mechanisms that may underlie disorders at an abstract functional level. The focus of this study was to develop an approach for structural pattern analysis and classification of genetic pathways of diseases. A probabilistic model was developed to capture characteristic components (‘fingerprints’) of functionally annotated pathways. A probability estimation procedure of this model searched for fingerprints in each disease pathway while improving probability estimates of model parameters. The approach was evaluated on data from the Kyoto Encyclopedia of Genes and Genomes (consisting of 56 pathways across seven disease categories). Based on the achieved average classification accuracy of up to ∼77%, the findings suggest that these fingerprints may be used for classification and discovery of genetic pathways. PMID:23304411

  5. The Genomic and Genetic Toolbox of the Teleost Medaka (Oryzias latipes)

    PubMed Central

    Kirchmaier, Stephan; Naruse, Kiyoshi; Wittbrodt, Joachim; Loosli, Felix

    2015-01-01

    The Japanese medaka, Oryzias latipes, is a vertebrate teleost model with a long history of genetic research. A number of unique features and established resources distinguish medaka from other vertebrate model systems. A large number of laboratory strains from different locations are available. Due to a high tolerance to inbreeding, many highly inbred strains have been established, thus providing a rich resource for genetic studies. Furthermore, closely related species native to different habitats in Southeast Asia permit comparative evolutionary studies. The transparency of embryos, larvae, and juveniles allows a detailed in vivo analysis of development. New tools to study diverse aspects of medaka biology are constantly being generated. Thus, medaka has become an important vertebrate model organism to study development, behavior, and physiology. In this review, we provide a comprehensive overview of established genetic and molecular-genetic tools that render medaka fish a full-fledged vertebrate system. PMID:25855651

  6. MOESHA: A genetic algorithm for automatic calibration and estimation of parameter uncertainty and sensitivity of hydrologic models

    EPA Science Inventory

    Characterization of uncertainty and sensitivity of model parameters is an essential and often overlooked facet of hydrological modeling. This paper introduces an algorithm called MOESHA that combines input parameter sensitivity analyses with a genetic algorithm calibration routin...

  7. Postdoctoral Fellow | Center for Cancer Research

    Cancer.gov

    The Genetics of Cancer Susceptibility Section in the Mouse Cancer Genetics Program at NCI is seeking a highly motivated postdoctoral researcher to identify novel genetic interactors of BRCA2 using CRISPR-based genetic screen in mouse embryonic stem cells and perform functional studies in mouse models.

  8. Genetic and Environmental Influences on Female Sexual Orientation, Childhood Gender Typicality and Adult Gender Identity

    PubMed Central

    Burri, Andrea; Cherkas, Lynn; Spector, Timothy; Rahman, Qazi

    2011-01-01

    Background Human sexual orientation is influenced by genetic and non-shared environmental factors as are two important psychological correlates – childhood gender typicality (CGT) and adult gender identity (AGI). However, researchers have been unable to resolve the genetic and non-genetic components that contribute to the covariation between these traits, particularly in women. Methodology/Principal Findings Here we performed a multivariate genetic analysis in a large sample of British female twins (N = 4,426) who completed a questionnaire assessing sexual attraction, CGT and AGI. Univariate genetic models indicated modest genetic influences on sexual attraction (25%), AGI (11%) and CGT (31%). For the multivariate analyses, a common pathway model best fitted the data. Conclusions/Significance This indicated that a single latent variable influenced by a genetic component and common non-shared environmental component explained the association between the three traits but there was substantial measurement error. These findings highlight common developmental factors affecting differences in sexual orientation. PMID:21760939

  9. Support Seeking or Familial Obligation: An Investigation of Motives for Disclosing Genetic Test Results.

    PubMed

    Greenberg, Marisa; Smith, Rachel A

    2016-01-01

    Genetic test results reveal not only personal information about a person's likelihood of certain medical conditions but also information about the person's genetic relatives. Given the familial nature of genetic information, one's obligation to protect family members may be a motive for disclosing genetic test results, but this claim has not been methodically tested. Existing models of disclosure decision making presume self-interested motives, such as seeking social support, instead of other-interested motives, like familial obligation. This study investigated young adults' (N = 173) motives to share a genetic-based health condition, alpha-1 antitrypsin deficiency, after reading a hypothetical vignette. Results show that social support and familial obligation were both reported as motives for disclosure. In fact, some participants reported familial obligation as their primary motivator for disclosure. Finally, stronger familial obligation predicted increased likelihood of disclosing hypothetical genetic test results. Implications of these results were discussed in reference to theories of disclosure decision-making models and the practice of genetic disclosures.

  10. A roadmap for the genetic analysis of renal aging

    PubMed Central

    Noordmans, Gerda A; Hillebrands, Jan-Luuk; van Goor, Harry; Korstanje, Ron

    2015-01-01

    Several studies show evidence for the genetic basis of renal disease, which renders some individuals more prone than others to accelerated renal aging. Studying the genetics of renal aging can help us to identify genes involved in this process and to unravel the underlying pathways. First, this opinion article will give an overview of the phenotypes that can be observed in age-related kidney disease. Accurate phenotyping is essential in performing genetic analysis. For kidney aging, this could include both functional and structural changes. Subsequently, this article reviews the studies that report on candidate genes associated with renal aging in humans and mice. Several loci or candidate genes have been found associated with kidney disease, but identification of the specific genetic variants involved has proven to be difficult. CUBN, UMOD, and SHROOM3 were identified by human GWAS as being associated with albuminuria, kidney function, and chronic kidney disease (CKD). These are promising examples of genes that could be involved in renal aging, and were further mechanistically evaluated in animal models. Eventually, we will provide approaches for performing genetic analysis. We should leverage the power of mouse models, as testing in humans is limited. Mouse and other animal models can be used to explain the underlying biological mechanisms of genes and loci identified by human GWAS. Furthermore, mouse models can be used to identify genetic variants associated with age-associated histological changes, of which Far2, Wisp2, and Esrrg are examples. A new outbred mouse population with high genetic diversity will facilitate the identification of genes associated with renal aging by enabling high-resolution genetic mapping while also allowing the control of environmental factors, and by enabling access to renal tissues at specific time points for histology, proteomics, and gene expression. PMID:26219736

  11. Weighted Genetic Risk Scores and Prediction of Weight Gain in Solid Organ Transplant Populations

    PubMed Central

    Saigi-Morgui, Núria; Quteineh, Lina; Bochud, Pierre-Yves; Crettol, Severine; Kutalik, Zoltán; Wojtowicz, Agnieszka; Bibert, Stéphanie; Beckmann, Sonja; Mueller, Nicolas J; Binet, Isabelle; van Delden, Christian; Steiger, Jürg; Mohacsi, Paul; Stirnimann, Guido; Soccal, Paola M.; Pascual, Manuel; Eap, Chin B

    2016-01-01

    Background Polygenic obesity in Solid Organ Transplant (SOT) populations is considered a risk factor for the development of metabolic abnormalities and graft survival. Few studies to date have studied the genetics of weight gain in SOT recipients. We aimed to determine whether weighted genetic risk scores (w-GRS) integrating genetic polymorphisms from GWAS studies (SNP group#1 and SNP group#2) and from Candidate Gene studies (SNP group#3) influence BMI in SOT populations and if they predict ≥10% weight gain (WG) one year after transplantation. To do so, two samples (nA = 995, nB = 156) were obtained from naturalistic studies and three w-GRS were constructed and tested for association with BMI over time. Prediction of 10% WG at one year after transplantation was assessed with models containing genetic and clinical factors. Results w-GRS were associated with BMI in sample A and B combined (BMI increased by 0.14 and 0.11 units per additional risk allele in SNP group#1 and #2, respectively, p-values<0.008). w-GRS of SNP group#3 showed an effect of 0.01 kg/m2 per additional risk allele when combining sample A and B (p-value 0.04). Models with genetic factors performed better than models without in predicting 10% WG at one year after transplantation. Conclusions This is the first study in SOT evaluating extensively the association of w-GRS with BMI and the influence of clinical and genetic factors on 10% of WG one year after transplantation, showing the importance of integrating genetic factors in the final model. Genetics of obesity among SOT recipients remains an important issue and can contribute to treatment personalization and prediction of WG after transplantation. PMID:27788139

  12. Weighted Genetic Risk Scores and Prediction of Weight Gain in Solid Organ Transplant Populations.

    PubMed

    Saigi-Morgui, Núria; Quteineh, Lina; Bochud, Pierre-Yves; Crettol, Severine; Kutalik, Zoltán; Wojtowicz, Agnieszka; Bibert, Stéphanie; Beckmann, Sonja; Mueller, Nicolas J; Binet, Isabelle; van Delden, Christian; Steiger, Jürg; Mohacsi, Paul; Stirnimann, Guido; Soccal, Paola M; Pascual, Manuel; Eap, Chin B

    2016-01-01

    Polygenic obesity in Solid Organ Transplant (SOT) populations is considered a risk factor for the development of metabolic abnormalities and graft survival. Few studies to date have studied the genetics of weight gain in SOT recipients. We aimed to determine whether weighted genetic risk scores (w-GRS) integrating genetic polymorphisms from GWAS studies (SNP group#1 and SNP group#2) and from Candidate Gene studies (SNP group#3) influence BMI in SOT populations and if they predict ≥10% weight gain (WG) one year after transplantation. To do so, two samples (nA = 995, nB = 156) were obtained from naturalistic studies and three w-GRS were constructed and tested for association with BMI over time. Prediction of 10% WG at one year after transplantation was assessed with models containing genetic and clinical factors. w-GRS were associated with BMI in sample A and B combined (BMI increased by 0.14 and 0.11 units per additional risk allele in SNP group#1 and #2, respectively, p-values<0.008). w-GRS of SNP group#3 showed an effect of 0.01 kg/m2 per additional risk allele when combining sample A and B (p-value 0.04). Models with genetic factors performed better than models without in predicting 10% WG at one year after transplantation. This is the first study in SOT evaluating extensively the association of w-GRS with BMI and the influence of clinical and genetic factors on 10% of WG one year after transplantation, showing the importance of integrating genetic factors in the final model. Genetics of obesity among SOT recipients remains an important issue and can contribute to treatment personalization and prediction of WG after transplantation.

  13. GENET note no. 1

    NASA Technical Reports Server (NTRS)

    Yeh, J. W.

    1971-01-01

    The general features of the GENET system for simulating networks are described. A set of features is presented which are desirable for network simulations and which are expected to be achieved by this system. Among these features are: (1) two level network modeling; and (2) problem oriented operations. Several typical network systems are modeled in GENET framework to illustrate various of the features and to show its applicability.

  14. How lay people respond to messages about genetics, health, and race.

    PubMed

    Condit, C; Bates, B

    2005-08-01

    There is a growing movement in medical genetics to develop, implement, and promote a model of race-based medicine. Although race-based medicine may become a widely disseminated standard of care, messages that advocate race-based selection for diagnosing, screening and prescribing drugs may exacerbate health disparities. These messages are present in clinical genetic counseling sessions, mass media, and everyday talk. Messages promoting linkages among genes, race, and health and messages emphasizing genetic causation may promote both general racism and genetically based racism. This mini-review examines research in three areas: studies that address the effects of these messages about genetics on levels of genetic determinism and genetic discrimination; studies that address the effects of these messages on attitudes about race; and, studies of the impacts of race-specific genetic messages on recipients. Following an integration of this research, this mini-review suggests that the current literature appears fragmented because of methodological and measurement issues and offers strategies for future research. Finally, the authors offer a path model to help organize future research examining the effects of messages about genetics on socioculturally based racism, genetically based racism, and unaccounted for racism. Research in this area is needed to understand and mitigate the negative attitudinal effects of messages that link genes, race, and health and/or emphasize genetic causation.

  15. Accounting for Sampling Error in Genetic Eigenvalues Using Random Matrix Theory.

    PubMed

    Sztepanacz, Jacqueline L; Blows, Mark W

    2017-07-01

    The distribution of genetic variance in multivariate phenotypes is characterized by the empirical spectral distribution of the eigenvalues of the genetic covariance matrix. Empirical estimates of genetic eigenvalues from random effects linear models are known to be overdispersed by sampling error, where large eigenvalues are biased upward, and small eigenvalues are biased downward. The overdispersion of the leading eigenvalues of sample covariance matrices have been demonstrated to conform to the Tracy-Widom (TW) distribution. Here we show that genetic eigenvalues estimated using restricted maximum likelihood (REML) in a multivariate random effects model with an unconstrained genetic covariance structure will also conform to the TW distribution after empirical scaling and centering. However, where estimation procedures using either REML or MCMC impose boundary constraints, the resulting genetic eigenvalues tend not be TW distributed. We show how using confidence intervals from sampling distributions of genetic eigenvalues without reference to the TW distribution is insufficient protection against mistaking sampling error as genetic variance, particularly when eigenvalues are small. By scaling such sampling distributions to the appropriate TW distribution, the critical value of the TW statistic can be used to determine if the magnitude of a genetic eigenvalue exceeds the sampling error for each eigenvalue in the spectral distribution of a given genetic covariance matrix. Copyright © 2017 by the Genetics Society of America.

  16. Restricted maximum likelihood estimation of genetic principal components and smoothed covariance matrices

    PubMed Central

    Meyer, Karin; Kirkpatrick, Mark

    2005-01-01

    Principal component analysis is a widely used 'dimension reduction' technique, albeit generally at a phenotypic level. It is shown that we can estimate genetic principal components directly through a simple reparameterisation of the usual linear, mixed model. This is applicable to any analysis fitting multiple, correlated genetic effects, whether effects for individual traits or sets of random regression coefficients to model trajectories. Depending on the magnitude of genetic correlation, a subset of the principal component generally suffices to capture the bulk of genetic variation. Corresponding estimates of genetic covariance matrices are more parsimonious, have reduced rank and are smoothed, with the number of parameters required to model the dispersion structure reduced from k(k + 1)/2 to m(2k - m + 1)/2 for k effects and m principal components. Estimation of these parameters, the largest eigenvalues and pertaining eigenvectors of the genetic covariance matrix, via restricted maximum likelihood using derivatives of the likelihood, is described. It is shown that reduced rank estimation can reduce computational requirements of multivariate analyses substantially. An application to the analysis of eight traits recorded via live ultrasound scanning of beef cattle is given. PMID:15588566

  17. Oceanography and life history predict contrasting genetic population structure in two Antarctic fish species.

    PubMed

    Young, Emma F; Belchier, Mark; Hauser, Lorenz; Horsburgh, Gavin J; Meredith, Michael P; Murphy, Eugene J; Pascoal, Sonia; Rock, Jennifer; Tysklind, Niklas; Carvalho, Gary R

    2015-06-01

    Understanding the key drivers of population connectivity in the marine environment is essential for the effective management of natural resources. Although several different approaches to evaluating connectivity have been used, they are rarely integrated quantitatively. Here, we use a 'seascape genetics' approach, by combining oceanographic modelling and microsatellite analyses, to understand the dominant influences on the population genetic structure of two Antarctic fishes with contrasting life histories, Champsocephalus gunnari and Notothenia rossii. The close accord between the model projections and empirical genetic structure demonstrated that passive dispersal during the planktonic early life stages is the dominant influence on patterns and extent of genetic structuring in both species. The shorter planktonic phase of C. gunnari restricts direct transport of larvae between distant populations, leading to stronger regional differentiation. By contrast, geographic distance did not affect differentiation in N. rossii, whose longer larval period promotes long-distance dispersal. Interannual variability in oceanographic flows strongly influenced the projected genetic structure, suggesting that shifts in circulation patterns due to climate change are likely to impact future genetic connectivity and opportunities for local adaptation, resilience and recovery from perturbations. Further development of realistic climate models is required to fully assess such potential impacts.

  18. Three-and-a-half-factor model? The genetic and environmental structure of the CBCL/6-18 internalizing grouping.

    PubMed

    Franić, Sanja; Dolan, Conor V; Borsboom, Denny; van Beijsterveldt, Catherina E M; Boomsma, Dorret I

    2014-05-01

    In the present article, multivariate genetic item analyses were employed to address questions regarding the ontology and the genetic and environmental etiology of the Anxious/Depressed, Withdrawn, and Somatic Complaints syndrome dimensions of the Internalizing grouping of the Child Behavior Checklist/6-18 (CBCL/6-18). Using common and independent pathway genetic factor modeling, it was examined whether these syndrome dimensions can be ascribed a realist ontology. Subsequently, the structures of the genetic and environmental influences giving rise to the observed symptom covariation were examined. Maternal ratings of a population-based sample of 17,511 Dutch twins of mean age 7.4 (SD = 0.4) on the items of the Internalizing grouping of the Dutch CBCL/6-18 were analyzed. Applications of common and independent pathway modeling demonstrated that the Internalizing syndrome dimensions may be better understood as a composite of unconstrained genetic and environmental influences than as causally relevant entities generating the observed symptom covariation. Furthermore, the results indicate a common genetic basis for anxiety, depression, and withdrawn behavior, with the distinction between these syndromes being driven by the individual-specific environment. Implications for the substantive interpretation of these syndrome dimensions are discussed.

  19. Consent, ethics and genetic biobanks: the case of the Athlome project.

    PubMed

    Thompson, Rachel; McNamee, Michael J

    2017-11-14

    This article provides a critical overview of the ethics and governance of genetic biobank research, using the Athlome Consortium as a large scale instance of collaborative sports genetic biobanking. We present a traditional model of written informed consent for the acquisition, storage, sharing and analysis of genetic data and articulate the challenges to it from new research practices such as genetic biobanking. We then articulate six possible alternative consent models: verbal consent, blanket consent, broad consent, meta consent, dynamic consent and waived consent. We argue that these models or conceptions of consent must be articulated in the context of the complexities of international legislation and non legislative national and international biobank governance frameworks and policies, those which govern research in the field of sports genetics. We discuss the tensions between individual rights and public benefits of genomic research as a critical ethical issue, particularly where benefits are less obvious, as in sports genomics. The inherent complexities of international regulation and biobanking governance are challenging in a relatively young field. We argue that there is much nuanced ethical work still to be done with regard to governance of sports genetic biobanking and the issues contained therein.

  20. Specificity of genetic and environmental risk factors for symptoms of cannabis, cocaine, alcohol, caffeine, and nicotine dependence.

    PubMed

    Kendler, Kenneth S; Myers, John; Prescott, Carol A

    2007-11-01

    Although genetic risk factors have been found to contribute to dependence on both licit and illicit psychoactive substances, we know little of how these risk factors interrelate. To clarify the structure of genetic and environmental risk factors for symptoms of dependence on cannabis, cocaine, alcohol, caffeine, and nicotine in males and females. Lifetime history by structured clinical interview. General community. Four thousand eight hundred sixty-five members of male-male and female-female pairs from the Virginia Adult Twin Study of Psychiatric and Substance Use Disorders. Main Outcome Measure Lifetime symptoms of abuse of and dependence on cannabis, cocaine, alcohol, caffeine, and nicotine. Controlling for greater symptom prevalence in males, genetic and environmental parameters could be equated across sexes. Two models explained the data well. The best-fit exploratory model contained 2 genetic factors and 1 individual environmental factor contributing to all substances. The first genetic factor loaded strongly on cocaine and cannabis dependence; the second, on alcohol and nicotine dependence. Nicotine and caffeine had high substance-specific genetic effects. A confirmatory model, which also fit well, contained 1 illicit drug genetic factor--loading only on cannabis and cocaine--and 1 licit drug genetic factor loading on alcohol, caffeine, and nicotine. However, these factors were highly intercorrelated (r = + 0.82). Large substance-specific genetic effects remained for nicotine and caffeine. The pattern of genetic and environmental risk factors for psychoactive substance dependence was similar in males and females. Genetic risk factors for dependence on common psychoactive substances cannot be explained by a single factor. Rather, 2 genetic factors-one predisposing largely to illicit drug dependence, the other primarily to licit drug dependence-are needed. Furthermore, a large proportion of the genetic influences on nicotine and particularly caffeine dependence appear to be specific to those substances.

  1. How Pupils Use a Model for Abstract Concepts in Genetics

    ERIC Educational Resources Information Center

    Venville, Grady; Donovan, Jenny

    2008-01-01

    The purpose of this research was to explore the way pupils of different age groups use a model to understand abstract concepts in genetics. Pupils from early childhood to late adolescence were taught about genes and DNA using an analogical model (the wool model) during their regular biology classes. Changing conceptual understandings of the…

  2. Cycles of Exploration, Reflection, and Consolidation in Model-Based Learning of Genetics

    ERIC Educational Resources Information Center

    Kim, Beaumie; Pathak, Suneeta A.; Jacobson, Michael J.; Zhang, Baohui; Gobert, Janice D.

    2015-01-01

    Model-based reasoning has been introduced as an authentic way of learning science, and many researchers have developed technological tools for learning with models. This paper describes how a model-based tool, "BioLogica"™, was used to facilitate genetics learning in secondary 3-level biology in Singapore. The research team co-designed…

  3. The genetic basis for cognitive ability, memory, and depression symptomatology in middle-aged and elderly chinese twins.

    PubMed

    Xu, Chunsheng; Sun, Jianping; Ji, Fuling; Tian, Xiaocao; Duan, Haiping; Zhai, Yaoming; Wang, Shaojie; Pang, Zengchang; Zhang, Dongfeng; Zhao, Zhongtang; Li, Shuxia; Hjelmborg, Jacob V B; Christensen, Kaare; Tan, Qihua

    2015-02-01

    The genetic influences on aging-related phenotypes, including cognition and depression, have been well confirmed in the Western populations. We performed the first twin-based analysis on cognitive performance, memory and depression status in middle-aged and elderly Chinese twins, representing the world's largest and most rapidly aging population. The sample consisted of 384 twin pairs with a median age of 50 years. Cognitive function was measured using the Montreal Cognitive Assessment (MoCA) scale; memory was assessed using the revised Wechsler Adult Intelligence scale; depression symptomatology was evaluated by the self-reported 30-item Geriatric Depression (GDS-30)scale. Both univariate and multivariate twin models were fitted to the three phenotypes with full and nested models and compared to select the best fitting models. Univariate analysis showed moderate-to-high genetic influences with heritability 0.44 for cognition and 0.56 for memory. Multivariate analysis by the reduced Cholesky model estimated significant genetic (rG = 0.69) and unique environmental (rE = 0.25) correlation between cognitive ability and memory. The model also estimated weak but significant inverse genetic correlation for depression with cognition (-0.31) and memory (-0.28). No significant unique environmental correlation was found for depression with other two phenotypes. In conclusion, there can be a common genetic architecture for cognitive ability and memory that weakly correlates with depression symptomatology, but in the opposite direction.

  4. Random regression analysis for body weights and main morphological traits in genetically improved farmed tilapia (Oreochromis niloticus).

    PubMed

    He, Jie; Zhao, Yunfeng; Zhao, Jingli; Gao, Jin; Xu, Pao; Yang, Runqing

    2018-02-01

    To genetically analyse growth traits in genetically improved farmed tilapia (GIFT), the body weight (BWE) and main morphological traits, including body length (BL), body depth (BD), body width (BWI), head length (HL) and length of the caudal peduncle (CPL), were measured six times in growth duration on 1451 fish from 45 mixed families of full and half sibs. A random regression model (RRM) was used to model genetic changes of the growth traits with days of age and estimate the heritability for any growth point and genetic correlations between pairwise growth points. Using the covariance function based on optimal RRMs, the heritabilities were estimated to be from 0.102 to 0.662 for BWE, 0.157 to 0.591 for BL, 0.047 to 0.621 for BD, 0.018 to 0.577 for BWI, 0.075 to 0.597 for HL and 0.032 to 0.610 for CPL between 60 and 140 days of age. All genetic correlations exceeded 0.5 between pairwise growth points. Moreover, the traits at initial days of age showed less correlation with those at later days of age. With phenotypes observed repeatedly, the model choice showed that the optimal RRMs could more precisely predict breeding values at a specific growth time than repeatability models or multiple trait animal models, which enhanced the efficiency of selection for the BWE and main morphological traits.

  5. Shaping asteroid models using genetic evolution (SAGE)

    NASA Astrophysics Data System (ADS)

    Bartczak, P.; Dudziński, G.

    2018-02-01

    In this work, we present SAGE (shaping asteroid models using genetic evolution), an asteroid modelling algorithm based solely on photometric lightcurve data. It produces non-convex shapes, orientations of the rotation axes and rotational periods of asteroids. The main concept behind a genetic evolution algorithm is to produce random populations of shapes and spin-axis orientations by mutating a seed shape and iterating the process until it converges to a stable global minimum. We tested SAGE on five artificial shapes. We also modelled asteroids 433 Eros and 9 Metis, since ground truth observations for them exist, allowing us to validate the models. We compared the derived shape of Eros with the NEAR Shoemaker model and that of Metis with adaptive optics and stellar occultation observations since other models from various inversion methods were available for Metis.

  6. Emerging Technologies to Create Inducible and Genetically Defined Porcine Cancer Models.

    PubMed

    Schook, Lawrence B; Rund, Laurie; Begnini, Karine R; Remião, Mariana H; Seixas, Fabiana K; Collares, Tiago

    2016-01-01

    There is an emerging need for new animal models that address unmet translational cancer research requirements. Transgenic porcine models provide an exceptional opportunity due to their genetic, anatomic, and physiological similarities with humans. Due to recent advances in the sequencing of domestic animal genomes and the development of new organism cloning technologies, it is now very feasible to utilize pigs as a malleable species, with similar anatomic and physiological features with humans, in which to develop cancer models. In this review, we discuss genetic modification technologies successfully used to produce porcine biomedical models, in particular the Cre-loxP System as well as major advances and perspectives the CRISPR/Cas9 System. Recent advancements in porcine tumor modeling and genome editing will bring porcine models to the forefront of translational cancer research.

  7. Reparametrization-based estimation of genetic parameters in multi-trait animal model using Integrated Nested Laplace Approximation.

    PubMed

    Mathew, Boby; Holand, Anna Marie; Koistinen, Petri; Léon, Jens; Sillanpää, Mikko J

    2016-02-01

    A novel reparametrization-based INLA approach as a fast alternative to MCMC for the Bayesian estimation of genetic parameters in multivariate animal model is presented. Multi-trait genetic parameter estimation is a relevant topic in animal and plant breeding programs because multi-trait analysis can take into account the genetic correlation between different traits and that significantly improves the accuracy of the genetic parameter estimates. Generally, multi-trait analysis is computationally demanding and requires initial estimates of genetic and residual correlations among the traits, while those are difficult to obtain. In this study, we illustrate how to reparametrize covariance matrices of a multivariate animal model/animal models using modified Cholesky decompositions. This reparametrization-based approach is used in the Integrated Nested Laplace Approximation (INLA) methodology to estimate genetic parameters of multivariate animal model. Immediate benefits are: (1) to avoid difficulties of finding good starting values for analysis which can be a problem, for example in Restricted Maximum Likelihood (REML); (2) Bayesian estimation of (co)variance components using INLA is faster to execute than using Markov Chain Monte Carlo (MCMC) especially when realized relationship matrices are dense. The slight drawback is that priors for covariance matrices are assigned for elements of the Cholesky factor but not directly to the covariance matrix elements as in MCMC. Additionally, we illustrate the concordance of the INLA results with the traditional methods like MCMC and REML approaches. We also present results obtained from simulated data sets with replicates and field data in rice.

  8. A quantitative test of population genetics using spatiogenetic patterns in bacterial colonies.

    PubMed

    Korolev, Kirill S; Xavier, João B; Nelson, David R; Foster, Kevin R

    2011-10-01

    It is widely accepted that population-genetics theory is the cornerstone of evolutionary analyses. Empirical tests of the theory, however, are challenging because of the complex relationships between space, dispersal, and evolution. Critically, we lack quantitative validation of the spatial models of population genetics. Here we combine analytics, on- and off-lattice simulations, and experiments with bacteria to perform quantitative tests of the theory. We study two bacterial species, the gut microbe Escherichia coli and the opportunistic pathogen Pseudomonas aeruginosa, and show that spatiogenetic patterns in colony biofilms of both species are accurately described by an extension of the one-dimensional stepping-stone model. We use one empirical measure, genetic diversity at the colony periphery, to parameterize our models and show that we can then accurately predict another key variable: the degree of short-range cell migration along an edge. Moreover, the model allows us to estimate other key parameters, including effective population size (density) at the expansion frontier. While our experimental system is a simplification of natural microbial community, we argue that it constitutes proof of principle that the spatial models of population genetics can quantitatively capture organismal evolution.

  9. Signatures of positive selection: from selective sweeps at individual loci to subtle allele frequency changes in polygenic adaptation.

    PubMed

    Stephan, Wolfgang

    2016-01-01

    In the past 15 years, numerous methods have been developed to detect selective sweeps underlying adaptations. These methods are based on relatively simple population genetic models, including one or two loci at which positive directional selection occurs, and one or two marker loci at which the impact of selection on linked neutral variation is quantified. Information about the phenotype under selection is not included in these models (except for fitness). In contrast, in the quantitative genetic models of adaptation, selection acts on one or more phenotypic traits, such that a genotype-phenotype map is required to bridge the gap to population genetics theory. Here I describe the range of population genetic models from selective sweeps in a panmictic population of constant size to evolutionary traffic when simultaneous sweeps at multiple loci interfere, and I also consider the case of polygenic selection characterized by subtle allele frequency shifts at many loci. Furthermore, I present an overview of the statistical tests that have been proposed based on these population genetics models to detect evidence for positive selection in the genome. © 2015 John Wiley & Sons Ltd.

  10. Model-Based Linkage Analysis of a Quantitative Trait.

    PubMed

    Song, Yeunjoo E; Song, Sunah; Schnell, Audrey H

    2017-01-01

    Linkage Analysis is a family-based method of analysis to examine whether any typed genetic markers cosegregate with a given trait, in this case a quantitative trait. If linkage exists, this is taken as evidence in support of a genetic basis for the trait. Historically, linkage analysis was performed using a binary disease trait, but has been extended to include quantitative disease measures. Quantitative traits are desirable as they provide more information than binary traits. Linkage analysis can be performed using single-marker methods (one marker at a time) or multipoint (using multiple markers simultaneously). In model-based linkage analysis the genetic model for the trait of interest is specified. There are many software options for performing linkage analysis. Here, we use the program package Statistical Analysis for Genetic Epidemiology (S.A.G.E.). S.A.G.E. was chosen because it also includes programs to perform data cleaning procedures and to generate and test genetic models for a quantitative trait, in addition to performing linkage analysis. We demonstrate in detail the process of running the program LODLINK to perform single-marker analysis, and MLOD to perform multipoint analysis using output from SEGREG, where SEGREG was used to determine the best fitting statistical model for the trait.

  11. A Geographically Explicit Genetic Model of Worldwide Human-Settlement History

    PubMed Central

    Liu, Hua; Prugnolle, Franck; Manica, Andrea; Balloux, François

    2006-01-01

    Currently available genetic and archaeological evidence is generally interpreted as supportive of a recent single origin of modern humans in East Africa. However, this is where the near consensus on human settlement history ends, and considerable uncertainty clouds any more detailed aspect of human colonization history. Here, we present a dynamic genetic model of human settlement history coupled with explicit geographical distances from East Africa, the likely origin of modern humans. We search for the best-supported parameter space by fitting our analytical prediction to genetic data that are based on 52 human populations analyzed at 783 autosomal microsatellite markers. This framework allows us to jointly estimate the key parameters of the expansion of modern humans. Our best estimates suggest an initial expansion of modern humans ∼56,000 years ago from a small founding population of ∼1,000 effective individuals. Our model further points to high growth rates in newly colonized habitats. The general fit of the model with the data is excellent. This suggests that coupling analytical genetic models with explicit demography and geography provides a powerful tool for making inferences on human-settlement history. PMID:16826514

  12. Polynomials to model the growth of young bulls in performance tests.

    PubMed

    Scalez, D C B; Fragomeni, B O; Passafaro, T L; Pereira, I G; Toral, F L B

    2014-03-01

    The use of polynomial functions to describe the average growth trajectory and covariance functions of Nellore and MA (21/32 Charolais+11/32 Nellore) young bulls in performance tests was studied. The average growth trajectories and additive genetic and permanent environmental covariance functions were fit with Legendre (linear through quintic) and quadratic B-spline (with two to four intervals) polynomials. In general, the Legendre and quadratic B-spline models that included more covariance parameters provided a better fit with the data. When comparing models with the same number of parameters, the quadratic B-spline provided a better fit than the Legendre polynomials. The quadratic B-spline with four intervals provided the best fit for the Nellore and MA groups. The fitting of random regression models with different types of polynomials (Legendre polynomials or B-spline) affected neither the genetic parameters estimates nor the ranking of the Nellore young bulls. However, fitting different type of polynomials affected the genetic parameters estimates and the ranking of the MA young bulls. Parsimonious Legendre or quadratic B-spline models could be used for genetic evaluation of body weight of Nellore young bulls in performance tests, whereas these parsimonious models were less efficient for animals of the MA genetic group owing to limited data at the extreme ages.

  13. Dominance genetic and maternal effects for genetic evaluation of egg production traits in dual-purpose chickens.

    PubMed

    Jasouri, M; Zamani, P; Alijani, S

    2017-10-01

    1. A study was conducted to study direct dominance genetic and maternal effects on genetic evaluation of production traits in dual-purpose chickens. The data set consisted of records of body weight and egg production of 49 749 Mazandaran fowls from 19 consecutive generations. Based on combinations of different random effects, including direct additive and dominance genetic and maternal additive genetic and environmental effects, 8 different models were compared. 2. Inclusion of a maternal genetic effect in the models noticeably improved goodness of fit for all traits. Direct dominance genetic effect did not have noticeable effects on goodness of fit but simultaneous inclusion of both direct dominance and maternal additive genetic effects improved fitting criteria and accuracies of genetic parameter estimates for hatching body weight and egg production traits. 3. Estimates of heritability (h 2 ) for body weights at hatch, 8 weeks and 12 weeks of age (BW0, BW8 and BW12, respectively), age at sexual maturity (ASM), average egg weights at 28-32 weeks of laying period (AEW), egg number (EN) and egg production intensity (EI) were 0.08, 0.21, 0.22, 0.22, 0.21, 0.09 and 0.10, respectively. For BW0, BW8, BW12, ASM, AEW, EN and EI, proportion of dominance genetic to total phenotypic variance (d 2 ) were 0.06, 0.08, 0.01, 0.06, 0.06, 0.08 and 0.07 and maternal heritability estimates (m 2 ) were 0.05, 0.04, 0.03, 0.13, 0.21, 0.07 and 0.03, respectively. Negligible coefficients of maternal environmental effect (c 2 ) from 0.01 to 0.08 were estimated for all traits, other than BW0, which had an estimate of 0.30. 4. Breeding values (BVs) estimated for body weights at early ages (BW0 and BW8) were considerably affected by components of the models, but almost similar BVs were estimated by different models for higher age body weight (BW12) and egg production traits (ASM, AEW, EN and EI). Generally, it could be concluded that inclusion of maternal effects (both genetic and environmental) and, to a lesser extent, direct dominance genetic effect would improve the accuracy of genetic evaluation for early age body weights in dual-purpose chickens.

  14. Practical implications for genetic modeling in the genomics era for the dairy industry

    USDA-ARS?s Scientific Manuscript database

    Genetic models convert data into estimated breeding values and other information useful to breeders. The goal is to provide accurate and timely predictions of the future performance for each animal (or embryo). Modeling involves defining traits, editing raw data, removing environmental effects, incl...

  15. Plumage condition in laying hens: genetic parameters for direct and indirect effects in two purebred layer lines.

    PubMed

    Brinker, Tessa; Bijma, Piter; Visscher, Jeroen; Rodenburg, T Bas; Ellen, Esther D

    2014-05-29

    Feather pecking is a major welfare issue in laying hen industry that leads to mortality. Due to a ban on conventional cages in the EU and on beak trimming in some countries of the EU, feather pecking will become an even bigger problem. Its severity depends both on the victim receiving pecking and on its group mates inflicting pecking (indirect effects), which together determine plumage condition of the victim. Plumage condition may depend, therefore, on both the direct genetic effect of an individual itself and on the indirect genetic effects of its group mates. Here, we present estimated genetic parameters for direct and indirect effects on plumage condition of different body regions in two purebred layer lines, and estimates of genetic correlations between body regions. Feather condition scores (FCS) were recorded at 40 weeks of age for neck, back, rump and belly and these four scores were added-up into a total FCS. A classical animal model and a direct-indirect effects model were used to estimate genetic parameters for FCS. In addition, a bivariate model with mortality (0/1) was used to account for mortality before recording FCS. Due to mortality during the first 23 weeks of laying, 5363 (for W1) and 5089 (for WB) FCS records were available. Total heritable variance for FCS ranged from 1.5% to 9.8% and from 9.8% to 53.6% when estimated respectively with the classical animal and the direct-indirect effects model. The direct-indirect effects model had a significantly higher likelihood. In both lines, 70% to 94% of the estimated total heritable variation in FCS was due to indirect effects. Using bivariate analysis of FCS and mortality did not affect estimates of genetic parameters. Genetic correlations were high between adjacent regions for FCS on neck, back, and rump but moderate to low for belly with other regions. Our results show that 70% to 94% of the heritable variation in FCS relates to indirect effects, indicating that methods of genetic selection that include indirect genetic effects offer perspectives to improve plumage condition in laying hens. This, in turn could reduce a major welfare problem.

  16. Nonlinear inversion of potential-field data using a hybrid-encoding genetic algorithm

    USGS Publications Warehouse

    Chen, C.; Xia, J.; Liu, J.; Feng, G.

    2006-01-01

    Using a genetic algorithm to solve an inverse problem of complex nonlinear geophysical equations is advantageous because it does not require computer gradients of models or "good" initial models. The multi-point search of a genetic algorithm makes it easier to find the globally optimal solution while avoiding falling into a local extremum. As is the case in other optimization approaches, the search efficiency for a genetic algorithm is vital in finding desired solutions successfully in a multi-dimensional model space. A binary-encoding genetic algorithm is hardly ever used to resolve an optimization problem such as a simple geophysical inversion with only three unknowns. The encoding mechanism, genetic operators, and population size of the genetic algorithm greatly affect search processes in the evolution. It is clear that improved operators and proper population size promote the convergence. Nevertheless, not all genetic operations perform perfectly while searching under either a uniform binary or a decimal encoding system. With the binary encoding mechanism, the crossover scheme may produce more new individuals than with the decimal encoding. On the other hand, the mutation scheme in a decimal encoding system will create new genes larger in scope than those in the binary encoding. This paper discusses approaches of exploiting the search potential of genetic operations in the two encoding systems and presents an approach with a hybrid-encoding mechanism, multi-point crossover, and dynamic population size for geophysical inversion. We present a method that is based on the routine in which the mutation operation is conducted in the decimal code and multi-point crossover operation in the binary code. The mix-encoding algorithm is called the hybrid-encoding genetic algorithm (HEGA). HEGA provides better genes with a higher probability by a mutation operator and improves genetic algorithms in resolving complicated geophysical inverse problems. Another significant result is that final solution is determined by the average model derived from multiple trials instead of one computation due to the randomness in a genetic algorithm procedure. These advantages were demonstrated by synthetic and real-world examples of inversion of potential-field data. ?? 2005 Elsevier Ltd. All rights reserved.

  17. Population Genetics of Three Dimensional Range Expansions

    NASA Astrophysics Data System (ADS)

    Lavrentovich, Maxim; Nelson, David

    2014-03-01

    We develop a simple model of genetic diversity in growing spherical cell clusters, where the growth is confined to the cluster surface. This kind of growth occurs in cells growing in soft agar, and can also serve as a simple model of avascular tumors. Mutation-selection balance in these radial expansions is strongly influenced by scaling near a neutral, voter model critical point and by the inflating frontier. We develop a scaling theory to describe how the dynamics of mutation-selection balance is cut off by inflation. Genetic drift, i.e., local fluctuations in the genetic diversity, also plays an important role, and can lead to the extinction even of selectively advantageous strains. We calculate this extinction probability, taking into account the effect of rough population frontiers.

  18. Are Australasian Genetic Counselors Interested in Private Practice at the Primary Care Level of Health Service?

    PubMed

    Sane, Vrunda; Humphreys, Linda; Peterson, Madelyn

    2015-10-01

    This study explored the perceived interest in development of private genetic counseling services in collaboration with primary care physicians in the Australasian setting by online survey of members of the Australasian Society of Genetic Counselors. Four hypothetical private practice models of professional collaboration between genetic counselors and primary care physicians or clinical geneticists were proposed to gauge interest and enthusiasm of ASGC members for this type of professional development. Perceived barriers and facilitators were also evaluated. 78 completed responses were included for analysis. The majority of participants (84.6 %) showed a positive degree of interest and enthusiasm towards potential for clinical work in private practice. All proposed practice models yielded a positive degree of interest from participants. Model 4 (the only model of collaboration with a clinical geneticist rather than primary care physician) was the clearly preferred option (mean = 4.26/5), followed by Model 2 (collaboration with a single primary care practice) (mean = 4.09/5), Model 3 (collaboration with multiple primary care clinics, multidisciplinary clinic or specialty clinic) (mean = 3.77/5) and finally, Model 1 (mean = 3.61/5), which was the most independent model of practice. When participants ranked the options in the order of preference, Model 4 remained the most popular first preference (44.6 %), followed by model 2 (21.6 %), model 3 (18.9 %) and model 1 was again least popular (10.8 %). There was no significant statistical correlation between demographic characteristics (age bracket, years of work experience, current level of work autonomy) and participants' preference for private practice models. Support from clinical genetics colleagues and the professional society was highly rated as a facilitator and, conversely, lack of such support as a significant barrier.

  19. Childhood separation anxiety disorder and adult onset panic attacks share a common genetic diathesis.

    PubMed

    Roberson-Nay, Roxann; Eaves, Lindon J; Hettema, John M; Kendler, Kenneth S; Silberg, Judy L

    2012-04-01

    Childhood separation anxiety disorder (SAD) is hypothesized to share etiologic roots with panic disorder. The aim of this study was to estimate the genetic and environmental sources of covariance between childhood SAD and adult onset panic attacks (AOPA), with the primary goal to determine whether these two phenotypes share a common genetic diathesis. Participants included parents and their monozygotic or dizygotic twins (n = 1,437 twin pairs) participating in the Virginia Twin Study of Adolescent Behavioral Development and those twins who later completed the Young Adult Follow-Up (YAFU). The Child and Adolescent Psychiatric Assessment was completed at three waves during childhood/adolescence followed by the Structured Clinical Interview for DSM-III-R at the YAFU. Two separate, bivariate Cholesky models were fit to childhood diagnoses of SAD and overanxious disorder (OAD), respectively, and their relation with AOPA; a trivariate Cholesky model also examined the collective influence of childhood SAD and OAD on AOPA. In the best-fitting bivariate model, the covariation between SAD and AOPA was accounted for by genetic and unique environmental factors only, with the genetic factor associated with childhood SAD explaining significant variance in AOPA. Environmental risk factors were not significantly shared between SAD and AOPA. By contrast, the genetic factor associated with childhood OAD did not contribute significantly to AOPA. Results of the trivariate Cholesky reaffirmed outcomes of bivariate models. These data indicate that childhood SAD and AOPA share a common genetic diathesis that is not observed for childhood OAD, strongly supporting the hypothesis of a specific genetic etiologic link between the two phenotypes. © 2012 Wiley Periodicals, Inc.

  20. Genetically informed ecological niche models improve climate change predictions.

    PubMed

    Ikeda, Dana H; Max, Tamara L; Allan, Gerard J; Lau, Matthew K; Shuster, Stephen M; Whitham, Thomas G

    2017-01-01

    We examined the hypothesis that ecological niche models (ENMs) more accurately predict species distributions when they incorporate information on population genetic structure, and concomitantly, local adaptation. Local adaptation is common in species that span a range of environmental gradients (e.g., soils and climate). Moreover, common garden studies have demonstrated a covariance between neutral markers and functional traits associated with a species' ability to adapt to environmental change. We therefore predicted that genetically distinct populations would respond differently to climate change, resulting in predicted distributions with little overlap. To test whether genetic information improves our ability to predict a species' niche space, we created genetically informed ecological niche models (gENMs) using Populus fremontii (Salicaceae), a widespread tree species in which prior common garden experiments demonstrate strong evidence for local adaptation. Four major findings emerged: (i) gENMs predicted population occurrences with up to 12-fold greater accuracy than models without genetic information; (ii) tests of niche similarity revealed that three ecotypes, identified on the basis of neutral genetic markers and locally adapted populations, are associated with differences in climate; (iii) our forecasts indicate that ongoing climate change will likely shift these ecotypes further apart in geographic space, resulting in greater niche divergence; (iv) ecotypes that currently exhibit the largest geographic distribution and niche breadth appear to be buffered the most from climate change. As diverse agents of selection shape genetic variability and structure within species, we argue that gENMs will lead to more accurate predictions of species distributions under climate change. © 2016 John Wiley & Sons Ltd.

  1. Application of a Genetic Algorithm and Multi Agent System to Explore Emergent Patterns of Social Rationality and a Distress-Based Model for Deceit in the Workplace

    DTIC Science & Technology

    2008-06-01

    postponed the fulfillment of her own Masters Degree by at least 18 months so that I would have the opportunity to earn mine. She is smart , lovely...GENETIC ALGORITHM AND MULTI AGENT SYSTEM TO EXPLORE EMERGENT PATTERNS OF SOCIAL RATIONALITY AND A DISTRESS-BASED MODEL FOR DECEIT IN THE WORKPLACE...of a Genetic Algorithm and Mutli Agent System to Explore Emergent Patterns of Social Rationality and a Distress-Based Model for Deceit in the

  2. Reduction of a metapopulation genetic model to an effective one-island model

    NASA Astrophysics Data System (ADS)

    Parra-Rojas, César; McKane, Alan J.

    2018-04-01

    We explore a model of metapopulation genetics which is based on a more ecologically motivated approach than is frequently used in population genetics. The size of the population is regulated by competition between individuals, rather than by artificially imposing a fixed population size. The increased complexity of the model is managed by employing techniques often used in the physical sciences, namely exploiting time-scale separation to eliminate fast variables and then constructing an effective model from the slow modes. We analyse this effective model and show that the predictions for the probability of fixation of the alleles and the mean time to fixation agree well with those found from numerical simulations of the original model. Contribution to the Focus Issue Evolutionary Modeling and Experimental Evolution edited by José Cuesta, Joachim Krug and Susanna Manrubia.

  3. Genetic analyses of protein yield in dairy cows applying random regression models with time-dependent and temperature x humidity-dependent covariates.

    PubMed

    Brügemann, K; Gernand, E; von Borstel, U U; König, S

    2011-08-01

    Data used in the present study included 1,095,980 first-lactation test-day records for protein yield of 154,880 Holstein cows housed on 196 large-scale dairy farms in Germany. Data were recorded between 2002 and 2009 and merged with meteorological data from public weather stations. The maximum distance between each farm and its corresponding weather station was 50 km. Hourly temperature-humidity indexes (THI) were calculated using the mean of hourly measurements of dry bulb temperature and relative humidity. On the phenotypic scale, an increase in THI was generally associated with a decrease in daily protein yield. For genetic analyses, a random regression model was applied using time-dependent (d in milk, DIM) and THI-dependent covariates. Additive genetic and permanent environmental effects were fitted with this random regression model and Legendre polynomials of order 3 for DIM and THI. In addition, the fixed curve was modeled with Legendre polynomials of order 3. Heterogeneous residuals were fitted by dividing DIM into 5 classes, and by dividing THI into 4 classes, resulting in 20 different classes. Additive genetic variances for daily protein yield decreased with increasing degrees of heat stress and were lowest at the beginning of lactation and at extreme THI. Due to higher additive genetic variances, slightly higher permanent environment variances, and similar residual variances, heritabilities were highest for low THI in combination with DIM at the end of lactation. Genetic correlations among individual values for THI were generally >0.90. These trends from the complex random regression model were verified by applying relatively simple bivariate animal models for protein yield measured in 2 THI environments; that is, defining a THI value of 60 as a threshold. These high correlations indicate the absence of any substantial genotype × environment interaction for protein yield. However, heritabilities and additive genetic variances from the random regression model tended to be slightly higher in the THI range corresponding to cows' comfort zone. Selecting such superior environments for progeny testing can contribute to an accurate genetic differentiation among selection candidates. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Empirical valence bond models for reactive potential energy surfaces: a parallel multilevel genetic program approach.

    PubMed

    Bellucci, Michael A; Coker, David F

    2011-07-28

    We describe a new method for constructing empirical valence bond potential energy surfaces using a parallel multilevel genetic program (PMLGP). Genetic programs can be used to perform an efficient search through function space and parameter space to find the best functions and sets of parameters that fit energies obtained by ab initio electronic structure calculations. Building on the traditional genetic program approach, the PMLGP utilizes a hierarchy of genetic programming on two different levels. The lower level genetic programs are used to optimize coevolving populations in parallel while the higher level genetic program (HLGP) is used to optimize the genetic operator probabilities of the lower level genetic programs. The HLGP allows the algorithm to dynamically learn the mutation or combination of mutations that most effectively increase the fitness of the populations, causing a significant increase in the algorithm's accuracy and efficiency. The algorithm's accuracy and efficiency is tested against a standard parallel genetic program with a variety of one-dimensional test cases. Subsequently, the PMLGP is utilized to obtain an accurate empirical valence bond model for proton transfer in 3-hydroxy-gamma-pyrone in gas phase and protic solvent. © 2011 American Institute of Physics

  5. Developing approaches for linear mixed modeling in landscape genetics through landscape-directed dispersal simulations

    USGS Publications Warehouse

    Row, Jeffrey R.; Knick, Steven T.; Oyler-McCance, Sara J.; Lougheed, Stephen C.; Fedy, Bradley C.

    2017-01-01

    Dispersal can impact population dynamics and geographic variation, and thus, genetic approaches that can establish which landscape factors influence population connectivity have ecological and evolutionary importance. Mixed models that account for the error structure of pairwise datasets are increasingly used to compare models relating genetic differentiation to pairwise measures of landscape resistance. A model selection framework based on information criteria metrics or explained variance may help disentangle the ecological and landscape factors influencing genetic structure, yet there are currently no consensus for the best protocols. Here, we develop landscape-directed simulations and test a series of replicates that emulate independent empirical datasets of two species with different life history characteristics (greater sage-grouse; eastern foxsnake). We determined that in our simulated scenarios, AIC and BIC were the best model selection indices and that marginal R2 values were biased toward more complex models. The model coefficients for landscape variables generally reflected the underlying dispersal model with confidence intervals that did not overlap with zero across the entire model set. When we controlled for geographic distance, variables not in the underlying dispersal models (i.e., nontrue) typically overlapped zero. Our study helps establish methods for using linear mixed models to identify the features underlying patterns of dispersal across a variety of landscapes.

  6. Path analysis of the genetic integration of traits in the sand cricket: a novel use of BLUPs.

    PubMed

    Roff, D A; Fairbairn, D J

    2011-09-01

    This study combines path analysis with quantitative genetics to analyse a key life history trade-off in the cricket, Gryllus firmus. We develop a path model connecting five traits associated with the trade-off between flight capability and reproduction and test this model using phenotypic data and estimates of breeding values (best linear unbiased predictors) from a half-sibling experiment. Strong support by both types of data validates our causal model and indicates concordance between the phenotypic and genetic expression of the trade-off. Comparisons of the trade-off between sexes and wing morphs reveal that these discrete phenotypes are not genetically independent and that the evolutionary trajectories of the two wing morphs are more tightly constrained to covary than those of the two sexes. Our results illustrate the benefits of combining a quantitative genetic analysis, which examines statistical correlations between traits, with a path model that focuses upon the causal components of variation. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  7. Biophysical connectivity explains population genetic structure in a highly dispersive marine species

    NASA Astrophysics Data System (ADS)

    Truelove, Nathan K.; Kough, Andrew S.; Behringer, Donald C.; Paris, Claire B.; Box, Stephen J.; Preziosi, Richard F.; Butler, Mark J.

    2017-03-01

    Connectivity, the exchange of individuals among locations, is a fundamental ecological process that explains how otherwise disparate populations interact. For most marine organisms, dispersal occurs primarily during a pelagic larval phase that connects populations. We paired population structure from comprehensive genetic sampling and biophysical larval transport modeling to describe how spiny lobster ( Panulirus argus) population differentiation is related to biological oceanography. A total of 581 lobsters were genotyped with 11 microsatellites from ten locations around the greater Caribbean. The overall F ST of 0.0016 ( P = 0.005) suggested low yet significant levels of structuring among sites. An isolation by geographic distance model did not explain spatial patterns of genetic differentiation in P. argus ( P = 0.19; Mantel r = 0.18), whereas a biophysical connectivity model provided a significant explanation of population differentiation ( P = 0.04; Mantel r = 0.47). Thus, even for a widely dispersing species, dispersal occurs over a continuum where basin-wide larval retention creates genetic structure. Our study provides a framework for future explorations of wide-scale larval dispersal and marine connectivity by integrating empirical genetic research and probabilistic modeling.

  8. Optimizing DNA assembly based on statistical language modelling.

    PubMed

    Fang, Gang; Zhang, Shemin; Dong, Yafei

    2017-12-15

    By successively assembling genetic parts such as BioBrick according to grammatical models, complex genetic constructs composed of dozens of functional blocks can be built. However, usually every category of genetic parts includes a few or many parts. With increasing quantity of genetic parts, the process of assembling more than a few sets of these parts can be expensive, time consuming and error prone. At the last step of assembling it is somewhat difficult to decide which part should be selected. Based on statistical language model, which is a probability distribution P(s) over strings S that attempts to reflect how frequently a string S occurs as a sentence, the most commonly used parts will be selected. Then, a dynamic programming algorithm was designed to figure out the solution of maximum probability. The algorithm optimizes the results of a genetic design based on a grammatical model and finds an optimal solution. In this way, redundant operations can be reduced and the time and cost required for conducting biological experiments can be minimized. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Human genetic susceptibility and infection with Leishmania peruviana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, M.A.; Davis, C.R.; Collins, A.

    1995-11-01

    Racial differences, familial clustering, and murine studies are suggestive of host genetic control of Leishmania infections. Complex segregation analysis has been carried out by use of the programs POINTER and COMDS and data from a total population survey, comprising 636 nuclear families, from an L. perurviana endemic area. The data support genetic components controlling susceptibility to clinical leishmaniasis, influencing severity of disease and resistance to disease among healthy individuals. A multifactorial model is favored over a sporadic model. Two-locus models provided the best fit to the data, the optimal model being a recessive gene (frequency .57) plus a modifier locus.more » Individuals infected at an early age and with recurrent lesions are genetically more susceptible than those infected with a single episode of disease at a later age. Among people with no lesions, those with a positive skin-test response are genetically less susceptible than those with a negative response. The possibility of the involvement of more than one gene together with environmental effects has implications for the design of future linkage studies. 31 refs., 7 tabs.« less

  10. Estimation of genetic parameters related to eggshell strength using random regression models.

    PubMed

    Guo, J; Ma, M; Qu, L; Shen, M; Dou, T; Wang, K

    2015-01-01

    This study examined the changes in eggshell strength and the genetic parameters related to this trait throughout a hen's laying life using random regression. The data were collected from a crossbred population between 2011 and 2014, where the eggshell strength was determined repeatedly for 2260 hens. Using random regression models (RRMs), several Legendre polynomials were employed to estimate the fixed, direct genetic and permanent environment effects. The residual effects were treated as independently distributed with heterogeneous variance for each test week. The direct genetic variance was included with second-order Legendre polynomials and the permanent environment with third-order Legendre polynomials. The heritability of eggshell strength ranged from 0.26 to 0.43, the repeatability ranged between 0.47 and 0.69, and the estimated genetic correlations between test weeks was high at > 0.67. The first eigenvalue of the genetic covariance matrix accounted for about 97% of the sum of all the eigenvalues. The flexibility and statistical power of RRM suggest that this model could be an effective method to improve eggshell quality and to reduce losses due to cracked eggs in a breeding plan.

  11. Genetic signatures of natural selection in a model invasive ascidian

    NASA Astrophysics Data System (ADS)

    Lin, Yaping; Chen, Yiyong; Yi, Changho; Fong, Jonathan J.; Kim, Won; Rius, Marc; Zhan, Aibin

    2017-03-01

    Invasive species represent promising models to study species’ responses to rapidly changing environments. Although local adaptation frequently occurs during contemporary range expansion, the associated genetic signatures at both population and genomic levels remain largely unknown. Here, we use genome-wide gene-associated microsatellites to investigate genetic signatures of natural selection in a model invasive ascidian, Ciona robusta. Population genetic analyses of 150 individuals sampled in Korea, New Zealand, South Africa and Spain showed significant genetic differentiation among populations. Based on outlier tests, we found high incidence of signatures of directional selection at 19 loci. Hitchhiking mapping analyses identified 12 directional selective sweep regions, and all selective sweep windows on chromosomes were narrow (~8.9 kb). Further analyses indentified 132 candidate genes under selection. When we compared our genetic data and six crucial environmental variables, 16 putatively selected loci showed significant correlation with these environmental variables. This suggests that the local environmental conditions have left significant signatures of selection at both population and genomic levels. Finally, we identified “plastic” genomic regions and genes that are promising regions to investigate evolutionary responses to rapid environmental change in C. robusta.

  12. Influence of mom and dad: quantitative genetic models for maternal effects and genomic imprinting.

    PubMed

    Santure, Anna W; Spencer, Hamish G

    2006-08-01

    The expression of an imprinted gene is dependent on the sex of the parent it was inherited from, and as a result reciprocal heterozygotes may display different phenotypes. In contrast, maternal genetic terms arise when the phenotype of an offspring is influenced by the phenotype of its mother beyond the direct inheritance of alleles. Both maternal effects and imprinting may contribute to resemblance between offspring of the same mother. We demonstrate that two standard quantitative genetic models for deriving breeding values, population variances and covariances between relatives, are not equivalent when maternal genetic effects and imprinting are acting. Maternal and imprinting effects introduce both sex-dependent and generation-dependent effects that result in differences in the way additive and dominance effects are defined for the two approaches. We use a simple example to demonstrate that both imprinting and maternal genetic effects add extra terms to covariances between relatives and that model misspecification may over- or underestimate true covariances or lead to extremely variable parameter estimation. Thus, an understanding of various forms of parental effects is essential in correctly estimating quantitative genetic variance components.

  13. On the validity of within-nuclear-family genetic association analysis in samples of extended families.

    PubMed

    Bureau, Alexandre; Duchesne, Thierry

    2015-12-01

    Splitting extended families into their component nuclear families to apply a genetic association method designed for nuclear families is a widespread practice in familial genetic studies. Dependence among genotypes and phenotypes of nuclear families from the same extended family arises because of genetic linkage of the tested marker with a risk variant or because of familial specificity of genetic effects due to gene-environment interaction. This raises concerns about the validity of inference conducted under the assumption of independence of the nuclear families. We indeed prove theoretically that, in a conditional logistic regression analysis applicable to disease cases and their genotyped parents, the naive model-based estimator of the variance of the coefficient estimates underestimates the true variance. However, simulations with realistic effect sizes of risk variants and variation of this effect from family to family reveal that the underestimation is negligible. The simulations also show the greater efficiency of the model-based variance estimator compared to a robust empirical estimator. Our recommendation is therefore, to use the model-based estimator of variance for inference on effects of genetic variants.

  14. Teaching Human Genetics with Mustard: Rapid Cycling Brassica rapa (Fast Plants Type) as a Model for Human Genetics in the Classroom Laboratory

    PubMed Central

    Pickard, Dawn

    2007-01-01

    We have developed experiments and materials to model human genetics using rapid cycling Brassica rapa, also known as Fast Plants. Because of their self-incompatibility for pollination and the genetic diversity within strains, B. rapa can serve as a relevant model for human genetics in teaching laboratory experiments. The experiment presented here is a paternity exclusion project in which a child is born with a known mother but two possible alleged fathers. Students use DNA markers (microsatellites) to perform paternity exclusion on these subjects. Realistic DNA marker analysis can be challenging to implement within the limitations of an instructional lab, but we have optimized the experimental methods to work in a teaching lab environment and to maximize the “hands-on” experience for the students. The genetic individuality of each B. rapa plant, revealed by analysis of polymorphic microsatellite markers, means that each time students perform this project, they obtain unique results that foster independent thinking in the process of data interpretation. PMID:17548880

  15. Meta-analysis reveals PTPN22 1858C/T polymorphism confers susceptibility to rheumatoid arthritis in Caucasian but not in Asian population.

    PubMed

    Nabi, Gowher; Akhter, Naseem; Wahid, Mohd; Bhatia, Kanchan; Mandal, Raju Kumar; Dar, Sajad Ahmad; Jawed, Arshad; Haque, Shafiul

    2016-01-01

    The PTPN22 1858C/T polymorphism is associated with rheumatoid arthritis (RA). However, reports from the Asian populations are conflicting in nature and lacks consensus. The aim of our study was to evaluate the association between the PTPN22 1858C/T polymorphism and RA in Asian and Caucasian subjects by carrying out a meta-analysis of Asian and Caucasian data. A total of 27 205 RA cases and 27 677 controls were considered in the present meta-analysis involving eight Asian and 35 Caucasian studies. The pooled odds ratios (ORs) were performed for the allele, dominant, and recessive genetic model. No statistically significant association was found between the PTPN22 1858C/T polymorphism and risk of RA in Asian population (allele genetic model: OR = 1.217, 95% confidence interval (CI) = 0.99-1.496, p value 0.061; dominant genetic model: OR = 1.238, 95% CI = 0.982-1.562, p value 0.071; recessive genetic model: OR = 1.964, 95% CI = 0.678-5.693, p value 0.213). A significant association with risk of RA in Caucasian population suggesting that T-- allele does confer susceptibility to RA in this subgroup was observed (allele genetic model: OR = 1.638, 95% CI = 1.574-1.705, p value < 0.0001; dominant genetic model: OR = 1.67, 95% CI = 1.598-1.745, p value < 0.0001; recessive genetic model: OR = 2.65, 95% CI = 2.273-3.089, p value < 0.0001). The PTPN22 1858C/T polymorphism is not associated with RA risk in Asian populations. However, our meta-analysis confirms that the PTPN22 1858C/T polymorphism is associated with RA susceptibility in Caucasians.

  16. PAQ: Partition Analysis of Quasispecies.

    PubMed

    Baccam, P; Thompson, R J; Fedrigo, O; Carpenter, S; Cornette, J L

    2001-01-01

    The complexities of genetic data may not be accurately described by any single analytical tool. Phylogenetic analysis is often used to study the genetic relationship among different sequences. Evolutionary models and assumptions are invoked to reconstruct trees that describe the phylogenetic relationship among sequences. Genetic databases are rapidly accumulating large amounts of sequences. Newly acquired sequences, which have not yet been characterized, may require preliminary genetic exploration in order to build models describing the evolutionary relationship among sequences. There are clustering techniques that rely less on models of evolution, and thus may provide nice exploratory tools for identifying genetic similarities. Some of the more commonly used clustering methods perform better when data can be grouped into mutually exclusive groups. Genetic data from viral quasispecies, which consist of closely related variants that differ by small changes, however, may best be partitioned by overlapping groups. We have developed an intuitive exploratory program, Partition Analysis of Quasispecies (PAQ), which utilizes a non-hierarchical technique to partition sequences that are genetically similar. PAQ was used to analyze a data set of human immunodeficiency virus type 1 (HIV-1) envelope sequences isolated from different regions of the brain and another data set consisting of the equine infectious anemia virus (EIAV) regulatory gene rev. Analysis of the HIV-1 data set by PAQ was consistent with phylogenetic analysis of the same data, and the EIAV rev variants were partitioned into two overlapping groups. PAQ provides an additional tool which can be used to glean information from genetic data and can be used in conjunction with other tools to study genetic similarities and genetic evolution of viral quasispecies.

  17. Common Psychiatric Disorders and Caffeine Use, Tolerance, and Withdrawal: An Examination of Shared Genetic and Environmental Effects

    PubMed Central

    Bergin, Jocilyn E.; Kendler, Kenneth S.

    2012-01-01

    Background Previous studies examined caffeine use and caffeine dependence and risk for the symptoms, or diagnosis, of psychiatric disorders. The current study aimed to determine if generalized anxiety disorder (GAD), panic disorder, phobias, major depressive disorder (MDD), anorexia nervosa (AN), or bulimia nervosa (BN) shared common genetic or environmental factors with caffeine use, caffeine tolerance, or caffeine withdrawal. Method Using 2,270 women from the Virginia Adult Twin Study of Psychiatric and Substance Use Disorders, bivariate Cholesky decomposition models were used to determine if any of the psychiatric disorders shared genetic or environmental factors with caffeine use phenotypes. Results GAD, phobias, and MDD shared genetic factors with caffeine use, with genetic correlations estimated to be 0.48, 0.25, and 0.38, respectively. Removal of the shared genetic and environmental parameter for phobias and caffeine use resulted in a significantly worse fitting model. MDD shared unique environmental factors (environmental correlation = 0.23) with caffeine tolerance; the genetic correlation between AN and caffeine tolerance and BN and caffeine tolerance were 0.64 and 0.49, respectively. Removal of the genetic and environmental correlation parameters resulted in significantly worse fitting models for GAD, phobias, MDD, AN, and BN, which suggested that there was significant shared liability between each of these phenotypes and caffeine tolerance. GAD had modest genetic correlations with caffeine tolerance, 0.24, and caffeine withdrawal, 0.35. Conclusions There was suggestive evidence of shared genetic and environmental liability between psychiatric disorders and caffeine phenotypes. This might inform us about the etiology of the comorbidity between these phenotypes. PMID:22854069

  18. Common psychiatric disorders and caffeine use, tolerance, and withdrawal: an examination of shared genetic and environmental effects.

    PubMed

    Bergin, Jocilyn E; Kendler, Kenneth S

    2012-08-01

    Previous studies examined caffeine use and caffeine dependence and risk for the symptoms, or diagnosis, of psychiatric disorders. The current study aimed to determine if generalized anxiety disorder (GAD), panic disorder, phobias, major depressive disorder (MDD), anorexia nervosa (AN), or bulimia nervosa (BN) shared common genetic or environmental factors with caffeine use, caffeine tolerance, or caffeine withdrawal. Using 2,270 women from the Virginia Adult Twin Study of Psychiatric and Substance Use Disorders, bivariate Cholesky decomposition models were used to determine if any of the psychiatric disorders shared genetic or environmental factors with caffeine use phenotypes. GAD, phobias, and MDD shared genetic factors with caffeine use, with genetic correlations estimated to be 0.48, 0.25, and 0.38, respectively. Removal of the shared genetic and environmental parameter for phobias and caffeine use resulted in a significantly worse fitting model. MDD shared unique environmental factors (environmental correlation=0.23) with caffeine tolerance; the genetic correlation between AN and caffeine tolerance and BN and caffeine tolerance were 0.64 and 0.49, respectively. Removal of the genetic and environmental correlation parameters resulted in significantly worse fitting models for GAD, phobias, MDD, AN, and BN, which suggested that there was significant shared liability between each of these phenotypes and caffeine tolerance. GAD had modest genetic correlations with caffeine tolerance, 0.24, and caffeine withdrawal, 0.35. There was suggestive evidence of shared genetic and environmental liability between psychiatric disorders and caffeine phenotypes. This might inform us about the etiology of the comorbidity between these phenotypes.

  19. Teaching Mendelian Genetics with the Computer.

    ERIC Educational Resources Information Center

    Small, James W., Jr.

    Students in general undergraduate courses in both biology and genetics seem to have great difficulty mastering the basic concepts of Mendelian Genetics and solving even simple problems. In an attempt to correct this situation, students in both courses at Rollins College were introduced to three simulation models of the genetics of the fruit…

  20. Genetic Causes of Syndromic and Non-Syndromic Autism

    ERIC Educational Resources Information Center

    Caglayan, Ahmet O.

    2010-01-01

    Aims: Over the past decade, genetic tests have become available for numerous heritable disorders, especially those whose inheritance follows the Mendelian model. Autism spectrum disorders (ASDs) represent a group of developmental disorders with a strong genetic basis. During the past few years, genetic research in ASDs has been successful in…

  1. Utility of computer simulations in landscape genetics

    Treesearch

    Bryan K. Epperson; Brad H. McRae; Kim Scribner; Samuel A. Cushman; Michael S. Rosenberg; Marie-Josee Fortin; Patrick M. A. James; Melanie Murphy; Stephanie Manel; Pierre Legendre; Mark R. T. Dale

    2010-01-01

    Population genetics theory is primarily based on mathematical models in which spatial complexity and temporal variability are largely ignored. In contrast, the field of landscape genetics expressly focuses on how population genetic processes are affected by complex spatial and temporal environmental heterogeneity. It is spatially explicit and relates patterns to...

  2. Diverse data supports the transition of filamentous fungal model organisms into the post-genomics era

    DOE PAGES

    McCluskey, Kevin; Baker, Scott E.

    2017-02-17

    As model organisms filamentous fungi have been important since the beginning of modern biological inquiry and have benefitted from open data since the earliest genetic maps were shared. From early origins in simple Mendelian genetics of mating types, parasexual genetics of colony colour, and the foundational demonstration of the segregation of a nutritional requirement, the contribution of research systems utilising filamentous fungi has spanned the biochemical genetics era, through the molecular genetics era, and now are at the very foundation of diverse omics approaches to research and development. Fungal model organisms have come from most major taxonomic groups although Ascomycetemore » filamentous fungi have seen the most major sustained effort. In addition to the published material about filamentous fungi, shared molecular tools have found application in every area of fungal biology. Likewise, shared data has contributed to the success of model systems. Furthermore, the scale of data supporting research with filamentous fungi has grown by 10 to 12 orders of magnitude. From genetic to molecular maps, expression databases, and finally genome resources, the open and collaborative nature of the research communities has assured that the rising tide of data has lifted all of the research systems together.« less

  3. Diverse data supports the transition of filamentous fungal model organisms into the post-genomics era

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCluskey, Kevin; Baker, Scott E.

    As model organisms filamentous fungi have been important since the beginning of modern biological inquiry and have benefitted from open data since the earliest genetic maps were shared. From early origins in simple Mendelian genetics of mating types, parasexual genetics of colony colour, and the foundational demonstration of the segregation of a nutritional requirement, the contribution of research systems utilising filamentous fungi has spanned the biochemical genetics era, through the molecular genetics era, and now are at the very foundation of diverse omics approaches to research and development. Fungal model organisms have come from most major taxonomic groups although Ascomycetemore » filamentous fungi have seen the most major sustained effort. In addition to the published material about filamentous fungi, shared molecular tools have found application in every area of fungal biology. Likewise, shared data has contributed to the success of model systems. Furthermore, the scale of data supporting research with filamentous fungi has grown by 10 to 12 orders of magnitude. From genetic to molecular maps, expression databases, and finally genome resources, the open and collaborative nature of the research communities has assured that the rising tide of data has lifted all of the research systems together.« less

  4. Accuracies of univariate and multivariate genomic prediction models in African cassava.

    PubMed

    Okeke, Uche Godfrey; Akdemir, Deniz; Rabbi, Ismail; Kulakow, Peter; Jannink, Jean-Luc

    2017-12-04

    Genomic selection (GS) promises to accelerate genetic gain in plant breeding programs especially for crop species such as cassava that have long breeding cycles. Practically, to implement GS in cassava breeding, it is necessary to evaluate different GS models and to develop suitable models for an optimized breeding pipeline. In this paper, we compared (1) prediction accuracies from a single-trait (uT) and a multi-trait (MT) mixed model for a single-environment genetic evaluation (Scenario 1), and (2) accuracies from a compound symmetric multi-environment model (uE) parameterized as a univariate multi-kernel model to a multivariate (ME) multi-environment mixed model that accounts for genotype-by-environment interaction for multi-environment genetic evaluation (Scenario 2). For these analyses, we used 16 years of public cassava breeding data for six target cassava traits and a fivefold cross-validation scheme with 10-repeat cycles to assess model prediction accuracies. In Scenario 1, the MT models had higher prediction accuracies than the uT models for all traits and locations analyzed, which amounted to on average a 40% improved prediction accuracy. For Scenario 2, we observed that the ME model had on average (across all locations and traits) a 12% improved prediction accuracy compared to the uE model. We recommend the use of multivariate mixed models (MT and ME) for cassava genetic evaluation. These models may be useful for other plant species.

  5. A General Definition of the Heritable Variation That Determines the Potential of a Population to Respond to Selection

    PubMed Central

    Bijma, Piter

    2011-01-01

    Genetic selection is a major force shaping life on earth. In classical genetic theory, response to selection is the product of the strength of selection and the additive genetic variance in a trait. The additive genetic variance reflects a population’s intrinsic potential to respond to selection. The ordinary additive genetic variance, however, ignores the social organization of life. With social interactions among individuals, individual trait values may depend on genes in others, a phenomenon known as indirect genetic effects. Models accounting for indirect genetic effects, however, lack a general definition of heritable variation. Here I propose a general definition of the heritable variation that determines the potential of a population to respond to selection. This generalizes the concept of heritable variance to any inheritance model and level of organization. The result shows that heritable variance determining potential response to selection is the variance among individuals in the heritable quantity that determines the population mean trait value, rather than the usual additive genetic component of phenotypic variance. It follows, therefore, that heritable variance may exceed phenotypic variance among individuals, which is impossible in classical theory. This work also provides a measure of the utilization of heritable variation for response to selection and integrates two well-known models of maternal genetic effects. The result shows that relatedness between the focal individual and the individuals affecting its fitness is a key determinant of the utilization of heritable variance for response to selection. PMID:21926298

  6. A general definition of the heritable variation that determines the potential of a population to respond to selection.

    PubMed

    Bijma, Piter

    2011-12-01

    Genetic selection is a major force shaping life on earth. In classical genetic theory, response to selection is the product of the strength of selection and the additive genetic variance in a trait. The additive genetic variance reflects a population's intrinsic potential to respond to selection. The ordinary additive genetic variance, however, ignores the social organization of life. With social interactions among individuals, individual trait values may depend on genes in others, a phenomenon known as indirect genetic effects. Models accounting for indirect genetic effects, however, lack a general definition of heritable variation. Here I propose a general definition of the heritable variation that determines the potential of a population to respond to selection. This generalizes the concept of heritable variance to any inheritance model and level of organization. The result shows that heritable variance determining potential response to selection is the variance among individuals in the heritable quantity that determines the population mean trait value, rather than the usual additive genetic component of phenotypic variance. It follows, therefore, that heritable variance may exceed phenotypic variance among individuals, which is impossible in classical theory. This work also provides a measure of the utilization of heritable variation for response to selection and integrates two well-known models of maternal genetic effects. The result shows that relatedness between the focal individual and the individuals affecting its fitness is a key determinant of the utilization of heritable variance for response to selection.

  7. Genetic correlations between body condition scores and fertility in dairy cattle using bivariate random regression models.

    PubMed

    De Haas, Y; Janss, L L G; Kadarmideen, H N

    2007-10-01

    Genetic correlations between body condition score (BCS) and fertility traits in dairy cattle were estimated using bivariate random regression models. BCS was recorded by the Swiss Holstein Association on 22,075 lactating heifers (primiparous cows) from 856 sires. Fertility data during first lactation were extracted for 40,736 cows. The fertility traits were days to first service (DFS), days between first and last insemination (DFLI), calving interval (CI), number of services per conception (NSPC) and conception rate to first insemination (CRFI). A bivariate model was used to estimate genetic correlations between BCS as a longitudinal trait by random regression components, and daughter's fertility at the sire level as a single lactation measurement. Heritability of BCS was 0.17, and heritabilities for fertility traits were low (0.01-0.08). Genetic correlations between BCS and fertility over the lactation varied from: -0.45 to -0.14 for DFS; -0.75 to 0.03 for DFLI; from -0.59 to -0.02 for CI; from -0.47 to 0.33 for NSPC and from 0.08 to 0.82 for CRFI. These results show (genetic) interactions between fat reserves and reproduction along the lactation trajectory of modern dairy cows, which can be useful in genetic selection as well as in management. Maximum genetic gain in fertility from indirect selection on BCS should be based on measurements taken in mid lactation when the genetic variance for BCS is largest, and the genetic correlations between BCS and fertility is strongest.

  8. A powerful and robust test in genetic association studies.

    PubMed

    Cheng, Kuang-Fu; Lee, Jen-Yu

    2014-01-01

    There are several well-known single SNP tests presented in the literature for detecting gene-disease association signals. Having in place an efficient and robust testing process across all genetic models would allow a more comprehensive approach to analysis. Although some studies have shown that it is possible to construct such a test when the variants are common and the genetic model satisfies certain conditions, the model conditions are too restrictive and in general difficult to verify. In this paper, we propose a powerful and robust test without assuming any model restrictions. Our test is based on the selected 2 × 2 tables derived from the usual 2 × 3 table. By signals from these tables, we show through simulations across a wide range of allele frequencies and genetic models that this approach may produce a test which is almost uniformly most powerful in the analysis of low- and high-frequency variants. Two cancer studies are used to demonstrate applications of the proposed test. © 2014 S. Karger AG, Basel.

  9. Mixed model approaches for diallel analysis based on a bio-model.

    PubMed

    Zhu, J; Weir, B S

    1996-12-01

    A MINQUE(1) procedure, which is minimum norm quadratic unbiased estimation (MINQUE) method with 1 for all the prior values, is suggested for estimating variance and covariance components in a bio-model for diallel crosses. Unbiasedness and efficiency of estimation were compared for MINQUE(1), restricted maximum likelihood (REML) and MINQUE theta which has parameter values for the prior values. MINQUE(1) is almost as efficient as MINQUE theta for unbiased estimation of genetic variance and covariance components. The bio-model is efficient and robust for estimating variance and covariance components for maternal and paternal effects as well as for nuclear effects. A procedure of adjusted unbiased prediction (AUP) is proposed for predicting random genetic effects in the bio-model. The jack-knife procedure is suggested for estimation of sampling variances of estimated variance and covariance components and of predicted genetic effects. Worked examples are given for estimation of variance and covariance components and for prediction of genetic merits.

  10. AOM/DSS Model of Colitis-Associated Cancer

    PubMed Central

    Parang, Bobak; Barret, Caitlyn W.; Williams, Christopher S.

    2016-01-01

    Summary Our understanding of colitis-associated carcinoma (CAC) has benefited substantially from mouse models that faithfully recapitulate human CAC. Chemical models, in particular, have enabled fast and efficient analysis of genetic and environmental modulators of CAC without the added requirement of time-intensive genetic crossings. Here we describe the Azoxymethane (AOM)/Dextran Sodium Sulfate (DSS) mouse model of inflammatory colorectal cancer. PMID:27246042

  11. Molecular Population Genetics

    PubMed Central

    Casillas, Sònia; Barbadilla, Antonio

    2017-01-01

    Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theory of molecular evolution or the footprint carved by natural selection on the patterns of genetic variation are two examples of the vast number of inspiring findings of population genetics research. Since the inception of the field, Drosophila has been the prominent model species: molecular variation in populations was first described in Drosophila and most of the population genetics hypotheses were tested in Drosophila species. In this review, we describe the main concepts, methods, and landmarks of molecular population genetics, using the Drosophila model as a reference. We describe the different genetic data sets made available by advances in molecular technologies, and the theoretical developments fostered by these data. Finally, we review the results and new insights provided by the population genomics approach, and conclude by enumerating challenges and new lines of inquiry posed by increasingly large population scale sequence data. PMID:28270526

  12. Molecular Population Genetics.

    PubMed

    Casillas, Sònia; Barbadilla, Antonio

    2017-03-01

    Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theory of molecular evolution or the footprint carved by natural selection on the patterns of genetic variation are two examples of the vast number of inspiring findings of population genetics research. Since the inception of the field, Drosophila has been the prominent model species: molecular variation in populations was first described in Drosophila and most of the population genetics hypotheses were tested in Drosophila species. In this review, we describe the main concepts, methods, and landmarks of molecular population genetics, using the Drosophila model as a reference. We describe the different genetic data sets made available by advances in molecular technologies, and the theoretical developments fostered by these data. Finally, we review the results and new insights provided by the population genomics approach, and conclude by enumerating challenges and new lines of inquiry posed by increasingly large population scale sequence data. Copyright © 2017 Casillas and Barbadilla.

  13. Breeding value accuracy estimates for growth traits using random regression and multi-trait models in Nelore cattle.

    PubMed

    Boligon, A A; Baldi, F; Mercadante, M E Z; Lobo, R B; Pereira, R J; Albuquerque, L G

    2011-06-28

    We quantified the potential increase in accuracy of expected breeding value for weights of Nelore cattle, from birth to mature age, using multi-trait and random regression models on Legendre polynomials and B-spline functions. A total of 87,712 weight records from 8144 females were used, recorded every three months from birth to mature age from the Nelore Brazil Program. For random regression analyses, all female weight records from birth to eight years of age (data set I) were considered. From this general data set, a subset was created (data set II), which included only nine weight records: at birth, weaning, 365 and 550 days of age, and 2, 3, 4, 5, and 6 years of age. Data set II was analyzed using random regression and multi-trait models. The model of analysis included the contemporary group as fixed effects and age of dam as a linear and quadratic covariable. In the random regression analyses, average growth trends were modeled using a cubic regression on orthogonal polynomials of age. Residual variances were modeled by a step function with five classes. Legendre polynomials of fourth and sixth order were utilized to model the direct genetic and animal permanent environmental effects, respectively, while third-order Legendre polynomials were considered for maternal genetic and maternal permanent environmental effects. Quadratic polynomials were applied to model all random effects in random regression models on B-spline functions. Direct genetic and animal permanent environmental effects were modeled using three segments or five coefficients, and genetic maternal and maternal permanent environmental effects were modeled with one segment or three coefficients in the random regression models on B-spline functions. For both data sets (I and II), animals ranked differently according to expected breeding value obtained by random regression or multi-trait models. With random regression models, the highest gains in accuracy were obtained at ages with a low number of weight records. The results indicate that random regression models provide more accurate expected breeding values than the traditionally finite multi-trait models. Thus, higher genetic responses are expected for beef cattle growth traits by replacing a multi-trait model with random regression models for genetic evaluation. B-spline functions could be applied as an alternative to Legendre polynomials to model covariance functions for weights from birth to mature age.

  14. Advancing the understanding of autism disease mechanisms through genetics

    PubMed Central

    de la Torre-Ubieta, Luis; Won, Hyejung; Stein, Jason L; Geschwind, Daniel H

    2016-01-01

    Progress in understanding the genetic etiology of autism spectrum disorders (ASD) has fueled remarkable advances in our understanding of its potential neurobiological mechanisms. Yet, at the same time, these findings highlight extraordinary causal diversity and complexity at many levels ranging from molecules to circuits and emphasize the gaps in our current knowledge. Here we review current understanding of the genetic architecture of ASD and integrate genetic evidence, neuropathology and studies in model systems with how they inform mechanistic models of ASD pathophysiology. Despite the challenges, these advances provide a solid foundation for the development of rational, targeted molecular therapies. PMID:27050589

  15. Genetic Pool Information Reflects Highly Suitable Areas: The Case of Two Parapatric Endangered Species of Tuco-tucos (Rodentia: Ctenomiydae)

    PubMed Central

    Galiano, Daniel; Bernardo-Silva, Jorge; de Freitas, Thales R. O.

    2014-01-01

    Conservation of small mammals requires knowledge of the genetically and ecologically meaningful spatial scales at which species respond to habitat modifications. Conservation strategies can be improved through the use of ecological niche models and genetic data to classify areas of high environmental suitability. In this study, we applied a Maxent model integrated with genetic information (nucleotide diversity, haplotype diversity and Fu's Fs neutrality tests) to evaluate potential genetic pool populations with highly suitable areas for two parapatric endangered species of tuco-tucos (Ctenomys minutus and C. lami). Our results demonstrated that both species were largely influenced by vegetation and soil variables at a landscape scale and inhabit a highly specific niche. Ctenomys minutus was also influenced by the variable altitude; the species was associated with low altitudes (sea level). Our model of genetic data associated with environmental suitability indicate that the genetic pool data were associated with highly suitable areas for C. minutus. This pattern was not evident for C. lami, but this outcome could be a consequence of the restricted range of the species. The preservation of species requires not only detailed knowledge of their natural history and genetic structure but also information on the availability of suitable areas where species can survive, and such knowledge can aid significantly in conservation planning. This finding reinforces the use of these two techniques for planning conservation actions. PMID:24819251

  16. Establishment of apoptotic regulatory network for genetic markers of colorectal cancer.

    PubMed

    Hao, Yibin; Shan, Guoyong; Nan, Kejun

    2017-03-01

    Our purpose is to screen out genetic markers applicable to early diagnosis for colorectal cancer and to establish apoptotic regulatory network model for colorectal cancer, thereby providing theoretical evidence and targeted therapy for early diagnosis of colorectal cancer. Taking databases including CNKI, VIP, Wanfang data, Pub Med, and MEDLINE as main sources of literature retrieval, literatures associated with genetic markers applied to early diagnosis of colorectal cancer were searched to perform comprehensive and quantitative analysis by Meta analysis, hence screening genetic markers used in early diagnosis of colorectal cancer. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were employed to establish apoptotic regulatory network model based on screened genetic markers, and then verification experiment was conducted. Through Meta analysis, seven genetic markers were screened out, including WWOX, K-ras, COX-2, p53, APC, DCC and PTEN, among which DCC shows highest diagnostic efficiency. GO analysis of genetic markers found that six genetic markers played role in biological process, molecular function and cellular component. It was indicated in apoptotic regulatory network built by KEGG analysis and verification experiment that WWOX could promote tumor cell apoptotic in colorectal cancer and elevate expression level of p53. The apoptotic regulatory model of colorectal cancer established in this study provides clinically theoretical evidence and targeted therapy for early diagnosis of colorectal cancer.

  17. The Genetic Covariation between Fear Conditioning and Self-Report Fears

    PubMed Central

    Hettema, John M.; Annas, Peter; Neale, Michael C.; Fredrikson, Mats; Sci, Dr Med; Kendler, Kenneth S.

    2008-01-01

    Background Fear conditioning is a traditional model for the acquisition of phobias, while behavioral therapies utilize processes underlying extinction to treat phobic and other anxiety disorders. Furthermore, fear conditioning has been proposed as an endophenotype for genetic studies of anxiety disorders. While prior studies have demonstrated that fear conditioning and self-report fears are heritable, no studies have determined whether they share a common genetic basis. Methods We obtained fear conditioning data from 173 twin pairs from the Swedish Twin Registry who also provided self-report ratings of 16 common fears. Using multivariate structural equation modeling, we analyzed factor-derived scores for the subjective fear ratings together with the electrophysiologic skin conductance responses during habituation, acquisition, and extinction to determine the extent of their genetic covariation. Results Phenotypic correlations between experimental and self-report fear measures were modest and, and counter-intuitively, negative; that is, subjects who reported themselves as more fearful had smaller electrophysiologic responses. Best-fit models estimated a significant (negative) genetic correlation between them, although genetic factors underlying fear conditioning accounted for only 9% of individual differences in self-report fears. Conclusions Experimentally-derived fear conditioning measures share only a small portion of the genetic factors underlying individual differences in subjective fears, cautioning against relying too heavily on the former as an endophenotype for genetic studies of phobic disorders. PMID:17698042

  18. Comparative Analysis of Soft Computing Models in Prediction of Bending Rigidity of Cotton Woven Fabrics

    NASA Astrophysics Data System (ADS)

    Guruprasad, R.; Behera, B. K.

    2015-10-01

    Quantitative prediction of fabric mechanical properties is an essential requirement for design engineering of textile and apparel products. In this work, the possibility of prediction of bending rigidity of cotton woven fabrics has been explored with the application of Artificial Neural Network (ANN) and two hybrid methodologies, namely Neuro-genetic modeling and Adaptive Neuro-Fuzzy Inference System (ANFIS) modeling. For this purpose, a set of cotton woven grey fabrics was desized, scoured and relaxed. The fabrics were then conditioned and tested for bending properties. With the database thus created, a neural network model was first developed using back propagation as the learning algorithm. The second model was developed by applying a hybrid learning strategy, in which genetic algorithm was first used as a learning algorithm to optimize the number of neurons and connection weights of the neural network. The Genetic algorithm optimized network structure was further allowed to learn using back propagation algorithm. In the third model, an ANFIS modeling approach was attempted to map the input-output data. The prediction performances of the models were compared and a sensitivity analysis was reported. The results show that the prediction by neuro-genetic and ANFIS models were better in comparison with that of back propagation neural network model.

  19. How's the Flu Getting Through? Landscape genetics suggests both humans and birds spread H5N1 in Egypt.

    PubMed

    Young, Sean G; Carrel, Margaret; Kitchen, Andrew; Malanson, George P; Tamerius, James; Ali, Mohamad; Kayali, Ghazi

    2017-04-01

    First introduced to Egypt in 2006, H5N1 highly pathogenic avian influenza has resulted in the death of millions of birds and caused over 350 infections and at least 117 deaths in humans. After a decade of viral circulation, outbreaks continue to occur and diffusion mechanisms between poultry farms remain unclear. Using landscape genetics techniques, we identify the distance models most strongly correlated with the genetic relatedness of the viruses, suggesting the most likely methods of viral diffusion within Egyptian poultry. Using 73 viral genetic sequences obtained from infected birds throughout northern Egypt between 2009 and 2015, we calculated the genetic dissimilarity between H5N1 viruses for all eight gene segments. Spatial correlation was evaluated using Mantel tests and correlograms and multiple regression of distance matrices within causal modeling and relative support frameworks. These tests examine spatial patterns of genetic relatedness, and compare different models of distance. Four models were evaluated: Euclidean distance, road network distance, road network distance via intervening markets, and a least-cost path model designed to approximate wild waterbird travel using niche modeling and circuit theory. Samples from backyard farms were most strongly correlated with least cost path distances. Samples from commercial farms were most strongly correlated with road network distances. Results were largely consistent across gene segments. Results suggest wild birds play an important role in viral diffusion between backyard farms, while commercial farms experience human-mediated diffusion. These results can inform avian influenza surveillance and intervention strategies in Egypt. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Panel 4: Recent Advances in Otitis Media in Molecular Biology, Biochemistry, Genetics, and Animal Models

    PubMed Central

    Li, Jian-Dong; Hermansson, Ann; Ryan, Allen F.; Bakaletz, Lauren O.; Brown, Steve D.; Cheeseman, Michael T.; Juhn, Steven K.; Jung, Timothy T. K.; Lim, David J.; Lim, Jae Hyang; Lin, Jizhen; Moon, Sung-Kyun; Post, J. Christopher

    2014-01-01

    Background Otitis media (OM) is the most common childhood bacterial infection and also the leading cause of conductive hearing loss in children. Currently, there is an urgent need for developing novel therapeutic agents for treating OM based on full understanding of molecular pathogenesis in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Objective To provide a state-of-the-art review concerning recent advances in OM in the areas of molecular biology, biochemistry, genetics, and animal model studies and to discuss the future directions of OM studies in these areas. Data Sources and Review Methods A structured search of the current literature (since June 2007). The authors searched PubMed for published literature in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Results Over the past 4 years, significant progress has been made in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. These studies brought new insights into our understanding of the molecular and biochemical mechanisms underlying the molecular pathogenesis of OM and helped identify novel therapeutic targets for OM. Conclusions and Implications for Practice Our understanding of the molecular pathogenesis of OM has been significantly advanced, particularly in the areas of inflammation, innate immunity, mucus overproduction, mucosal hyperplasia, middle ear and inner ear interaction, genetics, genome sequencing, and animal model studies. Although these studies are still in their experimental stages, they help identify new potential therapeutic targets. Future preclinical and clinical studies will help to translate these exciting experimental research findings into clinical applications. PMID:23536532

  1. The Application of Structural Equation Modeling to Maternal Ratings of Twins' Behavior and Emotional Problems.

    ERIC Educational Resources Information Center

    Silberg, Judy L.; And Others

    1994-01-01

    Applied structural equation modeling to twin data to assess impact of genetic and environmental factors on children's behavioral and emotional functioning. Applied models to maternal ratings of behavior of 515 monozygotic and 749 dizygotic twin pairs. Importance of genetic, shared, and specific environmental factors for explaining variation was…

  2. Developing Pedagogical Tools to Improve Teaching Multiple Models of the Gene in High School

    ERIC Educational Resources Information Center

    Auckaraaree, Nantaya

    2013-01-01

    Multiple models of the gene are used to explore genetic phenomena in scientific practices and in the classroom. In genetics curricula, the classical and molecular models are presented in disconnected domains. Research demonstrates that, without explicit connections, students have difficulty developing an understanding of the gene that spans…

  3. Accounting for Errors in Low Coverage High-Throughput Sequencing Data When Constructing Genetic Maps Using Biparental Outcrossed Populations

    PubMed Central

    Bilton, Timothy P.; Schofield, Matthew R.; Black, Michael A.; Chagné, David; Wilcox, Phillip L.; Dodds, Ken G.

    2018-01-01

    Next-generation sequencing is an efficient method that allows for substantially more markers than previous technologies, providing opportunities for building high-density genetic linkage maps, which facilitate the development of nonmodel species’ genomic assemblies and the investigation of their genes. However, constructing genetic maps using data generated via high-throughput sequencing technology (e.g., genotyping-by-sequencing) is complicated by the presence of sequencing errors and genotyping errors resulting from missing parental alleles due to low sequencing depth. If unaccounted for, these errors lead to inflated genetic maps. In addition, map construction in many species is performed using full-sibling family populations derived from the outcrossing of two individuals, where unknown parental phase and varying segregation types further complicate construction. We present a new methodology for modeling low coverage sequencing data in the construction of genetic linkage maps using full-sibling populations of diploid species, implemented in a package called GUSMap. Our model is based on the Lander–Green hidden Markov model but extended to account for errors present in sequencing data. We were able to obtain accurate estimates of the recombination fractions and overall map distance using GUSMap, while most existing mapping packages produced inflated genetic maps in the presence of errors. Our results demonstrate the feasibility of using low coverage sequencing data to produce genetic maps without requiring extensive filtering of potentially erroneous genotypes, provided that the associated errors are correctly accounted for in the model. PMID:29487138

  4. Accounting for Errors in Low Coverage High-Throughput Sequencing Data When Constructing Genetic Maps Using Biparental Outcrossed Populations.

    PubMed

    Bilton, Timothy P; Schofield, Matthew R; Black, Michael A; Chagné, David; Wilcox, Phillip L; Dodds, Ken G

    2018-05-01

    Next-generation sequencing is an efficient method that allows for substantially more markers than previous technologies, providing opportunities for building high-density genetic linkage maps, which facilitate the development of nonmodel species' genomic assemblies and the investigation of their genes. However, constructing genetic maps using data generated via high-throughput sequencing technology ( e.g. , genotyping-by-sequencing) is complicated by the presence of sequencing errors and genotyping errors resulting from missing parental alleles due to low sequencing depth. If unaccounted for, these errors lead to inflated genetic maps. In addition, map construction in many species is performed using full-sibling family populations derived from the outcrossing of two individuals, where unknown parental phase and varying segregation types further complicate construction. We present a new methodology for modeling low coverage sequencing data in the construction of genetic linkage maps using full-sibling populations of diploid species, implemented in a package called GUSMap. Our model is based on the Lander-Green hidden Markov model but extended to account for errors present in sequencing data. We were able to obtain accurate estimates of the recombination fractions and overall map distance using GUSMap, while most existing mapping packages produced inflated genetic maps in the presence of errors. Our results demonstrate the feasibility of using low coverage sequencing data to produce genetic maps without requiring extensive filtering of potentially erroneous genotypes, provided that the associated errors are correctly accounted for in the model. Copyright © 2018 Bilton et al.

  5. Canine and Feline Models of Human Genetic Diseases and Their Contributions to Advancing Clinical Therapies
.

    PubMed

    Gurda, Brittney L; Bradbury, Allison M; Vite, Charles H

    2017-09-01

    For many lethal or debilitating genetic disorders in patients there are no satisfactory therapies. Several barriers exist that hinder the developments of effective therapies including the limited availability of clinically relevant animal models that faithfully recapitulate human genetic disease. In 1974, the Referral Center for Animal Models of Human Genetic Disease (RCAM) was established by Dr. Donald F. Patterson and continued by Dr. Mark E. Haskins at the University of Pennsylvania with the mission to discover, understand, treat, and maintain breeding colonies of naturally occurring hereditary disorders in dogs and cats that are orthologous to those found in human patients. Although non-human primates, sheep, and pig models are also available within the medical community, naturally occurring diseases are rarely identified in non-human primates, and the vast behavioral, clinicopathological, physiological, and anatomical knowledge available regarding dogs and cats far surpasses what is available in ovine and porcine species. The canine and feline models that are maintained at RCAM are presented here with a focus on preclinical therapy data. Clinical studies that have been generated from preclinical work in these models are also presented.

  6. Frequency-Dependent Selection: The High Potential for Permanent Genetic Variation in the Diallelic, Pairwise Interaction Model

    PubMed Central

    Asmussen, M. A.; Basnayake, E.

    1990-01-01

    A detailed analytic and numerical study is made of the potential for permanent genetic variation in frequency-dependent models based on pairwise interactions among genotypes at a single diallelic locus. The full equilibrium structure and qualitative gene-frequency dynamics are derived analytically for a symmetric model, in which pairwise fitnesses are chiefly determined by the genetic similarity of the individuals involved. This is supplemented by an extensive numerical investigation of the general model, the symmetric model, and nine other special cases. Together the results show that there is a high potential for permanent genetic diversity in the pairwise interaction model, and provide insight into the extent to which various forms of genotypic interactions enhance or reduce this potential. Technically, although two stable polymorphic equilibria are possible, the increased likelihood of maintaining both alleles, and the poor performance of protected polymorphism conditions as a measure of this likelihood, are primarily due to a greater variety and frequency of equilibrium patterns with one stable polymorphic equilibrium, in conjunction with a disproportionately large domain of attraction for stable internal equilibria. PMID:2341034

  7. Research on prediction of agricultural machinery total power based on grey model optimized by genetic algorithm

    NASA Astrophysics Data System (ADS)

    Xie, Yan; Li, Mu; Zhou, Jin; Zheng, Chang-zheng

    2009-07-01

    Agricultural machinery total power is an important index to reflex and evaluate the level of agricultural mechanization. It is the power source of agricultural production, and is the main factors to enhance the comprehensive agricultural production capacity expand production scale and increase the income of the farmers. Its demand is affected by natural, economic, technological and social and other "grey" factors. Therefore, grey system theory can be used to analyze the development of agricultural machinery total power. A method based on genetic algorithm optimizing grey modeling process is introduced in this paper. This method makes full use of the advantages of the grey prediction model and characteristics of genetic algorithm to find global optimization. So the prediction model is more accurate. According to data from a province, the GM (1, 1) model for predicting agricultural machinery total power was given based on the grey system theories and genetic algorithm. The result indicates that the model can be used as agricultural machinery total power an effective tool for prediction.

  8. Emerging Technologies to Create Inducible and Genetically Defined Porcine Cancer Models

    PubMed Central

    Schook, Lawrence B.; Rund, Laurie; Begnini, Karine R.; Remião, Mariana H.; Seixas, Fabiana K.; Collares, Tiago

    2016-01-01

    There is an emerging need for new animal models that address unmet translational cancer research requirements. Transgenic porcine models provide an exceptional opportunity due to their genetic, anatomic, and physiological similarities with humans. Due to recent advances in the sequencing of domestic animal genomes and the development of new organism cloning technologies, it is now very feasible to utilize pigs as a malleable species, with similar anatomic and physiological features with humans, in which to develop cancer models. In this review, we discuss genetic modification technologies successfully used to produce porcine biomedical models, in particular the Cre-loxP System as well as major advances and perspectives the CRISPR/Cas9 System. Recent advancements in porcine tumor modeling and genome editing will bring porcine models to the forefront of translational cancer research. PMID:26973698

  9. Efficient identification and referral of low-income women at high risk for hereditary breast cancer: a practice-based approach.

    PubMed

    Joseph, G; Kaplan, C; Luce, J; Lee, R; Stewart, S; Guerra, C; Pasick, R

    2012-01-01

    Identification of low-income women with the rare but serious risk of hereditary cancer and their referral to appropriate services presents an important public health challenge. We report the results of formative research to reach thousands of women for efficient identification of those at high risk and expedient access to free genetic services. External validity is maximized by emphasizing intervention fit with the two end-user organizations who must connect to make this possible. This study phase informed the design of a subsequent randomized controlled trial. We conducted a randomized controlled pilot study (n = 38) to compare two intervention models for feasibility and impact. The main outcome was receipt of genetic counseling during a two-month intervention period. Model 1 was based on the usual outcall protocol of an academic hospital genetic risk program, and Model 2 drew on the screening and referral procedures of a statewide toll-free phone line through which large numbers of high-risk women can be identified. In Model 1, the risk program proactively calls patients to schedule genetic counseling; for Model 2, women are notified of their eligibility for counseling and make the call themselves. We also developed and pretested a family history screener for administration by phone to identify women appropriate for genetic counseling. There was no statistically significant difference in receipt of genetic counseling between women randomized to Model 1 (3/18) compared with Model 2 (3/20) during the intervention period. However, when unresponsive women in Model 2 were called after 2 months, 7 more obtained counseling; 4 women from Model 1 were also counseled after the intervention. Thus, the intervention model that closely aligned with the risk program's outcall to high-risk women was found to be feasible and brought more low-income women to free genetic counseling. Our screener was easy to administer by phone and appeared to identify high-risk callers effectively. The model and screener are now in use in the main trial to test the effectiveness of this screening and referral intervention. A validation analysis of the screener is also underway. Identification of intervention strategies and tools, and their systematic comparison for impact and efficiency in the context where they will ultimately be used are critical elements of practice-based research. Copyright © 2012 S. Karger AG, Basel.

  10. Genetic mapping in the presence of genotyping errors.

    PubMed

    Cartwright, Dustin A; Troggio, Michela; Velasco, Riccardo; Gutin, Alexander

    2007-08-01

    Genetic maps are built using the genotypes of many related individuals. Genotyping errors in these data sets can distort genetic maps, especially by inflating the distances. We have extended the traditional likelihood model used for genetic mapping to include the possibility of genotyping errors. Each individual marker is assigned an error rate, which is inferred from the data, just as the genetic distances are. We have developed a software package, called TMAP, which uses this model to find maximum-likelihood maps for phase-known pedigrees. We have tested our methods using a data set in Vitis and on simulated data and confirmed that our method dramatically reduces the inflationary effect caused by increasing the number of markers and leads to more accurate orders.

  11. Genetic Mapping in the Presence of Genotyping Errors

    PubMed Central

    Cartwright, Dustin A.; Troggio, Michela; Velasco, Riccardo; Gutin, Alexander

    2007-01-01

    Genetic maps are built using the genotypes of many related individuals. Genotyping errors in these data sets can distort genetic maps, especially by inflating the distances. We have extended the traditional likelihood model used for genetic mapping to include the possibility of genotyping errors. Each individual marker is assigned an error rate, which is inferred from the data, just as the genetic distances are. We have developed a software package, called TMAP, which uses this model to find maximum-likelihood maps for phase-known pedigrees. We have tested our methods using a data set in Vitis and on simulated data and confirmed that our method dramatically reduces the inflationary effect caused by increasing the number of markers and leads to more accurate orders. PMID:17277374

  12. Emerging from the bottleneck: Benefits of the comparative approach to modern neuroscience

    PubMed Central

    Brenowitz, Eliot A.; Zakon, Harold H.

    2015-01-01

    Neuroscience historically exploited a wide diversity of animal taxa. Recently, however, research focused increasingly on a few model species. This trend accelerated with the genetic revolution, as genomic sequences and genetic tools became available for a few species, which formed a bottleneck. This coalescence on a small set of model species comes with several costs often not considered, especially in the current drive to use mice explicitly as models for human diseases. Comparative studies of strategically chosen non-model species can complement model species research and yield more rigorous studies. As genetic sequences and tools become available for many more species, we are poised to emerge from the bottleneck and once again exploit the rich biological diversity offered by comparative studies. PMID:25800324

  13. Development of a Tool for an Efficient Calibration of CORSIM Models

    DOT National Transportation Integrated Search

    2014-08-01

    This project proposes a Memetic Algorithm (MA) for the calibration of microscopic traffic flow simulation models. The proposed MA includes a combination of genetic and simulated annealing algorithms. The genetic algorithm performs the exploration of ...

  14. GENETICS AND POPULATION-LEVEL RISK ASSESSMENT

    EPA Science Inventory

    Genetic variation defines population structure and provides the mechanism for populations to adapt to novel stressors. Despite its fundamental importance in understanding populations, genetic information has been included rarely in models of population dynamics (endangered speci...

  15. The genetic basis of alcoholism: multiple phenotypes, many genes, complex networks.

    PubMed

    Morozova, Tatiana V; Goldman, David; Mackay, Trudy F C; Anholt, Robert R H

    2012-02-20

    Alcoholism is a significant public health problem. A picture of the genetic architecture underlying alcohol-related phenotypes is emerging from genome-wide association studies and work on genetically tractable model organisms.

  16. Genotype by production environment interaction for birth and weaning weights in a population of composite beef cattle.

    PubMed

    Santana, M L; Eler, J P; Bignardi, A B; Ferraz, J B S

    2014-03-01

    The objectives of the present study were: (1) to evaluate the importance of genotype × production environment interaction for the genetic evaluation of birth weight (BW) and weaning weight (WW) in a population of composite beef cattle in Brazil, and (2) to investigate the importance of sire × contemporary group interaction (S × CG) to model G × E and improve the accuracy of prediction in routine genetic evaluations of this population. Analyses were performed with one, two (favorable and unfavorable) or three (favorable, intermediate, unfavorable) different definitions of production environments. Thus, BW and WW records of animals in a favorable environment were assigned to either trait 1, in an intermediate environment to trait 2 or in an unfavorable environment to trait 3. The (co)variance components were estimated using Gibbs sampling in single-, bi- or three-trait animal models according to the definition of number of production environments. In general, the estimates of genetic parameters for BW and WW were similar between environments. The additive genetic correlations between production environments were close to unity for BW; however, when examining the highest posterior density intervals, the correlation between favorable and unfavorable environments reached a value of only 0.70, a fact that may lead to changes in the ranking of sires across environments. The posterior mean genetic correlation between direct effects was 0.63 in favorable and unfavorable environments for WW. When S × CG was included in two- or three-trait analyses, all direct genetic correlations were close to unity, suggesting that there was no evidence of a genotype × production environment interaction. Furthermore, the model including S × CG contributed to prevent overestimation of the accuracy of breeding values of sires, provided a lower error of prediction for both direct and maternal breeding values, lower squared bias, residual variance and deviance information criterion than the model omitting S × CG. Thus, the model that included S × CG can therefore be considered the best model on the basis of these criteria. The genotype × production environment interaction should not be neglected in the genetic evaluation of BW and WW in the present population of beef cattle. The inclusion of S × CG in the model is a feasible and plausible alternative to model the effects of G × E in the genetic evaluations.

  17. Efficient simulation and likelihood methods for non-neutral multi-allele models.

    PubMed

    Joyce, Paul; Genz, Alan; Buzbas, Erkan Ozge

    2012-06-01

    Throughout the 1980s, Simon Tavaré made numerous significant contributions to population genetics theory. As genetic data, in particular DNA sequence, became more readily available, a need to connect population-genetic models to data became the central issue. The seminal work of Griffiths and Tavaré (1994a , 1994b , 1994c) was among the first to develop a likelihood method to estimate the population-genetic parameters using full DNA sequences. Now, we are in the genomics era where methods need to scale-up to handle massive data sets, and Tavaré has led the way to new approaches. However, performing statistical inference under non-neutral models has proved elusive. In tribute to Simon Tavaré, we present an article in spirit of his work that provides a computationally tractable method for simulating and analyzing data under a class of non-neutral population-genetic models. Computational methods for approximating likelihood functions and generating samples under a class of allele-frequency based non-neutral parent-independent mutation models were proposed by Donnelly, Nordborg, and Joyce (DNJ) (Donnelly et al., 2001). DNJ (2001) simulated samples of allele frequencies from non-neutral models using neutral models as auxiliary distribution in a rejection algorithm. However, patterns of allele frequencies produced by neutral models are dissimilar to patterns of allele frequencies produced by non-neutral models, making the rejection method inefficient. For example, in some cases the methods in DNJ (2001) require 10(9) rejections before a sample from the non-neutral model is accepted. Our method simulates samples directly from the distribution of non-neutral models, making simulation methods a practical tool to study the behavior of the likelihood and to perform inference on the strength of selection.

  18. Landscape influences on dispersal behaviour: a theoretical model and empirical test using the fire salamander, Salamandra infraimmaculata.

    PubMed

    Kershenbaum, Arik; Blank, Lior; Sinai, Iftach; Merilä, Juha; Blaustein, Leon; Templeton, Alan R

    2014-06-01

    When populations reside within a heterogeneous landscape, isolation by distance may not be a good predictor of genetic divergence if dispersal behaviour and therefore gene flow depend on landscape features. Commonly used approaches linking landscape features to gene flow include the least cost path (LCP), random walk (RW), and isolation by resistance (IBR) models. However, none of these models is likely to be the most appropriate for all species and in all environments. We compared the performance of LCP, RW and IBR models of dispersal with the aid of simulations conducted on artificially generated landscapes. We also applied each model to empirical data on the landscape genetics of the endangered fire salamander, Salamandra infraimmaculata, in northern Israel, where conservation planning requires an understanding of the dispersal corridors. Our simulations demonstrate that wide dispersal corridors of the low-cost environment facilitate dispersal in the IBR model, but inhibit dispersal in the RW model. In our empirical study, IBR explained the genetic divergence better than the LCP and RW models (partial Mantel correlation 0.413 for IBR, compared to 0.212 for LCP, and 0.340 for RW). Overall dispersal cost in salamanders was also well predicted by landscape feature slope steepness (76%), and elevation (24%). We conclude that fire salamander dispersal is well characterised by IBR predictions. Together with our simulation findings, these results indicate that wide dispersal corridors facilitate, rather than hinder, salamander dispersal. Comparison of genetic data to dispersal model outputs can be a useful technique in inferring dispersal behaviour from population genetic data.

  19. Dissecting genetic and environmental mutation signatures with model organisms.

    PubMed

    Segovia, Romulo; Tam, Annie S; Stirling, Peter C

    2015-08-01

    Deep sequencing has impacted on cancer research by enabling routine sequencing of genomes and exomes to identify genetic changes associated with carcinogenesis. Researchers can now use the frequency, type, and context of all mutations in tumor genomes to extract mutation signatures that reflect the driving mutational processes. Identifying mutation signatures, however, may not immediately suggest a mechanism. Consequently, several recent studies have employed deep sequencing of model organisms exposed to discrete genetic or environmental perturbations. These studies exploit the simpler genomes and availability of powerful genetic tools in model organisms to analyze mutation signatures under controlled conditions, forging mechanistic links between mutational processes and signatures. We discuss the power of this approach and suggest that many such studies may be on the horizon. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Genomic Model with Correlation Between Additive and Dominance Effects.

    PubMed

    Xiang, Tao; Christensen, Ole Fredslund; Vitezica, Zulma Gladis; Legarra, Andres

    2018-05-09

    Dominance genetic effects are rarely included in pedigree-based genetic evaluation. With the availability of single nucleotide polymorphism markers and the development of genomic evaluation, estimates of dominance genetic effects have become feasible using genomic best linear unbiased prediction (GBLUP). Usually, studies involving additive and dominance genetic effects ignore possible relationships between them. It has been often suggested that the magnitude of functional additive and dominance effects at the quantitative trait loci are related, but there is no existing GBLUP-like approach accounting for such correlation. Wellmann and Bennewitz showed two ways of considering directional relationships between additive and dominance effects, which they estimated in a Bayesian framework. However, these relationships cannot be fitted at the level of individuals instead of loci in a mixed model and are not compatible with standard animal or plant breeding software. This comes from a fundamental ambiguity in assigning the reference allele at a given locus. We show that, if there has been selection, assigning the most frequent as the reference allele orients the correlation between functional additive and dominance effects. As a consequence, the most frequent reference allele is expected to have a positive value. We also demonstrate that selection creates negative covariance between genotypic additive and dominance genetic values. For parameter estimation, it is possible to use a combined additive and dominance relationship matrix computed from marker genotypes, and to use standard restricted maximum likelihood (REML) algorithms based on an equivalent model. Through a simulation study, we show that such correlations can easily be estimated by mixed model software and accuracy of prediction for genetic values is slightly improved if such correlations are used in GBLUP. However, a model assuming uncorrelated effects and fitting orthogonal breeding values and dominant deviations performed similarly for prediction. Copyright © 2018, Genetics.

  1. Supply of genetic information--amount, format, and frequency.

    PubMed

    Misztal, I; Lawlor, T J

    1999-05-01

    The volume and complexity of genetic information is increasing because of new traits and better models. New traits may include reproduction, health, and carcass. More comprehensive models include the test day model in dairy cattle or a growth model in beef cattle. More complex models, which may include nonadditive effects such as inbreeding and dominance, also provide additional information. The amount of information per animal may increase drastically if DNA marker typing becomes routine and quantitative trait loci information is utilized. In many industries, evaluations are run more frequently. They result in faster genetic progress and improved management and marketing opportunities but also in extra costs and information overload. Adopting new technology and making some organizational changes can help realize all the added benefits of the improvements to the genetic evaluation systems at an acceptable cost. Continuous genetic evaluation, in which new records are accepted and breeding values are updated continuously, will relieve time pressures. An online mating system with access to both genetic and marketing information can result in mating recommendations customized for each user. Such a system could utilize inbreeding and dominance information that cannot efficiently be accommodated in the current sire summaries or off-line mating programs. The new systems will require a new organizational approach in which the task of scientists and technicians will not be simply running the evaluations but also providing the research, design, supervision, and maintenance required in the entire system of evaluation, decision making, and distribution.

  2. Functional linear models for association analysis of quantitative traits.

    PubMed

    Fan, Ruzong; Wang, Yifan; Mills, James L; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao

    2013-11-01

    Functional linear models are developed in this paper for testing associations between quantitative traits and genetic variants, which can be rare variants or common variants or the combination of the two. By treating multiple genetic variants of an individual in a human population as a realization of a stochastic process, the genome of an individual in a chromosome region is a continuum of sequence data rather than discrete observations. The genome of an individual is viewed as a stochastic function that contains both linkage and linkage disequilibrium (LD) information of the genetic markers. By using techniques of functional data analysis, both fixed and mixed effect functional linear models are built to test the association between quantitative traits and genetic variants adjusting for covariates. After extensive simulation analysis, it is shown that the F-distributed tests of the proposed fixed effect functional linear models have higher power than that of sequence kernel association test (SKAT) and its optimal unified test (SKAT-O) for three scenarios in most cases: (1) the causal variants are all rare, (2) the causal variants are both rare and common, and (3) the causal variants are common. The superior performance of the fixed effect functional linear models is most likely due to its optimal utilization of both genetic linkage and LD information of multiple genetic variants in a genome and similarity among different individuals, while SKAT and SKAT-O only model the similarities and pairwise LD but do not model linkage and higher order LD information sufficiently. In addition, the proposed fixed effect models generate accurate type I error rates in simulation studies. We also show that the functional kernel score tests of the proposed mixed effect functional linear models are preferable in candidate gene analysis and small sample problems. The methods are applied to analyze three biochemical traits in data from the Trinity Students Study. © 2013 WILEY PERIODICALS, INC.

  3. Selfish genetic elements and the gene’s-eye view of evolution

    PubMed Central

    2016-01-01

    During the last few decades, we have seen an explosion in the influx of details about the biology of selfish genetic elements. Ever since the early days of the field, the gene’s-eye view of Richard Dawkins, George Williams, and others, has been instrumental to make sense of new empirical observations and to the generation of new hypotheses. However, the close association between selfish genetic elements and the gene’s-eye view has not been without critics and several other conceptual frameworks have been suggested. In particular, proponents of multilevel selection models have used selfish genetic elements to criticize the gene’s-eye view. In this paper, I first trace the intertwined histories of the study of selfish genetic elements and the gene’s-eye view and then discuss how their association holds up when compared with other proposed frameworks. Next, using examples from transposable elements and the major transitions, I argue that different models highlight separate aspects of the evolution of selfish genetic elements and that the productive way forward is to maintain a plurality of perspectives. Finally, I discuss how the empirical study of selfish genetic elements has implications for other conceptual issues associated with the gene’s-eye view, such as agential thinking, adaptationism, and the role of fitness maximizing models in evolution. PMID:29491953

  4. Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa

    PubMed Central

    Ramachandran, Sohini; Deshpande, Omkar; Roseman, Charles C.; Rosenberg, Noah A.; Feldman, Marcus W.; Cavalli-Sforza, L. Luca

    2005-01-01

    Equilibrium models of isolation by distance predict an increase in genetic differentiation with geographic distance. Here we find a linear relationship between genetic and geographic distance in a worldwide sample of human populations, with major deviations from the fitted line explicable by admixture or extreme isolation. A close relationship is shown to exist between the correlation of geographic distance and genetic differentiation (as measured by FST) and the geographic pattern of heterozygosity across populations. Considering a worldwide set of geographic locations as possible sources of the human expansion, we find that heterozygosities in the globally distributed populations of the data set are best explained by an expansion originating in Africa and that no geographic origin outside of Africa accounts as well for the observed patterns of genetic diversity. Although the relationship between FST and geographic distance has been interpreted in the past as the result of an equilibrium model of drift and dispersal, simulation shows that the geographic pattern of heterozygosities in this data set is consistent with a model of a serial founder effect starting at a single origin. Given this serial-founder scenario, the relationship between genetic and geographic distance allows us to derive bounds for the effects of drift and natural selection on human genetic variation. PMID:16243969

  5. Genetic coding and gene expression - new Quadruplet genetic coding model

    NASA Astrophysics Data System (ADS)

    Shankar Singh, Rama

    2012-07-01

    Successful demonstration of human genome project has opened the door not only for developing personalized medicine and cure for genetic diseases, but it may also answer the complex and difficult question of the origin of life. It may lead to making 21st century, a century of Biological Sciences as well. Based on the central dogma of Biology, genetic codons in conjunction with tRNA play a key role in translating the RNA bases forming sequence of amino acids leading to a synthesized protein. This is the most critical step in synthesizing the right protein needed for personalized medicine and curing genetic diseases. So far, only triplet codons involving three bases of RNA, transcribed from DNA bases, have been used. Since this approach has several inconsistencies and limitations, even the promise of personalized medicine has not been realized. The new Quadruplet genetic coding model proposed and developed here involves all four RNA bases which in conjunction with tRNA will synthesize the right protein. The transcription and translation process used will be the same, but the Quadruplet codons will help overcome most of the inconsistencies and limitations of the triplet codes. Details of this new Quadruplet genetic coding model and its subsequent potential applications including relevance to the origin of life will be presented.

  6. A Population Genetics Model of Marker-Assisted Selection

    PubMed Central

    Luo, Z. W.; Thompson, R.; Woolliams, J. A.

    1997-01-01

    A deterministic two-loci model was developed to predict genetic response to marker-assisted selection (MAS) in one generation and in multiple generations. Formulas were derived to relate linkage disequilibrium in a population to the proportion of additive genetic variance used by MAS, and in turn to an extra improvement in genetic response over phenotypic selection. Predictions of the response were compared to those predicted by using an infinite-loci model and the factors affecting efficiency of MAS were examined. Theoretical analyses of the present study revealed the nonlinearity between the selection intensity and genetic response in MAS. In addition to the heritability of the trait and the proportion of the marker-associated genetic variance, the frequencies of the selectively favorable alleles at the two loci, one marker and one quantitative trait locus, were found to play an important role in determining both the short- and long-term efficiencies of MAS. The evolution of linkage disequilibrium and thus the genetic response over several generations were predicted theoretically and examined by simulation. MAS dissipated the disequilibrium more quickly than drift alone. In some cases studied, the rate of dissipation was as large as that to be expected in the circumstance where the true recombination fraction was increased by three times and selection was absent. PMID:9215918

  7. Re-evaluating causal modeling with mantel tests in landscape genetics

    Treesearch

    Samuel A. Cushman; Tzeidle N. Wasserman; Erin L. Landguth; Andrew J. Shirk

    2013-01-01

    The predominant analytical approach to associate landscape patterns with gene flow processes is based on the association of cost distances with genetic distances between individuals. Mantel and partial Mantel tests have been the dominant statistical tools used to correlate cost distances and genetic distances in landscape genetics. However, the inherent high...

  8. Landscape genomics: A brief perspective [Chapter 9

    Treesearch

    Michael K. Schwartz; Gordon Luikart; Kevin S. McKelvey; Samuel A. Cushman

    2010-01-01

    Landscape genetics is the amalgamation of population genetics and landscape ecology (see Manel et al. 2003; Storfer et al. 2007). In Chapter 17, we discuss landscape genetics and provide two examples of applications in the area of modeling population connectivity and inferring fragmentation. These examples, like virtually all extant landscape genetic analyses, were...

  9. Population Genetics of Boise Basin Bull Trout (Salvelinus confluentus)

    Treesearch

    A.R. Whiteley; P. Spruell; F.W. Allendorf

    2003-01-01

    We analyzed the population genetic structure of bull trout (Salvelinus confluentus) in the Boise River Basin, Idaho. We determined the influence of contemporary (including anthropogenic) and historic factors on genetic structure, taking into accountexisting data on bull trout habitat patches in this basin. We tested three models of the organization of genetic structure...

  10. The Integration of Genetic Propensities into Social-Control Models of Delinquency and Violence among Male Youths

    ERIC Educational Resources Information Center

    Guo, Guang; Roettger, Michael E.; Cai, Tianji

    2008-01-01

    This study, drawing on approximately 1,100 males from the National Longitudinal Study of Adolescent Health, demonstrates the importance of genetics, and genetic-environmental interactions, for understanding adolescent delinquency and violence. Our analyses show that three genetic polymorphisms--specifically, the 30-bp promoter-region variable…

  11. Genetic and Environmental Influences on Negative Life Events from Late Childhood to Adolescence

    ERIC Educational Resources Information Center

    Johnson, Daniel P.; Rhee, Soo Hyun; Whisman, Mark A.; Corley, Robin P.; Hewitt, John K.

    2013-01-01

    This multiwave longitudinal study tested two quantitative genetic developmental models to examine genetic and environmental influences on exposure to negative dependent and independent life events. Participants (N = 457 twin pairs) completed measures of life events annually from ages 9 to 16. The same genetic factors influenced exposure to…

  12. Probing Genetic Control of Swine Responses to PRRSV Infection: Current Progress of the PRRS Host Genetics Consortium

    USDA-ARS?s Scientific Manuscript database

    Background: Understanding the role of host genetics in resistance to porcine reproductive and respiratory syndrome virus (PRRSV) infection, and the effects of PRRS on pig health and related growth, are goals of the PRRS Host Genetics Consortium (PHGC). Methods: The project uses a nursery pig model ...

  13. Genetic background effects in quantitative genetics: gene-by-system interactions.

    PubMed

    Sardi, Maria; Gasch, Audrey P

    2018-04-11

    Proper cell function depends on networks of proteins that interact physically and functionally to carry out physiological processes. Thus, it seems logical that the impact of sequence variation in one protein could be significantly influenced by genetic variants at other loci in a genome. Nonetheless, the importance of such genetic interactions, known as epistasis, in explaining phenotypic variation remains a matter of debate in genetics. Recent work from our lab revealed that genes implicated from an association study of toxin tolerance in Saccharomyces cerevisiae show extensive interactions with the genetic background: most implicated genes, regardless of allele, are important for toxin tolerance in only one of two tested strains. The prevalence of background effects in our study adds to other reports of widespread genetic-background interactions in model organisms. We suggest that these effects represent many-way interactions with myriad features of the cellular system that vary across classes of individuals. Such gene-by-system interactions may influence diverse traits and require new modeling approaches to accurately represent genotype-phenotype relationships across individuals.

  14. Genome Wide Identification of SARS-CoV Susceptibility Loci Using the Collaborative Cross

    PubMed Central

    Gralinski, Lisa E.; Ferris, Martin T.; Aylor, David L.; Whitmore, Alan C.; Green, Richard; Frieman, Matthew B.; Deming, Damon; Menachery, Vineet D.; Miller, Darla R.; Buus, Ryan J.; Bell, Timothy A.; Churchill, Gary A.; Threadgill, David W.; Katze, Michael G.; McMillan, Leonard; Valdar, William; Heise, Mark T.; Pardo-Manuel de Villena, Fernando; Baric, Ralph S.

    2015-01-01

    New systems genetics approaches are needed to rapidly identify host genes and genetic networks that regulate complex disease outcomes. Using genetically diverse animals from incipient lines of the Collaborative Cross mouse panel, we demonstrate a greatly expanded range of phenotypes relative to classical mouse models of SARS-CoV infection including lung pathology, weight loss and viral titer. Genetic mapping revealed several loci contributing to differential disease responses, including an 8.5Mb locus associated with vascular cuffing on chromosome 3 that contained 23 genes and 13 noncoding RNAs. Integrating phenotypic and genetic data narrowed this region to a single gene, Trim55, an E3 ubiquitin ligase with a role in muscle fiber maintenance. Lung pathology and transcriptomic data from mice genetically deficient in Trim55 were used to validate its role in SARS-CoV-induced vascular cuffing and inflammation. These data establish the Collaborative Cross platform as a powerful genetic resource for uncovering genetic contributions of complex traits in microbial disease severity, inflammation and virus replication in models of outbred populations. PMID:26452100

  15. Support Seeking or Familial Obligation: An Investigation of Motives for Disclosing Genetic Test Results

    PubMed Central

    Greenberg, Marisa; Smith, Rachel A.

    2016-01-01

    Genetic test results reveal not only personal information about a person’s likelihood of certain medical conditions but also information about their genetic relatives (Annas, Glantz, & Roche, 1995). Given the familial nature of genetic information, one’s obligation to protect family members may be a motive for disclosing genetic test results, but this claim has not been methodically tested. Existing models of disclosure decision-making presume self-interested motives, such as seeking social support, instead of other-interested motives, like familial obligation. This study investigated young adults’ (N = 173) motives to share a genetic-based health condition, alpha-1 antitrypsin deficiency, after reading a hypothetical vignette. Results show that social support and familial obligation were both reported as motives for disclosure. In fact, some participants reported familial obligation as their primary motivator for disclosure. Finally, stronger familial obligation predicted increased likelihood of disclosing hypothetical genetic test results. Implications of these results were discussed in reference to theories of disclosure decision-making models and the practice of genetic disclosures. PMID:26507777

  16. Genetic Signatures of Exceptional Longevity in Humans

    PubMed Central

    Sebastiani, Paola; Solovieff, Nadia; DeWan, Andrew T.; Walsh, Kyle M.; Puca, Annibale; Hartley, Stephen W.; Melista, Efthymia; Andersen, Stacy; Dworkis, Daniel A.; Wilk, Jemma B.; Myers, Richard H.; Steinberg, Martin H.; Montano, Monty; Baldwin, Clinton T.; Hoh, Josephine; Perls, Thomas T.

    2012-01-01

    Like most complex phenotypes, exceptional longevity is thought to reflect a combined influence of environmental (e.g., lifestyle choices, where we live) and genetic factors. To explore the genetic contribution, we undertook a genome-wide association study of exceptional longevity in 801 centenarians (median age at death 104 years) and 914 genetically matched healthy controls. Using these data, we built a genetic model that includes 281 single nucleotide polymorphisms (SNPs) and discriminated between cases and controls of the discovery set with 89% sensitivity and specificity, and with 58% specificity and 60% sensitivity in an independent cohort of 341 controls and 253 genetically matched nonagenarians and centenarians (median age 100 years). Consistent with the hypothesis that the genetic contribution is largest with the oldest ages, the sensitivity of the model increased in the independent cohort with older and older ages (71% to classify subjects with an age at death>102 and 85% to classify subjects with an age at death>105). For further validation, we applied the model to an additional, unmatched 60 centenarians (median age 107 years) resulting in 78% sensitivity, and 2863 unmatched controls with 61% specificity. The 281 SNPs include the SNP rs2075650 in TOMM40/APOE that reached irrefutable genome wide significance (posterior probability of association = 1) and replicated in the independent cohort. Removal of this SNP from the model reduced the accuracy by only 1%. Further in-silico analysis suggests that 90% of centenarians can be grouped into clusters characterized by different “genetic signatures” of varying predictive values for exceptional longevity. The correlation between 3 signatures and 3 different life spans was replicated in the combined replication sets. The different signatures may help dissect this complex phenotype into sub-phenotypes of exceptional longevity. PMID:22279548

  17. Population genetic testing for cancer susceptibility: founder mutations to genomes.

    PubMed

    Foulkes, William D; Knoppers, Bartha Maria; Turnbull, Clare

    2016-01-01

    The current standard model for identifying carriers of high-risk mutations in cancer-susceptibility genes (CSGs) generally involves a process that is not amenable to population-based testing: access to genetic tests is typically regulated by health-care providers on the basis of a labour-intensive assessment of an individual's personal and family history of cancer, with face-to-face genetic counselling performed before mutation testing. Several studies have shown that application of these selection criteria results in a substantial proportion of mutation carriers being missed. Population-based genetic testing has been proposed as an alternative approach to determining cancer susceptibility, and aims for a more-comprehensive detection of mutation carriers. Herein, we review the existing data on population-based genetic testing, and consider some of the barriers, pitfalls, and challenges related to the possible expansion of this approach. We consider mechanisms by which population-based genetic testing for cancer susceptibility could be delivered, and suggest how such genetic testing might be integrated into existing and emerging health-care structures. The existing models of genetic testing (including issues relating to informed consent) will very likely require considerable alteration if the potential benefits of population-based genetic testing are to be fully realized.

  18. Positional cloning in mice and its use for molecular dissection of inflammatory arthritis.

    PubMed

    Abe, Koichiro; Yu, Philipp

    2009-02-01

    One of the upcoming next quests in the field of genetics might be molecular dissection of the genetic and environmental components of human complex diseases. In humans, however, there are certain experimental limitations for identification of a single component of the complex interactions by genetic analyses. Experimental animals offer simplified models for genetic and environmental interactions in human complex diseases. In particular, mice are the best mammalian models because of a long history and ample experience for genetic analyses. Forward genetics, which includes genetic screen and subsequent positional cloning of the causative genes, is a powerful strategy to dissect a complex phenomenon without preliminarily molecular knowledge of the process. In this review, first, we describe a general scheme of positional cloning in mice. Next, recent accomplishments on the patho-mechanisms of inflammatory arthritis by forward genetics approaches are introduced; Positional cloning effort for skg, Ali5, Ali18, cmo, and lupo mutants are provided as examples for the application to human complex diseases. As seen in the examples, the identification of genetic factors by positional cloning in the mouse have potential in solving molecular complexity of gene-environment interactions in human complex diseases.

  19. ON MODEL SELECTION STRATEGIES TO IDENTIFY GENES UNDERLYING BINARY TRAITS USING GENOME-WIDE ASSOCIATION DATA.

    PubMed

    Wu, Zheyang; Zhao, Hongyu

    2012-01-01

    For more fruitful discoveries of genetic variants associated with diseases in genome-wide association studies, it is important to know whether joint analysis of multiple markers is more powerful than the commonly used single-marker analysis, especially in the presence of gene-gene interactions. This article provides a statistical framework to rigorously address this question through analytical power calculations for common model search strategies to detect binary trait loci: marginal search, exhaustive search, forward search, and two-stage screening search. Our approach incorporates linkage disequilibrium, random genotypes, and correlations among score test statistics of logistic regressions. We derive analytical results under two power definitions: the power of finding all the associated markers and the power of finding at least one associated marker. We also consider two types of error controls: the discovery number control and the Bonferroni type I error rate control. After demonstrating the accuracy of our analytical results by simulations, we apply them to consider a broad genetic model space to investigate the relative performances of different model search strategies. Our analytical study provides rapid computation as well as insights into the statistical mechanism of capturing genetic signals under different genetic models including gene-gene interactions. Even though we focus on genetic association analysis, our results on the power of model selection procedures are clearly very general and applicable to other studies.

  20. ON MODEL SELECTION STRATEGIES TO IDENTIFY GENES UNDERLYING BINARY TRAITS USING GENOME-WIDE ASSOCIATION DATA

    PubMed Central

    Wu, Zheyang; Zhao, Hongyu

    2013-01-01

    For more fruitful discoveries of genetic variants associated with diseases in genome-wide association studies, it is important to know whether joint analysis of multiple markers is more powerful than the commonly used single-marker analysis, especially in the presence of gene-gene interactions. This article provides a statistical framework to rigorously address this question through analytical power calculations for common model search strategies to detect binary trait loci: marginal search, exhaustive search, forward search, and two-stage screening search. Our approach incorporates linkage disequilibrium, random genotypes, and correlations among score test statistics of logistic regressions. We derive analytical results under two power definitions: the power of finding all the associated markers and the power of finding at least one associated marker. We also consider two types of error controls: the discovery number control and the Bonferroni type I error rate control. After demonstrating the accuracy of our analytical results by simulations, we apply them to consider a broad genetic model space to investigate the relative performances of different model search strategies. Our analytical study provides rapid computation as well as insights into the statistical mechanism of capturing genetic signals under different genetic models including gene-gene interactions. Even though we focus on genetic association analysis, our results on the power of model selection procedures are clearly very general and applicable to other studies. PMID:23956610

  1. Genetic and Environmental Influences of General Cognitive Ability: Is g a valid latent construct?

    PubMed Central

    Panizzon, Matthew S.; Vuoksimaa, Eero; Spoon, Kelly M.; Jacobson, Kristen C.; Lyons, Michael J.; Franz, Carol E.; Xian, Hong; Vasilopoulos, Terrie; Kremen, William S.

    2014-01-01

    Despite an extensive literature, the “g” construct remains a point of debate. Different models explaining the observed relationships among cognitive tests make distinct assumptions about the role of g in relation to those tests and specific cognitive domains. Surprisingly, these different models and their corresponding assumptions are rarely tested against one another. In addition to the comparison of distinct models, a multivariate application of the twin design offers a unique opportunity to test whether there is support for g as a latent construct with its own genetic and environmental influences, or whether the relationships among cognitive tests are instead driven by independent genetic and environmental factors. Here we tested multiple distinct models of the relationships among cognitive tests utilizing data from the Vietnam Era Twin Study of Aging (VETSA), a study of middle-aged male twins. Results indicated that a hierarchical (higher-order) model with a latent g phenotype, as well as specific cognitive domains, was best supported by the data. The latent g factor was highly heritable (86%), and accounted for most, but not all, of the genetic effects in specific cognitive domains and elementary cognitive tests. By directly testing multiple competing models of the relationships among cognitive tests in a genetically-informative design, we are able to provide stronger support than in prior studies for g being a valid latent construct. PMID:24791031

  2. A rapid generalized least squares model for a genome-wide quantitative trait association analysis in families.

    PubMed

    Li, Xiang; Basu, Saonli; Miller, Michael B; Iacono, William G; McGue, Matt

    2011-01-01

    Genome-wide association studies (GWAS) using family data involve association analyses between hundreds of thousands of markers and a trait for a large number of related individuals. The correlations among relatives bring statistical and computational challenges when performing these large-scale association analyses. Recently, several rapid methods accounting for both within- and between-family variation have been proposed. However, these techniques mostly model the phenotypic similarities in terms of genetic relatedness. The familial resemblances in many family-based studies such as twin studies are not only due to the genetic relatedness, but also derive from shared environmental effects and assortative mating. In this paper, we propose 2 generalized least squares (GLS) models for rapid association analysis of family-based GWAS, which accommodate both genetic and environmental contributions to familial resemblance. In our first model, we estimated the joint genetic and environmental variations. In our second model, we estimated the genetic and environmental components separately. Through simulation studies, we demonstrated that our proposed approaches are more powerful and computationally efficient than a number of existing methods are. We show that estimating the residual variance-covariance matrix in the GLS models without SNP effects does not lead to an appreciable bias in the p values as long as the SNP effect is small (i.e. accounting for no more than 1% of trait variance). Copyright © 2011 S. Karger AG, Basel.

  3. Building a Genome Engineering Toolbox in Non-Model Prokaryotic Microbes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckert, Carrie A; Freed, Emily; Smolinski, Sharon

    The realization of a sustainable bioeconomy requires our ability to understand and engineer complex design principles for the development of platform organisms capable of efficient conversion of cheap and sustainable feedstocks (e.g. sunlight, CO2, non-food biomass) to biofuels and bioproducts at sufficient titers and costs. For model microbes such as E. coli, advances in DNA reading and writing technologies are driving adoption of new paradigms for engineering biological systems. Unfortunately, microbes with properties of interest for the utilization of cheap and renewable feedstocks such as photosynthesis, autotrophic growth, and cellulose degradation have very few, if any, genetic tools for metabolicmore » engineering. Therefore, it is important to begin to develop 'design rules' for building a genetic toolbox for novel microbes. Here, we present an overview of our current understanding of these rules for the genetic manipulation of prokaryotic microbes and available genetic tools to expand our ability to genetically engineer non-model systems.« less

  4. Current Progress of Genetically Engineered Pig Models for Biomedical Research

    PubMed Central

    Gün, Gökhan

    2014-01-01

    Abstract The first transgenic pigs were generated for agricultural purposes about three decades ago. Since then, the micromanipulation techniques of pig oocytes and embryos expanded from pronuclear injection of foreign DNA to somatic cell nuclear transfer, intracytoplasmic sperm injection-mediated gene transfer, lentiviral transduction, and cytoplasmic injection. Mechanistically, the passive transgenesis approach based on random integration of foreign DNA was developed to active genetic engineering techniques based on the transient activity of ectopic enzymes, such as transposases, recombinases, and programmable nucleases. Whole-genome sequencing and annotation of advanced genome maps of the pig complemented these developments. The full implementation of these tools promises to immensely increase the efficiency and, in parallel, to reduce the costs for the generation of genetically engineered pigs. Today, the major application of genetically engineered pigs is found in the field of biomedical disease modeling. It is anticipated that genetically engineered pigs will increasingly be used in biomedical research, since this model shows several similarities to humans with regard to physiology, metabolism, genome organization, pathology, and aging. PMID:25469311

  5. Revising explanatory models to accommodate anomalous genetic phenomena: Problem solving in the context of discovery

    NASA Astrophysics Data System (ADS)

    Hafner, Robert; Stewart, Jim

    Past problem-solving research has provided a basis for helping students structure their knowledge and apply appropriate problem-solving strategies to solve problems for which their knowledge (or mental models) of scientific phenomena is adequate (model-using problem solving). This research examines how problem solving in the domain of Mendelian genetics proceeds in situations where solvers' mental models are insufficient to solve problems at hand (model-revising problem solving). Such situations require solvers to use existing models to recognize anomalous data and to revise those models to accommodate the data. The study was conducted in the context of 9-week high school genetics course and addressed: the heuristics charactenstic of successful model-revising problem solving: the nature of the model revisions, made by students as well as the nature of model development across problem types; and the basis upon which solvers decide that a revised model is sufficient (that t has both predictive and explanatory power).

  6. Concordant but Varied Phenotypes among Duchenne Muscular Dystrophy Patient-Specific Myoblasts Derived using a Human iPSC-Based Model.

    PubMed

    Choi, In Young; Lim, HoTae; Estrellas, Kenneth; Mula, Jyothi; Cohen, Tatiana V; Zhang, Yuanfan; Donnelly, Christopher J; Richard, Jean-Philippe; Kim, Yong Jun; Kim, Hyesoo; Kazuki, Yasuhiro; Oshimura, Mitsuo; Li, Hongmei Lisa; Hotta, Akitsu; Rothstein, Jeffrey; Maragakis, Nicholas; Wagner, Kathryn R; Lee, Gabsang

    2016-06-07

    Duchenne muscular dystrophy (DMD) remains an intractable genetic disease. Althogh there are several animal models of DMD, there is no human cell model that carries patient-specific DYSTROPHIN mutations. Here, we present a human DMD model using human induced pluripotent stem cells (hiPSCs). Our model reveals concordant disease-related phenotypes with patient-dependent variation, which are partially reversed by genetic and pharmacological approaches. Our "chemical-compound-based" strategy successfully directs hiPSCs into expandable myoblasts, which exhibit a myogenic transcriptional program, forming striated contractile myofibers and participating in muscle regeneration in vivo. DMD-hiPSC-derived myoblasts show disease-related phenotypes with patient-to-patient variability, including aberrant expression of inflammation or immune-response genes and collagens, increased BMP/TGFβ signaling, and reduced fusion competence. Furthermore, by genetic correction and pharmacological "dual-SMAD" inhibition, the DMD-hiPSC-derived myoblasts and genetically corrected isogenic myoblasts form "rescued" multi-nucleated myotubes. In conclusion, our findings demonstrate the feasibility of establishing a human "DMD-in-a-dish" model using hiPSC-based disease modeling. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. The genetic basis of alcoholism: multiple phenotypes, many genes, complex networks

    PubMed Central

    2012-01-01

    Alcoholism is a significant public health problem. A picture of the genetic architecture underlying alcohol-related phenotypes is emerging from genome-wide association studies and work on genetically tractable model organisms. PMID:22348705

  8. Using HexSim to link demography and genetics in animal and plant simulations

    EPA Science Inventory

    Simulation models are essential for understanding the effects of land management practices and environmental drivers, including landscape change, shape population genetic structure and persistence probabilities. The emerging field of eco-evolutionary modeling is beginning to dev...

  9. Life events and personality in late adolescence: genetic and environmental relations.

    PubMed

    Billig, J P; Hershberger, S L; Iacono, W G; McGue, M

    1996-11-01

    The relationship between life events and personality was investigated in the Minnesota Twin/Family Study, using 216 monozygotic and 114 dizygotic 17-year-old male twin pairs. Participants completed a life events interview designed for adolescents and the Multidimensional Personality Questionnaire. Life events were categorized into three types: life events to which all members of a family would be subject and those affecting an individual, which can be broadly construed as either nonindependent or independent. Univariate genetic model fitting indicated the presence of significant genetic effects (h2 = 49%) for nonindependent nonfamily life events but not for the other two types of life events. Bivariate genetic model fitting further confirmed that the significant phenotypic correlation between nonindependent life events and personality is in part genetically mediated. Specifically, the findings suggest that genetically influenced individual differences in constraint play a substantial role in life events whose occurrence is not independent of the individual's behavior.

  10. A Model Program for Translational Medicine in Epilepsy Genetics

    PubMed Central

    Smith, Lacey A.; Ullmann, Jeremy F. P.; Olson, Heather E.; El Achkar, Christelle M.; Truglio, Gessica; Kelly, McKenna; Rosen-Sheidley, Beth; Poduri, Annapurna

    2017-01-01

    Recent technological advances in gene sequencing have led to a rapid increase in gene discovery in epilepsy. However, the ability to assess pathogenicity of variants, provide functional analysis, and develop targeted therapies has not kept pace with rapid advances in sequencing technology. Thus, although clinical genetic testing may lead to a specific molecular diagnosis for some patients, test results often lead to more questions than answers. As the field begins to focus on therapeutic applications of genetic diagnoses using precision medicine, developing processes that offer more than equivocal test results is essential. The success of precision medicine in epilepsy relies on establishing a correct genetic diagnosis, analyzing functional consequences of genetic variants, screening potential therapeutics in the preclinical laboratory setting, and initiating targeted therapy trials for patients. We describe the structure of a comprehensive, pediatric Epilepsy Genetics Program that can serve as a model for translational medicine in epilepsy. PMID:28056630

  11. Recent Advances in Algal Genetic Tool Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Dahlin, Lukas; T. Guarnieri, Michael

    The goal of achieving cost-effective biofuels and bioproducts derived from algal biomass will require improvements along the entire value chain, including identification of robust, high-productivity strains and development of advanced genetic tools. Though there have been modest advances in development of genetic systems for the model alga Chlamydomonas reinhardtii, progress in development of algal genetic tools, especially as applied to non-model algae, has generally lagged behind that of more commonly utilized laboratory and industrial microbes. This is in part due to the complex organellar structure of algae, including robust cell walls and intricate compartmentalization of target loci, as well asmore » prevalent gene silencing mechanisms, which hinder facile utilization of conventional genetic engineering tools and methodologies. However, recent progress in global tool development has opened the door for implementation of strain-engineering strategies in industrially-relevant algal strains. Here, we review recent advances in algal genetic tool development and applications in eukaryotic microalgae.« less

  12. Applications of genetic data to improve management and conservation of river fishes and their habitats

    USGS Publications Warehouse

    Scribner, Kim T.; Lowe, Winsor H.; Landguth, Erin L.; Luikart, Gordon; Infante, Dana M.; Whelan, Gary; Muhlfeld, Clint C.

    2015-01-01

    Environmental variation and landscape features affect ecological processes in fluvial systems; however, assessing effects at management-relevant temporal and spatial scales is challenging. Genetic data can be used with landscape models and traditional ecological assessment data to identify biodiversity hotspots, predict ecosystem responses to anthropogenic effects, and detect impairments to underlying processes. We show that by combining taxonomic, demographic, and genetic data of species in complex riverscapes, managers can better understand the spatial and temporal scales over which environmental processes and disturbance influence biodiversity. We describe how population genetic models using empirical or simulated genetic data quantify effects of environmental processes affecting species diversity and distribution. Our summary shows that aquatic assessment initiatives that use standardized data sets to direct management actions can benefit from integration of genetic data to improve the predictability of disturbance–response relationships of river fishes and their habitats over a broad range of spatial and temporal scales.

  13. Recent Advances in Algal Genetic Tool Development

    DOE PAGES

    R. Dahlin, Lukas; T. Guarnieri, Michael

    2016-06-24

    The goal of achieving cost-effective biofuels and bioproducts derived from algal biomass will require improvements along the entire value chain, including identification of robust, high-productivity strains and development of advanced genetic tools. Though there have been modest advances in development of genetic systems for the model alga Chlamydomonas reinhardtii, progress in development of algal genetic tools, especially as applied to non-model algae, has generally lagged behind that of more commonly utilized laboratory and industrial microbes. This is in part due to the complex organellar structure of algae, including robust cell walls and intricate compartmentalization of target loci, as well asmore » prevalent gene silencing mechanisms, which hinder facile utilization of conventional genetic engineering tools and methodologies. However, recent progress in global tool development has opened the door for implementation of strain-engineering strategies in industrially-relevant algal strains. Here, we review recent advances in algal genetic tool development and applications in eukaryotic microalgae.« less

  14. "Wrecks of Ancient Life": Genetic Variants Vetted by Natural Selection.

    PubMed

    Postlethwait, John H

    2015-07-01

    The Genetics Society of America's George W. Beadle Award honors individuals who have made outstanding contributions to the community of genetics researchers and who exemplify the qualities of its namesake as a respected academic, administrator, and public servant. The 2015 recipient is John Postlethwait. He has made groundbreaking contributions in developing the zebrafish as a molecular genetic model and in understanding the evolution of new gene functions in vertebrates. He built the first zebrafish genetic map and showed that its genome, along with that of distantly related teleost fish, had been duplicated. Postlethwait played an integral role in the zebrafish genome-sequencing project and elucidated the genomic organization of several fish species. Postlethwait is also honored for his active involvement with the zebrafish community, advocacy for zebrafish as a model system, and commitment to driving the field forward. Copyright © 2015 by the Genetics Society of America.

  15. Biogenetic models of psychopathology, implicit guilt, and mental illness stigma.

    PubMed

    Rüsch, Nicolas; Todd, Andrew R; Bodenhausen, Galen V; Corrigan, Patrick W

    2010-10-30

    Whereas some research suggests that acknowledgment of the role of biogenetic factors in mental illness could reduce mental illness stigma by diminishing perceived responsibility, other research has cautioned that emphasizing biogenetic aspects of mental illness could produce the impression that mental illness is a stable, intrinsic aspect of a person ("genetic essentialism"), increasing the desire for social distance. We assessed genetic and neurobiological causal attributions about mental illness among 85 people with serious mental illness and 50 members of the public. The perceived responsibility of persons with mental illness for their condition, as well as fear and social distance, was assessed by self-report. Automatic associations between Mental Illness and Guilt and between Self and Guilt were measured by the Brief Implicit Association Test. Among the general public, endorsement of biogenetic models was associated with not only less perceived responsibility, but also greater social distance. Among people with mental illness, endorsement of genetic models had only negative correlates: greater explicit fear and stronger implicit self-guilt associations. Genetic models may have unexpected negative consequences for implicit self-concept and explicit attitudes of people with serious mental illness. An exclusive focus on genetic models may therefore be problematic for clinical practice and anti-stigma initiatives. Copyright © 2009 Elsevier Ltd. All rights reserved.

  16. Genetic mouse models relevant to schizophrenia: taking stock and looking forward.

    PubMed

    Harrison, Paul J; Pritchett, David; Stumpenhorst, Katharina; Betts, Jill F; Nissen, Wiebke; Schweimer, Judith; Lane, Tracy; Burnet, Philip W J; Lamsa, Karri P; Sharp, Trevor; Bannerman, David M; Tunbridge, Elizabeth M

    2012-03-01

    Genetic mouse models relevant to schizophrenia complement, and have to a large extent supplanted, pharmacological and lesion-based rat models. The main attraction is that they potentially have greater construct validity; however, they share the fundamental limitations of all animal models of psychiatric disorder, and must also be viewed in the context of the uncertain and complex genetic architecture of psychosis. Some of the key issues, including the choice of gene to target, the manner of its manipulation, gene-gene and gene-environment interactions, and phenotypic characterization, are briefly considered in this commentary, illustrated by the relevant papers reported in this special issue. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Unified reduction principle for the evolution of mutation, migration, and recombination

    PubMed Central

    Altenberg, Lee; Liberman, Uri; Feldman, Marcus W.

    2017-01-01

    Modifier-gene models for the evolution of genetic information transmission between generations of organisms exhibit the reduction principle: Selection favors reduction in the rate of variation production in populations near equilibrium under a balance of constant viability selection and variation production. Whereas this outcome has been proven for a variety of genetic models, it has not been proven in general for multiallelic genetic models of mutation, migration, and recombination modification with arbitrary linkage between the modifier and major genes under viability selection. We show that the reduction principle holds for all of these cases by developing a unifying mathematical framework that characterizes all of these evolutionary models. PMID:28265103

  18. Maintenance of genetic variation with a frequency-dependent selection model as compared to the overdominant model.

    PubMed

    Hedrick, P W

    1972-12-01

    A frequency-dependent selection model proposed by Huang, Singh and Kojima (1971) was found to be more effective at maintaining genetic variation in a finite population than the overdominant model. The fourth moment parameter of the distribution of unfixed states showed that there was a more platykurtic distribution for the frequency-dependent model. This agreed well with the expected gene frequency change found for an infinite population.

  19. Human X-chromosome inactivation pattern distributions fit a model of genetically influenced choice better than models of completely random choice

    PubMed Central

    Renault, Nisa K E; Pritchett, Sonja M; Howell, Robin E; Greer, Wenda L; Sapienza, Carmen; Ørstavik, Karen Helene; Hamilton, David C

    2013-01-01

    In eutherian mammals, one X-chromosome in every XX somatic cell is transcriptionally silenced through the process of X-chromosome inactivation (XCI). Females are thus functional mosaics, where some cells express genes from the paternal X, and the others from the maternal X. The relative abundance of the two cell populations (X-inactivation pattern, XIP) can have significant medical implications for some females. In mice, the ‘choice' of which X to inactivate, maternal or paternal, in each cell of the early embryo is genetically influenced. In humans, the timing of XCI choice and whether choice occurs completely randomly or under a genetic influence is debated. Here, we explore these questions by analysing the distribution of XIPs in large populations of normal females. Models were generated to predict XIP distributions resulting from completely random or genetically influenced choice. Each model describes the discrete primary distribution at the onset of XCI, and the continuous secondary distribution accounting for changes to the XIP as a result of development and ageing. Statistical methods are used to compare models with empirical data from Danish and Utah populations. A rigorous data treatment strategy maximises information content and allows for unbiased use of unphased XIP data. The Anderson–Darling goodness-of-fit statistics and likelihood ratio tests indicate that a model of genetically influenced XCI choice better fits the empirical data than models of completely random choice. PMID:23652377

  20. Effects of Genetic Drift and Gene Flow on the Selective Maintenance of Genetic Variation

    PubMed Central

    Star, Bastiaan; Spencer, Hamish G.

    2013-01-01

    Explanations for the genetic variation ubiquitous in natural populations are often classified by the population–genetic processes they emphasize: natural selection or mutation and genetic drift. Here we investigate models that incorporate all three processes in a spatially structured population, using what we call a construction approach, simulating finite populations under selection that are bombarded with a steady stream of novel mutations. As expected, the amount of genetic variation compared to previous models that ignored the stochastic effects of drift was reduced, especially for smaller populations and when spatial structure was most profound. By contrast, however, for higher levels of gene flow and larger population sizes, the amount of genetic variation found after many generations was greater than that in simulations without drift. This increased amount of genetic variation is due to the introduction of slightly deleterious alleles by genetic drift and this process is more efficient when migration load is higher. The incorporation of genetic drift also selects for fitness sets that exhibit allele-frequency equilibria with larger domains of attraction: they are “more stable.” Moreover, the finiteness of populations strongly influences levels of local adaptation, selection strength, and the proportion of allele-frequency vectors that can be distinguished from the neutral expectation. PMID:23457235

  1. Using Genetically Engineered Animal Models in the Postgenomic Era to Understand Gene Function in Alcoholism

    PubMed Central

    Reilly, Matthew T.; Harris, R. Adron; Noronha, Antonio

    2012-01-01

    Over the last 50 years, researchers have made substantial progress in identifying genetic variations that underlie the complex phenotype of alcoholism. Not much is known, however, about how this genetic variation translates into altered biological function. Genetic animal models recapitulating specific characteristics of the human condition have helped elucidate gene function and the genetic basis of disease. In particular, major advances have come from the ability to manipulate genes through a variety of genetic technologies that provide an unprecedented capacity to determine gene function in the living organism and in alcohol-related behaviors. Even newer genetic-engineering technologies have given researchers the ability to control when and where a specific gene or mutation is activated or deleted, allowing investigators to narrow the role of the gene’s function to circumscribed neural pathways and across development. These technologies are important for all areas of neuroscience, and several public and private initiatives are making a new generation of genetic-engineering tools available to the scientific community at large. Finally, high-throughput “next-generation sequencing” technologies are set to rapidly increase knowledge of the genome, epigenome, and transcriptome, which, combined with genetically engineered mouse mutants, will enhance insight into biological function. All of these resources will provide deeper insight into the genetic basis of alcoholism. PMID:23134044

  2. Using genetically engineered animal models in the postgenomic era to understand gene function in alcoholism.

    PubMed

    Reilly, Matthew T; Harris, R Adron; Noronha, Antonio

    2012-01-01

    Over the last 50 years, researchers have made substantial progress in identifying genetic variations that underlie the complex phenotype of alcoholism. Not much is known, however, about how this genetic variation translates into altered biological function. Genetic animal models recapitulating specific characteristics of the human condition have helped elucidate gene function and the genetic basis of disease. In particular, major advances have come from the ability to manipulate genes through a variety of genetic technologies that provide an unprecedented capacity to determine gene function in the living organism and in alcohol-related behaviors. Even newer genetic-engineering technologies have given researchers the ability to control when and where a specific gene or mutation is activated or deleted, allowing investigators to narrow the role of the gene's function to circumscribed neural pathways and across development. These technologies are important for all areas of neuroscience, and several public and private initiatives are making a new generation of genetic-engineering tools available to the scientific community at large. Finally, high-throughput "next-generation sequencing" technologies are set to rapidly increase knowledge of the genome, epigenome, and transcriptome, which, combined with genetically engineered mouse mutants, will enhance insight into biological function. All of these resources will provide deeper insight into the genetic basis of alcoholism.

  3. Demographic modelling reveals a history of divergence with gene flow for a glacially tied stonefly in a changing post-Pleistocene landscape

    USGS Publications Warehouse

    Hotaling, Scott; Muhlfeld, Clint C.; Giersch, J. Joseph; Ali, Omar; Jordan, Steve; Miller, Michael R.; Luikart, Gordon; Weisrock, David W.

    2018-01-01

    AimClimate warming is causing extensive loss of glaciers in mountainous regions, yet our understanding of how glacial recession influences evolutionary processes and genetic diversity is limited. Linking genetic structure with the influences shaping it can improve understanding of how species respond to environmental change. Here, we used genome-scale data and demographic modelling to resolve the evolutionary history of Lednia tumana, a rare, aquatic insect endemic to alpine streams. We also employed a range of widely used data filtering approaches to quantify how they influenced population structure results.LocationAlpine streams in the Rocky Mountains of Glacier National Park, Montana, USA.TaxonLednia tumana, a stonefly (Order Plecoptera) in the family Nemouridae.MethodsWe generated single nucleotide polymorphism data through restriction-site associated DNA sequencing to assess contemporary patterns of genetic structure for 11 L. tumana populations. Using identified clusters, we assessed demographic history through model selection and parameter estimation in a coalescent framework. During population structure analyses, we filtered our data to assess the influence of singletons, missing data and total number of markers on results.ResultsContemporary patterns of population structure indicate that L. tumana exhibits a pattern of isolation-by-distance among populations within three genetic clusters that align with geography. Mean pairwise genetic differentiation (FST) among populations was 0.033. Coalescent-based demographic modelling supported divergence with gene flow among genetic clusters since the end of the Pleistocene (~13-17 kya), likely reflecting the south-to-north recession of ice sheets that accumulated during the Wisconsin glaciation.Main conclusionsWe identified a link between glacial retreat, evolutionary history and patterns of genetic diversity for a range-restricted stonefly imperiled by climate change. This finding included a history of divergence with gene flow, an unexpected conclusion for a mountaintop species. Beyond L. tumana, this study demonstrates the complexity of assessing genetic structure for weakly differentiated species, shows the degree to which rare alleles and missing data may influence results, and highlights the usefulness of genome-scale data to extend population genetic inquiry in non-model species.

  4. Estimating effective landscape distances and movement corridors: Comparison of habitat and genetic data

    Treesearch

    Maria C. Mateo-Sanchez; Niko Balkenhol; Samuel Cushman; Trinidad Perez; Ana Dominguez; Santiago Saura

    2015-01-01

    Resistance models provide a key foundation for landscape connectivity analyses and are widely used to delineate wildlife corridors. Currently, there is no general consensus regarding the most effective empirical methods to parameterize resistance models, but habitat data (species’ presence data and related habitat suitability models) and genetic data are the...

  5. Are we there yet? Tracking the development of new model systems

    Treesearch

    A. Abzhanov; C. Extavour; A. Groover; S. Hodges; H. Hoekstra; E. Kramer; A. Monteiro

    2008-01-01

    It is increasingly clear that additional ‘model’ systems are needed to elucidate the genetic and developmental basis of organismal diversity. Whereas model system development previously required enormous investment, recent advances including the decreasing cost of DNA sequencing and the power of reverse genetics to study gene function are greatly facilitating...

  6. Alternative models in genetic analyses of carcass traits measured by ultrasonography in Guzerá cattle: A Bayesian approach

    USDA-ARS?s Scientific Manuscript database

    The objective was to study alternative models for genetic analyses of carcass traits assessed by ultrasonography in Guzerá cattle. Data from 947 measurements (655 animals) of Rib-eye area (REA), rump fat thickness (RFT) and backfat thickness (BFT) were used. Finite polygenic models (FPM), infinitesi...

  7. A longitudinal twin study of physical aggression during early childhood: evidence for a developmentally dynamic genome.

    PubMed

    Lacourse, E; Boivin, M; Brendgen, M; Petitclerc, A; Girard, A; Vitaro, F; Paquin, S; Ouellet-Morin, I; Dionne, G; Tremblay, R E

    2014-09-01

    Physical aggression (PA) tends to have its onset in infancy and to increase rapidly in frequency. Very little is known about the genetic and environmental etiology of PA development during early childhood. We investigated the temporal pattern of genetic and environmental etiology of PA during this crucial developmental period. Participants were 667 twin pairs, including 254 monozygotic and 413 dizygotic pairs, from the ongoing longitudinal Quebec Newborn Twin Study. Maternal reports of PA were obtained from three waves of data at 20, 32 and 50 months. These reports were analysed using a biometric Cholesky decomposition and linear latent growth curve model. The best-fitting Cholesky model revealed developmentally dynamic effects, mostly genetic attenuation and innovation. The contribution of genetic factors at 20 months substantially decreased over time, while new genetic effects appeared later on. The linear latent growth curve model revealed a significant moderate increase in PA from 20 to 50 months. Two separate sets of uncorrelated genetic factors accounted for the variation in initial level and growth rate. Non-shared and shared environments had no effect on the stability, initial status and growth rate in PA. Genetic factors underlie PA frequency and stability during early childhood; they are also responsible for initial status and growth rate in PA. The contribution of shared environment is modest, and perhaps limited, as it appears only at 50 months. Future research should investigate the complex nature of these dynamic genetic factors through genetic-environment correlation (r GE) and interaction (G×E) analyses.

  8. Inherited behavioral susceptibility to adiposity in infancy: a multivariate genetic analysis of appetite and weight in the Gemini birth cohort.

    PubMed

    Llewellyn, Clare H; van Jaarsveld, Cornelia H M; Plomin, Robert; Fisher, Abigail; Wardle, Jane

    2012-03-01

    The behavioral susceptibility model proposes that inherited differences in traits such as appetite confer differential risk of weight gain and contribute to the heritability of weight. Evidence that the FTO gene may influence weight partly through its effects on appetite supports this model, but testing the behavioral pathways for multiple genes with very small effects is not feasible. Twin analyses make it possible to get a broad-based estimate of the extent of shared genetic influence between appetite and weight. The objective was to use multivariate twin analyses to test the hypothesis that associations between appetite and weight are underpinned by shared genetic effects. Data were from Gemini, a population-based birth cohort of twins (n = 4804) born in 2007. Infant weights at 3 mo were taken from the records of health professionals. Appetite was assessed at 3 mo for the milk-feeding period by using the Baby Eating Behaviour Questionnaire (BEBQ), a parent-reported measure of appetite [enjoyment of food, food responsiveness, slowness in eating (SE), satiety responsiveness (SR), and appetite size (AS)]. Multivariate quantitative genetic modeling was used to test for shared genetic influences. Significant correlations were found between all BEBQ traits and weight. Significant shared genetic influence was identified for weight with SE, SR, and AS; genetic correlations were between 0.22 and 0.37. Shared genetic effects explained 41-45% of these phenotypic associations. Differences in weight in infancy may be due partly to genetically determined differences in appetitive traits that confer differential susceptibility to obesogenic environments.

  9. Race, Genetic Ancestry and Response to Antidepressant Treatment for Major Depression

    PubMed Central

    Murphy, Eleanor; Hou, Liping; Maher, Brion S; Woldehawariat, Girma; Kassem, Layla; Akula, Nirmala; Laje, Gonzalo; McMahon, Francis J

    2013-01-01

    The Sequenced Treatment Alternatives to Relieve Depression (STAR*D) Study revealed poorer antidepressant treatment response among black compared with white participants. This racial disparity persisted even after socioeconomic and baseline clinical factors were taken into account. Some studies have suggested genetic contributions to this disparity, but none have attempted to disentangle race and genetic ancestry. Here we used genome-wide single-nucleotide polymorphism (SNP) data to examine independent contributions of race and genetic ancestry to citalopram response. Secondary data analyses included 1877 STAR*D participants who completed an average of 10 weeks of citalopram treatment and provided DNA samples. Participants reported their race as White (n=1464), black (n=299) or other/mixed (n=114). Genetic ancestry was estimated by multidimensional scaling (MDS) analyses of about 500 000 SNPs. Ancestry proportions were estimated by STRUCTURE. Structural equation modeling was used to examine the direct and indirect effects of observed and latent predictors of response, defined as change in the Quick Inventory of Depressive Symptomatology (QIDS) score from baseline to exit. Socioeconomic and baseline clinical factors, race, and anxiety significantly predicted response, as previously reported. However, direct effects of race disappeared in all models that included genetic ancestry. Genetic African ancestry predicted lower treatment response in all models. Although socioeconomic and baseline clinical factors drive racial differences in antidepressant response, genetic ancestry, rather than self-reported race, explains a significant fraction of the residual differences. Larger samples would be needed to identify the specific genetic mechanisms that may be involved, but these findings underscore the importance of including more African-American patients in drug trials. PMID:23827886

  10. Predicting the genetic consequences of future climate change: The power of coupling spatial demography, the coalescent, and historical landscape changes.

    PubMed

    Brown, Jason L; Weber, Jennifer J; Alvarado-Serrano, Diego F; Hickerson, Michael J; Franks, Steven J; Carnaval, Ana C

    2016-01-01

    Climate change is a widely accepted threat to biodiversity. Species distribution models (SDMs) are used to forecast whether and how species distributions may track these changes. Yet, SDMs generally fail to account for genetic and demographic processes, limiting population-level inferences. We still do not understand how predicted environmental shifts will impact the spatial distribution of genetic diversity within taxa. We propose a novel method that predicts spatially explicit genetic and demographic landscapes of populations under future climatic conditions. We use carefully parameterized SDMs as estimates of the spatial distribution of suitable habitats and landscape dispersal permeability under present-day, past, and future conditions. We use empirical genetic data and approximate Bayesian computation to estimate unknown demographic parameters. Finally, we employ these parameters to simulate realistic and complex models of responses to future environmental shifts. We contrast parameterized models under current and future landscapes to quantify the expected magnitude of change. We implement this framework on neutral genetic data available from Penstemon deustus. Our results predict that future climate change will result in geographically widespread declines in genetic diversity in this species. The extent of reduction will heavily depend on the continuity of population networks and deme sizes. To our knowledge, this is the first study to provide spatially explicit predictions of within-species genetic diversity using climatic, demographic, and genetic data. Our approach accounts for climatic, geographic, and biological complexity. This framework is promising for understanding evolutionary consequences of climate change, and guiding conservation planning. © 2016 Botanical Society of America.

  11. Defining the role of polyamines in colon carcinogenesis using mouse models

    PubMed Central

    Ignatenko, Natalia A.; Gerner, Eugene W.; Besselsen, David G.

    2011-01-01

    Genetics and diet are both considered important risk determinants for colorectal cancer, a leading cause of death in the US and worldwide. Genetically engineered mouse (GEM) models have made a significant contribution to the characterization of colorectal cancer risk factors. Reliable, reproducible, and clinically relevant animal models help in the identification of the molecular events associated with disease progression and in the development of effictive treatment strategies. This review is focused on the use of mouse models for studying the role of polyamines in colon carcinogenesis. We describe how the available mouse models of colon cancer such as the multiple intestinal neoplasia (Min) mice and knockout genetic models facilitate understanding of the role of polyamines in colon carcinogenesis and help in the development of a rational strategy for colon cancer chemoprevention. PMID:21712957

  12. Random regression models on Legendre polynomials to estimate genetic parameters for weights from birth to adult age in Canchim cattle.

    PubMed

    Baldi, F; Albuquerque, L G; Alencar, M M

    2010-08-01

    The objective of this work was to estimate covariance functions for direct and maternal genetic effects, animal and maternal permanent environmental effects, and subsequently, to derive relevant genetic parameters for growth traits in Canchim cattle. Data comprised 49,011 weight records on 2435 females from birth to adult age. The model of analysis included fixed effects of contemporary groups (year and month of birth and at weighing) and age of dam as quadratic covariable. Mean trends were taken into account by a cubic regression on orthogonal polynomials of animal age. Residual variances were allowed to vary and were modelled by a step function with 1, 4 or 11 classes based on animal's age. The model fitting four classes of residual variances was the best. A total of 12 random regression models from second to seventh order were used to model direct and maternal genetic effects, animal and maternal permanent environmental effects. The model with direct and maternal genetic effects, animal and maternal permanent environmental effects fitted by quadric, cubic, quintic and linear Legendre polynomials, respectively, was the most adequate to describe the covariance structure of the data. Estimates of direct and maternal heritability obtained by multi-trait (seven traits) and random regression models were very similar. Selection for higher weight at any age, especially after weaning, will produce an increase in mature cow weight. The possibility to modify the growth curve in Canchim cattle to obtain animals with rapid growth at early ages and moderate to low mature cow weight is limited.

  13. Ensemble learning of QTL models improves prediction of complex traits

    USDA-ARS?s Scientific Manuscript database

    Quantitative trait locus (QTL) models can provide useful insights into trait genetic architecture because of their straightforward interpretability, but are less useful for genetic prediction due to difficulty in including the effects of numerous small effect loci without overfitting. Tight linkage ...

  14. Preservation of Long-Term Memory and Synaptic Plasticity Despite Short-Term Impairments in the Tc1 Mouse Model of Down Syndrome

    ERIC Educational Resources Information Center

    Morice, Elise; Andreae, Laura C.; Cooke, Sam F.; Vanes, Lesley; Fisher, Elizabeth M. C.; Tybulewicz, Victor L. J.; Bliss, Timothy V. P.

    2008-01-01

    Down syndrome (DS) is a genetic disorder arising from the presence of a third copy of the human chromosome 21 (Hsa21). Recently, O'Doherty and colleagues in an earlier study generated a new genetic mouse model of DS (Tc1) that carries an almost complete Hsa21. Since DS is the most common genetic cause of mental retardation, we have undertaken a…

  15. The Mouse Lemur, a Genetic Model Organism for Primate Biology, Behavior, and Health.

    PubMed

    Ezran, Camille; Karanewsky, Caitlin J; Pendleton, Jozeph L; Sholtz, Alex; Krasnow, Maya R; Willick, Jason; Razafindrakoto, Andriamahery; Zohdy, Sarah; Albertelli, Megan A; Krasnow, Mark A

    2017-06-01

    Systematic genetic studies of a handful of diverse organisms over the past 50 years have transformed our understanding of biology. However, many aspects of primate biology, behavior, and disease are absent or poorly modeled in any of the current genetic model organisms including mice. We surveyed the animal kingdom to find other animals with advantages similar to mice that might better exemplify primate biology, and identified mouse lemurs ( Microcebus spp.) as the outstanding candidate. Mouse lemurs are prosimian primates, roughly half the genetic distance between mice and humans. They are the smallest, fastest developing, and among the most prolific and abundant primates in the world, distributed throughout the island of Madagascar, many in separate breeding populations due to habitat destruction. Their physiology, behavior, and phylogeny have been studied for decades in laboratory colonies in Europe and in field studies in Malagasy rainforests, and a high quality reference genome sequence has recently been completed. To initiate a classical genetic approach, we developed a deep phenotyping protocol and have screened hundreds of laboratory and wild mouse lemurs for interesting phenotypes and begun mapping the underlying mutations, in collaboration with leading mouse lemur biologists. We also seek to establish a mouse lemur gene "knockout" library by sequencing the genomes of thousands of mouse lemurs to identify null alleles in most genes from the large pool of natural genetic variants. As part of this effort, we have begun a citizen science project in which students across Madagascar explore the remarkable biology around their schools, including longitudinal studies of the local mouse lemurs. We hope this work spawns a new model organism and cultivates a deep genetic understanding of primate biology and health. We also hope it establishes a new and ethical method of genetics that bridges biological, behavioral, medical, and conservation disciplines, while providing an example of how hands-on science education can help transform developing countries. Copyright © 2017 by the Genetics Society of America.

  16. Integrating Genetic, Neuropsychological and Neuroimaging Data to Model Early-Onset Obsessive Compulsive Disorder Severity

    PubMed Central

    Mas, Sergi; Gassó, Patricia; Morer, Astrid; Calvo, Anna; Bargalló, Nuria; Lafuente, Amalia; Lázaro, Luisa

    2016-01-01

    We propose an integrative approach that combines structural magnetic resonance imaging data (MRI), diffusion tensor imaging data (DTI), neuropsychological data, and genetic data to predict early-onset obsessive compulsive disorder (OCD) severity. From a cohort of 87 patients, 56 with complete information were used in the present analysis. First, we performed a multivariate genetic association analysis of OCD severity with 266 genetic polymorphisms. This association analysis was used to select and prioritize the SNPs that would be included in the model. Second, we split the sample into a training set (N = 38) and a validation set (N = 18). Third, entropy-based measures of information gain were used for feature selection with the training subset. Fourth, the selected features were fed into two supervised methods of class prediction based on machine learning, using the leave-one-out procedure with the training set. Finally, the resulting model was validated with the validation set. Nine variables were used for the creation of the OCD severity predictor, including six genetic polymorphisms and three variables from the neuropsychological data. The developed model classified child and adolescent patients with OCD by disease severity with an accuracy of 0.90 in the testing set and 0.70 in the validation sample. Above its clinical applicability, the combination of particular neuropsychological, neuroimaging, and genetic characteristics could enhance our understanding of the neurobiological basis of the disorder. PMID:27093171

  17. Reverse-engineering the genetic circuitry of a cancer cell with predicted intervention in chronic lymphocytic leukemia.

    PubMed

    Vallat, Laurent; Kemper, Corey A; Jung, Nicolas; Maumy-Bertrand, Myriam; Bertrand, Frédéric; Meyer, Nicolas; Pocheville, Arnaud; Fisher, John W; Gribben, John G; Bahram, Seiamak

    2013-01-08

    Cellular behavior is sustained by genetic programs that are progressively disrupted in pathological conditions--notably, cancer. High-throughput gene expression profiling has been used to infer statistical models describing these cellular programs, and development is now needed to guide orientated modulation of these systems. Here we develop a regression-based model to reverse-engineer a temporal genetic program, based on relevant patterns of gene expression after cell stimulation. This method integrates the temporal dimension of biological rewiring of genetic programs and enables the prediction of the effect of targeted gene disruption at the system level. We tested the performance accuracy of this model on synthetic data before reverse-engineering the response of primary cancer cells to a proliferative (protumorigenic) stimulation in a multistate leukemia biological model (i.e., chronic lymphocytic leukemia). To validate the ability of our method to predict the effects of gene modulation on the global program, we performed an intervention experiment on a targeted gene. Comparison of the predicted and observed gene expression changes demonstrates the possibility of predicting the effects of a perturbation in a gene regulatory network, a first step toward an orientated intervention in a cancer cell genetic program.

  18. Genetic and phylogenetic consequences of island biogeography.

    PubMed

    Johnson, K P; Adler, F R; Cherry, J L

    2000-04-01

    Island biogeography theory predicts that the number of species on an island should increase with island size and decrease with island distance to the mainland. These predictions are generally well supported in comparative and experimental studies. These ecological, equilibrium predictions arise as a result of colonization and extinction processes. Because colonization and extinction are also important processes in evolution, we develop methods to test evolutionary predictions of island biogeography. We derive a population genetic model of island biogeography that incorporates island colonization, migration of individuals from the mainland, and extinction of island populations. The model provides a means of estimating the rates of migration and extinction from population genetic data. This model predicts that within an island population the distribution of genetic divergences with respect to the mainland source population should be bimodal, with much of the divergence dating to the colonization event. Across islands, this model predicts that populations on large islands should be on average more genetically divergent from mainland source populations than those on small islands. Likewise, populations on distant islands should be more divergent than those on close islands. Published observations of a larger proportion of endemic species on large and distant islands support these predictions.

  19. Reasoning over genetic variance information in cause-and-effect models of neurodegenerative diseases

    PubMed Central

    Naz, Mufassra; Kodamullil, Alpha Tom

    2016-01-01

    The work we present here is based on the recent extension of the syntax of the Biological Expression Language (BEL), which now allows for the representation of genetic variation information in cause-and-effect models. In our article, we describe, how genetic variation information can be used to identify candidate disease mechanisms in diseases with complex aetiology such as Alzheimer’s disease and Parkinson’s disease. In those diseases, we have to assume that many genetic variants contribute moderately to the overall dysregulation that in the case of neurodegenerative diseases has such a long incubation time until the first clinical symptoms are detectable. Owing to the multilevel nature of dysregulation events, systems biomedicine modelling approaches need to combine mechanistic information from various levels, including gene expression, microRNA (miRNA) expression, protein–protein interaction, genetic variation and pathway. OpenBEL, the open source version of BEL, has recently been extended to match this requirement, and we demonstrate in our article, how candidate mechanisms for early dysregulation events in Alzheimer’s disease can be identified based on an integrative mining approach that identifies ‘chains of causation’ that include single nucleotide polymorphism information in BEL models. PMID:26249223

  20. The ecology and evolution of animal medication: genetically fixed response versus phenotypic plasticity.

    PubMed

    Choisy, Marc; de Roode, Jacobus C

    2014-08-01

    Animal medication against parasites can occur either as a genetically fixed (constitutive) or phenotypically plastic (induced) behavior. Taking the tritrophic interaction between the monarch butterfly Danaus plexippus, its protozoan parasite Ophryocystis elektroscirrha, and its food plant Asclepias spp. as a test case, we develop a game-theory model to identify the epidemiological (parasite prevalence and virulence) and environmental (plant toxicity and abundance) conditions that predict the evolution of genetically fixed versus phenotypically plastic forms of medication. Our model shows that the relative benefits (the antiparasitic properties of medicinal food) and costs (side effects of medicine, the costs of searching for medicine, and the costs of plasticity itself) crucially determine whether medication is genetically fixed or phenotypically plastic. Our model suggests that animals evolve phenotypic plasticity when parasite risk (a combination of virulence and prevalence and thus a measure of the strength of parasite-mediated selection) is relatively low to moderately high and genetically fixed medication when parasite risk becomes very high. The latter occurs because at high parasite risk, the costs of plasticity are outweighed by the benefits of medication. Our model provides a simple and general framework to study the conditions that drive the evolution of alternative forms of animal medication.

  1. [Ethical challenges of genetic manipulation and research with animals].

    PubMed

    Rodríguez Yunta, Eduardo

    2012-01-01

    Research with animals presents ethical questions both for being used as models of human diseases and for being a prerequisite for trials in humans, as in the introduction of genetic modifications. Some of these questions refer to the fact that, as models, they do not fully represent the human condition; that conducting toxicity tests causes great harm to animals; that their nature is altered by genetic modifications and that introducing genetically modified organisms is a risk. The use of animals in research for the benefit of humans imposes the moral responsibility to respect them, not making them suffer unnecessarily, since they are living beings capable of feeling.

  2. Genetic signatures of natural selection in a model invasive ascidian

    PubMed Central

    Lin, Yaping; Chen, Yiyong; Yi, Changho; Fong, Jonathan J.; Kim, Won; Rius, Marc; Zhan, Aibin

    2017-01-01

    Invasive species represent promising models to study species’ responses to rapidly changing environments. Although local adaptation frequently occurs during contemporary range expansion, the associated genetic signatures at both population and genomic levels remain largely unknown. Here, we use genome-wide gene-associated microsatellites to investigate genetic signatures of natural selection in a model invasive ascidian, Ciona robusta. Population genetic analyses of 150 individuals sampled in Korea, New Zealand, South Africa and Spain showed significant genetic differentiation among populations. Based on outlier tests, we found high incidence of signatures of directional selection at 19 loci. Hitchhiking mapping analyses identified 12 directional selective sweep regions, and all selective sweep windows on chromosomes were narrow (~8.9 kb). Further analyses indentified 132 candidate genes under selection. When we compared our genetic data and six crucial environmental variables, 16 putatively selected loci showed significant correlation with these environmental variables. This suggests that the local environmental conditions have left significant signatures of selection at both population and genomic levels. Finally, we identified “plastic” genomic regions and genes that are promising regions to investigate evolutionary responses to rapid environmental change in C. robusta. PMID:28266616

  3. Natural genetic variation of root system architecture from Arabidopsis to Brachypodium: towards adaptive value.

    PubMed

    Pacheco-Villalobos, David; Hardtke, Christian S

    2012-06-05

    Root system architecture is a trait that displays considerable plasticity because of its sensitivity to environmental stimuli. Nevertheless, to a significant degree it is genetically constrained as suggested by surveys of its natural genetic variation. A few regulators of root system architecture have been isolated as quantitative trait loci through the natural variation approach in the dicotyledon model, Arabidopsis. This provides proof of principle that allelic variation for root system architecture traits exists, is genetically tractable, and might be exploited for crop breeding. Beyond Arabidopsis, Brachypodium could serve as both a credible and experimentally accessible model for root system architecture variation in monocotyledons, as suggested by first glimpses of the different root morphologies of Brachypodium accessions. Whether a direct knowledge transfer gained from molecular model system studies will work in practice remains unclear however, because of a lack of comprehensive understanding of root system physiology in the native context. For instance, apart from a few notable exceptions, the adaptive value of genetic variation in root system modulators is unknown. Future studies should thus aim at comprehensive characterization of the role of genetic players in root system architecture variation by taking into account the native environmental conditions, in particular soil characteristics.

  4. Temperature-dependent behaviours are genetically variable in the nematode Caenorhabditis briggsae.

    PubMed

    Stegeman, Gregory W; de Mesquita, Matthew Bueno; Ryu, William S; Cutter, Asher D

    2013-03-01

    Temperature-dependent behaviours in Caenorhabditis elegans, such as thermotaxis and isothermal tracking, are complex behavioural responses that integrate sensation, foraging and learning, and have driven investigations to discover many essential genetic and neural pathways. The ease of manipulation of the Caenorhabditis model system also has encouraged its application to comparative analyses of phenotypic evolution, particularly contrasts of the classic model C. elegans with C. briggsae. And yet few studies have investigated natural genetic variation in behaviour in any nematode. Here we measure thermotaxis and isothermal tracking behaviour in genetically distinct strains of C. briggsae, further motivated by the latitudinal differentiation in C. briggsae that is associated with temperature-dependent fitness differences in this species. We demonstrate that C. briggsae performs thermotaxis and isothermal tracking largely similar to that of C. elegans, with a tendency to prefer its rearing temperature. Comparisons of these behaviours among strains reveal substantial heritable natural variation within each species that corresponds to three general patterns of behavioural response. However, intraspecific genetic differences in thermal behaviour often exceed interspecific differences. These patterns of temperature-dependent behaviour motivate further development of C. briggsae as a model system for dissecting the genetic underpinnings of complex behavioural traits.

  5. An examination of environmental and genetic contributions to the determinants of suicidal behavior among male twins

    PubMed Central

    Smith, April Rose; Ribeiro, Jessica; Mikolajewski, Amy; Taylor, Jeanette; Joiner, Thomas; Iacono, William G.

    2012-01-01

    The purpose of the present study was to examine the relative association of genetic and environmental factors with individual differences in each of the proximal, jointly necessary, and sufficient causes for suicidal behavior, according to the Interpersonal-Psychological Theory of Suicide (IPTS; Joiner, 2005). We examined data on derived scales measuring acquired capability, belongingness, and burdensomeness (the determinants of suicidal behavior, according to theory) from 348 adolescent male twins. Univariate biometrical models were used to estimate the magnitude of additive genetic (A), non-additive genetic (D), shared environmental (C), and nonshared environmental (E) effects associated with the variance in acquired capability, belongingness, and burdensomeness. The best fitting model for the acquired capability allowed for additive genetic and environmental effects, whereas the best fitting model for burdensomeness and belongingness allowed for shared and nonshared environmental effects. The present research extends prior work by specifying the environmental and genetic contributions to the components of the IPTS, and our findings suggest that belongingness and burdensomeness may be more appropriate targets for clinical intervention than acquired capability as these factors may be more malleable or amenable to change. PMID:22417928

  6. Validation of test-day models for genetic evaluation of dairy goats in Norway.

    PubMed

    Andonov, S; Ødegård, J; Boman, I A; Svendsen, M; Holme, I J; Adnøy, T; Vukovic, V; Klemetsdal, G

    2007-10-01

    Test-day data for daily milk yield and fat, protein, and lactose content were sampled from the years 1988 to 2003 in 17 flocks belonging to 2 genetically well-tied buck circles. In total, records from 2,111 to 2,215 goats for content traits and 2,371 goats for daily milk yield were included in the analysis, averaging 2.6 and 4.8 observations per goat for the 2 groups of traits, respectively. The data were analyzed by using 4 test-day models with different modeling of fixed effects. Model [0] (the reference model) contained a fixed effect of year-season of kidding with regression on Ali-Schaeffer polynomials nested within the year-season classes, and a random effect of flock test-day. In model [1], the lactation curve effect from model [0] was replaced by a fixed effect of days in milk (in 3-d periods), the same for all year-seasons of kidding. Models [2] and [3] were obtained from model [1] by removing the fixed year-season of kidding effect and considering the flock test-day effect as either fixed or random, respectively. The models were compared by using 2 criteria: mean-squared error of prediction and a test of bias affecting the genetic trend. The first criterion indicated a preference for model [3], whereas the second criterion preferred model [1]. Mean-squared error of prediction is based on model fit, whereas the second criterion tests the ability of the model to produce unbiased genetic evaluation (i.e., its capability of separating environmental and genetic time trends). Thus, a fixed structure with year (year, year-season, or possibly flock-year) was indicated to appropriately separate time trends. Heritability estimates for daily milk yield and milk content were 0.26 and 0.24 to 0.27, respectively.

  7. Models for Estimating Genetic Parameters of Milk Production Traits Using Random Regression Models in Korean Holstein Cattle

    PubMed Central

    Cho, C. I.; Alam, M.; Choi, T. J.; Choy, Y. H.; Choi, J. G.; Lee, S. S.; Cho, K. H.

    2016-01-01

    The objectives of the study were to estimate genetic parameters for milk production traits of Holstein cattle using random regression models (RRMs), and to compare the goodness of fit of various RRMs with homogeneous and heterogeneous residual variances. A total of 126,980 test-day milk production records of the first parity Holstein cows between 2007 and 2014 from the Dairy Cattle Improvement Center of National Agricultural Cooperative Federation in South Korea were used. These records included milk yield (MILK), fat yield (FAT), protein yield (PROT), and solids-not-fat yield (SNF). The statistical models included random effects of genetic and permanent environments using Legendre polynomials (LP) of the third to fifth order (L3–L5), fixed effects of herd-test day, year-season at calving, and a fixed regression for the test-day record (third to fifth order). The residual variances in the models were either homogeneous (HOM) or heterogeneous (15 classes, HET15; 60 classes, HET60). A total of nine models (3 orders of polynomials×3 types of residual variance) including L3-HOM, L3-HET15, L3-HET60, L4-HOM, L4-HET15, L4-HET60, L5-HOM, L5-HET15, and L5-HET60 were compared using Akaike information criteria (AIC) and/or Schwarz Bayesian information criteria (BIC) statistics to identify the model(s) of best fit for their respective traits. The lowest BIC value was observed for the models L5-HET15 (MILK; PROT; SNF) and L4-HET15 (FAT), which fit the best. In general, the BIC values of HET15 models for a particular polynomial order was lower than that of the HET60 model in most cases. This implies that the orders of LP and types of residual variances affect the goodness of models. Also, the heterogeneity of residual variances should be considered for the test-day analysis. The heritability estimates of from the best fitted models ranged from 0.08 to 0.15 for MILK, 0.06 to 0.14 for FAT, 0.08 to 0.12 for PROT, and 0.07 to 0.13 for SNF according to days in milk of first lactation. Genetic variances for studied traits tended to decrease during the earlier stages of lactation, which were followed by increases in the middle and decreases further at the end of lactation. With regards to the fitness of the models and the differential genetic parameters across the lactation stages, we could estimate genetic parameters more accurately from RRMs than from lactation models. Therefore, we suggest using RRMs in place of lactation models to make national dairy cattle genetic evaluations for milk production traits in Korea. PMID:26954184

  8. Models for Estimating Genetic Parameters of Milk Production Traits Using Random Regression Models in Korean Holstein Cattle.

    PubMed

    Cho, C I; Alam, M; Choi, T J; Choy, Y H; Choi, J G; Lee, S S; Cho, K H

    2016-05-01

    The objectives of the study were to estimate genetic parameters for milk production traits of Holstein cattle using random regression models (RRMs), and to compare the goodness of fit of various RRMs with homogeneous and heterogeneous residual variances. A total of 126,980 test-day milk production records of the first parity Holstein cows between 2007 and 2014 from the Dairy Cattle Improvement Center of National Agricultural Cooperative Federation in South Korea were used. These records included milk yield (MILK), fat yield (FAT), protein yield (PROT), and solids-not-fat yield (SNF). The statistical models included random effects of genetic and permanent environments using Legendre polynomials (LP) of the third to fifth order (L3-L5), fixed effects of herd-test day, year-season at calving, and a fixed regression for the test-day record (third to fifth order). The residual variances in the models were either homogeneous (HOM) or heterogeneous (15 classes, HET15; 60 classes, HET60). A total of nine models (3 orders of polynomials×3 types of residual variance) including L3-HOM, L3-HET15, L3-HET60, L4-HOM, L4-HET15, L4-HET60, L5-HOM, L5-HET15, and L5-HET60 were compared using Akaike information criteria (AIC) and/or Schwarz Bayesian information criteria (BIC) statistics to identify the model(s) of best fit for their respective traits. The lowest BIC value was observed for the models L5-HET15 (MILK; PROT; SNF) and L4-HET15 (FAT), which fit the best. In general, the BIC values of HET15 models for a particular polynomial order was lower than that of the HET60 model in most cases. This implies that the orders of LP and types of residual variances affect the goodness of models. Also, the heterogeneity of residual variances should be considered for the test-day analysis. The heritability estimates of from the best fitted models ranged from 0.08 to 0.15 for MILK, 0.06 to 0.14 for FAT, 0.08 to 0.12 for PROT, and 0.07 to 0.13 for SNF according to days in milk of first lactation. Genetic variances for studied traits tended to decrease during the earlier stages of lactation, which were followed by increases in the middle and decreases further at the end of lactation. With regards to the fitness of the models and the differential genetic parameters across the lactation stages, we could estimate genetic parameters more accurately from RRMs than from lactation models. Therefore, we suggest using RRMs in place of lactation models to make national dairy cattle genetic evaluations for milk production traits in Korea.

  9. Experimental Population Genetics in the Introductory Genetics Laboratory Using "Drosophila" as a Model Organism

    ERIC Educational Resources Information Center

    Johnson, Ronald; Kennon, Tillman

    2009-01-01

    Hypotheses of population genetics are derived and tested by students in the introductory genetics laboratory classroom as they explore the effects of biotic variables (physical traits of fruit flies) and abiotic variables (island size and distance) on fruit fly populations. In addition to this hypothesis-driven experiment, the development of…

  10. Utility of genetic and non-genetic risk factors in prediction of type 2 diabetes: Whitehall II prospective cohort study.

    PubMed

    Talmud, Philippa J; Hingorani, Aroon D; Cooper, Jackie A; Marmot, Michael G; Brunner, Eric J; Kumari, Meena; Kivimäki, Mika; Humphries, Steve E

    2010-01-14

    To assess the performance of a panel of common single nucleotide polymorphisms (genotypes) associated with type 2 diabetes in distinguishing incident cases of future type 2 diabetes (discrimination), and to examine the effect of adding genetic information to previously validated non-genetic (phenotype based) models developed to estimate the absolute risk of type 2 diabetes. Workplace based prospective cohort study with three 5 yearly medical screenings. 5535 initially healthy people (mean age 49 years; 33% women), of whom 302 developed new onset type 2 diabetes over 10 years. Non-genetic variables included in two established risk models-the Cambridge type 2 diabetes risk score (age, sex, drug treatment, family history of type 2 diabetes, body mass index, smoking status) and the Framingham offspring study type 2 diabetes risk score (age, sex, parental history of type 2 diabetes, body mass index, high density lipoprotein cholesterol, triglycerides, fasting glucose)-and 20 single nucleotide polymorphisms associated with susceptibility to type 2 diabetes. Cases of incident type 2 diabetes were defined on the basis of a standard oral glucose tolerance test, self report of a doctor's diagnosis, or the use of anti-diabetic drugs. A genetic score based on the number of risk alleles carried (range 0-40; area under receiver operating characteristics curve 0.54, 95% confidence interval 0.50 to 0.58) and a genetic risk function in which carriage of risk alleles was weighted according to the summary odds ratios of their effect from meta-analyses of genetic studies (area under receiver operating characteristics curve 0.55, 0.51 to 0.59) did not effectively discriminate cases of diabetes. The Cambridge risk score (area under curve 0.72, 0.69 to 0.76) and the Framingham offspring risk score (area under curve 0.78, 0.75 to 0.82) led to better discrimination of cases than did genotype based tests. Adding genetic information to phenotype based risk models did not improve discrimination and provided only a small improvement in model calibration and a modest net reclassification improvement of about 5% when added to the Cambridge risk score but not when added to the Framingham offspring risk score. The phenotype based risk models provided greater discrimination for type 2 diabetes than did models based on 20 common independently inherited diabetes risk alleles. The addition of genotypes to phenotype based risk models produced only minimal improvement in accuracy of risk estimation assessed by recalibration and, at best, a minor net reclassification improvement. The major translational application of the currently known common, small effect genetic variants influencing susceptibility to type 2 diabetes is likely to come from the insight they provide on causes of disease and potential therapeutic targets.

  11. Effects of complex life cycles on genetic diversity: cyclical parthenogenesis.

    PubMed

    Rouger, R; Reichel, K; Malrieu, F; Masson, J P; Stoeckel, S

    2016-11-01

    Neutral patterns of population genetic diversity in species with complex life cycles are difficult to anticipate. Cyclical parthenogenesis (CP), in which organisms undergo several rounds of clonal reproduction followed by a sexual event, is one such life cycle. Many species, including crop pests (aphids), human parasites (trematodes) or models used in evolutionary science (Daphnia), are cyclical parthenogens. It is therefore crucial to understand the impact of such a life cycle on neutral genetic diversity. In this paper, we describe distributions of genetic diversity under conditions of CP with various clonal phase lengths. Using a Markov chain model of CP for a single locus and individual-based simulations for two loci, our analysis first demonstrates that strong departures from full sexuality are observed after only a few generations of clonality. The convergence towards predictions made under conditions of full clonality during the clonal phase depends on the balance between mutations and genetic drift. Second, the sexual event of CP usually resets the genetic diversity at a single locus towards predictions made under full sexuality. However, this single recombination event is insufficient to reshuffle gametic phases towards full-sexuality predictions. Finally, for similar levels of clonality, CP and acyclic partial clonality (wherein a fixed proportion of individuals are clonally produced within each generation) differentially affect the distribution of genetic diversity. Overall, this work provides solid predictions of neutral genetic diversity that may serve as a null model in detecting the action of common evolutionary or demographic processes in cyclical parthenogens (for example, selection or bottlenecks).

  12. Setaria viridis as a Model System to Advance Millet Genetics and Genomics

    PubMed Central

    Huang, Pu; Shyu, Christine; Coelho, Carla P.; Cao, Yingying; Brutnell, Thomas P.

    2016-01-01

    Millet is a common name for a group of polyphyletic, small-seeded cereal crops that include pearl, finger and foxtail millet. Millet species are an important source of calories for many societies, often in developing countries. Compared to major cereal crops such as rice and maize, millets are generally better adapted to dry and hot environments. Despite their food security value, the genetic architecture of agronomically important traits in millets, including both morphological traits and climate resilience remains poorly studied. These complex traits have been challenging to dissect in large part because of the lack of sufficient genetic tools and resources. In this article, we review the phylogenetic relationship among various millet species and discuss the value of a genetic model system for millet research. We propose that a broader adoption of green foxtail (Setaria viridis) as a model system for millets could greatly accelerate the pace of gene discovery in the millets, and summarize available and emerging resources in S. viridis and its domesticated relative S. italica. These resources have value in forward genetics, reverse genetics and high throughput phenotyping. We describe methods and strategies to best utilize these resources to facilitate the genetic dissection of complex traits. We envision that coupling cutting-edge technologies and the use of S. viridis for gene discovery will accelerate genetic research in millets in general. This will enable strategies and provide opportunities to increase productivity, especially in the semi-arid tropics of Asia and Africa where millets are staple food crops. PMID:27965689

  13. Setaria viridis as a Model System to Advance Millet Genetics and Genomics.

    PubMed

    Huang, Pu; Shyu, Christine; Coelho, Carla P; Cao, Yingying; Brutnell, Thomas P

    2016-01-01

    Millet is a common name for a group of polyphyletic, small-seeded cereal crops that include pearl, finger and foxtail millet. Millet species are an important source of calories for many societies, often in developing countries. Compared to major cereal crops such as rice and maize, millets are generally better adapted to dry and hot environments. Despite their food security value, the genetic architecture of agronomically important traits in millets, including both morphological traits and climate resilience remains poorly studied. These complex traits have been challenging to dissect in large part because of the lack of sufficient genetic tools and resources. In this article, we review the phylogenetic relationship among various millet species and discuss the value of a genetic model system for millet research. We propose that a broader adoption of green foxtail ( Setaria viridis ) as a model system for millets could greatly accelerate the pace of gene discovery in the millets, and summarize available and emerging resources in S. viridis and its domesticated relative S. italica . These resources have value in forward genetics, reverse genetics and high throughput phenotyping. We describe methods and strategies to best utilize these resources to facilitate the genetic dissection of complex traits. We envision that coupling cutting-edge technologies and the use of S. viridis for gene discovery will accelerate genetic research in millets in general. This will enable strategies and provide opportunities to increase productivity, especially in the semi-arid tropics of Asia and Africa where millets are staple food crops.

  14. Modeling of genetic gain for single traits from marker-assisted seedling selection in clonally propagated crops

    PubMed Central

    Ru, Sushan; Hardner, Craig; Carter, Patrick A; Evans, Kate; Main, Dorrie; Peace, Cameron

    2016-01-01

    Seedling selection identifies superior seedlings as candidate cultivars based on predicted genetic potential for traits of interest. Traditionally, genetic potential is determined by phenotypic evaluation. With the availability of DNA tests for some agronomically important traits, breeders have the opportunity to include DNA information in their seedling selection operations—known as marker-assisted seedling selection. A major challenge in deploying marker-assisted seedling selection in clonally propagated crops is a lack of knowledge in genetic gain achievable from alternative strategies. Existing models based on additive effects considering seed-propagated crops are not directly relevant for seedling selection of clonally propagated crops, as clonal propagation captures all genetic effects, not just additive. This study modeled genetic gain from traditional and various marker-based seedling selection strategies on a single trait basis through analytical derivation and stochastic simulation, based on a generalized seedling selection scheme of clonally propagated crops. Various trait-test scenarios with a range of broad-sense heritability and proportion of genotypic variance explained by DNA markers were simulated for two populations with different segregation patterns. Both derived and simulated results indicated that marker-based strategies tended to achieve higher genetic gain than phenotypic seedling selection for a trait where the proportion of genotypic variance explained by marker information was greater than the broad-sense heritability. Results from this study provides guidance in optimizing genetic gain from seedling selection for single traits where DNA tests providing marker information are available. PMID:27148453

  15. The Relationship Between the Genetic and Environmental Influences on Common Externalizing Psychopathology and Mental Wellbeing

    PubMed Central

    Kendler, Kenneth S.; Myers, John M.; Keyes, Corey L. M.

    2012-01-01

    To determine the relationship between the genetic and environmental risk factors for externalizing psychopathology and mental wellbeing, we examined detailed measures of emotional, social and psychological wellbeing, and a history of alcohol-related problems and smoking behavior in the last year in 1,386 individual twins from same-sex pairs from the MIDUS national US sample assessed in 1995. Cholesky decomposition analyses were performed with the Mx program. The best fit model contained one highly heritable common externalizing psychopathology factor for both substance use/abuse measures, and one strongly heritable common factor for the three wellbeing measures. Genetic and environmental risk factors for externalizing psychopathology were both negatively associated with levels of mental wellbeing and accounted for, respectively, 7% and 21% of its genetic and environmental influences. Adding internalizing psychopathology assessed in the last year to the model, genetic risk factors unique for externalizing psychopathology were now positively related to levels of mental wellbeing, although accounting for only 5% of the genetic variance. Environmental risk factors unique to externalizing psychopathology continued to be negatively associated with mental wellbeing, accounting for 26% of the environmental variance. When both internalizing psychopathology and externalizing psychopathology are associated with mental wellbeing, the strongest risk factors for low mental wellbeing are genetic factors that impact on both internalizing psychopathology and externalizing psychopathology, and environmental factors unique to externalizing psychopathology. In this model, genetic risk factors for externalizing psychopathology predict, albeit weakly, higher levels of mental wellbeing. PMID:22506307

  16. The effect of climatic forcing on population synchrony and genetic structuring of the Canadian lynx

    PubMed Central

    Stenseth, Nils Chr.; Ehrich, Dorothee; Rueness, Eli Knispel; Lingjærde, Ole Chr.; Chan, Kung-Sik; Boutin, Stan; O'Donoghue, Mark; Robinson, David A.; Viljugrein, Hildegunn; Jakobsen, Kjetill S.

    2004-01-01

    The abundance of Canadian lynx follows 10-year density fluctuations across the Canadian subcontinent. These cyclic fluctuations have earlier been shown to be geographically structured into three climatic regions: the Atlantic, Continental, and Pacific zones. Recent genetic evidence revealed an essentially similar spatial structuring. Introducing a new population model, the “climate forcing of ecological and evolutionary patterns” model, we link the observed ecological and evolutionary patterns. Specifically, we demonstrate that there is greater phase synchrony within climatic zones than between them and show that external climatic forcing may act as a synchronizer. We simulated genetic drift by using data on population dynamics generated by the climate forcing of ecological and evolutionary patterns model, and we demonstrate that the observed genetic structuring can be seen as an emerging property of the spatiotemporal ecological dynamics. PMID:15067131

  17. Genetic characterization of Kenai brown bears (Ursus arctos): Microsatellite and mitochondrial DNA control region variation in brown bears of the Kenai Peninsula, south central Alaska

    USGS Publications Warehouse

    Jackson, J.V.; Talbot, S.L.; Farley, S.

    2008-01-01

    We collected data from 20 biparentally inherited microsatellite loci, and nucleotide sequence from the maternally inherited mitochondrial DNA (mtDNA) control region, to determine levels of genetic variation of the brown bears (Ursus arctos L., 1758) of the Kenai Peninsula, south central Alaska. Nuclear genetic variation was similar to that observed in other Alaskan peninsular populations. We detected no significant inbreeding and found no evidence of population substructuring on the Kenai Peninsula. We observed a genetic signature of a bottleneck under the infinite alleles model (IAM), but not under the stepwise mutation model (SMM) or the two-phase model (TPM) of microsatellite mutation. Kenai brown bears have lower levels of mtDNA haplotypic diversity relative to most other brown bear populations in Alaska. ?? 2008 NRC.

  18. Genetic modifications of pigs for medicine and agriculture

    PubMed Central

    Whyte, Jeffrey J.; Prather, Randall S.

    2011-01-01

    SUMMARY Genetically modified swine hold great promise in the fields of agriculture and medicine. Currently, these swine are being used to optimize production of quality meat, to improve our understanding of the biology of disease resistance, and to reduced waste. In the field of biomedicine, swine are anatomically and physiologically analogous to humans. Alterations of key swine genes in disease pathways provide model animals to improve our understanding of the causes and potential treatments of many human genetic disorders. The completed sequencing of the swine genome will significantly enhance the specificity of genetic modifications, and allow for more accurate representations of human disease based on syntenic genes between the two species. Improvements in both methods of gene alteration and efficiency of model animal production are key to enabling routine use of these swine models in medicine and agriculture. PMID:21671302

  19. Genetic evaluation of mastitis liability and recovery through longitudinal analysis of transition probabilities

    PubMed Central

    2012-01-01

    Background Many methods for the genetic analysis of mastitis use a cross-sectional approach, which omits information on, e.g., repeated mastitis cases during lactation, somatic cell count fluctuations, and recovery process. Acknowledging the dynamic behavior of mastitis during lactation and taking into account that there is more than one binary response variable to consider, can enhance the genetic evaluation of mastitis. Methods Genetic evaluation of mastitis was carried out by modeling the dynamic nature of somatic cell count (SCC) within the lactation. The SCC patterns were captured by modeling transition probabilities between assumed states of mastitis and non-mastitis. A widely dispersed SCC pattern generates high transition probabilities between states and vice versa. This method can model transitions to and from states of infection simultaneously, i.e. both the mastitis liability and the recovery process are considered. A multilevel discrete time survival model was applied to estimate breeding values on simulated data with different dataset sizes, mastitis frequencies, and genetic correlations. Results Correlations between estimated and simulated breeding values showed that the estimated accuracies for mastitis liability were similar to those from previously tested methods that used data of confirmed mastitis cases, while our results were based on SCC as an indicator of mastitis. In addition, unlike the other methods, our method also generates breeding values for the recovery process. Conclusions The developed method provides an effective tool for the genetic evaluation of mastitis when considering the whole disease course and will contribute to improving the genetic evaluation of udder health. PMID:22475575

  20. Models of ovarian cancer metastasis: Murine models

    PubMed Central

    Šale, Sanja; Orsulic, Sandra

    2008-01-01

    Mice have mainly been used in ovarian cancer research as immunodeficient hosts for cell lines derived from the primary tumors and ascites of ovarian cancer patients. These xenograft models have provided a valuable system for pre-clinical trials, however, the genetic complexity of human tumors has precluded the understanding of key events that drive metastatic dissemination. Recently developed immunocompetent, genetically defined mouse models of epithelial ovarian cancer represent significant improvements in the modeling of metastatic disease. PMID:19337569

  1. Maintenance of Genetic Variation with a Frequency-Dependent Selection Model as Compared to the Overdominant Model

    PubMed Central

    Hedrick, Philip W.

    1972-01-01

    A frequency-dependent selection model proposed by Huang, Singh and Kojima (1971) was found to be more effective at maintaining genetic variation in a finite population than the overdominant model. The fourth moment parameter of the distribution of unfixed states showed that there was a more platykurtic distribution for the frequency-dependent model. This agreed well with the expected gene frequency change found for an infinite population. PMID:4652882

  2. A spatial haplotype copying model with applications to genotype imputation.

    PubMed

    Yang, Wen-Yun; Hormozdiari, Farhad; Eskin, Eleazar; Pasaniuc, Bogdan

    2015-05-01

    Ever since its introduction, the haplotype copy model has proven to be one of the most successful approaches for modeling genetic variation in human populations, with applications ranging from ancestry inference to genotype phasing and imputation. Motivated by coalescent theory, this approach assumes that any chromosome (haplotype) can be modeled as a mosaic of segments copied from a set of chromosomes sampled from the same population. At the core of the model is the assumption that any chromosome from the sample is equally likely to contribute a priori to the copying process. Motivated by recent works that model genetic variation in a geographic continuum, we propose a new spatial-aware haplotype copy model that jointly models geography and the haplotype copying process. We extend hidden Markov models of haplotype diversity such that at any given location, haplotypes that are closest in the genetic-geographic continuum map are a priori more likely to contribute to the copying process than distant ones. Through simulations starting from the 1000 Genomes data, we show that our model achieves superior accuracy in genotype imputation over the standard spatial-unaware haplotype copy model. In addition, we show the utility of our model in selecting a small personalized reference panel for imputation that leads to both improved accuracy as well as to a lower computational runtime than the standard approach. Finally, we show our proposed model can be used to localize individuals on the genetic-geographical map on the basis of their genotype data.

  3. Genetic diversity and population structure among six cattle breeds in South Africa using a whole genome SNP panel

    PubMed Central

    Makina, Sithembile O.; Muchadeyi, Farai C.; van Marle-Köster, Este; MacNeil, Michael D.; Maiwashe, Azwihangwisi

    2014-01-01

    Information about genetic diversity and population structure among cattle breeds is essential for genetic improvement, understanding of environmental adaptation as well as utilization and conservation of cattle breeds. This study investigated genetic diversity and the population structure among six cattle breeds in South African (SA) including Afrikaner (n = 44), Nguni (n = 54), Drakensberger (n = 47), Bonsmara (n = 44), Angus (n = 31), and Holstein (n = 29). Genetic diversity within cattle breeds was analyzed using three measures of genetic diversity namely allelic richness (AR), expected heterozygosity (He) and inbreeding coefficient (f). Genetic distances between breed pairs were evaluated using Nei's genetic distance. Population structure was assessed using model-based clustering (ADMIXTURE). Results of this study revealed that the allelic richness ranged from 1.88 (Afrikaner) to 1.73 (Nguni). Afrikaner cattle had the lowest level of genetic diversity (He = 0.24) and the Drakensberger cattle (He = 0.30) had the highest level of genetic variation among indigenous and locally-developed cattle breeds. The level of inbreeding was lower across the studied cattle breeds. As expected the average genetic distance was the greatest between indigenous cattle breeds and Bos taurus cattle breeds but the lowest among indigenous and locally-developed breeds. Model-based clustering revealed some level of admixture among indigenous and locally-developed breeds and supported the clustering of the breeds according to their history of origin. The results of this study provided useful insight regarding genetic structure of SA cattle breeds. PMID:25295053

  4. Genetic diversity and population structure among six cattle breeds in South Africa using a whole genome SNP panel.

    PubMed

    Makina, Sithembile O; Muchadeyi, Farai C; van Marle-Köster, Este; MacNeil, Michael D; Maiwashe, Azwihangwisi

    2014-01-01

    Information about genetic diversity and population structure among cattle breeds is essential for genetic improvement, understanding of environmental adaptation as well as utilization and conservation of cattle breeds. This study investigated genetic diversity and the population structure among six cattle breeds in South African (SA) including Afrikaner (n = 44), Nguni (n = 54), Drakensberger (n = 47), Bonsmara (n = 44), Angus (n = 31), and Holstein (n = 29). Genetic diversity within cattle breeds was analyzed using three measures of genetic diversity namely allelic richness (AR), expected heterozygosity (He) and inbreeding coefficient (f). Genetic distances between breed pairs were evaluated using Nei's genetic distance. Population structure was assessed using model-based clustering (ADMIXTURE). Results of this study revealed that the allelic richness ranged from 1.88 (Afrikaner) to 1.73 (Nguni). Afrikaner cattle had the lowest level of genetic diversity (He = 0.24) and the Drakensberger cattle (He = 0.30) had the highest level of genetic variation among indigenous and locally-developed cattle breeds. The level of inbreeding was lower across the studied cattle breeds. As expected the average genetic distance was the greatest between indigenous cattle breeds and Bos taurus cattle breeds but the lowest among indigenous and locally-developed breeds. Model-based clustering revealed some level of admixture among indigenous and locally-developed breeds and supported the clustering of the breeds according to their history of origin. The results of this study provided useful insight regarding genetic structure of SA cattle breeds.

  5. A Comparison of Telephone Genetic Counseling and In-Person Genetic Counseling from the Genetic Counselor's Perspective.

    PubMed

    Burgess, Kelly R; Carmany, Erin P; Trepanier, Angela M

    2016-02-01

    Growing demand for and limited geographic access to genetic counseling services is increasing the need for alternative service delivery models (SDM) like telephone genetic counseling (TGC). Little research has been done on genetic counselors' perspectives of the practice of TGC. We created an anonymous online survey to assess whether telephone genetic counselors believed the tasks identified in the ABGC (American Board of Genetic Counseling) Practice Analysis were performed similarly or differently in TGC compared to in person genetic counseling (IPGC). If there were differences noted, we sought to determine the nature of the differences and if additional training might be needed to address them. Eighty eight genetic counselors with experience in TGC completed some or all of the survey. Respondents identified differences in 13 (14.8%) of the 88 tasks studied. The tasks identified as most different in TGC were: "establishing rapport through verbal and nonverbal interactions" (60.2%; 50/83 respondents identified the task as different), "recognizing factors affecting the counseling interaction" (47.8%; 32/67), "assessing client/family emotions, support, etc." (40.1%; 27/66) and "educating clients about basic genetic concepts" (35.6%; 26/73). A slight majority (53.8%; 35/65) felt additional training was needed to communicate information without visual aids and more effectively perform psychosocial assessments. In summary, although a majority of genetic counseling tasks are performed similarly between TGC and IPGC, TGC counselors recognize that specific training in the TGC model may be needed to address the key differences.

  6. Comparison of genetic algorithms with conjugate gradient methods

    NASA Technical Reports Server (NTRS)

    Bosworth, J. L.; Foo, N. Y.; Zeigler, B. P.

    1972-01-01

    Genetic algorithms for mathematical function optimization are modeled on search strategies employed in natural adaptation. Comparisons of genetic algorithms with conjugate gradient methods, which were made on an IBM 1800 digital computer, show that genetic algorithms display superior performance over gradient methods for functions which are poorly behaved mathematically, for multimodal functions, and for functions obscured by additive random noise. Genetic methods offer performance comparable to gradient methods for many of the standard functions.

  7. A versatile strategy for gene trapping and trap conversion in emerging model organisms.

    PubMed

    Kontarakis, Zacharias; Pavlopoulos, Anastasios; Kiupakis, Alexandros; Konstantinides, Nikolaos; Douris, Vassilis; Averof, Michalis

    2011-06-01

    Genetic model organisms such as Drosophila, C. elegans and the mouse provide formidable tools for studying mechanisms of development, physiology and behaviour. Established models alone, however, allow us to survey only a tiny fraction of the morphological and functional diversity present in the animal kingdom. Here, we present iTRAC, a versatile gene-trapping approach that combines the implementation of unbiased genetic screens with the generation of sophisticated genetic tools both in established and emerging model organisms. The approach utilises an exon-trapping transposon vector that carries an integrase docking site, allowing the targeted integration of new constructs into trapped loci. We provide proof of principle for iTRAC in the emerging model crustacean Parhyale hawaiensis: we generate traps that allow specific developmental and physiological processes to be visualised in unparalleled detail, we show that trapped genes can be easily cloned from an unsequenced genome, and we demonstrate targeting of new constructs into a trapped locus. Using this approach, gene traps can serve as platforms for generating diverse reporters, drivers for tissue-specific expression, gene knockdown and other genetic tools not yet imagined.

  8. Ridge, Lasso and Bayesian additive-dominance genomic models.

    PubMed

    Azevedo, Camila Ferreira; de Resende, Marcos Deon Vilela; E Silva, Fabyano Fonseca; Viana, José Marcelo Soriano; Valente, Magno Sávio Ferreira; Resende, Márcio Fernando Ribeiro; Muñoz, Patricio

    2015-08-25

    A complete approach for genome-wide selection (GWS) involves reliable statistical genetics models and methods. Reports on this topic are common for additive genetic models but not for additive-dominance models. The objective of this paper was (i) to compare the performance of 10 additive-dominance predictive models (including current models and proposed modifications), fitted using Bayesian, Lasso and Ridge regression approaches; and (ii) to decompose genomic heritability and accuracy in terms of three quantitative genetic information sources, namely, linkage disequilibrium (LD), co-segregation (CS) and pedigree relationships or family structure (PR). The simulation study considered two broad sense heritability levels (0.30 and 0.50, associated with narrow sense heritabilities of 0.20 and 0.35, respectively) and two genetic architectures for traits (the first consisting of small gene effects and the second consisting of a mixed inheritance model with five major genes). G-REML/G-BLUP and a modified Bayesian/Lasso (called BayesA*B* or t-BLASSO) method performed best in the prediction of genomic breeding as well as the total genotypic values of individuals in all four scenarios (two heritabilities x two genetic architectures). The BayesA*B*-type method showed a better ability to recover the dominance variance/additive variance ratio. Decomposition of genomic heritability and accuracy revealed the following descending importance order of information: LD, CS and PR not captured by markers, the last two being very close. Amongst the 10 models/methods evaluated, the G-BLUP, BAYESA*B* (-2,8) and BAYESA*B* (4,6) methods presented the best results and were found to be adequate for accurately predicting genomic breeding and total genotypic values as well as for estimating additive and dominance in additive-dominance genomic models.

  9. Modelling Down Syndrome

    ERIC Educational Resources Information Center

    Buckley, Frank

    2008-01-01

    Animal models are extensively used in genetics, neuroscience and biomedical research. Recent studies illustrate the usefulness and the challenges of research utilising genetically engineered mice to explore the developmental biology of Down syndrome. These studies highlight many of the issues at the centre of what we understand about Down…

  10. The system-resonance approach in modeling genetic structures.

    PubMed

    Petoukhov, Sergey V

    2016-01-01

    The founder of the theory of resonance in structural chemistry Linus Pauling established the importance of resonance patterns in organization of living systems. Any living organism is a great chorus of coordinated oscillatory processes. From the formal point of view, biological organism is an oscillatory system with a great number of degrees of freedom. Such systems are studied in the theory of oscillations using matrix mathematics of their resonance characteristics. This study is devoted to a new approach for modeling genetically inherited structures and processes in living organisms using mathematical tools of the theory of resonances. This approach reveals hidden relationships in a number of genetic phenomena and gives rise to a new class of bio-mathematical models, which contribute to a convergence of biology with physics and informatics. In addition some relationships of molecular-genetic ensembles with mathematics of noise-immunity coding of information in modern communications technology are shown. Perspectives of applications of the phenomena of vibrational mechanics for modeling in biology are discussed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. A Genetic Animal Model of Alcoholism for Screening Medications to Treat Addiction

    PubMed Central

    Bell, Richard L.; Hauser, Sheketha; Rodd, Zachary A.; Liang, Tiebing; Sari, Youssef; McClintick, Jeanette; Rahman, Shafiqur; Engleman, Eric A.

    2016-01-01

    The purpose of this review is to present up-to-date pharmacological, genetic and behavioral findings from the alcohol-preferring P rat and summarize similar past work. Behaviorally, the focus will be on how the P rat meets criteria put forth for a valid animal model of alcoholism with a highlight on its use as an animal model of polysubstance abuse, including alcohol, nicotine and psychostimulants. Pharmacologically and genetically, the focus will be on the neurotransmitter and neuropeptide systems that have received the most attention: cholinergic, dopaminergic, GABAergic, glutamatergic, serotonergic, noradrenergic, corticotrophin releasing hormone, opioid, and neuropeptide Y. Herein we sought to place the P rat’s behavioral and neurochemical phenotypes, and to some extent its genotype, in the context of the clinical literature. After reviewing the findings thus far, this paper discusses future directions for expanding the use of this genetic animal model of alcoholism to identify molecular targets for treating drug addiction in general. PMID:27055615

  12. Ghrelin and eating behavior: evidence and insights from genetically-modified mouse models

    PubMed Central

    Uchida, Aki; Zigman, Jeffrey M.; Perelló, Mario

    2013-01-01

    Ghrelin is an octanoylated peptide hormone, produced by endocrine cells of the stomach, which acts in the brain to increase food intake and body weight. Our understanding of the mechanisms underlying ghrelin's effects on eating behaviors has been greatly improved by the generation and study of several genetically manipulated mouse models. These models include mice overexpressing ghrelin and also mice with genetic deletion of ghrelin, the ghrelin receptor [the growth hormone secretagogue receptor (GHSR)] or the enzyme that post-translationally modifies ghrelin [ghrelin O-acyltransferase (GOAT)]. In addition, a GHSR-null mouse model in which GHSR transcription is globally blocked but can be cell-specifically reactivated in a Cre recombinase-mediated fashion has been generated. Here, we summarize findings obtained with these genetically manipulated mice, with the aim to highlight the significance of the ghrelin system in the regulation of both homeostatic and hedonic eating, including that occurring in the setting of chronic psychosocial stress. PMID:23882175

  13. Adaptive Topographies and Equilibrium Selection in an Evolutionary Game

    PubMed Central

    Osinga, Hinke M.; Marshall, James A. R.

    2015-01-01

    It has long been known in the field of population genetics that adaptive topographies, in which population equilibria maximise mean population fitness for a trait regardless of its genetic bases, do not exist. Whether one chooses to model selection acting on a single locus or multiple loci does matter. In evolutionary game theory, analysis of a simple and general game involving distinct roles for the two players has shown that whether strategies are modelled using a single ‘locus’ or one ‘locus’ for each role, the stable population equilibria are unchanged and correspond to the fitness-maximising evolutionary stable strategies of the game. This is curious given the aforementioned population genetical results on the importance of the genetic bases of traits. Here we present a dynamical systems analysis of the game with roles detailing how, while the stable equilibria in this game are unchanged by the number of ‘loci’ modelled, equilibrium selection may differ under the two modelling approaches. PMID:25706762

  14. Genetic analysis of body weights of individually fed beef bulls in South Africa using random regression models.

    PubMed

    Selapa, N W; Nephawe, K A; Maiwashe, A; Norris, D

    2012-02-08

    The aim of this study was to estimate genetic parameters for body weights of individually fed beef bulls measured at centralized testing stations in South Africa using random regression models. Weekly body weights of Bonsmara bulls (N = 2919) tested between 1999 and 2003 were available for the analyses. The model included a fixed regression of the body weights on fourth-order orthogonal Legendre polynomials of the actual days on test (7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, and 84) for starting age and contemporary group effects. Random regressions on fourth-order orthogonal Legendre polynomials of the actual days on test were included for additive genetic effects and additional uncorrelated random effects of the weaning-herd-year and the permanent environment of the animal. Residual effects were assumed to be independently distributed with heterogeneous variance for each test day. Variance ratios for additive genetic, permanent environment and weaning-herd-year for weekly body weights at different test days ranged from 0.26 to 0.29, 0.37 to 0.44 and 0.26 to 0.34, respectively. The weaning-herd-year was found to have a significant effect on the variation of body weights of bulls despite a 28-day adjustment period. Genetic correlations amongst body weights at different test days were high, ranging from 0.89 to 1.00. Heritability estimates were comparable to literature using multivariate models. Therefore, random regression model could be applied in the genetic evaluation of body weight of individually fed beef bulls in South Africa.

  15. Predicting type 2 diabetes using genetic and environmental risk factors in a multi-ethnic Malaysian cohort.

    PubMed

    Abdullah, N; Abdul Murad, N A; Mohd Haniff, E A; Syafruddin, S E; Attia, J; Oldmeadow, C; Kamaruddin, M A; Abd Jalal, N; Ismail, N; Ishak, M; Jamal, R; Scott, R J; Holliday, E G

    2017-08-01

    Malaysia has a high and rising prevalence of type 2 diabetes (T2D). While environmental (non-genetic) risk factors for the disease are well established, the role of genetic variations and gene-environment interactions remain understudied in this population. This study aimed to estimate the relative contributions of environmental and genetic risk factors to T2D in Malaysia and also to assess evidence for gene-environment interactions that may explain additional risk variation. This was a case-control study including 1604 Malays, 1654 Chinese and 1728 Indians from the Malaysian Cohort Project. The proportion of T2D risk variance explained by known genetic and environmental factors was assessed by fitting multivariable logistic regression models and evaluating McFadden's pseudo R 2 and the area under the receiver-operating characteristic curve (AUC). Models with and without the genetic risk score (GRS) were compared using the log likelihood ratio Chi-squared test and AUCs. Multiplicative interaction between genetic and environmental risk factors was assessed via logistic regression within and across ancestral groups. Interactions were assessed for the GRS and its 62 constituent variants. The models including environmental risk factors only had pseudo R 2 values of 16.5-28.3% and AUC of 0.75-0.83. Incorporating a genetic score aggregating 62 T2D-associated risk variants significantly increased the model fit (likelihood ratio P-value of 2.50 × 10 -4 -4.83 × 10 -12 ) and increased the pseudo R 2 by about 1-2% and AUC by 1-3%. None of the gene-environment interactions reached significance after multiple testing adjustment, either for the GRS or individual variants. For individual variants, 33 out of 310 tested associations showed nominal statistical significance with 0.001 < P < 0.05. This study suggests that known genetic risk variants contribute a significant but small amount to overall T2D risk variation in Malaysian population groups. If gene-environment interactions involving common genetic variants exist, they are likely of small effect, requiring substantially larger samples for detection. Copyright © 2017 The Royal Society for Public Health. All rights reserved.

  16. The Role of Abcb5 Alleles in Susceptibility to Haloperidol-Induced Toxicity in Mice and Humans

    PubMed Central

    Zheng, Ming; Zhang, Haili; Dill, David L.; Clark, J. David; Tu, Susan; Yablonovitch, Arielle L.; Tan, Meng How; Zhang, Rui; Rujescu, Dan; Wu, Manhong; Tessarollo, Lino; Vieira, Wilfred; Gottesman, Michael M.; Deng, Suhua; Eberlin, Livia S.; Zare, Richard N.; Billard, Jean-Martin; Gillet, Jean-Pierre; Li, Jin Billy; Peltz, Gary

    2015-01-01

    Background We know very little about the genetic factors affecting susceptibility to drug-induced central nervous system (CNS) toxicities, and this has limited our ability to optimally utilize existing drugs or to develop new drugs for CNS disorders. For example, haloperidol is a potent dopamine antagonist that is used to treat psychotic disorders, but 50% of treated patients develop characteristic extrapyramidal symptoms caused by haloperidol-induced toxicity (HIT), which limits its clinical utility. We do not have any information about the genetic factors affecting this drug-induced toxicity. HIT in humans is directly mirrored in a murine genetic model, where inbred mouse strains are differentially susceptible to HIT. Therefore, we genetically analyzed this murine model and performed a translational human genetic association study. Methods and Findings A whole genome SNP database and computational genetic mapping were used to analyze the murine genetic model of HIT. Guided by the mouse genetic analysis, we demonstrate that genetic variation within an ABC-drug efflux transporter (Abcb5) affected susceptibility to HIT. In situ hybridization results reveal that Abcb5 is expressed in brain capillaries, and by cerebellar Purkinje cells. We also analyzed chromosome substitution strains, imaged haloperidol abundance in brain tissue sections and directly measured haloperidol (and its metabolite) levels in brain, and characterized Abcb5 knockout mice. Our results demonstrate that Abcb5 is part of the blood-brain barrier; it affects susceptibility to HIT by altering the brain concentration of haloperidol. Moreover, a genetic association study in a haloperidol-treated human cohort indicates that human ABCB5 alleles had a time-dependent effect on susceptibility to individual and combined measures of HIT. Abcb5 alleles are pharmacogenetic factors that affect susceptibility to HIT, but it is likely that additional pharmacogenetic susceptibility factors will be discovered. Conclusions ABCB5 alleles alter susceptibility to HIT in mouse and humans. This discovery leads to a new model that (at least in part) explains inter-individual differences in susceptibility to a drug-induced CNS toxicity. PMID:25647612

  17. Inference of Vohradský's Models of Genetic Networks by Solving Two-Dimensional Function Optimization Problems

    PubMed Central

    Kimura, Shuhei; Sato, Masanao; Okada-Hatakeyama, Mariko

    2013-01-01

    The inference of a genetic network is a problem in which mutual interactions among genes are inferred from time-series of gene expression levels. While a number of models have been proposed to describe genetic networks, this study focuses on a mathematical model proposed by Vohradský. Because of its advantageous features, several researchers have proposed the inference methods based on Vohradský's model. When trying to analyze large-scale networks consisting of dozens of genes, however, these methods must solve high-dimensional non-linear function optimization problems. In order to resolve the difficulty of estimating the parameters of the Vohradský's model, this study proposes a new method that defines the problem as several two-dimensional function optimization problems. Through numerical experiments on artificial genetic network inference problems, we showed that, although the computation time of the proposed method is not the shortest, the method has the ability to estimate parameters of Vohradský's models more effectively with sufficiently short computation times. This study then applied the proposed method to an actual inference problem of the bacterial SOS DNA repair system, and succeeded in finding several reasonable regulations. PMID:24386175

  18. Canine and Feline Models of Human Genetic Diseases and Their Contributions to Advancing Clinical Therapies


    PubMed Central

    Gurda, Brittney L.; Bradbury, Allison M.; Vite, Charles H.

    2017-01-01

    For many lethal or debilitating genetic disorders in patients there are no satisfactory therapies. Several barriers exist that hinder the developments of effective therapies including the limited availability of clinically relevant animal models that faithfully recapitulate human genetic disease. In 1974, the Referral Center for Animal Models of Human Genetic Disease (RCAM) was established by Dr. Donald F. Patterson and continued by Dr. Mark E. Haskins at the University of Pennsylvania with the mission to discover, understand, treat, and maintain breeding colonies of naturally occurring hereditary disorders in dogs and cats that are orthologous to those found in human patients. Although non-human primates, sheep, and pig models are also available within the medical community, naturally occurring diseases are rarely identified in non-human primates, and the vast behavioral, clinicopathological, physiological, and anatomical knowledge available regarding dogs and cats far surpasses what is available in ovine and porcine species. The canine and feline models that are maintained at RCAM are presented here with a focus on preclinical therapy data. Clinical studies that have been generated from preclinical work in these models are also presented. PMID:28955181

  19. Linear and Poisson models for genetic evaluation of tick resistance in cross-bred Hereford x Nellore cattle.

    PubMed

    Ayres, D R; Pereira, R J; Boligon, A A; Silva, F F; Schenkel, F S; Roso, V M; Albuquerque, L G

    2013-12-01

    Cattle resistance to ticks is measured by the number of ticks infesting the animal. The model used for the genetic analysis of cattle resistance to ticks frequently requires logarithmic transformation of the observations. The objective of this study was to evaluate the predictive ability and goodness of fit of different models for the analysis of this trait in cross-bred Hereford x Nellore cattle. Three models were tested: a linear model using logarithmic transformation of the observations (MLOG); a linear model without transformation of the observations (MLIN); and a generalized linear Poisson model with residual term (MPOI). All models included the classificatory effects of contemporary group and genetic group and the covariates age of animal at the time of recording and individual heterozygosis, as well as additive genetic effects as random effects. Heritability estimates were 0.08 ± 0.02, 0.10 ± 0.02 and 0.14 ± 0.04 for MLIN, MLOG and MPOI models, respectively. The model fit quality, verified by deviance information criterion (DIC) and residual mean square, indicated fit superiority of MPOI model. The predictive ability of the models was compared by validation test in independent sample. The MPOI model was slightly superior in terms of goodness of fit and predictive ability, whereas the correlations between observed and predicted tick counts were practically the same for all models. A higher rank correlation between breeding values was observed between models MLOG and MPOI. Poisson model can be used for the selection of tick-resistant animals. © 2013 Blackwell Verlag GmbH.

  20. Genetics of dispersal.

    PubMed

    Saastamoinen, Marjo; Bocedi, Greta; Cote, Julien; Legrand, Delphine; Guillaume, Frédéric; Wheat, Christopher W; Fronhofer, Emanuel A; Garcia, Cristina; Henry, Roslyn; Husby, Arild; Baguette, Michel; Bonte, Dries; Coulon, Aurélie; Kokko, Hanna; Matthysen, Erik; Niitepõld, Kristjan; Nonaka, Etsuko; Stevens, Virginie M; Travis, Justin M J; Donohue, Kathleen; Bullock, James M; Del Mar Delgado, Maria

    2018-02-01

    Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal-related phenotypes or evidence for the micro-evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment-dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non-additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non-equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts. Incorporating more realism in the genetic architecture of dispersal is thus necessary to enable models to move beyond the purely theoretical towards making more useful predictions of evolutionary and ecological dynamics under current and future environmental conditions. To inform these advances, empirical studies need to answer outstanding questions concerning whether specific genes underlie dispersal variation, the genetic architecture of context-dependent dispersal phenotypes and behaviours, and correlations among dispersal and other traits. © 2017 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

  1. Genetics of dispersal

    PubMed Central

    Bocedi, Greta; Cote, Julien; Legrand, Delphine; Guillaume, Frédéric; Wheat, Christopher W.; Fronhofer, Emanuel A.; Garcia, Cristina; Henry, Roslyn; Husby, Arild; Baguette, Michel; Bonte, Dries; Coulon, Aurélie; Kokko, Hanna; Matthysen, Erik; Niitepõld, Kristjan; Nonaka, Etsuko; Stevens, Virginie M.; Travis, Justin M. J.; Donohue, Kathleen; Bullock, James M.; del Mar Delgado, Maria

    2017-01-01

    ABSTRACT Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal‐related phenotypes or evidence for the micro‐evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment‐dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non‐additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non‐equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts. Incorporating more realism in the genetic architecture of dispersal is thus necessary to enable models to move beyond the purely theoretical towards making more useful predictions of evolutionary and ecological dynamics under current and future environmental conditions. To inform these advances, empirical studies need to answer outstanding questions concerning whether specific genes underlie dispersal variation, the genetic architecture of context‐dependent dispersal phenotypes and behaviours, and correlations among dispersal and other traits. PMID:28776950

  2. Gene-environment interactions and construct validity in preclinical models of psychiatric disorders.

    PubMed

    Burrows, Emma L; McOmish, Caitlin E; Hannan, Anthony J

    2011-08-01

    The contributions of genetic risk factors to susceptibility for brain disorders are often so closely intertwined with environmental factors that studying genes in isolation cannot provide the full picture of pathogenesis. With recent advances in our understanding of psychiatric genetics and environmental modifiers we are now in a position to develop more accurate animal models of psychiatric disorders which exemplify the complex interaction of genes and environment. Here, we consider some of the insights that have emerged from studying the relationship between defined genetic alterations and environmental factors in rodent models. A key issue in such animal models is the optimization of construct validity, at both genetic and environmental levels. Standard housing of laboratory mice and rats generally includes ad libitum food access and limited opportunity for physical exercise, leading to metabolic dysfunction under control conditions, and thus reducing validity of animal models with respect to clinical populations. A related issue, of specific relevance to neuroscientists, is that most standard-housed rodents have limited opportunity for sensory and cognitive stimulation, which in turn provides reduced incentive for complex motor activity. Decades of research using environmental enrichment has demonstrated beneficial effects on brain and behavior in both wild-type and genetically modified rodent models, relative to standard-housed littermate controls. One interpretation of such studies is that environmentally enriched animals more closely approximate average human levels of cognitive and sensorimotor stimulation, whereas the standard housing currently used in most laboratories models a more sedentary state of reduced mental and physical activity and abnormal stress levels. The use of such standard housing as a single environmental variable may limit the capacity for preclinical models to translate into successful clinical trials. Therefore, there is a need to optimize 'environmental construct validity' in animal models, while maintaining comparability between laboratories, so as to ensure optimal scientific and medical outcomes. Utilizing more sophisticated models to elucidate the relative contributions of genetic and environmental factors will allow for improved construct, face and predictive validity, thus facilitating the identification of novel therapeutic targets. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Firefly algorithm versus genetic algorithm as powerful variable selection tools and their effect on different multivariate calibration models in spectroscopy: A comparative study

    NASA Astrophysics Data System (ADS)

    Attia, Khalid A. M.; Nassar, Mohammed W. I.; El-Zeiny, Mohamed B.; Serag, Ahmed

    2017-01-01

    For the first time, a new variable selection method based on swarm intelligence namely firefly algorithm is coupled with three different multivariate calibration models namely, concentration residual augmented classical least squares, artificial neural network and support vector regression in UV spectral data. A comparative study between the firefly algorithm and the well-known genetic algorithm was developed. The discussion revealed the superiority of using this new powerful algorithm over the well-known genetic algorithm. Moreover, different statistical tests were performed and no significant differences were found between all the models regarding their predictabilities. This ensures that simpler and faster models were obtained without any deterioration of the quality of the calibration.

  4. Are genetically robust regulatory networks dynamically different from random ones?

    NASA Astrophysics Data System (ADS)

    Sevim, Volkan; Rikvold, Per Arne

    We study a genetic regulatory network model developed to demonstrate that genetic robustness can evolve through stabilizing selection for optimal phenotypes. We report preliminary results on whether such selection could result in a reorganization of the state space of the system. For the chosen parameters, the evolution moves the system slightly toward the more ordered part of the phase diagram. We also find that strong memory effects cause the Derrida annealed approximation to give erroneous predictions about the model's phase diagram.

  5. Distribution of lod scores in oligogenic linkage analysis.

    PubMed

    Williams, J T; North, K E; Martin, L J; Comuzzie, A G; Göring, H H; Blangero, J

    2001-01-01

    In variance component oligogenic linkage analysis it can happen that the residual additive genetic variance bounds to zero when estimating the effect of the ith quantitative trait locus. Using quantitative trait Q1 from the Genetic Analysis Workshop 12 simulated general population data, we compare the observed lod scores from oligogenic linkage analysis with the empirical lod score distribution under a null model of no linkage. We find that zero residual additive genetic variance in the null model alters the usual distribution of the likelihood-ratio statistic.

  6. Testing the Role of p21-Activated Kinases in Schwannoma Formation Using a Novel Genetically Engineered Murine Model that Closely Phenocopies Human NF2 Disease

    DTIC Science & Technology

    2016-06-01

    control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. The major goal of this research project was to genetically and pharmacologically ...with three different pharmacologic PAK inhibitors to determine if targeted PAK inhibition in a preclinical model of schwannoma genesis rescues tumor...this research project was to genetically and pharmacologically test the requirement of Group A PAK signaling in Nf2 deficient schwannoma genesis. We

  7. Analysis of a genetically structured variance heterogeneity model using the Box-Cox transformation.

    PubMed

    Yang, Ye; Christensen, Ole F; Sorensen, Daniel

    2011-02-01

    Over recent years, statistical support for the presence of genetic factors operating at the level of the environmental variance has come from fitting a genetically structured heterogeneous variance model to field or experimental data in various species. Misleading results may arise due to skewness of the marginal distribution of the data. To investigate how the scale of measurement affects inferences, the genetically structured heterogeneous variance model is extended to accommodate the family of Box-Cox transformations. Litter size data in rabbits and pigs that had previously been analysed in the untransformed scale were reanalysed in a scale equal to the mode of the marginal posterior distribution of the Box-Cox parameter. In the rabbit data, the statistical evidence for a genetic component at the level of the environmental variance is considerably weaker than that resulting from an analysis in the original metric. In the pig data, the statistical evidence is stronger, but the coefficient of correlation between additive genetic effects affecting mean and variance changes sign, compared to the results in the untransformed scale. The study confirms that inferences on variances can be strongly affected by the presence of asymmetry in the distribution of data. We recommend that to avoid one important source of spurious inferences, future work seeking support for a genetic component acting on environmental variation using a parametric approach based on normality assumptions confirms that these are met.

  8. A test of genetic models for the evolutionary maintenance of same-sex sexual behaviour.

    PubMed

    Hoskins, Jessica L; Ritchie, Michael G; Bailey, Nathan W

    2015-06-22

    The evolutionary maintenance of same-sex sexual behaviour (SSB) has received increasing attention because it is perceived to be an evolutionary paradox. The genetic basis of SSB is almost wholly unknown in non-human animals, though this is key to understanding its persistence. Recent theoretical work has yielded broadly applicable predictions centred on two genetic models for SSB: overdominance and sexual antagonism. Using Drosophila melanogaster, we assayed natural genetic variation for male SSB and empirically tested predictions about the mode of inheritance and fitness consequences of alleles influencing its expression. We screened 50 inbred lines derived from a wild population for male-male courtship and copulation behaviour, and examined crosses between the lines for evidence of overdominance and antagonistic fecundity selection. Consistent variation among lines revealed heritable genetic variation for SSB, but the nature of the genetic variation was complex. Phenotypic and fitness variation was consistent with expectations under overdominance, although predictions of the sexual antagonism model were also supported. We found an unexpected and strong paternal effect on the expression of SSB, suggesting possible Y-linkage of the trait. Our results inform evolutionary genetic mechanisms that might maintain low but persistently observed levels of male SSB in D. melanogaster, but highlight a need for broader taxonomic representation in studies of its evolutionary causes. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. A comparative study on genetic effects of artificial and natural habitat fragmentation on Loropetalum chinense (Hamamelidaceae) in Southeast China.

    PubMed

    Yuan, N; Comes, H P; Cao, Y N; Guo, R; Zhang, Y H; Qiu, Y X

    2015-06-01

    Elucidating the demographic and landscape features that determine the genetic effects of habitat fragmentation has become fundamental to research in conservation and evolutionary biology. Land-bridge islands provide ideal study areas for investigating the genetic effects of habitat fragmentation at different temporal and spatial scales. In this context, we compared patterns of nuclear microsatellite variation between insular populations of a shrub of evergreen broad-leaved forest, Loropetalum chinense, from the artificially created Thousand-Island Lake (TIL) and the Holocene-dated Zhoushan Archipelago of Southeast China. Populations from the TIL region harboured higher levels of genetic diversity than those from the Zhoushan Archipelago, but these differences were not significant. There was no correlation between genetic diversity and most island features, excepting a negative effect of mainland-island distance on allelic richness and expected heterozygosity in the Zhoushan Archipelago. In general, levels of gene flow among island populations were moderate to high, and tests of alternative models of population history strongly favoured a gene flow-drift model over a pure drift model in each region. In sum, our results showed no obvious genetic effects of habitat fragmentation due to recent (artificial) or past (natural) island formation. Rather, they highlight the importance of gene flow (most likely via seed) in maintaining genetic variation and preventing inter-population differentiation in the face of habitat 'insularization' at different temporal and spatial scales.

  10. Modeling anaplastic thyroid carcinoma in the mouse.

    PubMed

    Champa, Devora; Di Cristofano, Antonio

    2015-02-01

    Anaplastic thyroid carcinoma is the least common form of thyroid cancer; however, it accounts for the majority of deaths associated with this family of malignancies. A number of genetically engineered immunocompetent mouse models recapitulating the genetic and histological features of anaplastic thyroid cancer have been very recently generated and represent an invaluable tool to dissect the mechanisms involved in the progression from indolent, well-differentiated tumors to aggressive, undifferentiated carcinomas and to identify novel therapeutic targets. In this review, we focus on the relevant characteristics associated with these models and on what we have learned in terms of anaplastic thyroid cancer biology, genetics, and response to targeted therapy.

  11. Modeling anaplastic thyroid carcinoma in the mouse

    PubMed Central

    Champa, Devora; Di Cristofano, Antonio

    2014-01-01

    Anaplastic thyroid carcinoma is the least common form of thyroid cancer; however, it accounts for the majority of deaths associated with this family of malignancies. A number of genetically engineered immunocompetent mouse models recapitulating the genetic and histological features of anaplastic thyroid cancer have been very recently generated and represent an invaluable tool to dissect the mechanisms involved in the progression from indolent, well differentiated tumors to aggressive, undifferentiated carcinomas, and to identify novel therapeutic targets. In this review, we focus on the relevant characteristics associated with these models and on what we have learned in terms of anaplastic thyroid cancer biology, genetics, and response to targeted therapy. PMID:25420535

  12. Physiological significance of ghrelin revealed by studies using genetically engineered mouse models with modifications in the ghrelin system.

    PubMed

    Ariyasu, Hiroyuki; Akamizu, Takashi

    2015-01-01

    Ghrelin, an endogenous ligand for the growth hormone (GH) secretagogue receptor (GHS-R or ghrelin receptor), is a 28-amino acid acylated peptide mainly produced in the stomach. The pharmacological administration of ghrelin is known to exert diverse effects, such as stimulating GH secretion, promoting food intake, and increasing adiposity. In recent years, genetically engineered mouse models have provided important insights into the physiology of various hormones. In this review, we discuss current knowledge regarding the physiological significance of ghrelin on the basis of studies using genetically engineered mouse models with modifications in the ghrelin system.

  13. [Analysis of genetic models and gene effects on main agronomy characters in rapeseed].

    PubMed

    Li, J; Qiu, J; Tang, Z; Shen, L

    1992-01-01

    According to four different genetic models, the genetic patterns of 8 agronomy traits were analysed by using the data of 24 generations which included positive and negative cross of 81008 x Tower, both of the varieties are of good quality. The results showed that none of 8 characters could fit in with additive-dominance models. Epistasis was found in all of these characters, and it has significant effect on generation means. Seed weight/plant and some other main yield characters are controlled by duplicate interaction genes. The interaction between triple genes or multiple genes needs to be utilized in yield heterosis.

  14. From drug to protein: using yeast genetics for high-throughput target discovery.

    PubMed

    Armour, Christopher D; Lum, Pek Yee

    2005-02-01

    The budding yeast Saccharomyces cerevisiae has long been an effective eukaryotic model system for understanding basic cellular processes. The genetic tractability and ease of manipulation in the laboratory make yeast well suited for large-scale chemical and genetic screens. Several recent studies describing the use of yeast genetics for high-throughput drug target identification are discussed in this review.

  15. The genetic correlation between height and IQ: shared genes or assortative mating?

    PubMed

    Keller, Matthew C; Garver-Apgar, Christine E; Wright, Margaret J; Martin, Nicholas G; Corley, Robin P; Stallings, Michael C; Hewitt, John K; Zietsch, Brendan P

    2013-04-01

    Traits that are attractive to the opposite sex are often positively correlated when scaled such that scores increase with attractiveness, and this correlation typically has a genetic component. Such traits can be genetically correlated due to genes that affect both traits ("pleiotropy") and/or because assortative mating causes statistical correlations to develop between selected alleles across the traits ("gametic phase disequilibrium"). In this study, we modeled the covariation between monozygotic and dizygotic twins, their siblings, and their parents (total N = 7,905) to elucidate the nature of the correlation between two potentially sexually selected traits in humans: height and IQ. Unlike previous designs used to investigate the nature of the height-IQ correlation, the present design accounts for the effects of assortative mating and provides much less biased estimates of additive genetic, non-additive genetic, and shared environmental influences. Both traits were highly heritable, although there was greater evidence for non-additive genetic effects in males. After accounting for assortative mating, the correlation between height and IQ was found to be almost entirely genetic in nature. Model fits indicate that both pleiotropy and assortative mating contribute significantly and about equally to this genetic correlation.

  16. Genetic pleiotropy explains associations between musical auditory discrimination and intelligence.

    PubMed

    Mosing, Miriam A; Pedersen, Nancy L; Madison, Guy; Ullén, Fredrik

    2014-01-01

    Musical aptitude is commonly measured using tasks that involve discrimination of different types of musical auditory stimuli. Performance on such different discrimination tasks correlates positively with each other and with intelligence. However, no study to date has explored these associations using a genetically informative sample to estimate underlying genetic and environmental influences. In the present study, a large sample of Swedish twins (N = 10,500) was used to investigate the genetic architecture of the associations between intelligence and performance on three musical auditory discrimination tasks (rhythm, melody and pitch). Phenotypic correlations between the tasks ranged between 0.23 and 0.42 (Pearson r values). Genetic modelling showed that the covariation between the variables could be explained by shared genetic influences. Neither shared, nor non-shared environment had a significant effect on the associations. Good fit was obtained with a two-factor model where one underlying shared genetic factor explained all the covariation between the musical discrimination tasks and IQ, and a second genetic factor explained variance exclusively shared among the discrimination tasks. The results suggest that positive correlations among musical aptitudes result from both genes with broad effects on cognition, and genes with potentially more specific influences on auditory functions.

  17. Genetic Pleiotropy Explains Associations between Musical Auditory Discrimination and Intelligence

    PubMed Central

    Mosing, Miriam A.; Pedersen, Nancy L.; Madison, Guy; Ullén, Fredrik

    2014-01-01

    Musical aptitude is commonly measured using tasks that involve discrimination of different types of musical auditory stimuli. Performance on such different discrimination tasks correlates positively with each other and with intelligence. However, no study to date has explored these associations using a genetically informative sample to estimate underlying genetic and environmental influences. In the present study, a large sample of Swedish twins (N = 10,500) was used to investigate the genetic architecture of the associations between intelligence and performance on three musical auditory discrimination tasks (rhythm, melody and pitch). Phenotypic correlations between the tasks ranged between 0.23 and 0.42 (Pearson r values). Genetic modelling showed that the covariation between the variables could be explained by shared genetic influences. Neither shared, nor non-shared environment had a significant effect on the associations. Good fit was obtained with a two-factor model where one underlying shared genetic factor explained all the covariation between the musical discrimination tasks and IQ, and a second genetic factor explained variance exclusively shared among the discrimination tasks. The results suggest that positive correlations among musical aptitudes result from both genes with broad effects on cognition, and genes with potentially more specific influences on auditory functions. PMID:25419664

  18. A Study of Two Instructional Sequences Informed by Alternative Learning Progressions in Genetics

    NASA Astrophysics Data System (ADS)

    Duncan, Ravit Golan; Choi, Jinnie; Castro-Faix, Moraima; Cavera, Veronica L.

    2017-12-01

    Learning progressions (LPs) are hypothetical models of how learning in a domain develops over time with appropriate instruction. In the domain of genetics, there are two independently developed alternative LPs. The main difference between the two progressions hinges on their assumptions regarding the accessibility of classical (Mendelian) versus molecular genetics and the order in which they should be taught. In order to determine the relative difficulty of the different genetic ideas included in the two progressions, and to test which one is a better fit with students' actual learning, we developed two modules in classical and molecular genetics and alternated their sequence in an implementation study with 11th grade students studying biology. We developed a set of 56 ordered multiple-choice items that collectively assessed both molecular and classical genetic ideas. We found significant gains in students' learning in both molecular and classical genetics, with the largest gain relating to understanding the informational content of genes and the smallest gain in understanding modes of inheritance. Using multidimensional item response modeling, we found no statistically significant differences between the two instructional sequences. However, there was a trend of slightly higher gains for the molecular-first sequence for all genetic ideas.

  19. Expansion Under Climate Change: The Genetic Consequences.

    PubMed

    Garnier, Jimmy; Lewis, Mark A

    2016-11-01

    Range expansion and range shifts are crucial population responses to climate change. Genetic consequences are not well understood but are clearly coupled to ecological dynamics that, in turn, are driven by shifting climate conditions. We model a population with a deterministic reaction-diffusion model coupled to a heterogeneous environment that develops in time due to climate change. We decompose the resulting travelling wave solution into neutral genetic components to analyse the spatio-temporal dynamics of its genetic structure. Our analysis shows that range expansions and range shifts under slow climate change preserve genetic diversity. This is because slow climate change creates range boundaries that promote spatial mixing of genetic components. Mathematically, the mixing leads to so-called pushed travelling wave solutions. This mixing phenomenon is not seen in spatially homogeneous environments, where range expansion reduces genetic diversity through gene surfing arising from pulled travelling wave solutions. However, the preservation of diversity is diminished when climate change occurs too quickly. Using diversity indices, we show that fast expansions and range shifts erode genetic diversity more than slow range expansions and range shifts. Our study provides analytical insight into the dynamics of travelling wave solutions in heterogeneous environments.

  20. The synthesis paradigm in genetics.

    PubMed

    Rice, William R

    2014-02-01

    Experimental genetics with model organisms and mathematically explicit genetic theory are generally considered to be the major paradigms by which progress in genetics is achieved. Here I argue that this view is incomplete and that pivotal advances in genetics--and other fields of biology--are also made by synthesizing disparate threads of extant information rather than generating new information from experiments or formal theory. Because of the explosive expansion of information in numerous "-omics" data banks, and the fragmentation of genetics into numerous subdisciplines, the importance of the synthesis paradigm will likely expand with time.

  1. An introduction to genetic quality in the context of sexual selection.

    PubMed

    Pitcher, Trevor E; Mays, Herman L

    2008-09-01

    This special issue of Genetica brings together empirical researchers and theoreticians to present the latest on the evolutionary ecology of genetic quality in the context of sexual selection. The work comes from different fields of study including behavioral ecology, quantitative genetics and molecular genetics on a diversity of organisms using different approaches from comparative studies, mathematical modeling, field studies and laboratory experiments. The papers presented in this special issue primarily focus on genetic quality in relation to (1) sources of genetic variation, (2) polyandry, (3) new theoretical developments and (4) comprehensive reviews.

  2. Landscape genetics as a tool for conservation planning: predicting the effects of landscape change on gene flow.

    PubMed

    van Strien, Maarten J; Keller, Daniela; Holderegger, Rolf; Ghazoul, Jaboury; Kienast, Felix; Bolliger, Janine

    2014-03-01

    For conservation managers, it is important to know whether landscape changes lead to increasing or decreasing gene flow. Although the discipline of landscape genetics assesses the influence of landscape elements on gene flow, no studies have yet used landscape-genetic models to predict gene flow resulting from landscape change. A species that has already been severely affected by landscape change is the large marsh grasshopper (Stethophyma grossum), which inhabits moist areas in fragmented agricultural landscapes in Switzerland. From transects drawn between all population pairs within maximum dispersal distance (< 3 km), we calculated several measures of landscape composition as well as some measures of habitat configuration. Additionally, a complete sampling of all populations in our study area allowed incorporating measures of population topology. These measures together with the landscape metrics formed the predictor variables in linear models with gene flow as response variable (F(ST) and mean pairwise assignment probability). With a modified leave-one-out cross-validation approach, we selected the model with the highest predictive accuracy. With this model, we predicted gene flow under several landscape-change scenarios, which simulated construction, rezoning or restoration projects, and the establishment of a new population. For some landscape-change scenarios, significant increase or decrease in gene flow was predicted, while for others little change was forecast. Furthermore, we found that the measures of population topology strongly increase model fit in landscape genetic analysis. This study demonstrates the use of predictive landscape-genetic models in conservation and landscape planning.

  3. Nonhuman Primate Models in the Genomic Era: A Paradigm Shift

    PubMed Central

    Vallender, Eric J.; Miller, Gregory M.

    2013-01-01

    Because of their strong similarities to humans across physiologic, developmental, behavioral, immunologic, and genetic levels, nonhuman primates are essential models for a wide spectrum of biomedical research. But unlike other animal models, nonhuman primates possess substantial outbred genetic variation, reducing statistical power and potentially confounding interpretation of results in research studies. Although unknown genetic variation is a hindrance in studies that allocate animals randomly, taking genetic variation into account in study design affords an opportunity to transform the way that nonhuman primates are used in biomedical research. New understandings of how the function of individual genes in rhesus macaques mimics that seen in humans are greatly advancing the rhesus macaques utility as research models, but epistatic interaction, epigenetic regulatory mechanisms, and the intricacies of gene networks limit model development. We are now entering a new era of nonhuman primate research, brought on by the proliferation and rapid expansion of genomic data. Already the cost of a rhesus macaque genome is dwarfed by its purchase and husbandry costs, and complete genomic datasets will inevitably encompass each rhesus macaque used in biomedical research. Advancing this outcome is paramount. It represents an opportunity to transform the way animals are assigned and used in biomedical research and to develop new models of human disease. The genetic and genomic revolution brings with it a paradigm shift for nonhuman primates and new mandates on how nonhuman primates are used in biomedical research. PMID:24174439

  4. The etiology of social aggression: a nuclear twin family study.

    PubMed

    Slawinski, Brooke L; Klump, Kelly L; Burt, S Alexandra

    2018-04-02

    Social aggression is a form of antisocial behavior in which social relationships and social status are used to damage reputations and inflict emotional harm on others. Despite extensive research examining the prevalence and consequences of social aggression, only a few studies have examined its genetic-environmental etiology, with markedly inconsistent results. We estimated the etiology of social aggression using the nuclear twin family (NTF) model. Maternal-report, paternal-report, and teacher-report data were collected for twin social aggression (N = 1030 pairs). We also examined the data using the classical twin (CT) model to evaluate whether its strict assumptions may have biased previous heritability estimates. The best-fitting NTF model for all informants was the ASFE model, indicating that additive genetic, sibling environmental, familial environmental, and non-shared environmental influences significantly contribute to the etiology of social aggression in middle childhood. However, the best-fitting CT model varied across informants, ranging from AE and ACE to CE. Specific heritability estimates for both NTF and CT models also varied across informants such that teacher reports indicated greater genetic influences and father reports indicated greater shared environmental influences. Although the specific NTF parameter estimates varied across informants, social aggression generally emerged as largely additive genetic (A = 0.15-0.77) and sibling environmental (S = 0.42-0.72) in origin. Such findings not only highlight an important role for individual genetic risk in the etiology of social aggression, but also raise important questions regarding the role of the environment.

  5. Antagonistic versus non-antagonistic models of balancing selection: Characterizing the relative timescales and hitchhiking effects of partial selective sweeps

    PubMed Central

    Connallon, Tim; Clark, Andrew G.

    2012-01-01

    Antagonistically selected alleles -- those with opposing fitness effects between sexes, environments, or fitness components -- represent an important component of additive genetic variance in fitness-related traits, with stably balanced polymorphisms often hypothesized to contribute to observed quantitative genetic variation. Balancing selection hypotheses imply that intermediate-frequency alleles disproportionately contribute to genetic variance of life history traits and fitness. Such alleles may also associate with population genetic footprints of recent selection, including reduced genetic diversity and inflated linkage disequilibrium at linked, neutral sites. Here, we compare the evolutionary dynamics of different balancing selection models, and characterize the evolutionary timescale and hitchhiking effects of partial selective sweeps generated under antagonistic versus non-antagonistic (e.g., overdominant and frequency-dependent selection) processes. We show that that the evolutionary timescales of partial sweeps tend to be much longer, and hitchhiking effects are drastically weaker, under scenarios of antagonistic selection. These results predict an interesting mismatch between molecular population genetic and quantitative genetic patterns of variation. Balanced, antagonistically selected alleles are expected to contribute more to additive genetic variance for fitness than alleles maintained by classic, non-antagonistic mechanisms. Nevertheless, classical mechanisms of balancing selection are much more likely to generate strong population genetic signatures of recent balancing selection. PMID:23461340

  6. Genetic Influences on Peer and Family Relationships Across Adolescent Development: Introduction to the Special Issue.

    PubMed

    Mullineaux, Paula Y; DiLalla, Lisabeth Fisher

    2015-07-01

    Nearly all aspects of human development are influenced by genetic and environmental factors, which conjointly shape development through several gene-environment interplay mechanisms. More recently, researchers have begun to examine the influence of genetic factors on peer and family relationships across the pre-adolescent and adolescent time periods. This article introduces the special issue by providing a critical overview of behavior genetic methodology and existing research demonstrating gene-environment processes operating on the link between peer and family relationships and adolescent adjustment. The overview is followed by a summary of new research studies, which use genetically informed samples to examine how peer and family environment work together with genetic factors to influence behavioral outcomes across adolescence. The studies in this special issue provide further evidence of gene-environment interplay through innovative behavior genetic methodological approaches across international samples. Results from the quantitative models indicate environmental moderation of genetic risk for coercive adolescent-parent relationships and deviant peer affiliation. The molecular genetics studies provide support for a gene-environment interaction differential susceptibility model for dopamine regulation genes across positive and negative peer and family environments. Overall, the findings from the studies in this special issue demonstrate the importance of considering how genes and environments work in concert to shape developmental outcomes during adolescence.

  7. Discrete mixture modeling to address genetic heterogeneity in time-to-event regression

    PubMed Central

    Eng, Kevin H.; Hanlon, Bret M.

    2014-01-01

    Motivation: Time-to-event regression models are a critical tool for associating survival time outcomes with molecular data. Despite mounting evidence that genetic subgroups of the same clinical disease exist, little attention has been given to exploring how this heterogeneity affects time-to-event model building and how to accommodate it. Methods able to diagnose and model heterogeneity should be valuable additions to the biomarker discovery toolset. Results: We propose a mixture of survival functions that classifies subjects with similar relationships to a time-to-event response. This model incorporates multivariate regression and model selection and can be fit with an expectation maximization algorithm, we call Cox-assisted clustering. We illustrate a likely manifestation of genetic heterogeneity and demonstrate how it may affect survival models with little warning. An application to gene expression in ovarian cancer DNA repair pathways illustrates how the model may be used to learn new genetic subsets for risk stratification. We explore the implications of this model for censored observations and the effect on genomic predictors and diagnostic analysis. Availability and implementation: R implementation of CAC using standard packages is available at https://gist.github.com/programeng/8620b85146b14b6edf8f Data used in the analysis are publicly available. Contact: kevin.eng@roswellpark.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24532723

  8. Beam-column joint shear prediction using hybridized deep learning neural network with genetic algorithm

    NASA Astrophysics Data System (ADS)

    Mundher Yaseen, Zaher; Abdulmohsin Afan, Haitham; Tran, Minh-Tung

    2018-04-01

    Scientifically evidenced that beam-column joints are a critical point in the reinforced concrete (RC) structure under the fluctuation loads effects. In this novel hybrid data-intelligence model developed to predict the joint shear behavior of exterior beam-column structure frame. The hybrid data-intelligence model is called genetic algorithm integrated with deep learning neural network model (GA-DLNN). The genetic algorithm is used as prior modelling phase for the input approximation whereas the DLNN predictive model is used for the prediction phase. To demonstrate this structural problem, experimental data is collected from the literature that defined the dimensional and specimens’ properties. The attained findings evidenced the efficitveness of the hybrid GA-DLNN in modelling beam-column joint shear problem. In addition, the accurate prediction achived with less input variables owing to the feasibility of the evolutionary phase.

  9. Dynamics of attitudes and genetic processes.

    PubMed

    Guastello, Stephen J; Guastello, Denise D

    2008-01-01

    Relatively new discoveries of a genetic component to attitudes have challenged the traditional viewpoint that attitudes are primarily learned ideas and behaviors. Attitudes that are regarded by respondents as "more important" tend to have greater genetic components to them, and tend to be more closely associated with authoritarianism. Nonlinear theories, nonetheless, have also been introduced to study attitude change. The objective of this study was to determine whether change in authoritarian attitudes across two generations would be more aptly described by a linear or a nonlinear model. Participants were 372 college students, their mothers, and their fathers who completed an attitude questionnaire. Results indicated that the nonlinear model (R2 = .09) was slightly better than the linear model (R2 = .08), but the two models offered very different forecasts for future generations of US society. The linear model projected a gradual and continuing bifurcation between authoritarians and non-authoritarians. The nonlinear model projected a stabilization of authoritarian attitudes.

  10. Targeted gene knockin in porcine somatic cells using CRISPR/Cas ribonucleoproteins

    USDA-ARS?s Scientific Manuscript database

    The domestic pig is an ideal large animal model for genetic engineering applications. A relatively short gestation interval and large litter size makes the pig a conducive model for generating and propagating genetic modifications. The domestic pig also shares close similarity in anatomy, physiolo...

  11. Using probability modelling and genetic parentage assignment to test the role of local mate availability in mating system variation.

    PubMed

    Blyton, Michaela D J; Banks, Sam C; Peakall, Rod; Lindenmayer, David B

    2012-02-01

    The formal testing of mating system theories with empirical data is important for evaluating the relative importance of different processes in shaping mating systems in wild populations. Here, we present a generally applicable probability modelling framework to test the role of local mate availability in determining a population's level of genetic monogamy. We provide a significance test for detecting departures in observed mating patterns from model expectations based on mate availability alone, allowing the presence and direction of behavioural effects to be inferred. The assessment of mate availability can be flexible and in this study it was based on population density, sex ratio and spatial arrangement. This approach provides a useful tool for (1) isolating the effect of mate availability in variable mating systems and (2) in combination with genetic parentage analyses, gaining insights into the nature of mating behaviours in elusive species. To illustrate this modelling approach, we have applied it to investigate the variable mating system of the mountain brushtail possum (Trichosurus cunninghami) and compared the model expectations with the outcomes of genetic parentage analysis over an 18-year study. The observed level of monogamy was higher than predicted under the model. Thus, behavioural traits, such as mate guarding or selective mate choice, may increase the population level of monogamy. We show that combining genetic parentage data with probability modelling can facilitate an improved understanding of the complex interactions between behavioural adaptations and demographic dynamics in driving mating system variation. © 2011 Blackwell Publishing Ltd.

  12. Genetic consultation embedded in a gynecologic oncology clinic improves compliance with guideline-based care.

    PubMed

    Senter, Leigha; O'Malley, David M; Backes, Floor J; Copeland, Larry J; Fowler, Jeffery M; Salani, Ritu; Cohn, David E

    2017-10-01

    Analyze the impact of embedding genetic counseling services in gynecologic oncology on clinician referral and patient uptake of cancer genetics services. Data were reviewed for a total of 737 newly diagnosed epithelial ovarian cancer patients seen in gynecologic oncology at a large academic medical center including 401 from 11/2011-7/2014 (a time when cancer genetics services were provided as an off-site consultation). These data were compared to data from 8/2014-9/2016 (n=336), when the model changed to the genetics embedded model (GEM), incorporating a cancer genetic counselor on-site in the gynecologic oncology clinic. A statistically significant difference in proportion of patients referred pre- and post-GEM was observed (21% vs. 44%, p<0.0001). Pre-GEM, only 38% of referred patients were actually scheduled for genetics consultation and post-GEM 82% were scheduled (p<0.00001). The difference in the time from referral to scheduling in genetics was also statistically significant (3.92months pre-GEM vs. 0.79months post-GEM, p<0.00001) as was the time from referral to completion of genetics consultation (2.52months pre-GEM vs. 1.67months post-GEM, p<0.01). Twenty-five percent of patients referred post GEM were seen by the genetic counselor on the same day as the referral. Providing cancer genetics services on-site in gynecologic oncology and modifying the process by which patients are referred and scheduled significantly increases referral to cancer genetics and timely completion of genetics consultation, improving compliance with guideline-based care. Practice changes are critical given the impact of genetic test results on treatment and familial cancer risks. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The interplay between genetic and bioelectrical signaling permits a spatial regionalisation of membrane potentials in model multicellular ensembles

    PubMed Central

    Cervera, Javier; Meseguer, Salvador; Mafe, Salvador

    2016-01-01

    The single cell-centred approach emphasises ion channels as specific proteins that determine individual properties, disregarding their contribution to multicellular outcomes. We simulate the interplay between genetic and bioelectrical signals in non-excitable cells from the local single-cell level to the long range multicellular ensemble. The single-cell genetic regulation is based on mean-field kinetic equations involving the mRNA and protein concentrations. The transcription rate factor is assumed to depend on the absolute value of the cell potential, which is dictated by the voltage-gated cell ion channels and the intercellular gap junctions. The interplay between genetic and electrical signals may allow translating single-cell states into multicellular states which provide spatio-temporal information. The model results have clear implications for biological processes: (i) bioelectric signals can override slightly different genetic pre-patterns; (ii) ensembles of cells initially at the same potential can undergo an electrical regionalisation because of persistent genetic differences between adjacent spatial regions; and (iii) shifts in the normal cell electrical balance could trigger significant changes in the genetic regulation. PMID:27731412

  14. The interplay between genetic and bioelectrical signaling permits a spatial regionalisation of membrane potentials in model multicellular ensembles.

    PubMed

    Cervera, Javier; Meseguer, Salvador; Mafe, Salvador

    2016-10-12

    The single cell-centred approach emphasises ion channels as specific proteins that determine individual properties, disregarding their contribution to multicellular outcomes. We simulate the interplay between genetic and bioelectrical signals in non-excitable cells from the local single-cell level to the long range multicellular ensemble. The single-cell genetic regulation is based on mean-field kinetic equations involving the mRNA and protein concentrations. The transcription rate factor is assumed to depend on the absolute value of the cell potential, which is dictated by the voltage-gated cell ion channels and the intercellular gap junctions. The interplay between genetic and electrical signals may allow translating single-cell states into multicellular states which provide spatio-temporal information. The model results have clear implications for biological processes: (i) bioelectric signals can override slightly different genetic pre-patterns; (ii) ensembles of cells initially at the same potential can undergo an electrical regionalisation because of persistent genetic differences between adjacent spatial regions; and (iii) shifts in the normal cell electrical balance could trigger significant changes in the genetic regulation.

  15. [Genetics of congenital heart diseases].

    PubMed

    Bonnet, Damien

    2017-06-01

    Developmental genetics of congenital heart diseases has evolved from analysis of serial slices in embryos towards molecular genetics of cardiac morphogenesis with a dynamic view of cardiac development. Genetics of congenital heart diseases has also changed from formal genetic analysis of familial recurrences or population-based analysis to screening for mutations in candidates genes identified in animal models. Close cooperation between molecular embryologists, pathologists involved in heart development and pediatric cardiologists is crucial for further increase of knowledge in the field of cardiac morphogenesis and genetics of cardiac defects. The genetic model for congenital heart disease has to be revised to favor a polygenic origin rather than a monogenic one. The main mechanism is altered genic dosage that can account for heart diseases in chromosomal anomalies as well as in point mutations in syndromic and isolated congenital heart diseases. The use of big data grouping information from cardiac development, interactions between genes and proteins, epigenetic factors such as chromatin remodeling or DNA methylation is the current source for improving our knowledge in the field and to give clues for future therapies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Tracking climate change in a dispersal-limited species: reduced spatial and genetic connectivity in a montane salamander.

    PubMed

    Velo-Antón, G; Parra, J L; Parra-Olea, G; Zamudio, K R

    2013-06-01

    Tropical montane taxa are often locally adapted to very specific climatic conditions, contributing to their lower dispersal potential across complex landscapes. Climate and landscape features in montane regions affect population genetic structure in predictable ways, yet few empirical studies quantify the effects of both factors in shaping genetic structure of montane-adapted taxa. Here, we considered temporal and spatial variability in climate to explain contemporary genetic differentiation between populations of the montane salamander, Pseudoeurycea leprosa. Specifically, we used ecological niche modelling (ENM) and measured spatial connectivity and gene flow (using both mtDNA and microsatellite markers) across extant populations of P. leprosa in the Trans-Mexican Volcanic Belt (TVB). Our results indicate significant spatial and genetic isolation among populations, but we cannot distinguish between isolation by distance over time or current landscape barriers as mechanisms shaping population genetic divergences. Combining ecological niche modelling, spatial connectivity analyses, and historical and contemporary genetic signatures from different classes of genetic markers allows for inference of historical evolutionary processes and predictions of the impacts future climate change will have on the genetic diversity of montane taxa with low dispersal rates. Pseudoeurycea leprosa is one montane species among many endemic to this region and thus is a case study for the continued persistence of spatially and genetically isolated populations in the highly biodiverse TVB of central Mexico. © 2013 John Wiley & Sons Ltd.

  17. Modeling lactation curves and estimation of genetic parameters in Holstein cows using multiple-trait random regression models.

    PubMed

    Kheirabadi, Khabat; Rashidi, Amir; Alijani, Sadegh; Imumorin, Ikhide

    2014-11-01

    We compared the goodness of fit of three mathematical functions (including: Legendre polynomials, Lidauer-Mäntysaari function and Wilmink function) for describing the lactation curve of primiparous Iranian Holstein cows by using multiple-trait random regression models (MT-RRM). Lactational submodels provided the largest daily additive genetic (AG) and permanent environmental (PE) variance estimates at the end and at the onset of lactation, respectively, as well as low genetic correlations between peripheral test-day records. For all models, heritability estimates were highest at the end of lactation (245 to 305 days) and ranged from 0.05 to 0.26, 0.03 to 0.12 and 0.04 to 0.24 for milk, fat and protein yields, respectively. Generally, the genetic correlations between traits depend on how far apart they are or whether they are on the same day in any two traits. On average, genetic correlations between milk and fat were the lowest and those between fat and protein were intermediate, while those between milk and protein were the highest. Results from all criteria (Akaike's and Schwarz's Bayesian information criterion, and -2*logarithm of the likelihood function) suggested that a model with 2 and 5 coefficients of Legendre polynomials for AG and PE effects, respectively, was the most adequate for fitting the data. © 2014 Japanese Society of Animal Science.

  18. Advergence in Müllerian mimicry: the case of the poison dart frogs of Northern Peru revisited

    PubMed Central

    Chouteau, Mathieu; Summers, Kyle; Morales, Victor; Angers, Bernard

    2011-01-01

    Whether the evolution of similar aposematic signals in different unpalatable species (i.e. Müllerian mimicry) is because of phenotypic convergence or advergence continues to puzzle scientists. The poison dart frog Ranitomeya imitator provides a rare example in support of the hypothesis of advergence: this species was believed to mimic numerous distinct model species because of high phenotypic variability and low genetic divergence among populations. In this study, we test the evidence in support of advergence using a population genetic framework in two localities where R. imitator is sympatric with different model species, Ranitomeya ventrimaculata and Ranitomeya variabilis. Genetic analyses revealed incomplete sorting of mitochondrial haplotypes between the two model species. These two species are also less genetically differentiated than R. imitator populations on the basis of both mitochondrial and nuclear DNA comparisons. The genetic similarity between the model species suggests that they have either diverged more recently than R. imitator populations or that they are still connected by gene flow and were misidentified as different species. An analysis of phenotypic variability indicates that the model species are as variable as R. imitator. These results do not support the hypothesis of advergence by R. imitator. Although we cannot rule out phenotypic advergence in the evolution of Müllerian mimicry, this study reopens the discussion regarding the direction of the evolution of mimicry in the R. imitator system. PMID:21411452

  19. The evolution of the cognitive model of depression and its neurobiological correlates.

    PubMed

    Beck, Aaron T

    2008-08-01

    Although the cognitive model of depression has evolved appreciably since its first formulation over 40 years ago, the potential interaction of genetic, neurochemical, and cognitive factors has only recently been demonstrated. Combining findings from behavioral genetics and cognitive neuroscience with the accumulated research on the cognitive model opens new opportunities for integrated research. Drawing on advances in cognitive, personality, and social psychology as well as clinical observations, expansions of the original cognitive model have incorporated in successive stages automatic thoughts, cognitive distortions, dysfunctional beliefs, and information-processing biases. The developmental model identified early traumatic experiences and the formation of dysfunctional beliefs as predisposing events and congruent stressors in later life as precipitating factors. It is now possible to sketch out possible genetic and neurochemical pathways that interact with or are parallel to cognitive variables. A hypersensitive amygdala is associated with both a genetic polymorphism and a pattern of negative cognitive biases and dysfunctional beliefs, all of which constitute risk factors for depression. Further, the combination of a hyperactive amygdala and hypoactive prefrontal regions is associated with diminished cognitive appraisal and the occurrence of depression. Genetic polymorphisms also are involved in the overreaction to the stress and the hypercortisolemia in the development of depression--probably mediated by cognitive distortions. I suggest that comprehensive study of the psychological as well as biological correlates of depression can provide a new understanding of this debilitating disorder.

  20. Description and Validation of a Dynamical Systems Model of Presynaptic Serotonin Function: Genetic Variation, Brain Activation and Impulsivity

    PubMed Central

    Stoltenberg, Scott F.; Nag, Parthasarathi

    2010-01-01

    Despite more than a decade of empirical work on the role of genetic polymorphisms in the serotonin system on behavior, the details across levels of analysis are not well understood. We describe a mathematical model of the genetic control of presynaptic serotonergic function that is based on control theory, implemented using systems of differential equations, and focused on better characterizing pathways from genes to behavior. We present the results of model validation tests that include the comparison of simulation outcomes with empirical data on genetic effects on brain response to affective stimuli and on impulsivity. Patterns of simulated neural firing were consistent with recent findings of additive effects of serotonin transporter and tryptophan hydroxylase-2 polymorphisms on brain activation. In addition, simulated levels of cerebral spinal fluid 5-hydroxyindoleacetic acid (CSF 5-HIAA) were negatively correlated with Barratt Impulsiveness Scale (Version 11) Total scores in college students (r = −.22, p = .002, N = 187), which is consistent with the well-established negative correlation between CSF 5-HIAA and impulsivity. The results of the validation tests suggest that the model captures important aspects of the genetic control of presynaptic serotonergic function and behavior via brain activation. The proposed model can be: (1) extended to include other system components, neurotransmitter systems, behaviors and environmental influences; (2) used to generate testable hypotheses. PMID:20111992

Top